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Abstract. This work addresses inverse linear optimization, where the goal is to infer the
unknown cost vector of a linear program. Specifically, we consider the data-driven setting
in which the available data are noisy observations of optimal solutions that correspond to
different instances of the linear program. We introduce a new formulation of the problem
that, compared with other existing methods, allows the recovery of a less restrictive and
generally more appropriate admissible set of cost estimates. It can be shown that this
inverse optimization problem yields a finite number of solutions, and we develop an exact
two-phase algorithm to determine all such solutions. Moreover, we propose an efficient
decomposition algorithm to solve large instances of the problem. The algorithm extends natu-
rally to an online learning environment where it can be used to provide quick updates of the
cost estimate as new data become available over time. For the online setting, we further
develop an effective adaptive sampling strategy that guides the selection of the next samples.
The efficacy of the proposed methods is demonstrated in computational experiments in-
volving two applications: customer preference learning and cost estimation for production
planning. The results show significant reductions in computation and sampling efforts.
Summary of Contribution: Using optimization to facilitate decision making is at the core
of operations research. This work addresses the inverse problem (i.e., inverse optimiza-
tion), which aims to infer unknown optimization models from decision data. It is, concep-
tually and computationally, a challenging problem. Here, we propose a new formulation
of the data-driven inverse linear optimization problem and develop an efficient decompo-
sition algorithm that can solve problem instances up to a scale that has not been addressed
previously. The computational performance is further improved by an online adaptive
sampling strategy that substantially reduces the number of required data points.
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1. Introduction

constraints. This eases the incorporation of domain

Inverse optimization is an emerging new paradigm for
uncovering hidden decision-making mechanisms from
observed decision data. Following the principle of opti-
mality (Schoemaker 1991) that is commonly applied in
various fields including economics, psychology, and evo-
lutionary biology, the key idea in inverse optimization is
to model a decision-making process as an optimization
problem. Decisions can then be viewed as optimal or
near-optimal solutions of an optimization model, and the
inverse optimization problem (IOP) is to infer this model,
if otherwise unknown, from observations. A major ad-
vantage of this approach is its ability to explicitly include

2720

knowledge, which is often readily available in the form
of constraints, significantly. As a result, compared with
common black-box machine learning methods, inverse
optimization offers the promise of models with enhanced
prediction accuracy and interpretability.

The notion of inverse optimization was first intro-
duced by Burton and Toint (1992), who consider the
problem of determining travel costs on a network as per-
ceived by the users given the routes they have taken.
This has inspired research on several inverse network
optimization problems (Yang et al. 1997, Zhang and Cai
1998, Zhang and Liu 1999, Liu and Zhang 2006). Since
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then, inverse optimization has found application in a
myriad of fields, such as radiation therapy planning
(Chan et al. 2014, Babier et al. 2021), investment portfolio
optimization (Bertsimas et al. 2012), electricity demand
forecasting (Saez-Gallego and Morales 2018), auction
mechanism design (Beil and Wein 2003, Birge et al.
2017), biological systems (Burgard and Maranas 2003,
Arechavaleta et al. 2008, Terekhov et al. 2010), and opti-
mal control (Hempel et al. 2015, Westermann et al. 2020).

Early works in inverse optimization focus on deter-
mining an objective function that makes the observed
decisions, given the constraints of the problem, exactly
optimal. In their seminal paper, Ahuja and Orlin (2001)
present a generalized solution method for inverse opti-
mization with linear forward optimization problems
(FOPs). Some of the later works extend the theory to
consider conic (Iyengar and Kang 2005, Zhang and Xu
2010), discrete (Schaefer 2009, Wang 2009, Bulut and
Ralphs 2021), and nonlinear (Chow et al. 2014) FOPs.

More recently, the research focus has shifted toward
data-driven inverse optimization, in which we observe
an agent’s decisions in multiple instances, which can
be viewed as instances of the same optimization prob-
lem that differ in their input parameter values (Moha-
jerin Esfahani et al. 2018). With data-driven inverse
optimization, one has a much greater chance of learn-
ing an optimization model that has true predictive
power with respect to future decisions in unseen
instances. Here, the observations are generally consid-
ered to be noisy, with the following being the three
key sources of the noise: (i) measurement errors, (ii)
bounded rationality of the decision maker, and (iii)
model specification mismatch (Aswani et al. 2018,
Mohajerin Esfahani et al. 2018). The existing literature
for this setting is limited to the case of convex FOPs.
The main distinction among the various proposed for-
mulations is in terms of the loss function employed to
fit the data. Minimization of the slack required to
make the noisy data satisfy an optimality condition is
considered by Keshavarz et al. (2011), Bertsimas et al.
(2015), and Mohajerin Esfahani et al. (2018). However,
Aswani et al. (2018) show that this kind of loss func-
tion can lead to statistically inconsistent estimates and
propose to minimize the sum of some norm of resid-
uals with respect to the decision variables. In the data-
driven context, most existing works assume that the
observations are available in a single batch, whereas
more recent contributions also address online learning
environments in which the observations are made
sequentially (Barmann et al. 2018, Dong et al. 2018,
Shahmoradi and Lee 2021).

In this work, we consider data-driven inverse linear
optimization with noisy observations in both batch and
online learning settings. Here, the goal is to estimate the
unknown cost vector of a linear program (LP). Inverse
linear optimization constitutes an important class of

IOPs, as many decision-making problems can be formu-
lated or approximated as LPs. Although inverse linear
optimization falls into the broader category of inverse
convex optimization for which established solution
methods exist, these more general methods often yield
overly restricted sets of admissible cost estimates when
applied to inverse linear optimization with noisy data
(as discussed in detail in Section 2). This limitation is to
a great extent shared by tailored approaches specifically
designed to solve the IOP in the linear case more effi-
ciently (Chan et al. 2019, Babier et al. 2021). We note
that the majority of the inverse linear optimization liter-
ature does not consider the data-driven case but focuses
on the single-instance setting (with possibly multiple
noisy observations).

Our proposed framework is designed to recover the
complete set of admissible solutions for the inverse
linear optimization problem while incorporating the
notion of a reference cost vector that represents the
user’s prior belief, which facilitates the selection of an
appropriate point estimate. On the basis of a polyhe-
dral understanding of the problem, we propose a two-
phase approach that separates the tasks of denoising
the data and parameter estimation. To solve large
instances of the IOP, we develop an exact decomposi-
tion algorithm, which processes the data sequentially
and can hence also serve as an efficient update
method in online inverse optimization. For the online
setting, we further develop an adaptive sampling
strategy that guides the selection of the next samples
in an effort to reduce the amount of required data.
Although adaptive sampling is quite a mainstream
idea in machine learning (Domingo et al. 2002, Chang
et al. 2005, Cozad et al. 2014), to the best of our knowl-
edge, it has not yet been considered in inverse optimi-
zation. We believe that the development of such a
framework can go a long way in increasing the accept-
ance of inverse optimization as an alternative to black-
box modeling methods, especially in situations where
data acquisition is expensive or time intensive.

The main contributions of this work are as follows:

1. We introduce a new general formulation of the
data-driven inverse linear optimization problem that
considers multiple noisy observations collected for
multiple experiments, which are problem instances
with different input parameter values. We highlight
several geometrical properties of the problem and
show that by assuming that optimal solutions lie at the
vertices of the feasible region, we can recover the com-
plete set of admissible cost estimates.

2. We show that the proposed IOP formulation
yields a finite number of solutions. We introduce a
two-phase algorithm that can recover all such solu-
tions. Furthermore, we show that under a very mild
condition, the IOP is guaranteed to have a unique
solution.
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3. We develop an efficient sequential decomposition
algorithm to solve large instances of the IOP. The algo-
rithm directly extends itself to online inverse optimiza-
tion where it can be used to provide quick updates of
the cost estimate as new data become available.

4. We propose an effective adaptive sampling strat-
egy that guides the choice of the experiments in online
inverse optimization. The adaptive sampling problem
is formulated as a mixed-integer nonlinear program
(MINLP) for which we provide an efficient heuristic
solution algorithm.

5. We demonstrate the effectiveness of the proposed
framework through a comprehensive set of computa-
tional experiments, addressing the problems of customer
preference learning and cost estimation for production
planning. The results indicate that generally, reasonable
prediction accuracies can be achieved with relatively
small numbers of experiments. Also, one can observe sig-
nificant reductions in solution time and required number
of samples as a result of the proposed decomposition
and adaptive sampling methods, respectively.

The remainder of this paper is organized as follows.
In Section 2, we present a formal description of the
inverse linear optimization problem. In Section 3, we
propose a new formulation that utilizes a reference
cost vector to find reasonable cost estimates, discuss
its properties, and develop a two-phase solution algo-
rithm. Section 4 introduces an exact decomposition
algorithm that allows the efficient solution of large
instances of the IOP and naturally extends to online
inverse optimization. Our proposed adaptive sam-
pling framework is detailed in Section 5. In Section 6,
results from the computational studies are presented.
Finally, we conclude in Section 7. All omitted proofs
can be found in Section A of the online supplement.

2. Background of Inverse Linear
Optimization
Consider a decision-making problem that can be rep-
resented as an LP of the following form:
minimize c¢'x
xeR”

subject to Ax < b, (FOP)

which we call FOP, short for the forward optimization
problem. The cost vector ¢ € R" is unknown; however,
experiments perturbing values in A € R™" and b € R"
can be designed to help improve our estimate of c.
These experiments are subject to certain problem-
specific restrictions on A and b, and we denote the set
of their allowed values by I (i.e., (A,b) € IT). More-
over, we assume that IT is such that for any (4, b) € I1,
the polyhedron represented by Ax < b is compact and
nonempty. This is a mild assumption, as in essentially
all real-world problems, the decision variables are

bounded. The results of the perturbation experiments,
which are assumed to be optimal solutions to mathe-
matical optimization problem (FOP), are observed
with some random noise. For a specific experiment,
multiple samples can be collected such that one can
recover the true optimal solution with some confi-
dence. In what follows, we refer to this estimate of the
true optimal solution as the denoised estimate and the
process of obtaining it as denoising the data.

Given observations, the inverse optimization prob-
lem (IOP) is to obtain an estimate of ¢, ¢, such that
the difference between the observations and the sol-
utions obtained from solving (FOP) with ¢ as the
cost vector is minimized. The IOP is commonly for-
mulated as follows:

minimize Z Z [Ieij — %l
CeR", & 5T jeg,
subjectto %;€argmin{¢'¥:AX<b;} VieZ, jeJ,
¥eR"

1

where T is the set of experiments, where each experi-
ment i is associated with inputs (A;, b;); J; denotes the
set of noisy observations for experiment i; and x;; is
the observed output for je J;. The objective is to
choose ¢ and X such that the loss function, which is
defined as the sum of some norm of the residuals, is
minimized. Formulation (1) generalizes existing var-
iants of the IOP from the literature. Some consider a
setting in which A and b cannot be changed, which
leads to the case of [Z|=1 (Chan and Lee 2018, Chan
et al. 2019). Others consider random sampling of A
and b without assigning the samples to distinct sets
corresponding to specific inputs (Aswani et al. 2018);
in this case, we have |Z|= N, with N being the total
number of samples, and |7;]=1 for all i€Z. In fact,
splitting the set of samples into input-specific subsets
does not affect a formulation such as (1); however, it
will be an essential feature of our proposed alternative
approach (described more in Section 3).

Problem (1) is a bilevel optimization problem and is
typically solved by replacing its lower-level problems
with their optimality conditions. Whereas most exist-
ing works make use of strong duality (Aswani et al.
2018, Chan et al. 2019, Shahmoradi and Lee 2021),
some have also applied reformulations based on the
Karush-Kuhn-Tucker (KKT) conditions (Keshavarz
et al. 2011, Saez-Gallego et al. 2016). In the case of LPs,
both optimality conditions are equivalent. In this
work, we use a KKT-based approach, as the duality-
based formulation is nonlinear and nonconvex in the
constraints because of the presence of bilinear terms,
whereas the constraints of the KKT-based formulation
can be linearized by introducing binary variables,
which is advantageous from a computational stand-
point. Thus, we arrive at the following mixed-integer
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reformulation of (1):

D07 e = Rl (2a)

minimize
CeR", %,8, A,z

i jeT;
subjectto  ¢+A[A;=0 VieZ, jeJ, (2b)
Axj+sj=b; Viel, jeJ, (20)
Aij<Mz; Viel, jeJ, (2d)
si<M(e—zj) VieZ, jeJ, (2e)

kjeR", sy € RY, Ay € RY, z; € {0, 1}"
VieT, jeJ, (2f)

where M is a sufficiently large parameter, and e
denotes the all-ones vector. Constraints (2b), (2¢), and
(2d) and (2e) correspond to the stationarity, primal
feasibility, and complementary slackness conditions,
respectively. The following theorem characterizes the
solution set of (2).

Theorem 1. For a given feasible X, the set of feasible ¢ in
problem (2) is a polyhedral cone.

Proof. Consider (2) for a specific experiment i and
sample j € 7; and a corresponding feasible %;;. Let K;
be the set of constraints for experiment i, (i.e., resulting
from A; and b;). From (2f), we have that A;; > 0; hence,
if A = 0 for all k € KC;, then (2b) imply that ¢ = 0. Other-
wise, if 3k € K; such that A > 0, then from constraints
(2d) and (2e), we have that s;3 = 0, and (2c) imply that
%;; is such that a;%;; = by, where ay € R" defines the
kth row of A, Hence, from (2b), we have that
ce cone({—ait}tg@i]_)), where 7 (%;) denotes the set of
constraints active at X;;. Because 7 () is a finite set, the
feasible region for ¢ associated with experiment i and
sample j is a polyhedral cone. As this statement holds
foreveryieZ andj € J;, we have

ce m Cone({—a,'t}teq—(,?q)),
i€Z, jeJ;
which is the intersection of a finite number of polyhe-
dral cones and, hence, also a polyhedral cone. O

2.1. Admissible Set

As a consequence of Theorem 1, there is no unique
solution to problem (1), or equivalently, (2), because
for any optimal ¢, ac, with a being any nonnegative
scalar different than 1, yields another optimal solu-
tion. Instead, by means of Theorem 1, we can deter-
mine the full set of “inverse-optimal” ¢, which we
refer to as the admissible set. Also, to avoid the trivial
solution ¢ =0, it is common to use a slight variant of
(1) that restricts the length of ¢ by adding a norm con-
straint (e.g., [|¢l|, =1) (Mohajerin Esfahani et al. 2018,
Chan et al. 2019, Shahmoradi and Lee 2021). However,
the use of a norm constraint introduces additional
nonconvexity into the problem formulation. Although

Figure 1. (Color online) The Polytope Represents the Feasi-
ble Region of the FOP Defined by A;x < b;, Where Noisy Data
Samples x;; Are Depicted by Red Hollow Circles, and Their
Denoised Estimates &;; Are Shown as Green Filled Circles

o
000

c| /c

Note. The true cost vector is ¢, whereas ¢ is the solution to (1) with an
additional p-norm constraint on ¢.

the choice of p-norm has been arbitrary, under some
special conditions on ¢, the 1-norm and co-norm have
been shown to lead to tractable formulations (Chan
etal. 2019).

2.2. Noisy Observations

As (FOP) is an LP, with a nonzero ¢, any optimal solu-
tion will lie on the boundary of the polyhedral feasible
region. Problem (1) with a p-norm constraint on ¢ can
be interpreted as the projection of noisy observations
onto one of the polyhedron’s facets such that the total
projection distance is minimized (Chan et al. 2019).
Although this approach provides good solutions
when the FOP is strongly convex, it often leads to a
severely restricted admissible set when the FOP is an
LP. As illustrated in Figure 1, even if the true solution
lies at a vertex, noise in the data can cause the obser-
vations to get projected onto one of the facets, making
a vector orthogonal to that facet the only feasible ¢. As
highlighted by Shahmoradi and Lee (2021), this for-
mulation also leads to unstable predictions in the
presence of outliers in the data.

2.3. Reference Cost

It is important to note that the problem of estimating ¢
given noisy observations consists of two tasks that
have to be performed simultaneously: (i) denoising
the data to obtain estimates of the real optimal solu-
tions and (ii) using these solutions to estimate c. For-
mulations of the form (1) and existing variants thereof
mainly address the first aspect but have deficiencies,
as elucidated in the preceding, when it comes to find-
ing a good point estimate of ¢, especially when the
admissible set is large or the number of observations
is small. Traditionally, when sampling is determinis-
tic, inverse optimization has been facilitated by using
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a reference cost vector ¢ and employing an objective

function of the form |¢ —6||§ (Ahuja and Orlin 2001,
Heuberger 2004). Such a reference cost represents a
prior belief that is available in most practical applica-
tions (e.g., obtained through first-principles modeling
or expert knowledge). A cost estimate ¢ that is close to
a reference C is often desired. It seems that the notion
of such a reference, which can aid the process of recov-
ering the real cost vector, has largely been ignored in
the noisy case.

3. A Two-Phase Approach to Inverse
Optimization

In this section, we propose a general inverse linear
optimization model that finds a nontrivial estimate of
the cost vector that, among all the ones that minimize
the loss function, most closely resembles a reference
cost vector. We discuss the main properties of this IOP
and develop an exact two-phase solution algorithm.

3.1. Problem Formulation and Properties
We first define C’ as follows:

C = {6 :(¢,X) € arg min {ZZ Iy — &l -

ceR"\{0}, ¥ | i€T jeJ;

Xjeargmin{e ¥ :AX <b;} VieT, je j,}},
XeR"

3)
where it is assumed that for all i € Z, (A,, b;) is chosen
from some set IT such that the polyhedron {X : A;¥ <
b;} is compact and nonempty.

Note that the loss minimization problem (3) is essen-
tially problem (1); however, the above-mentioned repre-
sentation emphasizes the fact that (1) does not have a
unique optimal ¢ but rather a set of optimal solutions.
The set C’ consists of all these optimal ¢ except for the
trivial solution ¢ = 0. Next, we solve the following prob-
lem to choose a ¢ from C = C’ U {0} that most resembles
a known reference c:

minimize ||z — g||§
c
subjectto ¢ €C. 4)

Although we exclude the trivial solution ¢ = 0 from c,
problem (4) considers C as the set of admissible cost
estimates, which does include the trivial solution. The
rationale behind this setup is the following: When
determining C’, we do not want to consider ¢ =0,
which allows a minimum loss but does not provide
any useful information. However, admitting the triv-
ial solution in (4) can be helpful because the unlikely
case in which ¢ = 0 is the optimal solution to (4) would
immediately indicate that ¢ is a very bad reference. In

addition, as discussed later in this section, admitting C
in (4) results in useful theoretical properties.

As mentioned in Section 2, solving problem (4) pro-
vides good results in the deterministic case; however,
it fails when noisy data are considered because the
projection of data onto a facet causes C to be a single
ray. To overcome this issue, we propose to consider,
instead of C’, the following slightly modified set:

c ::{a :(¢,%) € arg min {Z S k= &4l

ceR"\{0}, & | i€T jeJ;

X; € arg min {ﬁch CAX < b,'} NnYy; Vie I}}, 5)
XeR”

where V; denotes the set of extreme points of {¥ : A;X

< b;}. This leads to the following IOP:

minimize ||z —¢|
Cc
subjectto ¢ eC, (I0P)

whereC=C U {0}. The set C' considers the projection of
the data for each experiment i onto one of the vertices of
{¥ : AiX < b;} such that the total projection distance is
minimized. We consider two different cases depending
on the nature of (FOP) to argue why this approach leads
to a more appropriate admissible set. For the ease of
exposition, our discussion is restricted to the case of a sin-
gle experiment (i.e., [Z| = 1) with multiple samples:

1. If (FOP) has a unique optimal solution, the noisy
samples are likely to be located close to the vertex at
which the optimal solution lies (see Figure 2(a)). By
solving the loss minimization problem in (5), we obtain

a vertex X;, and the resulting C is an exhaustive set of
cost vectors that can make %; optimal for (FOP). Recall
from Theorem 1 that any ¢ € C can be expressed as
a conic combination of the vectors orthogonal to the

Figure 2. (Color online) Different Cases When Projection of
Noisy Data Is Restricted to One of the Vertices of the Polyhe-
dral Feasible Region

Notes. Arrows show the true cost vector ¢, noisy data samples x;; are
depicted by red hollow circles, and their denoised estimates obtained
from solving the loss minimization problem in (5) are shown as green
filled circles. The gray shaded regions indicate the set C.In panel (b),
the loss minimization problem will output only one of the two candi-
date optimal solutions (green filled circles), and the corresponding
gray shaded region will form the set C.
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facets associated with the constraints active at x;. Thus,
if &; is the “right” vertex (i.e., the true optimal solution),

the true cost vector ¢ will be one of the vectors in C.
This is in contrast to C, which in this case would be a
single ray that does not contain c.

2. If (FOP) has multiple optimal solutions, the noisy
samples are likely to be located close to the facet that
represents the set of optimal solutions (see Figure 2(b)).
If solving the loss minimization problem in (5) results
in a vertex %; that is an optimal solution to (FOP), ¢ will

be one of the extreme rays of C. For this case, in most
practical instances, we expect the data to show a prefer-
ence toward a particular vertex of the facet; that is,
there is a unique optimal %;. Even if multiple &; achieve

the same loss, we still have c € C as long as at least one
of the %; is, in fact, an optimal solution to (FOP). In this

case, one may argue that Cis overly large compared
with C; however, if ¢ =c¢, the true cost vector will be
recovered when solving (IOP).

The particular way in which C is constructed results in
number of useful properties, as stated in the following.

Lemma 1. The set C is nonempty.
This lemma leads to the following theorem.
Theorem 2. The set of optimal solutions to (IOP) is finite.

Proof of Theorem 2. We start by characterizing the set
C'. Consider the minimization problem that describes C
minimize [l — X
ceR™ {0}, } ;EZJ v

subjectto %;cargmin{¢’Xx:AX<b}NV; Viel.

XeR"
(6)
As stated in Lemma 1, the solution set of problem (6)
is nonempty. Furthermore, as V; is finite and %; € V;,
the set of feasible %; is finite. Because we also have a

finite number of experiments, the set of feasible X to
(6) is finite. Hence, the set of optimal X, which we

denote by X *, is finite. From Theorem 1, the set of fea-
sible ¢ for any % € X s Niercone({—ait }er(z;)) \ {0},
which is also the set of optimal ¢ for that given opti-
mal %, as ¢ does not appear in the objective function of

(6). It follows that, considering all X € X *, the set C
can be expressed as follows:

= {mcone({—au}m,.))}\{0}. )

rex \iez
Problem (IOP) can then be solved by solving the fol-
lowing problem for every X € X" :

minimize ||z — p|]?
mize | - |}

subjectto ¢e( ) cone({—uit}teT(,»ci)), (8)
ieT

which is the minimization of a strictly convex function
over a convex feasible region and hence has a unique
optimal solution, which we denote by &(X). The set
C:= {¢(%)};c 3 is finite. Hence, the set of optimal solu-
tions to (IOP), which can be expressed as

C = {fs :2€C, [l —¢lf;=min [l —6(»%)”3}, )

rex
is also finite. O
Condition 1. There is a unique optimal X to problem (6).

At first glance, Condition 1 seems to be very restric-
tive. But, in fact, it holds in almost all practical instances.
Consider an instance in which at any optimal solution to
(6), there is a unique optimal X; for each experiment i
except for one experiment p. Let ¥} be the unique opti-

mal %; foralli e 7 \ {p}, and let X ; denote the set of mul-
tiple optimal %,. Then, the following two conditions
have to hold: (i) The resulting loss associated with
experiment p (ie., Yje7, [y —5cp||§) is the same for all
X, € X ;. (ii) For every %, € X ;, there exists a ¢ that ren-
dersall &}, i€ Z '\ {p}, and %, optimal for the FOP, which
is equivalent to the following condition:

cone ({_apt}teT(:%,,)) ﬂ( M Cone({—ait}teT(&j))) + {0}

i€Z\{p}
Vi, e X, (10)

Although the first condition is already very unlikely
to hold in practice, the second also becomes more

improbable for |/'? ;| > 1 as the number of experiments

increases. Hence, we conclude that the case of |5( *| >1
is highly unlikely, which is consistent with our obser-
vation in our computational experiments. In theory,
however, especially if [Z| is small, there is the possibil-
ity that Condition 1 does not hold. In the next sub-
section, we present a two-phase algorithm that is
guaranteed to find the complete set of optimal solu-
tions to (IOP) even if Condition 1 does not hold.

Corollary 1. If Condition 1 holds, (IOP) has a unique
solution.

Thus, in most cases, solving (IOP) will result in a
unique ¢ that is closest to the prior belief ¢. This is in
contrast to other approaches in the literature where a
variant of (6) is solved that results in a set of solutions
from which a ¢ is randomly selected. Note that

although all ¢ € C achieve the same prediction accu-
racy on the training set, they may not show the same
performance on unseen data. Our approach of incor-
porating a prior belief ¢ resolves this ambiguity and
determines whether ¢ is in the admissible set or, if not,
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how much it is outside the admissible set. This is a
generally desirable feature in practice.

3.2. Two-Phase Algorithm

We start by presenting tractable reformulations of (6)

and (8), and then we show how they can be combined

to obtain the set of optimal solutions to (IOP).
Applying a KKT-based approach, we obtain the fol-

lowing reformulation of (6):

_ minimize > > [y — &| (Pla)
O W =
subject to E+ATA =0 Viel, (P1b)
ARi+si=b Viel, (Plc)
A<Mz VieT, (P1d)
si<M(e—z) VielT, (Ple)
e'zi>n VielT, (P1f)
t=et -, (Plg)
& <w, (P1h)
" <e-w, (P1i)
e'@et+e7) =1, (P1j)
% €R", s; e RY, A; e RY,
z;€{01}" VieZ, (P1k)

ceR" ¢t eR, T eRY,
we{01}", (Pl

where M is a sufficiently large parameter. Constraints
(P1b)—(P1e) correspond to the KKT optimality condi-
tions of the lower-level problems in (6), (P1f) ensures
that %; is a vertex of the polyhedron {X : A;X <b;}, and
(P1g)—(P1j) represent a linearization of the condition
llell; =1, which excludes ¢ =0 from the set of feasible
solutions. Note that (P1) is not an exact reformulation
of (6) because the constraint |[¢; =1 cuts off more
than just the single point ¢ = 0. However, the follow-
ing property suggests that this restriction does not
affect the solution set of (IOP).

Lemma 2. Problems (6) and (P1) have the same set of fea-
sible X.

An exact reformulation of (8) directly follows from
the definition of polyhedral cones:

minimize |[c — é||§
¢,y
subject to &¢=- >\ y,ay Vi€eI,
teT (%;)

v, 20 VieI, teT(k), P2)

where the constraints require that ¢ can be expressed
as a conic combination of —ay, t € 7 (%;), foreveryi e Z.

Proposition 1. If Condition 1 holds, the optimal solution to
(IOP) can be obtained by solving (P1), which provides the
unique optimal X", and subsequently solving (P2) with X = X".

In the general case where Condition 1 does not nec-
essarily hold (or where we do not know in advance
that it holds), the complete set X" can be recovered by
resolving (P1) with added integer cuts of the follow-
ing form until the objective function value changes:

>3 msnf -1 (1)

i€Z teT (%))

Because the set of active constraints at a particular %; is
given by the values of the binary variables z;, we use
(11) to impose the condition that for a different optimal
solution to exist, at least one of the x; has to induce a
different set of active constraints. A two-phase algo-
rithm incorporating integer cuts to obtain the complete
set of optimal solutions to (IOP) as described in the
proof of Theorem 2 is shown in Algorithm 1.

Algorithm 1 (Two-Phase Algorithm for Solving (IOP))
PHASE 1
solve (P1), obtain X", r* < Yicr Sje s i — Xl
initialize: k «— 1, ! 7", 3! %"
while 7 = 7" do

add integer cut (11) for % ¥ to (P1)

g+l )AC*, Pkl

solve (P1), obtain X*, X

K+l
Sieg: I =&

ke—k+1
end while
PHASE 2
8 Kek-1
9: forallk=1,...,Kdo
10: solve (P2) with & = #*, obtain ¢&*, & « ¢,

— et

— k2
v* i - &Yl
11: end for

12: return all ¢* for which o* = ming_; 0¥

Remark 1. Problems (P1) and (P2) do not include any
additional constraints on the values of ¢ (and therefore
¢) apart from it being a nonzero vector in (P1). In prac-
tice, it is likely that we have additional information
about the true cost vector. For example, if the cost coef-
ficients to be estimated represent costs of items, one
can safely assume them to be strictly positive. Such
information can be directly incorporated into (P1) and
(P2) in the form of additional constraints, which can
further restrict the admissible set and help obtain a rea-
sonable cost estimate. This can be especially useful in
situations where the observed data have a high var-
iance or the vertices of the polyhedron are very close to
each other. We illustrate this point through an example
in Section C of the online supplement.

Remark 2. So far, we have defined the loss function—
that is, the objective function of (P1)—to be the sum of
a general norm of the residuals. Typically, a p-norm is
used. Although the 2-norm seems to work well in
most cases, ideally, the norm should be chosen based
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on the type of noise in the data. Specifically, if the
observations are known to be prone to outliers, the
1-norm can be used, as it is known to be robust
against outliers; however, if the data are highly accu-
rate and the hypothesis of a linear objective function
is being tested, one might want to use the co-norm to
minimize the worst-case residuals.

4. A Sequential Decomposition Algorithm
for (P1)

Problem (P1) is a mixed-integer linear program
(MILP) or MINLP (depending on the choice of loss
function) whose size increases with the number of
experiments, inducing computational challenges
when the data set is large. Therefore, in the following,
under the assumption that Condition 1 holds every-
where, we present an exact decomposition algorithm
that can substantially reduce the computation time in
large instances.

Notice that (P1) has a clear decomposable structure.
Specifically, ¢ act as linking variables such that with
fixed ¢, (P1) decomposes into |Z| independent subpro-
blems, one for each experiment. However, because of
the nonconvex nature of the subproblems, traditional
Benders-type decomposition methods cannot be directly
applied to solve the problem to provable optimality.
Instead, we develop a decomposition method that is
more akin to Lagrangean decomposition but exploits the
structure of the problem such that the exact optimal sol-
ution can be obtained. We start by presenting some
properties of (P1) that form the basis of our solution
algorithm.

Lemma 3. Given a set of experiments {1,...,N}, let (P1);
with i <N be an instance of (P1) with T = {i}, and let its
optimal value be 7;. If r* denotes the optimal value of (P1)
withZ ={1,...,N}, then Zfil i<,

Corollary 2. Let (P1); be an instance of (P1) with
Z={1,...,i}, and let ?’[‘i] be its optimal value. Then,
Fry +71 <7y

Our sequential decomposition approach for (P1) is
a direct consequence of Corollary 2. We first provide
an intuitive description of the method using the illus-
trative example shown in Figure 3, which involves
three experiments. The main idea is to solve (P1)
sequentially (i.e., one experiment followed by another
experiment) instead of directly solving the full-space
problem considering all experiments. With only one
experiment, (P1) reduces to the problem of projecting
the noisy observations onto the vertex that minimizes
the loss. When the level of noise is small, it is likely
that this already results in the solution that is optimal
for the full problem, as is the case for experiments 1
and 2 in Figure 3. In experiment 3, however, the level
of noise is so high that the projection yields the wrong
vertex. A solution to the full problem involving all
experiments has to provide a ¢ that renders all X; opti-
mal, which implies that the resulting admissible set C
must not only contain 0. As shown at the top right of
Figure 3, although the true cost vector c lies in the
intersection of the two cones resulting from the correct
projections, the intersection of all three cones includ-
ing the one associated with the incorrect projection
is {0}. When C = {0}, we solve (P1), considering all

Figure 3. (Color online) Depiction of the Proposed Decomposition Algorithm

Solve
sequentially

<——True optimal
solution

4

Solve jointly

when € = {0}

Note. Note that only the vertex projections are shown (filled green circles); the corresponding noisy observations are omitted for the sake of

clearer visualization.
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experiments up to that point jointly in order to correct
the projections such that the resulting C is a proper
polyhedral cone (see the bottom left of Figure 3).

Detecting such infeasible projections is crucial for
the proposed decomposition algorithm, and it turns
out that this can be accomplished by solving a very
efficient feasibility problem, which we establish in the
following proposition.

Proposition 2. Let (%1,...,X¢-1) and X be feasible solu-
tions to problems (P1),_y) and (P1),, respectively. Then,
(&1,...,&¢) is a feasible solution to (P1)(y if the following
problem is feasible:

minimize 0

c,C ,C ,y,w

subjectto &= > yu(-ay) Vie{l,... 0},

eT(Et+eT) =1,
Y20 Vie{l,... (},teT(x)),
teR" e eR}, & eRY, we{01}".

(FP),

Note that (FP), is a feasibility problem (as opposed to
an optimization problem), and therefore, the objective
function is arbitrarily set to a constant 0.

Corollary 3. Let (X1, ...,X¢-1) and X be optimal solutions to
problems (P1),_q) and (P1),, respectively. Then, (%1,...,X¢)
is an optimal solution to (P1);,, if (FP), is feasible.

Although (FP), is an MILP, its number of binary vari-
ables does not change with the number of data points,
which allows it to remain tractable for instances with
many experiments. Therefore, in the algorithm, after
every experiment £, we solve (FP), to check the validity
of the partial solution obtained up to that point for
problem (P1);,. If at some point (FP), is found infeasi-
ble, we solve the full problem (P1);,;. Here, it is impor-
tant to note that because the solution obtained for
(P1)[,_1; in the previous iteration is guaranteed to be
feasible for (P1),, it can be used to warm-start the
solver, which is another crucial factor with regard to
the computational efficiency of the algorithm. In prac-
tice, with a low level of noise or a sufficiently large
number of samples |7;| for each experiment i € Z, one
can expect the single-experiment projection to be accu-
rate most of the time. As a result, one may only need to
solve a small number of problems involving multiple
experiments. The pseudocode for the complete algo-
rithm for solving (IOP) with this sequential decomposi-
tion approach is shown in Algorithm 2.

Algorithm 2 (Decomposition-Based Algorithm for Solving
(IOP)) ~

1: initialize: C « R"

2: forallfe{l,...,N}do

3: solve (P1),, obtain &,

4 c—Cc) cone({—agt}tg@}))

5: solve (FP),

6: if (FP), is infeasible then

7 solve (P1)j;, warm-start with (%3,...,

%;_,), obtain &7, = (&, &})

8: Ce mie{lp..,€}C0ne({_ait}t57 (56?))
9: end if
10: end for

11: solve (P2), obtain &*

So far, we have assumed that all data are available
prior to the inverse optimization process. However, in
many situations, it is reasonable to expect the data
from different experiments to become available at
different time points. This has motivated the develop-
ment of online learning frameworks for inverse opti-
mization where the cost estimate is updated as new
data arrive (Barmann et al. 2018, Dong et al. 2018,
Shahmoradi and Lee 2021). A naive extension of our
two-phase framework for online learning can be to
repeatedly solve (IOP) with the new data added to it.
However, note that Algorithm 2 provides a much
more efficient mechanism to address this problem and
can be adapted as a method for inverse optimization
in an online setting. We include such an adaptation in
Section B of the online supplement.

5. Online Adaptive Sampling

In this section, we introduce a novel adaptive sam-
pling approach that can be used to reduce the number
of experiments required to obtain a good cost estimate
in an online setting. Our method derives from the geo-
metrical understanding of (IOP) discussed in the pre-
vious sections. As a motivating example, let us revisit
the case with three experiments shown in Figure 3.
Notice that the admissible set C obtained with the first
two experiments is the same as the one obtained with
all three experiments. The reason is that the cone asso-
ciated with the projected solution from experiment 3
is a superset of the cone from experiment 1; hence, the
intersection of cones does not change with the third
experiment. This means that experiment 3 cannot help
improve the cost estimate or, more precisely, our con-
fidence in the cost estimate, which only increases if
the size of C decreases. Therefore, the goal here is to
use the current best cost estimate to design subse-
quent experiments in a way such that the size of C
will likely be further reduced. In the following, we
formulate the adaptive sampling problem as an
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optimization problem, and devise an efficient heuris-
tic method to solve it.

5.1. Mathematical Formulation

Consider the point in an online inverse optimization
process at which £ — 1 experiments are completed, and
the problem is to choose input parameters (A, by) € IT
for the th experiment. Let Z be the set of the first £ -1

experiments, and let C be the admissible set obtained

using these experiments. Suppose C; denotes the
(unknown) cone formed by the active constraints of
the FOP with its feasible region represented by the pol-
yhedron {¥ : A;X <b;}. The goal as illustrated in the
aforementioned example is to choose A, and b, such
that C N C;cC. Although it is impossible to determine
C; without knowing c¢ exactly, we make use of a ran-
domly sampled vector ¢,—; from C to predict which
constraints may become active for given sets of poten-
tial input parameters. _
Assuming we have an accurate estimate of C,, we
utilize the fact that CNC, CC if and only if we can
find a point that belongs to C but not to C;. As we
illustrate in Figure 4, the existence of such a point can
be determined by obtaining the minimum-distance
projections of all points in C on C; and searching for
one that yields a nonzero projection distance. In the
figure, y denotes the minimum-distance projection of
a point y from C on Eg. In the case of Figure 4(a), all
points y € C are such that ¥ =y, and hence, the inter-
section of the two cones does not result in a reduction
in the size of the admissible set. In Figure 4(b), how-
ever, one can find a y and its corresponding i with
lly —yll> 0, and therefore, the intersection of the two

cones is a strict subset of C.

Figure 4. (Color online) The Cone Formed by the Blue Solid
Arrows Represents C , Whereas the Red Dashed Arrows Form
the Cone C;

@C=CnC ®CNnC,cC

Note. The dotted line in the second case shows the minimum 2-norm
projection of y on C;.

Given C and E[, we find the y € C with the maximum
projection distance to C,; and use this distance as a meas-

ure for the difference between E and C N E{. Hence, as
we wish to reduce the size of the admissible set as much
as possible, we need to choose A, and by for which this
distance is the largest among all (A, b;) € IT. We formu-
late the problem of finding such A, and b, as the follow-
ing optimization problem:

Y02 A0 be, ke 1YY

maximize min {17 n=lly-vl,

V=DV, 7,20 Vke IC} (ASPa)
kek
subjectto y= > yit(—ait ) Viel, (ASPb)
teT (3;) ”aitHZ
0<y,<e VieIteT (%), (ASP¢)
(Ag,be) €11, (ASPd)
1 ifkeT7 (%), where X, € arg minzcgr
Zk = {52_15{ CAX <bg} Vkel,
0 otherwise
(ASPe)

where K is the set of constraints for A;x <b,. Con-
straints (ASPb) state that y is a point in C. Note that

the vectors forming cone C; for each i € Z have been
normalized to ensure that the lengths of the vectors
do not bias the value of . The upper bound € in
(ASPc) ensures that the problem remains bounded.
The value of € can be chosen arbitrarily and does not
affect the choice of optimal A, and b, for the problem.
Constraint (ASPd) imposes the restriction that input
parameters A, and b, must be chosen from the set IT.
As stated in constraints (ASPe), zx is a binary variable
that equals 1 if ¢,y predicts that the kth constraint will
be active. Finally, the objective of (ASP) is to maximize
the minimum 1-norm distance between y and ¥y, with

y being constrained to lie in the cone C;. We denote
the distance between y and y by 1.

5.2. A Heuristic Solution Algorithm for (ASP)
Problem (ASP) is a bilevel optimization problem with
lower-level problems embedded in the objective func-
tion (ASPa) and constraints (ASPe). Because these
embedded problems are LPs, (ASP) can be reformu-
lated into a single-level problem, similar to the bilevel
problems considered in previous sections. We present
two such single-level reformulations in Section D of
the online supplement. Both of them take the forms of
nonconvex MINLPs that are only tractable for rela-
tively small problems. Next, we outline a heuristic
approach to solve this problem.
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Instead of searching through the entire set I1 for the
best set of input parameters, the proposed algorithm,
Algorithm 3, simplifies the problem by limiting the
search space to S randomly sampled sets of input
parameters. It then solves S instances of (ASP), each
corresponding to one of the parameter sets, to choose
the one that results in the largest 1. Here, because the
number of possible candidates for A, and by is finite
with their values being explicitly known, the binary
vector z for each of them can be determined before
(ASP) is solved. This eliminates the lower-level prob-
lems in (ASPe). Furthermore, in this algorithm,
because the S instances of (ASP) are independent of
each other, they can be solved in parallel. This enables
the use of a large S to find a heuristic solution as close
to the global optimum of (ASP) as possible while still
keeping the problem tractable.

Algorithm 3 (A Heuristic Algorithm for Solving (ASP))
1. forie{l,...,S}do
2: sample (A;, b;) € I1
3: compute z; such that
1 if ke T(%;), where %; € arg mingzcgr
Zik = {E;_lﬁ? ZA,‘?NC < bl}

0 otherwise

4. solve (ASP) with A, = A;, by =b;, and z = z,;,
obtain 7;
5: end for

6: return A;, b; for which n, = max;_q1, . 57,

Remark 3. Problem (ASP) is valid regardless of the
restrictions on the input parameters A and b (i.e., the
set I1). However, there is a difference in the way
the size of C is reduced when only right-hand-side
parameters b are allowed to be varied compared
with when the constraint matrix A can also be var-
ied. We highlight this difference in detail in Section
E of the online supplement.

6. Computational Case Studies

In this section, we apply the proposed data-driven
inverse linear optimization framework to two case stud-
ies, one addressing customer preference learning and
the other related to cost estimation for multiperiod pro-
duction planning. Using synthetic data, we compare the
computational performances of Algorithms 1 and 2 and
evaluate the impact of adaptive sampling. All model
instances were implemented in Julia v1.3.0 (Bezanson
et al. 2017) using the modeling language JuMP v0.18.6
(Dunning et al. 2017). All instances of (P1) were solved
with a 1-norm-based objective function, and Gurobi
v9.0.2 (Gurobi Optimization 2020) was applied to solve
the resulting MILPs. Nonconvex MINLPs were solved
using BARON v19.12.7 (Sahinidis 1996). The Julia code
for all computational experiments presented in this

section is available from the IJOC GitHub software repo-
sitory (https:// github.com/INFORMS]JoC/2020.0231).

6.1. Customer Preference Learning

We consider the problem of learning customers’ pref-
erences given their purchasing decisions. The FOP
here is based on the premise that with a limited
budget, customers will buy products that maximize
their utility. Given the price w, of each product p and
a budget b, the customer is assumed to solve the fol-
lowing LP:

maximize UyX
ximize D iy,

peP
subject to > wpx, < b,
peP
<1 VpeP, (12)

where P={1,...,n} denotes the set of n products
available on the market. The goal is to estimate the
unknown utility function coefficients u by observing
the changes in the customer’s decisions x in response
to price fluctuations. Different variations of this IOP
have previously been considered by Barmann et al.
(2018) and Dong et al. (2018). Birmann et al. (2018)
consider learning the utility function with determinis-
tic data. Dong et al. (2018) account for noise in the
data but pose (12) with a strongly concave utility func-
tion. Our design of this case study closely follows the
scheme presented by Barmann et al. (2018) but uses
noisy data to learn the utility function coefficients.

For each instance of the IOP, the training data are
generated as follows. We first create an arbitrary util-
ity vector u € R" by sampling its individual elements
from the uniform distribution #/(1,1000) and normal-
ize it to make its 1-norm equal to 1. We then sample a
set of price vectors w;, which are the input parameters
for each i€Z, such that w; ~U(50,150) for every
p € P. The budget b is set to O.6Zpepw1p for all experi-
ments. Next, keeping the utility vector the same, we
solve these |Z| instances of (12) to obtain the optimal
decisions x;. We then generate the noisy data sets .J;
for each i € 7 by distorting the true optimal solution
such that x;; = x] +y, where y ~ N'(0,07).

In this study, we consider FOPs of varying dimension-
ality n but limit the number of experiments to 100 in all
cases. We also consider data sets with varying levels of
noise by changing the value of 0. Once n and o are fixed,
the size of the sets 7; is kept the same for all i € 7 (i.e.,
|7i|=] for all i € T). A specific case is hence represented
by n, 0, and J, and we solve 10 random instances of each
case (generated using the scheme described in the pre-
ceding). Following Remark 1, to increase the robustness
of our two-phase algorithm against such a large number
of polyhedral geometries and different levels of noise,
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Table 1. Comparison of Computational Performances of Algorithms 1 and 2 on an IOP Based on Random Instances of (12)

Algorithm 1

Algorithm 2

Computation time (s)

No. of instances

Computation time (s)
Median no. of

No. of instances

n o ] solved Median Max Min solved Median Max Min resolves
25 0.01 5 10 33 155 6 10 277 317 253 2
250 10 73 90 67 10 266 271 264 0
0.05 10 10 176 264 54 10 283 789 262 6
250 10 88 965 74 10 268 347 264 0
0.1 20 10 306 680 22 10 315 499 273 9.5
250 10 180 5,563 79 10 298 687 265 1
50 0.01 5 10 88 931 7 10 484 638 331 15
250 10 220 1,724 200 10 423 717 414 0
0.05 10 10 1,037 5,874 430 10 673 6,897 409 7.5
250 7 314 439 215 10 626 1,617 417 1.5
0.1 20 8 2,707 7,081 715 10 817 1,841 504 115
250 8 875 6,035 265 10 705 1,651 510 2
100  0.01 5 9 407 488 29 10 428 1,042 362 2
250 10 489 2,267 419 10 479 1,648 451 0
0.05 10 3 2,707 2,851 1,902 9 1,021 2,032 586 9
250 9 2,232 6,610 526 10 865 5,537 455 15
0.1 20 0 n/a n/a n/a 8 1,656 2,933 935 12
250 4 1,089 2,561 542 8 1,337 6,890 565 45

Notes. Reported computation times only consider the instances that were solved to optimality. Computation times are indicated as not available

(n/a) if none of the corresponding instances were solved to optimality.

we introduce an additional set of constraints in (P1)
enforcing 1, > 107 forall p € P.

6.1.1. Computational Performance. The results com-
paring the computational performance of Algorithms 1
and 2 are summarized in Table 1. All instances were
solved with a time limit of 7,200 s utilizing 24 cores on
the Mesabi cluster at the Minnesota Supercomputing
Institute (MSI). For each of the algorithms, the table lists
the number of instances (out of 10) that were solved to
optimality. In all instances that could not be solved
with Algorithm 1, we find that the solver could not find
even a single feasible solution within the given time;
hence the optimality gaps are not reported. For the
decomposition-based algorithm, an unsolved instance
is one where not all 100 experiments could be proc-
essed in the given time, but it still yields an estimate for
the cost coefficients. Nonetheless, for the comparison of
the two solution methods, we consider a run resulting
in a partial solution as a failed run. Table 1 shows the
median, maximum, and minimum computation times
for both algorithms. For Algorithm 1, it is the time
required to solve an instance without implementing
the integer cuts in Phase 1. We find that adding the inte-
ger cuts to identify multiple optimal solutions was only
required in 2 of the 180 (~ 1%) instances considered in
this study, confirming our assertion that a violation of
Condition 1 is rare. Finally, note that Algorithm 2 has
an additional column labeled “Median no. of re-solves”
that shows the median value of the number of times the
feasibility problem (FP), was found infeasible, which

then required the problem involving all experiments
up to that point to be resolved.

From the data in Table 1, one can observe that the two
algorithms solve the IOP in comparable times when
the level of noise is low. However, as the size of the
problem or the level of noise increases, Algorithm 2
starts outperforming Algorithm 1. The difference in their
performance is especially apparent from the numbers of
instances solved and the maximum computation times.
For example, in the arguably most difficult case with
n=100,0 =0.1, and ] = 20, Algorithm 1 was not able to
solve any of the given instances, whereas Algorithm 2
solved 8 out of 10. Irrespective of the solution algorithm,
increasing | has a seemingly counterintuitive effect of
making the problem easier to solve. This is because
increasing the number of samples for an experiment
merely increases the number of terms in the objective
function of (P1) while making it easier for the problem
to find the correct vertex onto which to project. For
Algorithm 2, one can also see that increasing ] reduces
the likelihood of incorrect projections when processing
the data for individual experiments separately. This is
especially helpful in situations where computing infra-
structure is a limitation, as a large amount of data has a
significantly higher memory requirement. Overall, the
results indicate that Algorithm 2 dominates Algorithm 1
when it comes to solving more difficult instances of (IOP)
with data of high dimensionality and level of noise.

6.1.2. Prediction Error. Phase 2 of our two-phase algo-
rithm requires a reference u# to yield an estimate ii.
Ideally, this reference is based on some prior intuition
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about the unknown utility function, but here, we obtain
it using a randomly generated ii. The goal is to test the
capability of this estimate in generating reliable predic-
tions on unseen data sets in the worst-case scenario
where no prior information about the missing parame-
ters is available. To perform this assessment, along with
every instance of training data, we also generate a test
data set of 100 experiments. These test data consist of
(w,x*) pairs, where w-values are generated in the same
manner as for the training data, and x* are the corre-
sponding true optimal solutions obtained using the
same u as the one used to generate the noisy training
data. Once a i1 has been found, we use it to solve the
problems in the test data set and evaluate the prediction
error as the fraction of incorrect predictions.

We show the prediction error results for a few
selected cases in Figure 5. Here, instead of using just
the final estimate obtained with all the |Z| experiments,
we make use of the online algorithm (presented in
Section B of the online supplement) to show how the
prediction error evolves with the addition of new
experiments to the training set. As expected, the pre-
diction error generally decreases with the number of
experiments, and problems of higher dimensionality
require more experiments to reach the same predic-
tion accuracy. Also, the panels show an additional
benefit of a large | apart from making (P1) easier to
solve. In Figure 5, (a) and (b), where | is kept small,
the curves are “spiky,” showing a local increase in
prediction error. Recall that we solve (FP), after every
experiment ¢ to confirm if the solution obtained with
the first ¢ experiments (£ <|Z]) still holds for (P1),.
Therefore, these local spikes are a consequence of insuffi-
cient sampling, which results in the violation of our pri-
mary assumption that the vertex with minimum loss
on the given data is the “correct” vertex. As seen in
Figure 5(c), once an adequate number of samples are
used, the likelihood of observing these peaks reduces
significantly. We expect that in situations where the

quality of data is uncertain and sampling is limited, add-
ing a preprocessing step to remove large outliers from
the data set can be a way to prevent the model from
making wrong estimates.

6.1.3. Adaptive Sampling. We also apply our adaptive
sampling strategy to this example. Following the data
generation scheme used for random sampling, we
define the set IT as allowing any w for which 50 < w, <
150 for any p € P while keeping the other constraint
parameters fixed. Irrespective of the size of (IOP), we
find that BARON struggles to find even a feasible solu-
tion for (ASP) when we try to solve it exactly. Therefore,
we solve it here using the heuristic solution algorithm,
Algorithm 3. All the S subproblems were solved with a
time limit of 100 s. Although BARON is unable to solve
the subproblems to optimality, it still finds feasible solu-
tions that show good potential in reducing the size of
the admissible set. The significant impact of our adap-
tive sampling strategy is shown in Figure 6. In all three
cases, the use of adaptive sampling results in a more
than 50% reduction in the number of experiments
required to achieve the same prediction accuracy as
obtained from the standard approach using random
sampling after 100 experiments. Furthermore, Figure
6(a) shows the effect of the parameter S in the heuristic
solution approach for (ASP). One can see that even a
small S results in a large increase in the rate of reduc-
tion of the prediction error and moreover, the rate sta-
bilizes very quickly for a rather small S. By performing
a similar study on higher-dimensional problems, we
find that using an S equal to the dimensionality of the
problem 7 to be a good heuristic to achieve the desired
effect with adaptive sampling.

6.2. Cost Estimation for Production Planning

In our second case study, we consider the problem of
production planning for a large manufacturing site con-
sisting of multiple processes within an interconnected

Figure 5. (Color online) Change in Prediction Error as Experiments Are Added
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Figure 6. (Color online) Effect of Adaptive Sampling on the Evolution of Prediction Error
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Notes. Lines show mean values across 10 instances. Training data for all cases were generated using o = 0.01, ] = 30.

process network. It is commonly formulated as an LP:

Z Z (Z ComhXpmh +fmhwmh) (13a)

minimize
Yy w heH meM \peP
subject to g™ < g, + D | D Xpwir + Wt — A
=1 \peP
<gn™ VmeM, heH, (13b)

0 <wyy SwppX VYmeM,heH, (13¢)

VpeP,me M,heH,
(13d)
VpeP,me M,heH,
(13e)

where P, M, and H ={1,...,H} are the sets of proc-
esses, materials, and time periods, respectively. The
amount of material m produced or consumed (depend-
ing on the sign) by process p in time period h is
denoted by x;,,,;. Product demand and the additional
purchase of a material are denoted by d,,, and w,,,
respectively. Inventory constraints and restrictions on
the amounts purchased are stated in constraints (13b)
and (13c), respectively. The structure of the process
network is defined by constraints (13d), where v,
denotes the amount of a reference material for process
p produced in time period h, and i, is a conversion
factor that specifies how much of a material m is pro-
duced or consumed for one unit of the reference mate-
rial. According to (13a), the objective is to minimize the
total production and purchasing cost while satisfying
given product demand. Whereas purchasing prices f,,,,
are readily known, production costs ¢, are often dif-
ficult to estimate, which is one major reason why, in
practice, production planning is still mostly performed
manually by human planners (Troutt et al. 2006). Expe-
rienced planners have an excellent intuition for the rel-
ative differences in costs, but this information is not
explicitly expressed in numbers. The goal is to use past

Xpmh = [—lpmyph

max
0< Xpmh < xpmh

production plans, which reflect the planners’ deci-
sions, to infer these costs.

Here, we conduct a case study using the process net-
work for a petrochemical site with 28 chemicals and 38
processes from Sahinidis et al. (1989) and Zhang et al.
(2016). The parameters required to model this network
are given in Section G of the online supplement. We
test our methodology on this problem by generating
synthetic training data simulating expert planners’
decision making under different operating and market
conditions. Here, each data point consists of inputs
(u,d) and the corresponding decisions (x, y, w). For dif-
ferent scenarios, the conversion factors (1, have been
assumed to vary between 75% and 100% of their nomi-
nal values on account of changing efficiencies of in-
dividual processes. Also, the product demand d,,,, is
considered to fluctuate £10% from its nominal value.
For each instance, we generate 100 such scenarios (i.e.,
|Z] = 100). For each of these scenarios, we then generate
the respective decisions by solving (13) with the same
arbitrarily generated c,,, and f,; values. Because
human decision making is often inconsistent, we dis-
tort the true optimal solution (x*,y*,w*) as (x"+y,,
Y +7,,w +y,;), wherey, ~ N(0,0%) foralli € {1,2,3}.

In this case study, we consider training data instan-
ces of three different sizes by varying the number of
time periods H. All training data are generated using
o = 3 and | = 30. Each data set is used to solve (IOP)
with both Algorithm 1 and the decomposition-based
Algorithm 2. The problem instances were solved with
a time limit of 14,400 s using 24 cores on the Mesabi
cluster at the MSI. We find that whereas Algorithm 1
is unable to find even a feasible solution for any of the
three cases, Algorithm 2 can solve these problems in
less than 10 minutes.

Unlike the previous case study where we assessed
the quality of only a point estimate obtained from
Phase 2, here we instead focus on the quality of the set
C. To do this, we sample 10 point estimates by solving
(P2) with 10 random reference cost vectors. We again
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Figure 7. (Color online) Normalized dy(x*, %) as Experiments Are Added to the Training Set
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Notes. Lines show mean values across all instances; shaded areas indicate one standard deviation around the mean. Training data were gener-

ated for 0 = 3,] = 30.

consider a test data set of 100 data points consisting of
arbitrary (u,d) and (x*,y*, w"*) pairs. We relax the pre-
diction error criteria to obtain a more realistic metric
that measures the closeness of the generated predic-
tions to the true optimal solutions; the metric is
defined as dy(x*,X) = Zoey X}, — Xolleo, Where V is the
set of test data points. Figure 7(a) shows the change in
the normalized distance metric with the addition of
new experiments. One can verify that the spread
around the mean value after 100 experiments is fairly
small, implying high confidence in the final point esti-
mate irrespective of the quality of the reference. How-
ever, this does not discount the importance of a good
reference, as the admissible set also likely contains the
true ¢, which, if used as a reference, would result in a
zero dy even with a single experiment.

Notice that the curve representing the mean value
decreases in discrete steps with several flat regions in
between two steps. This is a consequence of not all
inputs resulting in a reduction in the size of the admissi-
ble set. Therefore, we also evaluate the impact of adap-
tive sampling on mitigating this issue. Because of the
larger size of the FOP here compared with (12), we solve
the subproblems in Algorithm 3 with an increased
time limit of 200 s. However, even with the increased
time limit, the solver struggles to find good feasible solu-
tions for the larger instances with H = 2 (132 variables)
and H = 3 (198 variables). Here, we show the effect of
adaptive sampling with the case of H = 1 in Figure 7(b).
As can be observed, adaptive sampling sustains a high
rate of decrease in the distance metric for a longer dura-
tion compared with naive random sampling. This
results in just ~ 52 experiments being required to achieve
the same effect as 100 random inputs. Moreover, one can
see that the variance around the mean in the case of
adaptive sampling is noticeably lower, which shows

that in addition to requiring fewer experiments, it also
finds estimates with higher confidence levels.

7. Conclusions

In this work, we addressed data-driven inverse linear
optimization with noisy observations, for which we
introduced a new problem formulation that offers two
practical advantages over other existing methods: (i) It
allows the recovery of a less restrictive and generally
more appropriate admissible set of cost estimates by
assuming that the optimal solutions of the FOP lie at
the vertices of the feasible region. (ii) Instead of ran-
domly choosing a point estimate from the admissible
set, it makes use of a reference cost vector to choose
the cost estimate that most resembles the user’s prior
belief.

An exact two-phase algorithm was developed to
solve the IOP, and we further proposed an efficient
decomposition algorithm and an adaptive sampling
method that are especially suited for an online inverse
optimization setting. Results from extensive computa-
tional experiments based on two case studies show
that the proposed methods are effective in signifi-
cantly reducing both the computation time and data
requirement for generating cost estimates with a rea-
sonably low prediction error on unseen data sets.
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