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Abstract

In this paper we prove a formula relating the equivariant Euler characteristic of K-
theoretic stable envelopes to an object known as the index vertex for the cotangent
bundle of the full flag variety. Our formula demonstrates that the index vertex is the
power series expansion of a rational function. This result is a consequence of the
3d mirror self-symmetry of the variety considered here. In general, one expects an
analogous result to hold for any two varieties related by 3d mirror symmetry.
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1 Introduction

Let X be a smooth symplectic quasiprojective variety. We make the following assump-
tions:

e A torus T acts on X such that it scales the symplectic form with character 7. We
denote by A := ker(h) C T the subtorus preserving the symplectic form.

e The T-action has finitely many fixed points.

e The tangent bundle of X has a polarization T'/2X. In other words, there exists
some class T!/2X e K1(X) so that the tangent bundle of X decomposes as

Vv
TX = TV2X 4+ 1! (TWX) € K1(X)

e A chamber € C Lieg(A) is fixed, which is a choice of connected component of
the complement of

U U {o € Lier(A) | (o, w) = 0}

peXA wechara(T) X)

where (-, -) is the pairing of characters and cocharacters. This chamber decomposes
the tangent space at the fixed points into attracting and repelling directions.

Our main interest is the case when X is a Nakajima quiver variety of linear or affine type
A. If such a variety satisfies some natural conditions which hold for quiver varieties, it
is known that the cohomological, K -theoretic, and elliptic stable envelopes exist, see
[1] and [20].

For a torus fixed point p € X', the K -theoretic stable envelope provides a class

Stabg”;’{; () € K1(X)
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which depends on the chosen polarization and chamber, as well as a generic choice
of s € Pic(X) ®z R called the slope. For an appropriately normalized version of the
stable envelope, we consider the K -theoretic equivariant Euler characteristic

x (Staby iy (1)) € Kr(ptioe = Cla h) (M

where a denotes the equivariant parameters of the torus A. A natural question, and the
one we study in this paper, is to ask for an explicit description of this rational function
and to study its expansion as a series in a.

In this paper, we study the problem described above for the special case when X
is the cotangent bundle of the full flag variety, and we formulate our answer using
3d mirror symmetry. This variety is known to be self-dual with respect to 3d mirror
symmetry, see [26] and [7]. We denote the 3d mirror dual copy of this variety by X'
and denote the torus acting on this variety by T'. While X and X' are isomorphic as
varieties, the 3d mirror symmetry relationship requires that various tori associated to
X and X! are related in non-trivial ways, see (8) below. Hence it will be necessary to
distinguish them.

Using results from [7], we identify in Theorem 2 the power series expansion of
(1) around a certain point with an object we call the index vertex of X'. We will now
briefly explain the geometric meaning of the index vertex.

The index vertex arises in the enumerative geometry of quasimaps from P! to X",
see Sect. 4 of [21] and Sect. 8.2 of [18]. For a T'-fixed point p! e X', we denote by
QM the moduli space of stable quasimaps from P! to X' that evaluate to p' at co. The

torus T; =Tx (C; , Where (qu acts on P!, acts on QM I with a discrete fixed point set.
A generic choice of the slope s provides a decomposition of the virtual tangent space
of QM at a T; -fixed point into attracting and repelling directions. The index vertex

Ind!s, is defined as the generating function that counts these repelling directions, with

the sum taken over all possible degrees of quasimaps, see Definition 3 below. Then,
roughly speaking, our first main theorem states:

X, K Is
X (StabSQ’Tl/zx(P)> = Ind;!

where p and p' are related under the bijection provided by 3d mirror symmetry as in
Sect. 3.

As a consequence of this result, we deduce that the index vertex is the power series
expansion of a rational function.

While K -theoretic stable envelopes require the slope s to be generic, the index vertex
can be defined for non-generic slopes s as a limit of the so-called vertex function of X".
In this case, the index vertex is still the power series expansion of a rational function,
but the identification of the rational function is more complex. Using results from [12],
we prove in Theorem 4 that it gives the power series expansion of a certain rational
function obtained from the stable envelopes of X and stable envelopes of a subvariety
Y, C X'
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n—1
I
n

The outline of this paper is as follows. In Sect. 2, we describe some basic notions
regarding the description of the cotangent bundle of the full flag variety as a Nakajima
quiver variety. In Sect. 3, we describe a few pieces of data involved in the 3d mirror
self-symmetry of this variety that will be important for us. In the next two sections we
discuss the main objects of study in this paper: the index vertex in Sect. 4 and stable
envelopes in 5. We state and prove our main theorems in Sect. 6. In the final section,
we calculate all relevant quantities directly and verify our result for generic slopes
explicitly in the simplest possible example.

We conclude this introduction with a few general remarks. Although the cotangent
bundle of the full flag variety is a particularly nice variety, we expect the results of
this paper to hold much more generally. More specifically, we expect that for any
two varieties related by 3d mirror symmetry satisfying the conditions listed at the
beginning of the introduction, the index vertex and the K -theoretic stable envelopes
should be related in the same way as described here.

In fact these results are an example of the program initiated by A. Okounkov
in his talk [19] at the 2018 MSRI workshop “Structures in Enumerative Geome-
try”. Okounkov outlined an approach, based on joint work with M. Aganagic and
N. Nekrasov in [1] and [18] respectively, to relating curve counts between 3d mirror
dual varieties. Our main result can be understood as a degeneration of Okounkov’s
more general conjecture. Indeed, the proof of Theorem 2 shows that the relationship
between the K -theoretic stable envelopes and the index vertex is really a consequence
of a more general conjecture regarding elliptic stable envelopes and vertex functions
of 3d mirror dual varieties, see [7, 9, 14, 29], and the introduction of [1]. In the case
at hand, this conjecture was proven by the first author in [9]. It would be interesting
to find independent techniques to prove the results of this paper.

While a general construction of 3d mirror dual pairs is not presently known, the
construction of Coloumb branches in [17] and [2] provides a large class of varieties
3d mirror dual to quiver varieties, and more generally Higgs branches of 3d N = 4
gauge theories. In the case of type A, which closely resembles this paper, 3d mirror
dual pairs can be realized as Cherkis bow varieties, see [3, 5, 16, 24], and [4].

Fig.1 The quiver data for the
cotangent bundle of the flag S
variety

,_.
[N

2 Basic properties of X
2.1 Description as a quiver variety

We construct the cotangent bundle of the full flag variety as a Nakajima quiver variety.
The quiver data is given in Fig. 1.
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We place a vector space V; of dimension i at the vertex of the quiver labeled by
i. We denote the n-dimensional framing vector space by V,,. We choose the stability
condition given by the G := ]_[;:11 G L(V;)-character

n—1

0:G—C*, (2> [[detgn

i=1

Let

n—1
it (1"[ Hom(Vi, vm)) — g g=Lie(G)

i=1

be the moment map associated to the natural G-action. Points in the associated quiver
variety

X = M—l(o)@—SS/G
are represented by tuples of maps
Ai:Vi—>Viy1, Bi:Viypr =V, foriefl,...,n—1}

A collection of maps describes a 6-semistable if and only if the maps A; are injective.
The variety X is the cotangent bundle of the full flag variety.

2.2 Torus action

The action of (C*)" on V,, induces an action of (C*)" on X. The diagonal C* C (C*)”"
acts trivially on X, and we denote by A the quotient of (C*)" by this subtorus. We
denote the coordinates on (C*)" by (uy, uy, ..., u,) which means that coordinates
on A are given by a; = u; /u;j4q fori € {1,...,n — 1}.

An additional torus C;; acts on X by scaling the cotangent data, which is given by
the maps B; : Vi1 — Vifori e {l,...,n— 1}, by k1. We define

T:=AxCj

The torus A C T preserves the symplectic form of X and T/A scales it with character
h.

The T-fixed points of X are indexed naturally by permutations I = (11, ..., I,;)
of n. As remarked above, 6-semistability implies that the maps A; : V; — Vi
are injective. We identify each of these vector spaces with a subspace of V,, = C"
and denote by ey, ..., ¢, the standard basis of C". Then a fixed point indexed by 1
corresponds to a chain of vector spaces

icVv,c---CV,
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such that V; /V;_1 = Spanc{ey,}.
2.3

The vector spaces V; descend to bundles V; on X. It is known from [15] that the
tautological line bundles .%; = det V; generate Pic(X).

We define the Kéhler torus of X by

K = Pic(X) ®7 C*

and write z = (z1, .. ., Zy»—1) for the coordinates on it induced by the tautological line
bundles. The variables z; are usually referred to as Kédhler parameters.
The real Lie algebra of K is

Lier (K) := cochar(K) ®7 R = Pic(X) ®z R

We denote elements of Lier (K) by s and call them slopes. We identify Lieg (K) with
R”~! by the map

n—1
Y L@rir (—ri,, —ra) €RY )

i=1
The minus signs are chosen to match later notation.

2.4 Dual variety

The cotangent bundle of the full flag variety is known to be self dual with respect to 3d
mirror symmetry, see [7, 26], and [10]. We denote by X " the same variety, constructed
as a quiver variety in the same way. For X' we likewise have tori T', A', and K'.

2.5 Polarization and chamber

Stable envelopes depend on a choice of polarization and chamber. We explain the
meaning of these here.

A polarization of X is the choice of a K-theory class T'/2X so that the tangent
bundle decomposes as

TX =T'2Xx + " (T'?X)" € K1(X)

We fix the polarization of X, given in terms of the tautological bundles V;,i = 1,...,n
by

n—1 n—1
T'2X =) V' ®Vii—) V' ®VieKr(X) 3)

i=1 i=1
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(l)

In terms of the Chern roots x;"’, .. .xl.(i) of V;, this is given by

n—1 ] i+1 n—1 j
TV2X = 'X: Xl: @) (1 XIEH_D) - Z Xl: (t) (Zx(l)) € K7(X)
i=1

j=1%; k=1 i=1 \j=1

At the fixed point given by a permutation 7 of {1, 2, ..., n}, the tangent space can be
calculated by substituting x(’) =uy;. So
i i+l up i i up
/2y k k
77X = ZZZ ZZZ
i=1 j=1k= 1 i=1 j=lk= l
= Y Lekin

1<j<k<n I

and

u ur;
nXx= Y Eint 3 Lekrp)
u

ur.
I<j<k<n Li I<j<k<n Tk
2.6 Chamber

A chamber is a choice of connected component of

LiegA — | J{o € LiegA | (o, w) = 0} @

w

where the union is taken over all A-weights of the tangent spaces at the fixed points
and (-, -) is induced by the natural pairing on characters and cocharacters. A choice
of generic cocharacter o of A gives a chamber €, and the dependence of the chamber
on the cocharacter is locally constant. The tangent space at a fixed point decomposes
into a direct sum of T-weight spaces

T/ X = EB Vi(w)

weHom(T,CX)

A choice of chamber given by a cocharacter o decomposes the tangent space at a fixed
point / into attracting and repelling directions:

T;X =N/ +N;
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where
Nf= @ Viw)
w
(a,w>>0
Ny = P Viw)
w
(a,w)<0

Here, o is viewed as a cocharacter of T via the inclusion A C T. Since the fixed point
set is finite and o is chosen to lie in (4), every direction is either attracting or repelling.

In the case of the cotangent bundle of the full flag variety, we fix once and for all
the cocharacter

oiur>w L u? o u, ueCX 5)
and denote the corresponding chamber as €. With respect to this chamber, attracting
weights look like u; /u; where i < j, or equivalently, like monomials with positive
powers in a; := u; /u;+1. Explicitly, we have

;)X =N/ +N;

where

Ny= ) e gy > /]

1<j<k<n M 1<j<k<n "l
Iy>1; Iy <1
N} = —+h — 6
! Z uy; Z Iy ( )
1<j<k<n '/ 1<j<k<n
I <I; I >1;
2.7 Ordering on fixed points
Given a permutation I = ([, ..., I,;) of n, we define the ordered indices ifk), el i,ﬁk)
so that
i < <i®y =, Iy
Definition 1 For permutations / and J with ordered indices l,ﬁf ) and j,g,k>, we define
I<J > i® < j®Oforallk=1,....n—landm=1,... .k @)

The partial order < coincides with the partial order on fixed points given by attraction
in Sect. 3.1.2 of [1]. In what follows, we will also denote by < an arbitrary refinement
of this partial order to a total order.
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3 3d mirror symmetry
3.1 Exchange of equivariant and Kahler parameters

One property of 3d mirror symmetry, see [12] and [28], is the existence of a bijection

1

X'« X!TA
and an isomorphism of tori
K:TxKx(C?—)T!xK!xC;

that induces isomorphisms A = K' and K = A'. The torus C; acts on the domain of

quasimaps to X and X', as will be explained in Sect. 4.1 below.
Following [7], we define the bijection on fixed points by
|

[« 171 =1

and the map « by

qg—q 3
The differential dk induces isomorphisms
Lieg(A) = Lieg(K'),  Lier(K) = Lieg(A") 9)
We obtain an induced map
C(h, 9)(@)(z) — C(H', @)@ (@) = C(I, g) (@) (") (10)
We abuse notation and also denote (10) by «. We note that taking the Laurent

series expansion of a rational function in @ around the point a; = 0 identifies
KTx(c; (pt)iocllz]] as a subset of the domain of (10).

3.2 Walls and resonances

The K -theoretic stable envelopes depend on a choice of slope s € Lier(K). The
dependence is locally constant, and the K-theoretic stable envelopes change only
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when s crosses the walls of a certain hyperplane arrangement, which we denote by
Wall(X).
From (2) and (9) we have

s =0(s1,....5-1) € R"! = Lieg(K) = Lier (A"

and we write

2q° = (219", ..., Za-14"")
a!qs = (a!lq“, e a,!l_lqs"*l)
To each element w € Lier(A) with w = (wy, ..., w,_1), we let vy, be the cyclic

subgroup of A generated by
(¥ ATty e A (11)
We define
Res(X) = {w € Lier(A) | X" # X"}
In [11], it is shown that
Res(X) = {w | (a,w)+m =0 forsome m € Z, I € X", « € chara(T; X))}

Under the identification (9), the walls and resonances are exchanged ( [12] Theorem
2):

Wall(X) = Res(X'), Res(X) = Wall(X")
A simple calculation shows that under (2), the walls are given by

Wall(X) = {(s1.....5p-1) | L C{l.....n— 1}, Y 5 € Z}

iel

We use the term generic slopes to refer to elements of Lier (K)\Wall(X).

4 Index vertex

In this section, we define one of the objects involved in our main theorem: the index
vertex. We are interested in it for X'.
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4.1 Quasimaps

Let [x : y] denote homogeneous coordinates on P!. We denote
0=1[0:1], oco=1[1:0]
The torus C; acts on P! by
q - [xo: x1]1=[xoq : x1], q € C* (12)

For p € (X !)T!, let QM,, be the moduli space of stable quasimaps from P! to X'
that take the value p at oo, see [6] and [21] Sect. 4. The data of a stable quasimap to
X' provides:

e Vector bundles % fori € {1,...,n — 1} over P! such that rank(%;) = i.
e A trivial vector bundle ¥, over P! of rank n.
e A section

feH'®, e (#)), flo)=p

where

n—1
M = @Hom(”//i, Yit1)

i=1

such that the section f lands in the GIT stable locus for all but finitely many points
of P'. We abuse notation by writing a quasimap as f, with the understanding that the
data of the vector bundles are included.

The degree of a quasimap is given by

deg f = (deg 1, ...,deg ¥p—1)
which gives a decomposition

am, =| |am?
d

of the quasimap moduli space into components corresponding to quasimaps with fixed
degree d. It is known that the degrees for which QM?7 is nonempty lie inside a certain
cone, see [21] Sect. 7.2.

The actions of T' on X' and of C ; on P! induce an action on quasimaps. We denote

T
Tq_T XC;.
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4.2 Virtual classes on QM,,

It is known that QM,, has a perfect obstruction theory, which allows one to define
the symmetrized virtual structure sheaf Oy;; and virtual tangent space Zy;, see [6]
Theorem 7.2.2 and [21] Sect. 6.

Fix f € (QM ) 9. As aT -module, the virtual tangent space of QM,, at f is
Tir.p = H* (Pl’ T2 4 h—l(Tl/Z)v)

where

n—1

T'? = @Hcm(“//,,”i/ﬂ)—@End(“//) (13)
i=1 i=1

The reduced virtual tangent space at f is defined to be

Tily = Py — TpX' (14)
The class 7 !/? induces a polarization .7 !/2 of the reduced virtual tangent space at a
fixed quasimap f:

Vv
red, = 712 4 ! (91/2) where 712 = g*@®', T2 — 1)*x' (15)

v

4.3 Index vertex

Let s € Lier(A")\Res(X") and denote the substitution a; = ¢% by a' = ¢°. Such an
s induces a decomposition

red
‘Z/ir,f a'=q¢’,h'=q = s+ + ‘%s_

where 7, ;+ (resp. Z,_) consists of the terms containing positive (resp. negative)

powers of g. The subtraction of the term 7, X "in (14) and the substitution ' = ¢

together ensure that Vrl‘:df ‘h' contains no monomials of power 0 in g. By definition

of Res(X"), the same will thus be true for ‘Z/lr f|a
defined.

—g* h'=q- Hence 5 1 are well-

Definition 2 Let s € Lier(A')\Res(X"). The s-index of f € (QM,)'* is
Iy (f) = rank (;,-)

where we understand the rank of a virtual TEI -bundle to be counted with sign.!

! In other words, if A and B are TE] -modules, then k(A — B) = rank(A) — rank(B).
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Definition 3 ([21] Sect. 7.3) The index vertex of X' at p € (X!)T] with respect to
s € Lier(A')\Res(X") is the generating function

» . 3Z(f)—1d|
Is _ !
wi- ¥ () T (%)
QM%#V) fre@u)’s

where (') = [T'Z! (<) and |d| = ¥ d;.

The choice of —d in the definition of the index vertex is made for the sake of consistency
with our other conventions from [7], which will be used below.

4.4 Vertex function

There is an alternative perspective on the index vertex which describes it as a limit of
the so-called vertex function for X'. Since we will need the vertex function for both
X and X', we briefly switch our variables back to those of X. The vertex function for
X' is given by the same formula as below after the trivial change of variables

] | !
h—h, uj—u;, and z; = z;

Definition 4 We define C C Z x Z* x ... x Z"~! as the collection of integers d; ;
wherei € {1,...,n—1}and j € {1, ...,i} such that
e d;ij>0foralli, j.
e Foreachi € {1,...,n — 2}, there exists {ji,..., ji} C {1,...,i 4+ 1} so that
di > diy1,j, forall k.
The vertex function of X is defined by an equivariant count of quasimaps from P!

to X, see Theorem 1 below. To streamline our presentation here, we define the vertex
function through a formula.

Definition 5 The vertex function of the cotangent bundle of the full flag variety
restricted to a fixed point [ is given by the following power series:

ur,
n=2 i i+l (hul )
di j—di+1.k

Vi = Y T[]
u[k
<q )d, j—di+1k

di jeC i=1 j=1k=1 0

us ul
1 i (C] k> n n— l(h’ )
J dy— 1,j

[T T S T e
e (h"_’-i)d = l(q"u’[')d

J

n

i —dik —1,j
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where z¢ = T2 TT" i z 7 and (x), denotes the g-Pochammer symbol

@(x)

(X)g = W’

o) =[] —x¢"
i=0

In what follows, we will need the roof function, which is defined by

Lo 1 . _a(t)a(n)
a(t) = Py L alty +t —13) = W (16)

The geometric meaning of the vertex function is given by the following theorem.
For precise definitions, see [21] Sect. 7.

Theorem 1 ([13] Theorem 3.1) Let O‘Vllr be the symmetrized virtual structure sheaf on

Q/VI?. The vertex function Vy(a, z) in Definition 5 is equal to

&(T11X) Z (Z#) (031r> € Kr,(pDiocllz]] (17)
QM“?;&VJ

where x denotes the K -theoretic equivariant Euler characteristic and

—d —d;
<z#) = H <z?) where z = ha’/z bif2,,

for some a;, b; € 7.

Remark 1 The a prefactor is equivalent to replacing the virtual tangent space by the
reduced virtual tangent space in localization formulas, which causes the series to start
with 1.

Remark 2 The precise form of the shift zf = h4/2qPi/?z; is described in the proof of
Proposition 2 below.

4.5 Index limit

In this subsection, we switch back to the variables for X'.

Definition 6 The index limit of an element of F(a', z') € Ky (pt)[[z']] with respect
q
tos € LieR(A!) is defined to be

K ((}iir});(—l (F(al, z!)) ’z:zqm)

provided this limit exists. Here, zg**! = (z1¢*' %!, ..., z,_1¢*—111).
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Remark 3 The reason we shift by ¢**! instead of ¢* is for consistency with the index
vertex, see Proposition 2 below.

Remark 4 1t may appear more natural to consider the limit
lim V! (a'q°. 7'
Jim Vi (aq’.z)
However, this limit will not exist for vertex functions. For example, the vertex function
of one of the fixed points of X' = T*P! is
o0 1 [ !
h)a (R Jus d
V(a!,z!) _ Z (h)a( |1/ Yz)dzg
=0 @alquy/us)a
and one can easily check that the limit
lim V(a'q®.z')
q—0
does not exist. On the other hand, the index limit does exist. By Proposition 1 below,

this is also the case in general.

Remark 5 The index limit with respect to s could also be defined by formally substi-
tuting ' = ¢/t, shifting a' — a'q®, taking the limit ¢ — 0, and substituting back
t=q/k.

Proposition 1 The index limit of the vertex function restricted to any fixed point exists
forall s.

Proof The coefficients of the vertex function consist of terms of the form

. +1
(F'x)a
(gx)a
where x is a character of A' and d € Z. Using Remark 5, one can see that the limit of
all such terms exists. |

Proposition 2 Fors € Lier(A')\Res(X"), the index limit with respect to s of the vertex
function of X' restricted to I' is equal to the index vertex at I':

R Is
K (11111 K (VI,(a .z )) |z—>qu+l> = Ind},

q—0

Proof Up to normalization, the vertex function of X' is equal to the generating function
of the equivariant Euler characteristic of QM‘Ij, as in Theorem 1. We will compute this
here using equivariant localization.
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Table 1 Contributions of 71/2 to _?v rﬁd ’

Virtual sub-bundle of 7'!/2 Contribution to ﬂvr;d ’
1
+xg?0(@) £ (1)~ 1g=1O(~d) xg (14 +o g™ ) F o (1hg7 g ™)
X
+xq700O(=d) + (B~ 'x"1q?O(d) i% (1 fa+... +qd*') Tx (1 +q7 '+ .qfd+1)
v

T!
At a fixed point f € (QM‘;,) ? . the vector bundles ¥ over P! split into the sum of

equivariant line bundles:

i
¥ = P wi jq% O ;)
j=1

where w; ; stands for a character of Al, see Sect. 4.5 of [23]. The injectivity of the
maps V;_; — V; constrains the possible degrees of the bundles 7;. In particular, the
collection {—d; ;} of negatives of the degrees must lie in C. Hence we have

T = Pxig" O@) — P yia" 0
i J

where x; and y; are characters of A!, a; and b; are integers, and the sums are taken
over some indexing sets.
The possible virtual sub-bundles of 7'/2 come in pairs:

+x¢*O(xd) and + 1) 'x1¢gTOFd)

which together contribute to the reduced virtual tangent space as in Table 1 (see [23]
Lemma 1). We assume in Table 1 without loss of generality that d > 0.

By definition of the symmetrized virtual structure sheaf, these terms contribute to
localization formula via the roof function (16). The contributions of each of these
terms is given in Table 2.

The terms (—g'/2h=1/2)*d
in Theorem 1.

Applying Remark 5, we see that the index limit can be interpreted as a count of
certain monomials in

account for precisely the difference between z; and Zf

red |
vir,I' la'=q%,h!=¢q

Putting this together with Tables 1 and 2, we see that the index limit of the vertex
function is equal to the index vertex. O

We can now extend the definition of the index vertex to include non-generic slopes.
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Table 2 Contributions in the localization formula

Virtual sub-bundle of 7°1/2 Contribution to (17)
o £1
+xg?0(d) % (1)~ x g1 O(—d) (—g!2nty=1/2y0 0
(gx)a
—d N—l,—1 d 120 —1/2,—a (') —a
+xg=1O(=d) + )~ 1x~14?0) (—q 2 rH~V2y—d =%
(gx)—q

Definition 7 The index vertex of X' at I' with respectto s € Lieg (A!) is defined to be

the index limit of V[!, (@', z') with respect to s.

Thanks to Proposition 2, this definition agrees with Definition 3 for s €
Res(X") and extends it for s € Res(X").

5 Stable envelopes

Lier (A")\

In this section, we explain our conventions used for stable envelopes. The main refer-

ences for stable envelopes are [1] and Sect. 9 of [21].

5.1 Notations

Given a T-module expressed in weightsas V = wy +...+ w, € Ky(pt) with w; # 1

for all i, we define the symmetric and exterior powers as

r r
sy =[Ta-w)™ AVv=T]a-w)
i=1 i=1
We extend these to all of K1(pt) by

s = AV, NEV)=sw)
Similarly, we define
@(V)=]L[z?(w,-> and @(V>=1L[<p(w,->
i=1 i=I
where
go(x):ﬁ(l—xqi) and 9(x) = (x'* —x7?)p(gx)e(q/x)
i=0

We similarly extend these to K1(pt) by multiplicativity.
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5.2 Stable envelopes

Stable envelopes depend on a choice of polarization and chamber. In all that follows,
we assume that these are given by (3) and (5).

For I € XA, let Stabf ’QE . (I) be the elliptic stable envelopes of I for X correspond-
ing to the polarization 7'/2X and chamber —¢.

The elliptic stable envelope of a fixed point gives a section of a line bundle over the
extended elliptic cohomology scheme of X. This scheme can be described as

Ellf(X) = |_|5, /A
IeXT

where O; is a product of elliptic curves isomorphic to C* /g7 for fixed g with |¢| < 1
and A denotes a certain gluing of these abelian varieties, see [27] Sect. 2.13. Restricting
this section to a component 9) J, one obtains the matrix of restrictions of the elliptic
stable envelope:

X,Ell
T/, := Stab™ (1)|5J

We use the normalization of the elliptic stable envelope determined by
T/ =OW/)

which differs from the normalization of [1] by a sign. We assume the fixed points are
ordered from highest to lowest with respect to < from Definition 1, which means that
the matrix of restrictions is upper triangular. Explicit formulas for the elliptic stable
envelopes in terms of the theta function ¢ can be written using the so-called elliptic
weight functions, see [25] and Sect. 3 of [7]. More generally, explicit formulas for the
elliptic stable envelopes of any type A quiver variety were written in [8].

We also define a normalized matrix of restrictions of the elliptic stable envelope by

- stab™ ()| 5,

T - - )
Ly = Stab’_f’f” Dls,

Similarly, we have K-theoretic stable envelopes StabY X.K (1) that depend further

on a choice of slope s € Lier(K), see [21] Sect. 9 and [22] Sect 2. We normalize them
by requiring that the diagonal terms of the matrix of fixed point restrictions are given
by

Stab” ¢ X ()], =

/\ (N
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We denote the matrix of restrictions of the K -theoretic stable envelopes by
s, X s, X, K
Ay = StabZ¢ (I)|J
and a renormalized restriction matrix by

Stab® % (1),

AVS,X _
B sabt 5K ()]

6 Index vertex and stable envelopes

This section contains our main theorems, which relate the index vertex of X' to the
K -theoretic stable envelopes of X.

6.1 Big enough slopes
In what follows, we will also be interested in the index limits of « (V;(a, z)) and
D((g — h!)Nﬁ') in the sense of Definition 6. It will be convenient to have a notion of

slopes for which these limits are trivial.

Definition 8 A slope s € Lier(A') is said to be big enough if 5; > 0 for all i and
SitSip1+--o+s;>j—i—1
forall j >i.

Lemma 1 Ifs € Lier(A") big enough, then

lim V(a,z¢" ™) = 1
q—0
and

« (qlig})x—l (®q = rHND) |HMM) —1
for all permutations I.

u! .
Proof By (8), K_l(al!) = gzi. By definition, al! = ui./u! and so k! (#) =

i+1° )
k

7 21; .. 2 —1 if Ij < Ir. Now the result follows from Definition 5 and (6) by

a straightforward computation. O

(ﬁ Iy —1;
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6.2 Generic slopes

Let D be the diagonal matrix given by

D = diag (18)

IexT

Let S* (h® N) be the column vector

S (h@NT) = (S (h®@N]))jexr

and Ind"” be the column vector

Ind" = (Ind?,)l

exT

of index vertices for X'. We remind the reader that /' is the inverse permutation of /.
Our main theorem describes the index vertex of X' for generic slopes in terms of
the K -theoretic stable envelopes of X.

Theorem 2 [f's € Lier(K)\Wall(X) is big enough, then
Ind* =k (D- &Y. D75 (h@ N*))
Equivalently,

Ind!;, =K Z

JexT

Proof In [7], we proved that

®((g — FIN;DIV(@', 2)

X@((q —WN;HVi(a,z) | (19

To deduce Theorem 2, we take the index limit of both sides with respect to s.
Lemma 1 implies that ® ((g — h!)N;T) and V;(a, z) contribute a factor of 1 to the
limit. The term
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does not depend on z or g. The limit of the normalized stable envelope J was
calculated in [12]. For s ¢ Wall(X), we have

. ~ s+1,X
lim 75, |._. o1 = ASTD
4—0 I,J|z—zqf 1,J

The contribution from ®((g — h) Nj') is given by

]_[ (1 —tw) ' =5 (e N})

wechaﬁ(N;r)

Putting all this together gives the result. O

The normalized K -theoretic stable envelopes are related to the usual ones by

det N+

As+l‘X
1,J detT1/2

/\ (N+) As+l X

Also,
N =1Tt (V) = sheNh =5 (V7))

So Theorem 2 is equivalent to

detTl/zX

AT g (T, xV
detNIJr LJ ( ! )

Indl. =K Z

JexT

By equivariant localization, the right side of this equation is the K -theoretic equiv-
ariant Euler characteristic of the K-theoretic stable envelope of / twisted by a line
bundle:

Theorem 3

detT1/2X

— L T Stap*t XK (g
det N —e D)

Ind!;, =« |x

As a consequence, we obtain:

Corollary 1 For bzg enough generic slopes, the index vertex Ind \(a, 2) is a rational

function ofa 7, and VR
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6.3 Non-generic slopes

The limits of the elliptic stable envelopes for non-generic slopes is one of the main
results of [12]. Under the identification given by «, a slope s € Lieg (K) can be viewed
as an element of Lieg (A"), which has an associated cyclic subgroup vy C A'asin (11).
In particular, if s € Wall(X) = Res(X"), then we obtain a subvariety

Yy = (X)) £ (XHA

The limits of the elliptic stable envelopes for non-generic slopes is expressed in terms
of the K-theoretic stable envelopes of Y. We need to explain the choice of chamber,
polarization, and slope used in the latter.

We first explain the choice of slope. Let % denote an open analytic neighborhood of
0in Lieg (K"). Let Wallp(X") be the set of walls passing through 0. Then % \Wallo(X")
is the disjoint union of connected components. Let ® (X') denote the connected
component containing ample line bundles on X'. Explicitly, ® 1 (X') is generated by
small positive real multiples of the Chern classes of the tautological line bundles .,2”1.!
fori e {1,...,n—1}.

The inclusion

1Yy — X'
induces a map
* : Pic(X') ®2z R — Pic(Y;) @z R

Define D (Yy) = (D (X")). Slopes in © 4 (Yy) will be the right choice for the stable
envelopes of Y.

Since the torus A' acts on Y, the chamber —€ automatically gives a chamber for
the stable envelopes of Y.

The vy-invariant part of the polarization for X' gives a polarization (Tl/ 2D'¢ !)VS of
Ys.
With respect to these choices, we can now talk about the K-theoretic stable
envelopes of Y.

Theorem 4 Lets € Wall(X) be big enough and let € € D (X) be a small ample slope
of X such that s' = s + € is a generic slope. Then

Ind" =« (D H AR T Yo =l A X gl g (h e N+))

where H is the diagonal matrix given by

n—1
H = diag ((_1)V1(S)hm1(8)/2 1_[ «i’ﬂl)
lexT

i=1

where y;(s) and m(s) are integers.
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Fig.2 The quiver data for the
variety T*P!

o l————@ —

Proof From Theorem 3 and Theorem 5 in [12], the twisted limit of the restriction
matrix of the elliptic stable envelope is

. ~ ~1 o~
hmo TX|z:qu+1 =7 -ASTLX
q—)

Here, the matrix Z is given by

7' —H. A2+ Tss) Y1 g1

where H is the diagonal matrix

n—1
H = diag ((_1)1’1(S)hml(3)/2 (1_[ Z|1>)
i=1 IexT

for integers y7(s) and m (s). For the precise description of these integers, see Theorem
21in [11] and Theorem 4 in [12].

The limits of the rest of the terms in (19) are the same as in Theorem 2, which
finishes the proof. O

Contrary to the case of generic s, the right hand side of Theorem 4 does not admit
a nice interpretation as an equivariant Euler characteristic of a simple twist of the

K -theoretic stable envelope of X. However, we still have:

Corollary 2 For any big enough s € Lier(K), the index vertex Ind!;, is a rational
function ofa!, 7', and NGB

7 Example: T*P!

We work out our main result for generic slopes explicitly here in the simplest example:

X = T*P!. This corresponds to the quiver shown in Fig. 2.
Let V = Cand W = CZ. Points in X are represented by maps

(I,J)e Hom(W,V)® Hom(V, W)
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such that / is injective and / o J = 0, modulo the action of GL(1) on V. The torus
(C*)? acts on C? by

-1 -1
(w1, uz) - (x1, x2) = (U] X1, Uy x2)

which induces an action of A = C*, where the coordinate on this torus is a = uy/u».
The torus C;; acts by

h-(I,J)= ("1, 0)

We denote T = A x Cj . There are two T-fixed points p and p2, which are labeled by
the identity permutation and the simple transposition, respectively. The vector space
V descends to a line bundle V on X and the T-character of this tautological bundle at
the fixed point p; is u;.

We denote the dual copy of T*P! as X' and denote the torus as T' = A’ x (C;!. The
exchange of equivariant and Kéhler parameters is given by (8) and the bijection on
fixed points is the identity map.

7.1 Torus fixed quasimaps

A quasimap f € QM’;I_ to X' consists of a degree d line bundle 7 and a trivial rank 2
vector bundle ¥ over P!, along with a section

feH'®, .7 m) ()
where
M= Hom(V, W)

Assume the quasimap is T;—ﬁxed. Equivariantly with respect to the torus T, we have
W = u!lO]P’] EB ulzolpl

where wOp1 denotes a twist of the structure sheaf of P! by a trivial line bundle with
weight w. Since the section f takes the value p; at oo, in order f to be T'-fixed, ¥
must have T'-weight u; Furthermore, the component of the section in

Hom (¥, u;Op) = O(—d)

must be nonzero at co. So d < 0 and there is only one such section, which is given
in homogeneous coordinates by x; ¢ _To be invariant under C ; , the bundle 7 must

be further twisted by the trivial line bundle with (CqX -weight of ¢ ~?. This completely
determines the quasimap.

To summarize, there is a unique T;—ﬁxed quasimap in QMii for each d < 0, and
the data is as follows:
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o W = u!lopz (o) ”!20?’!
oV —u'qidO(—d)
o f _xo

7.2 Virtual tangent space

Fixd < 0Oandlet #, ¥, and f; be the unique T!q -fixed quasimap of degree d as above.
We have the induced virtual bundle from (13):

TRy oW —vV QY =q0(—d) +u'q ¢O(—d) — Op1  (20)
where

1 Uj . .
w=—, je{l,2\{i}
u

1

The reduced virtual tangent space at fy is

Lq'l‘ed H*(T]/z @ h71(71/2)V) — TPiX

vir, fg

The action of (CqX in (12) is such that the global sections of O(m) for m > 0 have
character 1 + ¢~' 4 ... 4+ ¢~ Thus, any given term xg~?O(—d) in .7'/? of (20)
leads to contributions of the form

H* (xq—dO(—d) i (h!)_lx_lqu(d)) = (B!

——(1+q_1+...+qd+1)

=xq<1+q+...+q_d_1> [

So the T;-character of the reduced virtual tangent space at f; is

1 1 d+l
——,(H—q +...4¢q +)

d —d—1
%ﬂﬁfd (l+q+...+q ) i

1
+qu!<1+q+...+q_d_l> — (1+q +...+qd+l) 1)

hu
7.3 Vertex functions

The twist in [21] Sect. 6.1.8 that transforms the virtual structure sheaf to the sym-
metrized virtual structure sheaf means that the vertex function from Theorem 1 is

12
Z(Z) —d jdeg T'?/2 (%r]?df»
d=<0
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Writing this out explicitly, we find that for the fixed point p; with ' as above, we have

Z(z’)‘dqdeﬂ”z/zé( vrﬁdfd) Z( ) d((Z))d< h')d/z (h!u!!)d (_%)M

=0 (qu*)a
_ Z ( ) (h )d (h ua
= e (@a (quha

The vertex functions from Definition 5 are

! ! !

V@l = i (Ra iy /u)a g

T (2)
=0 @alquy/uy)a

= i (")a (W't fuda

Vi, (@)
T L g fuba

which clearly agree with the previously ones after renormalizing the Kihler parameter.

7.4 Index

With respect to the choice of chamber (5), the attracting weight is a' := u'l / u'2 Write
f é for the unique T!q -fixed quasimap of degree d on QMil_ . The reduced virtual tangent
space (21) for QM‘;,1 at f} is

1
T.ef‘d =q(1+q+...+q_d_1)—E<l+q_1+...+qd+l)

+%(1+q+...+q*d*1) <1+q 1+...+qd+1>

h!
Thus the s-index from Definition 2 is
0 —d <s
I (f)=132|s]+2d 1 <s < —d
2d s <1

where |-| denotes the floor function. Hence

)[SJJr

(h!/q)LSJZ!LSJ+1
! s> 1
Ind-lf = h'/q 1-7'
1 1 1
—1 s <
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.. . d .
Similarly, the virtual tangent space (21) for QM7 at fd2 is

1
d —d—1 -1 d+1
yvfifﬁz <1+q+...+q )—ﬁ<1+q +.o gt )
1
+ga' (1+q+...+q_d_1> = (1+q‘l +...+qd+1>
So
2d s> —1
i (fy=32lsll+2dd <s < —1
0 s<d
and
1= (2R q) P (Bl Ust st
Ind!s = 1-z'Al/q 1-7' s <—1
p2 1
= s> —1

7.5 Stable envelopes

Now we switch from X' to X. We need to compute the K -theoretic stable envelopes
for X. With respect to the chamber € from (5), a := u1/us is an attracting weight.
The choice of polarization is assumed to be

T'2X = Hom(V, W) — Hom(V, V)

Under (2), big enough slopes are given by s > 0.

Analogous to the argument given in Sect. 7.1 of [22], one can use the defining
properties of stable envelopes to calculate the matrix of the K -theoretic stable envelope
in the basis of fixed points ordered as [p1, p2] to be:

X _ 5. XK _ (4 =1) VA (A" = 1) Vha!s!
AT = (Sm‘bf¢ (I)“)I,JexT _< " (1—a

Alternatively, one could use the formulas [8] and their implementation in Maple
described there. Normalizing by dividing each column by the diagonal entry gives

(1 —h)alsit!
~ | S
A = (1 —a)Fi
0 1

The polarization at the fixed points is

T'2X|, =a™!
T'2X|,, =a
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So conjugating by D in (18) and multiplying on the right by S* (h QN +) gives

1 (1="h)a'sl
D~XS’X~D71~S°(h®N+): 1—a (lTa)(l—ha)

1—ha

Applying « and summing the two components of this vector, we see that Theorem 2
for s > 1 reads

L= (@) g (=g (i)

1—z'h/q 1-2 S i=Zng (1-2'g) (1-2)
1 1

L=z 1—q/PERg)

which is easily checked to be true. For 0 < s < 1, Theorem 2 reads

| 1 (1=g/n)('n'/q)
11—z 1=2'h/q  (1-2z'R/q) (1 -2
1 |
1—z" 1—g/RE'R/q)

which is also true.
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