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Abstract

Surrogate models are commonly used to reduce the computational complexity of solv-
ing difficult optimization problems. In this work, we consider decision-focused surrogate
modeling, which focuses on minimizing decision error, which we define as the difference
between the optimal solutions to the original model and those obtained from solving the
surrogate optimization model. We extend our previously developed inverse optimization
framework to include a mechanism that ensures feasibility (or minimizes potential infea-
sibility) over a given input space. The proposed method gives rise to a robust optimization
problem that we solve using a tailored cutting-plane algorithm. In our computational case
study, we demonstrate that the proposed approach can correctly identify sources of infea-
sibility and efficiently update the surrogate model to eliminate the found infeasibility.

Keywords: surrogate modeling, learning for optimization, inverse optimization,
feasibility guarantee.

1. Introduction

A common strategy for solving difficult optimization problems, especially in real-time
applications, is to develop surrogate models of reduced computational complexity. In
particular, data-driven surrogate modeling methods have become very popular with the
opportunity to leverage recent advances in machine learning. Here, one uses the original
model to generate data, which are used to fit the surrogate model that can then be embedded
in the optimization problem. A key challenge in surrogate modeling is the balance between
model accuracy and computational efficiency. As a result, much of the research effort in
this area has focused on developing surrogate models that have simple functional forms
or specific structures such that the optimization problems are easier to solve using the
surrogate models [Cozad et al., 2014, Zhang et al., 2016].

The vast majority of existing surrogate modeling methods construct models that are given
as systems of equations, which represent all or part of the equality constraints of the orig-
inal optimization model [Bhosekar and lerapetritou, 2018]. The goal of these surrogate
modeling algorithms is to minimize the prediction error with respect to the original sys-
tems of equations. However, as we found in our recent (not yet published) work, a low
prediction error in this kind of surrogate models does not necessarily lead to a low deci-
sion error, which is defined as the difference between the optimal solutions of the original
and the surrogate optimization models. Yet arguably, decision accuracy is what the user
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primarily cares about once the optimization model is deployed as a decision-making tool.
We developed a data-driven inverse optimization approach to construct surrogate models
that take the form of simpler optimization models and directly minimize the decision error;
hence, we refer to it as decision-focused surrogate modeling.

Decision-focused surrogate modeling focuses on the set of optimal solutions rather than
the larger set of feasible solutions. As such, it is prone to generating surrogate models that
violate constraints in the original model. In this work, we address this issue by extending
our inverse optimization framework to construct surrogate models with feasibility guaran-
tees. We propose a robust optimization approach where we treat the set of possible inputs
as an uncertainty set, and we develop a tailored cutting-plane algorithm to solve the result-
ing extended inverse optimization problem. Results from our computational case study
show that using the proposed approach, we can construct surrogate optimization models
with feasibility guarantees without substantial sacrifice of decision accuracy.

2. Mathematical Formulation

We consider an original optimization problem of the following general form:

minimize f(z,u)
TER™ (1)
subject to  g(z,u) <0,

which is a, possibly nonconvex, nonlinear program (NLP). Here,  and u denote the deci-
sion variables and model input parameters, respectively. We assume that solving problem
(1) requires more time than what is allowed in our desired online application; however, we
can solve it offline to generate data in the form of (u;, x;)-pairs, where x; is the optimal
solution to problem (1) given the input u;.

Given a set of data points Z, the goal is to generate a surrogate optimization model that is
easier to solve but achieves the same or almost the same optimal solutions as the original
model. We postulate a surrogate optimization model of the following form:
minimize f(z u; 0
nimize f(z,0:0) o
subject to  g(z,u;w) <0,

where f and g are parameterized by 6 and w, respectively, and are constructed to be convex
in x, which renders problem (2) a convex NLP.

The decision-focused surrogate modeling problems attempts to directly learn an optimiza-
tion model from data that are assumed to be optimal solutions to this model. As such, it
gives rise to a data-driven inverse optimization problem (IOP) [Gupta and Zhang, 2021],
which can be formulated as follows:

pminimize > ||vi — i (3a)
1€L
subject to Z; € arg min {f(gﬁ,ui;ﬁ) 2 (%, uw) < 0} VieZ, (3b)

TER™
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where Z; denotes the solution predicted by the surrogate model. The objective is to deter-
mine the surrogate model parameters 6 and w that minimize the decision error defined in
(3a) as the difference between the optimal solution to the original problem x; and Z; across
the given data set. Constraints (3b) state that for each ¢ € Z, Z; is the optimal solution to
the surrogate optimization model with input u;.

One potential issue with the IOP formulation (3) is that a predicted solution &; is not
guaranteed to be feasible in the original model (1). In addition, assuming that the input u
can be chosen from a set I/, the optimal solution to the surrogate model is not guaranteed
to be feasible in (1) for all u € U even if z; is feasible in (1) for all ¢ € Z. Hence, to ensure
feasibility, we add the following constraints to problem (3):

ze argmin{f(x u; ) :
ZERN
9(z,u) <

which state that given a surrogate model defined by 6 and w, the optimal solution to the
surrogate model for any u € U, Z, also has to satisfy the original constraints g(zZ, u) < 0.

§g(z,u;w) <0
o ) } Yuel, “4)
0

3. Solution Strategy

The extended IOP is a bilevel semi-infinite program. To solve this problem, we propose a
cutting-plane algorithm that iterates between a master problem and a cut-generating sepa-
ration problem. The master problem is formulated as follows:

minimize E ||:Ez - 9Cz||
0eO, weN, T, T
i€l

subject to  Z; € argmin {f(:i,ui;e) 1 G(Zuw) < 0} vViel
ZeRn

&)
:T:jEargmin{f(i,uj;e):g(i,uj;w)g()} VjeJ

FER"
g(J_Jj,Uj)SO VjEJ,

which is a relaxation of the extended IOP since the semi-infinite constraints (4) have been
replaced by a finite number of constraints defined over a discrete set 7. For each j € J,
we have a specific input u; and the corresponding predicted solution Z;. If the optimal
solution to (5) satisfies constraints (4), then it is also optimal for the extended IOP. Other-
wise, we solve the following separation problem for each constraint function g;, to identify
inputs for which the solutions of the surrogate model violate the original constraints:

mgébmlze 9k (T,u)

subject to T € arg min {f(ﬁc,u; 0): §(Z,u;w) < 0} . ©
TER™

If the optimal value of (6) is greater than zero (or some defined feasibility threshold ¢),

we add the corresponding input u to the set J and re-solve problem (5). By doing so, we

iterate between the master and the separation problems until no more constraint violations

can be found, which indicates that we have solved the extended IOP.
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Both problems (5) and (6) are bilevel optimization problems. To solve them, we first refor-
mulate them into single-level problems by replacing the lower-level problems with their
KKT conditions, which is possible since the surrogate optimization model is designed to
be convex. The resulting formulations generally do not satisfy common regularity condi-
tions, which makes their direct solution using standard NLP solvers difficult. Instead, we
solve an exact penalty reformulation, which we do not describe here in detail due to space
limitations. Note that while a local solution to problem (5) is usually enough to provide
good results, problem (6) has to be solved to global optimality to guarantee feasibility.

4. Computational Case Study

In our case study, we consider the heat exchanger network shown in Figure 1, which is
adopted from Biegler et al. [1997]. Here, the inlet temperature of stream H2, T3, has a
nominal value of 583 K but is subject to random disturbances. Whenever there is a change
in T%, we optimize the operation of the heat exchanger network by solving the following
NLP in which we can adjust the cooling duty Q). and the heat capacity flowrate Fio:

minimize 1072 Q. + 4 (Fr2 — 1.7)? (7a)
o Fro
subject to  0.5Q.+ 165> 0 (7b)
—10 = Q¢+ (T5 — 558 + 0.5Q.) Fra >0 (7¢)
—10— Q.+ (T5 — 393) Fga >0 (7d)
— 250 — Q. + (Ts — 313) Fyo >0 (7e)
—250 — Q.+ (Ts — 323) Fya <0 (79
Qc>0, Fga >0, (72)

which is nonconvex due to the bilinear term in constraint (7c).

H1 | 2kW/K H2 | Fy,
T, =723K TN = 583K

c1 2kW/K G c\l C\l

3

T, =388K \J T, j 563 K
T, T
€2 3kW/K f\

To = 313K (29 393K

Qc @ T, < 323K

553K

Figure 1: Given heat exchanger network.



Decision-Focused Surrogate Modeling with Feasibility Guarantee 1721

We employ the proposed decision-focused surrogate modeling approach to replace the
bilinear term (). Fgy2 in constraint (7¢) with the following approximation:

Qc Frz — a(T5) Qe + b(Ts) Fro, (8

where a and b are some functions of the input parameter 75. This change, together with
estimating the objective function f as a convex quadratic function and keeping all linear
constraints, results in a surrogate convex QP for problem (7) that is much easier to solve.

We obtain the initial surrogate model by randomly sampling ten values of 7 in the range
[573 K, 593 K] and solving problem (3) with the corresponding global optimal solutions of
(7). Here, we assume a and b in (8) to be cubic polynomials in 75. The result is depicted in
Figure 2a, which shows, for each chosen T, the true optimal (). and the (). obtained from
solving the surrogate optimization model. In addition, it shows the sets of feasible ). for
the original (red area) and surrogate (blue area) models. One can observe that while the
feasible regions are quite different, there is very good agreement in the true and predicted
optimal solutions, which can be attributed to the decision-focused nature of our approach.
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Figure 2: Comparison between the original model and the surrogate optimization model.

Next, we solve the extended IOP to minimize the violation of constraint (7c) at the optimal
solutions of the surrogate model. We perform 25 iterations of the proposed cutting-plane
algorithm. Figure 3 shows the maximum constraint violation, which is the optimal value
of problem (6) solved for constraint (7c), and the corresponding violated input tempera-
ture 75 that is then added to set 7 in problem (5) at each iteration. One can see that as
the algorithm progresses, violations across the entire input range are detected until from
iteration 13 onward, the algorithm only detects constraint violation in the region around
Ts = 586.3 K. This can be explained by Figure 2b, which shows all training data points ac-
cumulated over the 25 iterations and the feasible regions of the true and surrogate models.
We see that for 75 > 586.3 K, part of the feasible region of the surrogate model is infea-
sible in the true model. While the surrogate model achieves a very good fit for almost all
optimal solutions in this region, there seems to be always some point at 75 ~ 586.3 K that
is infeasible, which is where we see a “transition” in the feasible region of the surrogate
model. This indicates that the proposed cubic approximation of constraint (7c) is not suffi-
cient to achieve feasibility across the entire input range, resulting in the algorithm focusing
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on minimizing infeasibility by repeatedly sampling the area around 586.3 K. However, our
algorithm correctly identifies the main source of infeasibility. In this particular case, the
result instructs a simple remedy of the problem, which is to create two surrogate models,
one for 75 < 586.3 K and one for 75 > 586.3 K. Then, with the same training data points,
solving the corresponding IOPs directly returns two surrogate optimization models whose
optimal solutions are feasible for the entire input space.
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Figure 3: Progression of the cutting-plane algorithm.

5. Conclusions

In this work, we developed a decision-focused surrogate modeling approach that generates
surrogate optimization models with feasibility guarantees. This is achieved by combin-
ing concepts from inverse optimization and robust optimization, and solving the resulting
problem using a tailored cutting-plane algorithm. A computational case study considering
a heat exchanger network example demonstrates the ability of the proposed approach to
effectively identify and eliminate sources of infeasibility.
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