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Abstract

Over the last two decades, model-based metabolic pathway optimization tools have
been developed for the design of microorganisms to produce desired metabolites.
However, few have considered more complex cellular systems such as mammalian
cells, which requires the use of nonlinear kinetic models to capture the effects of
concentration changes and cross-regulatory interactions. In this study, we develop a
new two-stage pathway optimization framework based on kinetic models that
incorporate detailed kinetics and regulation information. In Stage 1, a set of
optimization problems are solved to identify and rank the enzymes that contribute
the most to achieving the metabolic objective. Stage 2 then determines the optimal
enzyme interventions for specified desired numbers of enzyme adjustments. It also
incorporates multi-scenario optimization, which allows the simultaneous considera-
tion of multiple physiological conditions. We apply the proposed framework to find
enzyme adjustments that enable a reverse glucose flow in cultured mammalian cells,
thereby eliminating the need for glucose feed in the late culture stage and enhancing
process robustness. The computational results demonstrate the efficacy of the
proposed approach; it not only captures the important regulations and key enzymes
for reverse glycolysis but also identifies differences and commonalities in the

metabolic requirements for different carbon sources.
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rate of a specific metabolite, an underlying metabolic model, physical

restrictions in the form of inequality constraints, and a set of enzymes

For decades, metabolic engineering has been successfully used to
rewire metabolism to produce desired metabolites (Huccetogullari
et al,, 2019; Lian et al., 2018; Liu & Nielsen, 2019). While much of the
effort has been guided by physiological knowledge, there has been an
increasing number of approaches that use metabolic models and
mathematical optimization to aid the pathway design process. In
model-based pathway optimization, the optimization problem is
defined by a metabolic objective, such as maximizing the production

that can be adjusted to achieve the given metabolic objective.
Powerful optimization algorithms can then be used to find the
optimal enzyme adjustments without exhaustively exploring the
entire search space (Chae et al., 2017; Machado & Herrgard, 2015;
Zomorrodi et al., 2012).

The metabolic model is the center piece of any model-based
pathway optimization method. While its scope can range from
focusing on only a few pathways to encompassing reactions at
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genome scales (Edwards & Palsson, 2000; Monk et al., 2017), it
generally consists of mass balance equations for substrates and
metabolites. The rate of each reaction can be represented as a
physical quantity of flux or expressed as a function of the
concentrations of the relevant substrates and allosteric regulators,
leading to a stoichiometric or a kinetic model, respectively. Most
existing pathway optimization tools use stoichiometric models and
have mainly been applied to microorganisms, where the goal is to
achieve overproduction of desired biochemicals (Lin et al., 2017; Yim
et al., 2011). Different genetic interventions have been considered,
including gene knockout (Burgard & Maranas, 2003), gene knock-in
as well as up/downregulation (Kim et al., 2011; Pharkya et al., 2004),
and perturbations of transcriptional regulatory networks (Shen
et al., 2019).

Kinetic metabolic models are required when it is important to
capture the effect of enzyme and metabolite concentrations as well
as allosteric regulations at the pathway and system levels (Foster
et al., 2021). This is true in the case of tissue cells of higher
organisms, especially mammals. Because of their capability in many
posttranslational modifications, mammalian cells are the major
workhorse for the biomanufacturing of therapeutic proteins for
which the manipulation of pathways, especially those of energy
metabolism (EM), can greatly impact the process outcome (Mulukutla
et al, 2010; Richelle & Lewis, 2017; Templeton & Young, 2018).
However, the complex regulations make the kinetic models highly
nonlinear. In addition, in pathway optimization, binary variables are
commonly used to indicate which enzymes are chosen to be adjusted;
in combination with the nonlinear kinetic models, this results in
optimization problems in the form of mixed-integer nonlinear
programs (MINLPs), which are notoriously difficult to solve. It is
due to this computational complexity (and often the difficulty of
building an accurate kinetic metabolic model in the first place) that
pathway optimization using kinetic models has rarely been applied in
the literature.

There are various methods that employ some form of local
sensitivity analysis of kinetic models to guide pathway design, but
they cannot guarantee optimality and are restricted to small
perturbations (Kacser et al., 1995; Moreno-Sanchez et al., 2008). A
few attempts have been made to directly solve the MINLP pathway
optimization problem, but they are confined to simplified systems
without detailed regulation (Nikolaev, 2010; Polisetty et al., 2008;
Villaverde et al., 2016). Other approaches try to avoid the
computational challenge of solving an MINLP by applying a linear
approximation of the kinetic model, which results in a much easier
mixed-integer linear program (MILP) (Hatzimanikatis et al., 1996;
Vera et al.,, 2010). However, these approaches do not apply to large
metabolic changes (Vital-lopez et al, 2006). Other studies have
focused on hybrid methods that combine stoichiometric and kinetic
models; for example, k-OptForce solves a stoichiometric model with
a subgroup of reactions that have kinetic information to identify
enzyme interventions (Chowdhury et al., 2014).

A recent work introduced an optimization framework that avoids

binary variables by incorporating convex penalty terms, resulting in a
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nonlinear programming (NLP) problem (Lucidi & Rinaldi, 2010, 2013;
O'Brien et al., 2019). Using the kinetic model of Mulukutla et al.
(Mulukutla et al., 2014, 2015), the optimization framework was
applied to identify target enzymes to be subjected to modifications to
mitigate the Warburg effect. However, the framework requires the
generation of a large number of initial guesses to determine a set of
local optima, which affects its efficacy to identify optimal interven-
tions on a multi-target basis and yet still does not guarantee global
optimality.

In this study, we propose an efficient optimization framework that
integrates kinetic metabolic models to identify the optimal multi-enzyme
interventions for specified engineering goals. Implementing the convex
penalty method, a new two-stage strategy is proposed, where Stage 1
identifies the enzymes that have high impacts on achieving the metabolic
objective and Stage 2 determines the optimal enzyme interventions for
specified numbers of enzyme adjustments. The optimization problem is
formulated to consider both gene insertion as well as up/downregulation.
To avoid the generation of large sets of local optima, the problem is
solved using a state-of-the-art global optimization solver. Moreover,
multi-scenario optimization is implemented to simultaneously target
multiple physiological conditions.

Using a developed kinetic EM model of proliferating mammalian
cells, we apply the proposed framework to identify the optimal
enzyme interventions to reverse the flux direction of glycolysis from
various substrates. Glucose is the main substrate of mammalian cells
in culture. During the growth phase, cells can wastefully convert the
vast majority of glucose to lactate which accumulates to inhibit
growth, a phenomenon also seen in cancer cells and called the
Warburg effect (Buchsteiner et al., 2018; Hassell et al., 1991; Lao &
Toth, 1997). While cells in culture can switch from Warburg type of
glycolysis to lactate consumption, which was shown to be associated
with higher productivity (Charaniya et al., 2010), glucose consump-
tion continues albeit at a lower rate (Mulukutla et al. 2012, 2015).
This is attributed to the inability of cells to reverse the carbon flow in
glycolysis to generate glucose for synthesizing NADPH, ribulose-5-
phosphate as well as glycans. However, unmanaged glucose feeding
causes glucose accumulation and potentially results in a return to
lactate production (Gagnon et al., 2011). Hence, empowering cells to
synthesize glucose while under metabolic shift would eliminate the
need of supplying glucose, potentially increasing process robustness.
Applying the proposed method, we conducted computational case
studies targeting different carbon source scenarios. We were able to
identify the optimal adjustments in enzyme levels and metabolite
concentrations, which align with the physiological understanding of

reverse glycolysis.

2 | METHODS
2.1 | Kinetic model

A previously developed kinetic model of energy metabolism of
proliferating mammalian cells is used in this study (Mulukutla
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et al., 2015). An overview of the metabolic network is given in
Figure 1. Since we focus on metabolic changes under fixed
extracellular conditions, a steady-state assumption is applied. Pivotal
allosteric regulations considered include fructose-1,6-bisphosphate
(F16BP) activations of phosphofructokinase (PFK) and pyruvate
kinase (PK), fructose-2,6-bisphosphate (F26BP) modulation of PFK,
phosphoenolpyruvate (PEP) activation of 6phosphofructo2kinase/
fructose2,6bisphosphatase (PFKFB), and lactate inhibition of PFK.
To enable a reverse glycolytic flux, we also include additional

gluconeogenic (GNG) enzymes: glucose-6-phosphatase (G6Pase),

fructose-1,6-bisphosphatase 1 (FBP1), pyruvate carboxylase (PC),
and both the cytosolic and mitochondrial isoforms of phosphoenol-
pyruvate carboxykinase (PCK1 and PCK2). Since the main metabo-
lites of the pentose phosphate pathway (PPP), for example, NADPH
and phosphosugars, do not participate in the reactions of gluco-
neogenesis, PPP is not considered in the model. The mitochondrial
phosphoenolpyruvate transporter (PEPx) is included to export the
PEP generated by PCK2 into the cytosol. The six GNG enzymes
AC°NG  while the original
#™. The detailed kinetic

constitute the enzyme (reaction) set

enzymes of the model form the set
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FIGURE 1

(a) Metabolic pathways considered in the kinetic metabolism model. The model includes the pathways of glycolysis,

gluconeogenesis, TCA cycle, and malate-aspartate shuttles. Four substrates of gluconeogenesis are considered: lactate, alanine, glutamine, and

glycerol (red). Enzyme sets are divided into two sets,

Z™  and  #SNG, shown in black and blue, respectively. An extra energy supply from

fatty acid breakdown is considered, shown in green. (b) Pivotal allosteric regulation of glycolysis considered.
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equations and parameters of #fM can be found in our previous
publication (Mulukutla et al., 2015). Reaction equations and parame-
ters of #CSNG  are collected from liver models (Berndt et al., 2018;
Konig et al., 2012). The bifunctional enzyme PFKFB in %M is a
major flux regulator through its varying ratio of kinase/phosphatase
activity, where its kinase activity phosphorylates fructose-6-
phosphate (F6P) to fructose2,6bisphosphate (F26BP), and the
phosphatase activity hydrolyzes F26BP back to F6P (Rider et al., 2004;
Wau et al., 2001). A parameter o s introduced to denote this ratio.
Among the four carbon sources considered, lactate (Lac) enters
the pathway network through lactate dehydrogenase A (LDHA)
which is already included in the kinetic model. Additionally, alanine
transaminase 1 (GPT1) and glutaminase (GLS) are considered for
alanine (Ala) and glutamine (GIn), respectively. The uptake of glycerol
(Glyc) is catalyzed by a series of reactions converting glycerol to
dihydroxyacetone phosphate (DHAP) and is represented by Glyin.
Each of the corresponding fluxes, fipHa, fepr1, fois, and  fGiy, is
set to zero when the compound is not the carbon source being
considered. To represent the reverse glycolysis, the extracellular
glucose concentration is set to 5 mM, and the substrate concentra-
tions of Lac, Ala, and GIn are set to be 2, 1, and 1 mM, respectively.
Moreover, since gluconeogenesis is an endothermic pathway, the
energy source is supplied from the mitochondria acetyl-CoA
(mAcCoA) input from B-oxidation of fatty acids, denoted by  rgox.

2.2 | Mathematical formulation of optimization
problems

Optimization problems are formulated to identify the minimum
adjustments in enzyme abundance that maximize a specific pathway
engineering goal. Two different types of optimization problems are
proposed: single-scenario optimization (SSO), which generally con-
siders one specific set of physiological conditions, and multi-scenario
optimization (MSQ), which simultaneously considers multiple sets of
physiological conditions, each represented by one scenario.

2.2.1 | Single-scenario optimization

The SSO problem can be generally formulated as follows:

(SSO) : minimize rout + A Y (logio;)?
a,r,C

jen (1a)

subject to jgﬁi wir;=0 Vie.u (1b)
n=fla- Bk K G) Ve a™ (10)
n=fle -1 E kK, G) Ve aohe (1d)
a}(nin <q < a}max Ve @™ (1e)
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lsagsa™ Vje N (1f)

gla,r,C) 2 0. (1g)

The notation is such that boldface letters denote vectors while
scalar quantities are denoted by non-boldface letters. The reaction
(enzyme) set of the targeted metabolic network is denoted by £,
where %2 = %M U %CNG, The relative change in the abundance level
of enzyme je # is denoted by q. An additional a, is
assigned to o to capture the impact of the change in the activity
ratio of kinase/phosphatase in PFKFB. Since a negative rgyr Vvalue
represents glucose production, minimizing rgyt is selected as the
metabolic objective, as indicated by the first term of the objective
function (1a). The second term of (1a) penalizes the sum of squared
logarithms of qa; over the set # with a weighting factor A,
which is modulated to find a good trade-off between the metabolic
objective and the magnitude of enzyme level adjustments. A squared
logarithm of @; is chosen to ensure that no penalty is applied if the
enzyme level is not changed (¢; = 1), and that the same magnitudes of
downregulation and upregulation of enzyme abundance are penalized
equally. Constraints (1b)-(1d) correspond to the kinetic mechanistic
model of the targeted metabolic network at steady state. Equations
(1b) represent the material balance of each metabolite ie .#,
where .# denotes the set of metabolites, considering the reaction
stoichiometry with w; denoting the stoichiometric coefficient of
metabolite i inreaction j; %; denotes the set of reactions that
involve metabolite i. Equations (1c) and (1d) model the kinetics of
each reaction j in %™ and %CSNG, respectively. Each reaction
rate r; is a function of a;, the original enzyme level E;, the
catalytic constant k,»“""t, a set of kinetic parameters K;, and a set of
concentrations  C;. In Equation (1d), 1 is subtracted from ¢ to
ensure that the new reaction is not considered when «; is equal to
1, which represents the original state of the targeted network.
Constraints (1e) and (1f) define the lower bounds (a}“‘") and upper
bounds (af") on q;, where the lower bounds of enzymes
in Z#CNG  are set to 1, which is equivalent to no expression of the
corresponding enzyme. Constraints (1g) compactly represent addi-
tional biological constraints that specify bounds on metabolite
concentrations and metabolic fluxes, ATP and NADH flux balances,
and constraints on substrates as well as energy supplies. Detailed
descriptions of (1g) are included in the supplementary information.

2.2.2 | Multi-scenario optimization

When SSO is performed, only one specific carbon source, i.e. Lac, Ala,
GlIn, or Glyc, is considered. This can be a significant limitation if we
want to engineer a metabolic system that can effectively use all four
carbon sources to produce glucose since the optimal enzyme
adjustments for one carbon source may not perform well for another.
Hence, to simultaneously consider all four carbon sources, we

propose to solve the following MSO problem:
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(MSO) : minimize > rgur + A 2 (logioa))? (logio)? 2 6, (3)
a,rs,Cs ses je# (2a)
subject to z Wiry=0 Yie.#Nses ob) where & denotes the cutoff threshold.
j€A;
rg = f(a,- - B, k5 K, Cs,-) Viea#MVses (20) 2.3.2 | Stage 2: Determining optimal interventions

=f(a-10 Bk K Cy) VieaNvses ()

a" < o< Q™ Vje #M (2€)
lsag<sal™ VjegoNe (2f)
&l r,C)20 Vsed, (2g)

where % denotes the set of scenarios, with each scenario generally
representing a different set of conditions imposed on the system, as
reflected in (2g) where the constraints gs(-) 2 0 can be different for
each scenario s. In our particular case, each scenario s corresponds
to a specific carbon source. The goal of MSO is to determine a common
set of changes in enzyme abundance levels that maximize the sum of
reverse glycolysis flux across all four scenarios. As such, the same
variables a apply to all scenarios whereas the reaction rates r; and
metabolite concentrations C; can vary across scenarios, hence the
added scenario index s. Note that the same metabolic model is applied

to all scenarios, as indicated by Equations (2b)-(2d).

2.3 | Two-stage optimization framework

A two-stage optimization framework, which applies to both SSO and
MSO, is proposed to first identify a subset of enzymes whose
abundance changes can significantly improve the targeted metabolic
goal and subsequently identify the best enzyme interventions while
limiting the number of enzymes that can be perturbed. The latter step
is important since, in practice, one would like to minimize the number
of enzymes that need to be altered to satisfy the metabolic objective.
An overview of the proposed algorithm in the form of a flowchart is

shown in Figure 2.

2.3.1 | Stage 1: Identifying key enzymes

When the pathway optimization problem, i.e. (S50) or (MSQ), is
solved in Stage 1, we allow all enzymes to change. However, we seek
to find the subset of enzymes that contribute the most to achieving
the metabolic objective, and we do so by varying the value of the
penalty parameter A, which indirectly controls to what extent the
enzymes should be altered. The desired set of key enzymes is
obtained at a specific A value, which we typically choose to be the
largest A that achieves the optimal metabolic objective value. The
key enzyme set, denoted by 5%l is identified by selecting
the enzymes for which the optimal a; satisfies the following criterion:

for fixed numbers of enzyme adjustments

In Stage 2, as illustrated in Figure 2, all possible combinations of
enzymes from the enzyme set #581\%°* are generated for
different specified numbers of enzymes. Typically, we start with
the number of enzyme adjustments n =1 and increase it after
each iteration until the maximum desired number N is reached.
We refer to £ as the exclusive enzyme set, which contains the
enzymes that are always allowed to change in the Stage-2
optimization. In this study, GNG and carbon-entry enzymes are
included in £%. SSO or MSO is then performed for each
combination of enzymes by allowing only the abundance levels of
those enzymes and the onesin  #®* to change while keeping other
enzymes at their original abundance levels. Optimal solutions of all
enzyme combinations and the corresponding enzyme interventions
are collected and compared to identify the optimal enzyme
adjustments.

2.4 | Implementation details

The algorithms were implemented in Python 3.7, where the
optimization problems were modeled using the modeling language
Pyomo (Hart et al., 2017). All model instances were solved using the
global solver BARON (Sahinidis, 1996) with CPLEX as the linear
programming (LP) subsolver and IPOPT as the NLP subsolver
(Andreas & Lorenz, 2006). All computations were performed on
AMD EPYC 7702 processors using resources from the Minnesota
Supercomputing Institute.

3 | RESULTS AND DISCUSSION

The reverse of glycolysis, i.e. gluconeogenesis, takes place in the liver
and kidney of mammals. It requires adjustments in the expressions of
enzymes not only to overcome the four irreversible reactions in
glycolysis but also to alter the concentrations of many intermediate
metabolites and regulators in the cytosol and mitochondrion. It
should be noted that cultured cells express the enzyme isoforms
typically seen in proliferating cells exhibiting the Warburg effect, but
not the liver isoforms. Reversing its flow may be more complex than
in gluconeogenic tissues. We applied the proposed framework to
determine the optimal enzyme adjustments to reverse the glucose
flow in proliferating mammalian cells. Using SSO and MSO, two
computational case studies were performed to identify the differ-
ences and commonalities in the metabolic requirements for reversing

glycolysis with various carbon sources.
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Stage 2: determining optimal interventions for fixed
numbers of enzyme adjustments

Input N, R¥&! R

n=0

Generate combinations of n enzymes
with enzymes from R*'&! \ R

=I

m = number of combinations
R" ={Rilk=12,..., m}
k=1

Y

Fix a; for
Jj & REUR™

A
Solve (SSO) or (MSO)

n=n+1 k=k+1 with 4 = 0.001

save Ry, a*,r*,C*

No’
Yes

MO‘
Y;s

Identify optimal
enzyme interventions

FIGURE 2 Flowchart of the two-stage optimization framework. Stage 1: All-enzyme SSO or MSO is performed for a defined range of

penalty weight values A (defined by the upper and lower bounds

UB, and LB,) to identify the key enzyme set #stsl,

where A, denotes the step size when changing A, and & is the threshold value selected for the identification of the key enzyme set.
Stage 2: Combinations of n enzymes are generated from the enzyme set #58N\% to form the enzyme sets #}. The exclusive enzyme
set 2% includes the enzymes that are always allowed to change in Stage-2 optimization. SSO or MSO is performed with different
combinations of enzymes allowed to change to identify the best interventions forall n =1,..,N, where N isthe maximum desired number

of enzyme adjustments.

3.1 | Case study 1: Reversing glucose flow using
different carbon sources

We consider four different substrates, Lac, Ala, Glu, and Glyc. All
four are naturally used for gluconeogenesis in the liver and kidney
of mammals or readily supplied in the cell culture medium. Lactate
is the major metabolite produced during cell growth. Alanine is also
frequently excreted in the culture medium. Glutamine is typically
supplied as a nutrient at a high level. Glycerol derived from lipid
catabolism is an important carbon source for gluconeogenesis. SSO
is first performed to test if the addition of the GNG enzymes alone
is sufficient to reverse the glucose flow. To do so, we set the
penalty weight A in the objective function of (SSO) to a very
small value (1075); note that we could have set it to zero but did not
do so for numerical reasons. The upper bounds of ¢« for
j € #A™M U ZCNEG are set to 100, and the lower bounds of ¢; for
j € #™ are set to 0.01.

As shown in Table 1, by solely expressing the GNG enzymes and
fixing the EM enzymes at their original levels, low or no glucose
production is obtained in all four scenarios. In contrast, high glucose
production rates are achieved when all enzymes in 2™ and #Z5NG are
allowed to change in their abundance levels. To identify the optimal
enzyme combinations as well as adjustments in #tM for different
fixed numbers of altered enzymes, the proposed two-stage frame-

work is applied.

3.1.1 | Stage-1 results

Identification of the optimal enzyme interventions in %M for a
fixed number of enzyme adjustments can be approached by
exhaustively listing all possible enzyme combinations across
Z™ and solving the corresponding optimization problems. How-
ever, due to the large cardinality of ZE™, the number of optimization
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instances to be solved would be very large even for a moderate
number of enzyme adjustments. Stage 1 aims to reduce the number
of candidate enzymes that need to be considered. This is achieved by
increasing the penalty on enzyme adjustments, i.e. a high-
er A value, which decreases the incentive to change the abun-
dance of enzymes that do not significantly improve the metabolic
objective, i.e. reverse glycolysis flux. In other words, an appropriate
selection of A can result in a reasonably small set of key
enzymes, %58l whose changes in abundance most meaningfully
contribute to glucose synthesis.

(SSO) is solved with different values of A over six orders of
magnitude (1073 - 108) for each of the carbon source scenarios, as
shown in Figure 3a. For each carbon source, glucose production
increases with decreasing A and reaches a constant mini-
mum rgut for sufficiently small A values. The cut-off thresh-
old & for enzyme selection is set to 0.03, which is approximately a
1.5-fold increase/decrease in the enzyme levels. Using the GIn

TABLE 1 Optimized glucose flux, rgut ineach carbon source
scenario with SSO subjected to different sets of enzymes that are
allowed to change in their abundance levels

Optimal rgyr [mM/h]

Scenario RCONG REM | ) #CNG
Lac -0.3 -25

Ala 9.9 -16.7

Gln 0.0 -25

Glyc -0.1 -25

Note: Negative flux indicates glucose production. The penalty weight is
set to 107> due to numerical reasons.
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scenario as an example, Figure 3b shows that the number of selected
enzymes increases with decreasing A. #%8! is defined at
the A value that represents a trade-off between the improvement
in glucose production and the minimization of the number of enzyme
adjustments. The size of 581 is 10, significantly lower than the
cardinality of ZEM of 41. Similar reductions in the number of selected
enzymes are observed in the other carbon source scenarios, as shown
in Figure S1.

The key EM enzymes, along with their a@; values, grouped by
different pathways are shown in Figure S2. Common to all four
scenarios is the amplification of entry enzymes. Glycerol is a special
case as it enters directly the upper glycolysis pathway and requires
only a few key enzyme changes. For the other three carbon sources,
HK is suppressed to reduce the glycolysis flux. TCA cycle enzyme
changes are more diverse for the three carbon sources as each enters
the TCA cycle at different points and each has a different route for
channeling PEP into reversed glycolysis. It should be noted that the
selection of bounds on a affects the key enzyme selection, where
a smaller bound constrains the reverse glucose flow, as shown in
Figure S3. To eliminate the impact of a bounds on enzyme
selection, we choose 100 fold-change as the selected bounds in this

study.

3.1.2 | Stage-2 results

Stage-2 optimization is performed to identify the optimal enzyme
interventions for different numbers of allowed enzyme adjustments.
Aside from the GNG enzymes, carbon-entry enzymes are allowed to
vary in their abundance so as not to limit the supply of substrates. In

addition, combinations of up to five enzymes from #5t8! are allowed

164  Gln scenario
L 20

TGLUT [m M/hr]

r—10

Number of selected key enzymes

-

F—20

103 102 101 10° 10! 10? 10°

Penalty weight A

FIGURE 3 Selection of penalty weight A value for key enzymes identification in Stage-1 SSO: (a) Optimal rgyr in each carbon
source scenario for A € [0.001,1000]. The filled marker indicates the A value used for key enzyme selection. (b) Number of selected key
enzymes according to threshold & and optimal rgyr in the GIn scenario within the same range of A. The blue dashed line denotes the
selected A value representing the trade-off between the improvement in  rgiyr  and minimization of numbers of enzyme adjustments.
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to be altered in the SSO while fixing the abundance levels of all other
enzymes at their original values. The optimal solutions of different
enzyme combinations that show improvements in glucose production
rate are shown in Figure 4. With up to five enzyme adjustments
in  #%81, all scenarios reach the glucose production levels obtained
through all-enzyme optimization (see Table 1). The Glyc scenario
already produces a significant amount of glucose with the expression
of GNG enzymes as well as the amplification in the entry enzyme,
while the GIn scenario requires a larger number of enzyme

interventions to produce glucose than the others.

3.1.3 | Metabolic requirements for gluconeogenesis
The optimal five-enzyme adjustments for the four carbon sources
are listed in Table 2. Different enzyme changes are required for
different carbon sources. As expected, glycerol only requires
small changes, mainly to reduce the glycolysis flux in the three
irreversible glycolytic reactions. Restricting glucose entry into
glycolysis through downregulation of HK is common in the Lac,
Ala, and GIn scenarios. For Lac and Ala, downregulation of CS to
reduce the diversion of pyruvate into the TCA cycle is observed.
Carbon from GIn and a portion of Ala enter the mitochondria
through glutamate; hence, we see upregulation of the glutamate
mitochondrial carrier, GluH. Aligned with the stage-1 SSO result,
different requirements of changes in the TCA cycle are observed

among the different carbon sources.
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The resulting flux maps for the best 5-enzyme combinations are
shown in Figure S4. The flux profiles for the four carbon source
scenarios predicted by the model are consistent with physiological
understanding. The main carbon flow in the Glyc scenario involves
only the upper glycolysis pathway and requires no additional NADH.
Only a small adjustment of enzyme abundance is seen. Both Lac and
Ala enter gluconeogenesis through pyruvate nodes in the cytoplasm
and mitochondria, and both rely on PEP export from mitochondria to
provide carbon for gluconeogenesis. GlIn is distinct from Lac and Ala
by entering the mitochondria solely through Glu and entering the
TCA cycle through aKG. In the Lac scenario, LDHA supplies NADH
for the reversed reaction of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). In the Ala and GIn scenarios, the reducing
equivalents are exported from the mitochondria through malate
(MalPi) and malate
dehydrogenase 1 (MDH1). Export of malate to the cytoplasm also

phosphate  mitochondrial  antiporter
serves to supply carbon for PEP generation and eventually to

glucose.

3.2 | Case study 2: Optimal enzyme interventions
considering all carbon sources

In case study 1, SSO was applied to identify optimal enzyme
alteration that maximizes the glucose production rate for each of the
four different carbon sources. The obtained optimal enzyme

adjustments differ across the carbon source scenarios. In the second

—10 4
—15 A
—20 1

_2 .
°1 Ala
—-30

_10 .
—15 4
—20 1

%1 Glyc

-30

3 enzymes 4 enzymes 5 enzymes

FIGURE 4 Optimization of enzyme combinations in Stage-2 SSO: Optimal rgyr for different enzyme combinations with fixed numbers of
allowed enzyme adjustments. Each column corresponds to one enzyme combination. Enzyme combinations are grouped based on the number
of enzyme changes. Only the enzyme combinations that result in improvements in  rgLyr  compared to the optimal solutions to fewer numbers of

enzyme adjustments are kept. SSO, single-scenario optimization.
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TABLE 2 Comparison of SSO and MSO Stage-2 optimization results with the number of enzyme adjustments set to five (n = 5)
Enzyme HK1 HK2 Cs ME1 ME2 ACLY GluH SDH AKGD (] PKM1 MalPi CitMal
SSO Lac 0.01 0.07 0.03 0.02 0.04
Ala 0.06 0.02 0.01 0.03 100
GIn 0.03 16.1 13.8 8.0 0.16
Glyc 0.21 0.58 0.1 0.64
MSO 0.08 100 0.02 100 0.09

Abbreviations: MSO, multi-scenario optimization; SSO, single-scenario optimization.

case study, we focused on applying MSO to identify the optimal
adjustment of a limited number of enzymes that simultaneously
maximizes the glucose production rates from all carbon sources, as is

more likely the case in bioprocess conditions.

3.2.1 | Stage-1 results

The value of A is varied over a wider range (107> - 108%) in MSO to
identify a suitable trade-off point for key enzyme selection, as shown
in Figure S5a. All enzymes are allowed to change their abundance in
the same range as in SSO. Same as in SSO, the glucose production
rate increases with decreasing A and eventually reaches a steady
value. The significant increase in the reverse glycolysis flux in Gin
appears at a much lower A value compared to the other carbon
sources, implying that glutamine has a higher metabolic barrier to
overcome for gluconeogenesis. This result agrees with what we
observed in the stage-2 result of SSO (see Figure 4). MSO can reach
the same levels of glucose production as SSO for all carbon sources
but at a lower A value (A = 1073). The optimal value of the convex
penalty term, P = ZJE_%(Iogaj)z, is a measurement of the total amount
of changes in enzyme abundance. Table 3 shows the results from
SSO and MSO obtained using the same A value. One can clearly see
that to simultaneously meet the metabolic requirements of all carbon
sources in MSO, the required total adjustments in enzyme abundance
are much larger than what is needed if each carbon source is
considered individually in SSO.

The largest A value that reaches the maximum rg yt values in
all scenarios is selected as the trade-off point for the identifica-
tion of the key enzymes. The selected EM enzymes are shown in
Figure S5b. The same trends of changes in the metabolic
pathways as in SSO are observed. More enzymes are identified
in MSO than in SSO. Almost every selected enzyme can be found
in at least one of the four optimal enzyme sets identified in SSO,
except for aspartate-glutamate mitochondrial transporter (As-
pGlu), citrate-malate mitochondrial transporter (CitMal),
glutamic-oxaloacetic transaminase 2 (GOT2), and isocitrate
dehydrogenase (IDH). Prominently upregulated are several
mitochondrial transporters, while many glycolysis enzymes are
downregulated. The newly identified enzymes in MSO are all
linked to the TCA cycle. The differences can be attributed to the

TABLE 3 Comparison of SSO and MSO Stage-1 results

at A =103 optimal rgur and values of the convex penalty
term, P = Zje,z(logotj)2 , which represents the total amount of
enzyme adjustments

Carbon-source scenario Lac Ala GIn Glyc

SSO rerur  [MM/h] -25.0 -16.6 -25.0 -25.0
P 16.6 25.2 13.9 9.7

MSO reur  [mM/h] -25.0 -16.6 -25.0 -25.0
P 51.6

Abbreviations: MSO, multi-scenario optimization; SSO, single-scenario
optimization.

additional adjustments that are required to meet the different
metabolic requirements of all carbon sources in the TCA cycle.

3.2.2 | Stage-2 results

As in SSO, GNG and carbon-entry enzymes are allowed to change
their abundance in Stage-2 optimization. Combinations of up to five
enzymes from the key enzyme set are generated and applied in MSO.
The optimal rgyr for all four scenarios are shown in Figure 5.
Again, glycerol requires only minimum changes to produce glucose.
With an increasing number of enzyme adjustments, glucose produc-
tion is gradually achieved in the other three carbon source scenarios.
Upon allowing five enzymes to change their abundance levels,
glucose can be produced at significant rates in all carbon source

scenarios.

3.2.3 | Comparison of Stage-2 results from SSO
and MSO

A key observation is that the maximum glucose production rates
obtained from MSO are lower than the ones from SSO for a given
number of allowed enzyme adjustments. This indicates that to
effectively produce glucose from all carbon sources using the same
set of altered enzymes, a compromise has to be found between the
different scenarios. The MSO solution is the best compromise as
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FIGURE 5 Optimization of enzyme -
combinations in Stage-2 MSO: Sum of =
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defined by its objective function but may not be individually optimal
for a single carbon source.

The optimal five-enzyme interventions of MSO are listed in Table 2.
We see downregulation of HK1 and o to help reduce glycolysis flux, and
upregulation of GluH to increase the carbon flux into the mitochondria in
both MSO as well as the Ala and GIn scenarios of SSO. The other changes
are related to cytoplasm-mitochondrion transport. Downregulation of
CitMal prevents leakage of citrate into the cytoplasm and its generation
of cytosolic acetyl-CoA, while overexpression of MalPi helps export
mitochondrial Mal to supply cytosolic reducing equivalent and carbons.
Note that high expressions of MalPi and GIuH are also seen in liver and
kidney (Gutiérrez-Aguilar & Baines, 2013; Monné et al., 2019). The
metabolic flux profile for each carbon source resulting from the 5-enzyme
intervention is similar to that seen in SSO (see Figure 6). In the Gln and
Lac scenarios, the fluxes from both the MSO and SSO solutions all flow in
the same direction. Some notable differences are seen in the Glyc
scenario in that a small flux in the lower glycolysis pathway is seen in the
MSO solution but not in the SSO solution, resulting in a small increase in
fluxes across the mitochondrial membrane. In the Ala scenario, all fluxes
maintain the same direction in MSO and SSO except that the PEP flux

between the mitochondrion and the cytoplasm is reversed.

3.2.4 | Metabolic shift between glycolysis and
gluconeogenesis

We next examine whether glycolysis is still permissible under a high
glucose concentration (10 mM) upon the best 5-enzyme intervention
obtained from MSO. To shift from a gluconeogenic state to a
glycolytic state, the o value has to be shifted to a high value (see
Figure S6é). The reversal of the direction of the glycolysis flux in the
optimized five-enzyme intervention is accompanied by changes in
metabolite concentrations. The relative concentrations, defined as
the ratios between the concentrations in the optimized gluconeo-
genic state and those in the glycolytic state, are color-coded in

Figure 6. Here, o s set to 25 in the reference glycolytic state. The
direction of change for shifting from the glycolytic state to the
gluconeogenic state for all four substrates is very similar for the vast
majority of metabolites. A striking difference among the carbon
sources is in the trans-mitochondrial membrane traffic of metabolites
involved in the reducing equivalent balance; while Lac generates a
large quantity of reducing equivalent in the cytoplasm, GIn and Ala
produce their reducing equivalent in the mitochondrion and export it
to the cytoplasm through malate.

A major effector regulating the glycolytic and gluconeogenic
states in liver is F26BP: high concentrations activate PFK and
promote glycolysis, while low concentrations activate FBPase and
favor gluconeogenesis (Okar et al., 2001; Wu et al., 2006). The
F26BP level is modulated by o, i.e. the relative level of kinase to
phosphatase activity. The identification of a low o as one of
5-enzyme adjustments to reverse the glycolysis flux and a high o
as the driver to revert to a glycolytic state is thus consistent with our
physiological understanding. In liver, the adjustment of the o value
and switching of the flux state are mediated by the hormone
glucagon through phosphorylation of PFKFB (Payne et al., 2005;
Rider et al., 2004). Most cultured cells lack gluconeogenic enzymes
and express different isoforms of PFKFB than in liver; nevertheless,
they respond to environmental and physiological cues to modulate
glycolytic flux via the o value. For example, both signaling pathways
AKT and AMPK regulate the o value through posttranslational
events (Liang & Mills, 2013; Ros & Schulze, 2013); a peptide
TIGAR induced by P53 under stress conditions functions as fructose-
2,6-bisphosphatase, thereby lowering glycolytic fluxes (Bensaad
et al., 2006). To enable a cell line engineered as prescribed by the
optimization results of MSO to switch between forward and reverse
flux states, one may employ a biochemical inhibitor such as
Chalcones, Phenoxyindoles, and Biarylsulfonamides to manipulate
the o value (Macut et al., 2019). Alternatively, one could use an
inducible mutant PFKFB with only kinase or phosphatase activity to
modulate the F26BP concentration.
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4 | CONCLUSIONS

In this study, we developed a computational pathway optimization
tool that employs a detailed kinetic metabolic model and a new two-
stage framework to find optimal multi-enzyme alterations that

achieve a given metabolic objective. It also incorporates multi-
scenario optimization, which can be used to simultaneously target
multiple physiological conditions. The optimization problem is
formulated such that it allows gene insertion of nonnative reactions
and up/downregulation. Using a convex penalty term, high-impact
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enzymes are identified in stage 1 of the proposed algorithm, which
avoids the exhaustive search of enzyme combinations. These
enzymes are then considered in stage 2, which determines the
optimal interventions for specified numbers of enzyme adjustments.
Moreover, by applying a state-of-the-art global optimization solver,
we eliminated the need of trying a large number of initial guesses.

In the computational case studies, we applied the proposed
method to reverse the glycolytic flux in cultured mammalian cells,
which can avoid the need of glucose feed in the late culture stage and
thereby improve process robustness. Two types of optimization
problems, SSO and MSO, were implemented to study the metabolic
requirements of reverse glycolysis from different carbon substrates.
SSO determines the metabolic requirements for different carbon
sources, which are mainly driven by the redox balance of NADH.
MSO identifies one set of enzyme adjustments that simultaneously
optimize the fluxes in multiple carbon scenarios. The MSO result
aligns with the physiological understanding of reverse glycolysis; two
mitochondrial transporters that show high expression in gluconeo-
genic tissues (MalPi and GluH) are suggested to be upregulated, and
the kinase/phosphatase activity of PFKFB is recognized as the key
control node for switching the metabolic states between glycolysis
and gluconeogenesis.

The adoption of the kinetic metabolism model and multi-scenario
optimization greatly enhances the versatility of pathway optimiza-
tion; however, it also comes at the cost of significantly increased
computational complexity. Due to the strong nonlinearity and the
large size of the MSO problem, the solver was not able to find an
initial feasible solution using its default multi-start search procedure.
However, we found that providing the SSO solution as an initial guess
reliably allowed the solver to find a starting feasible solution after
which it was able to converge to the optimal solution. In other
applications, a good physiological understanding of the targeted
problem can often help the user devise similar initialization strategies.
In this study, we included only the essential pathways in the kinetic
model and considered only a small number of scenarios. One can
expect the global solver to experience even more computational
difficulties when more metabolic pathways and scenarios are
included. To enable the solution of such large-scale pathway
optimization problems in the future, we will explore the use of
efficient decomposition methods, e.g. progressive hedging
(Rockafellar & Wets, 1991) and Lagragean decomposition (Guignard
& Kim, 1987).

While we have chosen the energy metabolism pathways as a
model system in the computational case studies because they have
been well studied and are hence well suited to assess the efficacy of
our approach, it is important to note that the proposed optimization
scheme has wider applicability. For example, glycosylation profiles of
recombinant therapeutic proteins may vary in the different stages of
culture, affecting product quality (Sumit et al., 2019). Kinetic-model-
based pathway engineering has been attempted for modulating the
glycosylation profile (Stach et al., 2019). Our proposed multi-scenario
optimization approach may further facilitate pathway engineering for

optimizing glycosylation profiles under different process conditions.

R i v
DIOENGINEERIN

In drug discovery, the physiological ramifications of a disorder in a
metabolic network may vary under different conditions for a patient.
Also here, multi-scenario optimization could help devise drug
regimens for multiple conditions. In general, the proposed optimiza-
tion framework is an efficient and versatile tool that can be used to

guide metabolic engineering strategies as well as test metabolic

hypotheses in complex cellular systems.
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