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Framework for facilitating mangrove recovery after
hurricanes on Caribbean islands

Ken W. Krauss'? @, Kevin R. T. Whelan®, John Paul Kennedy*, Daniel A. Friess®,
Caroline S. Rogers®, Heather A. Stewart’, Kristin Wilson Grimes®, Camilo A. Trench?,
Danielle E. Ogurcak!?, Catherine A. Toline'!, Lianne C. Ball'?, Andrew S. From!

Mangrove ecosystems in the Caribbean are frequently exposed to hurricanes, leading to structural and regenerative change
that elicit calls for recovery action. For those mangroves unaffected by human modifications, recovery can occur naturally.
Indeed, observable natural recovery after hurricanes is the genesis of the ‘“disturbance adaptation” classification for man-
groves; while structural legacies exist, unaltered stands often regenerate and persist. However, among the >7,000 islands, islets,
and cays that make up the Caribbean archipelago, coastal alterations to support development affect mechanisms for regener-
ation, sediment distribution, tidal water conveyance, and intertidal mangrove transgression, imposing sometimes insurmount-
able barriers to natural post-hurricane recovery. We use a case study approach to suggest that actions to facilitate recovery of
mangroves on Caribbean islands (and similar settings globally) may be more effective when focusing on ameliorating pre-
existing anthropogenic stressors. Actions to clean debris, collect mangrove propagules, and plant seedlings are noble
endeavors, but can be costly and fall short of achieving recovery goals in isolation without careful consideration of
pre-hurricane stress. We update a procedural framework that considers six steps to implementing ‘“Ecological Mangrove
Restoration” (EMR), and we apply them specifically to hurricane recovery. If followed, EMR may expedite actions by suggest-
ing immediate damage assessment focused on hydrogeomorphic mangrove type, hydrology, and previous anthropogenic
(or natural) influence. Application of EMR may help to improve mangrove recovery success following catastrophic storms,
and reduce guesswork, delays, and monetary inefficiencies.

Key words: ecological mangrove restoration, EMR, genetic considerations, hydrogeomorphic type, regeneration, resiliency
bottlenecks, tropical cyclones
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Ecological mangrove restoration and hurricanes

Since 2000, natural drivers of mangrove loss such as shoreline
erosion and extreme weather events have increased in impor-
tance, and now account for 38% of overall mangrove cover loss
in the 21st century (Goldberg et al. 2020). In the Caribbean, hur-
ricanes are a primary natural cause of disturbance, with many of
the Caribbean islands located in the regional belt of major hurri-
canes (wind speeds >178 km/hour; Andrewin et al. 2015).
There, mangroves that develop as disturbance-adapted commu-
nities are structured by recent injury and past legacies of cumu-
lative disturbance that can limit long-term ecosystem resilience
to other biophysical and human stressors such as sea-level
rise, harvesting, or repetitive lightning strikes (Krauss &
Osland 2020).

Advances in our knowledge of mangrove resilience thresh-
olds are increasingly incorporated into restoration techniques
to improve success (Lewis 2005); many of these protocols do
not specifically target natural disturbance but have strong appli-
cation to facilitating hurricane recovery. System characteristics
are also important, as resilience (return to a previous state) ver-
sus resistance to damage in the first place are trade-offs
dependent on specific stand condition (Patrick et al. 2022); man-
groves are often not overly resistant to tropical cyclone injury,
but resilience can be high. Although mangroves are categorized
as environments that can undergo persistent environmental
stress (Lugo et al. 1981), stress is not an optimal state even
though the range of mangrove tolerances to salinity, hydroper-
iod, and nutrient perturbation is broad (Ball 1988; Krauss
et al. 2008; Reef et al. 2010).

Noticeable and persistent structural hurricane damage to
mangroves often stimulates calls for human-assisted recovery,
though the success of management interventions is limited if
the various biophysical contributors to recovery are not consid-
ered and incorporated into recovery design. In this review, we
provide a protocol to assist future mangrove management efforts
after hurricane strikes in the Caribbean (but with wider applica-
tion). Guidance is currently absent or inaccessible to managers
undertaking recovery actions. Our protocol (1) provides an over-
view of different mangrove types commonly found in the
Caribbean by which the recovery framework is stratified; (2) pre-
sents common pre-hurricane anthropogenic or natural stressors
for each mangrove type that needs to be repaired, with examples
from the U.S. Virgin Islands, Jamaica, Puerto Rico, and
the Bahamas; (3) applies, adapts, and advances an existing
mangrove restoration protocol (Lewis 2005) to hurricane recov-
ery; and (4) briefly reviews actionable recovery options
(Supplements S1 & S2). We hypothesize that conditions of man-
groves as influenced by humans at the time of hurricane impact
influence post-storm recovery trajectories, and improvement of
these conditions with human-facilitated management actions
may be necessary to bolster mangrove forest recovery success
and resilience to future storms.

Mangrove Types and Common Pre-Hurricane
Vulnerabilities

Mangroves occur in different settings determined by geomor-
phologic, edaphic, or hydrologic differences that dictate how

they establish and grow. Various typologies exist (Lugo &
Snedaker 1974; Twilley et al. 1998, 2018; Worthington
et al. 2020), and differences in preexisting settings determine
mangrove exposure and recovery trajectories associated with
hurricane disturbance. For Caribbean islands, at least five types
of mangrove forests are relatively common.

Fringe mangroves (Figs. 1A & S1) are located on the edge of
open water and are flooded by nearly every tide, including both
spring and neap. Sometimes fringe mangrove forests can be
large in area but in many instances, fringe mangroves are
only two or three trees wide. Overwash island mangroves
(Figs. 1A & S1), the second type, are continuous on small
low-lying islands with similar hydrology to fringe mangroves,
but with greater wave exposure (Cahoon & Lynch 1997). When
disturbance is limited, sea-level rise can manifest over decades
and expose the most seaward trees to their hydroperiod limit
(perhaps up to 70% flooded per year), which eventually may
preclude the potential for additional in situ regeneration if verti-
cal soil adjustment is not adequate. As trees are killed by hurri-
canes, the current inundation regime can prevent stand
replacement (Smith et al. 1994; Jones et al. 2019).

In contrast, the third type, or basin mangroves (Figs. 1B &
S1), is flooded only by high tide events (spring tides), surge,
or significant rainfall, and includes a geomorphic depression that
allows for continued ponding once tides ebb or rainfall ceases
(Lugo & Snedaker 1974). Salinity can increase in the porewater
as mangrove canopy transpiration drives porewater salts to con-
centrate. Small ponds sometimes develop within basins, possi-
bly as legacies of gaps created by hurricanes or lightning. As
wind defoliates basin mangrove canopies, those forests stressed
by persistent flooding from hurricanes or humans can undergo
peat collapse (sensu Chambers et al. 2019). Continued and
advanced ponding of basin mangroves may eventually lead to
the fourth mangrove type, salt pond basins (Figs. 1C & S1). Salt
pond basins also form as relicts of bays or convergent reef
growth that isolate basins through geomorphic changes (includ-
ing from storms) or mangrove structural in-growth that close
tidal channels (Island Resources Foundation 1977). Many salt
pond basins possess no obvious connections to surface water
tides except during storm events, and as such fall outside of
the classic tidal requirement associated with mangrove
development. Salt pond basins can be hypersaline (Jarecki &
Walkey 2006) and hypoxic over diel cycles to compound tree
stress on their edges (Gedan et al. 2017).

The fifth type is riverine mangroves (Figs. 1D & S1), which
are influenced by a mix of tidal and river flooding, whereby tides
produce more flooding when the river stage is higher, and the
river serves as a tidal conveyance to promote surface water
flooding and draining (Lugo & Snedaker 1974). Rivers and riv-
erine connections to mangroves are generally highly modified
on Caribbean islands. Water diversion or extraction for con-
sumptive use can impede river flows to downstream mangroves,
disrupting the distribution of freshwater delivery and salinity
regime. Sediment extraction (or settling, e.g. use of gabions)
affects in situ surface elevation processes and reduce elevation
capital needed for mangroves to respond to sea-level rise
(Lovelock et al. 2015).
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Figure 1. Cross-sectional renderings of mangrove types on Caribbean islands, and their projected initial conditions at some previous point in time versus the state
of many of these mangrove types at hurricane impact. “Driver of change” indicates what often causes the mangrove transition between the two states over time by
type. Colored polygons in the prop roots of fringe/overwash mangroves represent coral, tunicate, and sponge development common to the Caribbean.

Common hydrological patterns from the different mangrove basin, and riverine mangroves, any major deviations to these
types are presented in Figure 2. Although hydrographs are not hydrographs should be inspected. Table 1 and Supplement S1
representative of all fringe/overwash island, basin, salt pond provide experiential examples of the human and natural
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Figure 2. Representative hydrographs from (A) fringe/overwash island mangroves, (B) basin mangroves, (C) salt pond basin mangroves, and (D) riverine
mangroves from neotropical locations, including important hurricane storm surge events from either Hurricane Irma or Hurricane Maria, both from 2017. Surge
events are not overlapping in time with representative hydrographs. Data for (A), (C), and (D) are from Water Creek (Hurricane Hole, St. John, U.S. Virgin
Islands), Mary Creek (St. John, U.S. Virgin Islands), and Salt River (St. Croix, U.S. Virgin Islands), respectively, and are courtesy of U.S. National Park Service,
Inventory and Monitoring Program. Data for (B) are from Rookery Bay National Estuarine Research Reserve, Florida. ET, evapotranspiration.

impediments to mangrove recovery (presented conceptually in
Fig. 1) from recently damaged Caribbean island mangrove for-
ests on St. John (U.S. Virgin Islands; Fig. S2), St. Croix (U.S.
Virgin Islands; Fig. S3), Jamaica, Puerto Rico (Fig. S4), and
the Bahamas. There are examples from each of the five man-
grove types, most of which have pre-hurricane conditions for
which amelioration may enable recovery (Table 1).

96 192 288 384 480 576 672 768 864 960 1056 1152 1248 1344 1440
Hours
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Caribbean Mangroves and Recent Hurricanes

The 2017 hurricane season was among the most active for the
Caribbean in decades, with 17 tropical storms and 10 hurricanes;
at least 1 million ha out of 2.26 million ha of the region’s man-
groves were affected (Taillie et al. 2020). Maximum sustained
wind speeds were often greater than 178 km/hour at landfall
(Category 3), a threshold previously noted as causing great
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et al. (2019),

(or

any prescribed post-
hurricane planting

limited genetic
variability

Sereneski-Lima
et al. (2021)

isolated stands

within an island)

activity; re-establishing

tidal connections in

isolated stands to allow
propagule exchange

*Sources represent specific Caribbean accounts and global evidence of relevance for this condition.

injury to the structure of mangroves (Krauss & Osland 2020).
However, Normalized Difference Vegetation Index analyses
from the 2017 season indicated that even lower windspeeds of
100-150 km/hour yielded substantial damage to the region’s
mangroves (Taillie et al. 2020). This result stimulated questions
about how much the storm damage had been compounded by
existing anthropogenic stress across the Caribbean (Walcker
et al. 2019). In addition, hurricane damage is cumulative and
dependent on recovery from previous hurricanes. Shorter forests
created from past hurricane injury sometimes register less rela-
tive damage from subsequent storms (Roth 1992; McCoy
et al. 1996; Smith et al. 1994; Taillie et al. 2020; Lagomasino
et al. 2021). In contrast, longer gaps between hurricanes result
in greater relative damage from any one event because forests
have gained greater biomass between hurricanes (Kauffman &
Cole 2010). When natural recovery from hurricanes is delayed
for any reason, intervention may be necessary to facilitate recov-
ery before mangrove soils collapse or shorelines erode.

Restoration and Recovery Goals for Caribbean Island
Mangroves

The restoration of structural integrity, functional integrity, and
ecosystem resilience to future disturbances are all components
of restoration and recovery project success (Harris &
Hobbs 2001). For mangroves in the wake of hurricane injury,
important damage legacies remain, such that visual structural
differences in the recovered system may become the new struc-
tural state (Krauss & Osland 2020). Recovery potential is why
mangroves are referred to as “disturbance adapted,” even as hur-
ricane injury is visible. For example, residual tree stems may be
deformed, natural woody debris may cover the forest floor,
uneven sedimentation may create microtopography, and regen-
eration may be patchy for many years after the hurricane. How-
ever, given enough time between hurricanes, full forest
structural recovery is expected in 20-30 years (Proffitt & Dev-
lin 2005; Osland et al. 2012). In addition, some measure of func-
tional integrity should also be included when assessing recovery
success. Have soils developed a pre-impact biogeochemical
state of fluctuating oxygen concentration? Has the hydrology
of the site been affected through debris jams in tidal creeks or
formation of sand berms? Are residual trees producing propa-
gules to facilitate regeneration? Are regeneration barriers lifted
such that tides can provide a source of propagules, nutrients,
oxygen relief, and in-faunal community integrity? What is the
distance from and probability of being colonized by the nearest
source of propagules? Sufficient recovery of mangrove structure
and function in the wake of hurricane injury contributes to
resilience.

Resilience has been defined as “[an ecosystem] returning to
the reference state (or dynamic) after a temporary disturbance”
(Grimm & Wissel 1997; Patrick et al. 2022). Ameliorating
anthropogenic influences that prevent natural recovery of man-
groves can help support the success of recovery plans in attain-
ing a mangrove resilient to the next hurricane. Maintaining
resilience can also include community engagement and steward-
ship in the years following a hurricane to prevent future
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“resiliency bottlenecks,” which we define here as impacts from
post-hurricane recovery actions that create future impediments
to ecosystem resiliency. Restoration (and recovery) effort is
often associated with repairing damage caused by humans
(Jackson et al. 1995) and, therefore, should be cautious not to
cause further harm.

A Framework for Mangrove Restoration

Globally, there may be at least 800,000 ha of former mangrove
areas that are biophysically suitable for some measure of resto-
ration action (Worthington & Spalding 2018), and countries
such as Indonesia are setting ambitious national targets. Success
rates for individual restoration projects have generally been con-
sidered low. For example, out of 67 mangrove planting efforts in
Sri Lanka, more than 50% had complete failure with no surviv-
ing saplings, and only 3 sites showed a restoration success rate
greater than 50% (Kodikara et al. 2017). Myriad reasons account
for restoration failures, but failures are generally driven by unre-
alistic planting targets (Wodehouse & Rayment 2019) coupled
with issues of land tenure in suitable locations (Lovelock &
Brown 2019). Issues with land tenure push mangrove afforesta-
tion onto uncontested land parcels such as mudflats and seagrass
meadows, which are less suitable for mangrove survival and
growth, and which results in displacing other important marine
ecosystems (Sharma et al. 2017).

A range of mangrove restoration approaches exist, from tradi-
tional planting to designed novel systems (Ellison 2000; Ellison
et al. 2020; Chen et al. 2022). Increasingly, mangrove restora-
tion has been successful when management actions focus on
restoring local hydrodynamic conditions, which facilitates natu-
ral mangrove recruitment or ensures that mangroves are planted
under the right physical conditions (Lewis et al. 2005). The
same management expectations may apply to post-hurricane
recovery. For example, if natural hydrodynamic conditions are
unaltered by a hurricane and remain adequate, planting can be
less successful than simply waiting, such as on Guanaja,
Honduras after Hurricane Mitch (Fickert 2020).

Applying an Established Restoration Approach to Hurricane
Recovery

Because of the low success rate of mangrove restoration pro-
jects, a protocol was developed, and first described in 1997 as
“Ecological Mangrove Restoration” (EMR; Lewis & Marshall
1997). The EMR protocol emphasizes the need to consider site
level biophysical characteristics (particularly hydrological
flows) within the species-specific tolerances of mangroves.
The protocol allows for natural regeneration to occur, or for
the site to be reengineered if conditions are currently not opti-
mal. EMR has been applied globally, and we re-iterate EMR
steps with little modification to guide future mangrove recovery
actions after hurricane disturbance on Caribbean islands (Fig. 3).
The protocol includes six steps, as follows (Lewis 2009), and is
adjusted for the different mangrove types based on their specific
hydrological requirements (cf. Fig. 2):

(1) Develop an understanding of specific ecological require-
ments of the mangrove species present (autecology) to
include reproductive strategies, propagule distribution and
dispersal barriers, and determine whether seedlings are nat-
urally establishing prior to recovery action, including any
advance regeneration present (i.e. seedlings/saplings pre-
sent before the hurricane). Caribbean islands have eight
native mangrove species among five genera (Rhizophora
mangle, R. racemosa, R. harrisonii; Avicennia germinans,
A. schaueriana; Acrostichum aureum; Laguncularia race-
mosa, and Pelliciera rhizophorae), and one common associ-
ate (Conocarpus erectus).

(2) Identify and understand the hydrological patterns of the site
that made the site suitable for the targeted mangrove species
originally. Information may be derived through use of water
level recorders to evaluate current tidal function and flood
elevation of soils relative to MSL.

(3) Evaluate how hydrology differs from what would be opti-

mal to support specific mangrove types. Note changes that

may have influenced hydrology prior to hurricane impact,
as well as after. Information will vary greatly by the man-
grove type and must be evaluated against the type-specific
reference hydrology (Fig. 2 may be used as a rough guide).

Select candidate recovery sites for which Steps 1-3 have been

applied, and where appropriate funding, land tenure, and com-

munity support to ameliorate Step 3 are available (sensu,

Community-Based EMR: Brown et al. 2014; Quarto &

Thiam 2018). If specific components of Steps 1-3 are not

known or other threats become imminent to that location, cau-

tion is advised in implementing actions that cost money and
time as they may ultimately be unsuccessful.

(5) After proper hydrology is re-established, or if hydrology is
already appropriate, use natural recruitment of available seed-
lings from adjacent mangroves for plant establishment if pos-
sible. It is often possible to use natural mangrove recruitment
without planting, or in some cases help to facilitate recruit-
ment with nurse species propagation and woody debris
retainment.

(6) Finally, plant mangroves using “collect-and-plant” tech-
niques or from nurseries only if Steps 1-5 are not possible
without such intervention. Proper rationale for planting
may exist when there is a need to establish mangrove sites
quickly on organic soils to resist peat collapse (e.g. within
a few years of hurricane injury) or if natural hydrologic bar-
riers to dispersal remain, even if barriers relate only to spe-
cific target species. Another reason for such plantings,
which we add to the EMR hurricane recovery protocol for
Caribbean islands, is if the management of mangrove
genetic diversity is warranted.

4

~

Throughout the implementation of EMR, care must be exer-
cised to avoid resiliency bottlenecks. Resiliency bottlenecks to
consider are specific to individual islands (or locations within
islands). In some cases, resiliency bottlenecks may be
imposed for human protection (e.g. sea walls) or commerce
(e.g. airports), and for those, mangroves may suffer impact with-
out much room for intervention.
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Figure 3. Framework for implementing a recovery plan for Caribbean island mangrove ecosystems that have been affected by a major hurricane. Arrows indicate
tenable or untenable recovery pathways. Decisions appear in italics, actions appear as regular text, and end goals are within blue circles. EMR steps are associated
with specific decision boxes (dashed grey). Photos of a hurricane damaged mangrove forest on St. John, U.S. Virgin Islands, 3 years after Hurricane Irma (upper
right) and a naturally regenerated mangrove forest on San Andres Island, Colombia (lower left) (photo credits, Ken W. Krauss, U.S. Geological Survey).

Establishing Desired Conditions

Caribbean island mangroves are characterized by legacy dam-
age, such that desired conditions might not be the same from site
to site depending on previous hurricane damage. For example,
different mangrove species might dominate, delayed mortality
of the residual forest might continue, woody debris and snags
may be abundant, soil elevations might be heterogeneous, or
the colonization of plants such as Acrostichum ferns (true man-
grove) or Thespesia populnea trees (non-native, higher eleva-
tion mangrove associate) may further limit regeneration of
desired mangrove trees on some sites as legacies of past
hurricanes.

However, three consistent limitations to establishing desired
conditions include: (1) time lapse between hurricane landfall
and initiation of recovery actions created by the damage to local
infrastructure, depletion of resources, and impact to residents
(Fig. S5); (2) time required to develop reasonable site-specific

recovery implementation plans, and to navigate contracting
and personnel needs; and (3) for situations where recovery
action might warrant plantings (EMR Step 6), the lack of prop-
agule and seedling sources to accomplish planting events
quickly, balanced by lack of full consideration of EMR Steps
1-5 (Fig. 3).

Considering Past Planting Failures to Establish Realistic
Expectations

Although it is generally acknowledged that mangrove restoration
failures are common globally, we also have a relatively limited
quantitative understanding of post-hurricane planting success on
Caribbean islands. Structural recovery of seedlings, saplings,
and trees that survived a hurricane can take 6 years or more to
re-gain reproductive capabilities (Imbert & Rousteau 2000). Dur-
ing this period, strategic plantings can enhance the speed of
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ecosystem recovery if implemented early and under appropriate
conditions. Among the successful planting efforts in the Carib-
bean, saplings grew 39 cm in height after 1 year (Ruiz Bruce Tay-
lor et al. 2013) and >2 m in just over 3 years (Proffitt &
Devlin 2005). Furthermore, successful mangrove restoration pro-
jects are more often communicated while failed projects are more
often disregarded. Monitoring the effectiveness of successful pro-
jects and learning from past failures are important to improve
three aspects of mangrove restoration on Caribbean islands.

First, site monitoring is necessary for managers to transition
to adaptive management (Ellison et al. 2020), flagging potential
sources of recovery action failure early and allowing for mid-
course corrections to improve restoration trajectory. Potential
sources of failure may not be associated solely with vegetation.
In-fauna, epi-benthic, and macro benthic invertebrates influence
functioning of mangroves as forests develop (Bosire et al. 2008),
and invertebrate colonization may be considered as linked
recovery targets. Second, monitoring allows managers to learn
from and share experiences between projects and apply lessons
learned. On St. Croix, U.S. Virgin Islands, plantings of 21,000
seedlings (18,000, R. mangle; 3,000, A. germinans) were made
in relatively acceptable hydrologic conditions in 1999 to facili-
tate quicker recovery after Hurricane Hugo (in 1989) severely
damaged the mangrove forest of Sugar Bay
(Rothenberger 1999). Survival of seedlings in a pilot project
was 31.7% without seedling protection, but as high as 74.3%
with seedling protectors (Rothenberger 1999); long-term sur-
vival was not reported. However, a previous restoration effort
was attempted in 1978, also on St Croix, where 40% of the
86,000 R. mangle seedlings survived whereas only 1-2% of
the 32,000 A. germinans propagules broadcast across 6.15 ha
persisted. Compounded mortality from hurricanes (Hurricanes
David and Frederic in 1979), which created some wash-out,
was partly to blame (Lewis & Haines 1981), but a decision to
avoid broadcast sowing of A. germinans propagules by the
1999 recovery effort was easily reached.

Third, creative mechanisms to expedite recovery may be neces-
sary. For example, mangrove propagule recruitment and establish-
ment on a Belizean island was facilitated when nurse species
(e.g. Distichlis, Sesuvium) were also present (McKee et al. 2007).
Nurse species, which can be more easily established or may be
residual after the hurricane, can facilitate early mangrove recovery.
Indeed, facilitation on the Belizean sites occurred through propa-
gule trapping, amelioration of soil biogeochemical constraints
(especially temperature), and provision of structural support during
wind and wave action, all of which facilitated quicker mangrove
establishment, persistence, and growth (McKee et al. 2007).

Considering Genetics of Caribbean Island Mangrove Populations

Plant populations on islands are thought to be less genetically
diverse than on the mainland because of smaller land areas
(Canty et al. 2022). Island plant populations are also assumed
to exhibit greater genetic differences from other populations
because of the geographic isolation (Frankham et al. 2002;
Losos & Ricklefs 2010). Although we lack a comprehensive
understanding across the entire archipelago, research into

genetic differences among Caribbean island mangrove popula-
tions is consistent with these predictions. Compared to continen-
tal mangroves, island mangroves possess limited genetic
diversity and exhibit pronounced genetic divergence over rela-
tively short geographic distances (Kennedy et al. 2016;
Sereneski-Lima et al. 2021), especially in populations from
smaller islands (Hodel et al. 2018). For example, there are strong
genetic differences between island populations of R. mangle
(Cer6n-Souza et al. 2015; Kennedy et al. 2016; Hodel
et al. 2018), A. germinans (Cer6n-Souza et al. 2015), and
L. racemosa (Hodel et al. 2018; Sereneski-Lima et al. 2021)
and between island and mainland populations.

Recurrent extreme hurricane events within the region have likely
played a significant role in shaping the genetic structure of Carib-
bean island mangroves in addition to reduced population sizes
and the greater isolation of insular mangroves. Mass tree mortality
can reduce genetic variability, and many isolated stands experience
very limited gene flow from outside sources during recovery
periods. Pronounced, and potentially prolonged reductions in effec-
tive population size can lead to genetic bottlenecks that may drive
further losses in genetic diversity (Nei et al. 1975) and may have
consequences for the long-term persistence of recovering man-
groves (Keller & Waller 2002). Rhizophora mangle at Great Lame-
shur Bay on St. John, U.S. Virgin Islands, exhibited signs of a
genetic bottleneck (e.g. higher inbreeding, lower genetic diversity,
and greater genetic isolation) compared to other parts of the island
decades after Hurricane Hugo severely damaged this stand
(Bologna et al. 2019).

If genetic bottlenecks are a natural condition of Caribbean
island mangroves severely impacted by hurricanes, how might
genetic information inform recovery actions? Replanting from
local sources (i.e. the same island or closest neighboring island)
could retain the unique genetic attributes of Caribbean man-
groves and presumably mimic natural dispersal within these sys-
tems. Hurricanes can disperse mangrove propagules over
massive distances (>1,000 km), but most post-storm dispersal
to an area typically comes from the closest available sources
(Kennedy et al. 2020). Further reductions in genetic diversity
could limit mangrove resistance to other environmental factors,
such as greater flooding with sea-level rise (Guo et al. 2018) or
insect outbreaks and disease (e.g. Cytospora rhizophorae fun-
gus colonization of R. mangle in Puerto Rico; Wier et al. 2000).

Provisioning Nursery Sources of Mangroves

Citizens and group actions often focus on using the mangrove
genus, Rhizophora, for planting because of their recognizable
propagules and ease of collection. However, all native mangrove
species on an individual island need to be considered for recovery
planning so that the diversity of mangrove species is maintained.
Where mangrove injury is high, a natural source of mangrove
propagules may not be available for 3—6 years after a hurricane.
For example, even 3 years after Hurricane Irma (in 2017), insuf-
ficient numbers of propagules were available on St. John,
U.S. Virgin Islands to supply expedient recovery action. Poorly
informed restoration projects can re-distribute mangroves based
on the interest to citizens instead of ecological restoration criteria.
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For example, among some plant populations, source population
viability may be significantly affected if >20% of seeds produced
in one season are removed (Pedrini & Dixon 2020). The follow-
ing steps can help to ensure the availability of appropriate plant
material inclusive of all mangrove species present on a specific
island and seed sources after future storms: (1) developing man-
grove nursery capabilities, (2) implementing a priori protocols
for supplying post-hurricane demand, (3) developing the internal
expertise to know under which EMR conditions planting man-
groves is appropriate, and (4) implementing a Caribbean-wide
protocol for the maintenance of genetic diversity within island-
specific out-plantings.

Although there are numerous uncertainties for establishing
mangrove nurseries that would service different islands and
countries, four important considerations are worth highlighting.
First, mangrove plant material will need to be collected and
propagated on an annual basis, and therefore, out-planted peri-
odically to Caribbean island mangrove stands (or used experi-
mentally) to ensure that nursery material is always young but
of different height classes for specific uses and sites. Periodic
out-planting between hurricanes can be used to augment site
densities in areas with acceptable hydrology (and location) but
with limited natural recruitment, or to contribute to understory
advance regeneration knowing that future hurricanes are com-
ing. Having seedling or sapling recruits that ultimately survive
hurricane impact is optimal and would provide a resilience ben-
efit to mangroves through expedited recovery.

Second, planting seedlings from one island to another may
need to be limited in the interim between storms to some mixing
value (e.g. 20% off-island sources versus 80% on-island
sources), and this value would optimally be informed by genet-
icists. Third, is the issue of phytosanitation if mangrove nursery
material is transported among Caribbean islands, at least until
regulations for inter-island propagule transport are imposed.
Finally, multiple nurseries could be established across several
islands (or island nations) separated by a reasonable distance.
Nursery operations could be replicated on multiple islands to
offset catastrophic damage to nursery capabilities on a single
island.

Establishing a Database of Neotropical Mangrove Restoration
and Recovery Projects

As hurricane recovery actions are undertaken and other types of
mangrove restoration or rehabilitation projects are implemented
throughout the Caribbean, an interactive and easily accessible
database could be developed to inform recovery protocol. If
developed, such a database would need to be maintained and
updated frequently, and its existence would need wide exposure.
This recommendation follows Ellison (2000), who suggested a
similar information clearinghouse two decades ago to compile
successful and unsuccessful mangrove rehabilitation projects
around the world. International groups such as the Global Man-
grove Alliance are attempting to address this issue through the
creation of a tool to capture information from restoration pro-
jects (Gatt et al. 2022), but such international initiatives may
struggle to collect data from many local restoration sites across

the tropics where projects may not be communicated widely or
linked to national or international organizations. Here, we sug-
gest a focal data base of post-hurricane mangrove recovery
actions, restoration projects, rehabilitation activities, and crea-
tion projects with full disclosure of project successes and fail-
ures throughout the Caribbean archipelago; critical details are
often omitted from published reports. Many actions implemen-
ted in mainland countries of the Caribbean Rim could also pro-
vide critical examples for implementation on Caribbean islands;
therefore, this database may benefit from inclusion of the
broader Caribbean region.

Pertinent information for a database includes the following:
location, project planning documents and rationale, specific pro-
ject goals, engineering designs, project boundaries and elevation
data, tidal characteristics from the nearest tide gauge, sources of
mangrove plant material and species, implementation designs,
lists of issues encountered, summary of hurricane or tropical
storm impacts after project establishment, metrics of success,
metrics of failure, experimental designs for sampling, raw data
(if applicable), key personnel, publications, and a list of other
items to be determined. This tool could help to improve upon
the framework of post-hurricane mangrove forest recovery over
time and include experiential details that may otherwise not be
communicated.

Recovery Actions

At least seven recovery actions may be implemented by man-
agers or citizen groups after hurricane injury to Caribbean island
mangroves, including (1) cleaning/site preparation, (2) restora-
tion of hydrology to encompass minor site work, (3) restoration
of hydrology to encompass major site work, (4) water quality
improvement and soil remediation, (5) planting of seedlings,
(6) seedling management (Fig. S6), and (7) limited action
(avoidance of further harm). Descriptions, implementation
details, and guidance for these specific recovery actions from
Caribbean islands are provided in Supplement S2.

Social Considerations

Complications in mangrove recovery planning can arise when
multiple stakeholder groups (e.g. biologists, recreationists, fish-
ers, engineers, hydrologists, Federal and state agencies, man-
agers of appropriated restoration funds, small businesses,
consultants) become involved. Potential challenges include
different priorities, disagreements over recovery targets
(i.e. desired conditions), unclear roles and responsibilities, and
lack of trust (McGowan et al. 2015). Simply declaring that a pro-
ject will be “collaborative” or “co-produced” is insufficient to
avoid these potential pitfalls (Bednarek et al. 2018), but there
are methods for building a framework in which differences in
stakeholder values and priorities can be incorporated into deci-
sion making (Johnson et al. 2015). Guerrero et al. (2017), and,
specific to mangroves Rodriguez-Rodriguez et al. (2021), pre-
sent a formalized approach for working with stakeholders and
communities to estimate restoration time frames and clarify
expectations. This approach may be used to align the
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administrative decisions of funding and regulatory agencies
with the pace of ecological change and possibly strengthen insti-
tutional commitments to post-hurricane ecosystem recovery
(Failing et al. 2013; Williams & Brown 2014). Furthermore,
contributions from citizen scientists can be a valuable tool. Cit-
izenry engagement provides a means to enable local communi-
ties to assist in decisions when the focus is on science, as well
as expand spatial scales of potential recovery monitoring over
long periods of time (Cousins et al. 2017).

Conclusions

Mangrove recovery action after a hurricane can be more effec-
tive by accounting for the physical environment within which
Caribbean mangroves are found naturally and ameliorating his-
torical damage to that physical environment. Concepts and tools
to incorporate physical attributes into restoration planning do
exist for mangroves, and as such, this review builds on the foun-
dation laid by Roy “Robin” Lewis (Lewis & Marshall 1997;
Lewis 2005, 2009), who provided a robust scientific framework
to incorporate physical and ecological aspects into mangrove
restoration action. EMR protocol targeting smaller restoration
projects is widely applicable to informing mangrove recovery
after hurricanes. Greater awareness of EMR protocols may help
to improve the success of mangrove recovery after major hurri-
cane impacts in the Caribbean. These same EMR protocols have
wide application globally.
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Supporting Information

The following information may be found in the online version of this article:

Data S1. Experiential examples of impacts and limitations to mangrove recovery after
hurricanes on Caribbean islands.

Figure S1. Representative (a) fringe, (b) overwash island, (c) basin, (d) salt pond
basin, and (e) riverine mangrove types.

Coordinating Editor: Loretta Battaglia

Figure S2. Basal area distribution by diameter size class of six sites representing basin,
salt pond basin, and fringe mangroves.

Figure S3. Basal area distribution by diameter size class of two sites representing
riverine mangroves.

Figure S4. Aerial imagery of the Aguirre Commonwealth Forest, Puerto Rico, in
1950, 1994, and 2018.

Data S2. Mangrove recovery actions to consider after a hurricane.

Figure S5. (a) Numerous private vessels. (b) Sargassum spp.

Figure S6. Non-corrosive, plastic fencing erected around a small mangrove
plantation.
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