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Abstract
Given a quantum graph G = (B,¥,A), we define a
C*-correspondence E; over the non-commutative
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case, we show that the Cuntz-Pimsner algebra O, is
isomorphic to a quotient of the quantum Cuntz-Krieger
algebra O(G) defined in Brannan, Eifler, Voigt, and
Weber (Trans. Am. Math. Soc. Ser. B 9 (2022), 782-826).
Moreover, the kernel of the quotient map is shown to

Funding information

NSERC Discovery Grant; NSF-AWM
Mentoring Travel Grant; AAUW
American Fellowship; FWO; Flemish
Government Methusalem Grant;
European Research Council,
Grant/Award Number: 677120 INDEX;
NSF, Grant/Award Numbers:
DMS-2000331, DMS-1856683

be generated by “localized” versions of the quantum
Cuntz-Krieger relations, and O, is shown to be the
universal object associated to these local relations.
We study in detail some concrete examples and make
connections with the theory of Exel crossed products.
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INTRODUCTION

The notion of a quantum graph goes back to the work of Erdos-Katavolos-Shulman [7]
and Weaver [24], and was subsequently developed further by Duan-Severini-Winter [6] and
Musto-Reutter-Verdon [19]. Quantum graphs play an intriguing role in the study of the graph
isomorphism game in quantum information via their connections with quantum symmetries
of graphs (see [16] and [1]). Moreover, based on the use of quantum symmetries, fascinating
results on the graph-theoretic interpretation of quantum isomorphisms between finite graphs
were recently obtained by Mancinska-Roberson [18]. In this paper, we take a finite directed quan-
tum graph to mean a triple (B, 1, A) consisting of a finite-dimensional C*-algebra B, a state i on
B, and a linear map A on B satisfying a quantum Schur idempotent condition. Finite directed
quantum graphs generalize classical finite directed graphs (without multiple edges) by encoding
a classical graph G in the triple (B, %, A), where B = C(V) is the C*-algebra of continuous func-
tions on the vertex set V of G, ¥ is integration with respect to the uniform probability on V, and
A is the adjacency matrix of G.

In [2], given a finite directed quantum graph (B, , A), Eifler, Voigt, Weber, and first author
introduced a novel C*-algebra FO(B, 3, A), called the free quantum Cuntz—Krieger algebra. This
generalizes the well-studied Cuntz-Krieger algebra @, arising from classical graphs (or rather
a free version of it), where the standard generators are replaced by matrix-valued partial isome-
tries whose matrix sizes are determined by the quantum graph, and the Cuntz-Krieger relations
are expressed using the quantum adjacency matrix of the quantum graph in analogy to the
scalar case.

Introduced in [4], Cuntz-Krieger algebras have intimate connections with symbolic dynam-
ics, and have been studied intensively in the framework of graph C*-algebras over the past
decades, thus providing a rich supply of interesting examples [9, 10, 21, 23]. The structure of
graph C*-algebras is understood to an impressive level of detail, and many algebraic prop-
erties can be interpreted in terms of the combinatorial properties of the underlying graphs.
Motivated by this success, the original constructions and results have been generalized in
several directions, including higher rank graphs [15], Exel-Laca algebras [8], and ultragraph
algebras [22], among others. Recall that, under mild assumptions, the Cuntz-Krieger algebra
corresponding to a classical graph is isomorphic to the Cuntz-Pimsner algebra associated to
the graph’s edge correspondence [20, Example 2, p. 193]. It is worth mentioning that in the
more general setting of quantum graphs, the free quantum Cuntz-Krieger algebras seem to
be difficult to compute in general, and their isomorphism classes are only known under very
strict assumptions (for example, when (B, %, A) is complete and 1 is an n?-form for n € N;
see [2, Theorem 4.5]).

In the present paper we consider a natural unital version of FO(B, ), A), which we denote
O(B, ¥, A), and under the assumption that A is completely positive we show that O(B, , A) quo-
tients onto the Cuntz-Pimsner algebra associated to a C*-correspondence over B which can be
viewed as the quantum analogue of the edge correspondence for a classical graph. This is accom-
plished by showing that this Cuntz-Pimsner algebra is the universal C*-algebra associated to
“local” versions of the quantum Cuntz-Krieger relations introduced in [2].

In Section 2, we define the quantum edge correspondence E for a given quantum graph
G = (B,y,A) whose associated state is a d-form. This C*-correspondence is generated by a
generalized version of the Choi-Jamiotkowski matrix €, associated to the quantum adja-
cency operator A, and E; generalizes the usual edge correspondence for a classical graph

d '€ €T0T 0SLLE9Y

sdpy woxy

diy) SUONIPUOD) PUE SWID L oY 998 “[£Z07/S0/L1] U0 ATRIqET UI[UQ AOJI “SOLBIQIT ANSIOAIN) NRY SEXOL KQ Z0LZ1'SWII/Z] [1°01/10p/woo Ko1K

19y /w0o KoY

p

95U9DI SUOWWO)) dAKBAI) A[qEalldde oy £q POUIFAOT IE SOOILIE V() 198N JO SO[M 10} AIIqI] FUHUQ AS[1AL UO
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(see Example 2.2). Given the role of the element € in generating this analog of an edge corre-
spondence, we think of it as the quantum analog of a classical graph’s edge matrix. Theorem 2.9
identifies conditions on the quantum adjacency matrix which result in faithfulness and fullness
of the quantum edge correspondence, and Proposition 2.7 provides a recognition theorem for
when a cyclic C*-correspondence is the quantum edge correspondence for a quantum graph.

In Section 3, we introduce a natural quotient of the quantum Cuntz-Krieger algebra O(G) by
introducing certain “local” relations on the generators, and we call this quotient a local quantum
Cuntz-Krieger algebra. Given a quantum graph G, we show in Theorem 3.6 that the Cuntz-
Pimsner algebra (9Eg constructed from the quantum edge correspondence is precisely the local
quantum Cuntz-Krieger algebra for that same quantum graph. As mentioned previously, the free
quantum Cuntz-Krieger algebras (and their unital cousins) seem to be very difficult to describe
concretely, except in the most basic cases. This sentiment is emphasized by the fact that we are
unable to find an example of a quantum graph G whose local quantum Cuntz-Krieger algebra is
a proper quotient of O(Q).

In Section 4, we focus on examples, beginning with a very special class of quantum graphs
called the complete quantum graphs G = K(B, ). Here we study the associated quantum Cuntz-
Krieger algebras and Cuntz-Pimsner algebras, and make some connections to Exel’s theory of
crossed products of C*-algebras by endomorphisms [12]. In the classical setting, any square {0, 1}-
matrix A = [A(x, y)] gives rise to the Markov subshift (X 4, o), which is the topological dynamical
system given by the infinite compact path space X, = {x = (x;) € {1, ..., 1}V | A(x;, x;,,) = 1Vi >
1} together with the left shift action o : X, — X, given by o(x); = x;,,. From this dynamical
system (X 4,0), one can associate an Exel system (C(X4), a, L), where C(X ) is the unital C*-
algebra of continuous functions on X4, a : C(X ) — C(X,) is the #-endomorphism defined by
a(f) = foo,and L : C(X4) - C(X,) is a transfer operator for a. In [12], Exel builds from this
data a crossed product C*-algebra C(X,) X, , N, and shows that it is isomorphic to the usual
Cuntz-Krieger algebra O 4. For any complete quantum graph K = K(B, 1), we associate a natural
choice of (non-commutative) Exel system, and show in Proposition 4.3, that this crossed product
is isomorphic to the Cuntz algebra @, on n = dim B generators. We also show in Proposition 4.1
that the Cuntz-Pimsner algebra O, is isomorphic to O,. These results combined generalize the
well-known identifications of Cuntz-Krieger algebras, Cuntz-Pimsner algebras, and Exel crossed
products associated to complete graphs.

Finally, in the other subsections of Section 4 of the paper, we study trivial (edgeless) quantum
graphs and their two natural generalizations: rank-one quantum graphs and quantum graphs
associated to x-automorphic quantum adjacency matrices. We are able to associate a natural
choice of (non-commutative) Exel system in these cases as well, except for rank-one quantum
graphs. Given one of these types of quantum graphs, we show that the Exel crossed product is iso-
morphic to the Cuntz-Pimsner algebra for that quantum graph’s quantum edge correspondence.
See Corollary 4.5, Proposition 4.10, and Corollary 4.13. These examples also mimic the classical set-
ting, where a graph’s associated Cuntz-Krieger algebra, Exel crossed product, and Cuntz-Pimsner
algebra are all isomorphic.

Let us end this introduction with a remark: For more general quantum graphs G = (B, %, A),
it is an interesting and natural problem to associate to G a quantum analogue of (functions
on) the path space X 4. The construction of an appropriate non-commutative version of C(X 4)
seems to be highly non-trivial, and we plan to investigate this in more detail in a follow-up
work.
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1 | PRELIMINARIES
1.1 | Quantum graphs

In this paper, we consider finite quantum spaces (B,), consisting of a finite-dimensional
C*-algebra B and a distinguished faithful state ¢ : B — C satisfying

= §%id,

wherem : B ® B — B isthe multiplication map, m* isits adjoint with respect to the inner product
given by 9, and & > 0. States 3 : B — C satisfying the above identity are called d-forms. Since B
is finite dimensional, we have

d
a=1

The restriction of ¢ to the ath summand M N, (C) appearing in the direct sum decomposition of B
will be given by a density matrix with respect to the usual trace, denoted as p,. We may and will
assume that each p, is diagonal with the ith diagonal entry being 1(e;;). The condition that 3 is a
§-form is then equivalent to Tr(p, ') = Zl | YPlef)™t = 8% foreacha =1,...,d.

We utilize the diagonal entries of these densny matrices to define adapted matrix units for
(B, ), given by

£ = ! e 1<a<d 1<Lj<N
[ ”

as

and by [2, Lemma 3.2] they satisfy

m*(f{) = 2 e rn, W

f(a)f(b) — fz(sa)' )
= ”,b(e(“))

Given a finite quantum space (B, 1), a linear map A : B — B is said to be a quantum adjacency
matrix if

m(A @ A)m* = 5°A.

In this case, the triple (B, ¥, A) is called a directed quantum graph. At times, it will be convenient

to express A as an actual matrix [A] ?g] 1<a,b<m With respect to the basis of adapted matrix units:
I8 j<N,
1<r,s<Nb

arh =3 3 agre

=1r,s=1
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890 | BRANNAN ET AL.

These coefficients can be used to directly check whether a linear map A : B — B is a quantum
adjacency matrix (see [2, Lemma 3.4]), but this will not be necessary in the present paper.

1.2 | C*-correspondences and Cuntz-Pimsner algebras

Given a C*-algebra B, a C*-correspondence over B is a right Hilbert B-module X (with right
B-valued inner product (-,-)z) which admits a %-homomorphism ¢y : B — L(X). Here L(X)
denotes the right B-linear adjointable operators on X. The s#-homomorphism ¢y induces a left
B-action that commutes with the right B-action:

x-& =g (x)€ xX€B, £eX.

One says X is faithful if ¢y is faithful, full if span(X,X ) = B, and cyclic if B - £ - B is dense for
some § € X. The compact operators on X, denoted as K(X), are generated by 0; ,, € L(X), E&neXx,
where

0: () =& (n,{)p {eX.

In this paper, we will exclusively consider finite-dimensional C*-correspondences, for which
K(X) = L(X). The following example is particularly relevant for our purposes.

Example 1.1. Let B be a finite-dimensional C*-algebra and A : B — B a completely positive map.
Define a B-valued inner product on B ® B by

(a®b,c®d)z :=b*A(a*c)d,
where the positivity follows from the complete positivity of A. Then after taking a separation,
B®,B:=BQB/{{ €BQB: (§,§); =0}

defines a C*-correspondence over B. (Since everything is finite-dimensional, we do not need to
take a completion.) The usual left and right actions of B on B ® B,

x-(@a®b)-y=(xa)® (by), a,b,x,y €B
extend to left and right actions on B ® 4 B.

After [14], a representation of a C*-correspondence X over B on a C*-algebra D is a pair («,t)
consisting of a x-homomorphism 7z : B — D and a linear map ¢ : X — D satisfying:
1) wt(&) =t(x-&)forx e Band € € X,
(i) (&) t(n) = n((§,n)p) for §,n € X.
Using (i), one can also show t(&§)(x) = t(§ - x) for x € B and ¢ € X. One can also define a

x-homomorphism 9, : K(X) — Dby 9,(0; ,,) = t(§)t(n)*. A representation is said to be covariant
if m(x) = ;(px(x)) for all x in the Katsura ideal Jy, which is defined by

Jx :={x €B: px(x) € K(X)and xy = 0 for all y € ker px}.
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Note that Jy = B when X is finite-dimensional and faithful, which is the situation we will
primarily consider.

The Cuntz-Pimsner algebra for a C*-correspondence X over B is the C*-algebra Oy =
C*(mx(B), tx(X)) where (7y,ty) is the universal covariant representation of X. That is, given
any covariant representation (7z,t) of X on a C*-algebra D, there exists a *-homomorphism
p: Ox — D satisfying 7 = pomry and t = poty.

2 | QUANTUM EDGE CORRESPONDENCES

Let (B, %) be a finite quantum space. Since the state ¢ : B — C C B is completely positive, we
can consider the C*-correspondence B ®,, B over B from Example 1.1. Note that for EEB®B,
P&, 8)p) = ||§||i®¢, and so B ®,; B = B ® B as a vector space. That is, we do not need to take a

quotient of B ® B.

Definition 2.1. Let G = (B, 1, A) be a directed quantum graph such that 1 is a §-form. We define
the quantum edge indicator to be the element

& 1= 3;1@® )m'(1) € BBy B.
The quantum edge correspondence of G is the C*-correspondence over B defined by
E;:=B-¢;-B=span{x-¢;-y: x,y € B} CB®, B.

That is, E; is the C*-subcorrespondence of B ®, B generated by the quantum edge indicator €.

Example 2.2. In the case of a classical directed graph G = (C(V), ﬁ A), one has
1 % 1
= 51@AM )= 72(1®A) Y VIP,®p, = Y, Py ®Pu
veV w—v

Hence ¢; € C(V x V) is the indicator function for the set {(v,w): (w,v)is an edge}, and the
quantum edge correspondence E is the space of functions supported on this set.

2.1 | Properties of quantum edge indicators and correspondences

Before studying the edge correspondence, we note some important properties of the quantum
edge indicator €; which further justify our terminology.

Proposition 2.3. Let G = (B,,A) be a directed quantum graph with §-form v, and let €, :=
%(1 ® A)m*(1) be the quantum edge indicator. Then:

1) A(x) = 8% ® 1)(x - ;) forall x € B.

(2) egtteg = egwhere (a @ b)#(c ® d) = (ac) ® (db) fora,b,c,d € B.

(3) A is completely positive if and only if (cr;/)/2 ® 1)(e;) is self-adjoint, where (a;p)teR denotes the
modular automorphism group of .
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Proof.

)

(2

For x,y € B, we have
<52(¢ ® 1)(x - Eg)’y>¢ = 52<€g7 X' ® y>¢®¢
= (m*(1),x* @ A" (M)yay
= (1,X*A*(y)>¢
= (A(X), y>1p

Hence 6%(3 ® 1)(x - €¢) = A(x) as claimed.
Observe that ¢ is the image of 1 ® 1 under the following map on B ® B:

1
ﬁ(l @m(I®ARI(M" @ 1).
We will show that this map is a left and right B-linear and idempotent. (In fact, E; is precisely
the image of B ® B under this map.) Bimodularity comes from the fact that both m and m* are

left and right B-linear. Using the associativity of the multiplication operation (that is, m(m ®

1) = m(1 ® m), hence also (m* ® 1)m* = (1 ® m*)m*) and that A is a quantum adjacency

matrix (that is, =m(4 ® A)ym* = A), we will show that this map is idempotent. Its square is
p p

equal to o
SA®MIOmM)1®AQ A (" ® D" 1),
Using associativity, we get
%(1 @mIIMANIRVARARNIU XM @ 1)(m" @ 1).

In the middle, we recognize the expression 1 ® (m(A ® A)m™) ® 1, which is equal to 21 ®
A ® 1. In the end we obtain

S1®mI8 A 1(m* & 1),
which verifies the map is idempotent. Consequently,
eotte = eg#é(l @mMIR®AR (M ®1)(1®1)
= S1@MIB®A® (M & ()
1 . 2
- [zaemuea® e @] 1
= S1emI®A® LM ® V1B = <

(This identity can also be checked directly using the adapted matrix units of (B, 1), but this
arduous task is left to the skeptical reader.)
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(3) Letng € B® B be the image of ¢; under the map a ® b = a ® b°. Then (cri_’b ® 1)(eg) is

self-adjoint if and only if (a 2 ® 1)(n) is self-adjoint. Observe that (cr ,® 1)(ng) is an idem-
potent by part (2), and so it is self-adjoint if and only if it is a prOJectlon and hence if and
only if it is positive. It therefore suffices to show that A is completely positive if and only if
(a;b/2 ® 1)(n) is positive.

Recall that if (M, ¢) is a von Neumann algebra equipped with a faithful normal linear

functional, then {A;,/ X:xeM .} is a self-dual cone in L*(M, ¢), where A, is the modular
operator with respect to ¢. Consequently A is completely positive if and only if for all positive
elements X = (x;;), Y = (y;;) € M, (B)* one has

(Afana®n0.800,Y) -3 (8 sl 0

Using part (1), we compute
NG 1/4 _ /2 1/2 w2 1/2
< A(x;j), A ylj>¢ = <5 @ ®D)(xij-€g) A, yij>¢ =6 <€st ® (4, ylj)>¢®¢

Now, L>’(B®B, ) ®@¥)3a®b — a®[ —1/2p, b]° € L*(B ® B°P, 3 ® °P) is an isometry, so
we can continue the above computation W1th

1/4 1/4 -1/2 * o
< A( lj) A ylj> _62<(1®A )Ug»xij®yij>¢®¢op

_ 1/4 ~1/4 Vig 1/4
= &() @4, @ g, (4} G ®D)

2 1/4 1/4 * o
6" (yfmyes (1, ® D00 ¢®¢°p(xij®yij)>¢®¢op'

Thus

n
_ 2 1/4 1/4 * )
=3 Z RCHA (CALIC D] EYARRCTESR) IO
Suppose X = W*WandY = Z*Z for W = (wij),Z = (zl-j) € M, (B). Then
n n n * n
2 X ® ;= Z wi;wi ® (25,25)" = 2z <Z W ® (Z;j)o> (Z Wi @ (Z;i)o>
i,j=1 i,j,k,0=1 k=1 \j=1 i=1

is positive. Also note that every positive element of B ® B°P can be presented this way.
Indeed,

<de®zi> <de®22> = X ;@]
d=1 d=1

ij=1

A '€ €T0T ‘0SLLEYYT

1Y) sUONIPUO) puE Swiia] oY1 938 “[£20Z/S0/L 1] U0 AIBIQE] SUIUQ KDL “SOLEIGT ANSIAIUN R SEXL £Q ZOLTI'SWIZ] | 1°01/10p/0d oiar

w00 Kopiax

95U9DI SUOWWO)) dAKBAI) A[qEalldde oy £q POUIFAOT IE SOOILIE V() 198N JO SO[M 10} AIIqI] FUHUQ AS[1AL UO



894 | BRANNAN ET AL.

it X =W*W,Y =Z2*Z € M,,,(B) where (W);; = 6;_;w; and (2);; = §;_,z;". It follows from
(3) and these observations that A is completely positive if and only if (O';’l} ,® 1)(ng) is positive.

O

Remark 2.4. At this point it is worth remarking on the connection to Weaver’s notion of a quantum
graph [24, 25]. Recall that there is an algebra isomorphism
7 : B® B°P — 5,CBg/(B(L*(B,)))
(a®b°) — (T = aTbh),
where 5 CBy/(B(L?(B,%))) denotes the space of completely bounded B’-B’-bimodule maps on

B(L?*(B,%)). When a quantum adjacency matrix A is completely positive, the projection p =
(J;p/2 ® 1)(1¢) € B ® B°? induces a B’-B’-bimodule projection 7(p) on B(L?(B, %)) whose range

S C B(L*(B, %)) is a B’-B’-bimodule. Such bimodules S are exactly what Weaver refers to as
(directed, non-reflexive) quantum graphs on B C B(L*(B, )).

Theorem 2.5. Let G = (B,y, A) be a directed quantum graph such that 1 is a 8-form and A is
completely positive. Then for x,y € B one has

1 #
(x-eq,y-eg)p = 5;AXY),

where e = %(1 ® A)m*(1) is the quantum edge indicator. In particular, A(x) = 52(eg, X - €¢g)p for
allx € B.

Proof. Writee; = ), p, ® q, for p,,q, € B. Then
<x €Y €§>B = z <xpa ® 49y, YPp ® Q,B>B
“’ﬁ

= ) P(Pix"yPp)aLas
p

= > o(x*ypge” (D)4
a’ﬁ

= @@ D[x*y - eg#(e”, ® ()]
= @eDEx"y- Eg#eg)

= @R D(x'y-ey) = %A(x*y),

where the last three equalities follow from the three parts of Proposition 2.3 (in reverse order). []

Recalling the definition of B ® , B from Example 1.1, we obtain the following corollary.
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Corollary 2.6. Let G = (B, 9, A) be a directed quantum graph such that 1 is a 5-form and A is com-
pletely positive. Then E; = B ® 4 B as C*-correspondences over Bviathemap x - € -y %(x ®Y).

The above corollary is somewhat surprising in that a priori B ® 4 B appears to be completely
independent of p. But of course the dependence is hidden in the fact that A is a quantum adjacency
matrix for (B, ). We also remark that while B ® 4 B is more easily defined, E has the advantage
of not requiring us to quotient by any null spaces.

Given a finite quantum space (B, %) such that ¢ is a §-form, Theorem 2.5 tells us every com-
pletely positive adjacency matrix is of the form A(x) = §%(£, x - £)5, for some £ € B ®y B. Thus
it is natural to ask for which elements £ € B ®y B is the map B > x - 8%(&,x - &)y a (nec-

essarily completely positive) quantum adjacency matrix? Suppose E#& = £ and (O'EIJ/2 ® 1)(&)

is self-adjoint, and define Ag(x) 1= 68%(¢,x - &), then the same computation as in the above
theorem implies

Ag(x) = 8(E.x - £)y = SP @ D(x - §).

Consequently, foreach1 <a <dand1<1i,j <N,
1 %, pla 1 a a
A ® Ao’ (1) = 55 D AL
k
8 Y@V - OGP @D - ).
k

Writing § = ) p, ® q,, We can continue the above with

Sm(A; @ Agm' (f())) = & Z( o pe) (15025 ), 9:s
= ¢ 2( o pa) (7091 ps) aua

= 52 Z <<¢(el(;1))f(a) f(a)> f](::)’pcc> qaqﬁ

k.o,
-5y << @ ((a))Pﬁf(a)> ,(j),Pa> 0.
k.. P
=5’ Zﬁzp(e(“) << £ ) f,‘;?,pa> G-
k,a

Now, using the fact that {z,b(e(b))V 2f (ls’) 1<b<d, 1<r,s<Np}isan orthonormal basis for
L?(B), we then have

SmA; ® Apm' (£ =8 <<¢<e<b)>1/2f5’:>,pﬁf<“)) ¢<e<b>>1/2f5’3%pa> 4.9

r,s,b,a,B

2 Z <p5f]l ’pa> qocqﬁ
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896 BRANNAN ET AL.

=& %(zp SV - (pp ® 4)#(Pe ® q))
= (a) _ (@)
=8 Y@ ONU) - (e ® ) = AU

Thus A; is a quantum adjacency matrix for (B, ). Moreover, by a similar computation one can

show that %(1 ® Ag)m*(l) = £ and so there is in fact a one-to-one correspondence between
completely positive quantum adjacency matrices for (B, %) and the set

£ eB®B: (#E=£ (0}, 81" =@, @ DG}
More generally, we have the following recognition result for the quantum edge correspondence.

Proposition 2.7. Let (B, ) be a finite quantum space such that 1y is a §-form, andlet X =B - £ - B
be a cyclic C*-correspondence over B. If the map A : B — B defined by A(x) = §%(£,x - &g isa
quantum adjacency matrix for (B, ¥), thenx - £ -y = x - €B,p,4) * Y extends to a C*-correspondence
isomorphism from X to the quantum edge correspondence Eg  4).

Proof. 1f we denote € := €y 4), then Theorem 2.5 implies

(a) (b) _ (a) _ 1 @y _ [ @ b
(e £ -6), = dun(§0§), = Somp 5 AED) = (e -l ),

foralll1<a,b<d,1<i,j<Ngand1<r,s < N,. It follows that for all x,y,z, w € B that

(x-E-pz-E-w)y =y (x- £z E)gw =y (x ez hpw = (x-€- ),z ¢ ).

Therefore Y, x;-&-y; = X,x;-€-y; is a well-defined, inner product preserving (and
hence injective), B-bilinear map from B-£-B =X onto B-¢-B = E;. In other words, it is
a C*-correspondence isomorphism. O

It is straightforward to check that any homomorphism A : B — B is a quantum adjacency
matrix for a quantum space (B, ) (independent, in fact, of ). Furthermore, every homomor-
phism of a C*-algebra that is completely positive must necessarily be x-preserving, so it is natural
to ask if the one-to-one correspondence in Proposition 2.7 restricts to a one-to-one correspondence
between *-homomorphisms and a subset of {{ € B®y B: {#{ = ¢, (0?/2 R (&) = @ ®

i/2
D

Proposition 2.8. Let (B, ) be a finite quantum space, and suppose that A : B — B is a completely
positive quantum adjacency matrix for (B, ). The following are equivalent.

(i) Ais a homomorphism.
(i) Forall x,y € B, we have (xy) -€¢ = x - € - A().

Proof. Suppose for all x,y € B, we have (xy) - ¢; = x - ¢ - A(y). Proposition 2.7 implies

A(xy) = (g, (xy) - €g)p = (€g, X - € - A(Y))p = (€¢> X - €5)pA(Y) = A(X)A(Y)

d '€ €T0T 0SLLE9Y

d1y) sUONIPUO) puE swid] a1 938 “[£707/S0/L 1] U0 AIBIQI] SUIUQ) K91 SOBIQUT ASIOAUN) NPV SEXOL KQ ZOLZ1'SWIHT] | 1°0 1/10p/wioa Kofia

19y /w0o KoY

95U9DI SUOWWO)) dAKBAI) A[qEalldde oy £q POUIFAOT IE SOOILIE V() 198N JO SO[M 10} AIIqI] FUHUQ AS[1AL UO
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for all x,y € B. Conversely, suppose that A is a homomorphism, and fix x,y € B. For any
a,b € B,

(a-eg-b,(xy)-ec)p = b*A(a*xy) = b* A(a"x)A(y) = (a-¢g - b, X - €¢ - A(Y))p.
As elements of the form a - € - b span E, for any § € Eg,
(§,(xy)-eg—x-¢;-A(y))p =0 forallx,y €B.

In particular, £, := (xy)-€;—x-¢; - A(y) is an element of E;, so (§,,&,)3 = 0. By positive
definiteness of (-, -)3, we may conclude §, = 0. Thus, xy - €, = x - €5 - A(y) forall x,y € B. []

When A is a x-automorphism, the quantum edge correspondence E; arising from a quantum
graph G := (B,9, A) is the span of B - ¢, or the span of ¢ - B. Indeed, given x - ¢; - y € E, for
some X,y € B, Proposition 2.8 implies that the maps E; — E given by x - €5 - y = xA~N(y) - €
and x - € - y b €¢ - A(x)y are both the identity map on E.

2.2 | Faithfulness and fullness of the quantum edge correspondence

Recall the definitions of faithful and full for C*-correspondences from Section 1.2. The next the-
orem shows that these features for a quantum edge correspondence E are determined by the
quantum adjacency matrix A.

Theorem 2.9. Let G = (B,9, A) be a directed quantum graph such that ¥ is a §-form and A is
completely positive, and let E;, be the quantum edge correspondence. Then

{xeB: x-&=0VE€Eg}=(BA"(B)B)"
and
span(Eg,Eg), =B - A(B) - B,

the two-sided ideal of B generated by the range of A. In particular, E is faithful if and only if ker(A)
does not contain a central summand of B, and E is full if and only if A(B) is not orthogonal to a
central summand of B.

Proof. Suppose x - § = 0forall § € E¢. This means precisely that for all a, b € Bwe have xae;b =
0, which, on the other hand, is equivalent to (cegd, xaegb) = 0for all c,d € B. This expression is
equal to §72d*A(c*xa)b = 0, so it is equal to zero if and only if A(c*xa) = 0. This time using
the inner product on B, we see that this is equivalent to 0 = (y, A(c*xa)) = (cA*(y)a*, x) for all
y € B. Therefore x € (BA*(B)B)*.

Next, observe that

span(E¢, E¢)p =span{(a-¢;-b,c-¢;-d)p : a,b,c,d € B}
=span{6*b*A(a*c)d : a,b,c,d € B}

=B-A(B)-B. L]
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Remark 2.10. In the case of a classical directed graph G = (C(V), 3, A), the central summands of
C(V) are indexed by V. A central summand belongs to ker(A) when the corresponding vertex is
a source (that is, has no edges into it), and it is orthogonal to A(C(V)) when the corresponding
vertex is a sink (that is, has no edges out of it). Hence Ej; is faithful when A has no zero columns
and is full when A has no zero rows.

The previous remark motivates the following definitions.

Definition 2.11. Let ¢ = (B,9, A) be a directed quantum graph such that ¢ is a §-form and A
is completely positive. A quantum sink in G is a central summand of B that is orthogonal to the
range of A. A quantum source in G is a central summand of B that lies in the kernel of A.

In the next section we will examine the Cuntz-Pimsner algebra O, associated to the quantum
edge correspondence. Consequently, it is important to understand how to express the left B-action
in terms of compact operators K(E).

Theorem 2.12. Let G = (B,, A) be a directed quantum graph such that 1 is a 5-form and A is
completely positive, and let E; = B - €. - B be the quantum edge correspondence. If { f l(;l) t1<axg
d, 1 <i,j < N,} are the adapted matrix units for (B, ), then

Na
(@ ¢ _
fij § ,;efi(g)'eg’fﬂ)'eg(g) forall§ € E.

Proof Since both sides are right B-linear in &, it suffices to prove the equality for § = e(b) €cs

<b<d,and1<r,5 <Ny Writee; = 3, X, ® y,.. Then using Proposition 2.3.(2) we have

Jif - (@) - €g) = Sucpl(e (e 26 - &

= Susp[Plel (N2l - (egtteq)
_] =r

= Sap[Y(e M2 Y () x5 x5) ® (py)
J=r ka8

= Sas[$(ePEIT2 Y (x) (e x0) ® v
J=r ka8

= Sucpl e EN Y — (e, %) ® 0p2)
J=r kg Ple)

= Bacb[P(ep(e'?)] 1/22 €9 e P @ - ).
j=r

(a)
Now, using Proposition 2.3(1) and Theorem 2.5 we see that

BBVE e = HACD) = (e eg) = (60 e )
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So continuing our computation above, we have

(a) (b) _ (a) (a) -1/2 (a) (@) (a)
1 ) -2 = Bact (e W€} /2 (a) e <e]k g, el eQ>B

b
_ Z 79 e (59 eguel?. €§>B
-y ®)
- 3 ef,-(lf)'egsfﬁ)'eg(ers )

as claimed. O

The following corollary is a rephrasing of Theorems 2.5 and 2.12 in terms of linear maps, which
will be useful in the next section. We leave the proof to the reader.

Corollary 2.13. Let G = (B, ¥, A) be a directed quantum graph such that i is a 5-form and A is com-
pletely positive, and let E; = B - ¢ - B be the quantum edge correspondence. If (7, t) is a covariant
representation of E; on a C*-algebra D, then the linearmap T . B — D defined by T(x) := t(x - €¢)
satisfies

s 1
upI*®T) = ﬁﬂAm,
up(T @ T )m™* = 1p,,

where up : D ® D — D is the multiplication map, T*(x) :=T(x*)*, and ¥, : K(Eg) — D is the
x-homomorphism induced by t.

3 | QUANTUM CUNTZ-KRIEGER ALGEBRAS AND LOCAL
RELATIONS

In this section we recall the quantum Cuntz-Krieger relations and define local quantum
Cuntz—Krieger relations. The former differ slightly from those appearing in [2, Section 3.2] (see
Remark 3.3). We will see in Theorem 3.6 below that the Cuntz-Pimsner algebra for a faithful quan-
tum edge correspondence plays the role of the universal C*-algebra generated by local quantum
Cuntz-Krieger relations. This in turn allows us to deduce that such Cuntz-Pimsner algebras are
quotients of quantum Cuntz-Krieger algebras (see Corollary 3.7).

Definition 3.1. Let G = (B,®, A) be a directed quantum graph. We define a quantum Cuntz-
Krieger G-family in a unital C*-algebra D to be a linear map s : B — D such that:

) uppp ® D(s ® s* @ s)(m* @ m* =35, (QCK1)
(ii) up(s* @ )m* = up(s @ s )m*A, (QCK2)
(i) pp(s ® s)m*(13) = %1p, (QCK3)

where up : D ® D — D is the multiplication map for D and s*(b) = s(b*)* for b € B. Then the
quantum Cuntz-Krieger algebra associated to G is the universal unital C*-algebra ()(G) generated
by the image of a quantum Cuntz-Krieger G-family S : B — O(G).
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900 | BRANNAN ET AL.

We show that Definition 3.1 gives the classical Cuntz-Krieger algebra when G is a classical
graph.

Example 3.2. Let G = (B,9, A) be a classical graph, that is, B = C(V) is the finite-dimensional
commutative C*-algebra arising from a simple finite directed graph G = (V,E) on N = |V| ver-
tices, ¢ is the normalized trace on B, and A is defined by the adjacency matrix A; on G in the
usual way. If {e, ..., ey} is the canonical basis of minimal projections in B, it is easy to see that
P(e;)) =1/N, m(e; ® ej) = 5,_je;, and m*(e;) = Ne; ® ¢; for all i, j. Moreover, ¢ is a §-form with
§2=N.

Let S : B — O(G) be a universal quantum Cuntz-Krieger G-family and define S; = NS(e;) €
O(G). It was shown in [2, Proposition 4.I] that the S; are partial isometries satisfying S;'S; =
Z]j\f:l Ag(, S jSJ’.‘ since S : B — O(G) satisfies (QCK1) and (QCK2). One can see that the S; have
mutually orthogonal range projections by observing that they sum to the identity in O(G) since S
satisfies (QCK3). Explicitly, observe that

N N
D SiS; =N? lz S(ei)S*(ei)]
i=1 i

i=1

=N lz How) (S ® S*)m*(ei)]

i=1
= N[ 10| =1
= [g 0(9)] = lo:

Thus, the S; form a Cuntz-Krieger A;-family, which induces a *-homomorphism of O,  onto
0(9).

Conversely, given a universal Cuntz-Krieger Ag family {S;}, we can define s : B > O, via
s(e;) = %Si €0,,. As mentioned in [2, Proposition 4.1], one can check that s satisfies (QCK1)
and (QCK2). To see that s satisfies (QCK3), consider

N
Ho, (s®@sIm*(1p) = Y Ho, (s(Ne) ®s™(e;)
i=1

1 N
=5 255
i=1

1
= ﬁ 1OAG .
Hence, s is a quantum Cuntz-Krieger G-family, which induces a *-homomorphism of O(G) onto
O,,,- Checking that this map is the inverse of the previously induced *-homomorphism of O,

onto O(Q) yields O(Q) is isomorphic to © Ag-

Remark 3.3. In [2], a notion of quantum Cuntz-Krieger algebras was introduced without the rela-
tion (QCK3) (see [2, Definition 3.7]), which gives potentially non-unital, non-nuclear C*-algebras
denoted as FO(Q). As discussed in [2, Section 4.1], when G is a classical graph FO(G) is a free Cuntz-
Krieger algebra (see [2, Definition 2.5]), whereas by the above example O(G) is a Cuntz-Krieger
algebra. Thus we will generally refer to FO(G) as the free quantum Cuntz-Krieger algebra, and
reserve the terminology “quantum Cuntz-Krieger algebra” for O(G).
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Using adapted matrix units, one can produce a more explicit presentation of the quantum
Cuntz-Krieger relations. This is essentially the content of [2, Proposition 3.9]. More precisely,
if s(a) 1= s(f] (a)) where {f}] @ 1 <a<d, 1<i,j<N,}are the adapted matrix units for (B, %),

ij
thens : B — D isa quantum Cuntz—Krieger G-family if and only if the following relations hold:

Na
z s(a) (a) (a) (Sa) 4)
k=1

Z(S(a) (a) 2 2 A;f;rgc (C) (C) )y (5)

c=1¢,mn=1

Z Z ¢(e(c) (C) (C) )*_ S 6)

c=1¢,m=1
We now introduce localized versions of the above quantum Cuntz-Krieger relations.
Definition 3.4. Let G = (B, ), A) be a directed quantum graph such that ¢ is a §-form. We define

a local quantum Cuntz-Krieger G-family in a unital C*-algebra D to be a linear map s: B - D
such that

@) Hp(p @ D(s @ s* @ s)(m* @ 1) = 555m, (LQCK1)
(i) pp(s* ® ) = 53 p(s @ s )m*Am, (LQCK2)
(iii) up(s ® s Im*(13) = % 1p, (LQCK3)

where up : D ® D — D is the multiplication map for D, s*(b) = s(b*)* for b € B, and m* is the
adjoint of m with respect to the inner product given by .

Once again, using adapted matrix units, one can produce a more explicit presentation of the
local quantum Cuntz-Krieger relations. This is the content of the following proposition whose
proof is omitted as it is very similar to the proof of [2, Proposition 3.9].

Proposition 3.5. Let G = (B, 1, A) be a directed quantum graph such that v is a 5-form, and let
s: B — D be a linear map into a unital C*-algebra. Denote si(;.z) 1= s( fi(j.‘)), where { fl.(J‘.l) t1<ax
d, 1 <1i,j < N,} are the adapted matrix units for (B, ). Then s is a local quantum Cuntz—Krieger
G-family if and only if the following relations hold:

N,
Z (a)(s(a)) S(b) - 1 (a) (7
=1 J r521,b(e(a))
. d N,
(s (a))* (b) _ Such Alme (C)(S(C) )* (8)
= 62 Zmnz | sa Sen
z Z ¢(e(c) (C) (C) )>< (9)
c=1¢,m=1

foralll1<a,b<d 1<i,j<Ng,andl<r,s <N
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902 | BRANNAN ET AL.

Just as in the case of the quantum Cuntz-Krieger algebras above, one can also define, for any
quantum graph G = (B,, A), a corresponding local quantum Cuntz-Krieger algebra. The local
quantum Cuntz-Krieger algebra is the C*-algebra generated by a universal local quantum Cuntz-
Krieger G-family. The following theorem is the main result of this section. It shows that local
quantum Cuntz-Krieger algebras are in fact familiar objects — under rather mild assumptions,
they are precisely the Cuntz-Pimsner algebras of quantum edge correspondences.

Theorem 3.6. Let G = (B,¥, A) be a directed quantum graph such that ¢ is a -form and A is
completely positive, and let E; = B - ¢ - B be its quantum edge correspondence. Let (ﬂEg, tEc) denote
the universal covariant representation of E; on the Cuniz-Pimsner algebra OEQ. Assume that G has

no quantum sources. Then S : B — (DEQ defined by S(x) := %tEg(x - €¢) is a local quantum Cuntz-
Krieger G-family whose image generates (9Eg. Moreover, given any local quantum Cuntz—Krieger
G-family s: B — D in a unital C*-algebra D there exists a s-homomorphism p : (9Eg — D such
that s = poS.

Proof. We begin by showing that S is a local quantum Cuntz-Krieger G-family. Let ¢, : K(Eg) —
G
Op,, be the *x-homomorphism induced by tg,s and let u: Of, ® O, — O, denote the multipli-

cation map. Define a linear map T: B — OEQ by T(x) := tEg(x “€¢), so that S = %T. Note that
the quantum edge correspondence Ej; is faithful by Theorem 2.9 and finite dimensional so that
the Katsura ideal J B, = B. Moreover, faithfulness allows us to identify B C L(E;) = K(E(), and
under this identification we have gthg |p = 7. With this observation in hand, we can readily verify

the local quantum Cuntz-Krieger relations.

(LQCK1): The second equation in Corollary 2.13 implies

uE® 1S ® S* @ S)(m* @ 1) = %#(# QDT ®T* @ T)(m* ® 1)

1
= §#(¢tEg ® T)

1
= g#(ﬂ ®T)
1 1

where the second-to-last equality follows from the relation g, (x)tEg(’;’ )= tg, (x-&forxeB
and § € Eg.
(LQCXK2): Using both equations in Corollary 2.13 gives

% 1 % 1 1
uS*®S) = ﬁ#(T' ®T) = gﬂAm = ﬁ@thgAm
= ﬁ,u(T®T')m Am = ﬁ,u(S(X)S ym*Am.
(LQCK3): Using the second equation in Corollary 2.13 we have

M(S ® S )m*(1p) = ﬁ#(T QT )m*(1p) = ﬁnEg(lB) = ﬁl’

Note that 77, is necessarily unital since 1 - §=¢forall§ € E.
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Thus S is a local quantum Cuntz-Krieger G-family. We also have C*(S(B)) = OEg. Indeed,
nEg(B) C C*(S(B)) by Corollary 2.13, and tEg(g)nEg(b) = tEg(ﬁ' - b) implies tEg(Eg) c C*(S(B)).

Now, suppose s: B — D is a local quantum Cuntz-Krieger G-family in a unital C*-algebra
D. To obtain the desired homomorphism, we will construct a covariant representation of Eg on
D and invoke the universal property of the Cuntz-Pimsner algebra OE@' Define a linear map
m: B — Dby

7= 8%up(s ® s )m*,

where up : D ® D — D is the multiplication map. Then 7 is unital by (LQCK3), 7* = 7 in light
of how the multiplication maps interact with the adjoint, and (LQCK1) implies

pp(m @ 1) = 8* up(up ® pp)(s @ 5* @ s @ s*)(m* @ m*)
= 8* 1y ([up(up ® V(s ® s* @ s)(m* ® D] ® s)(1 ® m”*)
= 8%up((sm) @ s*)(1 ® m*)
= 8%up(s ® s )m*m = wm.

Hence 7 is a *-homomorphism.
Next define a linear map ¢ : E; — D by

t(x-€g-y) = ds(x)m(y) X,y € B.

We will see below that t(§)*t(n) = n({(§,n)p) for £, € B, which in particular will show that this
map is well defined. By (LQCK1) we have

fp(pp @ DT @ s ® ) = 8 pp(p @ D(p ® 1R VN @ s* @ s M)(m" @1 ® 1)
=up(s®@m)(M® 1).
Thus for x,y,z € B we have
Ty e -z) =Sup(Up @ N @ s T)(Xx QY ® z)
=0up(s®@m)(M D(x ®y ® z) = ds(xy)m(z) = t(xy - €¢ - 2),

and so r(x)t(§) = t(x - §) for all x € B and £ € E;. Using (LQCK2) and the definition of 7, we
have

L

5 TAmM.

up(s* ®@s) = é#D(S ® s )m*Am =
Thus for x, x’,y,y’ € B we have
H(xeq- )t e y) =8 (up @ pup)1 @ pp @ N(T* @ s* @sRM)(Y* @ x* QX' ® )
= S5 ® k)T B (T @M1 ® MO ®x" ®x' B )
= SO A X))

=a(y(x-egx'-eg)py) =m((x-eg- 3. x" e V' )p),

d '€ €T0T 0SLLE9Y
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where the second-to-last equality follows from Theorem 2.5. Thus (7, t) is a representation of E
on D, and Theorem 2.12 implies that it is covariant:

¢t f(a)) = Z“;bt( f(a) &g f(a) >

(f“” (' - <o)

||[\”4Z

= Sup(s @ M (f{) = 7 ().

Thus the universal property for the Cuntz-Pimsner algebra (DEQ implies that there is a
*-homomorphism p : Oy, — D satisfying 7 = porg, and t = potg,. In particular, we have

1 1
s(x) = gt(x “€g) = gpotgc(x “€g) = p(S(x)).
Hence s = poS. O

Observe that any local quantum Cuntz-Krieger G-family is a (non-local) quantum Cuntz-
Krieger G-family. Indeed, since 9 is a & form, one has mm* = 62id. Thus if s: B — D satisfies
(LQCK1) and (LQCK2), then applying m* to the right-hand sides of these relations yields (QCK1)
and (QCK2), respectively. Also (LQCK3) and (QCK3) are identical. Hence the universal property
for O(Q) yields a unique *-homomorphism onto C*(s(D)). In particular, if ker(A) does not contain
a central summand of B, then the previous theorem yields the following.

Corollary 3.7. Let G = (B,1, A) be a directed quantum graph such that ¢ is a 5-form and A is
completely positive, and let E be its quantum edge correspondence. Assume that ker(A) does not
contain a central summand of B. Then (9E = O(G)/ T where T < O(G) is the closed two-sided ideal
generated by the relations (LQCK1), (LQCKZ) and (LQCK3).

3.1 | Behavior of (9Eg under quantum graph isomorphisms

In this section we briefly examine the relationship between the Cuntz-Pimsner algebras of quan-
tum edge correspondences associated to quantum isomorphic quantum graphs. We begin by
recalling the notion of quantum isomorphism from [1, 2]. Let G; = (B;, ¥;, 4;), i = 1, 2, be directed
quantum graphs. We say that G, and G, are quantum isomorphic if there exists a Hilbert space H
and a unital *-homomorphism

6, : By — B, ® B(H),
which satisfies the following 1; and A; covariance conditions

(%, ®1d)6; = P1(D1pay)s
(A, ®1d)6; = 6,04,.
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Note that the general theory guarantees that whenever a morphism 6; : B; — B, ® B(H) exists,
there automatically exists a corresponding morphism 6, : B, - B; ® B(H) with analogous
covariance conditions to those for 6;. In particular, the notion of quantum isomorphism is
symmetric in G; and G,.

Quantum isomorphisms between quantum graphs can be seen as relaxations (or generaliza-
tions) of the notion of an isomorphism between quantum graphs. Indeed, in the special case
where H = C, a quantum isomorphism between G, and G, defines an ordinary isomorphism of
quantum graphs.

The following theorem should be compared with [2, Theorem 6.13], which is a similar result in
the context of (free) quantum Cuntz-Krieger algebas. Note, however, that the conclusion of the
following theorem is slightly stronger in that one gets injective morphisms ©; between Cuntz-
Pimsner algebras below (compare with [2, Remark 6.14]).

Theorem 3.8. Let G, = (B;,¥;,A4;), i =1,2, be directed quantum graphs. If G, is quantum
isomorphic to G, with %-homomorphisms

6,: B> B,®B(H) and 6,:B,— B, ®B(H),
as above, then there exist injective *-homomorphisms
0,: (DEQ1 - (DEQ2 ® B(H) and 0,: OEg2 - (DEQ1 ® B(H)
satisfying
®17TEg1 = (HEQZ ® 1)61 and (927TE§2 = (”Egl ® 1)62.
Proof. Using Corollary 2.6, we can work with B; ® 4, B; rather than E, i = 1, 2. Denote A, =
A, ® idg(;), which is a completely positive map, and X := (B, ® B(H)) ® A, (B, ® B(H)). Note

that X ~ (B, ®4, B,) ® B(H), and so Oy = (9,32(8,/&232 ® B(H) by [17, Example 6.4].
Now, for x,y € B, and § € B; ® B; we have

(A, @ D((6; ® 61)(§)"(6; ® 6,)(§)) = (6, ® 6,)(A4; ® 1)(§7E).
It follows that 6, @ 6, induces alinearmap T : B} ® 4 B; — X satisfying
T(x-&-y)=0:(x)-T(&)-6,(») X,y € By, § €B ®4, B1»

and

(T(6), T(’?))BZ(X)B(H) = 61((5,77>Bl) §,n € By ®a, B1-

Thus if (7ry, ty) is the universal covariant representation of X (note that we can take 7y := g, ®
landty := tEg, ® 1), then (7 00,, tyoT) is a covariant representation of B; ® 4 B; on Ox. One
easily checks that this representation is injective and admits a gauge action, and so [14, Theorem
6.4] implies that there is an injective *-homomorphism ©, : Op, ®u B Ox. Reversing the roles
of B, and B, yields ©,. L]

d '€ €T0T 0SLLE9Y
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4 | EXAMPLES

In this section we consider three common types of quantum graphs and determine the isomor-
phism classes of the Cuntz-Pimsner algebras associated to their quantum edge correspondences.
Notably, several of these examples can be realized as Exel crossed products associated to natu-
ral Exel systems. We refer the reader to [11]-[13] for details but provide a brief summary of the
construction of Exel crossed products below.

Let C be a C*-algebra and « : C — C be x-endomorphism. A transfer operator for (C,a) is a
positive linear map on C such that L(a(f)g) = fL(g) for all f, g € C. The Exel crossed product
is obtained by first constructing a Toeplitz algebra 7 (C, ¢, £) which is the universal C*-algebra
generated by a copy of C along with an element S such that Sf = a(f)S and L(f) = S*fS for all
f € C. Two elements f,k € T(C,a, L) form a redundancy if f € C,k € CSS*C, and f¢S = k¢S
forall g € C. The Exel crossed product C X, , Nis the quotient of 7(C, a, £) by the ideal generated
by differences f — k of redundancies (f, k).

Given an n X n {0, 1}-matrix A, one can construct the Markov subshift space of infinite paths in
the graph associated to A, denoted by X 4. X , is a compact space, and admits a natural shift action
o X, — X, given by o(xq, x5, X3, ...) = (X3, X3,...). A nice class of commutative Exel systems
(C(X4),a, L) arises from this construction, where a(f) = foo for f € C(X,) and

L) =y eXslom=x17 Y fO|

yexy | o(y)=x}

It is known that the Cuntz-Krieger algebra O, is isomorphic to the Exel crossed product
C(X4) X, N. Below, we explore the analogous relationship between non-commutative Exel
systems and local quantum Cuntz-Krieger algebras.

4.1 | Complete quantum graphs

Given a finite quantum space (B, ) with §-form 3, we denote by K(B, ) the complete quan-
tum graph (B,¥, A), whose quantum adjacency matrix A is given by the rank-one map A =
5%9()15 [1, 2]. The quantum edge correspondence for K(B,) is Ex = B ® B since an adapted
matrix unit computation yields that the quantum edge indicator is €x = 15 ® 15. The quantum
Cuntz-Krieger algebra O(K (B, ®)) is generated by {SSI) :1<a<d, 1<i,j<N,}according to
the relations

($@Wys®=1 inMy ®OKB,$) (1<a<d) (10)

D PSS =1 in OK(B,P)). ()
ars
In [2, Theorem 4.5], the authors establish that their definition of a quantum Cuntz-Krieger
algebra associated to K(B,®) is isomorphic to O, 5 Whenever 62 € N. It is unknown if this
also holds for §2 ¢ N. The following proposition resolves this for local quantum Cuntz-Krieger
algebras.

Proposition 4.1. O, is isomorphic to the Cuntz algebra O, where n = dim B.
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Proof. By Theorem 3.6 and Proposition 3.5, the Cuntz-Pimsner algebra Op_ is a quotient of the
quantum Cuntz-Krieger algebra O(K(B, ¥)) subject to relations (7), which remains the same, and
(8), which in this case becomes:

(S (5K = 8a= m > l525f_=m¢(e@)25@ Sn)* ] (12)
i=r e cfm Jj=s

Simplifying Equation (12) using the unit relation (9), we get

5a=b 5a=b
CRNCOE W(; 52¢<e‘c>>s<c>(s“’)*> = lp’(—zj))( OE))-

Thus, {Szp(e(a))l/ 2S(a) 1<a<d,1<1i,j <Ny} are generating isometries for Oy whose range
projections sum to the identity, and it follows that O, is isomorphic to the Cuntz algebra
OdimB' (]

Here, we define a particular non-commutative Exel system (B®N, a, £) and show that the Exel
crossed product B®N X » Nis the Cuntz algebra on dim B generators. Definea : B®N — B®N by

a(f) :=1,®f  (f€B®).

Then £ : B®Y — B®N given by

L1 ®9) :=9(f)g,  (f1 €B,g€B®),

is a transfer operator for the dynamical system (B®V,«). In the rest of this section, we let 1
denote the identity in B®N and continue to denote the identity in B by 1. For each 1 < a <d
and 1<i,j <N, define E(a) = e(a) ® 1, and let S denote the operator which arises in the
construction of 7 (Bg’N a, E) We w1ll show that this particular Exel crossed product is Oy;, 5,
generated by {v(a) <a<d,1<i,j<N,}, where

v @ = ;E.@S.
O

The v%.l) should be regarded as an analog of the characteristic function of words in X 4 that “begin

with the quantum letter e( 9 eB”

Lemma4.2. Foralll <a<d,1<1,j<N,, the pair (E(a) Zp l(;) 5.‘;) ) is a redundancy.

Proof. Fixa €{1,...,d}and i, j € {1,..,N,}. For e(b) ® f € B®N, note v(a)*(e(b) ® f) = 0 unless

a = b and j = k. Thus, it suffices to consider elements of the form eﬁ‘;,) ® fin B®N_Observe:

Plep v e ® f)S = B SSTES @ @ s

= E;SIS" (e ® S

A '€ €T0T ‘0SLLEYYT
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908 BRANNAN ET AL.

= E;)'SL(e) ® f)
=P(e (a))E(a)Sf
= Y(DE (S
- ¢(e(“))Ef§)(13 ® f)S
= P(esS -V ® f)S
_ ¢(e(“))5p f(e(“) @ @ £)S
= Y(ep)d,— B ® 1)S.

As elements of the form e(b ) ® f span B2V, for all g € B®Y, we have

(@), (@) (@) (a) (a) ()]
<Zvlp Uip ) Z( ip Ujp gS) Z(éprij gS) = Ejj; 95

p p

By definition, (E(a) XU (a) 5‘;) )isaredundancy. O

Theorem 4.3. The Exel crossed product B®N X, » N is isomorphic to the Cuntz algebra O, where
n = dimB.

Proof. We first show that the C*-algebra generated by {vf?) :1<a<d,1<1i,j<N,}isO,,where

n = dim B. Observe that each vgj.‘) is an isometry in BN X, » N:

p@ @ = 1 gp@p@g_ 1 gepag_ 1 £<E(“)) 1.
U l] z,b(e;j)) JUy 1,[)(65.?)) JJ '(,b( (a))

By Lemma 4.2, 3 ) v (a) (;) = E.(.a), and thus, summing over 1 < a < d and 1 < i < N, yields the

identity. Therefore, each vE is a Cuntz isometry, and the collection {v(a) t1<a<d,1<i,j<
N} generates the Cuntz algebra @, where n = dim B.
To verify that this copy of Oy, p inside BN X, » Nis actually all of BN %, - N, note that each

El(Ja) belongs to Oy, 3 by Lemma 4.2. Further, since S = 135 = (¥, ; El.(ia))S, we also know that S
belongs to this copy of Oy;,,, 5. We claim that elements of the form El(Ja) along with S generate all

of B®V, Recall from [12] that (a(f), SfS*) is a redundancy for all f € B®N, so for any r € N, we
have

1;®..®1;8¢" ®1=a (E) =SE(S") € Ogims-
—_—————
r

As elements of the above form generate the C*-algebra B®N and are contained in Og;, 5, we may
conclude that BN is a subset of Oy, 5. Therefore, BN X, » N = O, where n = dim B. O

A '€ €T0T ‘0SLLEYYT
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As a result of Theorem 4.3, the Cuntz-Pimsner algebra O for the quantum edge correspon-
dence of the complete quantum graph can be realized as the Exel crossed product B®V Moz N,
whose underlying Exel system was a natural choice for the complete quantum graph. We may
also conclude that the Cuntz algebra on dim B generators is always a quotient of the quantum
Cuntz-Krieger algebra O(K(B, 1)) for the complete quantum graph.

4.2 | Trivial quantum graphs

Denote by T(B, ¥) the trivial quantum graph (B, ,id); in the following discussion B and ¢ will
be fixed, so we will simply denote it by T. Using the adapted matrix units, we will now identify
the edge correspondence and prove that it is isomorphic to the trivial B-correspondence, which
will allow us to explicitly compute its Cuntz-Pimsner algebra. Recall the definition of the edge
correspondence from Definition 2.1. It is generated, as a B-bimodule by the idempotent ¢ :=
5—12(id ®id)m*(1) = ém*(l). As m* is a B-bimodule map, we get x - e -y = %m*(xy); hence,
the edge correspondence is equal as a vector space to the image of m*. We will actually show that
the map %m* identifies B and the edge correspondence E} as C*-correspondences.

Proposition 4.4. Let B be viewed as a C*-correspondence, where (a,b)p = a*b and the left and

right actions are the usual ones. Then sm* 1 B— Erisan isomorphism of C*-correspondences.

Proof. We will use Proposition 2.7. The vector £ := %1 is cyclic for B and 6%(£,x - &) = x is
the quantum adjacency matrix of the trivial quantum graph. Therefore by Proposition 2.7 the

assignment & — ¢, extends to an isomorphism of correspondences B and E;. This map is
precisely equal to %m*. O

Corollary 4.5. The Cuntz-Pimsner algebra Oy is isomorphic to B ® C(T).

Proof. From the previous proposition, E is isomorphic to B. By [20, Example 3, p. 193], the Cuntz-
Pimsner algebra of B is isomorphic to the crossed of B by the trivial action of Z, that is, B®

C(T). O

Consider the trivial Exel system (B, «t, £) where o = £ = id. Recall that 7 (B, a, £) is the uni-
versal C*-algebra generated by B and an element U subject to the relations Ux = a(x)U and
U*xU = L(x) for all x € B. In this case, Ux = xU, which implies that U is an isometry and
commutes with every element of B.

Proposition 4.6. The Exel crossed product B X4 ;4 N is isomorphic to B ® C(T)

Proof. Recall that B X;q ;4 N is the quotient of 7'(B, id, id) by the ideal of generated by the set of
redundancies,{a — k : a € B, k € BUU*B, agU = kgU Vg € B}. Considerk = UU* and a = 1.
Then because U is isometric and commutes with all elements of B, we have UU*gU = Ug = gU
for all g € B. Therefore UU™ and 1 form a redundancy, so the quotient consists of a copy of B and
a unitary that commutes with B. Therefore, B X4 ;4 N = B ® C(T). O
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Remark 4.7. Note that the above proposition provides a second example of the Cuntz-Pimsner
algebra for the quantum edge correspondence being implemented by a natural choice of Exel
crossed product.

4.3 | Rank-one quantum graphs

In the special case when B = M,,(C) and ¢ is a properly normalized trace, there is a nice correspon-
dence between quantum adjacency matrices, projections in M,(C) & M,,(C)°P, and subspaces of
M, (C). Just as before, a projection in M,(C) & M, (C)°P can be viewed as the Choi matrix of
a quantum adjacency matrix, but also as an orthogonal projection onto a subspace of M,(C),
when we identify the algebra of bounded operators on M, (C) (viewed as a Hilbert space) with
M, (C) ® M,,(C)°P via the left-right action.

For the trivial quantum graph, the corresponding subspace of M, (C) is the span of the iden-
tity matrix. It is therefore tempting to investigate other rank one subspaces. If such a subspace
is spanned by a (suitably normalized) operator T, then the corresponding quantum adjacency
matrix is equal to A(x) := TxT*. This is the inspiration for the following definition. Recall that
the density matrices {p, : 1 < a < d} associated to a §-form 3 on B are invertible and satisfy
Tr(p, ') = 82

Definition 4.8. Let T € B satisfy Tr(o,'T*T) = 6% for all 1 < a < d. We call A(x) :=TxT* a
quantum adjacency matrix of rank one.

Before we proceed any further, we should first check that rank one quantum adjacency matrices
are in fact quantum adjacency matrices. Because one can check the conditions separately on each
matrix direct summand, we may assume that B is a matrix algebra, so we can forget about the
index a.

Lemma 4.9. IfT € M, (C) satisfies Tr(p~'T*T) = 82, where p is the density matrix of a §-form 1,
then A(x) := TxT* is a quantum adjacency matrix.

Proof. 'We have to check that m(A ® A)m*(f;;) = 52A( fij) for all adapted matrix units
fij- The left-hand side is equal to }, TfyT*Tf;T*. We will check that ¥, fySfy; =

Tr(p~'S)f;; and this will end the proof. First, we can write the matrix S as S = 2ot Spilpr =

1 S
2ot Spi/¥lepp)Ple)f o We have fiy fp fij = OpkOik gy fij» 80 fucSfij = ﬁ:k)fij- We

obtain

N _
;fiksfkj = (; lp(;{:k))fij =Tr(o~'S)f ;- -

Proposition 4.10. Let A be a rank one quantum adjacency matrix, given by A(x) = TxT*. Recall
that T is of the form @, T@ and we assume that each TY) # 0. Then the Cuntz-Pimsner algebra of
the edge correspondence is isomorphic to B ® C(T).

Proof. We will once again resort to Proposition 2.7 to show that the edge correspondence is isomor-
phic to the trivial correspondence B. By our assumption on T, the element & := %T* is cyclic for
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the trivial correspondence and we have §%(¢, x¢) = TxT* = A(x). Therefore by Proposition 2.7
the edge correspondence is isomorphic to the trivial correspondence by a bimodular extension
of the assignment £ — e. We conclude as in the proof of Corollary 4.5 that the corresponding
Cuntz-Pimsner algebra is isomorphic to B ® C(T). O

Remark 4.11. If it happens that T(® = 0 for some indices a, then the same proof shows that the
Cuntz-Pimsner algebra is isomorphic to B’ ® C(T), where B’ is the direct sum of matrix algebras,
but only over the indices a, for which T(@ # 0.

4.4 | Quantum adjacency matrices arising from x-automorphisms

Another way to generalize the trivial quantum graph is to let « be a *-homomorphism of a finite-
dimensional C*-algebra B. As « is multiplicative, we have aom = mo(a ® «). It follows that
m(a @ a)m* = amm* = 82a, thatis, a is a quantum adjacency matrix. Then G, := (B,®,a)isa
quantum graph, and the associated quantum edge indicator for G, is

1. 1
& 1= md@m' (1) = 5 Y e ®alfiP).
aij
Let E, = B - ¢, - B denote the quantum edge correspondence for G, and define B, to be B as
a C*-correspondence over itself with (a,b) = a*b, left action given by x - 7 := a(x)», and right
action given by right multiplication.

Lemma 4.12. E_ = B, as C*-correspondences.

Proof. The element £ := %1 is cyclic for B, and §%(&, x - £) = a(x). By Proposition 2.7 the edge
correspondence is isomorphic to B,,. O

Corollary 4.13. When «a is a x-automorphism, the Cuntz-Pimsner algebra of E , is isomorphic to
B X, Z

Proof. This follows from Pimsner’s work [20, Example 3, p. 193]. O

We can make this crossed product a bit more explicit. First, recall that if we have an auto-
morphism « on a direct sum B, @ B,, preserving the summands, then the corresponding crossed
product splits as a direct sum as well, thatis, (B; @ B,) X Z =~ (B; X Z) & (B, X Z). Second, auto-
morphisms of direct sums of matrix algebras are of a very special form. We can first collect all
the matrix algebras of the same size and such a subalgebra has to be preserved by any auto-
morphism. In this case we are dealing with an algebra of the form M,(C) ® C* and then any
automorphism comes from a permutation of the set {1, ..., k} followed by inner automorphisms
on individual matrix algebras. Because crossed products are insensitive to inner perturbations
([3, 11.10.3.17]), we may assume that we are just dealing with a permutation automorphism.
Moreover any permutation decomposes as a disjoint sum of cycles, so we can treat those sepa-
rately. To sum up, any crossed product B X Z will decompose as a direct sum of crossed products
of the form (M,(C) ® C¥) X Z, where Z acts by a cycle on {1, ..., k} and as identity on M,,(C).
Since it acts as identity on the matrix algebra, the resulting crossed product is isomorphic to
M, (C) ® (C* x Z) = M,,(C) ® M, (C) ® C(T) ([5, Section VIIL3, p. 230].
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Again, there is a natural Exel system, we may associate to the quantum graph G,. Consider
(B,a, ™), where a~! plays the role of the transfer operator. As in the example of the complete
quantum graph, the Exel crossed product for this system, B X, .1 N, is isomorphic to the Cuntz-
Pimsner algebra B X, Z for the quantum edge correspondence E,,.
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