
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY, SERIES B
Volume 9, Pages 757–781 (September 9, 2022)
https://doi.org/10.1090/btran/110

ON THE QUOTIENT OF THE HOMOLOGY COBORDISM

GROUP BY SEIFERT SPACES

KRISTEN HENDRICKS, JENNIFER HOM, MATTHEW STOFFREGEN, AND IAN ZEMKE

Abstract. We prove that the quotient of the integer homology cobordism
group by the subgroup generated by the Seifert fibered spaces is infinitely
generated.

1. Introduction

The homology cobordism group Θ3
Z
consists of integer homology 3-spheres mod-

ulo integer homology cobordism and is a fundamental structure in geometric topol-
ogy. For example, Θ3

Z
played a central role in Manolescu’s [Man16] disproof of the

triangulation conjecture in high dimensions.
A natural question to ask is which types of manifolds can represent a given class

[Y ] ∈ Θ3
Z
. The first answers to this question were in the positive direction. Liv-

ingston [Liv81] showed that every class in Θ3
Z
can be represented by an irreducible

integer homology sphere, and Myers [Mye83] improved this to show that every class
admits a hyperbolic representative. More recently, Mukherjee [Muk20, Theorem
1.18] showed that every class admits a Stein fillable representative.

In the negative direction, Frøyshov (in unpublished work), Lin [Lin17], and Stof-
fregen [Sto17] showed that there are classes in Θ3

Z
that do not admit a Seifert

fibered representative. Nozaki, Sato, and Taniguchi [NST19, Corollaries 1.6 and
1.7] improved this result to show that there are classes that admit neither a Seifert
fibered representative nor a representative that is surgery on a knot in S3. The
Frøyshov, Stoffregen, and Nozaki-Sato-Taniguchi examples are all connected sums
of Seifert fibered spaces, and Lin’s example has Floer homology consistent with
it being representable by a Seifert fibered space. In particular, these results are
insufficient to show Θ3

Z
is not generated by Seifert fibered spaces.

Using the involutive Heegaard Floer homology of Hendricks and Manolescu
[HM17], we proved in [HHSZ20, Theorem 1.9] that Seifert fibered spaces do not
generate Θ3

Z
. More precisely, let ΘSF denote the subgroup of Θ3

Z
generated by

Seifert fibered spaces. We showed that the quotient Θ3
Z
/ΘSF contains a subgroup

isomorphic to Z, generated by Y = S3
+1(−2T6,7#T6,13#T−2,3;2,5). The main result

of this paper is that the quotient Θ3
Z
/ΘSF is in fact infinitely generated:
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Theorem 1.1. The quotient Θ3
Z
/ΘSF contains a subgroup isomorphic to Z∞,

spanned by

Yn = S3
+1(T2,3#− 2T2n,2n+1#T2n,4n+1), n ≥ 3, n odd.

Involutive Heegaard Floer homology associates to an integer homology sphere
Y (or more generally a spin rational homology sphere) an algebraic object called
an iota-complex. The local equivalence class of this iota-complex is an invariant
of the homology cobordism class of Y , and the set of iota-complexes modulo local
equivalence forms a group under tensor product. For technical reasons, it is often
convenient to consider a slightly weaker notion of equivalence, called almost local

equivalence, and the associated group Î of almost iota-complexes modulo almost
local-equivalence, as in [DHST18]. There is a group homomorphism

ĥ : Θ3
Z
→ Î

induced by sending [Y ] to the almost local equivalence class of its iota-complex.
The proof of Theorem 1.1 relies on the following steps:

(1) A computation of the almost local equivalence class of the iota-complex
associated to Yn using the involutive surgery formula of [HHSZ20, Theorem
1.6]. We call this complex C(n− 1).

(2) A computation of the almost local equivalence class of linear combinations
of C(n− 1), for n ≥ 2, following the strategy of [DHST18, Section 8.1].

(3) A comparison of the results from step (2) with the computation of ĥ(ΘSF )
in [DHST18, Theorem 8.1].

Remark 1.2. Let ΘAR denote the subgroup of Θ3
Z
spanned by almost-rationally

plumbed 3-manifolds; see [Ném05] for the precise definition of an almost-rational

plumbing. By [DS19, Theorem 1.1], ĥ(ΘAR) = ĥ(ΘSF ), so the proof of Theorem
1.1 actually shows that the quotient Θ3

Z
/ΘAR contains subgroup isomorphic to Z∞.

Recall that a graph manifold is a prime 3-manifold whose JSJ decomposition
contains only Seifert fibered pieces. The manifolds Yn in Theorem 1.1 are all graph
manifolds, since they are surgery along connected sums of torus knots. Similarly,
the manifold Y in [HHSZ20, Theorem 1.9] is a graph manifold, since it is surgery
along a connected sum of iterated torus knots. A natural question to ask is whether
every homology sphere is homology cobordant to a graph manifold, or more gen-
erally, whether graph manifolds generate Θ3

Z
. As far as the authors know, both

of these questions remain open; we expect that the answer to both is no. Note
that if [NST19, Conjecture 1.22] is true, then graph manifolds do not generate Θ3

Z
,

as pointed out in [NST19, Proposition 1.23]. Another natural question to ask is
whether surgeries on knots in S3 generate Θ3

Z
.

Organization. This paper is organized as follows. In Section 2 we recall some
background on involutive Heegaard Floer homology. In Section 3 we prove that the
almost iota-complex of the manifolds Yn in Theorem 1.1 is C(n− 1). In Section 4
we compute the almost local equivalence classes of linear combinations of C(n),
and use it to complete the proof of Theorem 1.1.
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2. Background on involutive Heegaard Floer homology

We will assume the reader is familiar with the basics of knot Floer homology
[OS04] [Ras03], and confine ourselves to listing some definitions necessary for study-
ing involutive Heegaard Floer homology [HM17]. In fact, in the present paper we
will only need a few properties of this theory, which we summarize here. For more
details, see [HHSZ20, Section 3].

Definition 2.1. An iota-complex (or ι-complex ) (C, ι) is a chain complex C, which
is free and finitely generated over F[U ], equipped with an endomorphism ι. Here F

is the field of 2 elements, and U is a formal variable with grading −2. Furthermore,
the following hold:

(1) C is equipped with a Z-grading, compatible with the action of U . We call
this grading the Maslov or homological grading.

(2) There is a grading-preserving isomorphism U−1H∗(C) ∼= F[U,U−1].
(3) ι is a grading-preserving chain map and ι2 � id.

Given two iota-complexes (C1, ι1) and (C2, ι2), a homogeneously graded F[U ]-
chain map f : C1 → C2 is said to be an ι-homomorphism if ι2 ◦ f + f ◦ ι1 � 0. Two
iota-complexes (C1, ι1) and (C2, ι2) are called ι-equivalent if there is a homotopy
equivalence Φ: C1 → C2 which is an ι-homomorphism.

For any closed oriented 3-manifold Y equipped with self-conjugate spinc struc-
ture s, Hendricks–Manolescu [HM17] prove that the F[U ]-chain complex with ho-
motopy involution (CF−(Y, s), ι) is well defined up to homotopy-equivalence. In
the case that Y is a rational homology 3-sphere, (CF−(Y, s), ι) is an iota-complex.

The tensor product of iota-complexes (C1, ι1) and (C2, ι2) is given by

(2.1) (C1, ι1)⊗ (C2, ι2) := (C1 ⊗F[U ] C2, ι1 ⊗ ι2).

Moreover, Hendricks–Manolescu–Zemke [HMZ18] establish that

(CF−(Y1#Y2, s1#s2), ι) � (CF−(Y1, s1), ι1)⊗ (CF−(Y2, s2), ι2),

where � denotes homotopy-equivalence of iota-complexes.

Definition 2.2. Suppose (C, ι) and (C ′, ι′) are two iota-complexes.

(1) A local map from (C, ι) to (C ′, ι′) is a grading-preserving ι-homomorphism
F : C → C ′, which induces an isomorphism from U−1H∗(C) to U−1H∗(C

′).
(2) We say that (C, ι) are (C ′, ι′) are locally equivalent if there is a local map

from (C, ι) to (C ′, ι′), as well as a local map from (C ′, ι′) to (C, ι).

The set of local equivalence classes forms an abelian group, denoted I, with prod-
uct given by the operation ⊗ in equation (2.1). See [HMZ18, Section 8]. Inverses
are given by dualizing both the chain complex C and the map ι with respect to F[U ];
we write −(C, ι) for this dual iota-complex. According to [HMZ18, Theorem 1.8],
the map

Y 	→ [(CF−(Y ), ι)]

determines a homomorphism from Θ3
Z
to I.

There is an additional, weaker, equivalence relation between iota-complexes,
introduced in [DHST18] (see also [HHSZ20, Section 3.3]).

Definition 2.3 ([DHST18, Definition 3.1]). Let C1 and C2 be free, finitely gener-
ated chain complexes over F[U ], such that each Ci has an absolute Q-grading and a



760 K. HENDRICKS, J. HOM, M. STOFFREGEN, AND I. ZEMKE

relative Z-grading with respect to which U has grading −2. Two grading-preserving
F[U ]-module homomorphisms

f, g : C1 → C2

are homotopic mod U , denoted f � g mod U , if there exists an F[U ]-module ho-
momorphism H : C1 → C2 such that H increases grading by one and

f + g +H ◦ ∂ + ∂ ◦H ∈ imU.

Definition 2.4 ([DHST18, Definition 3.2]). An almost iota-complex (or almost

ι-complex ) C = (C, ι) consists of the following data:

• A free, finitely-generated, Z-graded chain complex C over F[U ], with

U−1H∗(C) ∼= F[U,U−1].

Here U has degree −2 and U−1H∗(C) is supported in even gradings.
• A grading-preserving F[U ]-module homomorphism ι : C → C such that

ι ◦ ∂ + ∂ ◦ ι ∈ imU and ι2 � id mod U.

Of course, any iota-complex induces an almost iota-complex. The definition of
tensor product of almost iota-complexes is the same as equation (2.1).

In analogy with the terminology above, an almost ι-homomorphism from (C1, ι1)
to (C2, ι2) is a homogeneously-graded, F[U ]-equivariant chain map f : C1 → C2 such
that f ◦ ι � ι ◦ f mod U. We then have the following new relation between almost
ι-complexes.

Definition 2.5 ([DHST18, Definition 3.5]). Suppose (C1, ι1) and (C2, ι2) are al-
most ι-complexes.

(1) An almost local map from (C1, ι1) to (C2, ι2) is a grading-preserving al-
most ι-homomorphism F : C1 → C2, which induces an isomorphism from
U−1H∗(C) to U−1H∗(C

′).
(2) We say that (C1, ι1) are (C2, ι2) are almost locally equivalent if there is an

almost local map from (C1, ι1) to (C2, ι2), as well as an almost local map
from (C2, ι2) to (C1, ι1).

One special case of this definition will be especially useful to us: if ι and ι′ are
maps on the same complex C such that (C, ι) and (C, ι′) are each almost iota-
complexes, and the difference ι− ι′ ∈ im(U), then the identity map from C to itself
is an almost local equivalence between (C, ι) and (C, ι′).

Using the definitions above, one may construct an almost local equivalence group

Î of almost iota-complexes. It is a non-trivial result that Î can be parametrized ex-
plicitly [DHST18, Theorem 6.2], as we now describe. To a sequence
(a1, b2, a3, b4, . . . , a2m−1, b2m), where ai ∈ {±} and bi ∈ Z \ {0}, we may associate
an almost iota-complex

C(a1, b2, a3, b4, . . . , a2m−1, b2m),

called the standard complex of type (a1, b2, a3, b4, . . . , a2m−1, b2m), as follows. The
standard complex is freely generated over F[U ] by t0, t1, . . . , t2m. For each symbol
ai, we introduce an ω = (1 + ι)-arrow between ti−1 and ti as follows:

• If ai = +, then ωti = ti−1.
• If ai = −, then ωti−1 = ti.

For each symbol bi, we introduce a ∂-arrow between ti−1 and ti as follows:
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• If bi > 0, then ∂ti = U |bi|ti−1.
• If bi < 0, then ∂ti−1 = U |bi|ti.

In computations with standard complexes, it will frequently be convenient to
represent the group operation with + instead of ⊗. The dual of the standard
complex C(a1, b2, a3, b4, . . . , a2m−1, b2m) is the standard complex

−C(a1, b2, a3, b4, . . . , a2m−1, b2m) = C(−a1,−b2,−a3,−b4, . . . ,−a2m−1,−b2m),

where if ai is + then −ai is − and vice versa.
Every element of Î is locally equivalent to a unique standard complex [DHST18,

Theorem 6.2]. Thus, in spite of Î being infinitely-generated, its elements are easy

to describe. We write ĥ for the composite

Θ3
Z
→ I → Î.

Note that there is not a simple formula for the group operation in terms of

standard complexes. Nevertheless, the image ĥ(ΘSF ) ⊆ Î has a simple description;
see [DHST18, Section 8]. Indeed,

ĥ(ΘSF ) = {C(a1, b1, . . . , ak, bk) | |bi| ≤ |bi−1| and sgn(bi) = − sgn(ai)} ⊆ Î.

2.1. Involutive knot Floer homology. Hendricks-Manolescu also constructed
an involutive knot Floer homology CFK(Y,K) for K ⊆ Y a null-homologous knot,
which, from our viewpoint, is a finitely-generated F[U ,V ]-complex with an endo-
morphism ιK , with properties as follows.

Suppose that (CK , ∂) is a free, finitely generated complex over the ring F[U ,V ].
There are two naturally associated maps

Φ,Ψ: CK → CK ,

as follows. We write ∂ as a matrix with respect to a free F[U ,V ]-basis of CK .
We define Φ to be the endomorphism obtained differentiating each entry of this
matrix with respect to U . We define Ψ to be the endomorphism obtained by
differentiating each entry with respect to V . These maps naturally appear in the
context of knot Floer homology, see [Sar11, Zem17, Zem19c]. The maps Φ and Ψ
are independent of the choice of basis, up to F[U ,V ]-equivariant chain homotopy
[Zem19a, Corollary 2.9].

We say an F-linear map F : CK → C ′
K is skew-F[U ,V ]-equivariant if

F ◦ V = U ◦ F and F ◦ U = V ◦ F.

We may view a free complex over F[U ,V ] also as an infinitely generated complex
over F[U ], where U acts diagonally via U = U V . Concretely, if B = {x1, . . . ,xn}
is an F[U ,V ]-basis, then an F[U ]-basis is given by the elements U i ·xk and V j ·xk,
ranging over all i ≥ 0, j ≥ 0 and k ∈ {1, . . . , n}.

Definition 2.6.

(1) An ιK-complex (CK , ιK) is a finitely generated, free chain complex CK over
F[U ,V ], equipped with a skew-equivariant endomorphism ιK satisfying

ι2K � id+ΦΨ.

(2) We say an ιK-complex (CK , ιK) is of ZHS3-type if there are two Z val-
ued gradings, gr

w
and gr

z
, such that U and V have (gr

w
, gr

z
)-bigrading

(−2, 0) and (0,−2), respectively. We assume ∂ has (gr
w
, gr

z
)-bigrading

(−1,−1), and that ιK switches gr
w

and gr
z
. Furthermore, we assume that
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A := 1
2 (grw − gr

z
) is integer valued. We call A the Alexander grading, and

we call gr
w

and gr
z
the Maslov gradings. Writing As ⊆ CK for the sub-

space in Alexander grading s, we assume that there is a grading-preserving
isomorphism U−1H∗(As) ∼= F[U,U−1] for all s ∈ Z.

In Definition 2.6, an ιK-complex of ZHS3-type is equipped with two Maslov
gradings, gr

w
and gr

z
. We note that in the literature, usually one considers just

the gr
w
-grading, which is referred to as the homological grading. All ιK-complexes

in this paper will be of ZHS3-type (as they arise as the complexes associated to
knots in S3). For further details on the translation to other versions of knot Floer
homology, see [Zem19b, Section 1].

The tensor product of ιK-complexes has a slightly subtle definition:

(CK , ιK)⊗ (C ′
K , ι′K) = (CK ⊗F[U ,V ] C

′
K , ιK ⊗ ι′K + ιKΨ⊗ ι′KΦ).

Local equivalence of ιK-complexes can defined much as for iota-complexes. See
[Zem19a, Section 2]. For the present paper however, it is helpful to work with the
(equivalent) definition that local equivalence of iota-complexes is the equivalence
relation generated by declaring two ιK-complexes of ZHS3-type C1 and C2 locally
equivalent if C1 is an ιK-equivariant summand of C2 (cf. [HH19]). With respect
to this definition one may form a local equivalence group of ιK-complexes; inverses
are given by dualizing over F[U ,V ]. As previously, we let −(CK , ιK) denote the
dual ιK-complex of (CK , ιK).

At present, it is very difficult to compute the ιK-complexes associated to most
knots. However, for L-space knots K ⊆ S3, Hendricks-Manolescu [HM17] observed
that there is a unique choice of ιK such that the knot Floer complex CFK(K) is an
ιK-complex. In particular, the involutive knot Floer complex of an L-space knot
K is determined by the Alexander polynomial ΔK(t) of K.

2.2. The surgery formula. Our main tool is the surgery formula from [HHSZ20],
which gives an expression for the involutive Heegaard Floer complex
(CF−(S3

+1(K)), ι) in terms of the involutive knot Floer complex of K.
We will only need a small part of the surgery formula. For K ⊆ S3, let A0(K)

denote the F[U ]-subcomplex of (U ,V )−1CFK(K), generated over F by the mono-
mials U iV j · x satisfying A(x) + j − i = 0 with i ≥ 0 and j ≥ 0. The U -
action on A0(K) is given by U = U V . Moreover, we can define a chain map
ι : A0(K) → A0(K) by ι(x) = ιK(x), since ιK preserves A0(K). It turns out (but
is not obvious) that (A0(K), ιK) is an iota-complex (cf. [HM17, Theorem 1.5] and
[HHSZ20, Lemma 3.16]). A consequence of the full surgery formula is:

Proposition 2.7 ([HHSZ20, Theorem 1.6]). The local equivalence class of

(CF−(S3
+1(K)), ι) is that of (A0(K), ιK). In particular, the ι-local equivalence class

of (CF−(S3
+1(K)), ι) depends only on the ιK-local class of (CFK(K), ιK).

3. Computation of the almost iota-complex of Yn

In this section we give a computation of the almost iota-complex associated to
the manifold Yn = S3

+1(T2,3# − 2T2n,2n+1#T2n,4n+1) for n ≥ 3 odd. We start by
describing the knot Floer homology of the two torus knots T2n,2n+1 and T2n,4n+1,
followed by computing and simplifying several tensor products.
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Figure 3.1. The complex Cn
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z0 z2 z4 z6 · · · z4n−4 z4n−2

w1 w3 w5 · · · w4n−5 w4n−3

V
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U
n

V
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U
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V
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U
n−1

U V
2n−1 U

Figure 3.2. The complex Dn. Note that the staircase continues
onto the second row of the figure, such that ∂(w−1) = V nz−2 +
U

nz0.

3.1. The knot Floer homology of two families of torus knots. In this sub-
section we compute the ιK-complexes associated to the torus knots T2n,2n+1 and
T2n,4n+1.

Let Cn denote the F[U ,V ] complex in Figure 3.1 generated by elements xk such
that −2n + 2 ≤ k ≤ 2n − 2 with k even and y� such that −2n + 1 ≤ � ≤ 2n − 1
with � odd, with nonzero differentials given by

∂(xk) = V
c2n−1+kyk−1 + U

c2n+kyk+1

determined by the symmetric sequence of positive integers (c1, c2, . . . , c4n−3, c4n−2)
= (1, 2n− 1, 2, 2n− 2, . . . , 2n− 2, 2, 2n− 1, 1).

Likewise, let Dn denote the complex defined similarly using the symmetric string
of positive integers (c1, · · · , c8n−4) given by

(1, 2n− 1, 1, 2n− 1, 2, 2n− 2, 2, 2n− 2, · · · , 2n− 2, 2, 2n− 2, 2, 2n− 1, 1, 2n− 1, 1)

with generators wk such that 3 − 4n ≤ k ≤ 4n − 3 with k odd and z� such that
2− 4n ≤ � ≤ 4n− 2 with � even, and nonzero differentials given by

∂(wk) = V
c4n−2+kzk−1 + U

c4n−1+kzk+1.

See Figure 3.2 for a depiction of this staircase.

Proposition 3.1. For n odd, the knot Floer homology CFK(T2n,2n+1) is chain

homotopy equivalent to the complex Cn, and the knot Floer homology CFK(T2n,4n+1)
is chain homotopy equivalent to the complex Dn. In both cases the involution ιK is

given by the natural reflection which interchanges the bigradings.

By [OS05] and [HM17], the ιK-complex associated to a torus knot is determined
by its Alexander polynomial, so it suffices to compute the Alexander polynomials of
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T2n,2n+1 and T2n,4n+1 for n odd. Suppose that (c1, c2, . . . , c2k−1, c2k) is a symmetric
sequence of positive integers. We will define

Δ(c1, c2, . . . , c2k−1, c2k) := 1−tc1+tc1+c2−tc1+c2+c3+· · ·−tc1+···+c2k−1+tc1+···+c2k .

Lemma 3.2. The Alexander polynomial of T2n,2n+1 is given by the formula

ΔT2n,2n+1
(t) = Δ(1, 2n− 1, 2, 2n− 2, . . . , 2n− 1, 1)

= 1− t+ t2n − t2n+2 + t4n − · · ·+ t2n(2n−2) − t2n(2n−1)−1 + t2n(2n−1).

(3.1)

Proof. Write Δ = Δ(1, 2n− 1, 2, 2n− 2, . . . , 2n− 1, 1). The Alexander polynomial
is given by

ΔT2n,2n+1
=

(t2n(2n+1) − 1)(t− 1)

(t2n+1 − 1)(t2n − 1)
.

Rearranging, it becomes sufficient to show that

(t2n)2n+1 − 1

t2n − 1
= Δ ·

t2n+1 − 1

t− 1
.

Expanding this out, our desired relation becomes

(3.2)
2n∑

i=0

t2ni = Δ ·
2n∑

i=0

ti.

It is helpful to state a simple algebraic fact. Note that if N and M are positive
integers, and {aj}j∈Z is a sequence which is zero for j �∈ {0, . . . , N}, then

⎛
⎝

N∑

j=0

ajt
j

⎞
⎠

(
M∑

i=0

ti

)
=

N+M∑

j=0

(aj−M + aj−M+1 + · · · aj)t
j .

In particular, if we write a0, . . . , a2n(2n−1) for the coefficients of Δ (and set aj =

0 for j �∈ {0, . . . , 2n(2n − 1)}), then the tj coefficient of the right hand side of
equation (3.2) is

(3.3) aj−2n + aj−2n+1 + · · ·+ aj .

However, by examining the description of Δ given in equation (3.1) it is easy to
verify that equation (3.3) is 1 if j = 2nk for some k ∈ {0, . . . , 2n}, and is 0 otherwise.
This verifies equation (3.2), and completes the proof. �

Lemma 3.3. The Alexander polynomial of T2n,4n+1 satisfies

ΔT2n,4n+1
(t) = Δ(1, 2n− 1, 1, 2n− 1, 2, 2n− 2, 2, 2n− 2, . . . , 2n− 1, 1, 2n− 1, 1).

Proof. The proof is in much the same spirit as the proof of Lemma 3.2. Let Δ
denote Δ(1, 2n− 1, 1, 2n− 1, 2, 2n− 2, 2, 2n− 2, . . . , 2n− 1, 1, 2n− 1, 1). Using the
definition of the Alexander polynomial and rearranging terms, as in Lemma 3.2, it
is sufficient to show that

(t2n)4n+1 − 1

t2n − 1
= Δ ·

t4n+1 − 1

t− 1
,

which we expand to
4n∑

i=0

t2ni = Δ ·

4n∑

i=0

ti.
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Following the argument of Lemma 3.2, it is sufficient to show that if aj denote the
coefficients of Δ, then aj−4n + · · ·+ aj is 1 if j = 2nk, for some k ∈ {0, . . . 4n}, and
is 0 otherwise. This is straightforward to verify. �

Proof of Proposition 3.1. By [OS05] and [HM17], the ιK-complex of a torus knot
is determined by its Alexander polynomial. The Alexander polynomials computed
in Lemmas 3.2 and 3.3 correspond to the staircases Cn and Dn respectively, with
ιK given by the natural involution in each case. �

3.2. The ιK-complex associated to −2T2n,2n+1#T2n,4n+1. In this subsection we
compute the ιK-complex associated to the connect sum of torus knots
−2T2n,2n+1#T2n,4n+1 up to ιK-local equivalence.

3.2.1. The ιK-local equivalence class of T2n,2n+1#T2n,2n+1. As in Section 3.1, let
Cn denote the complex of T2n,2n+1 for n odd which appears in Figure 3.1, and let
Dn denote the complex associated to T2n,4n+1 which appears in Figure 3.2. We
first consider Xn := Cn ⊗ Cn. We will choose a new basis for Xn with respect to
which our complex decomposes as a direct sum of Yn ⊕Zn, as follows. The subset
Yn is generated by the basis elements appearing in Figure 3.3.

y1−2ny1−2n y1−2ny3−2n y3−2ny3−2n y3−2ny5−2n · · · y−3y−1 y−1y−1

y1−2nx2−2n x2−2ny3−2n y3−2nx4−2n · · · y−3x−2 x−2y−1 x0y−1

V U
2n−1 V U

2n−1
V

2
U

2n−2
U

n+1
V

n−1
U

n+1 V
n U

n · · ·

y1y−1 y1y1 y3y1 y3y3 · · · y2n−1y2n−3 y2n−1y2n−1

y1x0 x2y1 y3x2 · · · x2n−2y2n−3 y2n−1x2n−2

V
n U

n
V

n+1
U

n−1
V

n+1
U

n−1 U V
2n−1 U

y1y−1 + y−1y1

y−1x0 + x0y−1 y1x0 + x0y1

x0x0

U
n

V
n

V
n U

n

Figure 3.3. The subcomplex Yn ⊆ Xn. Note that the top two
rows form a staircase complex, such that ∂(x0y−1) = V ny−1y−1 +
U ny1y−1.

Observe that in the staircase summand of the subcomplex Yn, the pattern of
the construction changes at the basis element y1y1. Namely, traveling left to right
in Figure 3.3 along the top row, we increase the second index of the generators
yiyj , followed by the first. Along the second row, we increase the first index of
the generators yiyj , followed by the second. This complex is equipped with the
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involution ιK arising from the tensor product, which in particular sends

ιK(x0x0) = x0x0 + U
n−1

V
n−1y1y−1

ιK(y1y−1) = y1y−1 + (y1y−1 + y−1y1)

ιK(y1y−1 + y−1y1) = y1y−1 + y−1y1

ιK(y−1x0 + x0y−1) = y1x0 + x0y1

ιK(y1x0 + x0y1) = y−1x0 + x0y−1

ιK(x0y−1) = y1x0 + (y1x0 + x0y1)

ιK(y1x0) = x0y−1 + (y−1x0 + x0y−1)

and is otherwise a reflection.
Before defining the summand Zn, we make a few preliminary observations about

gradings. Firstly, we note that

A(yi+2) = A(yi) + 2n,

for all odd i. As a consequence, if i and j are odd, then

A(yiyj) = A(yi+2yj−2).

In particular, if i, j are odd, then there is an γi,j ∈ Z such that

yiyj + (U V )γi,jyi+2yj−2

has homogeneous (gr
w
, gr

z
)-bigrading. It is not hard to compute that if i < j, then

γi,j ≥ 0.
Suppose that i and j are even and i < j. By considering the differential applied

to xixj and using the fact that the U powers in ∂xi decrease as we increase the
index of xi, we see that if i < j, then there is an αi,j ≥ 0 such that

U
αi,jyi+1xj + xiyj+1

has homogeneous (gr
w
, gr

z
)-bigrading. Entirely analogously, if i < j, then there is

a βi,j ≥ 0 so that

yi−1xj + V
βi,jxiyj−1

has homogeneous (gr
w
, gr

z
)-bigrading.

We now describe the summand Zn. The generators have the following form:

(Z-1) If i and j are both odd and i �= ±j, then yiyj + yjyi is a generator of Zn.
(Z-2) If i is odd, j is even, and j �= −i± 1, then yixj + xjyi is a generator of Zn.
(Z-3) If i > 0 is even and nonzero, write i = 2n− 2k for some n > k ≥ 1. Then

Zn has a generator

xixi + k(2n− k)U k−1
V

2n−k−1yi−1yi+1.

(Z-4) If i < 0 is even then Zn has a generator xixi.
(Z-5) If i and j are even with i < j, then

xixj + ki(2n− kj)U
ki−1

V
2n−kj−1yi−1yj+1

is a generator of Zn, where i = 2n− 2ki and j = 2n− 2kj .
(Z-6) If i and j are even and i > j, then xixj is a generator of Zn.
(Z-7) If i and j are odd and i < j − 2, then

yiyj + (U V )γi,jyi+2yj−2

is a generator of Zn.
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(Z-8) If i > 2 is odd, then

yiy−i + (U V )γ−i,iyi−2y−i+2

is a generator.
(Z-9) If i and j are even and i < j, then following are generators of Zn:

(a) xiyj+1 + U αi,jyi+1xj ;
(b) x−iy−j−1 + V β−i,−jy−i−1x−j .

(Z-10) For even j > 0, the following are generators of Zn:
(a) yj+1x−j + V βj,−jxjy−j+1;
(b) y−j−1xj + U

α−j,jx−jyj−1.
(Z-11) For even j > 0, the following are generators of Zn:

(a) yj−1x−j + U α−j,j−2xj−2y−j+1;
(b) y−j+1xj + V β−j+2,jx−j+2yj−1.

In the following, we use

(ιK ⊗ ιK) ◦ (id⊗ id+Ψ⊗ Φ)

as our model of the involution.

Lemma 3.4. Zn and Yn satisfy the following:

(1) Zn and Yn are free.

(2) Xn
∼= Yn ⊕Zn.

(3) ∂Zn ⊆ Zn and ∂Yn ⊆ Yn

(4) ιKZn ⊆ Zn and ιKYn ⊆ Yn.

In particular, Xn is ιK-locally equivalent to Yn.

Proof. To prove (1) and (2), we will first show that Xn = Yn + Zn, and then we
will show that the generating set obtained by concatenating the obvious basis of
Yn with the basis for Zn above gives a generating set of Xn of the correct number
of elements. In particular, this will imply that Zn is free since it has a generating
set with no linear relations.

We first address Xn = Yn + Zn. Suppose i and j are both odd. Note yiyi is in
Yn so we may assume that i �= j. Consider the case i �= −j. By adding (Z-1), it
is sufficient to consider i < j. By adding (Z-7), we reduce to the case of yiyi or
yiyi+2 which are either in Yn, or are a sum of an element in Yn with an element
of (Z-1). Now consider yiy−i. By adding elements (Z-8), we reduce to the case of
y1y−1 and y−1y1, which are both in Yn. We now consider elements xiyj and yjxi.
Note that if |i − j| = 1, then either xiyj is in Yn, or xiyj plus an element (Z-2) is
in Yn. The same holds for yjxi. Next, we consider an arbitrary xiyj . Using (Z-9),
we may relate xiyj with sums of xnym and ymxn with |m − n| < |i − j|. Hence,
by induction, it suffices to show that we can do the same to yjxi. If j �= −i ± 1,
then we use (Z-2) to relate yjxi with xiyj , and apply the previous argument. If
j = −i± 1, then we use (Z-10) or (Z-11). This shows that all xiyj and yjxi are in
the span. Finally, each xixj is a sum of generators (Z-4), (Z-5) and (Z-6), as well
as the above terms. Hence Xn = Yn + Zn.

We now show that the generating set obtained by concatenating Yn and Zn

has the same cardinality as the rank of Xn, which implies that Zn is free and
Xn

∼= Yn ⊕Zn. Firstly,

rank(Xn) = 16n2 − 8n+ 1 and rank(Yn) = 8n+ 1.
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Similarly, Zn has 2n2 − 2n generators of type (Z-1), 4n2 − 6n + 2 generators of
type (Z-2), 4n2 − 4n generators of types (Z-3), (Z-4), (Z-5) or (Z-6), 2n2 − 2n
generators of type (Z-7) and (Z-8), and 4n2 − 6n+2 generators of type (Z-9), and
4n− 4 generators of type (Z-10) or (Z-11). Hence, we have a generating set of Zn

with 16n2−16n generators. Concatenating these generating sets gives a generating
set of Cn ⊗ Cn with rank 16n2 − 8n+ 1, which must be a basis.

We now prove (3). Clearly ∂Yn ⊆ Yn, so we focus on Zn. On (Z-1), ∂ vanishes.
The map ∂ sends elements of type (Z-2) to a sum of two elements of (Z-1). Ele-
ments (Z-3) and (Z-4) are mapped to sums of (Z-2). Basis elements in (Z-5) are
mapped to a sum of (Z-9a) and (Z-9b). Basis elements (Z-6) are as follows. If
|j + i− 1| > 1, they are mapped to a sum of (Z-9a) and (Z-9b). If i+ j = 2, they
are mapped to a sum of (Z-9a), (Z-9b) and (Z-2). If i+ j = −2, they are mapped
to a sum of (Z-9b) and (Z-11a). The differential vanishes on (Z-7) and (Z-8).
Elements (Z-9a) are mapped to elements (Z-7). Elements (Z-10) are mapped to a
sum of (Z-1) and (Z-7) if i �= −j, or (Z-8) if i = −j. Elements (Z-10a) are mapped
to (Z-8). Elements (Z-10b) are mapped to (Z-7). Elements (Z-11a) are mapped
to a sum of (Z-1) and (Z-7). Finally (Z-11b) is mapped to (Z-7).

We now prove (4). Clearly ιKYn ⊆ Yn, so we focus on Zn. The map ιK sends ele-
ments (Z-1) to elements (Z-1). Similarly elements (Z-2) are sent to elements (Z-2).
Elements (Z-3) are sent to elements (Z-4). Elements (Z-4) are sent to the sum
of an element (Z-3) and an element (Z-1). Similarly elements (Z-5) are sent to
elements (Z-6), while elements (Z-6) and sent to sums of (Z-5) and (Z-7). Gener-
ators (Z-7) with i �= −j are sent to a sum (Z-7) and two elements of (Z-1). Gener-
ators (Z-7) with i = −j are interchanged with generators (Z-8). Elements (Z-9a)
and (Z-9b) are interchanged. Elements (Z-10a) and (Z-10b) are interchanged.
Similarly elements (Z-11a) and (Z-11b) are interchanged. �

3.2.2. The ιK-local equivalence class of −2T2n,2n+1#T2n,4n+1. In this section, we
compute the ιK-local equivalence class of CFK(−2T2n,2n+1#T2n,4n+1).

We begin by introducing a new complex, called the box complex. Let Bn denote
the knot-like complex in Figure 3.4 with five generators v, u, s1, s−1, s0, with
differential

∂v = 0, ∂s0 = V
ns−1 + U

ns1, ∂s−1 = U
nu, ∂s1 = V

nu, and ∂u = 0.

The gr = (gr
w
, gr

z
)-bigradings are as follows:

gr(v) = (0, 0),

gr(s0) = (2− 2n, 2− 2n),

gr(s−1) = (1− 2n, 1)

gr(s1) = (1, 1− 2n) and

gr(u) = (0, 0).

The involution on Bn is as follows:

ιK(v) = v + u

ιK(s0) = s0 + U
n−1

V
n−1v

ιK(s−1) = s1

ιK(s1) = s−1

ιK(u) = u.
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v

s−1 u

s0 s1

U
n

V
n

U
n

V
n v∨

s∨−1 u∨

s∨0 s∨1

V
n

U
n

V
n

U
n

Figure 3.4. The box complex Bn and its dual B∨
n

We will also be interested in the dual complex B∨
n , which is generated by v∨, s∨0 ,

s∨−1, s
∨
1 , u

∨ with gradings

gr(v∨) = (0, 0),

gr(s∨0 ) = (2n− 2, 2n− 2),

gr(s∨−1) = (−1, 2n− 1)

gr(s∨1 ) = (2n− 1,−1) and

gr(u∨) = (0, 0),

and involution

ιK(v∨) = v∨ + U
n−1

V
n−1s∨0

ιK(s∨0 ) = s∨0

ιK(s∨−1) = s∨1

ιK(s∨1 ) = s∨−1

ιK(u∨) = u∨ + v∨.

Proposition 3.5. The ιK-complex of (CFK(−2T2n,2n+1#T2n,4n+1), ιK) is ιK-locally

equivalent to the complex B∨
n with the involution described above.

Recall that by Lemma 3.4, CFK(2T2n,2n+1) is ιK-locally equivalent to the com-
plex Yn of Figure 3.3. Moreover, by Proposition 3.1, CFK(T2n,4n+1) is ιK-locally
equivalent to the complex Dn of Figure 3.2. Our proof of Proposition 3.5 proceeds
by demonstrating that the ιK-complex Yn is ιK-locally equivalent to Dn ⊗ Bn.

Indeed, we prove a general lemma about the tensor product of (positive) staircase
complexes with an even number of steps and box complexes. Let k be an even
number, and let S be a staircase complex with generators xj such that −k + 1 ≤
j ≤ k−1 with j odd, and yi such that −k ≤ i ≤ k with i even. Let the differentials

∂(xj) = V
ck+jyj−1 + U

ck+j+1yj+1

be specified by a symmetric sequence of positive integers (c1, c2, . . . , c2k−1, c2k) with
the property that ck = ck+1 = n. Most importantly, S has an even number of steps
and the central arrows with target y0 are both weighted by n, so that

∂x−1 = V
ck−1y−2 + U

ny0 and ∂x1 = U
ck−1y2 + V

ny0.

(Recall that ck−1 = ck+2.) We will compute the ιK-local equivalance class of S⊗Bn

for any staircase of this form. Similarly to the methods of the previous subsection,
we construct an ιK-equivariant splitting

S ⊗ Bn
∼= Y ⊕W
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y−kv · · · y−2v y0v y2(v + u) · · · yk(v + u)

x−k+1v · · · x−1v x1(v + u) + y0s1 · · · xk−1(v + u)

V
c1 U

c2 U
n

V
ck−1 V

n
U

ck−1 V
c2

U
c1

y0s−1 y0u

y0s0 y0s1

U
n

V
n

U
n

V
n

Figure 3.5. The complex Y . Note that on the bottom row of the
staircase complex, the terms to the right of x1(v + u) + y0s1 are
all of the form xi(v + u).

into two summands Y and W , which we now describe. The complex Y , which is
the simpler of the two, appears in Figure 3.5. The complex W has the following
generators:

(W -1) For even i �= 0, the element yiu.
(W -2) For odd i �∈ {1,−1}, the element xiu.
(W -3) The elements

x−1u+ y0s−1 and x1u+ y0s1.

(W -4) For i > 0 even, the elements

yis−1, yis1 and yi(s0 + U
n−1

V
n−1v).

(W -5) For i < 0 even, the elements

yis−1, yis1 and yis0.

(W -6) For i > 1 odd, then

xis−1, xis1 and xi(s0 + U
n−1

V
n−1v).

(W -7) For i < −1 odd, then

xis−1, xis1 and xis0.

(W -8) The elements x1s1 and x−1s−1.
(W -9) The elements

x1s−1 + y0(s0 + U
n−1

V
n−1v), and x−1s1 + y0s0.

(W -10) The elements

x1(s0 + U
n−1

V
n−1v) and x−1s0.

As in the previous example, we are using the model of the involution

(ιK ⊗ ιK) ◦ (id⊗ id+Ψ⊗ Φ).
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Note in particular that we have

ιK(y0v) = y0v + y0u

ιK(y0s0) = y0s0 + U
n−1

V
n−1y0v

ιK(y0u) = y0u

ιK(y0s1) = y0s−1

ιK(y0s−1) = y0s1

ιK(x−1v) = (x1(v + u) + y0s1) + y0s1

ιK(x1(v + u) + y0s1) = x−1v + y0s−1.

Lemma 3.6. The ιK-complex S⊗Bn decomposes as the direct sum of ιK-complexes

Y ⊕W.

Proof. Confirming that ∂ and ιK both preserve Y and W , and furthermore that
Y ⊕W ∼= S ⊗ Bn, proceeds straightforwardly and similarly to Lemma 3.4. �

Proof of Proposition 3.5. We recall that by Lemma 3.4, CFK(2T2n,2n+1) is ιK-
locally equivalent to the complex Yn of Figure 3.3. Moreover, by Proposition 3.1,
CFK(T2n,4n+1) is ιK-locally equivalent to the staircase complex Dn of Figure 3.2.
Applying Lemma 3.6 to Dn⊗Bn shows that Dn⊗Bn is ιK-locally equivalent to Yn.
Therefore Y∨

n ⊗Dn is ιK-locally equivalent to B∨
n . The statement of the proposition

follows immediately. �

3.3. The almost iota-complex associated to S3
+1(T2,3#−2T2n,2n+1#T2n,4n+1).

We now consider the tensor product of B∨
n with the complex of the trefoil T2,3,

again for n odd. Recall that CFK(T2,3) is the staircase complex generated by three
elements r0, s1, s−1 with ∂(r0) = V s−1 + U s1 and other differentials trivial. We
are interested in the iota-complex (En, ι) = A0(B

∨
n ⊗CFK(T2,3)) obtained from the

ιK-complex B∨
n ⊗CFK(T2,3) by restricting to monomials U iV jx in (U ,V )−1(B∨

n ⊗
CFK(T2,3)) for which A(x) + j − i = 0 and i and j are non-negative.

Proposition 3.7. For n ≥ 3 odd, the iota-complex (En, ι) is almost-locally equiv-

alent to the standard complex C(n− 1) = C(+,−1,+,−n+ 1).

Proof. The chain complex (En, ι) = A0(B
∨
n ⊗CFK(T2,3)) has fifteen generators and

differentials as shown in Figure 3.6. (Recall that the action of U is generated by
the action of U V .)

Using the usual model

ι = (ιK ⊗ ιK) ◦ (id⊗ id+Ψ⊗ Φ),

the involution takes the following form on En:

ι(a) = c+ Un−1k

ι(b) = b+ Un−1j

ι(c) = a+ Un−1l

ι(d) = d+ b+ p

ι(e) = c+ f

ι(f) = a+ e

ι(g) = m

ι(h) = p

ι(i) = n

ι(j) = j

ι(k) = l

ι(l) = k

ι(m) = g + Un−1l

ι(n) = i

ι(p) = h
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a

b c
d

e

f

g h

i

j k

l

m n

p

U

U

Un

Un

Un−1

U

U

Un−1

Un
Un

Figure 3.6. The complex A0(B
∨
n ⊗ CFK(T2,3))

We now do a change of basis to En to obtain the presentation of En shown in
Figure 3.7.

a e+ g h+ Un−1j + p p l

b a+ c j l + k

e i+ Up m n+ Up+ Unj

d e+ f + g +m

U Un−1

Figure 3.7. A new basis of En. Arrows denote the differential.

Let Fn denote the top line of Figure 3.7. There are projection and inclusion
maps

Π: En → Fn and I : Fn → En,

which are obviously homotopy equivalences. In particular, (Fn, ι
′) is ι-equivalent

to (En, ι), where

ι′ = Π ◦ ι ◦ I.



ON THE QUOTIENT OF Θ3
Z

BY SEIFERT SPACES 773

We compute

ι′(a) = Π(c+ Un−1k) = a+ Un−1l

ι′(e+ g) = Π(c+ f +m) = a+ e+ g

ι′(h+ Un−1j + p) = Π(h+ Un−1j + p) = h+ Un−1j + p

ι′(p) = Π(h) = h+ Un−1j

ι′(l) = Π(k) = l.

(3.4)

We briefly remark how Π is computed in (3.4). The procedure is to write an element
in terms of the basis in Figure 3.7, and then project to the top row. As an example

Π(c+ Un−1k) = Π(a+ (a+ c) + Un−1l + Un−1(l + k)) = a+ Un−1l.

We now consider the induced almost iota-complex. We claim that (Fn, ι
′) is

ι-homotopy equivalent equivalent to the complex (Fn, ι
′′) where ι′′ is the following

map

ι′′(a) = a

ι′′(e+ g) = a+ (e+ g)

ι′′(h+ Un−1j + p) = h+ Un−1j + p

ι′′(p) = (h+ Un−1j + p) + p

ι′′(l) = l.

The equivalence of (Fn, ι
′) and (Fn, ι

′′) is seen as follows. The map ι′ + ι′′ sends a
to Un−1l and vanishes on all other generators of Fn. In particular, ι′ + ι′′ = [∂,H]
on Fn, where H is the F[U ]-equivariant map which satisfies H(a) = p and vanishes
on all other generators.

However, (Fn, ι
′′) is the iota-complex

a e+ g h+ Un−1j + p p l
U Un−1

where dashed arrows denote ω := ι′′ + id. This clearly reduces to the almost
iota-complex C(+,−1,+,−n+ 1) = C(n− 1). �

4. Tensor products of almost iota-complexes

4.1. The subgroup of the group of almost iota-complexes spanned by

C(n). We now compute the subgroup of the group of almost iota-complexes spanned
by linear combinations of the almost iota-complexes C(n) = (+,−1,+,−n) for
varying n > 1. The results of this section are similar to [DHST18, Section 8.1]. In
this section we use the + symbol instead of ⊗ to represent the tensor product of
almost iota complexes. Observe that −C(n) is parametrized by (−, 1,−, n). We
will consider sums of the form

C = ±C(n1)± C(n2)± · · · ± C(nm),

where each nk > 0. Without loss of generality, we assume that the nk are non-
increasing, that is, n1 ≥ n2 ≥ · · · ≥ nm. Furthermore, we assume that C is fully

simplified, meaning that if ni = ni+1, the complexes C(ni) and C(ni+1) occur with
the same sign. Theorem 4.1 and its proof are analogous to [DHST18, Theorem 8.1].
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Theorem 4.1. Let

C = ±C(n1)± C(n2)± · · · ± C(nm)

be fully simplified with n1 ≥ n2 ≥ · · · ≥ nm > 1. Then the standard representative

of C is obtained by concatenating the parameters of the above terms in the order

that they appear.

Example 4.2. The standard representative of C(n1) + C(n2) + · · ·+ C(nm) is

(+,−1,+,−n1) + · · ·+ (+,−1,+,−nm)

= (+,−1,+,−n1,+,−1,+,−n2, . . . ,+,−1,+,−nm).

Example 4.3. The standard representative of −C(n1)− C(n2)− · · · − C(nm) is

(−, 1,−, n1) + · · ·+ (−, 1,−, nm) = (−, 1,−, n1,−, 1,−, n2, . . . ,−, 1,−, nm).

Example 4.4. The standard representative of C(n1)− C(n2) is

(+,−1,+,−n1) + (−, 1,−, n2) = (+,−1,+,−n1,−, 1,−, n2).

Proof of Theorem 4.1. This proof closely follows the proof of [DHST18, Theorem
8.1]. We begin with a model calculation in the casem = 2. LetN andM be positive
integers and consider C(N) = (+,−1,+,−N) and C(M) = (+,−1,+,−M). We
consider the following two cases:

(1) C1 = −C(N)− C(M) with N ≥ M ,
(2) C2 = C(N)− C(M) with N > M ,

and show that we have the following almost local equivalences

C1 ∼ (−, 1,−, N,−, 1,−,M) and C2 ∼ (+,−1,+,−N,−, 1,−,M).

The other two cases −C(N) + C(M) and C(N) + C(M) follow by dualizing.
For both C1 and C2, the obvious tensor product basis consists of 25 generators.
These bases are displayed in the left of Figures 4.1 and 4.2, where they are labeled
a through y. The dashed red arrows represent the action of ω and the solid black
arrows represent ∂, with the label over the arrow denoting the associated power of
U ; for example, in C1, we have that ∂o = Uj + UMn and that ω(m) = n+ r + s.

On the right of Figure 4.1, we have performed the change of basis

f ′ = f + b+ g

k′ = k + c+ �

p′ = p+ d+ i+ h+ �

u′ = u+ UN−Me+ UN−1m+ UN−1n

v′ = v + UN−M j + UN−1n+ UN−1r

w′ = w + UN−Mo

x′ = x+ UN−M t,

keeping the other basis elements the same. The reader should verify that this results
in the diagram in the right of Figure 4.1. It is then evident from the right of Figure
4.1 that C(N) + C(M) is almost locally equivalent to

(−, 1,−, N,−, 1,−,M),

as desired.
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Figure 4.1. Left, the obvious tensor product basis for C1. Right,
after a change of basis. Recall that N ≥ M .

The computation of C(N) − C(M) is similar. On the right of Figure 4.2, we
have performed a change of basis

a′ = a+ b+ g +m+ n+ s+ UN−My

f ′ = f + r

k′ = k + q + UN−1w

p′ = p+ k

q′ = q + UN−1w

s′ = s+ UN−My,

keeping the other basis elements the same (e.g., b′ = b, etc). The reader should
verify that this results in the diagram on the right of Figure 4.2, where we consider
ω modulo U . For example,

ω(f + r) = a+ b+ g +m+ n+ s

≡ a+ b+ g +m+ n+ s+ UN−My mod U.

We have marked the dashed red arrows that are congruence modulo U (rather
than equality) with congruence symbols to emphasize this point. (Here is where
we first use the notion of almost local equivalence; in the computations of Section
3, all of the maps were local equivalences.) Note that since N > M , we have that
N − M > 0. It is then evident from the right of Figure 4.2 that C(N) − C(M)
is almost locally equivalent to the standard complex (+,−1,+,−N,−, 1,−,M), as
desired.

We now consider the general case, by induction on m. Suppose we have estab-
lished the claim for

C = ±C(n1)± C(n2)± · · · ± C(nm)

as in the statement of the theorem. Let M be a positive integer such that M ≤ nm.
Now consider

C ′ = C − C(M).
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Figure 4.2. Left, the obvious tensor product basis for C2. Right,
after a change of basis. Recall that N > M .

The case C+C(M) where we add rather than subtract C(M) follows by dualizing.
The obvious tensor product basis for C−C(M) is schematically depicted in Figure
4.3 (where we have arbitrarily chosen signs in front of each C(nk)). Using the
inductive hypothesis applied to C, this complex has 5(4m+ 1) generators.

Our strategy will be to split off subcomplexes by change-of-basis moves parallel-
ing those defined for C1 and C2. We begin by comparing the leftmost 25 generators
of C ′. Label these a through y, as usual. We begin by letting n1 assume the role
of N from the previous argument, so that applying the appropriate change of basis
based as in Figure 4.1 if the coefficient of C(n1) is negative and as in Figure 4.2
if the coefficient of C(n1) is positive results in the second row of Figure 4.3. Note
that in the first case, there is an additional subtlety: since we replace u, v, w, x
with u′, v′, w′, x′ respectively, we are in danger of changing the dashed red arrows
entering/exiting u, v, w, and x on the right. To check that this does not happen,
we consider two cases:

(1) Suppose that there are dashed red arrows entering u, v, w, x from the right.
We claim that in order for this to happen, we must have n1 > M . Indeed,
because C is fully simplified, if n1 = M , then all subsequent terms in our
sum are −C(M), in which case u, v, w, x would have dashed red arrows
exiting them, rather than entering. Hence n1 > M . But this shows that

u′ ≡ u mod U

v′ ≡ v mod U

w′ ≡ w mod U

x′ ≡ x mod U,

which means that the original dashed red arrows hold modulo U .
(2) Suppose that there are dashed red arrows exiting u, v, w, x to the right.

Then we can explicitly check that the dashed red arrows exiting u′, v′, w′, x′
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Figure 4.3
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are unchanged:

ω(u′) = ω(u) + Un1−Mj + Un1−1(n+ r) = ω(u) + v′ + v

ω(v′) = ω(v)

ω(w′) = ω(w) + Un1−M t = ω(w) + x′ + x

ω(x′) = (x+ Un1−M t) = ω(x).

In particular, we see that in either case, our change of basis does not change the
form of the diagram lying to the right of u, v, w, x, and y.

We now consider the 25 generators lying inside the dashed box in the second row
of Figure 4.3, relabeling them a through y as usual. Again, we attempt to perform
a change of basis as in Figure 4.1 or 4.2, now with n2 taking the role of N from the
initial argument, as follows.

α

e

d

c

b

a

1 n1

1
1 1 1 1 1

1

1
M M M M M

1
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i
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�
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s

r

q

p

y

x

w

v

u

1 n2

1 n2

1 1 1 1

1 n2

1 n2

M M M M

1 n2

(a)

α′ a′

1 n1

1
1 1 1 1 1

1

1
M M M M M

1

1 n2

1
1 1 1 1

1

1
M M M M

1

α′=α+Un1−1(c+h+i)+Un1−M t

a′=a+b+g+m+n+s+Un1−My

(b)

Figure 4.4
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If the second term C(n2) appears with negative sign in C, then we use the change
of basis in Figure 4.1.

If the second term C(n2) appears with positive sign in C, then we attempt to
use the change of basis in Figure 4.2. However, there is an additional subtlety, as
depicted in Figure 4.4. Namely, we have a black arrow entering/exiting a from the
left, so when we set

a′ = a+ b+ g +m+ n+ s+ Un1−My,

we must ensure that we don’t change the diagram to the left of the dashed box.
If the black arrow to the left of a is exiting a, then this follows from the fact that
∂a′ = ∂a. However, if the arrow is instead entering a (representing the relation
∂α = Un1a), then the diagram is no longer accurate, since evidently ∂α �= Un1a′.
In this situation, we carry out the additional (retroactive) basis change

α′ = α+ Un1−1(c+ h+ i) + Un1−M t

as in Figure 4.4, so that ∂α = Uζa′. Note that n1 > 1 by hypothesis. Furthermore,
note that n1 > M , since C is fully simplified. Hence α′ ≡ α mod U , so modulo U ,
our basis change does not change the dashed red arrow leaving α. In any case, we
see that performing the appropriate change-of-basis splits off another subcomplex
and leads to a diagram as in the third row of Figure 4.3. Iterating this procedure
results in the complex depicted in the bottom row of Figure 4.3, as desired. �

4.2. Proof of Theorem 1.1. We are now ready to complete the proof of our main
theorem.

Proof of Theorem 1.1. By Proposition 2.7, the iota-complex CF−(S+1(T2,3# −
2T2n,2n+1#T2n,4n+1), ι) is locally equivalent to (A0(T2,3#−2T2n,2n+1#T2n,4n+1), ιK).
By Proposition 3.5 and Proposition 3.7, for n ≥ 3 odd, the almost local equivalence
class of (A0(T2,3# − 2T2n,2n+1#T2n,4n+1), ιK) is C(n − 1). Theorem 4.1 implies

that the complexes C(n) span a Z∞ subgroup in Î; in particular, elements in this

subgroup of Î are of the form

(a1, b1, . . . , a2m, b2m),

where

|b1| = |b3| = . . . = |b2m−1| = 1

and

|b2| ≥ |b4| ≥ · · · ≥ |b2m|.

By [DHST18, Theorem 8.1], elements in ĥ(Θ3
SF

) are of the form

(a1, b1, . . . , am, bm),

where

|b1| ≥ |b2| ≥ · · · ≥ |bm|

and so the span of the C(n) intersects ĥ(Θ3
SF

) trivially. Therefore, we conclude
that the classes

[S+1(T2,3#− 2T2n,2n+1#T2n,4n+1)]

span a Z∞ subgroup of Θ3
Z
/Θ3

SF
.

�
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