
Received: 7 April 2022 Accepted: 20 September 2022

DOI: 10.1112/jlms.12702

Journal of the London
Mathematical SocietyRESEARCH ARTICLE

Quantum edge correspondences and quantum
Cuntz–Krieger algebras

Michael Brannan1 Mitch Hamidi2 Lara Ismert2

Brent Nelson3 Mateusz Wasilewski4

1Department of Pure Mathematics and
IQC, University of Waterloo, Waterloo
ON, Canada
2Department of Mathematics,
Embry-Riddle Aeronautical University
Prescott, Arizona, United States
3Department of Mathematics, Michigan
State University, East Lansing, Michigan
United States
4Institute of Mathematics, Polish
Academy of Sciences, Warszawa, Poland

Correspondence
Brent Nelson, Department of
Mathematics, Michigan State University,
619 Red Cedar Road, C212 Wells Hall, East
Lansing, MI 48824, USA.
Email: brent@math.msu.edu

Funding information
NSERC Discovery Grant; NSF-AWM
Mentoring Travel Grant; AAUW
American Fellowship; FWO; Flemish
Government Methusalem Grant;
European Research Council,
Grant/Award Number: 677120 INDEX;
NSF, Grant/Award Numbers:
DMS-2000331, DMS-1856683

Abstract
Given a quantum graph  = (𝐵, 𝜓,𝐴), we define a
C*-correspondence 𝐸 over the non-commutative
vertex C*-algebra 𝐵, called the quantum edge correspon-
dence. For a classical graph , 𝐸 is the usual graph
correspondence spanned by the edges of . When the
quantum adjacency matrix 𝐴∶ 𝐵 → 𝐵 is completely
positive, we show that 𝐸 is faithful if and only if
ker(𝐴) does not contain a central summand of 𝐵. In this
case, we show that the Cuntz–Pimsner algebra 𝐸

is
isomorphic to a quotient of the quantum Cuntz–Krieger
algebra () defined in Brannan, Eifler, Voigt, and
Weber (Trans. Am. Math. Soc. Ser. B 9 (2022), 782–826).
Moreover, the kernel of the quotient map is shown to
be generated by “localized” versions of the quantum
Cuntz–Krieger relations, and 𝐸

is shown to be the
universal object associated to these local relations.
We study in detail some concrete examples and make
connections with the theory of Exel crossed products.
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INTRODUCTION

The notion of a quantum graph goes back to the work of Erdos–Katavolos–Shulman [7]
and Weaver [24], and was subsequently developed further by Duan–Severini–Winter [6] and
Musto–Reutter–Verdon [19]. Quantum graphs play an intriguing role in the study of the graph
isomorphism game in quantum information via their connections with quantum symmetries
of graphs (see [16] and [1]). Moreover, based on the use of quantum symmetries, fascinating
results on the graph-theoretic interpretation of quantum isomorphisms between finite graphs
were recently obtained byMančinska–Roberson [18]. In this paper, we take a finite directed quan-
tum graph to mean a triple (𝐵, 𝜓, 𝐴) consisting of a finite-dimensional C*-algebra 𝐵, a state 𝜓 on
𝐵, and a linear map 𝐴 on 𝐵 satisfying a quantum Schur idempotent condition. Finite directed
quantum graphs generalize classical finite directed graphs (without multiple edges) by encoding
a classical graph  in the triple (𝐵, 𝜓, 𝐴), where 𝐵 = 𝐶(𝑉) is the C*-algebra of continuous func-
tions on the vertex set 𝑉 of , 𝜓 is integration with respect to the uniform probability on 𝑉, and
𝐴 is the adjacency matrix of .
In [2], given a finite directed quantum graph (𝐵, 𝜓, 𝐴), Eifler, Voigt, Weber, and first author

introduced a novel C*-algebra 𝔽(𝐵, 𝜓, 𝐴), called the free quantum Cuntz–Krieger algebra. This
generalizes the well-studied Cuntz–Krieger algebra 𝐴 arising from classical graphs (or rather
a free version of it), where the standard generators are replaced by matrix-valued partial isome-
tries whose matrix sizes are determined by the quantum graph, and the Cuntz–Krieger relations
are expressed using the quantum adjacency matrix of the quantum graph in analogy to the
scalar case.
Introduced in [4], Cuntz–Krieger algebras have intimate connections with symbolic dynam-

ics, and have been studied intensively in the framework of graph C*-algebras over the past
decades, thus providing a rich supply of interesting examples [9, 10, 21, 23]. The structure of
graph C*-algebras is understood to an impressive level of detail, and many algebraic prop-
erties can be interpreted in terms of the combinatorial properties of the underlying graphs.
Motivated by this success, the original constructions and results have been generalized in
several directions, including higher rank graphs [15], Exel–Laca algebras [8], and ultragraph
algebras [22], among others. Recall that, under mild assumptions, the Cuntz–Krieger algebra
corresponding to a classical graph is isomorphic to the Cuntz–Pimsner algebra associated to
the graph’s edge correspondence [20, Example 2, p. 193]. It is worth mentioning that in the
more general setting of quantum graphs, the free quantum Cuntz–Krieger algebras seem to
be difficult to compute in general, and their isomorphism classes are only known under very
strict assumptions (for example, when (𝐵, 𝜓, 𝐴) is complete and 𝜓 is an 𝑛2-form for 𝑛 ∈ ℕ;
see [2, Theorem 4.5]).
In the present paper we consider a natural unital version of 𝔽(𝐵, 𝜓, 𝐴), which we denote

(𝐵, 𝜓, 𝐴), and under the assumption that 𝐴 is completely positive we show that (𝐵, 𝜓, 𝐴) quo-
tients onto the Cuntz–Pimsner algebra associated to a C*-correspondence over 𝐵 which can be
viewed as the quantum analogue of the edge correspondence for a classical graph. This is accom-
plished by showing that this Cuntz–Pimsner algebra is the universal C*-algebra associated to
“local” versions of the quantum Cuntz–Krieger relations introduced in [2].
In Section 2, we define the quantum edge correspondence 𝐸 for a given quantum graph

 = (𝐵, 𝜓,𝐴) whose associated state is a 𝛿-form. This C*-correspondence is generated by a
generalized version of the Choi–Jamiołkowski matrix 𝜖 associated to the quantum adja-
cency operator 𝐴, and 𝐸 generalizes the usual edge correspondence for a classical graph
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888 BRANNAN et al.

(see Example 2.2). Given the role of the element 𝜖 in generating this analog of an edge corre-
spondence, we think of it as the quantum analog of a classical graph’s edge matrix. Theorem 2.9
identifies conditions on the quantum adjacency matrix which result in faithfulness and fullness
of the quantum edge correspondence, and Proposition 2.7 provides a recognition theorem for
when a cyclic C*-correspondence is the quantum edge correspondence for a quantum graph.
In Section 3, we introduce a natural quotient of the quantum Cuntz–Krieger algebra () by

introducing certain “local” relations on the generators, and we call this quotient a local quantum
Cuntz–Krieger algebra. Given a quantum graph , we show in Theorem 3.6 that the Cuntz–
Pimsner algebra 𝐸

constructed from the quantum edge correspondence is precisely the local
quantumCuntz–Krieger algebra for that same quantum graph. As mentioned previously, the free
quantum Cuntz–Krieger algebras (and their unital cousins) seem to be very difficult to describe
concretely, except in the most basic cases. This sentiment is emphasized by the fact that we are
unable to find an example of a quantum graph  whose local quantum Cuntz–Krieger algebra is
a proper quotient of ().
In Section 4, we focus on examples, beginning with a very special class of quantum graphs

called the complete quantum graphs  = 𝐾(𝐵, 𝜓). Here we study the associated quantum Cuntz–
Krieger algebras and Cuntz–Pimsner algebras, and make some connections to Exel’s theory of
crossed products of C*-algebras by endomorphisms [12]. In the classical setting, any square {0, 1}-
matrix𝐴 = [𝐴(𝑥, 𝑦)] gives rise to theMarkov subshift (𝑋𝐴, 𝜎), which is the topological dynamical
system given by the infinite compact path space𝑋𝐴 = {𝑥 = (𝑥𝑖) ∈ {1, … , 𝑛}ℕ |𝐴(𝑥𝑖, 𝑥𝑖+1) = 1 ∀𝑖 ⩾

1} together with the left shift action 𝜎 ∶ 𝑋𝐴 → 𝑋𝐴 given by 𝜎(𝑥)𝑖 = 𝑥𝑖+1. From this dynamical
system (𝑋𝐴, 𝜎), one can associate an Exel system (𝐶(𝑋𝐴), 𝛼,), where 𝐶(𝑋𝐴) is the unital C*-
algebra of continuous functions on 𝑋𝐴, 𝛼 ∶ 𝐶(𝑋𝐴) → 𝐶(𝑋𝐴) is the ∗-endomorphism defined by
𝛼(𝑓) = 𝑓◦𝜎, and  ∶ 𝐶(𝑋𝐴) → 𝐶(𝑋𝐴) is a transfer operator for 𝛼. In [12], Exel builds from this
data a crossed product C∗-algebra 𝐶(𝑋𝐴)⋊𝛼, ℕ, and shows that it is isomorphic to the usual
Cuntz–Krieger algebra𝐴. For any complete quantum graph𝐾 = 𝐾(𝐵, 𝜓), we associate a natural
choice of (non-commutative) Exel system, and show in Proposition 4.3, that this crossed product
is isomorphic to the Cuntz algebra 𝑛 on 𝑛 = dim𝐵 generators. We also show in Proposition 4.1
that the Cuntz–Pimsner algebra 𝐸𝐾

is isomorphic to 𝑛. These results combined generalize the
well-known identifications of Cuntz–Krieger algebras, Cuntz–Pimsner algebras, and Exel crossed
products associated to complete graphs.
Finally, in the other subsections of Section 4 of the paper, we study trivial (edgeless) quantum

graphs and their two natural generalizations: rank-one quantum graphs and quantum graphs
associated to ∗-automorphic quantum adjacency matrices. We are able to associate a natural
choice of (non-commutative) Exel system in these cases as well, except for rank-one quantum
graphs. Given one of these types of quantum graphs, we show that the Exel crossed product is iso-
morphic to the Cuntz–Pimsner algebra for that quantum graph’s quantum edge correspondence.
SeeCorollary 4.5, Proposition 4.10, andCorollary 4.13. These examples alsomimic the classical set-
ting, where a graph’s associatedCuntz–Krieger algebra, Exel crossed product, andCuntz–Pimsner
algebra are all isomorphic.
Let us end this introduction with a remark: For more general quantum graphs  = (𝐵, 𝜓,𝐴),

it is an interesting and natural problem to associate to  a quantum analogue of (functions
on) the path space 𝑋𝐴. The construction of an appropriate non-commutative version of 𝐶(𝑋𝐴)

seems to be highly non-trivial, and we plan to investigate this in more detail in a follow-up
work.
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 889

1 PRELIMINARIES

1.1 Quantum graphs

In this paper, we consider finite quantum spaces (𝐵, 𝜓), consisting of a finite-dimensional
C*-algebra 𝐵 and a distinguished faithful state 𝜓∶ 𝐵 → ℂ satisfying

𝑚𝑚∗ = 𝛿2id,

where𝑚∶ 𝐵 ⊗ 𝐵 → 𝐵 is themultiplicationmap,𝑚∗ is its adjointwith respect to the inner product
given by 𝜓, and 𝛿 > 0. States 𝜓 ∶ 𝐵 → ℂ satisfying the above identity are called 𝛿-forms. Since 𝐵
is finite dimensional, we have

𝐵 ≅

𝑑⨁
𝑎=1

𝑀𝑁𝑎
(ℂ).

The restriction of 𝜓 to the 𝑎th summand𝑀𝑁𝑎
(ℂ) appearing in the direct sum decomposition of 𝐵

will be given by a density matrix with respect to the usual trace, denoted as 𝜌𝑎. We may and will
assume that each 𝜌𝑎 is diagonal with the 𝑖th diagonal entry being 𝜓(𝑒𝑎𝑖𝑖). The condition that 𝜓 is a
𝛿-form is then equivalent to Tr(𝜌−1𝑎 ) =

∑𝑁𝑎

𝑖=1
𝜓(𝑒𝑎

𝑖𝑖
)−1 = 𝛿2 for each 𝑎 = 1,… , 𝑑.

We utilize the diagonal entries of these density matrices to define adapted matrix units for
(𝐵, 𝜓), given by

𝑓(𝑎)
𝑖𝑗

∶=
1[

𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)
]1∕2 𝑒(𝑎)𝑖𝑗

1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎,

and by [2, Lemma 3.2] they satisfy

𝑚∗(𝑓(𝑎)
𝑖𝑗
) =

𝑁𝑎∑
𝑘=1

𝑓(𝑎)
𝑖𝑘

⊗ 𝑓(𝑎)
𝑘𝑗
, (1)

𝑓(𝑎)
𝑖𝑗
𝑓(𝑏)𝑟𝑠 = 𝛿𝑎=𝑏

𝑗=𝑟

1

𝜓(𝑒(𝑎)
𝑗𝑗
)
𝑓(𝑎)
𝑖𝑠
. (2)

Given a finite quantum space (𝐵, 𝜓), a linear map𝐴∶ 𝐵 → 𝐵 is said to be a quantum adjacency
matrix if

𝑚(𝐴 ⊗𝐴)𝑚∗ = 𝛿2𝐴.

In this case, the triple (𝐵, 𝜓, 𝐴) is called a directed quantum graph. At times, it will be convenient
to express 𝐴 as an actual matrix [𝐴𝑟𝑠𝑏

𝑖𝑗𝑎
]1⩽𝑎,𝑏⩽𝑚
1⩽𝑖,𝑗⩽𝑁𝑎
1⩽𝑟,𝑠⩽𝑁𝑏

with respect to the basis of adapted matrix units:

𝐴(𝑓(𝑎)
𝑖𝑗
) =

𝑑∑
𝑏=1

𝑁𝑏∑
𝑟,𝑠=1

𝐴𝑟𝑠𝑏
𝑖𝑗𝑎
𝑓(𝑏)𝑟𝑠 .
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890 BRANNAN et al.

These coefficients can be used to directly check whether a linear map 𝐴∶ 𝐵 → 𝐵 is a quantum
adjacency matrix (see [2, Lemma 3.4]), but this will not be necessary in the present paper.

1.2 C*-correspondences and Cuntz–Pimsner algebras

Given a C*-algebra 𝐵, a C*-correspondence over 𝐵 is a right Hilbert 𝐵-module 𝑋 (with right
𝐵-valued inner product ⟨⋅, ⋅⟩𝐵) which admits a ∗-homomorphism 𝜑𝑋 ∶ 𝐵 → (𝑋). Here (𝑋)

denotes the right 𝐵-linear adjointable operators on 𝑋. The ∗-homomorphism 𝜑𝑋 induces a left
𝐵-action that commutes with the right 𝐵-action:

𝑥 ⋅ 𝜉 ∶= 𝜑𝑋(𝑥)𝜉 𝑥 ∈ 𝐵, 𝜉 ∈ 𝑋.

One says 𝑋 is faithful if 𝜑𝑋 is faithful, full if span⟨𝑋,𝑋⟩𝐵 = 𝐵, and cyclic if 𝐵 ⋅ 𝜉 ⋅ 𝐵 is dense for
some 𝜉 ∈ 𝑋. The compact operators on𝑋, denoted as(𝑋), are generated by 𝜃𝜉,𝜂 ∈ (𝑋), 𝜉, 𝜂 ∈ 𝑋,
where

𝜃𝜉,𝜂(𝜁) ∶= 𝜉 ⋅ ⟨𝜂, 𝜁⟩𝐵 𝜁 ∈ 𝑋.

In this paper, we will exclusively consider finite-dimensional C*-correspondences, for which
(𝑋) = (𝑋). The following example is particularly relevant for our purposes.

Example 1.1. Let 𝐵 be a finite-dimensional C*-algebra and𝐴∶ 𝐵 → 𝐵 a completely positivemap.
Define a 𝐵-valued inner product on 𝐵 ⊗ 𝐵 by

⟨𝑎 ⊗ 𝑏, 𝑐 ⊗ 𝑑⟩𝐵 ∶= 𝑏∗𝐴(𝑎∗𝑐)𝑑,

where the positivity follows from the complete positivity of 𝐴. Then after taking a separation,

𝐵 ⊗𝐴 𝐵 ∶= 𝐵 ⊗ 𝐵∕{𝜉 ∈ 𝐵 ⊗ 𝐵∶ ⟨𝜉, 𝜉⟩𝐵 = 0}

defines a C*-correspondence over 𝐵. (Since everything is finite-dimensional, we do not need to
take a completion.) The usual left and right actions of 𝐵 on 𝐵 ⊗ 𝐵,

𝑥 ⋅ (𝑎 ⊗ 𝑏) ⋅ 𝑦 = (𝑥𝑎) ⊗ (𝑏𝑦), 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐵

extend to left and right actions on 𝐵 ⊗𝐴 𝐵.

After [14], a representation of a C*-correspondence 𝑋 over 𝐵 on a C*-algebra 𝐷 is a pair (𝜋, 𝑡)
consisting of a ∗-homomorphism 𝜋∶ 𝐵 → 𝐷 and a linear map 𝑡 ∶ 𝑋 → 𝐷 satisfying:

(i) 𝜋(𝑥)𝑡(𝜉) = 𝑡(𝑥 ⋅ 𝜉) for 𝑥 ∈ 𝐵 and 𝜉 ∈ 𝑋,
(ii) 𝑡(𝜉)∗𝑡(𝜂) = 𝜋(⟨𝜉, 𝜂⟩𝐵) for 𝜉, 𝜂 ∈ 𝑋.

Using (i), one can also show 𝑡(𝜉)𝜋(𝑥) = 𝑡(𝜉 ⋅ 𝑥) for 𝑥 ∈ 𝐵 and 𝜉 ∈ 𝑋. One can also define a
∗-homomorphism 𝜓𝑡 ∶ (𝑋) → 𝐷 by 𝜓𝑡(𝜃𝜉,𝜂) = 𝑡(𝜉)𝑡(𝜂)∗. A representation is said to be covariant
if 𝜋(𝑥) = 𝜓𝑡(𝜑𝑋(𝑥)) for all 𝑥 in the Katsura ideal 𝐽𝑋 , which is defined by

𝐽𝑋 ∶= {𝑥 ∈ 𝐵∶ 𝜑𝑋(𝑥) ∈ (𝑋) and 𝑥𝑦 = 0 for all 𝑦 ∈ ker 𝜑𝑋}.
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 891

Note that 𝐽𝑋 = 𝐵 when 𝑋 is finite-dimensional and faithful, which is the situation we will
primarily consider.
The Cuntz–Pimsner algebra for a C*-correspondence 𝑋 over 𝐵 is the C*-algebra 𝑋 =

𝐶∗(𝜋𝑋(𝐵), 𝑡𝑋(𝑋)) where (𝜋𝑋, 𝑡𝑋) is the universal covariant representation of 𝑋. That is, given
any covariant representation (𝜋, 𝑡) of 𝑋 on a C*-algebra 𝐷, there exists a ∗-homomorphism
𝜌∶ 𝑋 → 𝐷 satisfying 𝜋 = 𝜌◦𝜋𝑋 and 𝑡 = 𝜌◦𝑡𝑋 .

2 QUANTUM EDGE CORRESPONDENCES

Let (𝐵, 𝜓) be a finite quantum space. Since the state 𝜓 ∶ 𝐵 → ℂ ⊂ 𝐵 is completely positive, we
can consider the C*-correspondence 𝐵 ⊗𝜓 𝐵 over 𝐵 from Example 1.1. Note that for 𝜉 ∈ 𝐵 ⊗ 𝐵,
𝜓(⟨𝜉, 𝜉⟩𝐵) = ‖𝜉‖2

𝜓⊗𝜓
, and so 𝐵 ⊗𝜓 𝐵 = 𝐵 ⊗ 𝐵 as a vector space. That is, we do not need to take a

quotient of 𝐵 ⊗ 𝐵.

Definition 2.1. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form.We define
the quantum edge indicator to be the element

𝜖 ∶=
1

𝛿2
(1 ⊗ 𝐴)𝑚∗(1) ∈ 𝐵 ⊗𝜓 𝐵.

The quantum edge correspondence of  is the C*-correspondence over 𝐵 defined by

𝐸 ∶= 𝐵 ⋅ 𝜖 ⋅ 𝐵 = span{𝑥 ⋅ 𝜖 ⋅ 𝑦∶ 𝑥, 𝑦 ∈ 𝐵} ⊂ 𝐵 ⊗𝜓 𝐵.

That is, 𝐸 is the C*-subcorrespondence of 𝐵 ⊗𝜓 𝐵 generated by the quantum edge indicator 𝜖.

Example 2.2. In the case of a classical directed graph  = (ℂ(𝑉), 1|𝑉| , 𝐴), one has
𝜖 =

1

𝛿2
(1 ⊗ 𝐴)𝑚∗(1) =

1|𝑉| (1 ⊗ 𝐴)
∑
𝑣∈𝑉

|𝑉|𝑝𝑣 ⊗ 𝑝𝑣 =
∑
𝑤→𝑣

𝑝𝑣 ⊗ 𝑝𝑤.

Hence 𝜖 ∈ ℂ(𝑉 × 𝑉) is the indicator function for the set {(𝑣, 𝑤)∶ (𝑤, 𝑣) is an edge}, and the
quantum edge correspondence 𝐸 is the space of functions supported on this set.

2.1 Properties of quantum edge indicators and correspondences

Before studying the edge correspondence, we note some important properties of the quantum
edge indicator 𝜖 which further justify our terminology.

Proposition 2.3. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph with 𝛿-form 𝜓, and let 𝜖 ∶=
1

𝛿2
(1 ⊗ 𝐴)𝑚∗(1) be the quantum edge indicator. Then:

(1) 𝐴(𝑥) = 𝛿2(𝜓 ⊗ 1)(𝑥 ⋅ 𝜖) for all 𝑥 ∈ 𝐵.
(2) 𝜖#𝜖 = 𝜖 where (𝑎 ⊗ 𝑏)#(𝑐 ⊗ 𝑑) = (𝑎𝑐) ⊗ (𝑑𝑏) for 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐵.
(3) 𝐴 is completely positive if and only if (𝜎𝜓

𝑖∕2
⊗ 1)(𝜖) is self-adjoint, where (𝜎

𝜓
𝑡 )𝑡∈ℝ denotes the

modular automorphism group of 𝜓.
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892 BRANNAN et al.

Proof.

(1) For 𝑥, 𝑦 ∈ 𝐵, we have⟨
𝛿2(𝜓 ⊗ 1)(𝑥 ⋅ 𝜖), 𝑦

⟩
𝜓
= 𝛿2

⟨
𝜖, 𝑥

∗ ⊗ 𝑦
⟩
𝜓⊗𝜓

= ⟨𝑚∗(1), 𝑥∗ ⊗ 𝐴∗(𝑦)⟩𝜓⊗𝜓

= ⟨1, 𝑥∗𝐴∗(𝑦)⟩𝜓
= ⟨𝐴(𝑥), 𝑦⟩𝜓.

Hence 𝛿2(𝜓 ⊗ 1)(𝑥 ⋅ 𝜖) = 𝐴(𝑥) as claimed.
(2) Observe that 𝜖 is the image of 1 ⊗ 1 under the following map on 𝐵 ⊗ 𝐵:

1

𝛿2
(1 ⊗ 𝑚)(1 ⊗ 𝐴⊗ 1)(𝑚∗ ⊗ 1).

Wewill show that this map is a left and right 𝐵-linear and idempotent. (In fact, 𝐸 is precisely
the image of𝐵 ⊗ 𝐵 under thismap.) Bimodularity comes from the fact that both𝑚 and𝑚∗ are
left and right 𝐵-linear. Using the associativity of the multiplication operation (that is,𝑚(𝑚 ⊗

1) = 𝑚(1 ⊗𝑚), hence also (𝑚∗ ⊗ 1)𝑚∗ = (1 ⊗𝑚∗)𝑚∗) and that 𝐴 is a quantum adjacency
matrix (that is, 1

𝛿2
𝑚(𝐴 ⊗ 𝐴)𝑚∗ = 𝐴), we will show that this map is idempotent. Its square is

equal to

1

𝛿4
(1 ⊗ (𝑚(1 ⊗𝑚))(1 ⊗ 𝐴⊗𝐴⊗ 1)((𝑚∗ ⊗ 1)𝑚∗ ⊗ 1).

Using associativity, we get

1

𝛿4
(1 ⊗𝑚)(1 ⊗𝑚 ⊗ 1)(1 ⊗ 𝐴⊗𝐴⊗ 1)(1 ⊗𝑚∗ ⊗ 1)(𝑚∗ ⊗ 1).

In the middle, we recognize the expression 1 ⊗ (𝑚(𝐴 ⊗ 𝐴)𝑚∗) ⊗ 1, which is equal to 𝛿21 ⊗
𝐴⊗ 1. In the end we obtain

1

𝛿2
(1 ⊗ 𝑚)(1 ⊗ 𝐴⊗ 1)(𝑚∗ ⊗ 1),

which verifies the map is idempotent. Consequently,

𝜖#𝜖 = 𝜖#
1

𝛿2
(1 ⊗𝑚)(1 ⊗ 𝐴⊗ 1)(𝑚∗ ⊗ 1)(1 ⊗ 1)

=
1

𝛿2
(1 ⊗𝑚)(1 ⊗ 𝐴⊗ 1)(𝑚∗ ⊗ 1)(𝜖)

=
[
1

𝛿2
(1 ⊗𝑚)(1 ⊗ 𝐴⊗ 1)(𝑚∗ ⊗ 1)

]2
(1 ⊗ 1)

=
1

𝛿2
(1 ⊗𝑚)(1 ⊗ 𝐴⊗ 1)(𝑚∗ ⊗ 1)(1 ⊗ 1) = 𝜖.

(This identity can also be checked directly using the adapted matrix units of (𝐵, 𝜓), but this
arduous task is left to the skeptical reader.)
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 893

(3) Let 𝜂 ∈ 𝐵 ⊗ 𝐵op be the image of 𝜖 under the map 𝑎 ⊗ 𝑏 ↦ 𝑎 ⊗ 𝑏◦. Then (𝜎
𝜓

𝑖∕2
⊗ 1)(𝜖) is

self-adjoint if and only if (𝜎𝜓
𝑖∕2

⊗ 1)(𝜂) is self-adjoint. Observe that (𝜎
𝜓

𝑖∕2
⊗ 1)(𝜂) is an idem-

potent by part (2), and so it is self-adjoint if and only if it is a projection, and hence if and
only if it is positive. It therefore suffices to show that 𝐴 is completely positive if and only if
(𝜎

𝜓

𝑖∕2
⊗ 1)(𝜂) is positive.

Recall that if (𝑀, 𝜑) is a von Neumann algebra equipped with a faithful normal linear

functional, then {Δ
1∕4
𝜑 𝑥∶ 𝑥 ∈ 𝑀+} is a self-dual cone in 𝐿2(𝑀, 𝜑), where Δ𝜑 is the modular

operator with respect to 𝜑. Consequently𝐴 is completely positive if and only if for all positive
elements 𝑋 = (𝑥𝑖𝑗), 𝑌 = (𝑦𝑖𝑗) ∈ 𝑀𝑛(𝐵)

+ one has

⟨
Δ
1∕4

𝜓⊗Tr(𝐴 ⊗ 𝐼𝑛)(𝑋), Δ
1∕4

𝜓⊗Tr𝑌
⟩
𝜓⊗Tr

=

𝑛∑
𝑖,𝑗=1

⟨
Δ
1∕4

𝜓
𝐴(𝑥𝑖𝑗), Δ

1∕4

𝜓
𝑦𝑖𝑗

⟩
𝜓
⩾ 0.

Using part (1), we compute⟨
Δ
1∕4

𝜓
𝐴(𝑥𝑖𝑗), Δ

1∕4

𝜓
𝑦𝑖𝑗

⟩
𝜓
=

⟨
𝛿2(𝜓 ⊗ 1)(𝑥𝑖𝑗 ⋅ 𝜖), Δ

1∕2

𝜓
𝑦𝑖𝑗

⟩
𝜓
= 𝛿2

⟨
𝜖, 𝑥

∗
𝑖𝑗 ⊗ (Δ

1∕2

𝜓
𝑦𝑖𝑗)

⟩
𝜓⊗𝜓

.

Now, 𝐿2(𝐵 ⊗ 𝐵, 𝜓 ⊗ 𝜓) ∋ 𝑎 ⊗ 𝑏 ↦ 𝑎 ⊗ [Δ
−1∕2

𝜓
𝑏]◦ ∈ 𝐿2(𝐵 ⊗ 𝐵op, 𝜓 ⊗ 𝜓op) is an isometry, so

we can continue the above computation with⟨
Δ
1∕4

𝜓
𝐴(𝑥𝑖𝑗), Δ

1∕4

𝜓
𝑦𝑖𝑗

⟩
𝜓
= 𝛿2

⟨
(1 ⊗ Δ

−1∕2

𝜓
)𝜂, 𝑥

∗
𝑖𝑗 ⊗ 𝑦◦𝑖𝑗

⟩
𝜓⊗𝜓op

= 𝛿2
⟨
(Δ

1∕4

𝜓
⊗ Δ

−1∕4

𝜓
)(Δ

−1∕2

𝜓
⊗ 1)𝜂, (Δ

1∕4

𝜓
⊗ Δ

−1∕4

𝜓
)(𝑥∗𝑖𝑗 ⊗ 𝑦◦𝑖𝑗)

⟩
𝜓⊗𝜓op

= 𝛿2
⟨
Δ
1∕4

𝜓⊗𝜓op

[
(𝜎

𝜓

𝑖∕2
⊗ 1)(𝜂)

]
, Δ

1∕4

𝜓⊗𝜓op
(𝑥∗𝑖𝑗 ⊗ 𝑦◦𝑖𝑗)

⟩
𝜓⊗𝜓op

.

Thus

𝑛∑
𝑖,𝑗=1

⟨
Δ
1∕4

𝜓
𝐴(𝑥𝑖𝑗), Δ

1∕4

𝜓
𝑦𝑖𝑗

⟩
𝜓

= 𝛿2
𝑛∑

𝑖,𝑗=1

⟨
Δ
1∕4

𝜓⊗𝜓op

[
(𝜎

𝜓

𝑖∕2
⊗ 1)(𝜂)

]
, Δ

1∕4

𝜓⊗𝜓op
(𝑥∗𝑖𝑗 ⊗ 𝑦◦𝑖𝑗)

⟩
𝜓⊗𝜓op

. (3)

Suppose 𝑋 = 𝑊∗𝑊 and 𝑌 = 𝑍∗𝑍 for𝑊 = (𝑤𝑖𝑗), 𝑍 = (𝑧𝑖𝑗) ∈ 𝑀𝑛(𝐵). Then

𝑛∑
𝑖,𝑗=1

𝑥∗𝑖𝑗 ⊗ 𝑦◦𝑖𝑗 =

𝑛∑
𝑖,𝑗,𝑘,𝓁=1

𝑤∗
𝑘𝑗
𝑤𝑘𝑖 ⊗

(
𝑧∗𝓁𝑖𝑧𝓁𝑗

)◦
=

𝑛∑
𝑘,𝓁=1

(
𝑛∑
𝑗=1

𝑤𝑘𝑗 ⊗ (𝑧∗𝓁𝑗)
◦

)∗ ( 𝑛∑
𝑖=1

𝑤𝑘𝑖 ⊗ (𝑧∗𝓁𝑖)
◦

)

is positive. Also note that every positive element of 𝐵 ⊗ 𝐵op can be presented this way.
Indeed, (

𝑚∑
𝑑=1

𝑤𝑑 ⊗ 𝑧◦
𝑑

)∗ ( 𝑚∑
𝑑=1

𝑤𝑑 ⊗ 𝑧◦
𝑑

)
=

𝑛∑
𝑖,𝑗=1

𝑥∗𝑖𝑗 ⊗ 𝑦◦𝑖𝑗
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894 BRANNAN et al.

if 𝑋 = 𝑊∗𝑊,𝑌 = 𝑍∗𝑍 ∈ 𝑀𝑚(𝐵) where (𝑊)𝑖𝑗 = 𝛿𝑖=1𝑤𝑗 and (𝑍)𝑖𝑗 = 𝛿𝑖=1𝑧
∗
𝑖
. It follows from

(3) and these observations that𝐴 is completely positive if and only if (𝜎𝜓
𝑖∕2

⊗ 1)(𝜂) is positive.

□

Remark 2.4. At this point it is worth remarking on the connection toWeaver’s notion of a quantum
graph [24, 25]. Recall that there is an algebra isomorphism

𝜋 ∶ 𝐵 ⊗ 𝐵op → 𝐵′𝐶𝐵𝐵′(𝐵(𝐿
2(𝐵, 𝜓)))

(𝑎 ⊗ 𝑏◦) ↦ (𝑇 ↦ 𝑎𝑇𝑏),

where 𝐵′𝐶𝐵𝐵′(𝐵(𝐿
2(𝐵, 𝜓))) denotes the space of completely bounded 𝐵′-𝐵′-bimodule maps on

𝐵(𝐿2(𝐵, 𝜓)). When a quantum adjacency matrix 𝐴 is completely positive, the projection 𝑝 =

(𝜎
𝜓

𝑖∕2
⊗ 1)(𝜂) ∈ 𝐵 ⊗ 𝐵op induces a 𝐵′-𝐵′-bimodule projection 𝜋(𝑝) on 𝐵(𝐿2(𝐵, 𝜓)) whose range

𝑆 ⊆ 𝐵(𝐿2(𝐵, 𝜓)) is a 𝐵′-𝐵′-bimodule. Such bimodules 𝑆 are exactly what Weaver refers to as
(directed, non-reflexive) quantum graphs on 𝐵 ⊆ 𝐵(𝐿2(𝐵, 𝜓)).

Theorem 2.5. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and 𝐴 is
completely positive. Then for 𝑥, 𝑦 ∈ 𝐵 one has

⟨
𝑥 ⋅ 𝜖, 𝑦 ⋅ 𝜖

⟩
𝐵
=

1

𝛿2
𝐴(𝑥∗𝑦),

where 𝜖 =
1

𝛿2
(1 ⊗ 𝐴)𝑚∗(1) is the quantum edge indicator. In particular,𝐴(𝑥) = 𝛿2⟨𝜖, 𝑥 ⋅ 𝜖⟩𝐵 for

all 𝑥 ∈ 𝐵.

Proof. Write 𝜖 =
∑

𝛼 𝑝𝛼 ⊗ 𝑞𝛼 for 𝑝𝛼, 𝑞𝛼 ∈ 𝐵. Then

⟨
𝑥 ⋅ 𝜖, 𝑦 ⋅ 𝜖

⟩
𝐵
=

∑
𝛼,𝛽

⟨
𝑥𝑝𝛼 ⊗ 𝑞𝛼, 𝑦𝑝𝛽 ⊗ 𝑞𝛽

⟩
𝐵

=
∑
𝛼,𝛽

𝜓(𝑝∗𝛼𝑥
∗𝑦𝑝𝛽)𝑞

∗
𝛼𝑞𝛽

=
∑
𝛼,𝛽

𝜓(𝑥∗𝑦𝑝𝛽𝜎
𝜓

−𝑖
(𝑝∗𝛼))𝑞

∗
𝛼𝑞𝛽

= (𝜓 ⊗ 1)[𝑥∗𝑦 ⋅ 𝜖#(𝜎
𝜓

−𝑖
⊗ 1)(𝜖∗


)]

= (𝜓 ⊗ 1)(𝑥∗𝑦 ⋅ 𝜖#𝜖)

= (𝜓 ⊗ 1)(𝑥∗𝑦 ⋅ 𝜖) =
1

𝛿2
𝐴(𝑥∗𝑦),

where the last three equalities follow from the three parts of Proposition 2.3 (in reverse order). □

Recalling the definition of 𝐵 ⊗𝐴 𝐵 from Example 1.1, we obtain the following corollary.
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 895

Corollary 2.6. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and𝐴 is com-
pletely positive. Then 𝐸 ≅ 𝐵 ⊗𝐴 𝐵 as C*-correspondences over 𝐵 via the map 𝑥 ⋅ 𝜖 ⋅ 𝑦 ↦

1

𝛿
(𝑥 ⊗ 𝑦).

The above corollary is somewhat surprising in that a priori 𝐵 ⊗𝐴 𝐵 appears to be completely
independent of𝜓. But of course the dependence is hidden in the fact that𝐴 is a quantumadjacency
matrix for (𝐵, 𝜓). We also remark that while 𝐵 ⊗𝐴 𝐵 is more easily defined, 𝐸 has the advantage
of not requiring us to quotient by any null spaces.
Given a finite quantum space (𝐵, 𝜓) such that 𝜓 is a 𝛿-form, Theorem 2.5 tells us every com-

pletely positive adjacency matrix is of the form 𝐴(𝑥) = 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩𝐵 for some 𝜉 ∈ 𝐵 ⊗𝜓 𝐵. Thus
it is natural to ask for which elements 𝜉 ∈ 𝐵 ⊗𝜓 𝐵 is the map 𝐵 ∋ 𝑥 ↦ 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩𝐵 a (nec-
essarily completely positive) quantum adjacency matrix? Suppose 𝜉#𝜉 = 𝜉 and (𝜎

𝜓

𝑖∕2
⊗ 1)(𝜉)

is self-adjoint, and define 𝐴𝜉(𝑥) ∶= 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩𝐵, then the same computation as in the above
theorem implies

𝐴𝜉(𝑥) = 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩𝐵 = 𝛿2(𝜓 ⊗ 1)(𝑥 ⋅ 𝜉).

Consequently, for each 1 ⩽ 𝑎 ⩽ 𝑑 and 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎

1

𝛿2
𝑚(𝐴𝜉 ⊗ 𝐴𝜉)𝑚

∗(𝑓(𝑎)
𝑖𝑗
) =

1

𝛿2

∑
𝑘

𝐴𝜉(𝑓
(𝑎)
𝑖𝑘
)𝐴𝜉(𝑓

(𝑎)
𝑘𝑗
)

= 𝛿2
∑
𝑘

(𝜓 ⊗ 1)(𝑓(𝑎)
𝑖𝑘

⋅ 𝜉)(𝜓 ⊗ 1)(𝑓(𝑎)
𝑘𝑗

⋅ 𝜉).

Writing 𝜉 =
∑

𝛼 𝑝𝛼 ⊗ 𝑞𝛼, we can continue the above with

1

𝛿2
𝑚(𝐴𝜉 ⊗ 𝐴𝜉)𝑚

∗(𝑓(𝑎)
𝑖𝑗
) = 𝛿2

∑
𝑘,𝛼,𝛽

⟨
𝑓(𝑎)
𝑘𝑖
, 𝑝𝛼

⟩
𝜓

⟨
𝑓(𝑎)
𝑗𝑘
, 𝑝𝛽

⟩
𝜓
𝑞𝛼𝑞𝛽

= 𝛿2
∑
𝑘,𝛼,𝛽

⟨
𝑓(𝑎)
𝑘𝑖
, 𝑝𝛼

⟩
𝜓

⟨
𝑓(𝑎)
𝑖𝑘
, 𝜓(𝑒(𝑎)

𝑖𝑖
)𝑓(𝑎)

𝑖𝑗
𝑝𝛽

⟩
𝜓
𝑞𝛼𝑞𝛽

= 𝛿2
∑
𝑘,𝛼,𝛽

⟨⟨
𝜓(𝑒(𝑎)

𝑖𝑖
)𝑓(𝑎)

𝑖𝑗
𝑝𝛽, 𝑓

(𝑎)
𝑖𝑘

⟩
𝜓
𝑓(𝑎)
𝑘𝑖
, 𝑝𝛼

⟩
𝜓

𝑞𝛼𝑞𝛽

= 𝛿2
∑
𝑘,𝛼,𝛽

⟨⟨
Δ𝜓𝑓

(𝑎)
𝑘𝑖
, 𝜓(𝑒(𝑎)

𝑖𝑖
)𝑝∗

𝛽
𝑓(𝑎)
𝑗𝑖

⟩
𝜓
𝑓(𝑎)
𝑘𝑖
, 𝑝𝛼

⟩
𝜓

𝑞𝛼𝑞𝛽

= 𝛿2
∑
𝑘,𝛼,𝛽

𝜓(𝑒(𝑎)
𝑘𝑘
)

⟨⟨
𝑓(𝑎)
𝑘𝑖
, 𝑝∗

𝛽
𝑓(𝑎)
𝑗𝑖

⟩
𝜓
𝑓(𝑎)
𝑘𝑖
, 𝑝𝛼

⟩
𝜓

𝑞𝛼𝑞𝛽.

Now, using the fact that {𝜓(𝑒(𝑏)𝑟𝑟 )
1∕2𝑓(𝑏)𝑟𝑠 ∶ 1 ⩽ 𝑏 ⩽ 𝑑, 1 ⩽ 𝑟, 𝑠 ⩽ 𝑁𝑏} is an orthonormal basis for

𝐿2(𝐵), we then have

1

𝛿2
𝑚(𝐴𝜉 ⊗ 𝐴𝜉)𝑚

∗(𝑓(𝑎)
𝑖𝑗
) = 𝛿2

∑
𝑟,𝑠,𝑏,𝛼,𝛽

⟨⟨
𝜓(𝑒(𝑏)𝑟𝑟 )

1∕2𝑓(𝑏)𝑟𝑠 , 𝑝
∗
𝛽
𝑓(𝑎)
𝑗𝑖

⟩
𝜓
𝜓(𝑒(𝑏)𝑟𝑟 )

1∕2𝑓(𝑏)𝑟𝑠 , 𝑝𝛼

⟩
𝜓

𝑞𝛼𝑞𝛽

= 𝛿2
∑
𝛼,𝛽

⟨
𝑝∗
𝛽
𝑓(𝑎)
𝑗𝑖
, 𝑝𝛼

⟩
𝜓
𝑞𝛼𝑞𝛽
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896 BRANNAN et al.

= 𝛿2
∑
𝛼,𝛽

(𝜓 ⊗ 1)(𝑓(𝑎)
𝑖𝑗

⋅ (𝑝𝛽 ⊗ 𝑞𝛽)#(𝑝𝛼 ⊗ 𝑞𝛼))

= 𝛿2
∑
𝛼

(𝜓 ⊗ 1)(𝑓(𝑎)
𝑖𝑗

⋅ (𝑝𝛼 ⊗ 𝑞𝛼)) = 𝐴𝜉(𝑓
(𝑎)
𝑖𝑗
).

Thus 𝐴𝜉 is a quantum adjacency matrix for (𝐵, 𝜓). Moreover, by a similar computation one can
show that 1

𝛿2
(1 ⊗ 𝐴𝜉)𝑚

∗(1) = 𝜉 and so there is in fact a one-to-one correspondence between
completely positive quantum adjacency matrices for (𝐵, 𝜓) and the set

{𝜉 ∈ 𝐵 ⊗𝜓 𝐵∶ 𝜉#𝜉 = 𝜉, (𝜎
𝜓

𝑖∕2
⊗ 1)(𝜉)∗ = (𝜎

𝜓

𝑖∕2
⊗ 1)(𝜉)}.

More generally, we have the following recognition result for the quantum edge correspondence.

Proposition 2.7. Let (𝐵, 𝜓) be a finite quantum space such that 𝜓 is a 𝛿-form, and let 𝑋 = 𝐵 ⋅ 𝜉 ⋅ 𝐵
be a cyclic C*-correspondence over 𝐵. If the map 𝐴∶ 𝐵 → 𝐵 defined by 𝐴(𝑥) = 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩𝐵 is a
quantum adjacency matrix for (𝐵, 𝜓), then 𝑥 ⋅ 𝜉 ⋅ 𝑦 ↦ 𝑥 ⋅ 𝜖(𝐵,𝜓,𝐴) ⋅ 𝑦 extends to a C*-correspondence
isomorphism from 𝑋 to the quantum edge correspondence 𝐸(𝐵,𝜓,𝐴).

Proof. If we denote 𝜖 ∶= 𝜖(𝐵,𝜓,𝐴), then Theorem 2.5 implies⟨
𝑒(𝑎)
𝑖𝑗

⋅ 𝜉, 𝑒(𝑏)𝑟𝑠 ⋅ 𝜉
⟩
𝐵
= 𝛿𝑎=𝑏

𝑖=𝑟

⟨
𝜉, 𝑒(𝑎)

𝑗𝑠
⋅ 𝜉

⟩
𝐵
= 𝛿𝑎=𝑏

𝑖=𝑟

1

𝛿2
𝐴(𝑒(𝑎)

𝑗𝑠
) =

⟨
𝑒(𝑎)
𝑖𝑗

⋅ 𝜖, 𝑒(𝑏)𝑟𝑠 ⋅ 𝜖
⟩
𝐵

for all 1 ⩽ 𝑎, 𝑏 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎, and 1 ⩽ 𝑟, 𝑠 ⩽ 𝑁𝑏. It follows that for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝐵 that

⟨𝑥 ⋅ 𝜉 ⋅ 𝑦, 𝑧 ⋅ 𝜉 ⋅ 𝑤⟩𝐵 = 𝑦∗⟨𝑥 ⋅ 𝜉, 𝑧 ⋅ 𝜉⟩𝐵𝑤 = 𝑦∗⟨𝑥 ⋅ 𝜖, 𝑧 ⋅ 𝜖⟩𝐵𝑤 = ⟨𝑥 ⋅ 𝜖 ⋅ 𝑦, 𝑧 ⋅ 𝜖 ⋅ 𝑤⟩𝐵.
Therefore

∑
𝑖 𝑥𝑖 ⋅ 𝜉 ⋅ 𝑦𝑖 ↦

∑
𝑖 𝑥𝑖 ⋅ 𝜖 ⋅ 𝑦𝑖 is a well-defined, inner product preserving (and

hence injective), 𝐵-bilinear map from 𝐵 ⋅ 𝜉 ⋅ 𝐵 = 𝑋 onto 𝐵 ⋅ 𝜖 ⋅ 𝐵 = 𝐸. In other words, it is
a C*-correspondence isomorphism. □

It is straightforward to check that any homomorphism 𝐴 ∶ 𝐵 → 𝐵 is a quantum adjacency
matrix for a quantum space (𝐵, 𝜓) (independent, in fact, of 𝜓). Furthermore, every homomor-
phism of a C*-algebra that is completely positive must necessarily be ∗-preserving, so it is natural
to ask if the one-to-one correspondence in Proposition 2.7 restricts to a one-to-one correspondence
between ∗-homomorphisms and a subset of {𝜉 ∈ 𝐵 ⊗𝜓 𝐵∶ 𝜉#𝜉 = 𝜉, (𝜎

𝜓

𝑖∕2
⊗ 1)(𝜉)∗ = (𝜎

𝜓

𝑖∕2
⊗

1)(𝜉)}.

Proposition 2.8. Let (𝐵, 𝜓) be a finite quantum space, and suppose that𝐴 ∶ 𝐵 → 𝐵 is a completely
positive quantum adjacency matrix for (𝐵, 𝜓). The following are equivalent.

(i) 𝐴 is a homomorphism.
(ii) For all 𝑥, 𝑦 ∈ 𝐵, we have (𝑥𝑦) ⋅ 𝜖 = 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦).

Proof. Suppose for all 𝑥, 𝑦 ∈ 𝐵, we have (𝑥𝑦) ⋅ 𝜖 = 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦). Proposition 2.7 implies

𝐴(𝑥𝑦) = ⟨𝜖, (𝑥𝑦) ⋅ 𝜖⟩𝐵 = ⟨𝜖, 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦)⟩𝐵 = ⟨𝜖, 𝑥 ⋅ 𝜖⟩𝐵𝐴(𝑦) = 𝐴(𝑥)𝐴(𝑦)
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for all 𝑥, 𝑦 ∈ 𝐵. Conversely, suppose that 𝐴 is a homomorphism, and fix 𝑥, 𝑦 ∈ 𝐵. For any
𝑎, 𝑏 ∈ 𝐵,

⟨𝑎 ⋅ 𝜖 ⋅ 𝑏, (𝑥𝑦) ⋅ 𝜖⟩𝐵 = 𝑏∗𝐴(𝑎∗𝑥𝑦) = 𝑏∗𝐴(𝑎∗𝑥)𝐴(𝑦) = ⟨𝑎 ⋅ 𝜖 ⋅ 𝑏, 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦)⟩𝐵.
As elements of the form 𝑎 ⋅ 𝜖 ⋅ 𝑏 span 𝐸, for any 𝜉 ∈ 𝐸,

⟨𝜉, (𝑥𝑦) ⋅ 𝜖 − 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦)⟩𝐵 = 0 for all 𝑥, 𝑦 ∈ 𝐵.

In particular, 𝜉𝑜 ∶= (𝑥𝑦) ⋅ 𝜖 − 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦) is an element of 𝐸, so ⟨𝜉𝑜, 𝜉𝑜⟩𝐵 = 0. By positive
definiteness of ⟨⋅, ⋅⟩𝐵, we may conclude 𝜉𝑜 = 0. Thus, 𝑥𝑦 ⋅ 𝜖 = 𝑥 ⋅ 𝜖 ⋅ 𝐴(𝑦) for all 𝑥, 𝑦 ∈ 𝐵. □

When 𝐴 is a ∗-automorphism, the quantum edge correspondence 𝐸 arising from a quantum
graph  ∶= (𝐵, 𝜓, 𝐴) is the span of 𝐵 ⋅ 𝜖 or the span of 𝜖 ⋅ 𝐵. Indeed, given 𝑥 ⋅ 𝜖 ⋅ 𝑦 ∈ 𝐸 for
some 𝑥, 𝑦 ∈ 𝐵, Proposition 2.8 implies that the maps 𝐸 → 𝐸 given by 𝑥 ⋅ 𝜖𝐺 ⋅ 𝑦 ↦ 𝑥𝐴−1(𝑦) ⋅ 𝜖
and 𝑥 ⋅ 𝜖 ⋅ 𝑦 ↦ 𝜖 ⋅ 𝐴(𝑥)𝑦 are both the identity map on 𝐸.

2.2 Faithfulness and fullness of the quantum edge correspondence

Recall the definitions of faithful and full for C*-correspondences from Section 1.2. The next the-
orem shows that these features for a quantum edge correspondence 𝐸 are determined by the
quantum adjacency matrix 𝐴.

Theorem 2.9. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and 𝐴 is
completely positive, and let 𝐸 be the quantum edge correspondence. Then

{𝑥 ∈ 𝐵∶ 𝑥 ⋅ 𝜉 = 0 ∀𝜉 ∈ 𝐸} = (𝐵𝐴∗(𝐵)𝐵)
⟂

and

span
⟨
𝐸, 𝐸

⟩
𝐵
= 𝐵 ⋅ 𝐴(𝐵) ⋅ 𝐵,

the two-sided ideal of 𝐵 generated by the range of𝐴. In particular, 𝐸 is faithful if and only if ker(𝐴)
does not contain a central summand of 𝐵, and 𝐸 is full if and only if 𝐴(𝐵) is not orthogonal to a
central summand of 𝐵.

Proof. Suppose 𝑥 ⋅ 𝜉 = 0 for all 𝜉 ∈ 𝐸. This means precisely that for all 𝑎, 𝑏 ∈ 𝐵we have 𝑥𝑎𝜖𝑏 =
0, which, on the other hand, is equivalent to ⟨𝑐𝜖𝑑, 𝑥𝑎𝜖𝑏⟩ = 0 for all 𝑐, 𝑑 ∈ 𝐵. This expression is
equal to 𝛿−2𝑑∗𝐴(𝑐∗𝑥𝑎)𝑏 = 0, so it is equal to zero if and only if 𝐴(𝑐∗𝑥𝑎) = 0. This time using
the inner product on 𝐵, we see that this is equivalent to 0 = ⟨𝑦, 𝐴(𝑐∗𝑥𝑎)⟩ = ⟨𝑐𝐴∗(𝑦)𝑎∗, 𝑥⟩ for all
𝑦 ∈ 𝐵. Therefore 𝑥 ∈ (𝐵𝐴∗(𝐵)𝐵)⟂.
Next, observe that

span⟨𝐸, 𝐸⟩𝐵 = span
{⟨𝑎 ⋅ 𝜖 ⋅ 𝑏, 𝑐 ⋅ 𝜖 ⋅ 𝑑⟩𝐵 ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐵

}
= span

{
𝛿−2𝑏∗𝐴(𝑎∗𝑐)𝑑 ∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝐵

}
= 𝐵 ⋅ 𝐴(𝐵) ⋅ 𝐵. □
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898 BRANNAN et al.

Remark 2.10. In the case of a classical directed graph  = (𝐶(𝑉), 𝜓, 𝐴), the central summands of
𝐶(𝑉) are indexed by 𝑉. A central summand belongs to ker(𝐴) when the corresponding vertex is
a source (that is, has no edges into it), and it is orthogonal to 𝐴(𝐶(𝑉)) when the corresponding
vertex is a sink (that is, has no edges out of it). Hence 𝐸 is faithful when 𝐴 has no zero columns
and is full when 𝐴 has no zero rows.

The previous remark motivates the following definitions.

Definition 2.11. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and 𝐴
is completely positive. A quantum sink in  is a central summand of 𝐵 that is orthogonal to the
range of 𝐴. A quantum source in  is a central summand of 𝐵 that lies in the kernel of 𝐴.

In the next section we will examine the Cuntz–Pimsner algebra𝐸
associated to the quantum

edge correspondence. Consequently, it is important to understand how to express the left𝐵-action
in terms of compact operators(𝐸).

Theorem 2.12. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and 𝐴 is
completely positive, and let 𝐸 = 𝐵 ⋅ 𝜖 ⋅ 𝐵 be the quantum edge correspondence. If {𝑓(𝑎)

𝑖𝑗
∶ 1 ⩽ 𝑎 ⩽

𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎} are the adapted matrix units for (𝐵, 𝜓), then

𝑓(𝑎)
𝑖𝑗

⋅ 𝜉 =
𝑁𝑎∑
𝑘=1

𝜃
𝑓
(𝑎)
𝑖𝑘

⋅𝜖,𝑓
(𝑎)
𝑗𝑘

⋅𝜖
(𝜉) for all 𝜉 ∈ 𝐸.

Proof. Since both sides are right 𝐵-linear in 𝜉, it suffices to prove the equality for 𝜉 = 𝑒(𝑏)𝑟𝑠 ⋅ 𝜖,
1 ⩽ 𝑏 ⩽ 𝑑, and 1 ⩽ 𝑟, 𝑠 ⩽ 𝑁𝑏. Write 𝜖 =

∑
𝛼 𝑥𝛼 ⊗ 𝑦𝛼. Then using Proposition 2.3.(2) we have

𝑓(𝑎)
𝑖𝑗

⋅ (𝑒(𝑏)𝑟𝑠 ⋅ 𝜖) = 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2𝑒(𝑏)

𝑖𝑠
⋅ 𝜖

= 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2𝑒(𝑏)

𝑖𝑠
⋅ (𝜖#𝜖)

= 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2

∑
𝑘,𝛼,𝛽

(𝑒(𝑏)
𝑖𝑠
𝑥𝛼𝑒

(𝑎)
𝑘𝑘
𝑥𝛽) ⊗ (𝑦𝛽𝑦𝛼)

= 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2

∑
𝑘,𝛼,𝛽

(𝑥𝛼)
(𝑎)
𝑠𝑘
(𝑒(𝑎)
𝑖𝑘
𝑥𝛽) ⊗ (𝑦𝛽𝑦𝛼)

= 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2

∑
𝑘,𝛼,𝛽

1

𝜓(𝑒(𝑎)
𝑘𝑘
)
𝜓(𝑒(𝑎)

𝑘𝑠
𝑥𝛼)(𝑒

(𝑎)
𝑖𝑘
𝑥𝛽) ⊗ (𝑦𝛽𝑦𝛼)

= 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2

∑
𝑘

1

𝜓(𝑒(𝑎)
𝑘𝑘
)
𝑒(𝑎)
𝑖𝑘

⋅ 𝜖 ⋅ (𝜓 ⊗ 1)(𝑒(𝑎)
𝑘𝑠

⋅ 𝜖).

Now, using Proposition 2.3(1) and Theorem 2.5 we see that

(𝜓 ⊗ 1)(𝑒(𝑎)
𝑘𝑠

⋅ 𝜖) =
1

𝛿2
𝐴(𝑒(𝑎)

𝑘𝑠
) =

⟨
𝜖, 𝑒

(𝑎)
𝑘𝑠

⋅ 𝜖
⟩
𝐵
=

⟨
𝑒(𝑎)
𝑗𝑘

⋅ 𝜖, 𝑒
(𝑎)
𝑗𝑠

⋅ 𝜖
⟩
𝐵
.
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 899

So continuing our computation above, we have

𝑓(𝑎)
𝑖𝑗

⋅ (𝑒(𝑏)𝑟𝑠 ⋅ 𝜖) = 𝛿𝑎=𝑏
𝑗=𝑟

[𝜓(𝑒(𝑎)
𝑖𝑖
)𝜓(𝑒(𝑎)

𝑗𝑗
)]−1∕2

∑
𝑘

1

𝜓(𝑒(𝑎)
𝑘𝑘
)
𝑒(𝑎)
𝑖𝑘

⋅ 𝜖 ⋅
⟨
𝑒(𝑎)
𝑗𝑘

⋅ 𝜖, 𝑒
(𝑎)
𝑗𝑠

⋅ 𝜖
⟩
𝐵

=
∑
𝑘

𝑓(𝑎)
𝑖𝑘

⋅ 𝜖 ⋅
⟨
𝑓(𝑎)
𝑗𝑘

⋅ 𝜖, 𝑒
(𝑏)
𝑟𝑠 ⋅ 𝜖

⟩
𝐵

=
∑
𝑘

𝜃
𝑓
(𝑎)
𝑖𝑘

⋅𝜖,𝑓
(𝑎)
𝑗𝑘

⋅𝜖
(𝑒(𝑏)𝑟𝑠 ⋅ 𝜖),

as claimed. □

The following corollary is a rephrasing of Theorems 2.5 and 2.12 in terms of linear maps, which
will be useful in the next section. We leave the proof to the reader.

Corollary 2.13. Let = (𝐵, 𝜓,𝐴) be a directed quantumgraph such that𝜓 is a 𝛿-formand𝐴 is com-
pletely positive, and let 𝐸 = 𝐵 ⋅ 𝜖 ⋅ 𝐵 be the quantum edge correspondence. If (𝜋, 𝑡) is a covariant
representation of 𝐸 on a C*-algebra𝐷, then the linear map 𝑇∶ 𝐵 → 𝐷 defined by 𝑇(𝑥) ∶= 𝑡(𝑥 ⋅ 𝜖)
satisfies

𝜇𝐷(𝑇
∗ ⊗ 𝑇) =

1

𝛿2
𝜋𝐴𝑚,

𝜇𝐷(𝑇 ⊗ 𝑇∗)𝑚∗ = 𝜓𝑡,

where 𝜇𝐷 ∶ 𝐷 ⊗ 𝐷 → 𝐷 is the multiplication map, 𝑇∗(𝑥) ∶= 𝑇(𝑥∗)∗, and 𝜓𝑡 ∶ (𝐸) → 𝐷 is the
∗-homomorphism induced by 𝑡.

3 QUANTUM CUNTZ–KRIEGER ALGEBRAS AND LOCAL
RELATIONS

In this section we recall the quantum Cuntz–Krieger relations and define local quantum
Cuntz–Krieger relations. The former differ slightly from those appearing in [2, Section 3.2] (see
Remark 3.3).Wewill see in Theorem3.6 below that theCuntz–Pimsner algebra for a faithful quan-
tum edge correspondence plays the role of the universal C*-algebra generated by local quantum
Cuntz–Krieger relations. This in turn allows us to deduce that such Cuntz–Pimsner algebras are
quotients of quantum Cuntz–Krieger algebras (see Corollary 3.7).

Definition 3.1. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph. We define a quantum Cuntz–
Krieger -family in a unital C*-algebra 𝐷 to be a linear map 𝑠 ∶ 𝐵 → 𝐷 such that:

(i) 𝜇𝐷(𝜇𝐷 ⊗ 1)(𝑠 ⊗ 𝑠∗ ⊗ 𝑠)(𝑚∗ ⊗ 1)𝑚∗ = 𝑠, (𝐐𝐂𝐊𝟏)

(ii) 𝜇𝐷(𝑠
∗ ⊗ 𝑠)𝑚∗ = 𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗𝐴, (𝐐𝐂𝐊𝟐)

(iii) 𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗(1𝐵) =
1

𝛿2
1𝐷 , (𝐐𝐂𝐊𝟑)

where 𝜇𝐷 ∶ 𝐷 ⊗ 𝐷 → 𝐷 is the multiplication map for 𝐷 and 𝑠∗(𝑏) = 𝑠(𝑏∗)∗ for 𝑏 ∈ 𝐵. Then the
quantum Cuntz–Krieger algebra associated to  is the universal unital C*-algebra () generated
by the image of a quantum Cuntz–Krieger -family 𝑆∶ 𝐵 → ().
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900 BRANNAN et al.

We show that Definition 3.1 gives the classical Cuntz–Krieger algebra when  is a classical
graph.

Example 3.2. Let  = (𝐵, 𝜓,𝐴) be a classical graph, that is, 𝐵 = 𝐶(𝑉) is the finite-dimensional
commutative C*-algebra arising from a simple finite directed graph 𝐺 = (𝑉, 𝐸) on 𝑁 = |𝑉| ver-
tices, 𝜓 is the normalized trace on 𝐵, and 𝐴 is defined by the adjacency matrix 𝐴𝐺 on 𝐺 in the
usual way. If {𝑒1, … , 𝑒𝑁} is the canonical basis of minimal projections in 𝐵, it is easy to see that
𝜓(𝑒𝑖) = 1∕𝑁,𝑚(𝑒𝑖 ⊗ 𝑒𝑗) = 𝛿𝑖=𝑗𝑒𝑗 , and𝑚∗(𝑒𝑖) = 𝑁𝑒𝑖 ⊗ 𝑒𝑖 for all 𝑖, 𝑗. Moreover, 𝜓 is a 𝛿-form with
𝛿2 = 𝑁.
Let 𝑆 ∶ 𝐵 → () be a universal quantum Cuntz–Krieger -family and define 𝑆𝑖 = 𝑁𝑆(𝑒𝑖) ∈

(). It was shown in [2, Proposition 4.1] that the 𝑆𝑖 are partial isometries satisfying 𝑆∗
𝑖
𝑆𝑖 =∑𝑁

𝑗=1 𝐴𝐺(𝑖, 𝑗)𝑆𝑗𝑆
∗
𝑗
since 𝑆 ∶ 𝐵 → () satisfies (QCK1) and (QCK2). One can see that the 𝑆𝑖 have

mutually orthogonal range projections by observing that they sum to the identity in () since 𝑆
satisfies (QCK3). Explicitly, observe that

𝑁∑
𝑖=1

𝑆𝑖𝑆
∗
𝑖 = 𝑁2

[
𝑁∑
𝑖=1

𝑆(𝑒𝑖)𝑆
∗(𝑒𝑖)

]

= 𝑁

[
𝑛∑
𝑖=1

𝜇()(𝑆 ⊗ 𝑆∗)𝑚∗(𝑒𝑖)

]

= 𝑁
[
1

𝛿2
1()

]
= 1().

Thus, the 𝑆𝑖 form a Cuntz–Krieger 𝐴𝐺-family, which induces a ∗-homomorphism of 𝐴𝐸
onto

().
Conversely, given a universal Cuntz–Krieger 𝐴𝐺 family {𝑆𝑖}, we can define 𝑠 ∶ 𝐵 → 𝐴𝐺

via
𝑠(𝑒𝑖) =

1

𝑁
𝑆𝑖 ∈ 𝐴𝐺

. As mentioned in [2, Proposition 4.1], one can check that 𝑠 satisfies (QCK1)
and (QCK2). To see that 𝑠 satisfies (QCK3), consider

𝜇𝐴𝐺
(𝑠 ⊗ 𝑠∗)𝑚∗(1𝐵) =

𝑁∑
𝑖=1

𝜇𝐴𝐺
(𝑠(𝑁𝑒𝑖) ⊗ 𝑠∗(𝑒𝑖))

=
1

𝑁

𝑁∑
𝑖=1

𝑆𝑖𝑆
∗
𝑖

=
1

𝑁
1𝐴𝐺

.

Hence, 𝑠 is a quantum Cuntz–Krieger -family, which induces a ∗-homomorphism of () onto
𝐴𝐺

. Checking that this map is the inverse of the previously induced ∗-homomorphism of 𝐴𝐺

onto () yields () is isomorphic to 𝐴𝐺
.

Remark 3.3. In [2], a notion of quantumCuntz–Krieger algebras was introduced without the rela-
tion (𝐐𝐂𝐊𝟑) (see [2, Definition 3.7]), which gives potentially non-unital, non-nuclear C*-algebras
denoted as 𝔽(). As discussed in [2, Section 4.1], when is a classical graph 𝔽() is a freeCuntz–
Krieger algebra (see [2, Definition 2.5]), whereas by the above example () is a Cuntz–Krieger
algebra. Thus we will generally refer to 𝔽() as the free quantum Cuntz–Krieger algebra, and
reserve the terminology “quantum Cuntz–Krieger algebra” for ().
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 901

Using adapted matrix units, one can produce a more explicit presentation of the quantum
Cuntz–Krieger relations. This is essentially the content of [2, Proposition 3.9]. More precisely,
if 𝑠(𝑎)

𝑖𝑗
∶= 𝑠(𝑓(𝑎)

𝑖𝑗
), where {𝑓(𝑎)

𝑖𝑗
∶ 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎} are the adapted matrix units for (𝐵, 𝜓),

then 𝑠 ∶ 𝐵 → 𝐷 is a quantum Cuntz–Krieger -family if and only if the following relations hold:

𝑁𝑎∑
𝑘,𝓁=1

𝑠(𝑎)
𝑖𝑘
(𝑠(𝑎)𝓁𝑘 )

∗𝑠(𝑎)𝓁𝑠 = 𝑠(𝑎)
𝑖𝑠

(4)

𝑁𝑎∑
𝓁=1

(𝑠(𝑎)𝓁𝑖 )
∗𝑠(𝑎)𝓁𝑗 =

𝑑∑
𝑐=1

𝑁𝑐∑
𝓁,𝑚,𝑛=1

𝐴𝓁𝑚𝑐
𝑖𝑗𝑎

𝑠(𝑐)𝓁𝑛(𝑠
(𝑐)
𝑚𝑛)

∗ (5)

𝑑∑
𝑐=1

𝑁𝑐∑
𝓁,𝑚=1

𝜓(𝑒(𝑐)𝓁,𝓁)𝑠
(𝑐)
𝓁𝑚(𝑠

(𝑐)
𝓁𝑚)

∗ =
1

𝛿2
1𝐷. (6)

We now introduce localized versions of the above quantum Cuntz–Krieger relations.

Definition 3.4. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form.We define
a local quantum Cuntz–Krieger -family in a unital C*-algebra 𝐷 to be a linear map 𝑠 ∶ 𝐵 → 𝐷

such that

(i) 𝜇𝐷(𝜇𝐷 ⊗ 1)(𝑠 ⊗ 𝑠∗ ⊗ 𝑠)(𝑚∗ ⊗ 1) = 1

𝛿2
𝑠𝑚, (𝐋𝐐𝐂𝐊𝟏)

(ii) 𝜇𝐷(𝑠
∗ ⊗ 𝑠) = 1

𝛿2
𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗𝐴𝑚, (𝐋𝐐𝐂𝐊𝟐)

(iii) 𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗(1𝐵) =
1

𝛿2
1𝐷 , (𝐋𝐐𝐂𝐊𝟑)

where 𝜇𝐷 ∶ 𝐷 ⊗ 𝐷 → 𝐷 is the multiplication map for 𝐷, 𝑠∗(𝑏) = 𝑠(𝑏∗)∗ for 𝑏 ∈ 𝐵, and 𝑚∗ is the
adjoint of𝑚 with respect to the inner product given by 𝜓.

Once again, using adapted matrix units, one can produce a more explicit presentation of the
local quantum Cuntz–Krieger relations. This is the content of the following proposition whose
proof is omitted as it is very similar to the proof of [2, Proposition 3.9].

Proposition 3.5. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form, and let
𝑠 ∶ 𝐵 → 𝐷 be a linear map into a unital C*-algebra. Denote 𝑠(𝑎)

𝑖𝑗
∶= 𝑠(𝑓(𝑎)

𝑖𝑗
), where {𝑓(𝑎)

𝑖𝑗
∶ 1 ⩽ 𝑎 ⩽

𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎} are the adapted matrix units for (𝐵, 𝜓). Then 𝑠 is a local quantum Cuntz–Krieger
-family if and only if the following relations hold:

𝑁𝑎∑
𝑘=1

𝑠(𝑎)
𝑖𝑘
(𝑠(𝑎)
𝑗𝑘
)∗𝑠(𝑏)𝑟𝑠 = 𝛿𝑎=𝑏

𝑗=𝑟

1

𝛿2𝜓(𝑒(𝑎)
𝑗𝑗
)
𝑠(𝑎)
𝑖𝑠

(7)

(𝑠(𝑎)
𝑖𝑗
)∗𝑠(𝑏)𝑟𝑠 = 𝛿𝑎=𝑏

𝑖=𝑟

1

𝛿2𝜓(𝑒(𝑎)
𝑖𝑖
)

𝑑∑
𝑐=1

𝑁𝑐∑
𝓁,𝑚,𝑛=1

𝐴𝓁𝑚𝑐
𝑗𝑠𝑎

𝑠(𝑐)𝓁𝑛(𝑠
(𝑐)
𝑚𝑛)

∗ (8)

𝑑∑
𝑐=1

𝑁𝑐∑
𝓁,𝑚=1

𝜓(𝑒(𝑐)𝓁,𝓁)𝑠
(𝑐)
𝓁𝑚(𝑠

(𝑐)
𝓁𝑚)

∗ =
1

𝛿2
1𝐷 (9)

for all 1 ⩽ 𝑎, 𝑏 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎, and 1 ⩽ 𝑟, 𝑠 ⩽ 𝑁𝑏 .
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902 BRANNAN et al.

Just as in the case of the quantum Cuntz–Krieger algebras above, one can also define, for any
quantum graph  = (𝐵, 𝜓,𝐴), a corresponding local quantum Cuntz–Krieger algebra. The local
quantumCuntz–Krieger algebra is the C∗-algebra generated by a universal local quantumCuntz–
Krieger -family. The following theorem is the main result of this section. It shows that local
quantum Cuntz–Krieger algebras are in fact familiar objects — under rather mild assumptions,
they are precisely the Cuntz–Pimsner algebras of quantum edge correspondences.

Theorem 3.6. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and 𝐴 is
completely positive, and let 𝐸 = 𝐵 ⋅ 𝜖 ⋅ 𝐵 be its quantum edge correspondence. Let (𝜋𝐸 , 𝑡𝐸) denote
the universal covariant representation of 𝐸 on the Cuntz–Pimsner algebra 𝐸

. Assume that  has
no quantum sources. Then 𝑆∶ 𝐵 → 𝐸

defined by 𝑆(𝑥) ∶= 1

𝛿
𝑡𝐸(𝑥 ⋅ 𝜖) is a local quantum Cuntz–

Krieger -family whose image generates 𝐸
. Moreover, given any local quantum Cuntz–Krieger

-family 𝑠 ∶ 𝐵 → 𝐷 in a unital C*-algebra 𝐷 there exists a ∗-homomorphism 𝜌∶ 𝐸
→ 𝐷 such

that 𝑠 = 𝜌◦𝑆.

Proof. Webegin by showing that 𝑆 is a local quantumCuntz–Krieger-family. Let𝜓𝑡𝐸 ∶ (𝐸) →

𝐸
be the ∗-homomorphism induced by 𝑡𝐸 , and let 𝜇∶ 𝐸

⊗ 𝐸
→ 𝐸

denote the multipli-
cation map. Define a linear map 𝑇∶ 𝐵 → 𝐸

by 𝑇(𝑥) ∶= 𝑡𝐸(𝑥 ⋅ 𝜖), so that 𝑆 = 1

𝛿
𝑇. Note that

the quantum edge correspondence 𝐸 is faithful by Theorem 2.9 and finite dimensional so that
the Katsura ideal 𝐽𝐸 = 𝐵. Moreover, faithfulness allows us to identify 𝐵 ⊂ (𝐸) = (𝐸), and
under this identification we have 𝜓𝑡𝐸 |𝐵 = 𝜋. With this observation in hand, we can readily verify
the local quantum Cuntz–Krieger relations.

(LQCK1): The second equation in Corollary 2.13 implies

𝜇(𝜇 ⊗ 1)(𝑆 ⊗ 𝑆∗ ⊗ 𝑆)(𝑚∗ ⊗ 1) =
1

𝛿3
𝜇(𝜇 ⊗ 1)(𝑇 ⊗ 𝑇∗ ⊗ 𝑇)(𝑚∗ ⊗ 1)

=
1

𝛿3
𝜇(𝜓𝑡𝐸

⊗ 𝑇)

=
1

𝛿3
𝜇(𝜋 ⊗ 𝑇)

=
1

𝛿3
𝑇𝑚 =

1

𝛿2
𝑆𝑚,

where the second-to-last equality follows from the relation 𝜋𝐸(𝑥)𝑡𝐸(𝜉) = 𝑡𝐸(𝑥 ⋅ 𝜉) for 𝑥 ∈ 𝐵

and 𝜉 ∈ 𝐸.
(LQCK2): Using both equations in Corollary 2.13 gives

𝜇(𝑆∗ ⊗ 𝑆) =
1

𝛿2
𝜇(𝑇∗ ⊗ 𝑇) =

1

𝛿4
𝜋𝐴𝑚 =

1

𝛿2
𝜓𝑡𝐸

𝐴𝑚

=
1

𝛿4
𝜇(𝑇 ⊗ 𝑇∗)𝑚∗𝐴𝑚 =

1

𝛿2
𝜇(𝑆 ⊗ 𝑆∗)𝑚∗𝐴𝑚.

(LQCK3): Using the second equation in Corollary 2.13 we have

𝜇(𝑆 ⊗ 𝑆∗)𝑚∗(1𝐵) =
1

𝛿2
𝜇(𝑇 ⊗ 𝑇∗)𝑚∗(1𝐵) =

1

𝛿2
𝜋𝐸(1𝐵) =

1

𝛿2
1.

Note that 𝜋𝐸 is necessarily unital since 1 ⋅ 𝜉 = 𝜉 for all 𝜉 ∈ 𝐸.
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 903

Thus 𝑆 is a local quantum Cuntz–Krieger -family. We also have 𝐶∗(𝑆(𝐵)) = 𝐸
. Indeed,

𝜋𝐸(𝐵) ⊂ 𝐶∗(𝑆(𝐵)) by Corollary 2.13, and 𝑡𝐸(𝜉)𝜋𝐸(𝑏) = 𝑡𝐸(𝜉 ⋅ 𝑏) implies 𝑡𝐸(𝐸) ⊂ 𝐶∗(𝑆(𝐵)).
Now, suppose 𝑠 ∶ 𝐵 → 𝐷 is a local quantum Cuntz–Krieger -family in a unital C*-algebra

𝐷. To obtain the desired homomorphism, we will construct a covariant representation of 𝐸 on
𝐷 and invoke the universal property of the Cuntz–Pimsner algebra 𝐸

. Define a linear map
𝜋∶ 𝐵 → 𝐷 by

𝜋 ∶= 𝛿2𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗,

where 𝜇𝐷 ∶ 𝐷 ⊗ 𝐷 → 𝐷 is the multiplication map. Then 𝜋 is unital by (LQCK3), 𝜋∗ = 𝜋 in light
of how the multiplication maps interact with the adjoint, and (LQCK1) implies

𝜇𝐷(𝜋 ⊗ 𝜋) = 𝛿4𝜇𝐷(𝜇𝐷 ⊗ 𝜇𝐷)(𝑠 ⊗ 𝑠∗ ⊗ 𝑠 ⊗ 𝑠∗)(𝑚∗ ⊗𝑚∗)

= 𝛿4𝜇𝐷([𝜇𝐷(𝜇𝐷 ⊗ 1)(𝑠 ⊗ 𝑠∗ ⊗ 𝑠)(𝑚∗ ⊗ 1)] ⊗ 𝑠∗)(1 ⊗ 𝑚∗)

= 𝛿2𝜇𝐷((𝑠𝑚) ⊗ 𝑠∗)(1 ⊗ 𝑚∗)

= 𝛿2𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗𝑚 = 𝜋𝑚.

Hence 𝜋 is a ∗-homomorphism.
Next define a linear map 𝑡 ∶ 𝐸 → 𝐷 by

𝑡(𝑥 ⋅ 𝜖 ⋅ 𝑦) ∶= 𝛿𝑠(𝑥)𝜋(𝑦) 𝑥, 𝑦 ∈ 𝐵.

We will see below that 𝑡(𝜉)∗𝑡(𝜂) = 𝜋(⟨𝜉, 𝜂⟩𝐵) for 𝜉, 𝜂 ∈ 𝐵, which in particular will show that this
map is well defined. By (LQCK1) we have

𝜇𝐷(𝜇𝐷 ⊗ 1)(𝜋 ⊗ 𝑠 ⊗ 𝜋) = 𝛿2𝜇𝐷(𝜇𝐷 ⊗ 1)(𝜇𝐷 ⊗ 1 ⊗ 1)(𝑠 ⊗ 𝑠∗ ⊗ 𝑠 ⊗ 𝜋)(𝑚∗ ⊗ 1 ⊗ 1)

= 𝜇𝐷(𝑠 ⊗ 𝜋)(𝑚 ⊗ 1).

Thus for 𝑥, 𝑦, 𝑧 ∈ 𝐵 we have

𝜋(𝑥)𝑡(𝑦 ⋅ 𝜖 ⋅ 𝑧) = 𝛿𝜇𝐷(𝜇𝐷 ⊗ 1)(𝜋 ⊗ 𝑠 ⊗ 𝜋)(𝑥 ⊗ 𝑦 ⊗ 𝑧)

= 𝛿𝜇𝐷(𝑠 ⊗ 𝜋)(𝑚 ⊗ 1)(𝑥 ⊗ 𝑦 ⊗ 𝑧) = 𝛿𝑠(𝑥𝑦)𝜋(𝑧) = 𝑡(𝑥𝑦 ⋅ 𝜖 ⋅ 𝑧),

and so 𝜋(𝑥)𝑡(𝜉) = 𝑡(𝑥 ⋅ 𝜉) for all 𝑥 ∈ 𝐵 and 𝜉 ∈ 𝐸. Using (LQCK2) and the definition of 𝜋, we
have

𝜇𝐷(𝑠
∗ ⊗ 𝑠) =

1

𝛿2
𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗𝐴𝑚 =

1

𝛿4
𝜋𝐴𝑚.

Thus for 𝑥, 𝑥′, 𝑦, 𝑦′ ∈ 𝐵 we have

𝑡(𝑥 ⋅ 𝜖 ⋅ 𝑦)
∗𝑡(𝑥′ ⋅ 𝜖 ⋅ 𝑦

′) = 𝛿2(𝜇𝐷 ⊗ 𝜇𝐷)(1 ⊗ 𝜇𝐷 ⊗ 1)(𝜋∗ ⊗ 𝑠∗ ⊗ 𝑠 ⊗ 𝜋)(𝑦∗ ⊗ 𝑥∗ ⊗ 𝑥′ ⊗ 𝑦′)

=
1

𝛿2
(𝜇𝐷 ⊗ 𝜇𝐷)(𝜋 ⊗ (𝜋𝐴) ⊗ 𝜋)(1 ⊗𝑚 ⊗ 1)(𝑦∗ ⊗ 𝑥∗ ⊗ 𝑥′ ⊗ 𝑦′)

=
1

𝛿2
𝜋(𝑦∗𝐴(𝑥∗𝑥′)𝑦′)

= 𝜋
(
𝑦∗

⟨
𝑥 ⋅ 𝜖, 𝑥

′ ⋅ 𝜖
⟩
𝐵
𝑦′
)
= 𝜋

(⟨
𝑥 ⋅ 𝜖 ⋅ 𝑦, 𝑥

′ ⋅ 𝜖 ⋅ 𝑦
′
⟩
𝐵

)
,
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904 BRANNAN et al.

where the second-to-last equality follows from Theorem 2.5. Thus (𝜋, 𝑡) is a representation of 𝐸

on 𝐷, and Theorem 2.12 implies that it is covariant:

𝜓𝑡(𝑓
(𝑎)
𝑖𝑗
) =

𝑁𝑎∑
𝑘=1

𝜓𝑡

(
𝜃
𝑓
(𝑎)
𝑖𝑘

⋅𝜖,𝑓
(𝑎)
𝑗𝑘

⋅𝜖

)

=

𝑁𝑎∑
𝑘=1

𝑡(𝑓(𝑎)
𝑖𝑘

⋅ 𝜖)𝑡(𝑓
(𝑎)
𝑗𝑘

⋅ 𝜖)
∗

= 𝛿2𝜇𝐷(𝑠 ⊗ 𝑠∗)𝑚∗(𝑓(𝑎)
𝑖𝑗
) = 𝜋(𝑓(𝑎)

𝑖𝑗
).

Thus the universal property for the Cuntz–Pimsner algebra 𝐸
implies that there is a

∗-homomorphism 𝜌∶ 𝐸
→ 𝐷 satisfying 𝜋 = 𝜌◦𝜋𝐸 and 𝑡 = 𝜌◦𝑡𝐸 . In particular, we have

𝑠(𝑥) =
1

𝛿
𝑡(𝑥 ⋅ 𝜖) =

1

𝛿
𝜌◦𝑡𝐸(𝑥 ⋅ 𝜖) = 𝜌(𝑆(𝑥)).

Hence 𝑠 = 𝜌◦𝑆. □

Observe that any local quantum Cuntz–Krieger -family is a (non-local) quantum Cuntz–
Krieger -family. Indeed, since 𝜓 is a 𝛿 form, one has 𝑚𝑚∗ = 𝛿2id. Thus if 𝑠 ∶ 𝐵 → 𝐷 satisfies
(LQCK1) and (LQCK2), then applying𝑚∗ to the right-hand sides of these relations yields (QCK1)
and (QCK2), respectively. Also (LQCK3) and (QCK3) are identical. Hence the universal property
for() yields a unique ∗-homomorphism onto𝐶∗(𝑠(𝐷)). In particular, if ker(𝐴) does not contain
a central summand of 𝐵, then the previous theorem yields the following.

Corollary 3.7. Let  = (𝐵, 𝜓,𝐴) be a directed quantum graph such that 𝜓 is a 𝛿-form and 𝐴 is
completely positive, and let 𝐸 be its quantum edge correspondence. Assume that ker(𝐴) does not
contain a central summand of 𝐵. Then 𝐸

≅ ()∕ where  ⊲ () is the closed two-sided ideal
generated by the relations (LQCK1), (LQCK2), and (LQCK3).

3.1 Behavior of 𝑬
under quantum graph isomorphisms

In this section we briefly examine the relationship between the Cuntz–Pimsner algebras of quan-
tum edge correspondences associated to quantum isomorphic quantum graphs. We begin by
recalling the notion of quantum isomorphism from [1, 2]. Let 𝑖 = (𝐵𝑖, 𝜓𝑖, 𝐴𝑖), 𝑖 = 1, 2, be directed
quantum graphs. We say that 1 and 2 are quantum isomorphic if there exists a Hilbert space
and a unital ∗-homomorphism

𝜃1 ∶ 𝐵1 → 𝐵2 ⊗ 𝐵(),

which satisfies the following 𝜓𝑖 and 𝐴𝑖 covariance conditions

(𝜓2 ⊗ id)𝜃1 = 𝜓1(⋅)1𝐵(),

(𝐴2 ⊗ id)𝜃1 = 𝜃1◦𝐴1.

 14697750, 2023, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12702 by Texas A

&
M

 U
niversity Libraries, W

iley O
nline Library on [17/05/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 905

Note that the general theory guarantees that whenever a morphism 𝜃1 ∶ 𝐵1 → 𝐵2 ⊗ 𝐵() exists,
there automatically exists a corresponding morphism 𝜃2 ∶ 𝐵2 → 𝐵1 ⊗ 𝐵() with analogous
covariance conditions to those for 𝜃1. In particular, the notion of quantum isomorphism is
symmetric in 1 and 2.
Quantum isomorphisms between quantum graphs can be seen as relaxations (or generaliza-

tions) of the notion of an isomorphism between quantum graphs. Indeed, in the special case
where  = ℂ, a quantum isomorphism between 1 and 2 defines an ordinary isomorphism of
quantum graphs.
The following theorem should be compared with [2, Theorem 6.13], which is a similar result in

the context of (free) quantum Cuntz–Krieger algebas. Note, however, that the conclusion of the
following theorem is slightly stronger in that one gets injective morphisms Θ𝑖 between Cuntz–
Pimsner algebras below (compare with [2, Remark 6.14]).

Theorem 3.8. Let 𝑖 = (𝐵𝑖, 𝜓𝑖, 𝐴𝑖), 𝑖 = 1, 2, be directed quantum graphs. If 1 is quantum
isomorphic to 2 with ∗-homomorphisms

𝜃1 ∶ 𝐵1 → 𝐵2 ⊗ 𝐵() and 𝜃2 ∶ 𝐵2 → 𝐵1 ⊗ 𝐵(),

as above, then there exist injective ∗-homomorphisms

Θ1∶ 𝐸1
→ 𝐸2

⊗ 𝐵() and Θ2∶ 𝐸2
→ 𝐸1

⊗ 𝐵()

satisfying

Θ1𝜋𝐸1
= (𝜋𝐸2

⊗ 1)𝜃1 and Θ2𝜋𝐸2
= (𝜋𝐸1

⊗ 1)𝜃2.

Proof. Using Corollary 2.6, we can work with 𝐵𝑖 ⊗𝐴𝑖
𝐵𝑖 rather than 𝐸𝑖

, 𝑖 = 1, 2. Denote 𝐴̃2 ∶=

𝐴2 ⊗ id𝐵(), which is a completely positive map, and 𝑋 ∶= (𝐵2 ⊗ 𝐵()) ⊗𝐴̃2
(𝐵2 ⊗ 𝐵()). Note

that 𝑋 ≅ (𝐵2 ⊗𝐴2
𝐵2) ⊗ 𝐵(), and so 𝑋 ≅ 𝐵2⊗𝐴2

𝐵2
⊗ 𝐵() by [17, Example 6.4].

Now, for 𝑥, 𝑦 ∈ 𝐵1 and 𝜉 ∈ 𝐵1 ⊗ 𝐵1 we have

(𝐴̃2 ⊗ 1)((𝜃1 ⊗ 𝜃1)(𝜉)
∗(𝜃1 ⊗ 𝜃1)(𝜉)) = (𝜃1 ⊗ 𝜃1)(𝐴1 ⊗ 1)(𝜉∗𝜉).

It follows that 𝜃1 ⊗ 𝜃1 induces a linear map 𝑇∶ 𝐵1 ⊗𝐴1
𝐵1 → 𝑋 satisfying

𝑇(𝑥 ⋅ 𝜉 ⋅ 𝑦) = 𝜃1(𝑥) ⋅ 𝑇(𝜉) ⋅ 𝜃1(𝑦) 𝑥, 𝑦 ∈ 𝐵1, 𝜉 ∈ 𝐵1 ⊗𝐴1
𝐵1,

and

⟨𝑇(𝜉), 𝑇(𝜂)⟩𝐵2⊗𝐵() = 𝜃1(⟨𝜉, 𝜂⟩𝐵1) 𝜉, 𝜂 ∈ 𝐵1 ⊗𝐴1
𝐵1.

Thus if (𝜋𝑋, 𝑡𝑋) is the universal covariant representation of𝑋 (note thatwe can take𝜋𝑋 ∶= 𝜋𝐸2
⊗

1 and 𝑡𝑋 ∶= 𝑡𝐸2
⊗ 1), then (𝜋𝑋◦𝜃1, 𝑡𝑋◦𝑇) is a covariant representation of 𝐵1 ⊗𝐴1

𝐵1 on 𝑋 . One
easily checks that this representation is injective and admits a gauge action, and so [14, Theorem
6.4] implies that there is an injective ∗-homomorphismΘ1∶ 𝐵1⊗𝐴1

𝐵1
→ 𝑋 . Reversing the roles

of 𝐵1 and 𝐵2 yields Θ2. □
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906 BRANNAN et al.

4 EXAMPLES

In this section we consider three common types of quantum graphs and determine the isomor-
phism classes of the Cuntz–Pimsner algebras associated to their quantum edge correspondences.
Notably, several of these examples can be realized as Exel crossed products associated to natu-
ral Exel systems. We refer the reader to [11]–[13] for details but provide a brief summary of the
construction of Exel crossed products below.
Let  be a C*-algebra and 𝛼 ∶  →  be ∗-endomorphism. A transfer operator for (, 𝛼) is a

positive linear map on  such that (𝛼(𝑓)g) = 𝑓(g) for all 𝑓, g ∈ . The Exel crossed product
is obtained by first constructing a Toeplitz algebra  (, 𝛼,) which is the universal C∗-algebra
generated by a copy of  along with an element 𝑆 such that 𝑆𝑓 = 𝛼(𝑓)𝑆 and (𝑓) = 𝑆∗𝑓𝑆 for all
𝑓 ∈ . Two elements 𝑓, 𝑘 ∈  (, 𝛼,) form a redundancy if 𝑓 ∈ , 𝑘 ∈ 𝑆𝑆∗, and 𝑓g𝑆 = 𝑘g𝑆
for all g ∈ . The Exel crossed product  ⋊𝛼, ℕ is the quotient of  (, 𝛼,) by the ideal generated
by differences 𝑓 − 𝑘 of redundancies (𝑓, 𝑘).
Given an 𝑛 × 𝑛 {0, 1}-matrix𝐴, one can construct theMarkov subshift space of infinite paths in

the graph associated to𝐴, denoted by𝑋𝐴.𝑋𝐴 is a compact space, and admits a natural shift action
𝜎 ∶ 𝑋𝐴 → 𝑋𝐴 given by 𝜎(𝑥1, 𝑥2, 𝑥3, …) = (𝑥2, 𝑥3, …). A nice class of commutative Exel systems
(𝐶(𝑋𝐴), 𝛼,) arises from this construction, where 𝛼(𝑓) = 𝑓◦𝜎 for 𝑓 ∈ 𝐶(𝑋𝐴) and

(𝑓)(𝑥) = |{𝑦 ∈ 𝑋𝐴 | 𝜎(𝑦) = 𝑥}|−1⎛⎜⎜⎝
∑

{𝑦∈𝑋𝐴 | 𝜎(𝑦)=𝑥} 𝑓(𝑦)
⎞⎟⎟⎠.

It is known that the Cuntz–Krieger algebra 𝐴 is isomorphic to the Exel crossed product
𝐶(𝑋𝐴)⋊𝛼, ℕ. Below, we explore the analogous relationship between non-commutative Exel
systems and local quantum Cuntz–Krieger algebras.

4.1 Complete quantum graphs

Given a finite quantum space (𝐵, 𝜓) with 𝛿-form 𝜓, we denote by 𝐾(𝐵, 𝜓) the complete quan-
tum graph (𝐵, 𝜓, 𝐴), whose quantum adjacency matrix 𝐴 is given by the rank-one map 𝐴 =

𝛿2𝜓(⋅)1𝐵 [1, 2]. The quantum edge correspondence for 𝐾(𝐵, 𝜓) is 𝐸𝐾 = 𝐵 ⊗ 𝐵 since an adapted
matrix unit computation yields that the quantum edge indicator is 𝜖𝐾 = 1𝐵 ⊗ 1𝐵. The quantum
Cuntz–Krieger algebra (𝐾(𝐵, 𝜓)) is generated by {𝑆(𝑎)

𝑖𝑗
∶ 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎} according to

the relations

(𝑆(𝑎))∗𝑆(𝑎) = 1 in𝑀𝑁𝑎
⊗ (𝐾(𝐵, 𝜓)) (1 ⩽ 𝑎 ⩽ 𝑑) (10)

∑
𝑎𝑟𝑠

𝛿2𝜓(𝑒(𝑎)𝑟𝑟 )𝑆
(𝑎)
𝑟𝑠 𝑆

(𝑎)∗
𝑟𝑠 = 1 in (𝐾(𝐵, 𝜓)). (11)

In [2, Theorem 4.5], the authors establish that their definition of a quantum Cuntz–Krieger
algebra associated to 𝐾(𝐵, 𝜓) is isomorphic to dim𝐵 whenever 𝛿2 ∈ ℕ. It is unknown if this
also holds for 𝛿2 ∉ ℕ. The following proposition resolves this for local quantum Cuntz–Krieger
algebras.

Proposition 4.1. 𝐸𝐾
is isomorphic to the Cuntz algebra 𝑛 where 𝑛 = dim𝐵.
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 907

Proof. By Theorem 3.6 and Proposition 3.5, the Cuntz–Pimsner algebra 𝐸𝐾
is a quotient of the

quantumCuntz–Krieger algebra(𝐾(𝐵, 𝜓)) subject to relations (7), which remains the same, and
(8), which in this case becomes:

(𝑆(𝑎)
𝑖𝑗
)∗(𝑆(𝑏)𝑟𝑠 ) = 𝛿𝑎=𝑏

𝑖=𝑟

1

𝛿2𝜓(𝑒(𝑎)
𝑖𝑖
)

∑
𝑐𝓁𝑚

[
𝛿2𝛿𝓁=𝑚

𝑗=𝑠
𝜓(𝑒(𝑐)𝓁𝓁)

∑
𝑛

𝑆(𝑐)𝓁𝑛(𝑆
(𝑐)
𝑚𝑛)

∗

]
. (12)

Simplifying Equation (12) using the unit relation (9), we get

(𝑆(𝑎)
𝑖𝑗
)∗(𝑆(𝑏)𝑟𝑠 ) =

𝛿𝑎=𝑏
𝑖=𝑟
𝑗=𝑠

𝛿2𝜓(𝑒(𝑎)
𝑖𝑖
)

(∑
𝑐𝓁𝑛

𝛿2𝜓(𝑒(𝑐)𝓁𝓁)𝑆
(𝑐)
𝓁𝑛(𝑆

(𝑐)
𝓁𝑛)

∗

)
=

𝛿𝑎=𝑏
𝑖=𝑟
𝑗=𝑠

𝛿2𝜓(𝑒(𝑎)
𝑖𝑖
)
(1(𝐸𝐾)).

Thus, {𝛿𝜓(𝑒(𝑎)
𝑖𝑖
)1∕2𝑆(𝑎)

𝑖𝑗
∶ 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎} are generating isometries for 𝐸𝐾

whose range
projections sum to the identity, and it follows that 𝐸𝐾

is isomorphic to the Cuntz algebra
dim𝐵. □

Here, we define a particular non-commutative Exel system (𝐵⊗ℕ, 𝛼,) and show that the Exel
crossed product𝐵⊗ℕ ⋊𝛼, ℕ is the Cuntz algebra on dim𝐵 generators. Define 𝛼 ∶ 𝐵⊗ℕ → 𝐵⊗ℕ by

𝛼(𝑓) ∶= 1𝐵 ⊗ 𝑓 (𝑓 ∈ 𝐵⊗ℕ).

Then  ∶ 𝐵⊗ℕ → 𝐵⊗ℕ given by

(𝑓1 ⊗ g) ∶= 𝜓(𝑓1)g , (𝑓1 ∈ 𝐵, g ∈ 𝐵⊗ℕ),

is a transfer operator for the dynamical system (𝐵⊗ℕ, 𝛼). In the rest of this section, we let 1
denote the identity in 𝐵⊗ℕ and continue to denote the identity in 𝐵 by 1𝐵. For each 1 ⩽ 𝑎 ⩽ 𝑑

and 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎, define 𝐸(𝑎)
𝑖𝑗

∶= 𝑒(𝑎)
𝑖𝑗

⊗ 1, and let 𝑆 denote the operator which arises in the
construction of  (𝐵⊗ℕ, 𝛼,). We will show that this particular Exel crossed product is dim𝐵,
generated by {𝑣(𝑎)

𝑖𝑗
∶ 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎}, where

𝑣(𝑎)
𝑖𝑗

∶=
1

𝜓(𝑒(𝑎)
𝑗𝑗
)−1∕2

𝐸(𝑎)
𝑖𝑗
𝑆.

The 𝑣(𝑎)
𝑖𝑗

should be regarded as an analog of the characteristic function of words in 𝑋𝐴 that “begin

with the quantum letter 𝑒(𝑎)
𝑖𝑗

∈ 𝐵.”

Lemma 4.2. For all 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎, the pair
(
𝐸(𝑎)
𝑖𝑗
,
∑

𝑝 𝑣
(𝑎)
𝑖𝑝
𝑣(𝑎)
𝑗𝑝

∗)
is a redundancy.

Proof. Fix 𝑎 ∈ {1, … , 𝑑} and 𝑖, 𝑗 ∈ {1, … ,𝑁𝑎}. For 𝑒
(𝑏)
𝑘𝓁 ⊗ 𝑓 ∈ 𝐵⊗ℕ, note 𝑣(𝑎)∗

𝑗𝑝
(𝑒(𝑏)
𝑘𝓁 ⊗ 𝑓) = 0 unless

𝑎 = 𝑏 and 𝑗 = 𝑘. Thus, it suffices to consider elements of the form 𝑒(𝑎)
𝑗𝓁 ⊗ 𝑓 in 𝐵⊗ℕ. Observe:

𝜓(𝑒(𝑎)𝑝𝑝 )(𝑣
(𝑎)
𝑖𝑝
𝑣(𝑎)∗
𝑗𝑝

)(𝑒(𝑎)
𝑗𝓁 ⊗ 𝑓)𝑆 = 𝐸(𝑎)

𝑖𝑝
𝑆𝑆∗[𝐸(𝑎)

𝑝𝑗
(𝑒(𝑎)
𝑗𝓁 ⊗ 𝑓)]𝑆

= 𝐸(𝑎)
𝑖𝑝
𝑆[𝑆∗(𝑒(𝑎)

𝑝𝓁 ⊗ 𝑓)𝑆]
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908 BRANNAN et al.

= 𝐸(𝑎)
𝑖𝑝
𝑆(𝑒(𝑎)

𝑝𝓁 ⊗ 𝑓)

= 𝜓(𝑒(𝑎)
𝑝𝓁 )𝐸

(𝑎)
𝑖𝑝
𝑆𝑓

= 𝜓(𝑒(𝑎)
𝑝𝓁 )𝐸

(𝑎)
𝑖𝑝
𝛼(𝑓)𝑆

= 𝜓(𝑒(𝑎)
𝑝𝓁 )𝐸

(𝑎)
𝑖𝑝
(1𝐵 ⊗ 𝑓)𝑆

= 𝜓(𝑒(𝑎)𝑝𝑝 )𝛿𝑝=𝓁(𝑒
(𝑎)
𝑖𝓁 ⊗ 𝑓)𝑆

= 𝜓(𝑒(𝑎)𝑝𝑝 )𝛿𝑝=𝓁(𝑒
(𝑎)
𝑖𝑗
𝑒(𝑎)
𝑗𝓁 ⊗ 𝑓)𝑆

= 𝜓(𝑒(𝑎)𝑝𝑝 )𝛿𝑝=𝓁𝐸
(𝑎)
𝑖𝑗
(𝑒(𝑎)
𝑗𝓁 ⊗ 𝑓)𝑆.

As elements of the form 𝑒(𝑏)
𝑘𝓁 ⊗ 𝑓 span 𝐵⊗ℕ, for all g ∈ 𝐵⊗ℕ, we have(∑

𝑝

𝑣(𝑎)
𝑖𝑝
𝑣(𝑎)
𝑗𝑝

∗

)
g𝑆 =

∑
𝑝

(
𝑣(𝑎)
𝑖𝑝
𝑣(𝑎)
𝑗𝑝

∗
g𝑆

)
=

∑
𝑝

(
𝛿𝑝𝓁𝐸

(𝑎)
𝑖𝑗

g𝑆
)
= 𝐸(𝑎)

𝑖𝑗
g𝑆.

By definition,
(
𝐸(𝑎)
𝑖𝑗
,
∑

𝑝 𝑣
(𝑎)
𝑖𝑝
𝑣(𝑎)
𝑗𝑝

∗)
is a redundancy. □

Theorem 4.3. The Exel crossed product 𝐵⊗ℕ ⋊𝛼, ℕ is isomorphic to the Cuntz algebra 𝑛 where
𝑛 = dim𝐵.

Proof. We first show that the C*-algebra generated by {𝑣(𝑎)
𝑖𝑗

∶ 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽ 𝑁𝑎} is𝑛, where

𝑛 = dim𝐵. Observe that each 𝑣(𝑎)
𝑖𝑗

is an isometry in 𝐵⊗ℕ ⋊𝛼, ℕ:

𝑣(𝑎)
𝑖𝑗

∗
𝑣(𝑎)
𝑖𝑗

=
1

𝜓(𝑒(𝑎)
𝑗𝑗
)
𝑆∗𝐸(𝑎)

𝑗𝑖
𝐸(𝑎)
𝑖𝑗
𝑆 =

1

𝜓(𝑒(𝑎)
𝑗𝑗
)
𝑆∗𝐸(𝑎)

𝑗𝑗
𝑆 =

1

𝜓(𝑒(𝑎)
𝑗𝑗
)


(
𝐸(𝑎)
𝑗𝑗

)
= 1.

By Lemma 4.2,
∑

𝑝 𝑣
(𝑎)
𝑖𝑝
𝑣(𝑎)
𝑖𝑝

∗
= 𝐸(𝑎)

𝑖𝑖
, and thus, summing over 1 ⩽ 𝑎 ⩽ 𝑑 and 1 ⩽ 𝑖 ⩽ 𝑁𝑎 yields the

identity. Therefore, each 𝑣(𝑎)
𝑖𝑗

is a Cuntz isometry, and the collection {𝑣(𝑎)
𝑖𝑗

∶ 1 ⩽ 𝑎 ⩽ 𝑑, 1 ⩽ 𝑖, 𝑗 ⩽

𝑁𝑎} generates the Cuntz algebra 𝑛 where 𝑛 = dim𝐵.
To verify that this copy ofdim𝐵 inside 𝐵⊗ℕ ⋊𝛼, ℕ is actually all of 𝐵⊗ℕ ⋊𝛼, ℕ, note that each

𝐸(𝑎)
𝑖𝑗

belongs to dim𝐵 by Lemma 4.2. Further, since 𝑆 = 1𝐵𝑆 = (
∑

𝑎,𝑖 𝐸
(𝑎)
𝑖𝑖
)𝑆, we also know that 𝑆

belongs to this copy of dim𝐵. We claim that elements of the form 𝐸(𝑎)
𝑖𝑗

along with 𝑆 generate all
of 𝐵⊗ℕ. Recall from [12] that (𝛼(𝑓), 𝑆𝑓𝑆∗) is a redundancy for all 𝑓 ∈ 𝐵⊗ℕ, so for any 𝑟 ∈ ℕ, we
have

1𝐵 ⊗ …⊗ 1𝐵
⏟⎴⎴⏟ ⎴⎴⏟

𝑟

⊗𝑒(𝑎)
𝑖𝑗

⊗ 1 = 𝛼𝑟(𝐸(𝑎)
𝑖𝑗
) = 𝑆𝑟𝐸(𝑎)

𝑖𝑗
(𝑆∗)𝑟 ∈ dim𝐵.

As elements of the above form generate the C*-algebra 𝐵⊗ℕ and are contained in dim𝐵, we may
conclude that 𝐵⊗ℕ is a subset of dim𝐵. Therefore, 𝐵⊗ℕ ⋊𝛼, ℕ ≅ 𝑛 where 𝑛 = dim𝐵. □
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QUANTUM EDGE CORRESPONDENCES AND QUANTUM CUNTZ–KRIEGER ALGEBRAS 909

As a result of Theorem 4.3, the Cuntz–Pimsner algebra 𝐸𝐾
for the quantum edge correspon-

dence of the complete quantum graph can be realized as the Exel crossed product 𝐵⊗ℕ ⋊𝛼, ℕ,
whose underlying Exel system was a natural choice for the complete quantum graph. We may
also conclude that the Cuntz algebra on dim𝐵 generators is always a quotient of the quantum
Cuntz–Krieger algebra (𝐾(𝐵, 𝜓)) for the complete quantum graph.

4.2 Trivial quantum graphs

Denote by 𝑇(𝐵, 𝜓) the trivial quantum graph (𝐵, 𝜓, id); in the following discussion 𝐵 and 𝜓 will
be fixed, so we will simply denote it by 𝑇. Using the adapted matrix units, we will now identify
the edge correspondence and prove that it is isomorphic to the trivial 𝐵-correspondence, which
will allow us to explicitly compute its Cuntz–Pimsner algebra. Recall the definition of the edge
correspondence from Definition 2.1. It is generated, as a 𝐵-bimodule by the idempotent 𝜖𝑇 ∶=
1

𝛿2
(id⊗ id)𝑚∗(1) = 1

𝛿2
𝑚∗(1). As 𝑚∗ is a 𝐵-bimodule map, we get 𝑥 ⋅ 𝜖𝑇 ⋅ 𝑦 = 1

𝛿2
𝑚∗(𝑥𝑦); hence,

the edge correspondence is equal as a vector space to the image of𝑚∗. We will actually show that
the map 1

𝛿
𝑚∗ identifies 𝐵 and the edge correspondence 𝐸𝑇 as 𝐶∗-correspondences.

Proposition 4.4. Let 𝐵 be viewed as a 𝐶∗-correspondence, where ⟨𝑎, 𝑏⟩𝐵 = 𝑎∗𝑏 and the left and
right actions are the usual ones. Then 1

𝛿
𝑚∗ ∶ 𝐵 → 𝐸𝑇 is an isomorphism of 𝐶∗-correspondences.

Proof. We will use Proposition 2.7. The vector 𝜉 ∶= 1

𝛿
1 is cyclic for 𝐵 and 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩ = 𝑥 is

the quantum adjacency matrix of the trivial quantum graph. Therefore by Proposition 2.7 the
assignment 𝜉 ↦ 𝜖𝑇 extends to an isomorphism of correspondences 𝐵 and 𝐸𝑇 . This map is
precisely equal to 1

𝛿
𝑚∗. □

Corollary 4.5. The Cuntz–Pimsner algebra 𝐸𝑇
is isomorphic to 𝐵 ⊗ 𝐶(𝕋).

Proof. From the previous proposition,𝐸𝑇 is isomorphic to𝐵. By [20, Example 3, p. 193], the Cuntz–
Pimsner algebra of 𝐵 is isomorphic to the crossed of 𝐵 by the trivial action of ℤ, that is, 𝐵 ⊗

𝐶(𝕋). □

Consider the trivial Exel system (𝐵, 𝛼,) where 𝛼 =  = id. Recall that  (𝐵, 𝛼,) is the uni-
versal C*-algebra generated by 𝐵 and an element 𝑈 subject to the relations 𝑈𝑥 = 𝛼(𝑥)𝑈 and
𝑈∗𝑥𝑈 = (𝑥) for all 𝑥 ∈ 𝐵. In this case, 𝑈𝑥 = 𝑥𝑈, which implies that 𝑈 is an isometry and
commutes with every element of 𝐵.

Proposition 4.6. The Exel crossed product 𝐵 ⋊id,id ℕ is isomorphic to 𝐵 ⊗ 𝐶(𝕋)

Proof. Recall that 𝐵 ⋊id,id ℕ is the quotient of  (𝐵, id, id) by the ideal of generated by the set of
redundancies, {𝑎 − 𝑘 ∶ 𝑎 ∈ 𝐵, 𝑘 ∈ 𝐵𝑈𝑈∗𝐵, 𝑎g𝑈 = 𝑘g𝑈 ∀g ∈ 𝐵}. Consider 𝑘 = 𝑈𝑈∗ and 𝑎 = 1.
Then because𝑈 is isometric and commutes with all elements of 𝐵, we have𝑈𝑈∗g𝑈 = 𝑈g = g𝑈
for all g ∈ 𝐵. Therefore𝑈𝑈∗ and 1 form a redundancy, so the quotient consists of a copy of 𝐵 and
a unitary that commutes with 𝐵. Therefore, 𝐵 ⋊id,id ℕ ≅ 𝐵 ⊗ 𝐶(𝕋). □
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910 BRANNAN et al.

Remark 4.7. Note that the above proposition provides a second example of the Cuntz–Pimsner
algebra for the quantum edge correspondence being implemented by a natural choice of Exel
crossed product.

4.3 Rank-one quantum graphs

In the special casewhen𝐵 = 𝑀𝑛(ℂ) and𝜓 is a properly normalized trace, there is a nice correspon-
dence between quantum adjacency matrices, projections in𝑀𝑛(ℂ) ⊗𝑀𝑛(ℂ)

op, and subspaces of
𝑀𝑛(ℂ). Just as before, a projection in 𝑀𝑛(ℂ) ⊗𝑀𝑛(ℂ)

op can be viewed as the Choi matrix of
a quantum adjacency matrix, but also as an orthogonal projection onto a subspace of 𝑀𝑛(ℂ),
when we identify the algebra of bounded operators on 𝑀𝑛(ℂ) (viewed as a Hilbert space) with
𝑀𝑛(ℂ) ⊗𝑀𝑛(ℂ)

op via the left–right action.
For the trivial quantum graph, the corresponding subspace of 𝑀𝑛(ℂ) is the span of the iden-

tity matrix. It is therefore tempting to investigate other rank one subspaces. If such a subspace
is spanned by a (suitably normalized) operator 𝑇, then the corresponding quantum adjacency
matrix is equal to 𝐴(𝑥) ∶= 𝑇𝑥𝑇∗. This is the inspiration for the following definition. Recall that
the density matrices {𝜌𝑎 ∶ 1 ⩽ 𝑎 ⩽ 𝑑} associated to a 𝛿-form 𝜓 on 𝐵 are invertible and satisfy
Tr(𝜌−1𝑎 ) = 𝛿2.

Definition 4.8. Let 𝑇 ∈ 𝐵 satisfy Tr(𝜌−1𝑎 𝑇∗𝑇) = 𝛿2 for all 1 ⩽ 𝑎 ⩽ 𝑑. We call 𝐴(𝑥) ∶= 𝑇𝑥𝑇∗ a
quantum adjacency matrix of rank one.

Beforewe proceed any further, we should first check that rank one quantumadjacencymatrices
are in fact quantum adjacencymatrices. Because one can check the conditions separately on each
matrix direct summand, we may assume that 𝐵 is a matrix algebra, so we can forget about the
index 𝑎.

Lemma 4.9. If 𝑇 ∈ 𝑀𝑛(ℂ) satisfies Tr(𝜌−1𝑇∗𝑇) = 𝛿2, where 𝜌 is the density matrix of a 𝛿-form 𝜓,
then 𝐴(𝑥) ∶= 𝑇𝑥𝑇∗ is a quantum adjacency matrix.

Proof. We have to check that 𝑚(𝐴 ⊗𝐴)𝑚∗(𝑓𝑖𝑗) = 𝛿2𝐴(𝑓𝑖𝑗) for all adapted matrix units
𝑓𝑖𝑗 . The left-hand side is equal to

∑
𝑘 𝑇𝑓𝑖𝑘𝑇

∗𝑇𝑓𝑘𝑗𝑇
∗. We will check that

∑
𝑘 𝑓𝑖𝑘𝑆𝑓𝑘𝑗 =

Tr(𝜌−1𝑆)𝑓𝑖𝑗 and this will end the proof. First, we can write the matrix 𝑆 as 𝑆 =
∑

𝑝𝑡 𝑆𝑝𝑡𝑒𝑝𝑡 =∑
𝑝𝑡 𝑆𝑝𝑡

√
𝜓(𝑒𝑝𝑝)𝜓(𝑒𝑡𝑡)𝑓𝑝𝑡. We have 𝑓𝑖𝑘𝑓𝑝𝑡𝑓𝑘𝑗 = 𝛿𝑝𝑘𝛿𝑡𝑘

1

𝜓(𝑒𝑘𝑘)
2 𝑓𝑖𝑗 , so 𝑓𝑖𝑘𝑆𝑓𝑘𝑗 =

𝑆𝑘𝑘
𝜓(𝑒𝑘𝑘)

𝑓𝑖𝑗 . We
obtain

∑
𝑘

𝑓𝑖𝑘𝑆𝑓𝑘𝑗 =

(∑
𝑘

𝑆𝑘𝑘
𝜓(𝑒𝑘𝑘)

)
𝑓𝑖𝑗 = Tr(𝜌−1𝑆)𝑓𝑖𝑗.

□

Proposition 4.10. Let 𝐴 be a rank one quantum adjacency matrix, given by 𝐴(𝑥) = 𝑇𝑥𝑇∗. Recall
that 𝑇 is of the form

⨁
𝑎 𝑇

(𝑎) and we assume that each 𝑇(𝑎) ≠ 0. Then the Cuntz–Pimsner algebra of
the edge correspondence is isomorphic to 𝐵 ⊗ 𝐶(𝕋).

Proof. Wewill once again resort to Proposition 2.7 to show that the edge correspondence is isomor-
phic to the trivial correspondence 𝐵. By our assumption on 𝑇, the element 𝜉 ∶= 1

𝛿
𝑇∗ is cyclic for
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the trivial correspondence and we have 𝛿2⟨𝜉, 𝑥𝜉⟩ = 𝑇𝑥𝑇∗ = 𝐴(𝑥). Therefore by Proposition 2.7
the edge correspondence is isomorphic to the trivial correspondence by a bimodular extension
of the assignment 𝜉 ↦ 𝜖. We conclude as in the proof of Corollary 4.5 that the corresponding
Cuntz–Pimsner algebra is isomorphic to 𝐵 ⊗ 𝐶(𝕋). □

Remark 4.11. If it happens that 𝑇(𝑎) = 0 for some indices 𝑎, then the same proof shows that the
Cuntz–Pimsner algebra is isomorphic to 𝐵′ ⊗ 𝐶(𝕋), where 𝐵′ is the direct sum of matrix algebras,
but only over the indices 𝑎, for which 𝑇(𝑎) ≠ 0.

4.4 Quantum adjacency matrices arising from ∗-automorphisms

Another way to generalize the trivial quantum graph is to let 𝛼 be a ∗-homomorphism of a finite-
dimensional C*-algebra 𝐵. As 𝛼 is multiplicative, we have 𝛼◦𝑚 = 𝑚◦(𝛼 ⊗ 𝛼). It follows that
𝑚(𝛼 ⊗ 𝛼)𝑚∗ = 𝛼𝑚𝑚∗ = 𝛿2𝛼, that is, 𝛼 is a quantum adjacency matrix. Then 𝛼 ∶= (𝐵, 𝜓, 𝛼) is a
quantum graph, and the associated quantum edge indicator for 𝛼 is

𝜖𝛼 ∶=
1

𝛿2
(id⊗ 𝛼)𝑚∗(1) =

1

𝛿2

∑
𝑎𝑖𝑗

𝜓(𝑒(𝑎)
𝑖𝑖
)𝑓(𝑎)

𝑖𝑗
⊗ 𝛼(𝑓(𝑎)

𝑗𝑖
).

Let 𝐸𝛼 = 𝐵 ⋅ 𝜖𝛼 ⋅ 𝐵 denote the quantum edge correspondence for 𝛼, and define 𝐵𝛼 to be 𝐵 as
a C*-correspondence over itself with ⟨𝑎, 𝑏⟩ = 𝑎∗𝑏, left action given by 𝑥 ⋅ 𝜂 ∶= 𝛼(𝑥)𝜂, and right
action given by right multiplication.

Lemma 4.12. 𝐸𝛼 ≅ 𝐵𝛼 as C∗-correspondences.

Proof. The element 𝜉 ∶= 1

𝛿
1 is cyclic for 𝐵𝛼 and 𝛿2⟨𝜉, 𝑥 ⋅ 𝜉⟩ = 𝛼(𝑥). By Proposition 2.7 the edge

correspondence is isomorphic to 𝐵𝛼. □

Corollary 4.13. When 𝛼 is a ∗-automorphism, the Cuntz–Pimsner algebra of 𝐸𝛼 is isomorphic to
𝐵 ⋊𝛼 ℤ.

Proof. This follows from Pimsner’s work [20, Example 3, p. 193]. □

We can make this crossed product a bit more explicit. First, recall that if we have an auto-
morphism 𝛼 on a direct sum 𝐵1 ⊕ 𝐵2, preserving the summands, then the corresponding crossed
product splits as a direct sum aswell, that is, (𝐵1 ⊕ 𝐵2)⋊ ℤ ≃ (𝐵1 ⋊ ℤ) ⊕ (𝐵2 ⋊ ℤ). Second, auto-
morphisms of direct sums of matrix algebras are of a very special form. We can first collect all
the matrix algebras of the same size and such a subalgebra has to be preserved by any auto-
morphism. In this case we are dealing with an algebra of the form 𝑀𝑛(ℂ) ⊗ ℂ𝑘 and then any
automorphism comes from a permutation of the set {1, … , 𝑘} followed by inner automorphisms
on individual matrix algebras. Because crossed products are insensitive to inner perturbations
([3, II.10.3.17]), we may assume that we are just dealing with a permutation automorphism.
Moreover any permutation decomposes as a disjoint sum of cycles, so we can treat those sepa-
rately. To sum up, any crossed product 𝐵 ⋊ ℤ will decompose as a direct sum of crossed products
of the form (𝑀𝑛(ℂ) ⊗ ℂ𝑘)⋊ ℤ, where ℤ acts by a cycle on {1, … , 𝑘} and as identity on 𝑀𝑛(ℂ).
Since it acts as identity on the matrix algebra, the resulting crossed product is isomorphic to
𝑀𝑛(ℂ) ⊗ (ℂ𝑘 ⋊ ℤ) ≅ 𝑀𝑛(ℂ) ⊗𝑀𝑘(ℂ) ⊗ 𝐶(𝕋) ([5, Section VIII.3, p. 230].
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912 BRANNAN et al.

Again, there is a natural Exel system, we may associate to the quantum graph 𝛼. Consider
(𝐵, 𝛼, 𝛼−1), where 𝛼−1 plays the role of the transfer operator. As in the example of the complete
quantum graph, the Exel crossed product for this system, 𝐵 ⋊𝛼,𝛼−1 ℕ, is isomorphic to the Cuntz–
Pimsner algebra 𝐵 ⋊𝛼 ℤ for the quantum edge correspondence 𝐸𝛼.
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