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A B S T R A C T

Decision-making problems are commonly formulated as optimization problems, which are then solved to
make optimal decisions. In this work, we consider the inverse problem where we use prior decision data
to uncover the underlying decision-making process in the form of a mathematical optimization model. This
statistical learning problem is referred to as data-driven inverse optimization. We focus on problems where
the underlying decision-making process is modeled as a convex optimization problem whose parameters are
unknown. We formulate the inverse optimization problem as a bilevel program and propose an efficient block
coordinate descent-based algorithm to solve large problem instances. Numerical experiments on synthetic
datasets demonstrate the computational advantage of our method compared to standard commercial solvers.
Moreover, the real-world utility of the proposed approach is highlighted through two realistic case studies
in which we consider estimating risk preferences and learning local constraint parameters of agents in a
multiplayer Nash bargaining game.
1. Introduction

Decision making is fundamental to everyday life. As humans, we
constantly make decisions that involve balancing different trade-offs to
achieve the best outcome. These decisions can be as mundane as choos-
ing what to eat for lunch, or as intricate as designing and operating
a chemical plant. Also, humans are not the only ones making deci-
sions; other biological entities, such as animals, microorganisms, and
even individual cells, are often considered intelligent and autonomous
agents capable of making decisions (McFarland, 2004; Balázsi et al.,
2011). Furthermore, with increased automation and the emergence of
artificial intelligence, many engineered systems can also be viewed as
decision-making agents (Steels, 1995).

A good understanding of decision-making mechanisms is crucial for
predicting the behavior of autonomous agents, learning from experts,
and optimizing systems involving various decision makers. But many
decision-making processes are unknown or poorly understood. For
example, experts in the operation of chemical plants make decisions
based on many years of experience, but their decision strategies often
are not well documented and, due to the complexity of the manufac-
turing processes, are difficult to explain even to fellow operators. As
a result, the complete transfer of expert knowledge to new operators
remains an unsolved problem. Likewise in microbiology, cells can be
considered autonomous agents that make decisions regarding gene
expression and cell metabolic function. While we can observe these

∗ Corresponding author.
E-mail address: qizh@umn.edu (Q. Zhang).

decisions in experiments, we often do not understand why cells make
these choices. Answering this question would provide fundamental in-
sights that could advance cancer treatment, immunology research, and
biomanufacturing operations. In both examples, we do not know how
exactly decisions are made, but we can observe those decisions. The
question is: Can we use these observations to uncover the underlying
decision-making process?

The above question is, of course, not new. In particular, the first
motivating example may remind some readers of expert systems, a
subdomain of artificial intelligence that had spurred much enthu-
siasm in various disciplines, including chemical engineering, in the
1980s (Bañares-Alcántara et al., 1985; Rich and Venkatasubramanian,
1987; Stephanopoulos, 1990). While research in this field has pri-
marily focused on using human experience and domain knowledge
to build expert systems, there have been a few attempts to learn an
expert system from data (Rich and Venkatasubramanian, 1989; Sammut
et al., 1992), most of which are based on decision tree learning.
More recently, in machine learning, this problem has been referred to
as apprenticeship or imitation learning (Abbeel and Ng, 2004), with
popular applications in robotics and autonomous driving. In theory,
any machine learning method can be applied to this problem, but it is
unclear what model is the most suitable. Popular black-box machine
learning models, such as artificial neural networks, often require a
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large amount of data to train and, more importantly, are difficult to
interpret. Interpretability, however, is crucial in this problem as we are
chiefly interested in gaining a better understanding of the underlying
decision-making process.

In this work, we present an approach that is fundamentally inspired
by the principle of optimality (Schoemaker, 1991), which conjectures
that autonomous agents generally make decisions in some optimal
fashion. This basic relationship between decision making and optimiza-
tion is commonly applied in many fields. For example, most economic
theory relies on the assumption that rational decision makers are utility
maximizers (Morgenstern and von Neumann, 1944; Hey and Orme,
994). Evolutionary biology tells us that through adaptations over
he course of millions of years, biological systems have evolved to
ehave optimally, albeit the measure of optimality and the decision
et often being unclear (Rosen, 1967; Parker and Smith, 1990). Even
he fundamental basis for thermodynamics is an optimization problem,
amely Gibbs free energy minimization (Gautam and Seider, 1979;
ossi et al., 2009). Following this principle of optimality, the key idea
s to model a decision-making process as a mathematical optimization
roblem of the following general form:

minimize
𝑥

𝑓 (𝑥, 𝑢)

ubject to 𝑔(𝑥, 𝑢) ≤ 0,

here 𝑥 and 𝑢 denote the vectors of decision variables and input
arameters, respectively. Given input parameters 𝑢, the decision maker
hooses 𝑥 such that their objective function 𝑓 (𝑥, 𝑢) is minimized while
atisfying the constraints 𝑔(𝑥, 𝑢) ≤ 0. We then consider the inverse
roblem, which is to infer the functions 𝑓 and 𝑔 given observations,
ith each data point 𝑖 corresponding to an input-decision pair (𝑢𝑖, 𝑥𝑖).
he resulting estimated model will be a natural representation of a
ecision-making process that is inherently interpretable. Moreover, this
pproach allows us to take advantage of all the modeling flexibility
rovided by mathematical optimization and directly incorporate do-
ain knowledge in the form of constraints. In the operations research
iterature, the inverse problem described above is referred to as inverse
ptimization (IO) (Ahuja and Orlin, 2001). We present a review of the
elevant IO literature in the next section.
To better understand when IO will produce a more useful model

han a black-box machine learning method, consider a decision maker
ho is responsible for routing traffic on a road network. Our goal
s to understand the decision-making strategy of this decision maker
ecause they are considered an expert. When using IO, the constraints
n the decision maker, which represent the structure of the network
nd its capacities, can be easily formulated. Through our approach,
earning the objective function of the decision maker will uniquely
llow us to understand the preferences of the expert decision maker.
his information can be used to transfer the expert’s knowledge to other
ovice operators, which can be particularly useful in situations where
he expert is unavailable or when their expertise needs to be shared
ith a larger group of decision makers. It is generally not easy to extract
uch insights from black-box machine learning models.

. Literature review

The notion of inverse optimization was first introduced by Burton
nd Toint (1992) who considered the problem of recovering arc costs
n a directed graph using given shortest-path solutions. Early works
ave primarily addressed the deterministic setting in which observa-
ions are assumed to be exactly optimal solutions of the optimization
odel, with the majority of existing works only considering one single
bservation (Zhang et al., 1996; Zhang and Liu, 1996; Ahuja and Orlin,
001; Heuberger, 2004; Iyengar and Kang, 2005).
IO received relatively little attention in the 1990s and 2000s. How-

ver, there has been renewed interest in recent years when the research
ocus has shifted towards the case with multiple observations, also
eferred to as data-driven IO (Mohajerin Esfahani et al., 2018), and
2

oisy data (Chan et al., 2014, 2019; Keshavarz et al., 2011; Bertsimas
t al., 2015; Aswani et al., 2018). This new perspective has significantly
roadened the settings to which IO can be applied and it has found
pplication in a diverse range of fields, including healthcare plan-
ing (Chan et al., 2014, 2022), transportation network design (Chow
t al., 2014; Rönnqvist et al., 2017), electricity markets (Saez-Gallego
t al., 2016; Birge et al., 2017), biological network inference (Burgard
nd Maranas, 2003; Uygun et al., 2007; Zhao et al., 2015), and expert
ystems (Akhtar et al., 2022); a more detailed description of existing
O applications can be found in Chan et al. (2021).
While initially designed to determine an objective function that ren-

ers a single given solution optimal, the recent research in data-driven
O has helped it gain increased acceptance as a statistical learning
ethod (Iraj and Terekhov, 2021). Nevertheless, it has received virtu-
lly no attention from the chemical engineering or, more specifically,
he process systems engineering (PSE) community. We could only find
handful of articles where IO (or similar) methods have been used
o infer parameters of an optimization problem in PSE (Burgard and
aranas, 2003; Uygun et al., 2007; Bollas et al., 2009; Glass et al.,
017; Glass and Mitsos, 2018). We believe that IO can potentially be
ery effective in PSE applications as it provides a compelling framework
or the integration of optimization, machine learning, and domain
nowledge. This is in the same spirit as other hybrid modeling methods
hat incorporate first-principles knowledge into otherwise purely data-
riven approaches, which is crucial in many chemical engineering
pplications (Boukouvala and Floudas, 2017; Wilson and Sahinidis,
019; Bangi and Kwon, 2020).
From a theoretical perspective, research on data-driven IO is largely

imited to the case where the decision-making process is being modeled
s a convex optimization problem. Here, the main distinction among
he various proposed formulations is in terms of the loss function
mployed to fit the data. Minimization of the slack required to make
he noisy data satisfy an optimality condition is considered in Boyd
t al. (2011), Bertsimas et al. (2015), and Mohajerin Esfahani et al.
2018). Aswani et al. (2018) showed that this kind of loss function can
ead to statistically inconsistent estimates and proposed minimizing the
um of some norm of residuals with respect to the decision variables.
A key challenge in using the statistically consistent bilevel IO prob-

em formulation proposed by Aswani et al. (2018) is its computational
ntractability. This has restricted the use of IO to very specific problems
or which efficient solution methods have been developed. Almost all
xisting literature addresses inverse linear optimization problems (Ba-
ier et al., 2021; Shahmoradi and Lee, 2022; Gupta and Zhang, 2022).
dditionally, most of these studies assume the constraints to be known
nd only attempt to estimate the cost coefficients. There are very
ew existing contributions that consider joint estimation of objective
nd constraint parameters (Chan and Kaw, 2019; Ghobadi and Mah-
oudzadeh, 2020). Hence, there is a need for more efficient algorithms
hat can infer all unknown parameters for high-dimensional convex
onlinear problems with large datasets. This work aims to fill this
pparent deficiency in the literature.

. Outline and contributions

In this work, we consider data-driven IO with noisy data, and we
pecifically focus on the case where the optimization model describing
he decision-making process can be assumed to be convex. Here, one
ajor challenge is the computational complexity of the IO problem as
t gives rise to a bilevel optimization problem whose size increases with
he number of data points. To solve large model instances, we develop
penalty block coordinate descent (BCD) algorithm that exploits the
pecific decomposable structure of the problem. The efficacy of the
roposed algorithm is demonstrated through a comprehensive set of
omputational experiments. Moreover, importantly, the computational
esults show empirically that the proposed data-driven IO method is
tatistically consistent and data-efficient, highlighting its promise for
uture, more complex applications.
In summary, the key contributions of this work are as follows:
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1. We propose a data-driven framework to simultaneously learn the
objective function and constraint parameters of a convex nonlin-
ear optimization problem based on multiple noisy observations
of its optimal solutions for different input parameter values.

2. We formulate the data-driven IO problem as a bilevel pro-
gram, which we further reformulate into a single-level optimiza-
tion problem using the Karush–Kuhn–Tucker (KKT) optimality
conditions. In general, the resulting problem lacks regulariza-
tion. We alleviate this deficiency by proposing an exact penalty
reformulation.

3. For certain important classes of functions 𝑓 and 𝑔, we show that
the penalty reformulation of the IO problem is a multiconvex
optimization problem. In this case, we show that large instances
of the reformulated IO problem can be solved very efficiently by
exploiting their decomposable structure with the BCD algorithm.

4. By applying known results from the literature, we show that
the proposed solution method is guaranteed to converge to a
stationary point of the reformulated IO problem. We further
demonstrate the effectiveness of our method through computa-
tional experiments based on a number of instances of a convex
optimization problem from the wireless communication litera-
ture. Our results indicate that a BCD-based decomposition strat-
egy is significantly faster and finds higher-quality solutions than
standard nonlinear optimization solvers.

5. We demonstrate the real-world utility of IO by considering two
realistic example problems. In the first problem, we use IO to es-
timate a decision maker’s risk preference when making decisions
under significant uncertainty. In the second example, we use IO
to estimate customers’ internal constraints under the assumption
that their buying decisions are covered by a collective bargaining
agreement.

The remainder of this paper is organized as follows. In Section 4,
we present the mathematical formulation of the IO problem that we
consider in this work. The penalty BCD algorithm is developed in
Section 5, and the results from the computational case studies are
presented in Section 6. Finally, we close with some concluding remarks
in Section 7.

4. The inverse optimization problem

In this section, we present the mathematical formulation of the IO
problem that we consider in this work. We describe its key properties
and introduce a set of assumptions that will be useful in the next section
where we present our solution strategy for the problem.

We start by assuming that the given decision-making process can be
modeled as a convex optimization problem of the following form:

minimize
𝑥∈R𝑛

𝑓 (𝑥, 𝑢; 𝜃)

subject to 𝑔𝑘(𝑥, 𝑢;𝜔) ≤ 0 ∀ 𝑘 ∈ {1,… , 𝑚}
ℎ𝑘(𝑥, 𝑢;𝜔) = 0 ∀ 𝑘 ∈ {1,… , 𝑝},

(FOP)

here 𝑥 is the vector of decision variables and 𝑢 is the vector of input
ariables. The function 𝑓 is the objective function of the problem, and
𝑘 and ℎ𝑘 are the constraint functions. The model given by 𝑓 , 𝑔𝑘, and
𝑘, which we refer to as the forward optimization problem (FOP), is
arameterized by two sets of model parameters, 𝜃 and 𝜔. To ease the
otation, we denote the constraint functions {𝑔𝑘}𝑚𝑘=1 and {ℎ𝑘}

𝑝
𝑘=1 by

unction vectors 𝑔 and ℎ, respectively, in the remainder of this paper.
To ensure convexity of (FOP), we require the functions 𝑔 and ℎ to

be convex and affine in 𝑥, respectively, for fixed 𝑢 and 𝜔. We also make
the following assumptions.

Assumption 1. The functions 𝑓 (𝑥, 𝑢; 𝜃) and 𝑔(𝑥, 𝑢;𝜔) are twice contin-
uously differentiable in 𝑥 for fixed 𝑢, 𝜃, and 𝜔.

Assumption 2. The function 𝑓 (𝑥, 𝑢; 𝜃) is strictly convex in 𝑥 for fixed
3

𝑢 and 𝜃.
Assumption 1 is fairly standard in the IO literature (Boyd et al.,
2011; Bertsimas et al., 2015; Mohajerin Esfahani et al., 2018) and is
required to ensure that the bilevel IO problem (introduced later) can be
reformulated as a single-level problem. There are two main arguments
for Assumption 2:

1. Given a dataset consisting of (𝑢𝑖, 𝑥𝑖) observations, it is likely
that there will be multiple optimization models that can explain
the data. In these cases, it may be better to learn a strictly
convex model that, when used for predictions, results in unique
decisions for every input. This can help avoid ambiguities and
ensure that the model makes clear, distinct decisions.

2. There may still be situations in which the user wants to learn
parameters of a problem that, generally, does not have unique
solutions. However, as shown in our previous work (Gupta and
Zhang, 2022), methods developed for estimating parameters of
generally convex FOPs do not provide good solutions when
the FOPs can admit multiple solutions. Therefore, in this case,
we suggest adding a small regularizing quadratic term to the
objective function of the problem to make it strictly convex.

The goal of IO is to recover model (FOP) from observations that
are assumed to be noisy estimates of the optimal solutions to (FOP) for
given values of the input variables. Specifically, the problem we aim to
solve is the following (Aswani et al., 2018):

minimize
𝜃̂∈𝛩, 𝜔̂∈𝛺, 𝑥̂

∑

𝑖∈
(𝑥𝑖 − 𝑥̂𝑖)⊤𝑊 (𝑥𝑖 − 𝑥̂𝑖)

subject to 𝑥̂𝑖 = arg min
𝑥̃∈R𝑛

{

𝑓 (𝑥̃, 𝑢𝑖; 𝜃̂) ∶ 𝑔(𝑥̃, 𝑢𝑖; 𝜔̂) ≤ 0, ℎ(𝑥̃, 𝑢𝑖; 𝜔̂) = 0
}

∀ 𝑖 ∈ ,
(IOP)

where  is the set of experiments, with each experiment 𝑖 defined
by given inputs 𝑢𝑖 and the corresponding observed decisions 𝑥𝑖. The
objective is to choose the parameters 𝜃̂ and 𝜔̂ from sets 𝛩 and 𝛺,
respectively, such that a weighted sum of squared residuals, where𝑊 ∈
R𝑛×𝑛 denotes the diagonal matrix of weighting factors, is minimized.

We make the following assumption about sets 𝛩 and 𝛺, which
is required to ensure statistical consistency of the estimates 𝜃̂ and 𝜔̂
obtained from (IOP) (Aswani et al., 2018):

Assumption 3. The sets 𝛩 and 𝛺 are compact.

In addition, we require a regularity assumption on these sets to
ensure the convergence of our solution algorithm for (IOP).

Assumption 4. The description of sets 𝛩 and 𝛺 satisfies neces-
sary regularity conditions such as Mangasarian-Fromovitz constraint
qualification (MFCQ).

Finally, we highlight an implicit assumption while formulating an
IO problem where we assume that the set of possible objective pa-
rameters 𝛩 disallows the trivial solution for 𝜃 that would render the
objective function a constant.

Problem (IOP) is similar to how the IO problem has typically
been formulated in the literature with the only difference being the
weighting factors that offer the following flexibilities while formulating
the IO problem:

1. Weights can be used to reflect the level of importance of each
variable. In data reconciliation, the weight for each variable is
the reciprocal of the variance of the corresponding measure-
ment, which reflects the accuracy of the measurement. This can
be considered using our general matrix of weighting factors.

2. Weighting factors allow us to deal with problems where different
decision variables have vastly different scales.

3. It also generalizes the case with unmeasured variables, for which

the weighting factors can be set to zero.
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Finally, we close this section by formally stating a mild assumption
under which (IOP) is always feasible.

Assumption 5. The sets 𝑖 ∶=
{

𝑥 ∶ 𝑔(𝑥, 𝑢𝑖;𝜔) < 0, ℎ(𝑥, 𝑢𝑖;𝜔) = 0
}

∀ 𝑖 ∈
 are nonempty for every 𝜔 ∈ 𝛺, and 𝑓 remains bounded from below
for every 𝜃 ∈ 𝛩.

5. Solution strategy

5.1. Single-level reformulation

Problem (IOP) is a bilevel optimization problem with convex lower-
level problems. This class of problems are typically solved by reformu-
lating them into a single-level optimization problem by replacing the
lower-level problems with their optimality conditions (Dempe et al.,
2015). Here, given Assumption 5, the lower-level problems of (IOP)
can be replaced with their KKT conditions, resulting in the following
reformulation of (IOP):

minimize
𝜃̂∈𝛩, 𝜔̂∈𝛺,𝑥̂,𝜆,𝜇

∑

𝑖∈
(𝑥𝑖 − 𝑥̂𝑖)⊤𝑊 (𝑥𝑖 − 𝑥̂𝑖) (1a)

subject to ∇𝑓 (𝑥̂𝑖, 𝑢𝑖; 𝜃̂) + 𝜆⊤𝑖 ∇𝑔(𝑥̂𝑖, 𝑢𝑖; 𝜔̂) + 𝜇⊤
𝑖 ∇ℎ(𝑥̂𝑖, 𝑢𝑖; 𝜔̂) = 0

∀ 𝑖 ∈  (1b)

𝑔(𝑥̂𝑖, 𝑢𝑖; 𝜔̂) ≤ 0 ∀ 𝑖 ∈  (1c)

ℎ(𝑥̂𝑖, 𝑢𝑖; 𝜔̂) = 0 ∀ 𝑖 ∈  (1d)

𝜆𝑖𝑘 𝑔𝑘(𝑥̂𝑖, 𝑢𝑖; 𝜔̂) = 0 ∀ 𝑖 ∈ , 𝑘 ∈  (1e)

𝜆𝑖 ≥ 0, 𝑥̂𝑖 ∈ R𝑛 ∀ 𝑖 ∈ , (1f)

here 𝜆 and 𝜇 are respectively the dual variables of the inequality
nd equality constraints of the lower-level problems of (IOP). Con-
traints (1b), (1c)–(1d), and (1e) correspond to the stationarity, primal
feasibility, and complementary slackness conditions, respectively.

Problem (1) is generally a nonconvex nonlinear program (NLP)
that is difficult to solve to global optimality. Moreover, the size of
(1) increases with the number of data points, which quickly leads to
ery large instances in problems of practical relevance. In the machine
earning literature, given a large nonconvex optimization problem, it is
ypical to focus on finding a good local solution efficiently rather than
rying to solve the problem to global optimality. A popular example is
eep learning, which is a nonconvex optimization problem; however,
everal local solution methods have been found to result in very ac-
urate predictive models (Choromanska et al., 2015; Jin et al., 2021;
Danilova et al., 2022). In the following, we pursue a similar strategy in
tackling the computational complexity of problem (1).

5.2. Penalty reformulation

Problem (1) lacks sufficient regularity that is generally required to
solve such problems with standard NLP methods. It contains comple-
mentarity constraints (1e), which make the problem violate the MFCQ
everywhere in the feasible region (Scheel and Scholtes, 2000; Anitescu,
2005). Moreover, the unknown FOP parameters 𝜃 and 𝜔 complicate
the form of the other constraints in (1) that may, in some cases, also
contribute towards the lack of regularization.

The aforementioned lack of regularization of (1) is known to result
in degenerate and unbounded Lagrange multipliers in the vicinity of the
optimal solutions, causing convergence difficulties with NLP solution
algorithms. A popular strategy to overcome this difficulty employs a
penalty reformulation (Bertsekas, 1997; Nocedal and Wright, 2006) of
the original problem (Anitescu, 2000). In this approach, the complicat-
ing constraints, i.e., the constraints resulting in constraint qualification
violation are moved to the objective function as penalty terms, leaving
the problem with a ‘‘regular’’ feasible region. Depending on the type of
4

penalty function, the reformulation can be exact in the sense that, for
certain finite values of the penalty parameters, every optimal solution
of the original problem will also be optimal for the reformulation.
Commonly employed examples of penalty functions that result in these
exact reformulations are nonsmooth penalty functions, such as the one
based on the 𝓁1-norm of constraint violation (Bertsekas, 1997; Nocedal
and Wright, 2006). These have proven to be very successful in dealing
with the challenges associated with difficult NLPs such as mathematical
programs with complimentarity constraints (MPCCs) (Benson et al.,
2006), which motivates us to consider the following reformulation of
(1):

minimize
𝜃̂∈𝛩, 𝜔̂∈𝛺,𝑥̂,𝜆,𝜇

∑

𝑖∈
(𝑥𝑖 − 𝑥̂𝑖)⊤𝑊 (𝑥𝑖 − 𝑥̂𝑖)

+ 𝑐⊤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑖∈
|∇𝑓 (𝑥̂𝑖, 𝑢𝑖; 𝜃̂) + 𝜆⊤𝑖 ∇𝑔̂(𝑥̂𝑖, 𝑢𝑖; 𝜔̂) + 𝜇⊤

𝑖 ∇ℎ̂(𝑥̂𝑖, 𝑢𝑖; 𝜔̂)|
∑

𝑖∈
max{0, 𝑔̂(𝑥̂𝑖, 𝑢𝑖; 𝜔̂)}
∑

𝑖∈
|ℎ̂(𝑥̂𝑖, 𝑢𝑖; 𝜔̂)|

∑

𝑖∈
|𝜆⊤𝑖 𝑔̂(𝑥̂𝑖, 𝑢𝑖; 𝜔̂)|

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑃

subject to 𝜆𝑖 ≥ 0, 𝑥̂𝑖 ∈ R𝑛 ∀ 𝑖 ∈ 

(2)

where 𝑐 are the positive penalty parameters. Next, we present our
strategy to find a minimizer for (1) through (2).

Lemma 1. The feasible region of problem (2) satisfies MFCQ.

Proof. By Assumption 4, the constraints describing the sets 𝛩 and 𝛺
satisfy MFCQ. Moreover, in (2), the only remaining constraints are the
non-negativity constraints on the dual variables 𝜆 which satisfy linear
independence constraint qualification (LICQ) and therefore MFCQ. □

In (2), we move all but a few simple bound constraints of (1) to the
objective function. However, note that our goal here is to only eliminate
the constraints that contribute to the lack of regularity of (1). Therefore,
while formulating (2), one can choose to move only those constraints
for which constraint qualification violation is expected. Since, in prac-
tice, it is often not trivial to check constraint qualification violation,
we use the following reformulation strategy: We always penalize all
the stationarity, complementarity, and primal feasibility constraints for
which 𝜔 are unknown. For the other primal constraints with known
𝜔, we leave them as hard constraints if it is possible to see that they
do not violate constraint qualification. For example, if the remaining
primal constraints are simple bound constraints that obviously satisfy
LICQ, then we do not need to penalize them.

Lemma 1 essentially highlights the well-posedness of (2) which
makes it amenable to solution via any commercial NLP solver, such
as IPOPT (Wächter and Biegler, 2006). We exploit this property of (2)
to design an algorithm in which the solution of (1) can be obtained by
repeatedly solving (2). The strategy employed in Algorithm 1 is to start
with some initial values for the penalty parameters 𝑐 and successively
increase them by a factor 𝜌 after every iteration to find the point where
a feasible solution to (1) is obtained. The global convergence of this
approach for a general NLP has been proved by Benson et al. (2007).

Algorithm 1 Algorithm for solving (1) through (2).
1: initialize: 𝑘 ← 1, (𝜃̂, 𝜔̂, 𝑥̂, 𝜆, 𝜇) ← (𝜃̂0, 𝜔̂0, 𝑥̂0, 𝜆0, 𝜇0) and 𝑐 ← 𝑐1
2: while ‖𝑃‖ > 𝜖 do
3: solve (2) with 𝑐 = 𝑐𝑘, warm-start with

(𝜃̂𝑘−1, 𝜔̂𝑘−1, 𝑥̂𝑘−1, 𝜆𝑘−1, 𝜇𝑘−1), obtain (𝜃̂𝑘, 𝜔̂𝑘, 𝑥̂𝑘, 𝜆𝑘, 𝜇𝑘)
4: 𝑐𝑘+1 ← 𝑐𝑘 + 𝜌𝑐𝑘
5: 𝑘 ← 𝑘 + 1
6: end while
7: return (𝜃̂𝑘, 𝜔̂𝑘, 𝑥̂𝑘, 𝜆𝑘, 𝜇𝑘)
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Assumption 6. Suppose (𝜃̂𝑘, 𝜔̂𝑘, 𝑥̂𝑘, 𝜆𝑘, 𝜇𝑘) denotes a solution of (2)
with 𝑐 = 𝑐𝑘. The sequence of solutions {𝜃̂𝑘, 𝜔̂𝑘, 𝑥̂𝑘, 𝜆𝑘, 𝜇𝑘} generated as
𝑐𝑘 increase to ∞ is bounded.

Theorem 1 (Benson et al., 2007). Suppose Assumption 6 holds. If (𝜃̂∗, 𝜔̂∗,
̂∗, 𝜆∗, 𝜇∗) is the accumulation point of the sequence of solutions generated
s 𝑘 → ∞ and 𝑐𝑘 increase to ∞, then (𝜃̂∗, 𝜔̂∗, 𝑥̂∗, 𝜆∗, 𝜇∗) minimizes (1).

.3. Block coordinate descent

We introduced the penalty reformulation as a means to tackle the
ack of regularity of (2). However, the resulting ‘‘well-posed’’ problem
s still a nonconvex NLP whose size increases with the number of data
oints. In this section, we propose a decomposition scheme designed to
ignificantly reduce the computation time when solving certain large
nstances of (2).
Our approach is motivated by the fact that for many FOPs, (1) be-

omes a multiconvex optimization problem (MCP) that exhibits a particu-
ar decomposable structure. MCPs are problems for which the variables
an be partitioned into blocks over which it is convex when all other
ariables are held constant (Shen et al., 2017). Such FOPs include, for
xample, the broad class of quadratic programs (QPs), which are very
ommon in engineering applications (McCarl et al., 1977). Next, we
emonstrate the MCP structure of the penalty reformulation by deriving
2) for the case when (FOP) is a QP.

xample 1. Suppose that (FOP) can be posed as the following convex
QP:

minimize
𝑥∈R𝑛

1
2
𝑥⊤𝑄𝑥 + 𝑟⊤𝑥

subject to 𝐴𝑥 ≤ 𝑏,
(3)

where 𝑄 ≻ 0. We assume that 𝑄 and 𝑟 can be parameterized with 𝜃,
and 𝐴 and 𝑏 can be parameterized with 𝜔. Also, 𝑄, 𝑟, 𝐴, and 𝑏 generally
change with the input parameters 𝑢. Problem (2) for this FOP can be
stated as follows:
minimize

𝜃̂∈𝛩, 𝜔̂∈𝛺,𝑥̂,𝜆

∑

𝑖∈
(𝑥𝑖 − 𝑥̂𝑖)⊤𝑊 (𝑥𝑖 − 𝑥̂𝑖)

+ 𝑐⊤

⎡

⎢

⎢

⎢

⎢

⎢

⎣

∑

𝑖∈
|𝑄(𝑢𝑖; 𝜃̂)𝑥̂𝑖 + 𝑟(𝑢𝑖; 𝜃̂) + 𝜆⊤𝑖 𝐴(𝑢𝑖; 𝜔̂)|

∑

𝑖∈
|𝐴(𝑢𝑖; 𝜔̂) 𝑥̂𝑖 − 𝑏(𝑢𝑖; 𝜔̂)|

∑

𝑖∈
|𝜆⊤𝑖

(

𝐴(𝑢𝑖; 𝜔̂) 𝑥̂𝑖 − 𝑏(𝑢𝑖; 𝜔̂)
)

|

⎤

⎥

⎥

⎥

⎥

⎥

⎦

subject to 𝜆𝑖 ≥ 0, 𝑥̂𝑖 ∈ R𝑛 ∀ 𝑖 ∈ .

(4)

ssuming that 𝛩 and 𝛺 are convex, this problem is an MCP for the
ollowing block decomposition of its variables:

(

(𝜃̂, 𝜆), 𝜔̂, 𝑥̂
)

.

MCPs are nonconvex problems and hence generally very hard to
olve globally; however, several important problems in machine learn-
ng fall into this class and have led to the development of a number of
pproximate solution methods (Shen et al., 2017; Jain and Kar, 2017).
ost of these methods employ some variation of the block coordinate
escent (BCD) approach which exploits the particular mathematical
tructure of subproblems obtained by fixing blocks of variables.
Assume that the MCP instances of (2) can be written as follows:

minimize
𝑥

𝑓 (𝑥1,… , 𝑥𝓁)

ubject to 𝑥𝑖 ∈ 𝑖 ∀ 𝑖 ∈ {1,… ,𝓁},
(5)

here the variables 𝑥 ∈ R𝑛 have been partitioned into 𝓁 mutually
xclusive, collectively exhaustive sets {𝑥1,… , 𝑥𝓁}. The function 𝑓 is the
onconvex objective function and 𝑖 is a closed convex set of feasible
oints for the variable block 𝑥𝑖. Note that in (5), we require different
ariable blocks to lie in their own independent feasible sets; this is
5

requirement for the BCD method as it has been shown that in the
resence of coupled feasible sets, the BCD algorithm may stagnate at
non-stationary point. Here, our penalty reformulation naturally gives
s a formulation (2) for which the feasible sets for different variables
re independent of each other.
Problem (5) is an MCP because the following subproblems are

onvex:

inimize
𝑥𝑖∈𝑖

𝑓 (𝑥̄1,… , 𝑥̄𝑖−1, 𝑥𝑖, 𝑥̄𝑖+1,… , 𝑥̄𝓁) ∀ 𝑖 ∈ {1,… ,𝓁}, (6)

where the bar over a variable indicates a fixed variable. In BCD, one
solves (5) by solving the subproblems (6) cyclically in a Gauss–Seidel
fashion until the variable values converge to a limit point. While the
required number of iterations for BCD to converge can be exponentially
large, the problems solved at each step are convex and overall, this ap-
proach has been proven to be significantly more efficient than directly
solving the full-space problem for many practical problems (Wright,
2015).

Generally, the convergence of BCD to a stationary point of an opti-
mization problem requires rather stringent conditions on the structure
of (5); typically, 𝑓 needs to be smooth and all the subproblems (6)
must have unique solutions (Bertsekas, 1997). In the case when a
problem does not meet these criteria, a common strategy is to replace
the original problem with a well-chosen approximation for which BCD
is guaranteed to converge. A detailed discussion of such strategies can
be found in Razaviyayn et al. (2013) and Yang et al. (2019). Here, we
make use of the block successive upper minimization (BSUM) algorithm
of Razaviyayn et al. (2013) to ensure convergence of BCD for (2), which
neither has a smooth objective nor results in subproblems with unique
solutions. Specifically, we make use of the result stated in Theorem 2.

Theorem 2 (Razaviyayn et al., 2013). Let 𝑓 in (5) be nonsmooth and
the subproblems (6) be convex, but not necessarily strictly convex. BCD
converges to a stationary point of (5) if executed with the following set of
subproblems (instead of (6)):

minimize
𝑥𝑖∈𝑖

𝑓 (𝑥̄1,… , 𝑥̄𝑖−1, 𝑥𝑖, 𝑥̄𝑖+1,… , 𝑥̄𝓁) +
1
2𝛾

‖𝑥𝑖 − 𝑥̄𝑖‖
2
2

∀ 𝑖 ∈ {1,… ,𝓁},
(7)

where 𝛾 is a scalar parameter.

Algorithm 2 shows the BCD algorithm that we use to solve (5).

Algorithm 2 A cyclic BCD implementation on (5).
1: initialize: 𝑥 ← 𝑥̄
2: while convergence criteria are not satisfied do
3: for all 𝑖 = 1,… ,𝓁 do
4: solve (7), obtain 𝑥∗𝑖 , 𝑥̄𝑖 ← 𝑥∗𝑖
5: end for
6: end while
7: return 𝑥̄

The following corollary follows directly from Theorem 2.

Corollary 1. Suppose 𝑥∗ is the accumulation point of the sequence of
iterates 𝑥̄ generated by Algorithm 2. Then 𝑥∗ is a KKT point of (5).

Initialization. Since our proposed solution method only guarantees to
return a KKT point of (1), it is important to seed it with a good initial
guess. This is, in general, difficult to achieve without any knowledge
of the distribution of noise in the training data. Here we detail a
heuristic initialization strategy which, as evident from our extensive
computational results in Section 6, is quite effective in finding an
estimate for parameters 𝜃 and 𝜔 that perform well in predicting optimal
decisions for unseen 𝑢 values.

In our approach, we first initialize 𝑥̂𝑖 with the noisy decision data
𝑥 for all 𝑖 ∈ , i.e., 𝑥̂ = 𝑥. Next, we solve the following two problems
𝑖 0
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to sequentially initialize the 𝜔̂ and (𝜃̂, 𝜆, 𝜇) parameters, respectively:

𝜔̂0 ∈ argmin
𝜔̂∈𝛺

∑

𝑖∈
max{0, 𝑔̂(𝑥̂0𝑖, 𝑢𝑖; 𝜔̂)} +

∑

𝑖∈
|ℎ̂(𝑥̂0𝑖, 𝑢𝑖; 𝜔̂)| (8)

𝜃̂0, 𝜆0, 𝜇0) ∈ argmin
𝜃̂∈𝛩,𝜆,𝜇

∑

𝑖∈
|∇𝑓 (𝑥̂0𝑖, 𝑢𝑖; 𝜃̂) + 𝜆⊤𝑖 ∇𝑔̂(𝑥̂0𝑖, 𝑢𝑖; 𝜔̂0)

+ 𝜇⊤
𝑖 ∇ℎ̂(𝑥̂0𝑖, 𝑢𝑖; 𝜔̂0)|+

∑

𝑖∈
|𝜆⊤𝑖 𝑔̂(𝑥̂0𝑖, 𝑢𝑖; 𝜔̂0)|

subject to 𝜆𝑖 ≥ 0 ∀ 𝑖 ∈ 

(9)

Hyperparameter setting. The overall algorithm involves three hyperpa-
rameters: the initial penalty parameters 𝑐1, the factor 𝜌 by which 𝑐 are
increased after every iteration of Algorithm 1 , and the regularization
arameter 𝛾 for BCD subproblems (7). Out of these three, we find that 𝑐1
nd 𝜌 have a large impact on the quality of the solution determined by
ur approach. While choosing 𝑐1 and 𝜌 to be of large magnitude helps
o quickly find a solution for which ‖𝑃‖ = 0, very often the resulting
olution is of low quality. Here, assigning small values to 𝑐1 and 𝜌
enerally solves the problem, but slows the convergence of Algorithm
. In our computational experiments, we utilize a validation dataset to
etermine sufficiently large values of 𝑐1 and 𝜌 for which the algorithm
onverges quickly yet generates good solutions.
The regularization parameter 𝛾 does not affect the quality of the

olution, but has an impact on BCD’s rate of convergence. We find that
ot having the regularization term in (7), i.e., setting 𝛾 to ∞ may make
CD cycle between non-stationary points without converging to any
articular solution. On the other hand, making 𝛾 small stabilizes the
lgorithm but makes convergence extremely slow as the regularization
erm becomes dominant. In our computational experiments, we observe
hat assigning a large value to 𝛾 such as 𝛾 = 106 typically works well
n terms of stabilizing the BCD iterations yet ensuring fast convergence
o a stationary point.

. Computational case studies

We apply the proposed solution methods for the data-driven IO
roblem to three case studies. The first case study is based on the
o-called water-filling problem from the field of information theory
Kalpana and Khan, 2015). We use this example to showcase the
omputational advantages of Algorithms 1 and 2. The next two case
tudies, one addressing learning the risk preferences of a decision
aker and the second related to estimating parameters of a resource
llocation market, demonstrate the utility of IO in systems engineering
pplications. All model instances presented in this section were imple-
ented in Julia v1.6.1 using the mathematical optimization modeling
nvironment JuMP v0.21.10 (Dunning et al., 2017). We applied Gurobi
9.1.2 to solve all convex optimization problems, and all nonconvex
LPs were solved using IPOPT v0.7.0.

.1. The water-filling problem

We consider the following variation of the water-filling problem
rom the wireless communication literature that is used to determine
ptimal power allocation for a multidimensional communication chan-
el:

maximize
𝑥∈R𝐷

+

𝐷
∑

𝑑=1
𝜃𝑑 log(𝑥𝑑 + 𝑢𝑑 )

ubject to
𝐷
∑

𝑑=1
𝜔𝑑𝑥𝑑 = 𝜔𝐷+1,

(10)

here the objective function represents the total communication rate
nd the constraint limits the total amount of power that can be allo-
ated to the system. Here we assume that the weighting parameters
6

for the objective and 𝜔 for the constraint are unknown. The goal i
s to estimate these parameters by observing changes in the optimal
ower allocation decisions 𝑥 based on fluctuations in the input pa-
ameters 𝑢. In the context of IO, this problem has previously been
onsidered by Aswani et al. (2018); however, their work is limited to
he estimation of objective parameters assuming 𝜔 to be known.
For each instance of the IOP, the training data are generated as

ollows. We first create arbitrary vectors 𝜃 ∈ R𝐷 and {𝜔𝑑}𝐷𝑑=1 with 𝜔𝑑 ∈
𝐷 by sampling their individual elements from the uniform distribution
(1.00, 1.10). For all instances, we set the right-hand-side constraint pa-
ameter 𝜔𝐷+1 to the dimensionality of the problem 𝐷. We then sample
set of input vectors 𝑢𝑖 ∈ R𝐷 for each 𝑖 ∈  such that 𝑢𝑖𝑑 ∼  (1.00, 2.00)
or every 𝑑 ∈ {1,… , 𝐷}. Next, keeping 𝜃 and 𝜔 the same, we solve these
| instances of (10) to obtain the optimal power allocation decisions
∗
𝑖 . Finally, we distort these true optimal solutions by adding a Gaussian
oise 𝛾 ∼  (0, 𝜎2I) to obtain the noisy dataset as 𝑥𝑖 = 𝑥∗𝑖 + 𝛾. In
his study, to show the computational advantage of Algorithm 1 , we
onsider large datasets of up to 1,000 samples with FOPs of varying
imensionality. We also consider varying levels of noise in the datasets
y changing the value of 𝜎. A specific case is hence represented by 𝐷,
, and ||, and we solve ten random instances for each case to obtain
eliable performance statistics for different solution methods. While
etting up the IOP, we assume 𝛩̂ =

{

𝜃̂ | 10−4 ≤ 𝜃̂𝑑 ≤ 10 ∀ 𝑑 ∈ {1,… , 𝐷}
}

nd 𝛺̂ =
{

𝜔̂ | 𝜔̂𝑑 ≥ 0 ∀ 𝑑 ∈ {1,… , 𝐷}, 𝜔̂𝐷+1 = 1
}

. The sets 𝛩̂ and 𝛺̂
ave been chosen so that trivial solutions, such as 𝜃 = 0, are eliminated
rom the feasible solution space of the IOP.

.1.1. Convergence criterion for Algorithm 1
In Algorithm 1, we consider the algorithm to have converged when

he norm of the penalty term becomes less than a certain threshold
alue 𝜖. However, in our computational experiments, we find conver-
ence of the algorithm with BCD in the inner loop to be very slow.
ig. 1a shows the evolution of ‖𝑃‖1 as a function of the number of
terations with iteration 0 representing the initialization solution. As
an be observed, the value of ‖𝑃‖1 reaches a peak before settling into
slow decay phase, after which the desired convergence threshold
akes a long time to reach. This may, at first glance, make BCD-based
lgorithm 1 appear an impractical approach for our problem. However,
s can be seen in Fig. 1b, we find that the prediction error of the
enerated estimates 𝜃̂ and 𝜔̂ stabilizes when ‖𝑃‖1 enters the slow decay
hase. Running the algorithm after this point does not improve the
rediction accuracy. Therefore, we modify our convergence criterion
o be the stabilization of the prediction error instead of ‖𝑃‖1 ≤ 𝜖.
Note that the slow reduction in ‖𝑃‖1 is observed only when BCD

s used to solve the penalty reformulation. When solving the penalty
eformulation directly with IPOPT, we find that, in most cases, the
lgorithm converges in just one or two iterations.

.1.2. Computational performance
We report results comparing the computational performance of

hree different solution methods for (1):

• Method A - solve the problem directly with IPOPT,
• Method B - use Algorithm 1 with IPOPT to solve the penalty
reformulation, and

• Method C - use BCD (Algorithm 2) to solve the penalty reformu-
lation in Algorithm 1.

For a fair comparison, we initialize all three methods with the
ame initial solution obtained using the strategy described in Section 5.
ll model instances are solved with a time limit of 300 s using 24
ores and 16 GB of memory on the Mesabi cluster of the Minnesota
upercomputing Institute (MSI).
Table 1 summarizes the results for Method A. For a specific 𝐷, 𝜎,

nd ||, we show the median value of the computation time required
o solve the ten random instances. An ‘‘n/a’’ entry in this column

ndicates that IPOPT was unable to solve any of the instances in the
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Fig. 1. Example progress of ‖𝑃‖1 and 𝑑 (𝑥∗ , 𝑥̂) values as the number of iterations of Algorithm 1 increases.
Table 1
Computational performances of IPOPT (Method A) on instances of (1) designed to estimate parameters of (10).
𝜎  𝐷 = 50 𝐷 = 100

Median computation
time (s)

Prediction error Median computation
time (s)

Prediction error

median min max median min max

0.01 𝐷 36 62.96 26.90 1702.86 96 580.16 79.21 1305.69
1000 198 5.61 4.70 11.33 206 6.26 5.56 6.54

0.05 𝐷 64 1.97 0.29 16.62 63 3.10 × 105 118.57 2.93 × 108

1000 n/a – – – n/a – – –

0.1 𝐷 60 2.33 0.54 7.07 64 6.34 × 106 6.13 × 104 8.11 × 107

1000 n/a – – – n/a – – –
specified time limit. Additionally, we provide the median, maximum,
and minimum prediction errors of the generated estimates 𝜃̂ and 𝜔̂. To
obtain these statistics, along with every instance of training data, we
also generate a test dataset  of 100 inputs. This test data consists of
𝑢, 𝑥∗) pairs, where 𝑢 values are generated in the same manner as for
he training data, and 𝑥∗ are the corresponding true optimal solutions
btained using the same 𝜃 and 𝜔 as the ones used to generate the noisy
raining data. Once 𝜃̂ and 𝜔̂ have been found, we use them to solve the
roblems in the test dataset and evaluate the prediction error as the
otal Manhattan distance between the true solutions and their estimated
alues, i.e., we use the metric 𝑑 (𝑥∗, 𝑥̂) =

∑

𝑣∈ ‖𝑥∗𝑣 − 𝑥̂𝑣‖1.

From the data in Table 1, one can observe that IPOPT can solve
smaller instances very quickly but struggles with larger problems.
Moreover, even for problems with smaller datasets, there is a large
variability in the prediction accuracy values obtained with estimated
parameters. The solved instances with 𝐷 = 50 generally exhibit good
prediction performance, in contrast to instances with 𝐷 = 100 irre-
spective of the dataset size. We find that, generally, IPOPT is not a
robust solution method for difficult instances of (1) with either high
dimensionality or large datasets.

Next, using the same metrics as defined for Method A, we show
a comparison of the performances of solution methods B and C in
Table 2. While implementing Algorithm 1 on IOP instances of (10), we
set 𝑐1 = 500𝑒, where 𝑒 is a vector of all ones and 𝜌 = 1, 000. These values
were obtained by trial-and-error as described in Section 5.

The computational advantage of using a BCD-based decomposition
strategy is immediately apparent from the median computation times in
Table 2. Even for the smaller instances where we do not expect decom-
position to vastly outperform a full-space formulation, BCD outputs a
solution as much as ten times faster compared to when IPOPT is used to
solve the penalty reformulation of (1). For larger problems, we observe
that while IPOPT starts reaching the time limit of 300 s, BCD is able to
output a solution in approximately 100 s.
7

Fig. 2. Change in prediction error as a function of the training dataset size. The
box plot shows the interquartile ranges of prediction error values for the ten random
instances solved with 𝐷 = 100 and 𝜎 = 0.1 using solution method C.

6.1.3. Solution quality
Next, we focus on the quality of the solutions generated by Methods

B and C. For smaller instances, we find that both methods yield solu-
tions of similar prediction accuracy. However, as we move to problems
with larger datasets, IPOPT does not produce a good solution in any of
the problem instances. In contrast, with BCD, we see that the median
prediction error stays low for all cases. The only case where BCD may
result in a bad solution is when the training data has a high level
of noise yet a small dataset is provided to generate an estimate of
the missing FOP parameters. Finally, Fig. 2 shows that the solutions
obtained from BCD asymptotically converge towards the one with
minimum prediction error. This empirically confirms that our algorithm
generates statistically consistent solutions.

Overall, we find that Algorithm 1 is a significantly more robust
solution method for problem (1) compared to a direct application of



Computers and Chemical Engineering 170 (2023) 108123R. Gupta and Q. Zhang

𝑓
d
e

Table 2
Comparison of computational performances of solution methods B and C on an IOP based on random instances of (10).
𝐷 𝜎  Solved with IPOPT (Method B) Solved with BCD (Method C)

Median computation time (s) Prediction error Median computation timea (s) Prediction error

median min max median min max

50

0.01 50 11 64.20 26.90 104.08 1 41.60 23.65 141.88
1000 219 1.85 1.70 18.49 33 2.96 2.32 3.14

0.05 50 24 108.21 94.65 121.49 1 116.55 89.62 255.47
1000 300 71.83 9.25 6533.90 31 14.77 10.99 15.65

0.1 50 55 174.99 143.54 286.04 2 166.19 134.18 1.02 × 107

1000 300 4504.87 3994.46 4512.91 61 37.81 31.18 44.19

100

0.01 100 101 102.24 42.67 797.99 4 109.16 42.21 338.88
1000 300 22.60 19.73 160.78 51 5.88 5.71 6.53

0.05 100 113 155.36 135.21 1426.01 7 156.68 134.54 1.44 × 106

1000 300 2.32 × 105 1.36 × 105 6.13 × 105 112 47.85 27.95 53.28

0.1 100 109 195.23 91.05 265.68 10 248.60 199.15 2.18 × 108

1000 300 4.4 × 105 8.6 × 104 6.43 × 105 107 70.60 65.86 93.36

aBased on the modified convergence criterion described in Section 6.1.1.
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standard commercial NLP solvers. Moreover, when the penalty refor-
mulation of (1) is an MCP (as in this case), using BCD in the inner loop
of the algorithm produces marked improvement in its computational ef-
ficiency without compromising (or rather enhancing) the final solution
quality.

6.2. Estimating risk preferences

When people make decisions under significant uncertainty, their
choices strongly depend on their individual risk preferences. Knowing
these risk preferences can be very helpful to higher-level decision
makers; for example, companies may be able to create better products
and services for their risk-averse customers, and policymakers could de-
velop more effective regulations and incentives for their communities.
However, often these risk preferences are not explicitly known but need
to be estimated from observed decisions.

In risk-averse optimization, the decision-making problem is com-
monly formulated as a two-stage stochastic program of the following
form:

minimize
𝑥∈

𝑓1(𝑥) + E(𝑄(𝑥, 𝜉)) + 𝜆 𝜌(𝑄(𝑥, 𝜉)), (11)

where 𝑥 and 𝜉 denote the first-stage decisions and uncertain parameters
(or random variables), respectively,  is the first-stage feasible set, and
𝑓1(𝑥) is the first-stage cost function. The recourse function is denoted
by 𝑄(𝑥, 𝜉) and is defined as

𝑄(𝑥, 𝜉) = min
𝑦∈(𝑥,𝜉)

𝑓2(𝑥, 𝑦, 𝜉) (12)

with (𝑥, 𝜉) being the set of feasible second-stage decisions 𝑦 and
2(𝑥, 𝑦, 𝜉) being the second-stage cost function. The risk function is
enoted by 𝜌, and the objective is to minimize a weighted sum of the
xpected cost and risk, where the weighting factor 𝜆 is chosen by the
decision maker based on their level of risk aversion.

Many common risk functions are convex, which allows us to learn
them using the proposed data-driven IO framework, given that the over-
all FOP is also convex. Indeed, in the risk literature, there is the notion
of coherent risk measures, which exhibit properties that are deemed
desirable for the purpose of quantifying risk (Artzner et al., 1999); one
of those properties is convexity. In the following example, we consider
a simplified version of the risk-based electricity procurement problem
introduced by Zhang et al. (2016), where the conditional value-at-risk
(CVaR), one of the most popular coherent risk measures, is used as the
risk function 𝜌.

In this problem, the decision maker needs to schedule the operation
of a production plant that consumes a large amount of electricity, which
can be purchased from a power contract or from the spot market. The
prices for the power contract are known, but one must commit to the
8

urchase amount in advance, e.g. one day or one week ahead. Spot
lectricity prices, on the other hand, are uncertain and only become
nown shortly before the time of delivery. While purchasing electricity
rom the power contract bears no risk, the average contract price is
ypically higher than the average spot price, and it leaves less room
or taking advantage of fluctuations in the spot price; hence, there is
trade-off between purchasing from the power contract and the spot
arket, which one seeks to optimize. Assuming that the uncertain spot
rices follow a discrete probability distribution, the problem can be for-
ulated as the following deterministic equivalent of the corresponding
wo-stage stochastic program:

minimize
𝑥,𝑦,𝑞,𝑣,𝑤

∑

𝑡∈
𝑐𝑡 𝑥

2
𝑡 +

∑

𝑠∈
𝑝𝑠

∑

𝑡∈

(

𝑏𝑡 𝑞𝑡𝑠 + 𝑟𝑡𝑠 𝑦𝑡𝑠
)

+ 𝜆

(

𝑣 + 1
1 − 𝛼

∑

𝑠∈
𝑝𝑠 𝑤𝑠

)

(13a)

subject to 𝑖min ≤ 𝑖0 +
𝑡

∑

𝑡′=1

(

𝑞𝑡𝑠 − 𝑑𝑡
)

≤ 𝑖max ∀ 𝑡 ∈  , 𝑠 ∈  (13b)

∑

𝑡∈

(

𝑞𝑡𝑠 − 𝑑𝑡
)

≥ 0 ∀ 𝑠 ∈  (13c)

𝑚𝑞𝑡𝑠 = 𝑥𝑡 + 𝑦𝑡𝑠 ∀ 𝑡 ∈  , 𝑠 ∈  (13d)
∑

𝑡∈

(

𝑏𝑡 𝑞𝑡𝑠 + 𝑟𝑡𝑠 𝑦𝑡𝑠
)

− 𝑣 ≤ 𝑤𝑠 ∀ 𝑠 ∈  (13e)

𝑥𝑡 ∈ R+ ∀ 𝑡 ∈  (13f)

𝑞𝑡𝑠, 𝑦𝑡𝑠 ∈ R+ ∀ 𝑡 ∈  , 𝑠 ∈  (13g)

𝑤𝑠 ∈ R+ ∀ 𝑠 ∈  , (13h)

where  is the set of time periods that defines the scheduling horizon,
and  is the set of possible uncertainty realizations (or scenarios).
Each scenario 𝑠 is defined by its probability 𝑝𝑠 and spot price profile
𝑟𝑡𝑠. The first-stage decisions are the amounts of electricity purchased
from the power contract, denoted by 𝑥𝑡, across the scheduling horizon.
The second-stage variables are the production amounts, 𝑞𝑡𝑠, and the
amounts of electricity purchased from the spot market, 𝑦𝑡𝑠. The cost
of electricity purchased from the power contract in time period 𝑡 is
𝑐𝑡 𝑥2𝑡 , and the production cost (excluding the electricity cost) is assumed
to be a linear function of the production amount defined by the
coefficients 𝑏𝑡. In constraints (13b), the parameters 𝑖0, 𝑖min, 𝑖max, and
𝑑𝑡 denote the initial product inventory level, the minimum inventory,
the maximum inventory, and the product demand in time period 𝑡,
respectively. Constraints (13c) ensure that the total amount of product
produced over the course of the scheduling horizon is not less than the
total demand. We assume that the electricity consumption is a linear
function of the production amount defined by the coefficient 𝑚 and,
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per constraints (13d), must be equal to the total amount of electricity
procured in each time period. The term in the objective function (13a)
that is multiplied by the weighting factor 𝜆, along with constraints
(13e), represents the 𝛼-CVaR. For a given 𝛼 ∈ (0, 1), the 𝛼-CVaR is
defined as the expected cost greater than the 𝛼-VaR, which is the 𝛼-
quantile of the cost distribution. Note the use of the auxiliary variables
𝑣 and 𝑤𝑠, where for each scenario in which the cost is greater than 𝑣,

𝑠 takes the value of the difference between the cost and 𝑣.
In this case study, we assume that the decision maker must decide

on their electricity procurement strategy two days in advance. We
discretize the 48-hour time horizon into one-hour time periods, yielding
| | = 48. We assume that the decision maker considers 35 different spot
electricity price scenarios and 𝛼 = 0.9 when making their decisions. We
set up the IOP by assuming that we have access to historical electricity
procurement data in which the decision maker made decisions under
changing sets of spot electricity price scenarios. Our goal here is to use
our knowledge of price scenarios and the corresponding procurement
decisions to estimate the decision maker’s risk tolerance (𝜆) and pre-
ferred safety stock level (𝑖min), where the latter can also be seen as
n indicator of the decision maker’s level of risk aversion. All other
arameters in (13) are assumed to be known. We assume that only
he optimal values of (𝑥𝑡, 𝑞𝑡𝑠) for all 𝑡 ∈  and one of the 𝑠 ∈  can
be observed since in practice, we are only able to see the decisions
made in the scenario that actually realized. As such, this case study is
an example of an IOP in which only a subset of the decision variables
of the FOP can be observed.

We provide the values of all the parameters for (13) including
the contract and spot electricity price profiles in the supplementary
material. To generate each training data point in , we begin by
selecting 35 spot price scenarios at random from the 40 included in
the supplementary material. We then solve (13) with these scenarios
for certain 𝜆 and 𝑖min to obtain the optimal decisions. We select one of
the 𝑠 in  at random as the scenario that actually realizes, and we store
the corresponding optimal 𝑥𝑡 and 𝑞𝑠𝑡 values for all 𝑡 ∈  , as well as the
𝑟𝑠𝑡 values for all 𝑡 ∈  and 𝑠 ∈ , as a data point in .

Here, the FOP is a QP with 3444 variables and 8553 constraints,
making the IOP a large-scale nonconvex NLP. As a result, we use BCD
to solve the penalty reformulation in Algorithm 1. This algorithm was
implemented with 𝑐1 = 0.01𝑒 and 𝜌 = 0.01. Because we only observe a
subset of the decision variables, the initialization strategy discussed in
Section 5 cannot be applied here, so the algorithm is initialized with
random values for the missing parameters. We solve the IOP using a
training dataset of 5 partial observations (i.e., || = 5), which we find
is sufficient to accurately estimate the values of 𝜆 and 𝑖min. Furthermore,
we solve five instances of the IOP, each with a different randomly
generated training dataset, to confirm that our results are robust against
price scenario selection.

The results of our computational experiments are summarized in
Table 3. We consider three different cases involving decision makers
with varying risk tolerances. In Case 1, where the decision maker is
almost risk-neutral (with a low 𝜆 value), our algorithm predicts the
ame 𝜆 and 𝑖min values as the ones used to generate the five instances
of training data. However, in the other two cases we observe some
discrepancies between predicted and true values. In Case 2, where
the decision maker has a medium risk tolerance, the predicted value
of 𝑖min is greater than its true value. This is because the constraints
and parameters of (13) are such that the product inventory can never
fall below 50 and therefore, our algorithm ‘‘thinks’’ that 50 is the
safety stock level for this decision maker. In Case 3, where the large
𝜆 indicates a highly risk-averse decision maker, the reason for the
difference in the 𝜆 values is that for any 𝜆 ≳ 5, the decision maker
is so risk-averse that it always chooses to buy all the electricity from
the power contract. It is important to note that in Cases 2 and 3, despite
the differences in the true and predicted parameter values, solving

min
9

(13) with any of the predicted 𝜆 and 𝑖 values will always yield
Table 3
Results of computational experiments based on electricity procurement problem (13).

True values Predicted values

Instances

1 2 3 4 5

Case 1 𝜆 0.1 0.099 0.1 0.099 0.1 0.099
𝑖min 75 74.99 74.99 74.99 74.99 74.99

Case 2 𝜆 2 1.97 1.98 1.97 1.99 1.965
𝑖min 40 50 50 50 50 50

Case 3 𝜆 7 6.98 19.52 5.52 5.36 23.28
𝑖min 60 59.99 59.99 60 59.99 60

the same decisions as the ones obtained using the true FOP. In other
words, in all three cases, our solution approach provides parameters
that effectively minimize the decision error on both seen and unseen
spot price scenarios which is what the objective of (IOP) is.

In this problem, we only had access to a subset of the decisions
from the model, yet we find that even with partial observability of the
decisions, we were able to correctly recover the unknown parameters.
However, this is not always the case. In most situations, partial observ-
ability of the decisions will expand the solution space of the inverse
problem which may lead to estimated parameter values that do not
predict the decisions accurately. This highlights the need to develop
conditions under which partially observable decisions can be used to
accurately recover the parameters of the FOP with some theoretical
guarantee.

6.3. Resource allocation market

In this case study, we consider a market with a set of buyers 
that enter a bargaining game to acquire a limited set of resources .
Each buyer has a utility 𝑢𝑏 as a function of resource allocations and a
disagreement point 𝑑𝑏, which is the status quo that player 𝑏 will revert
to if no agreement is reached. We assume that the buyers agree to
cooperate with each other such that the resource allocation is fair. Nash
(1950) showed that if the utility set is compact and convex, solving the
following problem achieves the unique solution that satisfies certain
axioms, which represent a notion of fairness:

maximize
𝑥

∏

𝑏∈
(𝑢𝑏(𝑥) − 𝑑𝑏)

subject to 𝑝(𝑥) ≤ 0,
(14)

where 𝑥 are the resource allocation decisions and 𝑝 is a convex function
encoding the constraints on the market. Problem (14) is not convex;
however, a logarithmic transformation of the objective function allows
it to be reformulated as a convex optimization problem.

Here, we assume that the market is constrained by two sets of
constraints: first, buyers are limited in the amount of resources they
can acquire, and second, the total amount of each resource available
in the market is limited. A convexified reformulation of (14) for this
market is as follows:

maximize
𝑥∈R||×||

+

∑

𝑏∈
log

(

∑

𝑔∈
𝑥𝑏𝑔

)

subject to
∑

𝑔∈
𝑝𝑏𝑔𝑥

2
𝑏𝑔 ≤ 𝑚𝑏 ∀ 𝑏 ∈ 

∑

𝑏∈
𝑥𝑏𝑔 ≤ 𝑐𝑔 ∀ 𝑔 ∈ ,

(RAMP)

where 𝑥𝑏𝑔 refers to the amount of a resource 𝑔 that a buyer 𝑏 ends
up acquiring from the market. The first set of constraints place limits
on how much resource a buyer can acquire and the second set of
constraints model the capacity of the market. The objective function in
this model seeks to determine a fair allocation of utilities, 𝑢𝑏 =

∑

𝑔∈ 𝑥𝑏𝑔
for each buyer 𝑏 ∈  assuming that at the disagreement point, 𝑑 = 0.
𝑏
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Fig. 3. Change in the error in the normalized parameter estimate values as a function
of the training dataset size. Box plots show the interquartile ranges of error values for
ten random instances of the problem generated by following the scheme described in
the text.

For our IO set up, we consider a scenario where the resource
providers cooperate among themselves to learn the constraints of the
buyers, i.e., the resource providers are interested in estimating the val-
ues of parameters 𝑝𝑏𝑔 and 𝑚𝑏 for each 𝑏 ∈ . To learn these parameters,
the resource providers rely on their knowledge of historical capacity
fluctuation data (changes in the values of 𝑐𝑔) and the corresponding
fair allocations. We assume that this historical resource allocation data
is only available with high noise.

To generate training data for this case study, we assume a market
with 20 buyers and 5 resources. For each instance of the IOP, we sample
individual elements of 𝑝 ∈ R||×|| and 𝑚 ∈ R|| randomly from uniform
distributions  (0.5, 2) and  (0.5, 1), respectively. We then sample a set
of capacity vectors 𝑐𝑖𝑔 ∈ R|| for each 𝑖 ∈  such that each of their
elements follow the distribution  (0.1, 1.5). Next, keeping 𝑝 and 𝑚 the
same, we solve the || instances of (RAMP) corresponding to each of the
| 𝑐𝑖𝑔 vectors. We then distort the obtained optimal resource allocation
ecisions 𝑥∗𝑖𝑏𝑔 by adding a Gaussian noise 𝛾 ∼  (0, 𝜎2I) to them. Here
e find that with our chosen parameter values, the mean value of 𝑥∗𝑖𝑏𝑔
or each 𝑖 ∈  results in being approximately 0.3, and therefore to
imulate a high noise scenario, we set the value of 𝜎 to 0.05.
Note that the single-level IOP reformulation (1) for (RAMP) is not an
CP. Therefore, we are restricted to Algorithm 1 to solve this problem.
onetheless, we find that the constraint parameters of (RAMP) can be
earned with just a few data points, making the problem size amenable
or Algorithm 1. While learning the parameters, we assume that the
𝑏 values for all 𝑏 ∈  are 1 and instead learn the normalized
𝑏𝑔 parameters, i.e., the 𝑝𝑏𝑔∕𝑚𝑏 values. In Fig. 3, we compare the
ccuracy of estimates generated through IO with simple regression-
ased estimates. To generate the regression estimates, we apply the
east-squares method on the noisy data to find the best-fit parameters
or the quadratic constraints assuming that they hold as equalities in all
ases. While we agree that assuming that these constraints always hold
s equalities is a rather strong assumption and may negatively affect
he quality of the estimates, this is typically how this problem will be
olved if no other information is available. Indeed, as we show in Fig. 3,
O can generate more accurate estimates with just 5 data points than
hat regression can produce with 100 data points. On the one hand,
his is an obvious result because our assumption of a fair allocation
rovides additional information about the data. On the other hand, it
lso shows the power of the proposed framework in being highly data-
fficient by allowing the incorporation of domain knowledge into the
nverse problem.

. Conclusions

In this work, we described the idea of discovering unknown
ecision-making processes from observed decisions using mathematical
10

a

ptimization as a natural model for decision making. Using this con-
ept, inferring the decision-making model is equivalent to estimating
he unknown parameters of the underlying optimization problem,
hich is referred to as data-driven inverse optimization. We considered
he case in which the underlying decision-making process can be
ormulated as a convex optimization problem. We formulated the IO
roblem as a bilevel program with as many lower-level problems as
he number of available observations of prior decisions. To address the
omputational challenge associated with solving large instances of the
O problem, we proposed an efficient penalty-based BCD algorithm that
everages the decomposable structure of the problem.
We conducted extensive computational experiments to benchmark

he performance of the proposed solution method against standard
ommercial solvers. In large instances, we show that using our BCD
lgorithm does not only reduce the computation time but also results
n higher-quality solutions. Furthermore, we present two additional
omputational case studies based on practically relevant problems,
ne concerned with estimating risk preferences and the other one
imed at uncovering local constraint parameters in a multiplayer Nash
argaining formulation. Here, our results indicate that IO can recover
ighly accurate estimates of the parameters of interest while using only
very small number of data points.
Finally, we would like to highlight that there are many important

irections to consider for future work including decomposition algo-
ithms for the problems where BCD cannot be applied, dealing with
artially observable decisions, incorporating prior beliefs, and using
daptive sampling to reduce the amount of data required to learn the
arameters.
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