3906

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Federated Over-Air Subspace Tracking
From Incomplete and Corrupted Data

Praneeth Narayanamurthy

Abstract—In this work we study the problem of Subspace Track-
ing with missing data (ST-miss) and outliers (Robust ST-miss). We
propose a novel algorithm, and provide a guarantee for both these
problems. Unlike past work on this topic, the current work does
not impose the piecewise constant subspace change assumption.
Additionally, the proposed algorithm is much simpler (uses fewer
parameters) than our previous work. Secondly, we extend our
approach and its analysis to provably solving these problems when
the data is federated and when the over-air data communication
modality is used for information exchange between the K peer
nodes and the center. We validate our theoretical claims with
extensive numerical experiments.

Index Terms—Principal component analysis, federated learning,
matrix decomposition, adaptive algorithms.

1. INTRODUCTION

UBSPACE tracking (ST) with missing data, or outliers,
S or both has been extensively studied in the last few
decades [2]-[6]. ST with outlier data is commonly referred to
as Robust ST (RST); it is the dynamic or “tracking” version of
Robust PCA [7], [8]. This work provides a new simple algorithm
and guarantee for both ST with missing data (ST-miss) and
RST-miss. Secondly, we extend our approach and its analysis
to provably solving these problems when the data is federated
and when the over-air data communication modality [9] is used
for information exchange between the K peer nodes and the
central server. (R)ST-miss has important applications in video
analytics [10], social network activity learning [11] (anomaly
detection) and recommendation system design [12] (learning
time-varying low-dimensional user preferences from incom-
plete user ratings). The federated setting is most relevant for the
latter two. At each time, each local node would have access to
user ratings or messaging data from a subset of nearby users, but
the subspace learning and matrix completion algorithm needs to
use data from all the users.

Federated learning [13] refers to a distributed learning sce-
nario in which individual nodes keep their data private and
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only share intermediate locally computed summary statistics
with the central server at each algorithm iteration. The central
server in turn, shares a global aggregate of these iterates with
all the nodes. There has been extensive recent work on solving
machine learning problems in a federated setting [14]-[18] but
all these assume a perfect channel between the peer nodes and
the central server. This is a valid assumption in the traditional
digital transmission mode in which different peer nodes transmit
in different time or frequency bands, and appropriate channel
coding is done at lower network layers to enable error-free
recovery with very high probability.

Advances in wireless communication technology now al-
low for (nearly) synchronous transmission by the various peer
nodes and thus enable an alternate computation/communication
paradigm for learning algorithms for which the aggregation
step is a summation operation. In this alternate paradigm, the
summation can be performed “over-air” using the superposition
property of the wireless channel and the summed aggregate
(or its processed version) can then be broadcasted to all the
nodes [9], [19], [20]. Assuming K peer nodes, this over-air
addition is up to K-times more time- or bandwidth-efficient
than the traditional mode. In the absence of error control coding
at the lower network layers, additive channel noise and channel
fading effects corrupt the transmitted data. In general, there exist
well-established physical layer communication techniques to
estimate and compensate for channel fading [21]. Also, while
perfect synchrony in transmission is impossible, small timing
mismatches can be handled using standard techniques. We ex-
pand upon both these points in Section IV-A. From a signal
processing perspective, therefore, the main issue to be tackled is
that of additive channel noise which now corrupts each algorithm
iterate.

1) Related Work: Provable ST with missing or corrupted data
(ST-miss and RST-miss) in the centralized setting has been
extensively studied in past work [3]-[5], [22]-[24]. Provable
analyses can be one of two kinds — ones that come with a com-
plete guarantee or correctness result and ones that come with
only a partial guarantee. By complete guarantee or correctness
result, we mean a result that makes assumptions only on the
inputs to the algorithm (the observed data and the algorithm
initialization if any) and guarantees that, the algorithm output
will be close to the true value of the quantity of interest, either at
all times, or after a finite delay. If a guarantee does not do this, we
refer to it as a partial guarantee. Most existing works [3]-[5],
[24], [25] are partial guarantees. Although, [22], [23] obtain
complete guarantees, these works impose a piecewise constant
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subspace change assumption. This assumption is often not valid
in practice, e.g, there is no reason for a “subspace change time” in
case of slowly changing video backgrounds. The results of [22],
[23] assume it in order to obtain simple guarantees for e-accurate
subspace recovery for any € > 0 (in the noise-free case) or for
any e larger than the noise-level (in the noisy case).

The only other existing works that also study unsupervised
learning algorithms with noisy algorithm iterations are [26],
[27]; both these works study the noisy iteration version of the
power method (PM) for computing the top r singular vectors of
a given data matrix. In these works, noise is deliberately added
to each algorithm iterate in order to ensure privacy of the data
matrix.

It should be noted that other solutions to batch low-rank matrix
completion (LRMC) cannot be implemented to respect the fed-
erated constraints (the aggregation step needs to be a summation
operation). We briefly discuss these in Section IV. Another
somewhat related line of work involves distributed algorithms
for PCA; these are reviewed in [12], and there is also one for
distributed ST-miss [28], Most of these come without provable
guarantees, and most also do not account for either missing data
or iteration-noise or both. For example, the recent work [29]
aims to optimize communication efficiency but the channel is
assumed to be perfect, and so iteration noise is not considered.
Moreover, the algorithm is computationally expensive (involves
computing a full SVD of a large matrix); and the guarantee
provided is a multiplicative one on the PCA reconstruction error.
Finally, LRMC in a decentralized setting is studied in [30] with
the goal of speeding up computation via parallel processing
using multiple computing nodes. In this paper as well, the full
data is communicated to the central server and hence this is not
a federated setting. Also, no channel noise is considered. It is
not clear if this algorithm or guarantee can be modified to deal
with federated data or over-air communication. Finally, there
also exist heuristics for various types of distributed LRMC such
as [31]-[33].

Other works that also develop algorithms for the federated
over-air aggregation setting include [9], [34]. However, all these
develop stochastic gradient descent (SGD) based algorithms and
the focus is on optimizing resource allocation to satisfy transmit
power constraints. These do not provide performance guarantees
for the resulting perturbed SGD algorithm. A different related
line of work is in developing federated algorithms, albeit not in
the over-air aggregation mode. Recent works such as [14], [35]
attempt to empirically optimize the communication efficiency.
Similarly, [36] studies federated PCA but it does not consider
over-air communication paradigm, and does not deal with out-
liers or missing data.

2) Contributions: This work has two contributions. First, we
obtain a new set of results that provide a complete guarantee
for ST-miss and RST-miss without assuming piecewise constant
subspace change. The tradeoff is our error bounds are a little
more complicated. Another advantage of our new result with
respect to previous ReProCS algorithms [23], [37] is that it
analyzes a much simpler tracking algorithm (only one algorithm
parameter needs to be set instead of three). Our guarantee is
useful (improves upon the naive approach of standard PCA
repeated every o frames) when the subspace changes are indeed
slow enough. At the same time, we can still obtain a guarantee
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for our simpler algorithm that holds under piecewise constant
subspace change but does not require an upper bound on the
amount of change, i.e, we recover the result of [23].

The second contribution of this work is a provable solution
to the above problem in the federated data setting when the
data communication is done in the over-air mode. As explained
above, the main new challenge here is to develop approaches that
are provably robust to additive noise in the algorithm iterates.
This setting of noisy iterations has received little attention in
literature as noted above. To the best of our knowledge, this is the
first provable algorithm that studies (R)ST-miss in a federated,
over-air paradigm. The main challenges here are (i) a design
of an algorithm for this setting (this requires use of a federated
over-air power method (FedOA-PM) for solving the PCA step)
and (ii) dealing with noise iterates due to the channel noise. For
the latter, the main work is in obtaining a modified result for
PCA in sparse data-dependent noise solved via the FedOA-PM;
see Lemma 4.7.

3) Paper Organization: We give the centralized problem
formulation next. After this, in Section III, we develop our
solution for ST-miss in the centralized setting and explain how
it successfully relaxes the piecewise constant subspace change
assumption made by existing guarantees. Next, we directly
consider RST-miss in the federated over-air setting in Section
IV. Simulations are provided in Section V and we conclude
in Section VI. We provide a few extensions of our proposed
algorithms, and complete proof details in the Supplementary
Material (https://arxiv.org/abs/2002.12873).

II. NOTATION AND PROBLEM FORMULATION
A. Notation

We use the interval notation [a,b] to refer to all integers
between a and b, inclusive, and we use [a, b) := [a,b — 1]. We
use [K]:=[1,K]. ||.|| denotes the l> norm for vectors and
induced I norm for matrices unless specified otherwise. We
use I to denote the identity matrix of appropriate dimensions.
We use My to denote a sub-matrix of M formed by its
columns indexed by entries in the set 7. A matrix P with
mutually orthonormal columns is referred to as a basis matrix;
it represents the subspace spanned by its columns. For basis
matrices P17 PQ, diSt(Pl, P2) = ||(I — P1P—1F>P2|| quan-
tifies the Subspace Error (distance) between their respective
subspaces. This is equal to the sine of the largest principal
angle between the subspaces. If P; and P; are of the same
dimension, dist(P7, Py) = dist(Ps, P1). We reuse the letters
C, c to denote different numerical constants in each use with the
convention that C > 1 and ¢ < 1.

We use 7-SVD to refer to the matrix of top-r left singular
vectors (vectors corresponding to the r largest singular values)
of the given matrix. Finally, M := (M "M)~'M " is used to
denote the pseudo inverse of M.

B. ST With Missing Data (ST-Miss)

Assume that at each time ¢, we observe an n-dimensional data
stream of the form

yr =Pa,(l:), t=1,2,...,d (1)
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where Pgq, (+) is a binary mask that selects entries in the index set
), (this is known), and A approximately lies in a low (at most )
dimensional subspace that is either constant or changes slowly
over time. The goal is to track the subspace(s). This statement
can be made precise in several ways. The first is as done in past
work [23] and references therein. One assumes a “‘generative
model”: Zt = P;a; with P; being a n X r basis matrix. The
goal is to track the column span of P, span(P;). To make this
problem well-posed (number of unknowns smaller than number
of observed scalars), the piecewise constant subspace change
model assumption becomes essential as explained in [23]. How-
ever, this is a restrictive assumption that is typically not valid for
real data, e.g., there is no reason for the subspaces to change at
certain select time instants in case of slowly changing videos.

A second approach to make our problem statement precise,
and the one that we use in this work, is as follows. For an « large
<~en0ugh,1 consider a-length sub-matrices formed by consecutive
Kt’S. Let Ll = [El,ﬂg, . ,fa]; L2 = [£a+1,£a+2, e ,Ega]
and soon. Let P be the -SVD (matrix of top 7 singular vectors)
of L j- Slow subspace change means that, for all j,

Aj = diSt(Pj_th) < Atv

fora Ay, < 1. Note that the above problem formulation does not
necessarily assume that the vectors {Zt}gz (j—1)a+1 A€ drawn
from a specific subspace, but rather the subspace is defined
post-facto. This subtle, yet important, difference allows us to
eliminate the piecewise constant subspace change assumption
in this work. The goal is to track (sequentially estimate) the
subspace spanned by the columns of P; as well as the rank-r
approximation, L; := PijTf/j. As is well known from the

Eckart-Young theorem, this minimizes | L; — L ||, over all rank
r matrices L. We will occasionally refer to L; and its columns
£, as the true data.

LetAj := PJT L ; be the matrix of subspace coefficients along
P; LetV;:= i]— — L; be the residual noise/error. Clearly,
since

L,°®[P;SB' +P; S B]|=P;A;+V;,

Aj v, L,

it is immediate that L; V| = 0.

Let a;, #4 and wv; be the columns of Aj,
L;, and V; respectively. Thus, for t& J;:=
(= Da+1,(j - Da+2,...jd], a; = P&, £ = Pjay,
and Uy = zt — ét.

Also, let M; = (€2,) be the index set of missing entries at
time t. With this, we can rewrite (1) as

Y = PQ,, (Zt) = Zt - IMf,IMtT:ét

=4 +v — IMtIM,,T(et + vy)

las we show later o > C'r log n suffices
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C. Robust ST-Miss (RST-Miss)

Robust ST-miss assumes that there can also be additive sparse
outliers in the observed data y;. Thus, forallt = 1,2,...,d,

Yi = PQt(zt) + 8¢ (2)

where s;’s are the sparse outliers with supports Mpare,:. The
assumptions on €2, and the true data, Zt remain as in the previous
section. Due to space constraints, we provide the complete
algorithm and guarantee for this problem in the supplementary
material.

D. Federated Over-Air Data Sharing Constraints and
Iteration Noise

We also solve RST-miss in a federated over-air fashion. Con-
cretely, this means the following for an iterative algorithm. At
iteration [, the central server broadcasts the (I — 1)-th estimate
of the quantity of interest> denoted U,_1 to each of the K nodes.
Each node then uses this estimate and its (locally) available data
to compute the new local estimate denoted U k,i- The nodes
then synchronously transmit these to the central server but the
transmission is corrupted by channel noise and thus the central
server receives

U, = Z f]k,z + W,
k

where W is the channel noise. We assume that W is inde-
pendent of data and that each entry of W is i.i.d. zero-mean
Gaussian with variance o2. The central server then processes U,
to get the new estimate of the quantity of interest, U, which is
then broadcast to all /" nodes for the next iteration. The presence
of W in each iteration introduces a new and different set of
challenges in algorithm design and analysis compared to what
has been largely explored in existing literature.

III. ST FROM MISSING DATA (ST-MISS)
A. Proposed Algorithm

Recall that we split our data into mini-batches of size «;
thus Y1 := [y1,¥2, - - Ya)s Y2 := [Yat1, Yat2, - - - Y2a) and
so on. Thus Y := [Y(j—1)a+1: Y(j-1)at2> - - - » Yja)- Without
the slow subspace change assumption, the obvious way to solve
ST-miss would be to use what can be called simple PCA: for
each mini-batch j, compute P ; as the r-SVD of Y ;. However,
when slow subspace change is assumed, a better approach is
a simplification of our algorithm from [23]. We initialize via
r-SVD: compute Py as the -SVD of Y;. For the j-th mini-
batch, we first obtain an estimate of the missing entries for
each column using the previous subspace estimate and projected
Least Squares (LS) as follows. Forevery ¢t € ((j — 1), ja], we
compute

b=y, — Iy, 'I’j\/lt‘:[’yt 3)

>The quantity of interest could be a vector or a matrix depending on the
application. For the problem we study (subspace learning/tracking), the quantity
of interest is a m X 7 basis matrix.
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Algorithm 1: STMiss-NoDet.
Input: Y, M

1: Pammeters;' «

2:  Initialize: Py < r-SVD[y1,...,Yal, J < 2
3: forj >2do

4: Projected LS:

5. WeI-P P,

6: forallt € ((j — 1)a,ja] do

7: Oy — T, (P, (Pyy)

8: end for .

9: PCA on L;:
10:  Pjr- SVD( ;) where

L] [E(J Da+1s:-- E]a]

11:  forallt e ((j — l)a jajdo  roptional
122 beI-P; P]T
13: by — M, (T, (Tyy)
14: end for
15: end for

Output: Pj, @t, @t.

where ¥ =T — Pj_lf-’j,l. This step works as long as (i) the
span of Pj,l is a good estimate of that of P; and (i) Wy, is
well conditioned (or has full-column rank). We argue the first
point by assuming that the span of f—’j,l is a good estimate of
that of P;_; and furthermore, owing to slow subspace change,
it is also a good estimate of the span of P;. We ensure the
second point by bounding the number of missing entries in each
column, | M| in our main result. This point is further explained
in Remark 3.8.

Observe that (3) is a compact way to write the following:
(Et)Mv = (Y)me = (Et)Mg (use the observed entries as is) and
(L) m, = \Ilj\/lt(\llyt). To understand this, notice that ¥y, =
—W ., 2y + (Pl + Bv,) where z, := (I, £,) is the vector
of missing entries. The second two terms can be treated as small
“noise”/disturbance® and so we can compute an estimate of z;
from Wy, by LS.

The second step is to compute P as the »-SVD of L

[Z j 1)04«‘,»17 “e . Eja}
Flnally, we can use P to obtain an optional 1mproved esti-

mate, £; = IMtlIIM (Py;) where ¥ = T — P, P We
summarize th1s approach in Algorithm 1. We show next that,
under slow subspace change, Algorithm 1 yields significantly
better subspace estimates than simple PCA (PCA on each Y ;).

B. Assumptions and Main Result

It is well known from the LRMC literature [10] that for guar-
anteeing correct matrix recovery, we need to assume incoherence
(w.r.t. the standard basis) of the left and right singular vectors of
the matrix. We need a similar assumption on P;’s.

3The first is small because of slow subspace change and P j—1 being a good
estimate (if span(P = 1) = span(P;) this term would be zero); the second is

small because ||v¢|| is small due to the approximate low-rank assumption.
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Assumption 3.1 (j-Incoherence of P js): Assume that

max max ||P( )||2 < il
jeld/al melr]

where Pgm) denotes the m-th row of P; and ;1 > 11is a constant
(incoherence parameter).

Since we study a tracking algorithm (we want to track sub-
space changes quickly), we replace the standard right singular
vectors’ incoherence assumption with the following simple sta-
tistical assumption on the subspace coefficients a;. This helps
us obtain guarantees on our mini-batch algorithm that operates
on a-size mini-batches of the data.

Assumption 3.2 (Statistical ji-Incoherence of a;s): Recall
that a; = PJTEt for all ¢ € J;. Assume that the a;’s are zero
mean; mutually independent; have identical diagonal covari-
ance matrix ), i.e., that E[a;a;] = A\ with \ diagonal; and
are bounded, i.e., max; [|a:||?> < urA™, where AT := Apax(N)
and p > 1 is a small constant. Also, let A~ := A (A) and
f=2"/\.

If a few complete rows (columns) of the entries are missing,
in general it is not possible to recover the underlying matrix.
This can be avoided by either assuming bounds on the number
of missing entries in any row and in any column, or by assuming
that each entry is observed uniformly at random with probability
p independent of all others. In this work we assume the former
which is a weaker assumption. We need the following definition.

Definition 3.3 (Bounded Missing Entry Fractions): Consider
the n x o observed matrix Y ; for the j-th mini-batch of data.
We use max-miss-frac-col (max-miss-frac-row) to denote the
maximum of the fraction of missing entries in any column (row)
of this matrix.

Owing to the assumption that I}j is approximately low-rank,
it follows that L; — L; := V; is “small”.

Assumpti()n 3.4 (Small, Bounded, Independent Modeling Er-
ror): Let A := max, ||E[vat J||. We assume that A < A\~
max; ||v¢]|?> < Or\ and v;’s are mutually independent over
time.

1) Main Result: We have the following result for the naive
algorithm of PCA on every mini-batch of « observed samples
Y ;. We use the following definition of noise level

no-lev := /A /A~

Theorem 3.5 (STmiss Algorithm 3): Set algorithm parameter
a = Cf?rlogn.
Assume that no-lev < 0.2 and the following hold:
1) Incoherence: P ;’ssatisfy y-incoherence, and a;’s satisfy
statistical right p-incoherence;
2) Missing  Entries:  max-miss-frac-col < peo/(ur),
max-miss-frac-row < prow/ f 2t

7+/ProwPeol + no-lev? < max (no-lev, 0.25,/pcor)

3) Modeling Error: Assumption 3.4 holds
4) Subspace Change: max; dist(P;_q,P;) :=
Aty < no-lev and

Aﬁh

max(no-lev, 0.25\/peol + 3/7TAty) < Apeg < 1
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then, with probability at least 1 — 10dn 1%, we have
dist(P;, P;)
< max

(Vpeor - 03771 + Ay (Area + A2 4. ..+ A7), no-lev)

j— Are A v
< max | \/peol - A7 dl + #,no-lev
e 1-— AV'ed

Also, at all j, and for te[(j—1)a,ja), € — & <
1.2- diSt(F’j7 P])HEtH + ||'l)tH while ||£t — £t|| < 1.2 - dist
(Pj1, PG|+ [[vdl] < 1.2 (A + dist(Py, Py))[18]| +
[[ve]].

Proof: See Section III-E.

C. Discussion

First consider the noiseless setting, i.e., the data is exactly
rank-r. The condition on the missing entries requires that pow <
(0.25/7) < 0.16. While this might seem restrictive at first
glance, these constants can be varied by modifying the PCA-
SDDN result (Corollary 3.10). Next, from the final subspace
error expression, note that A,..q < 1, governs the rate at which
the error decays. As expected, increasing the number of missing
entries in a column (proportional to p), or the maximum
amount of subspace change, A, reduces the convergence rate to
an e-accurate solution. In the presence of noise, without further
assumptions on v, in general it is not possible to obtain a final
error that is lower than no-lev and in this case, the tradeoffs are
not as straightforward.

For ease of notation, we provide a special case of
Theorem 3.5 with specific values of the various constants next.

Theorem 3.6 (STmiss — Special Case): Set algorithm param-
eter a = C f?rlogn.

Assume that no-lev < 0.2 and the following hold:

1) Incoherence: P;’s satisfy y-incoherence, and a;’s satisfy

statistical right g-incoherence;

2) Missing  Entries:  max-miss-frac-col < 0.01/(ur),

max-miss-frac-row < 0.0001/ f2;

3) Modeling Error: Assumption 3.4 holds

4) Subspace Change: max; dist(P;_1, P;) < A4, = 0.1,

then, with probability at least 1 — 10dn 10, we have

diSt(Pj, PJ)
< max(0.1-0.37"1 + A, (0.3 +0.3%. .. + 0.3 "), no-lev)
< max(0.1 - 0.3 71 +0.5A, no-lev)

Also, at all j, and for t € [(j — 1)a,ja), |[€ —4£| <
1.2 - dist(P;, P;)|[&|| + ||lve]| while |[€ — £ <1.2-dist
(Pj1, Pyl + lJoell < 1.2 (Ap, + dist(P;, P)) €] +
[[oe]]-

Proof: See Section III-E.

In the sequel, we only build upon the special case, Theorem
3.6. As a baseline, consider the following naive approach to

solve the ST-miss problem and its associated result:

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

Theorem 3.7 (Simple PCA): Let P, be the 7-SVD of
Y, with o =Cf?rlogn. Assume p-incoherence of P;s,
statistical p-incoherence of a;s, modeling error assump-
tion given in Assumption 3.4, max-miss-frac-col < 0.01/(ur),
max-miss-frac-row < 0.01/ f2. Then, with probability at least
1 —10dn—19,

dist(P;, P;) < max(0.1 - 0.25, no-lev)

Proof: The proof is the same as that for the initialization step
of Algorithm 1; see Section III-E.

To compare our main result, Theorem 3.6, consider the prac-
tically relevant setting of approximately rank r ij ’s so that

the noise level \//\;r /A~ is small. In particular, assume it is
smaller than 0.1 - 0.25. Then, if Ay, is small enough, the bound
of Theorem 3.6 is significantly smaller. If the noise level is larger,
then in both cases, the noise level term dominates and both results
give the same bound. Thus, in all cases, as long as Ay, is small
(slow subspace change holds), Theorem 3.6 gives an as good
or better bound as the naive approach. We demonstrate this in
Fig. 1.

Note: Our result assumes a mix of deterministic and stochastic
assumptions due to the following. As mentioned earlier, Algo-
rithm 1 is modification of an algorithm for RST-miss from [37] in
which we treat missing entry recovery as a special case of sparse
recovery using ideas from Compressive Sensing (CS), and the
subspace update step as a Dynamic PCA problem. For the CS
problem, we require a (deterministic) bound on the number of
non-zero entries (missing entries) but not on how the support set
is generated, i.e., we can tolerate deterministic patterns on set
of missing entries. Furthermore, for the sparse recovery step to
work, the CS result [38] requires that the 2| M;|-level incoher-
ence of the measurement matrix, W, is bounded by V2 - 1.
This translates to our incoherence bounds on the subspaces. For
the dynamic PCA problem, it is customary to impose stochastic
assumptions on either the subspaces or the subspace coefficients
and in this paper, we choose the latter. For a detailed comparison
with the best known results in subspace tracking, we refer the
reader to [23, Sec. III].

Remark 3.8 (Demonstrating full Column-Rank of W, ):
Notice that W, € R™*M:I and under the conditions of
Theorem 3.6, we assume that (for some ¢ < 1) |[M;| < en/(ur)
and thus for W, to have full column rank, one needs,

cn cn
— <n—-r=u> ——-
ur r(n—r)
notice that 7(n — r) € [0,n%/4] and thus one only needs that
w > 4e/n. Now, as long as ¢ € [0,1/4], this bound is satisfied
for all n since p > 1 by definition. If ¢ € (1/4, 1], as long as
n > 4/c, the condition is again satisfied. In other words, the
matrix Wy, has full-column rank for all n > 4.

D. Guarantee for Piecewise Constant Subspace Change

Previous work on provable ST-miss [23] assumed piecewise
constant subspace change (required the subspace to be constant
for long enough), but did not require an upper bound on the
amount of change. As we show next STmiss-NoDet is able
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to track such changes as well and provide similar tracking
guarantees even under a (mild) generalization of the previous
model.

Theorem 3.9: Set algorithm parameter o = C' f?r log n. As-
sume that no-lev < 0.02 and the first three assumptions of
Theorem 3.6 hold. Under an approximately piecewise con-
stant subspace change model (A; < no-lev for all j except for
J = Jy,fory=1,2,...,) with the subspace change times sat-
isfying j, — jy—1 > K := C'log(1/no-lev), then, w.p. at least
1—dn~19,

diSt(Pj, Pj) S

(0.2 4 2no-lev) - 0.25 + no-lev), if j=j,
(0.2 4 2no-lev) - 0.3U=72)=1 4 no-lev, if j, <j < jy41

Notice that for j,, 1 > j > j, + K, the bound is at most
2no-lev.

The subspace change model in this result does not require
an upper bound on the amount of subspace change as long
as the change occurs infrequently. However, it still allows for
small rotations to the subspace at each time. The exponential
decay in the subspace recovery error bound is the same as
that guaranteed by the results is [23]. STmiss-NoDet does not
detect subspace changes. However, a detection step similar to
that used in previous work can be included and then a similar
detection guarantee can also be proved. We provide these in the
Supplementary Material (https://arxiv.org/abs/2002.12873).

E. Proof of Theorem 3.6 and 3.7

The proof follows by a careful application of aresult from [37]
that analyzes PCA in sparse data-dependent noise (SDDN)
along with simple linear algebra tricks, some of which are
also borrowed from there. The novel contribution here is the
application of the same ideas for providing a result that holds
under a much simpler and practically valid assumption of slow
changing subspaces (without any artificial piecewise constant
assumption). Also, the proof provided here is much shorter.

1) Subspace Error Bounds: Consider the projected LS step.

Recall that ¥ = T — It"j,lpjil. Since y; can be expressed as

10°
&
@A 1077
=
Rz
el

10—

500

1,000

. Mini-batch index j
(b) Piecewise Constant Subspace — Large

1,500 2,000 2,500

Comparison of ST-Miss Algorithms in the centralized setting.

Yo = — Iy, (I Ltzt), using the idea explained while devel-
oping the algorithm,

b=y — T, Wl O(—Tp, I} 8+ Ey)
=y — Do, (W W) W W (T, Iy &+ £r)
=y + T, Ty b — T, (W5, O pg,) 0L 6
= Zt - IMt(‘I’Lt‘I’Mt)_l'I'/TMtZt
=L+ v — L, (%) W, (4 +vy)
This final expression can be reorganized as follows.

bo=0 v — Ty, (Tag,) O R 00— I, (Tg,) ®F,

small, unstructured noise

= Et + e (4)

sparse, data dependent noise

Thus, recovering P; from estimates ij is a problem of PCA
in sparse data-dependent noise (SDDN): the “noise” e; consists
of two terms, the first is just small unstructured noise (depends
on v;) while the second is sparse with support M; and depends
linearly on the true data £;. We studied PCA-SDDN in detail
in [37] where we showed the following.

Lemma 3.10 (PCA-SDDN): For i =1,...,«, assume that
zi =4; +w; +v; with w; = I\, B;£; being sparse, data-
dependent noise with support M;; €; = Pa,; with P being
an n X r basis matrix that satisfies p-incoherence, and a;’s
satisfy statistical p-incoherence; and v; is small bounded noise
with A\ := [|[E[v;v]]|| < A~ and max; ||v;]|? < Or, A/, Let
q := max;||B;P|| and let b be the maximum fraction of non-
zeros in any row of the matrix [w, . . ., wq]. Let P be the matrix
of top r eigenvectors of é >, ziz; . Assume that ¢ < 3. Pick
ane > 0. If

)\+
Vbqf + 1L <04, and - (5)

242 A

qef rlogn, Aﬁjrlogn) ,  (6)

a>a’ ::C’max<

then, w.p. at least 1 — 10n~10, dist(P, P) < e.
This result says that, under the incoherence assumptions,
and assuming that the unstructured noise satisfies the stated
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assumptions, if the support of the SDDN, w;, changes enough
over time so that b, which is the maximum fraction of nonzeros in
any row of the matrix [wi, ws,. .., w,], is sufficiently small,
if the unstructured noise power is small enough compared to
the r-th eigenvalue of the true data covariance matrix and it is
bounded with small effective dimension, ||v;]|?/A;” < Cr, and
if «v is large enough, then span(f’), is a good approximation
of span(P). Notice here that for SDDN, the true data and
noise correlation, ]E[Eiwf], is not zero, and the noise power,
E[w;w; "], itself is also not small. However, the key idea used to
obtain this result is the following: enough support changes over
time (small b) helps ensure that the upper bounds on sample aver-
aged values of both these quantities, ||(1/a) Y, E[¢;w; "]|| and
[(1/) >, E[w;w;"]|| are v/b times smaller than those on their
maximum instantaneous values, ||E[¢;w;"]|| and ||E[w;w;"]]|.

Our proof uses Lemma 3.10 applied on the j-th mini-batch of
estimates, ﬁj along with the following simple facts.

Fact 3.11:

1) From [5, Remark 3.6] we have: let P be an p-incoherent,

n x r basis matrix. Then, for any set M C [n], we have

wr
Il < M) -2

2) Forn x r basis matrices P, P (useful when the column
span of P is a good approximation of that of P), and any
set M C [n], we have

3P|l < dist(P, P) + [[T},P]|

3) For a p-incoherent n x r basis matrix, P, and any set

M C [n],
Amin(Ip (I = PPIy) =1~ ||I7 P
Thus, combining the above three facts,

(L (I~ PP )Iy) |
1
(dist(P, P) + /| M|pur/n)?

The proof for 7 =1 is a little different from j > 1. For
j=1, O=1 and ¢ =y,. Also, i=1¢. For j>1, ¥ =
I-P; P; ;" andi=t—(j— 1)a. Consider j =1 (ini-
tialization). In this case, Izt =y, satisfies (4) with ¥ = 1.
We apply Lemma 3.10 with i =t, z; = @t =y, L; =4y,
P=P,, w,= —IMtI/T\,ltEt, v, = vy — IMtILtvt, B; =
1 Lt. Notice that the fraction of non-zeros in the ma-
trix [wq, - w,] is bounded by max-miss-frac-row and thus
b = max-miss-frac-row. To obtain ¢, we need to bound
maxe 7, || BiP1| = maxie s, |[Inm,  Pi|. By item 1 of Fact
311, I, P1||* < |Mq|pr/n < max-miss-frac-col - nur/n.
Under the assumptions of Theorem 3.6, |max-miss-frac-col| <
Peot/ prr and thus max; || By P|| < \/peol = q1 = q. We pick € =
max(no-lev,0.25¢;). From the Theorem assumptions (miss-
ing entry fractions), b = max-miss-frac-row < poy/f? and
no-lev < 0.2 and so (5) is satisfied. Furthermore, since € =
max(no-lev,0.25¢q;), the value of a used in the Theo-
rem satisfies the requirements of Lemma 3.10. Thus, we
can apply this lemma to conclude that dist(Py, P1) < e =
max(no-lev, 0.25¢1) withq; = 0.1 = |/pcor. This completes the

<
1—
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proof of Theorem 3.7 since simple-PCA just repeats this step at
each j.
Now consider any j > 1. We claim that for j > 1,

diSt(Pj7 Pj) < €

with  ¢; satisfying the following recursion: € =

max(no-lev, 0.25¢; ) with ¢; = 0.1, and
€; = max(no-lev, 0.25-1.2- (¢j_1 + Ayy)) (7)
This can be simplified to show that

-1

.

€; < max | no-lev, (no-lev + Ay,) (0.3)7,
j'=1

j—1

0.37-0.25¢1 + Apy _(0.3)7
j'=1

j—1

< max | no-lev,0.37(0.25q1) + Ay, »_(0.3)7 | (8)
J'=1

where the second inequality follows by using A4, < no-lev and
32 (0.3 < 325 (0.3) = 3/7.

To prove the above claim, we use induction. Base
case: j =1 done above. Induction assumption: assume

dist(P;_1,Pj_1) < €j_1. The application of the PCA-SDDN
lemma is similar to that for 7 = 1 with the difference be-
ing that : =t — (j — 1)a and B; is different now. We now
have B; = (W, Wy, ) '® , and so maxey, |B:P| =
max; | (¥, ®u,) ' ¥4, Pjll. This can be bounded using
Fact 3.11 as follows

[ 20 P |
< maxc [[(W 4y, W) 14, 12 P
- ! 1-dist(P; 1, P,)
. - di =1, ;
= T (1 + V001 S
1
<
1—(ej-1+ M)Q

Using (8), €;_1 < max(no-lev, 0.25¢; + Ay, (3/7)) and recall-
ing that max(no-lev, 0.35,/peol + At (3/7)) < 0.3. Using this
upper bound on €;_; in the denominator expression of above,

q; <1.2(¢j21 + Ayy) 9
Apply the PCA-SDDN lemma with ¢ =g¢; and

max(no-lev, 0.25¢;). With this choice of ¢, it is easy to see that

7 \/qu [+ f\é < 0.4e. Also, « given in the Theorem again sat-
isfies the requirements of the lemma. Applying the PCA-SDDN
lemma, and using (9) to bound ¢ = g¢;,

(€j-1+ Ag) :=gj

€ =

dist(P;, P;) < max(no-lev, 0.25¢;)
< max(no-lev,0.25 - 1.2(e;_1 + Ayy)) =€

This proves our claim. B o
2) Bounds on Error in Estimating £: From (4), £; — £, =
—IMt(lIl/TMt\IIMt)_lILt\IJEt with O =T — P; 1P; ;" for
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t € J;. Using this, b =40+ v, = Pja; + vy, and Fact 3.11,
we can get

€ — £ < dist(P;_1, Py)
< (€1 + Ap) ||| + [Joe |

21| + [lvel

Using the same approach that we used to derive (4), we get

that Zif - Zt has the same expression as Zt — Zt but with ¥ =
I — F)J‘.F)jT fort € \73 ThllS,

18: — £l < dist(Pj, P;)[[€ellz + lvell < e-a[l€el| + [lve|

F. Proof of Theorem 3.9

The proof again follows by using the PCA-SDDN lemma
given above along with use of Fact 3.11. The main difference is
the use of the following idea.

Consider the interval just before the subspace change, i.e.,
the j-th interval with j = j, — 1. At this time, by our delay
assumption, dist(Pj, P;) < 2no-lev and thus, using Fact 3.11,
|10, T P;|| < 2n0-lev + 0.1. Also, using Fact 3.11,

max [[(¥ 1, ar,) " 4y, Pl
< max ||(‘I’/T\4t‘I’Mt)71||||IIAt‘I’PJ'”
1
<
~ 1— (2no-lev +0.1)2

1
<
~ 1— (2no-lev +0.1)?

(g, Piall + [ R, P51

- ((0.1 + 2no-lev) + 0.1)

Combining with the bound from the previous section, the final
bound for this term is

min(dist(Pj_l, Pj), ((01 —+ 2n0-lev) + 01))
1 — (2no-lev + 0.1)2

IV. FEDRATED OVER-AIR ROBUST ST-MISS

In this section, we study robust ST-miss in the federated,
over-air learning paradigm. There are two important distinctions
with respect to the centralized ST-miss problem from Section III
namely (a) data is now available across different nodes and
the proposed algorithm must obey the federated data sharing
constraints and (b) the proposed algorithm must be able to deal
with gross and sparse outliers.

An example where such a problem formulation is valid is as
follows. Consider the recommendation system design problem.
Assume that there are n products and a total of d users/buyers
distributed across a geographical area. The “products” could
be movies, news sites, Facebook pages, blogs or even survey
questions. A subset of dj, users sends their “ratings” of these
products to worker node k. There are a total of K worker nodes.
The master node would like to compute a low-dimensional
subspace approximation of the n x d ratings’ matrix, denoted
by Y, in order to use this information to recommend relevant
movies to them. Note that the dataset is also potentially dynamic;
every day new users enter the system and provide more ratings
of the movies or the news sites or blogs. Thus, at time ¢, across
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all users, we have an n x « data matrix Y (;). This typically
has many missing entries (set to zero), and gross outliers (that
arise either from unintentional rating mistakes, or presence of
malicious users). Collating all such matrices together we have
a very big n x d matrix with d = t« at time ¢. The goal is to
track the underlying true data subspace at each time ¢; this could
be fixed or slow time varying. The assumption here is that user
preferences are actually governed by a small number of factors
r; this number is much smaller than the number of products n
or the total number of users d.

A key observation that allows us to build upon Section III is
that only Line 10 of Algorithm 1 needs to be federated (all other
operations are performed locally on each vector). To this end, we
first explain why tackling iteration noise is sufficient to satisfy
the Fed-OA constraints in Section IV-A, we then present our
result for PCA in the Fed-OA setting in Section I'V-B (federated
version of Line 10 of Algorithm 1), and finally show how this is
used to develop an algorithm that solves Robust ST-Miss in the
Fed-OA setting in Section I'V-C.

A. Dealing With Mild Asynchrony and Channel Fading

As discussed previously, the three key challenges while work-
ing with over-air aggregation are (a) small timing mismatches,
(b) channel fading, and (c) iteration noise. There exist a plethora
of techniques within physical layer communications for dealing
with channel fading and mild asynchrony. The main idea is
to use carefully designed pilot sequences. Pilot sequences are
symbols that the transmitter-receiver pairs agree on in advance
and are transmitted in the beginning of a data frame. For in-
stance, suppose that there are only K = 2 transmitters and the
relative offsets between the transmitters is at most 7 symbols.
In this case, both transmitters can use pilot sequences of length
25+ 1, [a1,a1,...,a1] and [ag, as, . . ., as] respectively. Since
the offset is at most j, the central node receives at least one
symbol with values a1 + as. It can determine the relative offset
by determining the start location of the value a1 + as. Once the
estimated offset is communicated back to the nodes, the center
can then receive the correct sum by having the nodes appropri-
ately zero pad their transmissions. Extensions of these ideas can
be utilized to handle the case of K > 2 nodes. Similarly, some
amount of channel fading can compensated for by estimating
the fading coefficients which can be done since the values of
the pilot symbols are assumed to be known. These techniques
are by now quite well-known in the single and multiple antenna
scenarios [21]. As correctly noted by anonymous reviewer, it
may be impossible to compensate for a very weak channel gain
since that would require a transmit power that’s above the limit.
Thus, the main problem to be addressed is iteration noise which
is the focus of this paper.

B. Federated Over-Air PCA Via the Power Method (PM)

Here we provide a result for subspace learning while obeying
the federated data sharing constraints.

1) Problem Setting: The goal of PCA (subspace learning) is
to compute an r-dimensional subspace approximation in which a
given data matrix Z € R"*¢ approximately lies. The k-th node
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observes a columns’ sub-matrix Z; € R™*%_ We have Z :=
(Z1,....2Z},...,ZK] € R™4withd = Zszl dj, and the goal
of PCA is to find an n X r basis matrix U that minimizes || Z —
uu'z ||% As is well known, the solution, U, is given by the
top  eigenvectors of Z Z . Thus the goal is to estimate the span
of U in a federated over-air (FedOA) fashion.

2) Federated Over-Air Power Method (FedOA-PM): The
simplest algorithm for computing the top eigenvectors is the
Power Method (PM) [39]. The distributed PM is well known,
but most previous works assume the iteration-noise-free setting,
e.g., see the review in [12]. On the other hand, there is recent
work that studies the iteration-noise-corrupted PM [26], [27]
but in the centralized setting. In this line of work, the authors
consider two models for iteration-noise. The noise could either
be deterministic, or statistical noise could be added to ensure
differential privacy. Our setting is easier than the deterministic
noise model, since we assume a statistical channel noise model,
but is harder than the privacy setting since we do not have control
over the amount of noise observed at the central server (here use
the term channel noise and iteration-noise interchangeably).

The vanilla PM estimates U by iteratively updating U; =
ZZU,_; followed by QR decomposition to get U,. FedOA-
PM approximates this computation as follows. At iteration [,
each node k£ computes ﬁk,l =Z.Z ZUl,l and synchronously
transmits it to the central server which receives the sum corrupted
by channel noise, i.e., it receives

K
=Y U +W,=2Z'U,_,+W,
k=1

since Y., ZyZ) = ZZ". Here W is the channel noise. It
then computes a QR decomposition of U, to get a basis matrix
U’l which is broadcast to all the K nodes for use in the next
iteration. We summarize this complete FedOA-PM algorithm
in Algorithm 2. If no initialization is available, it starts with a
random initialization. When we use FedOA-PM for subspace
tracking in the next section, the input will be the subspace
estimate from the previous time instant.

We use o; to denote the i-th largest eigenvalue of ZZ T,
ie., 01 > 09 > ---0, > 0. We have the following guarantee
for Algorithm 2.

Lemma4.1 (FedOA-PM): Consider Algorithm 2. Pick the de-
sired final accuracy € € (0,1/3). Assume that, at each iteration,
the channel noise W, "% (0, 02) with (i) o, < ec,/(5v/n)
and (ii) R := 0,41 /0, < 0.99.

When using random initialization, if the number of iterations,
L = Q(i5zi7my log(")). then, with probability at least 0.9 —
Lexp(—cr), dist(U,UL) < e.

When using an available initialization with dist(Uo, U) <
€o, if L = Q<log(i/R) IOg(e\/iT%))’ then, with probability at

least 1 — L exp(—cr), dist(U,UL) < e

Lemma4.1 is similar to the one proved in [26], [27] for private
PM but with a few key differences which we discuss in the
Supplementary Material (Appendix D) due to space constraints.
We also provide a guarantee for the convergence of the maximum
eigenvalue (Lines 10 — 13 of Algorithm 2) below.
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Algorithm 2: FedOA-PM: Federated Over-Air PM.

Input: Z (data matrix), r (rank), L (# iterations), ﬁo
(optional initial subspace estimate)
1: K nodes, Z;, € R™% local data at k-th node.

If no initial estimate provided, at central node, do
i.4.d.

U, "~ N, 1) psrs U, + Uy, transmit to all K
nodes.
3: forl=1,...,Ldo

4: At k-th node, for all k € [K], compute
Upi=Z,Z U,
5: All K nodes transmit f]k,l synchronously to central
node.
Central node receives Ul = ﬁk,z + W,.
Central node computes U 1Ry Cg—R U,
Central node broadcasts ﬁl to all nodes
end for
At k-th node, compute Uk,LJrl = ZkZ;UL
All K nodes transmit U'k L+1 synchronously to the
central node.
12:  Central node receives
U1 =, Ukpr1 + Wi
13:  Central node computes A= 020 1+1 and its top
eigenvalue, 61 = )\max(;\).
Output: UL, 01.

._
2o e A

[y

Lemma 4.2 (FedOA-PM: Maximum Eigenvalue): Let o; be
the i-th largest eigenvalue of ZZ . Under the assumptions of
Lemma 4.1, 61 computed in line 13 of Algorithm 2 satisfies

(1-— 462)0'1 — 20,41 — €0, <61 < (I1+¢€)oy

To our best knowledge, the Lemma 4.2 has not been proved in
earlier work. This result is useful because thresholding the top
eigenvalue of an appropriately defined matrix is typically used
for subspace change detection, see for example [23]. The proof
of Lemma 4.2 given in Supplementary Material requires use of
Weyl’s inequality and the careful bounding of two error terms.

Note: The reason we obtain a constant probability 0.9 in the
Lemma 4.1 is as follows: for any given r-dimensional subspace,

. P NN
U and a random Gaussian matrix U, the matrix U U is an
r x r random Gaussian matrix with independent entries. The

singular values of U'T U equal the cosine of the r principal angles
between U and U. For successfully estimation (through any
iterative method) it is necessary that none of the principal angles
are 7/2. To ensure this, we need to lower bound the smallest

singular value of U TU. This is difficult because the smallest
singular value of square or “almost” square random matrices
can be arbitrarily close to zero [40], [41]. The same issue is also
seen in [26], [27].* In fact, this is an issue for any randomized
algorithm for estimating only the top r singular vectors (without
afull SVD), e.g., see [42]-[44].

4These papers also provide a more general result that allows one to compute an
r’-dimensional subspace approximation for an r’ > r.If 7’ is picked sufficiently
large, e.g.,if 7’ = 27, then the guarantee holds with probability atleast 1 — 0.1".
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We next define the federated over-air robust subspace tracking
with missing entries (Fed-OA-RSTMiss) problem, and show
how Algorithm 2 and Lemma 4.1 is used to solve Fed-OA-
RSTMiss.

C. Fed-OA-RSTMiss: Problem Setting

In this section, we use o, to denote the number of data points
at node k at time ¢ and o := >, v, to denote the total number
at time t. We do this to differentiate from d (in Section IV-B)
which is used to indicate the total number of data vectors. Thus,
attimet,d = tavand d, = toy,. Attime ¢ and node k, we observe
a possibly incomplete and noisy data matrix Y, ; of dimension
n X ay, with the missing entries being replaced by a zero. This
means the following: let i/k,,t denote the unknown, complete,
approximately low-rank matrix at node & at time ¢. Then

Yt =Pa,,(Lit + Gri) = Pa,,(Lit) + Sks

where Gy ;’s are sparse outliers and Sy := Pao, ,(Gr¢),
and Pq, , sets entries outside the set §2;; to zero. The full
matrix available from all nodes at time ¢ is denoted Y, :=
[Y1:,Y24,...,Y k] Thisis of size n x «. The true (approx-
imately) rank-r matrix L,is similarly defined. Define the index
sets Zy 4 :=[1,2,...,01], To¢:=[on + 1,00 +2,...,0q0 +
as] and so on. Denote the i-th column of Y; by y;, i =
1,2, ..., a. And with slight abuse of notation, we define (the ma-
trix binary masks) O, := [(M1)% (Ma2,) ..., (Ma,.1)°],
Q¢ = [(May41.4)% Mag42,6) -5 (May4as,)] and so
on where M, ; is the set of missing entries in column ¢ of the
data matrix at time ¢, (M, ;)€ is its complement w.r.t [12]. Thus,
the observations satisfy

Yi =Pume, () +si, i€y, ke[K]  (10)

where s; are sparse vectors with support M, ;- Notice that it
is impossible to recover g; on the set M; ; and so by definition,
Mparse,i» M are disjoint. Let P, denote the (n X r dimen-
sional) matrix of top r left singular vectors of L;. In general,
our assumptions imply that L, is only approximately rank r.
As done in our result for ST-miss (in a centralized setting), we
define the matrix of the principal subspace coefficients at time
tas A; = PtT f}t, the rank-r approximation, L; := PtP;r I~Lt
and the “noise” orthogonal to the span(P;) as V; := L, - L,
With these definitions, for all ¢ € Z;; and k € [K], we can
equivalently express the measurements as follows

Yi = Pume, (&) + s
= Zi — IMi’tI/TMi’tzi + s;
= ZZ +z;+ 8
=Li+z+stv;

The goal is to track the subspaces P; quickly and reliably, and
hence also reliably estimate the columns of the rank r matrix
L, under the FedOA constraints given earlier. Our problem can
also be understood as a dynamic (changing subspace) version of
robust matrix completion [45].
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D. Algorithm

The overall idea of the solution is similar to that for ST-miss.
The algorithm still consists of two parts: (a) obtain an estimate of
the columns i/t using the previous subspace estimate Pt—l; and
(b) use this estimated matrix L, to update the subspace estimate,
i.e., obtain P, by r-SVD. The algorithm can be initialized via
r-SVD (as done in ST-miss) if we assume that Y'; (the set of
data available at t = 1) contains no outliers and if not, one would
need to use a batch RPCA approach such as AltProj [8] to obtain
the initial subspace estimate P,.

In the federated setting (a) is done locally at each node, while
(b) requires a Fed-OA algorithm for SVD which is done using
Algorithm 2. If one were to consider a federated but noise-free
setting, there would be no need for new analysis (standard
guarantees for PM would apply).

For step (a) (obtaining an estimate of L, column-wise), we
use the projected Compressive Sensing (CS) idea [5]. This relies
on the slow-subspace change assumption. Let P,_; denote
the subspace basis estimate from the previous time and let
w=17T- Pt,lpll. Projecting y; orthogonal to Pt,l helps
mostly nullify £; but gives projected measurements of the miss-
ing entries, I rq, I Li&- and the sparse outliers, s; as follows

Wy, = U(s; — Ly, Iy L)+ ¥ (L +v;)

projected sparse vector error

If the previous subspace estimate is good enough, and the noise
is small, the error term above will be small. Now recovering
the vector s; — I, I 5 £; is from Wy; is a problem of noisy
compressive sensing with partial support knowledge (since we
know M;). We first recover the support of s; using the approach
of [46], and then perform a least-squares based debiasing to
estimate the magnitude of the entries. Following this, an estimate
of the true data, ¢, is computed by subtraction from the observed
data y;. We show in Lemma 4.6 that ZL satisfies

N —1
b=t 1, (@L@M) I, @ +v)+v ()

Now we have L; := [f/u7 1A127t, . iKt] with I:k,t avail-
able only at node k. To goal is to compute an estimate (P
of its top r left singular vectors while obeying the federated
data sharing constraints. We implement this through FedOA-PM
(Algorithm 2) with Z, = ﬁk,t being the data matrix at node k.
We invoke FedOA-PM with an initial estimate Pt, 1. This simple
change allows the probability of success of the overall algorithm
to be close to 1 rather than 0.9 which is what the result of Lemma
4.1 predicts. This result is obtained by carefully combining the
result for PCA-SDDN in a centralized setting (Lemma 3.10) and
the result for FedOA-PM (Lemma4.1). The result is summarized
inLemma4.7. Applying these results in exactly the same manner
as we did in Section III-E (with a few minor differences we point
out in the next section), we get the main result.

E. Guarantee for Fed-OA RST-Miss

Before we state the main result, we need a few definitions.
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Algorithm 3: Fed-OA-RSTMiss-NoDet.
Input: Y, M
1:  Parameters: L < C'log(1/no-lev), Weupp, &, @
2: Imit: 74 1,5« 1, Py
3: fort > 1do
4:  L; + FED-MODCS(y;, Tp 1, My, Py 1)
5
6
7

P, « FEDOA-PM(L,, r, L, P, 1)

L, + FED-MoDCS(y;, T, 1, M, Py)
end fgr
Output: P

>optional

Algorithm 4: Federated Modified Compressed Sensing.
1: procedure Fed-ModCS(y;, Zy. 1, M;, Py 1)

2 for all node k, 7 € Zj, ; do

3: O I-P_P,

4: Y — Py,

5: 8i,cs < argming ||(8)(a4,)ell1 s.t.
|y, — Ps|| <&

6 Mi = My U{G : [(8i05)5] > Wsupp }
7: Ly — Ly (P )19,

8: end for

9 Output: L,

0: end procedure

Definition 4.3 (Sparse outlier fractions): Consider the n X «
sparse outlier matrix Sy := [S14,..., Sk, at time t. We use
max-out-frac-col (max-out-frac-row) to denote the maximum of
the fraction of non-zero elements in any column (row) of this
matrix. Also define spin = mingez, , minje ..., [(8:);-

Let )\ := maxier, , |E[v;v]]|| and maxier, , |lvg||? <
Cr)f forall k € [K].

Theorem 4.4 (Federated Robust Subspace Tracking NoDet):
Consider Algorithm 3. Assume that \/\,; /A~ := no-lev < 0.2.
Set L = C'log(1/no-lev) and wsupp = Smin/2, & = Smin/15.
Assume that the following hold:

1) Att =1 we are given a P st dist(Py, f-’l) < €init-

2) Incoherence: P,’s satisfy p-incoherence, and a;’s satisfy

statistical right p-incoherence;

3) Missing  Entries:  max-miss-frac-col € O(1/ur),
max-miss-frac-row € O(1);
4) Sparse Outliers: max-out-frac-col € O(1/pr),

max-out-frac-row € O(1);

5) Channel Noise: the channel noise seen by each FedOA-
PM iteration is mutually independent at all times,
isotropic, and zero mean Gaussian with standard deviation
o < no-levA™ /104/n.

6) Subspace Model: The total data available at each time ¢,
a € Q(rlogn) and Ay, := max, dist(Py_1, P;) s.t.

0.3¢it + 0.5A4, < 0.28 and

Cv r/\+(0.3t_1einh +0.5A¢,) + /7oA < Smin

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 70, 2022

then, with probability atleast 1 — 10dn =19 fort > 1, we have
diSt(Pt7Pt)
< max(0.3" e + A4 (0.3 +0.3%. .. +0.3°71), no-lev)

< max(0.3t_1einit + 0.5A4,, no-lev)

Also, at all times ¢, ||€; — £;|| < 1.2 - dist(Py, Py)||€s] + ||vs]]
foralli € Iy ., k € [K].

1) Discussion: Items 2-4 of Theorem 4.4 are necessary to
ensure that the RST-miss and robust matrix completion prob-
lems are well posed [23], [45]. The initialization assumption of
Theorem 4.4 is different from the requirement of Theorem 3.6
due to the presence of outliers. Just performing a »-SVD on Y';
as done in Algorithm 1 does not work since even a few outliers
can make the output arbitrarily far from the “true subspace”.
Additionally, without a “good initialization” Algorithm 3 cannot
obtain good estimates of the sparse outliers since the noise in
the sparse recovery step would be too large. One possibility
to extend our result is to assume that there are no outliers at
t =1,i.e.,. 81 = 0 in which case, we use the initialization idea
of Algorithm 1 (see Remark 4.5). Item 5 is standard in the
federated learning/differential privacy literature [26], [27] as
without bounds on iteration noise, it is not possible to obtain a
final estimate that is close to the ground truth. Finally, consider
item 6: the first part is required to ensure that the projection
matrices, W’s satisfy the restricted isometry property [38], [46]
which is necessary for provable sparse recovery (with partial
support knowledge). This is a more stringent assumption than
Ay, <0.1 assumed in Theorem 3.6 due to the presence of
outliers. The second part of item 6 is an artifact of our analysis
and arises due to the fact that it is hard to obtiain element-wise
error bounds for Compressive Sensing.

In Theorem 4.4 we assumed that we are given a good enough
initialization. If however, S; were 0, we have the following
result.

Remark4.5: Under the conditions of Theorem 4.4,if S| = 0,
then all conclusions of Theorem 4.4 hold with the following
changes

1) The number of iterations is set as L = C'log(n/no-lev)

2) The subspace model (item 6 satisfies all conditions with

€init replaced by 0.01 - 0.3
3) The probability of success is now 0.9 — 10dn~1°.

FE. Proof Outline

Here we prove our main result for robust ST-Miss under the
federated data sharing constraints. The proof relies on two main
results given below — (i) the result of (centralized) RST-Miss
proved in the Supplementary Material (Appendix. C) and (ii) our
result for federated over-air power method from Section IV-B.

Lemma 4.6 (Projected-CS with partial support knowledge):
Consider Lines 5 — 7 of Algorithm 4. Under the conditions of
Theorem 4.4, we have for all £ and all ¢ € Z;, 4, the error seen by
the compressed sensing step satisfies

1B+ v;)|| < (03" Meimie + 2.5, )\ prAT +y/roAS
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||t§i,cs - SzH < 7-Tmin/15 < xmin/Q’ Msparse,i = Msparse,% the
error e := ¥; — ¥; satisfies

-1
e=—I, (\IIL\IIM> T Wt +v) +vs,
= (ei)e + (€i)v +v; (12)

leill < 1.2(0.3 Yemi + 2.5A:,)v/ pur AT + 2.2¢/r, A
Here, ¥ =1 — Pt,lpll

Lemma 4.7 (FedOA PCA-SDDN (available init)): Consider
the output P of FedOA-PM (Algorithm 2) applied on data
vectors z; distributed across K nodes, when z; = £; + €; + v;,
i=1,2,...,a with ¢; = Pa;, e; = I, B;¢; being sparse,
data-dependent noise with support M; the modeling error v, is
bounded with max; ||v;||? < Cr, A} where A := ||[E[v;v]]]|.
The matrix of top-r left singular vectors, P satisfies pu-
incoherence, and a;’s satisfy p-statistical right-incoherence.
The channel noise is zero mean i.i.d. Gaussian with standard
deviation o. < epps A~ /10+/n and is independent of the £;’s.
Let ¢ := max; || B; P|| and let b denote the fraction of non-zeros
in any row of the SDDN matrix E = [eq,...,e,]. Pick an
epy > 0. If

and

7\/5Qf + )\2—/)\7 < 0.4epyyr,

/\'U
£ f2 32— f), and if FedOA-PM is ini-
€Pm PMm

tialized with a matrix Py such that dist(Pjy, P) <

€nit,par» then after L = C'log(1/(epary/1 — e?nit’PM)) itera-

tions, with probability at least 1 — L exp(—cr) — n~ 10, P sat-
isfies dist(f?, P) <eppy.

With these two Lemmas, the proof of Theorem 4.4 is similar
to the proof of Theorem 3.6. Firstly, consider the projected CS
with partial support knowledge step. Lemma 4.6 applied to each
vector locally gives us Zi = £; — e; with e; satisfying (12). Next,
at each time ¢, we update the subspace as the top r left singular
vectors of f)t, where the k-th node only has access to the sub-
matrix L 1t Forat > 1, we assume that the previous subspace
estimate, P,_; satisfies dist(f?t_l, P; 1) < max(0.3" 260 +
0.5Ay,,no0-lev). We invoke Lemma 4.7 with Pimt = Pt_l
and thus, €, prs = max (0.3 %€ + 0.5A,,n0-lev); z; =
21-,2‘ €Ly, P=Pie = (e)ev; =€), +viandepy =
max(0.3t’26inn + 0.5A¢,,n0-lev). Under the conditions of
theorem 4.4, we conclude that w.h.p., dist(Pt, P;) <

a > Crlog nmax(

3917

dist(P;, P;)
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Performance of Algorithm 3 under varying model parameters.

max(0.3" ey + 0.5A,,n0-lev). Thus, applying this argu-
ment inductively proves the result. For the second optional
FedOA-PM step, the same ideas from the proof of Theorem
3.6 apply.

V. NUMERICAL EXPERIMENTS

The codes are available at  https:/github.com/

praneethmurthy/distributed-pca.

A. Centralized STMiss

1) Small Rotations at Each Time: We first consider the cen-
tralized setting for Subspace Tracking with missing data (Sec-
tion IIT). We demonstrate results under two sets of subspace
change models. First we consider the “rotation model” that has
been commonly used in the literature [3], [4]. At each time ¢, we
generate a n X r dimensional subspace P ;) = e"stBtP(t,l)
with P(g) generated by orthonormalizing the columns of a
i.i.d. standard Gaussian matrix and By is some skew symmetric
matrix to simulate rotations and J; controls the amount of
rotation (for this experiment we set §; = 10~% which ensures that
Ay = 1072). We generate matrix A as a i.i.d. uniform random
matrix of size 7 x d and set the ¢-th column of the true data matrix
Zt = P(t) a;. Thus, in the notation of our result, P; is the matrix

of the top r left singular vectors of f/j = [Z(j,l)aﬂ, . ~2ja]

and A; = P;ij. In all experiments, we choose n = 1000
and d = 3000. We simulate the set of observed entries using
a Bernoulli model where each element of the matrix is ob-
served with probability 0.9. For all experiments, we set = 30
and the fraction of missing entries to be 0.1. We implement
STMiss-nodet (Algorithm 1) and set r = 30. We compare with
NORST [23] (the state-of-the-art theoretically), GROUSE [4],
and PETRELS [3] (the state-of-the-art experimentally). For all
algorithms, we used default parameters mentioned in the codes.
We also implement the simple PCA method wherein we estimate
P ; as the top-r left singular vectors of Y ; for each mini-batch.
For all algorithms, the mini-batch size was chosen as a = 60.
The results are shown in Fig. 1(a). We see that as specified by
Theorem 3.7, the simple PCA algorithm does not improve the
recovery errors since it is not exploiting slow subspace change.
However, all other algorithms exploit slow-subspace change and
thus are able to provide better estimates with time. We also notice
that PETRELS is the fastest to converge, followed by NORST
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Fig. 3.

and STMiss-nodet, and finally GROUSE. This is consistent with
the previous set of results in [23].

2) Piecewise Constant: Next, we consider a piecewise con-
stant subspace change model that has been considered in the
provable subspace tracking literature [23]. In this, we simulate a
large subspace change at t; = 1500. The subspace is fixed until
then, i.e., P; = Py forallj € [1, [t1/a]) and P; = P forall
j € [[t1/a], [d/a]]. The results are shown in Fig. 1(b). Notice
that NORST and STMiss-nodet significantly outperform simple
PCA as both exploit slow subspace change. Additionally, even
though the change is large (in the notation of Definition B.1
given in the supplementary material, Ajyree ~ 1 and Ay, = 0),
STMiss-nodet is also able to adapt without requiring a detection
step. Finally, since the updates are always improving, after a
certain time, NORST stops improving the subspace estimates,
but STMiss-nodet improves it and gets a better result.

B. Federated ST-Miss

We also implement Algorithm 3 to corroborate our theoretical
claims. We use the exact data generation parameters as we did in
the centralized setting. To simulate over-air communication, we
replace the inbuilt SVD routine of MATLAB by a power method
code snippet, and by adding iteration noise.’ In each iteration,
we add i.i.d. Gaussian noise with variance 10~. The results
are presented in Fig. 3. Notice that in both cases, Algorithm
3 works as well as NORST even though NORST cannot deal
with iteration noise. Additionally, as opposed to the centralized
setting (Fig. 1(b)), the error of Fed-OA-RSTMiss-nodet in Fig. 3
does not improve beyond the iteration noise level of 1076,

We next validate the performance of Algorithm 3 with respect
to different values of the channel noise. We generate the data as
done in the previous experiment, but vary the iteration noise
level. In particular, we choose 0. = {1,1072,107*,107¢} and
provide the results in Fig. 2(a). Notice that in all the cases, the
subspace error saturates at roughly o as predicted.

Finally we analyze the performance of Algorithm 3 with re-
spect to different values of missing entries. The data is generated
as in the previous experiment with 0. = 1075 and we vary the
fraction of missing entries, p = {0.1,0.2,0.4,0.6}. The results
are givenin Fig. 2(b) and we notice thatin all cases, the algorithm

SNote that in this approach, it is not required to explicitly set a value of K

500 1,000

. Mini-batch index j
(b) Piecewise Constant Subspace — Large

1,500 2,000 2,500

Corroborating the claims of Theorem 4.4.

works, but as the fraction of missing entries increases, more
samples are required for convergence.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of Subspace Tracking
from missing data and outliers. In particular, we consider a gen-
eralized problem formulation that does not make the piecewise
constant subspace change assumption that is common in the
provable subspace tracking literature. We proposed a simple
algorithm to solve this problem provably and efficiently. We
also developed a an algorithm to solve (robust) subspace tracking
with missing entries when the data is federated, and over-air data
communication modality is used. As part of future work, there
are several open questions such as (i) is it possible to modify
the proposed analysis to provide a guarantee for differentially
private subspace tracking? (ii) is it possible to consider row-wise
federated data model with appropriate analytical modifications?

APPENDIX A
PROOF OF KEY LEMMAS FOR THEOREM 4.4

Proof of Lemma 4.6: Recall from Algorithm 4 that we need
solve

850 = argmin | ()i |1 S| @y, — Ws|| < ¢

This is a problem of sparse recovery from partial sub-
space knowledge. To prove the correctness of the result, we

first need to bound the s-level RIC of ¥ =1 — Pt,lpll
where s := (2max-out-frac-col + max-miss-frac-col) - n. Un-
der the assumptions of Theorem 4.4 (we only assumed
that max-out-frac-col € P(1/ur) and max-miss-frac-col €
O(1/pr) but the actual requirement is (2max-miss-frac-col +
max-out-frac-col) - n < 0.01/ur), and Fact 3.11, we have that

~ ~T “
os(I =Py P, ) = ruax 1L P ]?

S‘ﬂ‘}?} (dist(Py—1, Pe1)+ [Ty Py1])?
Recall that for ¢ > 1, dist(f)j, P;) <max(0.1- 0.3 e +
0.5A¢,,n0-lev) < 0.2 and from the incoherence assumption

on P,’s, the second term above is upper bounded by 0.01.
Thus, §5(®) < 0.3% < 0.15. Next, consider the error seen by
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the modified-CS step,

6:]l = 12 (& + )]l < | (I = Pis Proy) Pra

+ [lill
< dist(Py1, Py) [las ]| + [[vs]
< (dist(Py_y, Py_1) + dist(Py_1, Py))

x A/ prAT + CyJr s

<(0.3" e + 1.5Atv)\/m")\+ + C\/TUA;L

under the assumptions of Theorem 4.4, the RHS of the above is
bounded by $uin/15. This is why we have set & = sy, /15 in
Algorithm 3. Using these facts, and 65(¥) < 0.15, we have that

||'§i,cs - SvH < 75 = 7Smin/15 < 5mi11/2

Consider support recovery. From above,
‘(éi,cs - Sz)m‘ S ||§i,cs - S'LH § 7Smin/]-kr) < Smin/Q
The Algorithm sets wsypp = Smin/2. Consider an index m €

Msparse,i- Since |(31)m| 2 Smin»

|(’§i,08)m‘ < [(8i)ml| — |('§i708)m‘
Smin

2

Smin —

S |(si - éi,cs)m‘ <

2 Smin __ : Y
Thus, |(8i,cs)m| > 8= = Weypp Which means m € Mparse,i-
Hence Mparse,i © Msparse,i- Next, consider any m ¢ Mparse.i-
Then, (s;)m, = 0 and so

|(*§i708)m| = |('§z,cé)m)‘ - |(Sz)m|

S |(-§105)m

Smin

2

which implies m ¢ /\;lspme,i and ./\;lsparse’i C Mparse,; implying
that MSParse,i = Mparse,i and consequently that M; == M; U
Mspa.rse,i = Mz U Msparse,i-

With Mparse.: = Mparse.i and since Mpare ; is the support
of si,8i = Iy, Iy 8 and so

sparse, i

- (Si)m| <

—1

si= T (W5 W) Wi (W6 + 0z + Ws; + Bo;)

-1
:I/\;h (‘I’j\;ll‘IfML) ILZ‘I’(El—F'Ul)—FS,—‘er
Thus, the estimate of the true-data 21 = y,; — 8; satisfies
. -1
b= titvi— T, (W W) T W+ v))

and thus e; = @i — £, satisfies

-1
e =—1Iy. (‘I’Ll‘l’/\,&) I/T\?li‘;[’(ﬂi +vi) +v;
-1
el < H(\IIL\I:M) H 15, (& +vi)|| + [l

< L2[|bi]| + [li

|
We next prove Lemma 4.7. But before we prove this, under
the conditions of Lemma 3.10, the result from [37] also shows

3919
the following:

Iperturb| := || = S (227 — £:6])

. o . 144 g
< lz:e-e«T +2 122-& + 2 lZ:K"U-T
=l i 1% « - 19 a - [t
1 T 1 -
+2 azi:viei + E;”“’i ,
>\+
< <6.6\/l;qf+4.4/\ﬁ) A (13)

and

1 - B
— L > 0. .
Ar (a § m,) > 0.99A

Proof of Lemma4.7: Before we prove There are the following

two parts in the proof:

1) First, we show that P is close to P where P is the
top r left singular vectors of Z. In particular, we show
that dist(P, P) < epyy /2. This relies on application of
Lemma 4.1 to the matrix ZZ ' /o with the appropriate
parameters.

2) Next, we use centralized Principal Components Analysis
in Sparse, Data-Dependent Noise (PCA SDDN) with z; =
y; to show that the P is close to the true subspace, P.
Here too we show that dist(f’ , P) < eppr/2. Combining
the above two results, and the triangle inequality gives
dist(P, P) < dist(P, P) + dist(P, P) < epyy.

Notice from (13), with high probability, the matrix ZZ " has

a good eigen-gap, i.e.,

M(ZZ") = \.(LL" + perturb) > \.(LL") — ||perturb|
AT
> 0.99\" — (7.7\/qu + 4.4;) .
Ai1(ZZ7) € A1 (ELT) + [[pertub]
)\+
< (7.7\/qu + 4.4;) A~

Under the assumptions of Lemma 4.7, 7.7v/bq f + 44NN <
2.5¢5p. Thus, for this matrix, R < 0.99 with high probability.
The standard deviation of the channel noise in each iteration
satisfies, 0. < eppr A~ /104/n. Furthermore, since we initial-
ize Fed-PM with Pjy that satisfies dist(Pinit, P) < €init, Pas
it follows from second part of Lemma 4.1 that after L =

Clog(1/(epnry/1 — €l pay)) iterations, with probability at

least 1 — Lexp(—cr), the output P satisfies dist(P, P) <
€EPM / 2.

Next, observe that the conditions required to apply Lemma
3.10 is satisfied under the assumptions of Lemma 4.7. Thus, we
apply Lemma 3.10 with esg = epps/2. This ensures that with
probability atleast 1 — 10119, the eigenvectors of the empirical
covariance are close to that of the the population covariance, i.e.,
diSt(P7 P) < EPM/Q.
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Combining the above two results we have with probability at

least 1 — Lexp(—cr) —

10n19, dist(P, P) < dist(P, P) +

diSt(P,P) SGPM. |

The proof of the subspace detection step (Lemma B.4) is
similar to that of [37] applied with Lemma 4.2.

Proofof Lemma4.1: The proof of Lemma4.1 is a special case
of Lemma D.1 that is proved in the Supplementary Material.
The proof of Lemma 4.2 is also provided in the Supplementary
Material. |
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