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ON THE QUOTIENT OF THE HOMOLOGY COBORDISM
GROUP BY SEIFERT SPACES

KRISTEN HENDRICKS, JENNIFER HOM, MATTHEW STOFFREGEN, AND IAN ZEMKE

ABSTRACT. We prove that the quotient of the integer homology cobordism
group by the subgroup generated by the Seifert fibered spaces is infinitely
generated.

1. INTRODUCTION

The homology cobordism group ©3 consists of integer homology 3-spheres mod-
ulo integer homology cobordism and is a fundamental structure in geometric topol-
ogy. For example, ©3 played a central role in Manolescu’s [Man16] disproof of the
triangulation conjecture in high dimensions.

A natural question to ask is which types of manifolds can represent a given class
[Y] € ©3. The first answers to this question were in the positive direction. Liv-
ingston [Liv81] showed that every class in @% can be represented by an irreducible
integer homology sphere, and Myers [Mye83] improved this to show that every class
admits a hyperbolic representative. More recently, Mukherjee [Muk20, Theorem
1.18] showed that every class admits a Stein fillable representative.

In the negative direction, Frgyshov (in unpublished work), Lin [Lin17], and Stof-
fregen [Stol7] showed that there are classes in ©F that do not admit a Seifert
fibered representative. Nozaki, Sato, and Taniguchi [NST19, Corollaries 1.6 and
1.7] improved this result to show that there are classes that admit neither a Seifert
fibered representative nor a representative that is surgery on a knot in S3. The
Frgyshov, Stoffregen, and Nozaki-Sato-Taniguchi examples are all connected sums
of Seifert fibered spaces, and Lin’s example has Floer homology consistent with
it being representable by a Seifert fibered space. In particular, these results are
insufficient to show ©3 is not generated by Seifert fibered spaces.

Using the involutive Heegaard Floer homology of Hendricks and Manolescu
[HM17], we proved in [HHSZ20, Theorem 1.9] that Seifert fibered spaces do not
generate ©3. More precisely, let ©Ogp denote the subgroup of ©3 generated by
Seifert fibered spaces. We showed that the quotient ©3/Ogp contains a subgroup
isomorphic to Z, generated by Y = 8%, (—2Tg 7#76,13#T—2,3:2,5). The main result
of this paper is that the quotient ©2 /Ogp is in fact infinitely generated:
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Theorem 1.1. The quotient @%/@SF contains a subgroup isomorphic to Z°°,
spanned by

Y, = S3(Tos# — 2Ton ont1#Ton ant1), 1 >3, n odd.

Involutive Heegaard Floer homology associates to an integer homology sphere
Y (or more generally a spin rational homology sphere) an algebraic object called
an iota-complex. The local equivalence class of this iota-complex is an invariant
of the homology cobordism class of Y, and the set of iota-complexes modulo local
equivalence forms a group under tensor product. For technical reasons, it is often
convenient to consider a slightly weaker notion of equivalence, called almost local
equivalence, and the associated group 3 of almost iota-complexes modulo almost
local-equivalence, as in [DHST18]. There is a group homomorphism

ﬁ:@%—)/j

induced by sending [Y] to the almost local equivalence class of its iota-complex.
The proof of Theorem 1.1 relies on the following steps:

(1) A computation of the almost local equivalence class of the iota-complex
associated to Y;, using the involutive surgery formula of [HHSZ20, Theorem
1.6]. We call this complex C'(n — 1).

(2) A computation of the almost local equivalence class of linear combinations
of C(n — 1), for n > 2, following the strategy of [DHST18, Section 8.1].

(3) A comparison of the results from step (2) with the computation of 2(©gsp)
in [DHST18, Theorem 8.1].

Remark 1.2. Let © 4r denote the subgroup of ©3 spanned by almost-rationally
plumbed 3-manifolds; see [NémO05] for the precise definition of an almost-rational
plumbing. By [DS19, Theorem 1.1], h(©4r) = h(Ogr), so the proof of Theorem
1.1 actually shows that the quotient ©3 /0 4 contains subgroup isomorphic to Z>.

Recall that a graph manifold is a prime 3-manifold whose JSJ decomposition
contains only Seifert fibered pieces. The manifolds Y;, in Theorem 1.1 are all graph
manifolds, since they are surgery along connected sums of torus knots. Similarly,
the manifold Y in [HHSZ20, Theorem 1.9] is a graph manifold, since it is surgery
along a connected sum of iterated torus knots. A natural question to ask is whether
every homology sphere is homology cobordant to a graph manifold, or more gen-
erally, whether graph manifolds generate ©3. As far as the authors know, both
of these questions remain open; we expect that the answer to both is no. Note
that if [NST19, Conjecture 1.22] is true, then graph manifolds do not generate ©3,
as pointed out in [NST19, Proposition 1.23]. Another natural question to ask is
whether surgeries on knots in S* generate ©3.

Organization. This paper is organized as follows. In Section 2 we recall some
background on involutive Heegaard Floer homology. In Section 3 we prove that the
almost iota-complex of the manifolds Y;, in Theorem 1.1 is C(n — 1). In Section 4
we compute the almost local equivalence classes of linear combinations of C(n),
and use it to complete the proof of Theorem 1.1.
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2. BACKGROUND ON INVOLUTIVE HEEGAARD FLOER HOMOLOGY

We will assume the reader is familiar with the basics of knot Floer homology
[OS04] [Ras03], and confine ourselves to listing some definitions necessary for study-
ing involutive Heegaard Floer homology [HM17]. In fact, in the present paper we
will only need a few properties of this theory, which we summarize here. For more
details, see [HHSZ20, Section 3].

Definition 2.1. An iota-complex (or t-complex) (C, ) is a chain complex C', which
is free and finitely generated over F[U], equipped with an endomorphism ¢. Here F
is the field of 2 elements, and U is a formal variable with grading —2. Furthermore,
the following hold:

(1) C is equipped with a Z-grading, compatible with the action of U. We call
this grading the Maslov or homological grading.

(2) There is a grading-preserving isomorphism U1 H,(C) 2 F[U,U~1].

(3) ¢ is a grading-preserving chain map and ¢? ~ id.

Given two iota-complexes (C1,t1) and (Co, o), a homogeneously graded F[U]-
chain map f: C7 — Cj is said to be an t-homomorphism if 150 f 4+ foi; ~ 0. Two
iota-complexes (C1,t1) and (Coq,t2) are called t-equivalent if there is a homotopy
equivalence ®: C7 — C5 which is an (-homomorphism.

For any closed oriented 3-manifold Y equipped with self-conjugate spin® struc-
ture s, Hendricks—Manolescu [HM17] prove that the F[U]-chain complex with ho-
motopy involution (CF~(Y,s),¢) is well defined up to homotopy-equivalence. In
the case that Y is a rational homology 3-sphere, (CF™ (Y, s),t) is an iota-complex.

The tensor product of iota-complexes (C1,¢1) and (Ca,t2) is given by

(2.1) (C1,01) ® (Ca,12) = (C1 ®pjy) C2, 11 ® 12).

Moreover, Hendricks—Manolescu-Zemke [HMZ18] establish that
(CF™(Y1#Ya,81#52),1) = (CF ™ (Y1,81),11) ® (CF (Y2, 82), 12),

where ~ denotes homotopy-equivalence of iota-complexes.

Definition 2.2. Suppose (C,¢) and (C”, ') are two iota-complexes.
(1) A local map from (C,¢) to (C’, ') is a grading-preserving ¢-homomorphism
F: C — (', which induces an isomorphism from U~ H,(C) to U~ H,(C").
(2) We say that (C,¢) are (C’,/) are locally equivalent if there is a local map
from (C,¢) to (C',1/), as well as a local map from (C’, ) to (C,¢).

The set of local equivalence classes forms an abelian group, denoted J, with prod-
uct given by the operation ® in equation (2.1). See [HMZ18, Section §8|. Inverses
are given by dualizing both the chain complex C' and the map ¢ with respect to F[U];
we write —(C,¢) for this dual iota-complex. According to [HMZ18, Theorem 1.8],
the map

Y = [(CF(Y),1)]
determines a homomorphism from @% to J.

There is an additional, weaker, equivalence relation between iota-complexes,
introduced in [DHST18] (see also [HHSZ20, Section 3.3)).

Definition 2.3 ([DHST18, Definition 3.1]). Let Cy and Cs be free, finitely gener-
ated chain complexes over F[U], such that each C; has an absolute Q-grading and a



760 K. HENDRICKS, J. HOM, M. STOFFREGEN, AND I. ZEMKE

relative Z-grading with respect to which U has grading —2. Two grading-preserving
F[U]-module homomorphisms

f9:CL— Cy
are homotopic mod U, denoted f ~ g mod U, if there exists an F[U]-module ho-
momorphism H: C; — Cs such that H increases grading by one and

f+rg+Hod+0oH €imU.

Definition 2.4 ([DHST18, Definition 3.2]). An almost iota-complex (or almost
t-complez) C = (C,7) consists of the following data:

e A free, finitely-generated, Z-graded chain complex C' over F[U], with
U™'H.(C) = F[U,U .

Here U has degree —2 and U~ H,(C) is supported in even gradings.
e A grading-preserving F[U]-module homomorphism 7: C' — C such that

100 +0o07€imU and 2 ~id mod U.

Of course, any iota-complex induces an almost iota-complex. The definition of
tensor product of almost iota-complexes is the same as equation (2.1).

In analogy with the terminology above, an almost t-homomorphism from (C1,11)
to (C2,12) is a homogeneously-graded, F[U]-equivariant chain map f: C; — Cs such
that foZ~T7o f mod U. We then have the following new relation between almost
t-complexes.

Definition 2.5 ([DHST18, Definition 3.5]). Suppose (C4,71) and (Cs,72) are al-
most t-complexes.

(1) An almost local map from (C1,71) to (Ca,72) is a grading-preserving al-
most (-homomorphism F': C; — Cs, which induces an isomorphism from
U='H,.(C) to UTTH,(C").

(2) We say that (C1,71) are (Ca,12) are almost locally equivalent if there is an
almost local map from (C4,71) to (Ca,72), as well as an almost local map
from (OQ,ZQ) to (C’l,Zl).

One special case of this definition will be especially useful to us: if 7 and 7’ are
maps on the same complex C' such that (C,7) and (C,7) are each almost iota-
complexes, and the difference  —7’ € im(U), then the identity map from C to itself
is an almost local equivalence between (C,7) and (C,7').

Using the definitions above, one may construct an almost local equivalence group
3 of almost iota-complexes. It is a non-trivial result that 3 can be parametrized ex-
plicitly [DHST18, Theorem 6.2], as we mnow describe. To a sequence
(a1,b2,a3,b4,...,02m—1,b2m), where a; € {£} and b; € Z \ {0}, we may associate
an almost iota-complex

C(a17 b27 asg, b47 <oy, @2m—1, b2m)7
called the standard complex of type (a1, ba,as, by, ..., a2m—1,b2m), as follows. The
standard complex is freely generated over F[U] by to,t1,...,ta,. For each symbol

a;, we introduce an w = (1 + ¢)-arrow between ¢;_; and t; as follows:

e If a; =+, then wt; =t;_1.
e If a; = —, then wt;_1 = t;.

For each symbol b;, we introduce a 0-arrow between t; 1 and t; as follows:
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o If b, > 0, then ot; = U‘bi|ti71.
e If b; <0, then 9t;_1 = (]Ib“tz
In computations with standard complexes, it will frequently be convenient to
represent the group operation with + instead of ®. The dual of the standard
complex C(ay,be,a3,bs,...,a2m—1,ban) is the standard complex

_C(a17 b27 as, b47 ey A2m—1, b2m) = C(_U/l, _b27 —as, _b4> ey, —A2m—1, —me),
where if a; is + therL —a; is — and vice versa.
Every element of J is locally equivalent to a unique standard complex [DHST18,

Theorem 6.2]. Thus, in spite of 3 being infinitely-generated, its elements are easy
to describe. We write h for the composite

0 537
Note that there is not a simple formula for the group operation in terms of

standard complexes. Nevertheless, the image ﬁ(@ sF) C 3 has a simple description;
see [DHST18, Section 8]. Indeed,

ﬁ(@sp) ={C(a1,b1,...,ak,bg) | |bi| < |bi—1| and sgn(b;) = —sgn(a;)} C 3.

2.1. Involutive knot Floer homology. Hendricks-Manolescu also constructed
an involutive knot Floer homology CFK(Y, K) for K C Y a null-homologous knot,
which, from our viewpoint, is a finitely-generated F[% , ¥]-complex with an endo-
morphism ¢x, with properties as follows.

Suppose that (Ck, 9) is a free, finitely generated complex over the ring F[Z, V.
There are two naturally associated maps

P VU: Cx — Ck,

as follows. We write 0 as a matrix with respect to a free F[%, ¥ ]-basis of Ck.
We define & to be the endomorphism obtained differentiating each entry of this
matrix with respect to . We define ¥ to be the endomorphism obtained by
differentiating each entry with respect to #". These maps naturally appear in the
context of knot Floer homology, see [Sarll,Zem17,Zem19¢c]. The maps ¢ and ¥
are independent of the choice of basis, up to F[%, ¥]-equivariant chain homotopy
[Zem19a, Corollary 2.9].
We say an F-linear map F: Cx — C is skew-F|% , ¥]-equivariant if
FoV=%oF and Fo% =7 oF.

We may view a free complex over F[%, ¥] also as an infinitely generated complex
over F[U], where U acts diagonally via U = Z ¥. Concretely, if B = {x1,...,Xn}
is an F[%, ¥]-basis, then an F[U]-basis is given by the elements % *-xj, and ¥7 -x,
ranging over all i >0, j >0 and k € {1,...,n}.

Definition 2.6.
(1) An tx-complex (Ck, k) is a finitely generated, free chain complex Ck over
Fl# , V], equipped with a skew-equivariant endomorphism ¢x satisfying
13 ~id +®U.

(2) We say an tx-complex (Ck,tx) is of ZHS3-type if there are two Z val-
ued gradings, gr,, and gr,, such that %7 and ¥ have (gr,,, gr,)-bigrading
(=2,0) and (0,—2), respectively. We assume O has (gr,,,gr,)-bigrading
(—1,-1), and that ¢k switches gr,, and gr,. Furthermore, we assume that
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A= %(grw —gr,) is integer valued. We call A the Alezander grading, and
we call gr,, and gr, the Maslov gradings. Writing A; C Cxk for the sub-
space in Alexander grading s, we assume that there is a grading-preserving
isomorphism U1 H, (As) 2 F[U, U] for all s € Z.

In Definition 2.6, an tx-complex of ZHS3-type is equipped with two Maslov
gradings, gr,, and gr,. We note that in the literature, usually one considers just
the gr -grading, which is referred to as the homological grading. All ¢x-complexes
in this paper will be of ZH S3-type (as they arise as the complexes associated to
knots in ). For further details on the translation to other versions of knot Floer
homology, see [Zem19b, Section 1].

The tensor product of ¢x-complexes has a slightly subtle definition:

(Ck, i) ® (Ck, k) = (Cx @y 9] Ces bk @ Ui + 1V @ Ui D).

Local equivalence of ¢x-complexes can defined much as for iota-complexes. See
[Zem19a, Section 2]. For the present paper however, it is helpful to work with the
(equivalent) definition that local equivalence of iota-complexes is the equivalence
relation generated by declaring two ¢x-complexes of ZH S3-type C; and Csy locally
equivalent if C; is an tx-equivariant summand of Cy (cf. [HH19]). With respect
to this definition one may form a local equivalence group of ¢ x-complexes; inverses
are given by dualizing over F[%,#]. As previously, we let —(Ck,tx) denote the
dual tx-complex of (Ck, k).

At present, it is very difficult to compute the ¢x-complexes associated to most
knots. However, for L-space knots K C S3, Hendricks-Manolescu [HM17] observed
that there is a unique choice of ¢ such that the knot Floer complex CFIC(K) is an
tx-complex. In particular, the involutive knot Floer complex of an L-space knot
K is determined by the Alexander polynomial Ak (t) of K.

2.2. The surgery formula. Our main tool is the surgery formula from [HHSZ20],
which gives an expression for the involutive Heegaard Floer complex
(CF~(53,(K)),t) in terms of the involutive knot Floer complex of K.

We will only need a small part of the surgery formula. For K C S3, let Ag(K)
denote the F[U]-subcomplex of (%, ) 1CFK(K), generated over F by the mono-
mials Z*¥7 - x satisfying A(x) +j —i = 0 with i > 0 and j > 0. The U-
action on Ag(K) is given by U = % ¥. Moreover, we can define a chain map
t: Ag(K) — Ao(K) by t(x) = tx(x), since tx preserves Ag(K). It turns out (but
is not obvious) that (Ao(K), k) is an iota-complex (cf. [HM17, Theorem 1.5] and
[HHSZ20, Lemma 3.16]). A consequence of the full surgery formula is:

Proposition 2.7 ([HHSZ20, Theorem 1.6]). The local equivalence class of
(CF™(S3,(K)),¢) is that of (Ao(K), k). In particular, the t-local equivalence class
of (CF~(S%,(K)), ) depends only on the vx-local class of (CFK(K), k).

3. COMPUTATION OF THE ALMOST IOTA-COMPLEX OF Y,

In this section we give a computation of the almost iota-complex associated to
the manifold Y,, = 53-1(T2,3# — 2T5p on+1# T2 an+1) for n > 3 odd. We start by
describing the knot Floer homology of the two torus knots 75, 2n41 and Toy any1,
followed by computing and simplifying several tensor products.
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Yi1-2n y3 2n an 3 Yon—1
N \ /
v 7/2n 1 1/2 %271 2 n %n 4;/271 2 %2 41/2!1, 1 9y
\/ \/
T2—2n 1’4 2n xQn 4 Ton—2

FIGURE 3.1. The complex C,

22—4n Z4—4n Z26—4n ZS an

Z—2
NN N \ / \ AN T
v %271,—1 v %271 1 41/2 %271 2 %n+l 7/71— q/n+l gy Ym
N/ N/ NN

W3 —4n W5—4n w? 4n w—1

20 22 Z4n 4 Z4n—2

N /N /‘ R \ /\ /
41/n %n ,Vn+1 %n 1 41/71«}»1 %n 1 Y 41/271 1 62/
\/ \ /
w1 ws

Wyn—5 w4n 3

FIGURE 3.2. The complex D,,. Note that the staircase continues
onto the second row of the figure, such that O(w_1) = ¥"z_5 +
%nZO.

3.1. The knot Floer homology of two families of torus knots. In this sub-
section we compute the ¢x-complexes associated to the torus knots 15, 2,41 and

Ton,an+1-

Let C,, denote the F[% , ] complex in Figure 3.1 generated by elements x such
that —2n + 2 < k < 2n — 2 with &k even and y, such that —2n+1 < /£ < 2n —1
with ¢ odd, with nonzero differentials given by

Owg) =V "y 1 + U Yy

determined by the symmetric sequence of positive integers (c1, ¢, ..., Can—3, Can—2)
=(1,2n—1,2,2n—2,...,2n—2,2,2n — 1,1).

Likewise, let D,, denote the complex defined similarly using the symmetric string
of positive integers (¢1,- - ,Csn—4) given by
(L,2n—1,1,2n—1,2,2n —2,2.2n — 2,--- ;2n —2,2,2n —2,2.2n — 1,1,2n — 1,1)
with generators wy such that 3 —4n < k < 4n — 3 with k£ odd and z, such that
2 —4n < ¢ < 4n — 2 with £ even, and nonzero differentials given by

6(wk) — /704n72+kzk_1 + Gy Can—1+k Zkt1-

See Figure 3.2 for a depiction of this staircase.
Proposition 3.1. For n odd, the knot Floer homology CFK(T2p 2n+1) 1S chain
homotopy equivalent to the complex Cy,, and the knot Floer homology CFK(Ton, an+1)

is chain homotopy equivalent to the complex D,,. In both cases the involution tg s
given by the natural reflection which interchanges the bigradings.

By [0S05] and [HM17], the ¢x-complex associated to a torus knot is determined
by its Alexander polynomial, so it suffices to compute the Alexander polynomials of



764 K. HENDRICKS, J. HOM, M. STOFFREGEN, AND I. ZEMKE

Tonon+1 and Ty, 4n41 for n odd. Suppose that (¢q,ca, ..., Cap_1, Cor) is a symmetric

,2n+ An+ pPp ) ) ) ) y

sequence of positive integers. We will define

A(Cl Co Cok—1 CQk) = 1—tC +t61+62_t61+62+63 +-.. ,_tcl+"'+c2k—1 +t61+"'+62k
3 C2y ey CO—1, : .

Lemma 3.2. The Alexander polynomial of Top on+1 is given by the formula
(3.1)
ATZ'rL,?'rL+1(t) =A(1,2n—1,2,2n—2,...,2n —1,1)
=1—t+ t2n . t2n+2 + t4n -y t2n(2n—2) o t2n(2n—1)—1 + t2n(2n—1).

Proof. Write A = A(1,2n —1,2,2n —2,...,2n — 1,1). The Alexander polynomial
is given by
A B (th(2n+1) _ 1)(t _ 1)
Ton2nt1 — (t2n+1 _ 1)(t2n _ 1) .

Rearranging, it becomes sufficient to show that

(th)Qn-i-l -1 t2n+1 -1
Teno1 T TS
Expanding this out, our desired relation becomes
2n 2n
(3.2) S =AY
i=0 i=0
It is helpful to state a simple algebraic fact. Note that if N and M are positive
integers, and {a;};cz is a sequence which is zero for j € {0,..., N}, then
N M N+M
> ot (Zt> = D (@t ajarn+oag)t,
§=0 i=0 §=0
In particular, if we write ao, ..., a2, (2,—1) for the coefficients of A (and set a; =

0 for j & {0,...,2n(2n — 1)}), then the #/ coefficient of the right hand side of
equation (3.2) is
(33) Aj—2n + Gj—2nt+1 + -+ -+ aj.

However, by examining the description of A given in equation (3.1) it is easy to
verify that equation (3.3) is 1if j = 2nk for some k € {0,...,2n}, and is 0 otherwise.
This verifies equation (3.2), and completes the proof. O

Lemma 3.3. The Alexander polynomial of Top, an+1 satisfies
Ary, () =A(1,20—1,1,2n - 1,2,2n - 2,2,2n - 2,...,2n — 1,1,2n — 1,1).

Proof. The proof is in much the same spirit as the proof of Lemma 3.2. Let A
denote A(1,2n—1,1,2n—1,2,2n —2,2,2n —2,...,2n — 1,1,2n — 1,1). Using the
definition of the Alexander polynomial and rearranging terms, as in Lemma 3.2, it
is sufficient to show that

(t2n)4n+1 -1 t4n+1 -1

2 —1 t—1 7
which we expand to

4n 4n
S =AYt
i=0 i=0



ON THE QUOTIENT OF @2 BY SEIFERT SPACES 765

Following the argument of Lemma 3.2, it is suflicient to show that if a; denote the
coefficients of A, then a;_4n +---+a; is 1 if j = 2nk, for some k € {0,...4n}, and
is 0 otherwise. This is straightforward to verify. O

Proof of Proposition 3.1. By [0S05] and [HM17], the tx-complex of a torus knot
is determined by its Alexander polynomial. The Alexander polynomials computed
in Lemmas 3.2 and 3.3 correspond to the staircases C,, and D,, respectively, with
tx given by the natural involution in each case. ]

3.2. The (x-complex associated to —275), 25,117 7T2pn an+1- In this subsection we
compute the ix-complex associated to the connect sum of torus knots
—2T5p 2n+1# 120, an+1 Up to ti-local equivalence.

3.2.1. The tx-local equivalence class of Top 2n+1#Ton 2n+1- As in Section 3.1, let
C,, denote the complex of T, 2,11 for n odd which appears in Figure 3.1, and let
D,, denote the complex associated to Ty, an+1 Which appears in Figure 3.2. We
first consider X,, := C,, ® C,,. We will choose a new basis for X,, with respect to
which our complex decomposes as a direct sum of V,, ® Z,,, as follows. The subset
Y, is generated by the basis elements appearing in Figure 3.3.

Y1—2nY1—2n Y1—2n¥Y3—-2n Y3— 2ny'§ 2n Y3— 2ny'5 2n y 3y 1 Yy—1Y—-1
N, AN, \ / \ 7N /
q2n—1 g 2n— 1 7/2 ,11277 2 g+l 4,/71 1gn+1 4n qym

Y Y \ / \ /

Y1—-2nT2—-2n 2-2nY3—-2n Y3— 271934 2n Yy— 339 2 T_2Y—1 ToY—1

Yi1y—1 Yiy1 y3y1 Y3ys y2n 1yzn 3 Y2n—1Y2n—1

N /N / \ / \ Vi

yn Qym yntl g n— 1 7/71+1 @/'n. 1/2n 1 %
\ / \ / / \ /
Yyi1xo T2Y1 y3z2 T2n—-2Y2n—3 Y2n—-1T2n—2

Y1y—1 +y—1y1

AN

qmn yn

N

Y—120 + ToY—1 Y120 + Toy1

\v” >m
N S

ToTOo

FIGURE 3.3. The subcomplex ), C X,,. Note that the top two
rows form a staircase complex, such that 9(xoy—1) = ¥"y_1y-1 +
U"y1y-1.

Observe that in the staircase summand of the subcomplex },,, the pattern of
the construction changes at the basis element ;7. Namely, traveling left to right
in Figure 3.3 along the top row, we increase the second index of the generators
y:y;, followed by the first. Along the second row, we increase the first index of
the generators y;y;, followed by the second. This complex is equipped with the
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involution tx arising from the tensor product, which in particular sends

i (T0T0) = Toxo + UV y1y 4

= y120 + (Y120 + Toy1)
Toy—1 + (Yy-1%0 + ToY—1)

Lic(Toy—1

i (Y170

tr(y1y—1) = y1y—1 + (1y—1 +y-1y1)
L (Y1y—1 +y—191) = y1y—1 + Y1y
L (Y—170 + Toy—1) = Y170 + Toy1
Lk (Y120 + Toy1) = Y—1Zo + ToY—1
)
)

and is otherwise a reflection.
Before defining the summand Z,,, we make a few preliminary observations about
gradings. Firstly, we note that
A(yit+2) = Alyi) + 2n,

for all odd 7. As a consequence, if i and j are odd, then

A(yiy;) = AYir2yj—2)-
In particular, if ¢, j are odd, then there is an 7; ; € Z such that

Yiyj + (X V)" yivayj—2
has homogeneous (gry,, gr,)-bigrading. It is not hard to compute that if ¢ < j, then
Yi,j > 0.

Suppose that ¢ and j are even and ¢ < j. By considering the differential applied
to x;x; and using the fact that the % powers in Jx; decrease as we increase the
index of x;, we see that if 7 < j, then there is an a; ; > 0 such that

U Yig 1T + Tl
has homogeneous (gr,,, gr,)-bigrading. Entirely analogously, if ¢ < j, then there is
a B;; > 0 so that
yi1z; + VP my;
has homogeneous (gr,, gr,)-bigrading.
We now describe the summand Z,,. The generators have the following form:

(Z-1) If i and j are both odd and ¢ # %y, then y;y; + y;u; is a generator of Z,.

(Z-2) If i is odd, j is even, and j # —i £ 1, then y,z; + z;y; is a generator of Z,.

(Z-3) If i > 0 is even and nonzero, write ¢ = 2n — 2k for some n > k > 1. Then
Z, has a generator

zix; +k(2n — B)Z TR by .

(Z-4) If i < 0 is even then Z,, has a generator z;x;.
(Z-5) If i and j are even with ¢ < j, then

zis + ki(2n — k)2 YR Ty i

is a generator of Z,,, where ¢ = 2n — 2k; and j = 2n — 2k;.
(Z-6) If ¢ and j are even and ¢ > j, then z,;x; is a generator of Z,.
(Z-7) If i and j are odd and 7 < j — 2, then

Yy + (%Y )" Y2y

is a generator of Z,.
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(Z-8) If i > 2 is odd, then
YiY—i + (X)) Y2y —it2

is a generator.
(Z-9) If i and j are even and i < j, then following are generators of Z,,:
(a) Tiyjs1 + X yip1a;;
(b) iy ja+VPiiy i qx
(Z-10) For even j > 0, the following are generators of Z,,:
(a) Yjr2—j + Vi
(b) y—jrmj + %7 x_jy; 1.
(Z-11) For even j > 0, the following are generators of Z,,:
() yj—1m—j + U920 oy j41;
(b) Y—j+125 + ’y/ﬁ_j+2'JfE_j+2yj—1.

In the following, we use
(tk ® ti) o (Id®id+7¥ ® D)
as our model of the involution.

Lemma 3.4. Z, and Y, satisfy the following:

(1) 2, and Y, are free.
(2) X =2V @ 2Z,.
(4) 1tk 2, C 2, and tgYn C V.

In particular, X, is tx-locally equivalent to Y, .

Proof. To prove (1) and (2), we will first show that X, = Y, + Z,, and then we
will show that the generating set obtained by concatenating the obvious basis of
Y, with the basis for Z,, above gives a generating set of A}, of the correct number
of elements. In particular, this will imply that Z, is free since it has a generating
set with no linear relations.

We first address X,, = V,, + Z,,. Suppose i and j are both odd. Note y;y; is in
Y, so we may assume that ¢ # j. Consider the case i # —j. By adding (Z-1), it
is sufficient to consider ¢ < j. By adding (Z-7), we reduce to the case of y;y; or
Yi¥i+2 which are either in ), or are a sum of an element in ), with an element
of (Z-1). Now consider y;y—;. By adding elements (Z-8), we reduce to the case of
y1y—1 and y_1y1, which are both in ). We now consider elements x;y; and y;;.
Note that if |¢ — j| = 1, then either x;y; is in Y, or a;y; plus an element (Z-2) is
in V,,. The same holds for y;z;. Next, we consider an arbitrary z;y;. Using (Z-9),
we may relate z;y; with sums of z,y,, and y,x, with |m —n| < |i — j|. Hence,
by induction, it suflices to show that we can do the same to y;z;. If j # —i £1,
then we use (Z-2) to relate y;z; with x;y;, and apply the previous argument. If
Jj = —i=+1, then we use (Z-10) or (Z-11). This shows that all z;y; and y;z; are in
the span. Finally, each z;z; is a sum of generators (Z-4), (Z-5) and (Z-6), as well
as the above terms. Hence X, = Y,, + Z,.

We now show that the generating set obtained by concatenating ), and Z,
has the same cardinality as the rank of A, which implies that Z, is free and
Xn =2V @ Z,. Firstly,

rank(X,) = 16n> —8n+1 and rank(},) = 8n+ 1.
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Similarly, Z,, has 2n? — 2n generators of type (Z-1), 4n® — 6n + 2 generators of
type (Z-2), 4n? — 4n generators of types (Z-3), (Z-4), (Z-5) or (Z-6), 2n?® — 2n
generators of type (Z-7) and (Z-8), and 4n? — 6n + 2 generators of type (Z-9), and
4n — 4 generators of type (Z-10) or (Z-11). Hence, we have a generating set of Z,,
with 16n2 — 16n generators. Concatenating these generating sets gives a generating
set of C,, ® C,, with rank 16n? — 8n + 1, which must be a basis.

We now prove (3). Clearly 0Y,, C Yy, so we focus on Z,,. On (Z-1), 0 vanishes.
The map O sends elements of type (Z-2) to a sum of two elements of (Z-1). Ele-
ments (Z-3) and (Z-4) are mapped to sums of (Z-2). Basis elements in (Z-5) are
mapped to a sum of (Z-9a) and (Z-9b). Basis elements (Z-6) are as follows. If
|7 +4—1| > 1, they are mapped to a sum of (Z-9a) and (Z-9b). If i + j = 2, they
are mapped to a sum of (Z-9a), (Z-9b) and (Z-2). If i + j = —2, they are mapped
to a sum of (Z-9b) and (Z-11a). The differential vanishes on (Z-7) and (Z-8).
Elements (Z-9a) are mapped to elements (Z-7). Elements (Z-10) are mapped to a
sum of (Z-1) and (Z-7) if i # —j, or (Z-8) if i = —j. Elements (Z-10a) are mapped

o (Z-8). Elements (Z-10b) are mapped to (Z-7). Elements (Z-11a) are mapped
to a sum of (Z-1) and (Z-7). Finally (Z-11b) is mapped to (Z-T7).

We now prove (4). Clearly txY,, C Vp, so we focus on Z,,. The map ¢k sends ele-
ments (Z-1) to elements (Z-1). Similarly elements (Z-2) are sent to elements (Z-2).
Elements (Z-3) are sent to elements (Z-4). Elements (Z-4) are sent to the sum
of an element (Z-3) and an element (Z-1). Similarly elements (Z-5) are sent to
elements (Z-6), while elements (Z-6) and sent to sums of (Z-5) and (Z-7). Gener-
ators (Z-7) with ¢ # —j are sent to a sum (Z-7) and two elements of (Z-1). Gener-
ators (Z-7) with ¢ = —j are interchanged with generators (Z-8). Elements (Z-9a)
and (Z-9b) are interchanged. Elements (Z-10a) and (Z-10b) are interchanged.
Similarly elements (Z-11a) and (Z-11b) are interchanged. O

3.2.2. The tx-local equivalence class of —2T5y, on+1#1on,an+1. In this section, we
compute the ¢x-local equivalence class of CFI(—2T%y, 2n+1F#T2n, 4n+1)-

We begin by introducing a new complex, called the box complezx. Let B,, denote
the knot-like complex in Figure 3.4 with five generators v, u, s1, s_1, sg, with
differential

ov=0, 0so=V"s_1+U"s1, 0s_1=U"u, Os1=77"u, and Ou=0.
The gr = (gr,, gr,)-bigradings are as follows:
gr(v) = (0,0),

) =

gr(sg) = (2 —2n,2 — 2n),
gr(s 1) = (1-2n,1)
gr(s1) =(1,1—2n) and
gr(u) = (0,0).

The involution on B,, is as follows:

L (v
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So1 —wm > u sYy «un—uY

v Jn, J”L 'Uv 41/‘71 oy
| | I il

So — %" —~ S1 86/ %%"*SY

FIGURE 3.4. The box complex B,, and its dual B,

We will also be interested in the dual complex B, which is generated by vV, sy,
s¥4, sy, u with gradings

) = (0,0),

)= (2n—2,2n —2),

gr(s¥y) = (-1,2n - 1)

)=(2n—-1,-1) and
) = (0,0),

and involution

(V) =0vY + %"717/"715(\)/
L (s0) = 8¢
ur(sYy) = st
e (sy) = sy

Proposition 3.5. The i -complex of (CFIC(—2T2n 2n+1FTon,an+1), L) 5 Lk -locally
equivalent to the complex By, with the involution described above.

Recall that by Lemma 3.4, CFK(21%,, 2n+1) is tx-locally equivalent to the com-
plex YV, of Figure 3.3. Moreover, by Proposition 3.1, CFK(Ton,4n+1) is tx-locally
equivalent to the complex D,, of Figure 3.2. Our proof of Proposition 3.5 proceeds
by demonstrating that the ¢x-complex Y, is tx-locally equivalent to D,, ® B,,.

Indeed, we prove a general lemma about the tensor product of (positive) staircase
complexes with an even number of steps and box complexes. Let k£ be an even
number, and let S be a staircase complex with generators x; such that —k +1 <
j < k—1with j odd, and y; such that —k < i < k with 7 even. Let the differentials

O(wy) =V iy, 4+ Uy
be specified by a symmetric sequence of positive integers (¢1, ¢a, . . ., Cak—1, Cog) With

the property that ¢, = cxy1 = n. Most importantly, S has an even number of steps
and the central arrows with target yo are both weighted by n, so that

Or 1 =V %y o+ U"yo and Oz = U "y + V"yo.

(Recall that cx—1 = cx12.) We will compute the ¢ x-local equivalance class of S® B,
for any staircase of this form. Similarly to the methods of the previous subsection,
we construct an ¢x-equivariant splitting

SeB,=2YoW
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(/e Y- 2v Yo y2(v + u) yr (v + u)
’\ 2N 7 N 7
41/01 7/02 “f/ck 1 %n yn %ck71 e 1
A AN
T_ k+17} x 11) z1(v+u)+yos1 - Tp—1(v +u)

YoS—1 — %" = You

) )
0 T

YoSo — %™ — YoS1

FIGURE 3.5. The complex ). Note that on the bottom row of the
staircase complex, the terms to the right of z1(v + u) + yos1 are
all of the form z;(v + ).

into two summands Y and W, which we now describe. The complex ), which is
the simpler of the two, appears in Figure 3.5. The complex W has the following
generators:

(W-1) For even i # 0, the element y;u.
(W-2) For odd i ¢ {1, —1}, the element x;u.
(W-3) The elements

r_1u+yos—1 and x1u+ YoSi-
(W-4) For i > 0 even, the elements
yis—1, wis1 and  yi(so+ X"V ).
(W-5) For i < 0 even, the elements
vis—1, yis1 and  y;So.
(W-6) For i > 1 odd, then
ris_1, ;57 and  xi(so+w "ty ).
(W-7) For i < —1 odd, then
r;S_1, w;81 and x;80.

(W-8) The elements x1s1 and x_15_1.
) The elements

15 1 +yo(so + " ¥ ), and x_is1 + yoso.
(W-10) The elements
ri(so+ 2"y v) and x_is0.
As in the previous example, we are using the model of the involution

(tk @ k) o (iId®id+T & D).



ON THE QUOTIENT OF @% BY SEIFERT SPACES 771

Note in particular that we have
Lk (Yov) = Yov + You
vic(Yoso) = yoso + U™V v
vk (You) = you
Lk (Yos1) = Yos—1
i (Yos—1) = Yos1
i (z-10) = (21(v + 1) + Yos1) + Yos1
tre(T1(v + u) + Yos1) = -1V + YoS—1.

Lemma 3.6. The tx-complex S®B,, decomposes as the direct sum of i -complexes

yow.
Proof. Confirming that 0 and tx both preserve ) and W, and furthermore that
YW =S ® B,, proceeds straightforwardly and similarly to Lemma 3.4. O

Proof of Proposition 3.5. We recall that by Lemma 3.4, CFK(2T%p 2n+1) IS ti-
locally equivalent to the complex ), of Figure 3.3. Moreover, by Proposition 3.1,
CFK(Ton, an+1) is tix-locally equivalent to the staircase complex D,, of Figure 3.2.
Applying Lemma 3.6 to D,, ® B,, shows that D,, ® B,, is tx-locally equivalent to },,.
Therefore Y)Y @D, is tx-locally equivalent to BY. The statement of the proposition
follows immediately. |

3.3. The almost iota-complex associated to Sil(Tgvg#—2T2n12n+1#T2n14n+1).
We now consider the tensor product of B)/ with the complex of the trefoil T 3,
again for n odd. Recall that CFK(T5 3) is the staircase complex generated by three
elements rg, s1,s_1 with 9(rg) = ¥'s_1 + % s1 and other differentials trivial. We
are interested in the iota-complex (E,,, 1) = Ao(B) ® CFK(T»,3)) obtained from the
tic-complex BY @ CFK(Tz 3) by restricting to monomials ¥ 7x in (%,7) 1 (BY @
CFK(T»,3)) for which A(x)+ j —i =0 and 7 and j are non-negative.
Proposition 3.7. For n > 3 odd, the iota-complex (E,,t) is almost-locally equiv-
alent to the standard complex C'(n —1) = C(+,—-1,4+,—n+1).

Proof. The chain complex (E,,,t) = Ao(B,, @ CFK(T%,3)) has fifteen generators and
differentials as shown in Figure 3.6. (Recall that the action of U is generated by
the action of Z¥.)
Using the usual model
t= (g ®ir)o (id®id+7¥ & D),

the involution takes the following form on FE,:

Wa)=c+U""'k i)=n

u(b) =b+ U Wj) =7
W(c)=a+U"1 k) =1
d)y=d+b+p ul) =k
We)=c+f Wm) =g+ U1
uf)y=a+e t(n) =1

ug) =m up)=h
u(h)=p
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FIGURE 3.6. The complex Ay (B, @ CFK(T53))

We now do a change of basis to E,, to obtain the presentation of E, shown in
Figure 3.7.

U 1 : Unfl
a et+g——h+U"1j+p pP——
h——————a+tc j—————— 14k
e ——— i+ Up m———n+Up+U"j

d——e+f+g+m

FIGURE 3.7. A new basis of E,. Arrows denote the differential.

Let F,, denote the top line of Figure 3.7. There are projection and inclusion
maps
1. £, —>F, and I:F,— FE,,
which are obviously homotopy equivalences. In particular, (F),,:) is t-equivalent
to (E,,t), where
/' =Tovol.
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We compute
Oc+U"'k)=a+U" 1

V(a) = TI(
Mc+f+m)=a+e+yg
(
(h

/(e +g)

(3.4) J(h+U"1 +p)
/(p)

(1)

Hh+U" ' +p)=h+U"j+p
H )—h‘f’U” lj
II(k) = 1.

We briefly remark how II is computed in (3.4). The procedure is to write an element
in terms of the basis in Figure 3.7, and then project to the top row. As an example

He+U" k) =T(a+ (a+c) + U N+ U 1+ k) =a+ U,

We now consider the induced almost iota-complex. We claim that (F),,:/) is
t-homotopy equivalent equivalent to the complex (F,,,:”) where ¢” is the following
map

(a) =
(e +g) —a+(e+g)
J(h+ U+ p)=h+ U +p
() = (h+ U lj+p)+p
L// (l)
The equivalence of (F,, ') and (F,, ") is seen as follows. The map ¢/ + ¢ sends a
to U™ ! and Vanishes on all other generators of F,,. In particular, /' + " = [0, H|
on F,,, where H is the F[U]-equivariant map which satisfies H(a) = p and vanishes

on all other generators.
However, (F,,:") is the iota-complex

U 1 - Un—l
aé--------- et+g——h+U"" " j+ps------ P—-—1
where dashed arrows denote w := ¢’ + id. This clearly reduces to the almost
iota-complex C(+,—-1,+,—n+1) = C(n —1). O

4. TENSOR PRODUCTS OF ALMOST IOTA-COMPLEXES

4.1. The subgroup of the group of almost iota-complexes spanned by
C(n). We now compute the subgroup of the group of almost iota-complexes spanned
by linear combinations of the almost iota-complexes C(n) = (+,—1,4,—n) for
varying n > 1. The results of this section are similar to [DHST18, Section 8.1]. In
this section we use the + symbol instead of ® to represent the tensor product of
almost iota complexes. Observe that —C/(n) is parametrized by (—,1,—,n). We
will consider sums of the form

where each n; > 0. Without loss of generality, we assume that the nj; are non-
increasing, that is, ny > ny > .-+ > n,,. Furthermore, we assume that C is fully
simplified, meaning that if n; = n;41, the complexes C(n;) and C(n;4+1) occur with
the same sign. Theorem 4.1 and its proof are analogous to [DHST18, Theorem 8.1].
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Theorem 4.1. Let
C==2C(n1) £C(n2) £+ C(nm)

be fully simplified with ny > ng > -+ > n,, > 1. Then the standard representative
of C is obtained by concatenating the parameters of the above terms in the order
that they appear.

Ezample 4.2. The standard representative of C(n1) + C(ng) + -+ + C(nyy,) is

(+, =L, +,—n1) + -+ (+, =1, +,—nm)
=(+, =L+, —n, 4+, =1+, —ng, ..o+, =1+, =),
Ezample 4.3. The standard representative of —C'(n1) — C(ng) — -+ — C(nyy,) is
(=1, —n)+-+(=1,—nm) =(—1,—n1,—1,— ng....,— 1, — ny).
Ezample 4.4. The standard representative of C(ny) — C(ng) is
(+,—1,4+,—n1) + (=, 1,—,n2) = (+, -1, +, —n1, —, 1, —, na).

Proof of Theorem 4.1. This proof closely follows the proof of [DHST18, Theorem
8.1]. We begin with a model calculation in the case m = 2. Let N and M be positive
integers and consider C(N) = (+,—1,+,—N) and C(M) = (+,—1,+,—M). We
consider the following two cases:
(1) ¢4 =-C(N)—-C(M) with N > M,
(2) Co=C(N)—-C(M) with N > M,
and show that we have the following almost local equivalences
CIN(_717_7N7_717_7M) and CQN(+>_17+7_N7_717_7M)'

The other two cases —C(N) + C(M) and C(N) + C(M) follow by dualizing.
For both C; and C5, the obvious tensor product basis consists of 25 generators.
These bases are displayed in the left of Figures 4.1 and 4.2, where they are labeled
a through y. The dashed red arrows represent the action of w and the solid black
arrows represent 0, with the label over the arrow denoting the associated power of
U; for example, in Oy, we have that 9o = Uj + UMn and that w(m) =n +r + s.

On the right of Figure 4.1, we have performed the change of basis

ff=f+b+g

K =k+c+t

p=p+d+i+h+{

v =u4+UN"Mer UN" I+ UNIp
o' = v+ UN-Mj L gN=1y L V-1,
w =w+UN"Mp

o =ax4+UN"Mg

keeping the other basis elements the same. The reader should verify that this results
in the diagram in the right of Figure 4.1. It is then evident from the right of Figure
4.1 that C(N) 4+ C(M) is almost locally equivalent to

(_717_7N7_517_5M)7

as desired.
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| | o, | | ! ! ! | |
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(a) (b)

FIGURE 4.1. Left, the obvious tensor product basis for C';. Right,
after a change of basis. Recall that N > M.

The computation of C(N) — C(M) is similar. On the right of Figure 4.2, we
have performed a change of basis

d=a+b+g+m+n+s+UN"My

fr=rf+r
F=k+q+UN 1w
p=p+k

ql _ q+UN71U)
s =s4+UN"My,

keeping the other basis elements the same (e.g., b’ = b, etc). The reader should
verify that this results in the diagram on the right of Figure 4.2, where we consider
w modulo U. For example,

w(if+r)=a+b+g+m+n+s
=a+b+g+m+n+s+UN"My modU.

We have marked the dashed red arrows that are congruence modulo U (rather
than equality) with congruence symbols to emphasize this point. (Here is where
we first use the notion of almost local equivalence; in the computations of Section
3, all of the maps were local equivalences.) Note that since N > M, we have that
N — M > 0. It is then evident from the right of Figure 4.2 that C(N) — C(M)
is almost locally equivalent to the standard complex (+,—1,+,—N,—, 1, — M), as
desired.

We now consider the general case, by induction on m. Suppose we have estab-
lished the claim for

C==2C(n1) £C(n2) £--- £ C(nm)

as in the statement of the theorem. Let M be a positive integer such that M < n,,.
Now consider

C'=C—C(M).
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FIGURE 4.2. Left, the obvious tensor product basis for C;. Right,
after a change of basis. Recall that N > M.

The case C'+ C(M) where we add rather than subtract C(M) follows by dualizing.
The obvious tensor product basis for C — C'(M) is schematically depicted in Figure
4.3 (where we have arbitrarily chosen signs in front of each C(ng)). Using the
inductive hypothesis applied to C, this complex has 5(4m + 1) generators.

Our strategy will be to split off subcomplexes by change-of-basis moves parallel-
ing those defined for C; and C5. We begin by comparing the leftmost 25 generators
of C’. Label these a through y, as usual. We begin by letting n; assume the role
of N from the previous argument, so that applying the appropriate change of basis
based as in Figure 4.1 if the coefficient of C(n1) is negative and as in Figure 4.2
if the coefficient of C'(ny) is positive results in the second row of Figure 4.3. Note
that in the first case, there is an additional subtlety: since we replace u,v,w,x
with v/, v, w’, 2’ respectively, we are in danger of changing the dashed red arrows
entering/exiting u, v, w, and x on the right. To check that this does not happen,
we consider two cases:

(1) Suppose that there are dashed red arrows entering u, v, w, z from the right.
We claim that in order for this to happen, we must have n; > M. Indeed,
because C' is fully simplified, if n; = M, then all subsequent terms in our
sum are —C'(M), in which case u,v,w,z would have dashed red arrows
exiting them, rather than entering. Hence n; > M. But this shows that

"=u modU

v =v modU
w=w modU

2’ =z modU,

which means that the original dashed red arrows hold modulo U.
(2) Suppose that there are dashed red arrows exiting u,v,w,z to the right.
Then we can explicitly check that the dashed red arrows exiting v/, v’, w’, x’
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are unchanged:

w) =w) + U Mj4 U n4r)=w(u) +v +ov
w(v') = w(v)

ww') =ww) + U™ Mt = w(w) + 2/ + =

w(z') = (xz+ U™ Mt) = w(x).

In particular, we see that in either case, our change of basis does not change the
form of the diagram lying to the right of u, v, w, z, and y.

We now consider the 25 generators lying inside the dashed box in the second row
of Figure 4.3, relabeling them a through y as usual. Again, we attempt to perform

a change of basis as in Figure 4.1 or 4.2, now with ns taking the role of N from the
initial argument, as follows.
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If the second term C'(n2) appears with negative sign in C, then we use the change
of basis in Figure 4.1.

If the second term C'(nsy) appears with positive sign in C, then we attempt to
use the change of basis in Figure 4.2. However, there is an additional subtlety, as
depicted in Figure 4.4. Namely, we have a black arrow entering/exiting a from the
left, so when we set

d=a+btg+m+n+s+Un" My,

we must ensure that we don’t change the diagram to the left of the dashed box.
If the black arrow to the left of a is exiting a, then this follows from the fact that
0a' = Oa. However, if the arrow is instead entering a (representing the relation
Oa = U™ a), then the diagram is no longer accurate, since evidently da # U™ a'.
In this situation, we carry out the additional (retroactive) basis change

o =a+ U YHe+h+i)+ UMt

as in Figure 4.4, so that da = Ua’. Note that n; > 1 by hypothesis. Furthermore,
note that ny > M, since C is fully simplified. Hence o/ = @ mod U, so modulo U,
our basis change does not change the dashed red arrow leaving o. In any case, we
see that performing the appropriate change-of-basis splits off another subcomplex
and leads to a diagram as in the third row of Figure 4.3. Iterating this procedure
results in the complex depicted in the bottom row of Figure 4.3, as desired. O

4.2. Proof of Theorem 1.1. We are now ready to complete the proof of our main
theorem.

Proof of Theorem 1.1. By Proposition 2.7, the iota-complex CF™ (Si1(Tas# —
2T2n,2n+1 #T2n74n+1), L) iS locally equivalent to (A() (T2,3#_2T2n,2n+1 #T2n74n+1)7 LK).
By Proposition 3.5 and Proposition 3.7, for n > 3 odd, the almost local equivalence
class of (Ao(To3# — 2Ton 2n+1#Ton.an+1), ti) is C(n — 1). Theorem 4.1 implies
that the complexes C(n) span a Z* subgroup in 3; in particular, elements in this
subgroup of 3 are of the form
(a1, bl, ceey A2m, bgm)7
where
|b1] = [bs| = ... = |bom—1]| =1
and
|b2| > [ba] > -+ > |bam].
By [DHST18, Theorem 8.1], elements in fz(@‘ogp) are of the form

(a17b17"'7am7bm)7
where
[b1] = [ba| = - -+ = [bm]

and so the span of the C(n) intersects h(©%y) trivially. Therefore, we conclude
that the classes
[S41(To3# — 2Ton 2n+1#Ton ant1)]

span a Z> subgroup of 03 /0% .
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