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Abstract

Over the last two decades, model‐based metabolic pathway optimization tools have

been developed for the design of microorganisms to produce desired metabolites.

However, few have considered more complex cellular systems such as mammalian

cells, which requires the use of nonlinear kinetic models to capture the effects of

concentration changes and cross‐regulatory interactions. In this study, we develop a

new two‐stage pathway optimization framework based on kinetic models that

incorporate detailed kinetics and regulation information. In Stage 1, a set of

optimization problems are solved to identify and rank the enzymes that contribute

the most to achieving the metabolic objective. Stage 2 then determines the optimal

enzyme interventions for specified desired numbers of enzyme adjustments. It also

incorporates multi‐scenario optimization, which allows the simultaneous considera-

tion of multiple physiological conditions. We apply the proposed framework to find

enzyme adjustments that enable a reverse glucose flow in cultured mammalian cells,

thereby eliminating the need for glucose feed in the late culture stage and enhancing

process robustness. The computational results demonstrate the efficacy of the

proposed approach; it not only captures the important regulations and key enzymes

for reverse glycolysis but also identifies differences and commonalities in the

metabolic requirements for different carbon sources.
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1 | INTRODUCTION

For decades, metabolic engineering has been successfully used to

rewire metabolism to produce desired metabolites (Huccetogullari

et al., 2019; Lian et al., 2018; Liu & Nielsen, 2019). While much of the

effort has been guided by physiological knowledge, there has been an

increasing number of approaches that use metabolic models and

mathematical optimization to aid the pathway design process. In

model‐based pathway optimization, the optimization problem is

defined by a metabolic objective, such as maximizing the production

rate of a specific metabolite, an underlying metabolic model, physical

restrictions in the form of inequality constraints, and a set of enzymes

that can be adjusted to achieve the given metabolic objective.

Powerful optimization algorithms can then be used to find the

optimal enzyme adjustments without exhaustively exploring the

entire search space (Chae et al., 2017; Machado & Herrgård, 2015;

Zomorrodi et al., 2012).

The metabolic model is the center piece of any model‐based

pathway optimization method. While its scope can range from

focusing on only a few pathways to encompassing reactions at
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genome scales (Edwards & Palsson, 2000; Monk et al., 2017), it

generally consists of mass balance equations for substrates and

metabolites. The rate of each reaction can be represented as a

physical quantity of flux or expressed as a function of the

concentrations of the relevant substrates and allosteric regulators,

leading to a stoichiometric or a kinetic model, respectively. Most

existing pathway optimization tools use stoichiometric models and

have mainly been applied to microorganisms, where the goal is to

achieve overproduction of desired biochemicals (Lin et al., 2017; Yim

et al., 2011). Different genetic interventions have been considered,

including gene knockout (Burgard & Maranas, 2003), gene knock‐in

as well as up/downregulation (Kim et al., 2011; Pharkya et al., 2004),

and perturbations of transcriptional regulatory networks (Shen

et al., 2019).

Kinetic metabolic models are required when it is important to

capture the effect of enzyme and metabolite concentrations as well

as allosteric regulations at the pathway and system levels (Foster

et al., 2021). This is true in the case of tissue cells of higher

organisms, especially mammals. Because of their capability in many

posttranslational modifications, mammalian cells are the major

workhorse for the biomanufacturing of therapeutic proteins for

which the manipulation of pathways, especially those of energy

metabolism (EM), can greatly impact the process outcome (Mulukutla

et al., 2010; Richelle & Lewis, 2017; Templeton & Young, 2018).

However, the complex regulations make the kinetic models highly

nonlinear. In addition, in pathway optimization, binary variables are

commonly used to indicate which enzymes are chosen to be adjusted;

in combination with the nonlinear kinetic models, this results in

optimization problems in the form of mixed‐integer nonlinear

programs (MINLPs), which are notoriously difficult to solve. It is

due to this computational complexity (and often the difficulty of

building an accurate kinetic metabolic model in the first place) that

pathway optimization using kinetic models has rarely been applied in

the literature.

There are various methods that employ some form of local

sensitivity analysis of kinetic models to guide pathway design, but

they cannot guarantee optimality and are restricted to small

perturbations (Kacser et al., 1995; Moreno‐Sánchez et al., 2008). A

few attempts have been made to directly solve the MINLP pathway

optimization problem, but they are confined to simplified systems

without detailed regulation (Nikolaev, 2010; Polisetty et al., 2008;

Villaverde et al., 2016). Other approaches try to avoid the

computational challenge of solving an MINLP by applying a linear

approximation of the kinetic model, which results in a much easier

mixed‐integer linear program (MILP) (Hatzimanikatis et al., 1996;

Vera et al., 2010). However, these approaches do not apply to large

metabolic changes (Vital‐lopez et al., 2006). Other studies have

focused on hybrid methods that combine stoichiometric and kinetic

models; for example, k‐OptForce solves a stoichiometric model with

a subgroup of reactions that have kinetic information to identify

enzyme interventions (Chowdhury et al., 2014).

A recent work introduced an optimization framework that avoids

binary variables by incorporating convex penalty terms, resulting in a

nonlinear programming (NLP) problem (Lucidi & Rinaldi, 2010, 2013;

O'Brien et al., 2019). Using the kinetic model of Mulukutla et al.

(Mulukutla et al., 2014, 2015), the optimization framework was

applied to identify target enzymes to be subjected to modifications to

mitigate the Warburg effect. However, the framework requires the

generation of a large number of initial guesses to determine a set of

local optima, which affects its efficacy to identify optimal interven-

tions on a multi‐target basis and yet still does not guarantee global

optimality.

In this study, we propose an efficient optimization framework that

integrates kinetic metabolic models to identify the optimal multi‐enzyme

interventions for specified engineering goals. Implementing the convex

penalty method, a new two‐stage strategy is proposed, where Stage 1

identifies the enzymes that have high impacts on achieving the metabolic

objective and Stage 2 determines the optimal enzyme interventions for

specified numbers of enzyme adjustments. The optimization problem is

formulated to consider both gene insertion as well as up/downregulation.

To avoid the generation of large sets of local optima, the problem is

solved using a state‐of‐the‐art global optimization solver. Moreover,

multi‐scenario optimization is implemented to simultaneously target

multiple physiological conditions.

Using a developed kinetic EM model of proliferating mammalian

cells, we apply the proposed framework to identify the optimal

enzyme interventions to reverse the flux direction of glycolysis from

various substrates. Glucose is the main substrate of mammalian cells

in culture. During the growth phase, cells can wastefully convert the

vast majority of glucose to lactate which accumulates to inhibit

growth, a phenomenon also seen in cancer cells and called the

Warburg effect (Buchsteiner et al., 2018; Hassell et al., 1991; Lao &

Toth, 1997). While cells in culture can switch from Warburg type of

glycolysis to lactate consumption, which was shown to be associated

with higher productivity (Charaniya et al., 2010), glucose consump-

tion continues albeit at a lower rate (Mulukutla et al. 2012, 2015).

This is attributed to the inability of cells to reverse the carbon flow in

glycolysis to generate glucose for synthesizing NADPH, ribulose‐5‐

phosphate as well as glycans. However, unmanaged glucose feeding

causes glucose accumulation and potentially results in a return to

lactate production (Gagnon et al., 2011). Hence, empowering cells to

synthesize glucose while under metabolic shift would eliminate the

need of supplying glucose, potentially increasing process robustness.

Applying the proposed method, we conducted computational case

studies targeting different carbon source scenarios. We were able to

identify the optimal adjustments in enzyme levels and metabolite

concentrations, which align with the physiological understanding of

reverse glycolysis.

2 | METHODS

2.1 | Kinetic model

A previously developed kinetic model of energy metabolism of

proliferating mammalian cells is used in this study (Mulukutla
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et al., 2015). An overview of the metabolic network is given in

Figure 1. Since we focus on metabolic changes under fixed

extracellular conditions, a steady‐state assumption is applied. Pivotal

allosteric regulations considered include fructose‐1,6‐bisphosphate

(F16BP) activations of phosphofructokinase (PFK) and pyruvate

kinase (PK), fructose‐2,6‐bisphosphate (F26BP) modulation of PFK,

phosphoenolpyruvate (PEP) activation of 6phosphofructo2kinase/

fructose2,6bisphosphatase (PFKFB), and lactate inhibition of PFK.

To enable a reverse glycolytic flux, we also include additional

gluconeogenic (GNG) enzymes: glucose‐6‐phosphatase (G6Pase),

fructose‐1,6‐bisphosphatase 1 (FBP1), pyruvate carboxylase (PC),

and both the cytosolic and mitochondrial isoforms of phosphoenol-

pyruvate carboxykinase (PCK1 and PCK2). Since the main metabo-

lites of the pentose phosphate pathway (PPP), for example, NADPH

and phosphosugars, do not participate in the reactions of gluco-

neogenesis, PPP is not considered in the model. The mitochondrial

phosphoenolpyruvate transporter (PEPx) is included to export the

PEP generated by PCK2 into the cytosol. The six GNG enzymes

constitute the enzyme (reaction) set RGNG while the original

enzymes of the model form the set REM. The detailed kinetic

F IGURE 1 (a) Metabolic pathways considered in the kinetic metabolism model. The model includes the pathways of glycolysis,
gluconeogenesis, TCA cycle, and malate‐aspartate shuttles. Four substrates of gluconeogenesis are considered: lactate, alanine, glutamine, and
glycerol (red). Enzyme sets are divided into two sets, REM and RGNG, shown in black and blue, respectively. An extra energy supply from
fatty acid breakdown is considered, shown in green. (b) Pivotal allosteric regulation of glycolysis considered.
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equations and parameters of REM can be found in our previous

publication (Mulukutla et al., 2015). Reaction equations and parame-

ters of RGNG are collected from liver models (Berndt et al., 2018;

König et al., 2012). The bifunctional enzyme PFKFB in REM is a

major flux regulator through its varying ratio of kinase/phosphatase

activity, where its kinase activity phosphorylates fructose‐6‐

phosphate (F6P) to fructose2,6bisphosphate (F26BP), and the

phosphatase activity hydrolyzes F26BP back to F6P (Rider et al., 2004;

Wu et al., 2001). A parameter σ is introduced to denote this ratio.

Among the four carbon sources considered, lactate (Lac) enters

the pathway network through lactate dehydrogenase A (LDHA)

which is already included in the kinetic model. Additionally, alanine

transaminase 1 (GPT1) and glutaminase (GLS) are considered for

alanine (Ala) and glutamine (Gln), respectively. The uptake of glycerol

(Glyc) is catalyzed by a series of reactions converting glycerol to

dihydroxyacetone phosphate (DHAP) and is represented by GlyIn.

Each of the corresponding fluxes, rLDHA, rGPT1, rGLS, and rGlyIn, is

set to zero when the compound is not the carbon source being

considered. To represent the reverse glycolysis, the extracellular

glucose concentration is set to 5mM, and the substrate concentra-

tions of Lac, Ala, and Gln are set to be 2, 1, and 1mM, respectively.

Moreover, since gluconeogenesis is an endothermic pathway, the

energy source is supplied from the mitochondria acetyl‐CoA

(mAcCoA) input from β‐oxidation of fatty acids, denoted by r oxβ .

2.2 | Mathematical formulation of optimization
problems

Optimization problems are formulated to identify the minimum

adjustments in enzyme abundance that maximize a specific pathway

engineering goal. Two different types of optimization problems are

proposed: single‐scenario optimization (SSO), which generally con-

siders one specific set of physiological conditions, and multi‐scenario

optimization (MSO), which simultaneously considers multiple sets of

physiological conditions, each represented by one scenario.

2.2.1 | Single‐scenario optimization

The SSO problem can be generally formulated as follows:

R∈

∑r λ α(SSO) :   minimize    + (log )
α r C j

j
, ,

GLUT 10
2

(1a)

M
R

∀ ∈
∈

∑ w r isubject to   = 0
j

ij j

i
(1b)

R⋅ ∀ ∈( )K Cr f α E k j= , , ,     j jj j j j
cat EM (1c)

R⋅ ∀ ∈( )K Cr f α E k j= ( − 1) , , ,j jj j j j
cat GNG (1d)

R∀ ∈α α α j≤ ≤j
min

j j
max EM (1e)

R∀ ∈α α j1 ≤ ≤j j
max GNG (1f)

α r Cg ( , , ) ≥ 0. (1g)

The notation is such that boldface letters denote vectors while

scalar quantities are denoted by non‐boldface letters. The reaction

(enzyme) set of the targeted metabolic network is denoted by R,

where R R R= ∪EM GNG. The relative change in the abundance level

of enzyme R∈j is denoted by αj . An additional ασ is

assigned to σ to capture the impact of the change in the activity

ratio of kinase/phosphatase in PFKFB. Since a negative rGLUT value

represents glucose production, minimizing rGLUT is selected as the

metabolic objective, as indicated by the first term of the objective

function (1a). The second term of (1a) penalizes the sum of squared

logarithms of αj over the set R with a weighting factor λ,

which is modulated to find a good trade‐off between the metabolic

objective and the magnitude of enzyme level adjustments. A squared

logarithm of αj is chosen to ensure that no penalty is applied if the

enzyme level is not changed (α = 1)j , and that the same magnitudes of

downregulation and upregulation of enzyme abundance are penalized

equally. Constraints (1b)–(1d) correspond to the kinetic mechanistic

model of the targeted metabolic network at steady state. Equations

(1b) represent the material balance of each metabolite M∈i ,

where M denotes the set of metabolites, considering the reaction

stoichiometry with wij denoting the stoichiometric coefficient of

metabolite i in reaction j; Ri denotes the set of reactions that

involve metabolite i. Equations (1c) and (1d) model the kinetics of

each reaction j in REM and RGNG, respectively. Each reaction

rate rj is a function of αj , the original enzyme level Ej , the

catalytic constant kj
cat , a set of kinetic parameters Kj , and a set of

concentrations Cj . In Equation (1d), 1 is subtracted from αj to

ensure that the new reaction is not considered when αj is equal to

1, which represents the original state of the targeted network.

Constraints (1e) and (1f) define the lower bounds (αj
min ) and upper

bounds (αj
max ) on αj , where the lower bounds of enzymes

in RGNG are set to 1, which is equivalent to no expression of the

corresponding enzyme. Constraints (1g) compactly represent addi-

tional biological constraints that specify bounds on metabolite

concentrations and metabolic fluxes, ATP and NADH flux balances,

and constraints on substrates as well as energy supplies. Detailed

descriptions of (1g) are included in the supplementary information.

2.2.2 | Multi‐scenario optimization

When SSO is performed, only one specific carbon source, i.e. Lac, Ala,

Gln, or Glyc, is considered. This can be a significant limitation if we

want to engineer a metabolic system that can effectively use all four

carbon sources to produce glucose since the optimal enzyme

adjustments for one carbon source may not perform well for another.

Hence, to simultaneously consider all four carbon sources, we

propose to solve the following MSO problem:
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S R∈ ∈

∑ ∑r λ α(MSO) :   minimize   + (log )
α r C s j

j
, ,

s,GLUT 10
2

s s (2a)

M S
Ri

∀ ∈ , ∀ ∈
∈

∑ w r i ssubject to    = 0
j

ij sj (2b)

R S⋅ ∀ ∈ ∀ ∈( )K Cr f α E k j s= , , , ,j sjsj j j j
cat EM (2c)

R S⋅ ∀ ∈ ∀ ∈( )K Cr f α E k j s= ( − 1) , , , ,j sjsj j j j
cat GNG (2d)

R∀ ∈α α α j≤ ≤j
min

j j
max EM (2e)

R∀ ∈α α j1 ≤ ≤j j
max GNG (2f)

S∀ ∈ ,α r Cg s( , , ) ≥ 0s ss (2g)

where S denotes the set of scenarios, with each scenario generally

representing a different set of conditions imposed on the system, as

reflected in (2g) where the constraints ⋅g ( ) ≥ 0s can be different for

each scenario s. In our particular case, each scenario s corresponds

to a specific carbon source. The goal of MSO is to determine a common

set of changes in enzyme abundance levels that maximize the sum of

reverse glycolysis flux across all four scenarios. As such, the same

variables α apply to all scenarios whereas the reaction rates rs and

metabolite concentrations Cs can vary across scenarios, hence the

added scenario index s. Note that the same metabolic model is applied

to all scenarios, as indicated by Equations (2b)–(2d).

2.3 | Two‐stage optimization framework

A two‐stage optimization framework, which applies to both SSO and

MSO, is proposed to first identify a subset of enzymes whose

abundance changes can significantly improve the targeted metabolic

goal and subsequently identify the best enzyme interventions while

limiting the number of enzymes that can be perturbed. The latter step

is important since, in practice, one would like to minimize the number

of enzymes that need to be altered to satisfy the metabolic objective.

An overview of the proposed algorithm in the form of a flowchart is

shown in Figure 2.

2.3.1 | Stage 1: Identifying key enzymes

When the pathway optimization problem, i.e. (SSO) or (MSO), is

solved in Stage 1, we allow all enzymes to change. However, we seek

to find the subset of enzymes that contribute the most to achieving

the metabolic objective, and we do so by varying the value of the

penalty parameter λ, which indirectly controls to what extent the

enzymes should be altered. The desired set of key enzymes is

obtained at a specific λ value, which we typically choose to be the

largest λ that achieves the optimal metabolic objective value. The

key enzyme set, denoted by Rstg1, is identified by selecting

the enzymes for which the optimal αj satisfies the following criterion:

α δ(log ) ≥ ,j10
2 (3)

where δ denotes the cutoff threshold.

2.3.2 | Stage 2: Determining optimal interventions
for fixed numbers of enzyme adjustments

In Stage 2, as illustrated in Figure 2, all possible combinations of

enzymes from the enzyme set R Rstg1 ex are generated for

different specified numbers of enzymes. Typically, we start with

the number of enzyme adjustments n = 1 and increase it after

each iteration until the maximum desired number N is reached.

We refer to Rex as the exclusive enzyme set, which contains the

enzymes that are always allowed to change in the Stage‐2

optimization. In this study, GNG and carbon‐entry enzymes are

included in Rex. SSO or MSO is then performed for each

combination of enzymes by allowing only the abundance levels of

those enzymes and the ones in Rex to change while keeping other

enzymes at their original abundance levels. Optimal solutions of all

enzyme combinations and the corresponding enzyme interventions

are collected and compared to identify the optimal enzyme

adjustments.

2.4 | Implementation details

The algorithms were implemented in Python 3.7, where the

optimization problems were modeled using the modeling language

Pyomo (Hart et al., 2017). All model instances were solved using the

global solver BARON (Sahinidis, 1996) with CPLEX as the linear

programming (LP) subsolver and IPOPT as the NLP subsolver

(Andreas & Lorenz, 2006). All computations were performed on

AMD EPYC 7702 processors using resources from the Minnesota

Supercomputing Institute.

3 | RESULTS AND DISCUSSION

The reverse of glycolysis, i.e. gluconeogenesis, takes place in the liver

and kidney of mammals. It requires adjustments in the expressions of

enzymes not only to overcome the four irreversible reactions in

glycolysis but also to alter the concentrations of many intermediate

metabolites and regulators in the cytosol and mitochondrion. It

should be noted that cultured cells express the enzyme isoforms

typically seen in proliferating cells exhibiting the Warburg effect, but

not the liver isoforms. Reversing its flow may be more complex than

in gluconeogenic tissues. We applied the proposed framework to

determine the optimal enzyme adjustments to reverse the glucose

flow in proliferating mammalian cells. Using SSO and MSO, two

computational case studies were performed to identify the differ-

ences and commonalities in the metabolic requirements for reversing

glycolysis with various carbon sources.
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3.1 | Case study 1: Reversing glucose flow using
different carbon sources

We consider four different substrates, Lac, Ala, Glu, and Glyc. All

four are naturally used for gluconeogenesis in the liver and kidney

of mammals or readily supplied in the cell culture medium. Lactate

is the major metabolite produced during cell growth. Alanine is also

frequently excreted in the culture medium. Glutamine is typically

supplied as a nutrient at a high level. Glycerol derived from lipid

catabolism is an important carbon source for gluconeogenesis. SSO

is first performed to test if the addition of the GNG enzymes alone

is sufficient to reverse the glucose flow. To do so, we set the

penalty weight λ in the objective function of (SSO) to a very

small value (10−5); note that we could have set it to zero but did not

do so for numerical reasons. The upper bounds of αj for

R R∈ ∪j EM GNG are set to 100, and the lower bounds of αj for

R∈j EM are set to 0.01.

As shown in Table 1, by solely expressing the GNG enzymes and

fixing the EM enzymes at their original levels, low or no glucose

production is obtained in all four scenarios. In contrast, high glucose

production rates are achieved when all enzymes inREM andRGNG are

allowed to change in their abundance levels. To identify the optimal

enzyme combinations as well as adjustments in REM for different

fixed numbers of altered enzymes, the proposed two‐stage frame-

work is applied.

3.1.1 | Stage‐1 results

Identification of the optimal enzyme interventions in REM for a

fixed number of enzyme adjustments can be approached by

exhaustively listing all possible enzyme combinations across

REM and solving the corresponding optimization problems. How-

ever, due to the large cardinality of REM, the number of optimization

F IGURE 2 Flowchart of the two‐stage optimization framework. Stage 1: All‐enzyme SSO or MSO is performed for a defined range of
penalty weight values λ (defined by the upper and lower bounds UBλ and LBλ) to identify the key enzyme set Rstg1,
where Δλ denotes the step size when changing λ, and δ is the threshold value selected for the identification of the key enzyme set.
Stage 2: Combinations of n enzymes are generated from the enzyme set R Rstg1 ex to form the enzyme sets Rk

n. The exclusive enzyme
set Rex includes the enzymes that are always allowed to change in Stage‐2 optimization. SSO or MSO is performed with different
combinations of enzymes allowed to change to identify the best interventions for all n N= 1, …, , where N is the maximum desired number
of enzyme adjustments.
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instances to be solved would be very large even for a moderate

number of enzyme adjustments. Stage 1 aims to reduce the number

of candidate enzymes that need to be considered. This is achieved by

increasing the penalty on enzyme adjustments, i.e. a high-

er λ value, which decreases the incentive to change the abun-

dance of enzymes that do not significantly improve the metabolic

objective, i.e. reverse glycolysis flux. In other words, an appropriate

selection of λ can result in a reasonably small set of key

enzymes, Rstg1, whose changes in abundance most meaningfully

contribute to glucose synthesis.

(SSO) is solved with different values of λ over six orders of

magnitude (10 − 10−3 3) for each of the carbon source scenarios, as

shown in Figure 3a. For each carbon source, glucose production

increases with decreasing λ and reaches a constant mini-

mum rGLUT for sufficiently small λ values. The cut‐off thresh-

old δ for enzyme selection is set to 0.03, which is approximately a

1.5‐fold increase/decrease in the enzyme levels. Using the Gln

scenario as an example, Figure 3b shows that the number of selected

enzymes increases with decreasing λ. Rstg1 is defined at

the λ value that represents a trade‐off between the improvement

in glucose production and the minimization of the number of enzyme

adjustments. The size of Rstg1 is 10, significantly lower than the

cardinality ofREM of 41. Similar reductions in the number of selected

enzymes are observed in the other carbon source scenarios, as shown

in Figure S1.

The key EM enzymes, along with their αj values, grouped by

different pathways are shown in Figure S2. Common to all four

scenarios is the amplification of entry enzymes. Glycerol is a special

case as it enters directly the upper glycolysis pathway and requires

only a few key enzyme changes. For the other three carbon sources,

HK is suppressed to reduce the glycolysis flux. TCA cycle enzyme

changes are more diverse for the three carbon sources as each enters

the TCA cycle at different points and each has a different route for

channeling PEP into reversed glycolysis. It should be noted that the

selection of bounds on α affects the key enzyme selection, where

a smaller bound constrains the reverse glucose flow, as shown in

Figure S3. To eliminate the impact of α bounds on enzyme

selection, we choose 100 fold‐change as the selected bounds in this

study.

3.1.2 | Stage‐2 results

Stage‐2 optimization is performed to identify the optimal enzyme

interventions for different numbers of allowed enzyme adjustments.

Aside from the GNG enzymes, carbon‐entry enzymes are allowed to

vary in their abundance so as not to limit the supply of substrates. In

addition, combinations of up to five enzymes from Rstg1 are allowed

TABLE 1 Optimized glucose flux, rGLUT in each carbon source
scenario with SSO subjected to different sets of enzymes that are
allowed to change in their abundance levels

Scenario

Optimal rGLUT [mM/h]

RRGNG RR RREM GNG

Lac −0.3 −25

Ala 9.9 −16.7

Gln 0.0 −25

Glyc −0.1 −25

Note: Negative flux indicates glucose production. The penalty weight is
set to 10−5 due to numerical reasons.

F IGURE 3 Selection of penalty weight λ value for key enzymes identification in Stage‐1 SSO: (a) Optimal rGLUT in each carbon
source scenario for ∈λ [0.001,1000]. The filled marker indicates the λ value used for key enzyme selection. (b) Number of selected key
enzymes according to threshold δ and optimal rGLUT in the Gln scenario within the same range of λ. The blue dashed line denotes the
selected λ value representing the trade‐off between the improvement in rGLUT and minimization of numbers of enzyme adjustments.
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to be altered in the SSO while fixing the abundance levels of all other

enzymes at their original values. The optimal solutions of different

enzyme combinations that show improvements in glucose production

rate are shown in Figure 4. With up to five enzyme adjustments

in Rstg1, all scenarios reach the glucose production levels obtained

through all‐enzyme optimization (see Table 1). The Glyc scenario

already produces a significant amount of glucose with the expression

of GNG enzymes as well as the amplification in the entry enzyme,

while the Gln scenario requires a larger number of enzyme

interventions to produce glucose than the others.

3.1.3 | Metabolic requirements for gluconeogenesis

The optimal five‐enzyme adjustments for the four carbon sources

are listed in Table 2. Different enzyme changes are required for

different carbon sources. As expected, glycerol only requires

small changes, mainly to reduce the glycolysis flux in the three

irreversible glycolytic reactions. Restricting glucose entry into

glycolysis through downregulation of HK is common in the Lac,

Ala, and Gln scenarios. For Lac and Ala, downregulation of CS to

reduce the diversion of pyruvate into the TCA cycle is observed.

Carbon from Gln and a portion of Ala enter the mitochondria

through glutamate; hence, we see upregulation of the glutamate

mitochondrial carrier, GluH. Aligned with the stage‐1 SSO result,

different requirements of changes in the TCA cycle are observed

among the different carbon sources.

The resulting flux maps for the best 5‐enzyme combinations are

shown in Figure S4. The flux profiles for the four carbon source

scenarios predicted by the model are consistent with physiological

understanding. The main carbon flow in the Glyc scenario involves

only the upper glycolysis pathway and requires no additional NADH.

Only a small adjustment of enzyme abundance is seen. Both Lac and

Ala enter gluconeogenesis through pyruvate nodes in the cytoplasm

and mitochondria, and both rely on PEP export from mitochondria to

provide carbon for gluconeogenesis. Gln is distinct from Lac and Ala

by entering the mitochondria solely through Glu and entering the

TCA cycle through aKG. In the Lac scenario, LDHA supplies NADH

for the reversed reaction of glyceraldehyde 3‐phosphate

dehydrogenase (GAPDH). In the Ala and Gln scenarios, the reducing

equivalents are exported from the mitochondria through malate

phosphate mitochondrial antiporter (MalPi) and malate

dehydrogenase 1 (MDH1). Export of malate to the cytoplasm also

serves to supply carbon for PEP generation and eventually to

glucose.

3.2 | Case study 2: Optimal enzyme interventions
considering all carbon sources

In case study 1, SSO was applied to identify optimal enzyme

alteration that maximizes the glucose production rate for each of the

four different carbon sources. The obtained optimal enzyme

adjustments differ across the carbon source scenarios. In the second

F IGURE 4 Optimization of enzyme combinations in Stage‐2 SSO: Optimal rGLUT for different enzyme combinations with fixed numbers of
allowed enzyme adjustments. Each column corresponds to one enzyme combination. Enzyme combinations are grouped based on the number
of enzyme changes. Only the enzyme combinations that result in improvements in rGLUT compared to the optimal solutions to fewer numbers of
enzyme adjustments are kept. SSO, single‐scenario optimization.
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case study, we focused on applying MSO to identify the optimal

adjustment of a limited number of enzymes that simultaneously

maximizes the glucose production rates from all carbon sources, as is

more likely the case in bioprocess conditions.

3.2.1 | Stage‐1 results

The value of λ is varied over a wider range (10 − 10−5 3) in MSO to

identify a suitable trade‐off point for key enzyme selection, as shown

in Figure S5a. All enzymes are allowed to change their abundance in

the same range as in SSO. Same as in SSO, the glucose production

rate increases with decreasing λ and eventually reaches a steady

value. The significant increase in the reverse glycolysis flux in Gln

appears at a much lower λ value compared to the other carbon

sources, implying that glutamine has a higher metabolic barrier to

overcome for gluconeogenesis. This result agrees with what we

observed in the stage‐2 result of SSO (see Figure 4). MSO can reach

the same levels of glucose production as SSO for all carbon sources

but at a lower λ value (λ = 10−3). The optimal value of the convex

penalty term, R∈P logα= ∑ ( )j j
2 , is a measurement of the total amount

of changes in enzyme abundance. Table 3 shows the results from

SSO and MSO obtained using the same λ value. One can clearly see

that to simultaneously meet the metabolic requirements of all carbon

sources in MSO, the required total adjustments in enzyme abundance

are much larger than what is needed if each carbon source is

considered individually in SSO.

The largest λ value that reaches the maximum rGLUT values in

all scenarios is selected as the trade‐off point for the identifica-

tion of the key enzymes. The selected EM enzymes are shown in

Figure S5b. The same trends of changes in the metabolic

pathways as in SSO are observed. More enzymes are identified

in MSO than in SSO. Almost every selected enzyme can be found

in at least one of the four optimal enzyme sets identified in SSO,

except for aspartate‐glutamate mitochondrial transporter (As-

pGlu), citrate‐malate mitochondrial transporter (CitMal),

glutamic‐oxaloacetic transaminase 2 (GOT2), and isocitrate

dehydrogenase (IDH). Prominently upregulated are several

mitochondrial transporters, while many glycolysis enzymes are

downregulated. The newly identified enzymes in MSO are all

linked to the TCA cycle. The differences can be attributed to the

additional adjustments that are required to meet the different

metabolic requirements of all carbon sources in the TCA cycle.

3.2.2 | Stage‐2 results

As in SSO, GNG and carbon‐entry enzymes are allowed to change

their abundance in Stage‐2 optimization. Combinations of up to five

enzymes from the key enzyme set are generated and applied in MSO.

The optimal rGLUT for all four scenarios are shown in Figure 5.

Again, glycerol requires only minimum changes to produce glucose.

With an increasing number of enzyme adjustments, glucose produc-

tion is gradually achieved in the other three carbon source scenarios.

Upon allowing five enzymes to change their abundance levels,

glucose can be produced at significant rates in all carbon source

scenarios.

3.2.3 | Comparison of Stage‐2 results from SSO
and MSO

A key observation is that the maximum glucose production rates

obtained from MSO are lower than the ones from SSO for a given

number of allowed enzyme adjustments. This indicates that to

effectively produce glucose from all carbon sources using the same

set of altered enzymes, a compromise has to be found between the

different scenarios. The MSO solution is the best compromise as

TABLE 2 Comparison of SSO and MSO Stage‐2 optimization results with the number of enzyme adjustments set to five (n = 5)

Enzyme HK1 HK2 CS ME1 ME2 ACLY GluH SDH AKGD σ PKM1 MalPi CitMal

SSO Lac 0.01 0.07 0.03 0.02 0.04

Ala 0.06 0.02 0.01 0.03 100

Gln 0.03 16.1 13.8 8.0 0.16

Glyc 0.21 0.58 0.1 0.64

MSO 0.08 100 0.02 100 0.09

Abbreviations: MSO, multi‐scenario optimization; SSO, single‐scenario optimization.

TABLE 3 Comparison of SSO and MSO Stage‐1 results
at λ = 10−3: optimal rGLUT and values of the convex penalty
term, R∈P logα= ∑ ( )j j

2 , which represents the total amount of
enzyme adjustments

Carbon‐source scenario Lac Ala Gln Glyc

SSO rGLUT [mM/h] −25.0 −16.6 −25.0 −25.0

P 16.6 25.2 13.9 9.7

MSO rGLUT [mM/h] −25.0 −16.6 −25.0 −25.0

P 51.6

Abbreviations: MSO, multi‐scenario optimization; SSO, single‐scenario
optimization.
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defined by its objective function but may not be individually optimal

for a single carbon source.

The optimal five‐enzyme interventions of MSO are listed in Table 2.

We see downregulation of HK1 and σ to help reduce glycolysis flux, and

upregulation of GluH to increase the carbon flux into the mitochondria in

bothMSO as well as the Ala and Gln scenarios of SSO. The other changes

are related to cytoplasm‐mitochondrion transport. Downregulation of

CitMal prevents leakage of citrate into the cytoplasm and its generation

of cytosolic acetyl‐CoA, while overexpression of MalPi helps export

mitochondrial Mal to supply cytosolic reducing equivalent and carbons.

Note that high expressions of MalPi and GluH are also seen in liver and

kidney (Gutiérrez‐Aguilar & Baines, 2013; Monné et al., 2019). The

metabolic flux profile for each carbon source resulting from the 5‐enzyme

intervention is similar to that seen in SSO (see Figure 6). In the Gln and

Lac scenarios, the fluxes from both the MSO and SSO solutions all flow in

the same direction. Some notable differences are seen in the Glyc

scenario in that a small flux in the lower glycolysis pathway is seen in the

MSO solution but not in the SSO solution, resulting in a small increase in

fluxes across the mitochondrial membrane. In the Ala scenario, all fluxes

maintain the same direction in MSO and SSO except that the PEP flux

between the mitochondrion and the cytoplasm is reversed.

3.2.4 | Metabolic shift between glycolysis and
gluconeogenesis

We next examine whether glycolysis is still permissible under a high

glucose concentration (10mM) upon the best 5‐enzyme intervention

obtained from MSO. To shift from a gluconeogenic state to a

glycolytic state, the σ value has to be shifted to a high value (see

Figure S6). The reversal of the direction of the glycolysis flux in the

optimized five‐enzyme intervention is accompanied by changes in

metabolite concentrations. The relative concentrations, defined as

the ratios between the concentrations in the optimized gluconeo-

genic state and those in the glycolytic state, are color‐coded in

Figure 6. Here, σ is set to 25 in the reference glycolytic state. The

direction of change for shifting from the glycolytic state to the

gluconeogenic state for all four substrates is very similar for the vast

majority of metabolites. A striking difference among the carbon

sources is in the trans‐mitochondrial membrane traffic of metabolites

involved in the reducing equivalent balance; while Lac generates a

large quantity of reducing equivalent in the cytoplasm, Gln and Ala

produce their reducing equivalent in the mitochondrion and export it

to the cytoplasm through malate.

A major effector regulating the glycolytic and gluconeogenic

states in liver is F26BP: high concentrations activate PFK and

promote glycolysis, while low concentrations activate FBPase and

favor gluconeogenesis (Okar et al., 2001; Wu et al., 2006). The

F26BP level is modulated by σ, i.e. the relative level of kinase to

phosphatase activity. The identification of a low σ as one of

5‐enzyme adjustments to reverse the glycolysis flux and a high σ

as the driver to revert to a glycolytic state is thus consistent with our

physiological understanding. In liver, the adjustment of the σ value

and switching of the flux state are mediated by the hormone

glucagon through phosphorylation of PFKFB (Payne et al., 2005;

Rider et al., 2004). Most cultured cells lack gluconeogenic enzymes

and express different isoforms of PFKFB than in liver; nevertheless,

they respond to environmental and physiological cues to modulate

glycolytic flux via the σ value. For example, both signaling pathways

AKT and AMPK regulate the σ value through posttranslational

events (Liang & Mills, 2013; Ros & Schulze, 2013); a peptide

TIGAR induced by P53 under stress conditions functions as fructose‐

2,6‐bisphosphatase, thereby lowering glycolytic fluxes (Bensaad

et al., 2006). To enable a cell line engineered as prescribed by the

optimization results of MSO to switch between forward and reverse

flux states, one may employ a biochemical inhibitor such as

Chalcones, Phenoxyindoles, and Biarylsulfonamides to manipulate

the σ value (Macut et al., 2019). Alternatively, one could use an

inducible mutant PFKFB with only kinase or phosphatase activity to

modulate the F26BP concentration.

F IGURE 5 Optimization of enzyme
combinations in Stage‐2 MSO: Sum of
optimal rs,GLUT and optimal
individual rs,GLUT obtained for different
enzyme combinations with fixed numbers of
allowed enzyme adjustments. Each column
corresponds to one enzyme combination. Only
the enzyme combinations that show
improvements in the sum of
optimal rs,GLUT compared with the solutions to
fewer numbers of enzyme adjustments are kept.
MSO, multi‐scenario optimization.
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4 | CONCLUSIONS

In this study, we developed a computational pathway optimization

tool that employs a detailed kinetic metabolic model and a new two‐

stage framework to find optimal multi‐enzyme alterations that

achieve a given metabolic objective. It also incorporates multi‐

scenario optimization, which can be used to simultaneously target

multiple physiological conditions. The optimization problem is

formulated such that it allows gene insertion of nonnative reactions

and up/downregulation. Using a convex penalty term, high‐impact

F IGURE 6 Flux and relative concentration maps associated with the optimal 5‐enzyme MSO solution. The reference concentration profile
is obtained with σ = 25 and 10mM external glucose concentration. An increase in concentration is shown in red, while a decrease is shown
in green. MSO, multi‐scenario optimization.
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enzymes are identified in stage 1 of the proposed algorithm, which

avoids the exhaustive search of enzyme combinations. These

enzymes are then considered in stage 2, which determines the

optimal interventions for specified numbers of enzyme adjustments.

Moreover, by applying a state‐of‐the‐art global optimization solver,

we eliminated the need of trying a large number of initial guesses.

In the computational case studies, we applied the proposed

method to reverse the glycolytic flux in cultured mammalian cells,

which can avoid the need of glucose feed in the late culture stage and

thereby improve process robustness. Two types of optimization

problems, SSO and MSO, were implemented to study the metabolic

requirements of reverse glycolysis from different carbon substrates.

SSO determines the metabolic requirements for different carbon

sources, which are mainly driven by the redox balance of NADH.

MSO identifies one set of enzyme adjustments that simultaneously

optimize the fluxes in multiple carbon scenarios. The MSO result

aligns with the physiological understanding of reverse glycolysis; two

mitochondrial transporters that show high expression in gluconeo-

genic tissues (MalPi and GluH) are suggested to be upregulated, and

the kinase/phosphatase activity of PFKFB is recognized as the key

control node for switching the metabolic states between glycolysis

and gluconeogenesis.

The adoption of the kinetic metabolism model and multi‐scenario

optimization greatly enhances the versatility of pathway optimiza-

tion; however, it also comes at the cost of significantly increased

computational complexity. Due to the strong nonlinearity and the

large size of the MSO problem, the solver was not able to find an

initial feasible solution using its default multi‐start search procedure.

However, we found that providing the SSO solution as an initial guess

reliably allowed the solver to find a starting feasible solution after

which it was able to converge to the optimal solution. In other

applications, a good physiological understanding of the targeted

problem can often help the user devise similar initialization strategies.

In this study, we included only the essential pathways in the kinetic

model and considered only a small number of scenarios. One can

expect the global solver to experience even more computational

difficulties when more metabolic pathways and scenarios are

included. To enable the solution of such large‐scale pathway

optimization problems in the future, we will explore the use of

efficient decomposition methods, e.g. progressive hedging

(Rockafellar & Wets, 1991) and Lagragean decomposition (Guignard

& Kim, 1987).

While we have chosen the energy metabolism pathways as a

model system in the computational case studies because they have

been well studied and are hence well suited to assess the efficacy of

our approach, it is important to note that the proposed optimization

scheme has wider applicability. For example, glycosylation profiles of

recombinant therapeutic proteins may vary in the different stages of

culture, affecting product quality (Sumit et al., 2019). Kinetic‐model‐

based pathway engineering has been attempted for modulating the

glycosylation profile (Stach et al., 2019). Our proposed multi‐scenario

optimization approach may further facilitate pathway engineering for

optimizing glycosylation profiles under different process conditions.

In drug discovery, the physiological ramifications of a disorder in a

metabolic network may vary under different conditions for a patient.

Also here, multi‐scenario optimization could help devise drug

regimens for multiple conditions. In general, the proposed optimiza-

tion framework is an efficient and versatile tool that can be used to

guide metabolic engineering strategies as well as test metabolic

hypotheses in complex cellular systems.
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