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Pursuing quantum difference equations I:
stable envelopes of subvarieties

Yakov Kononov, Andrey Smirnov

Abstract

Let X be a symplectic variety equipped with an action of a torus A.
Let v, C A be a finite cyclic subgroup. We show that K-theoretic
stable envelope of the fixed point set X¥* C X can be obtained via
a limit of the elliptic stable envelopes of X. An example of X given
by the Hilbert scheme of points in the complex plane is considered in
detail.

1 Introduction

1.1

The development of the theory of elliptic stable envelope was initiated by
M. Aganagic and A. Okounkov in [2]. Since then the theory has found re-
markable applications to various areas of mathematics. To list just a few,
stable envelopes can be related to the so-called Bethe vectors in integrable
models [3], they provide a new description of standard bases for quantum
groups [14], they manifest themselves as weight functions for solutions of
the qKZ equations [33, 35, 17, 16], they provide explicit formulas for the
R-matrices of various algebras (Yangians, quantum loop algebras and ellip-
tic quantum groups) [21, 26, 6, 37]. Stable envelopes also find important
applications in Donaldson-Thomas theory of threefolds [18], and combina-
torics of symmetric polynomials [13, 15, 25, 36, 22]. We note also that the
elliptic stable envelopes appear naturally in physics of 3d N/ = 4 supersym-
metric gauge theories [7, 5], they also describe the monodromy of partitions
functions, studied for instance in [11, 4].



Initially, the theory was built as a tool to describe the monodromy of
qKZ-like equations and quantum difference equations associated with the
quiver varieties [30]. These ideas were outlined in [3, 1] as a generalization
of earlier developments, such as for instance [42, 43, 41, 10, 44].

In geometric the approach, qgKZ equations and quantum difference equa-
tions describe g-holonomic modules generated by wvertex functions of symplec-
tic varieties [27]. These developments revealed a deep interaction between
Gromov-Witten type enumerative theories and representation theory. We
refer to [31, 19, 20] for recent progress in this direction, see also [8, 9] for the
description of vertex functions in more specific situations.

The elliptic stable envelope relates the enumerative invariants of sym-
plectic varieties to enumerative invariants of the symplectic dual varieties [2].
This suggests that stable envelopes provide a natural tool to work with sym-
plectic duality (or 3d-mirror symmetry). This idea was first emphasised by
A. Okounkov in his talk “FEnumerative symplectic duality’ during the 2018
MSRI workshop “Structures in Enumerative Geometry” (the talk is acces-
sible from MSRI web-page) and further examined in several special cases
in [32, 34, 40].

1.2

An interesting problem in the enumerative geometry of symplectic varieties
is to find a better description of the corresponding ¢-difference equations.
Even though this problem has been partly addressed in [27, 30], the treatment
developed there is not entirely geometric and relies on the techniques of Hopf
algebras invented earlier in [10].

The analysis of the monodromy of these equations leads to a new geomet-
ric approach, which describes the building blocks of the ¢-difference equations
(for instance the dynamical wall-crossing operators, see Section 5.3.1 in [30])
by special limits of the elliptic stable envelopes. This paper was mainly mo-
tivated by this idea and we consider it as a first natural step in this research
direction. Here we study special limits of the elliptic stable envelopes which
arise in the following way: let A be a torus acting on a symplectic variety
X by automorphisms, let v, C A be a cyclic subgroup of finite order. The
inclusion X** C X induces a morphism of the elliptic cohomology schemes
i: Ellf(X*) — Ell1(X). In this setup, the elliptic cohomology scheme of the
v,-fixed subset admits certain transformations w,, : Ellf(X*?) — Ell+(X*?)
which preserve its structure. These transformations act by shifting the equiv-



ariant parameters wy : a — agq" by special elements w € Lieg(A) (¢ denotes
the modular parameter of the underlying elliptic curve E).

In Theorem 1 we prove that the elliptic stable envelope of X twisted by
wy in the limit ¢ = 0 converges to the K-theoretic stable envelope of the
vy-fixed subvarieties. Schematically,

q—0,z—0
—> 2

Elliptic stable envelope of X K-theoretic stable envelope of X** (1)

where z — Op denotes certain vanishing of Kahler parameters which controls
the slope of the K-theoretic stable envelopes, see (12).

In Section 4 we apply this result to X given by the Hilbert scheme of
points in C2. In this case the components of the fixed set X** are isomorphic
to the Nakajima quiver varieties associated with cyclic quivers. Theorem 3
then establishes exact correspondence between stable envelopes for these va-
rieties. Our results here are related to the conjectures proposed in [13], and
we expect that their conceptual proofs will be obtained along these lines.

In the last section we consider a special case of v, given by a subgroup
of framing torus of a Nakajima quiver variety X. In this situation the twists
wy and fixed sets X*t are labeled by certain arrangement of hyperplanes in
Lieg(A). The K-theoretic stable envelopes of X** arising in the limit (1) for
all choices of w,, are described by Theorem 4.
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2 Elliptic stable envelopes

2.1

Let X be a symplectic variety with an action of algebraic torus T. As usual,
we assume that the action of T scales the symplectic form with a character
which we denote Ai~t. We denote by A := ker(Ai~1') C T the codimension one
subtorus preserving the symplectic form.

We assume that X7 is finite. We assume also that the elliptic stable
envelope exists for X. It is well known that the class of symplectic varieties
satisfying this condition is quite large. For example, it includes all Nakajima
quiver varieties, see Theorem 3 in [2].

For the definition of the elliptic stable envelope and basics of elliptic
cohomology we refer to Sections 2-3 in [2] and Section 2 in [39], in particular,
Subsection 2.13 in [39] deals with the case of finite XT.

2.2

Let A € X T be a fixed point. By our assumption, for any choice of a chamber
¢ C Lieg(A) and a polarization P € K1(X) (for definitions see, for instance,
Section 2 of [39]) we have well defined elliptic stable envelope Stab)E(l,l@’ p(A).
By definition, Stab)E(le p(A) is a section of a certain bundle (Section 2.13 in
[39]) over the extended elliptic cohomology scheme

ET(X) = EHT<X) X gPic(X)

where Ellt(X) denotes the T-equivariant elliptic cohomology scheme of X
and épic(x) = E ®zPic(X) for a family of elliptic curves £ = C*/ q% over the
punctured disc 0 < |¢| < 1.

Recall that E+(X) is a scheme over the extended elliptic cohomology
scheme of a point:

Er(X) " %rx = Ellt(pt) X Epie(x) = Edim(T)+rk(Pie(X))



The coordinates on the abelian variety Ellt(pt) are usually called the equiv-
ariant parameters. We denote them by a (for those corresponding to A) and
h (cosponsoring to T/A). The coordinates in &pic(x) are referred to as the
Kahler parameters and are denoted by z.

2.3

We recall that the elliptic cohomology scheme has the following structure:

AexT
where O A = Prx and A denotes the data describing how the fixed point

components O, glue to form E+(X), see Section 2 in [32]. We denote the
restriction of the elliptic stable envelope to the fixed point components by

Typula, z) = Stabf(llcp()\)lou :

The components T3 ,(a, b) represent sections of certain line bundles over the

abelian varieties O, and thus can be expressed in terms of the odd Jacobi
theta function associated with E:

e}

I(z) = (@2 =2 [ = 2q) (1 = ¢' /). (2)

=1

Note that in the multiplicative notations odd means

V(1/x) = —d(x). (3)
The quasiperiods of these sections are governed by
I(rg) = ——=0(x) (@
rq) = ———9(x).
NG

Given a K-theory class P we will denote by ©(P) the corresponding elliptic
Euler class. For example, if the non-constant part of P is of the form:

Zai — Zb] c KA(pt)



where a;, b; are some non-trivial characters of A then, explicitly
[19(a:)

- II90)
J

o(P)

1/2 1/2.

We note that the ¢ = 0 limit equals: ¥(z)|,_, =2"/* — 2~

24

By definition of the elliptic stable envelope, the sections T} ,(a, z) are holo-
morphic in equivariant parameters a. The important feature of sections
Ty .(a, z) is that they are also balanced in a suitable normalization (9).

Let & = E™ x E™ be an abelian variety. We denote the coordinates
on the factors by a = (ay,...,a,) and z = (z1,...,2,). Let s(a,z) be a
meromorphic section of degree zero line bundle over &.

Definition 1. We say that s(a, z) is balanced in the variables a if in coordi-
nates it can be represented in the following form:

I ...)
s(a,z) = — 6
(7Z> Znﬁ(al"') ()
where a' = al' ... aln denote monomials in the variables a and ... stands for
monomials in the rest of variables z.

For example, the following section over F x E:

_ V(a2) 9 (a?z) 9 (a)
V(a)v(z)  v(a?)V(az)

is balanced in the variable a. It is also balanced in the variable z. But it is
not balanced in variables (a, 2).

2.5

The elliptic functions of the form (6) have good behavior in the limit ¢ — 0:



Lemma 1. For any w = (wy,...,w,) € R" and a section s(a,z) balanced in
variables a the following limit exists

Vzlim s(ag”, z) € Q(a, 2) (7)

q—0
where aq™ = (a1q"™, ..., a,q""), \/z denotes the square root of some mono-
mial in variables z1, . .., 2y, and Q(a, 2) denotes the ring of rational functions.

Proof. Let w € R. The Lemma follows immediately from the following iden-
tity

o) [T e .
4530 JI(ag™) . W2 wez
—a

where |w] stands for the integral part of w. This identity, in turn, can be
derived from (2). O

Natural examples of balanced sections are provided by restrictions of the
elliptic stable envelopes to the components of the fixed points. For A\, u € X'
let us consider the following section

Thula,z) Stabf(l’l@f()\)‘#
O(F,) (L)

s(a, z) = (9)
Here a and z denote the equivariant and Kéhler parameters, which are the
coordinates on abelian variety O, and P, denotes the restriction of the po-
larization P the fixed point p.

Proposition 1. If X is a hypertoric variety then (9)
1) is balanced in the equivariant parameters a,

2) is balanced in the Kdhler parameters z.

3) has poles separately in a and z

The property 3) means that for s(a,z) it is allowed to have factors
Y(a)¥(z) but not YJ(az) in denominators of (6).

Proof. For the hypertoric varieties, the formulas for the elliptic stable en-
velopes of fixed points can be described very explicitly as certain products of
theta functions, see Section 4.1.3 of [2] or Section 3.2 in [40]. These hyper-
toric formulas are explicitly balanced separately in equivariant and Kahler
parameters, and have separated poles. O]

7



Corollary 1. If X is a quiver variety with finite X then (9) has properties
1), 2), 3).

Proof. For quiver varieties, the elliptic stable envelope of a fixed point A € X T
can be expressed in terms of the elliptic stable envelopes of fixed points in
the hypertoric variety given by the abelianization of X. We refer to Section
4 of [2] (in particular Section 4.3) where the details of the abelianization
procedure are explained. O]

We expect that these properties of the elliptic stable envelope hold in
general.

Conjecture 1. Let X be a smooth symplectic variety with finite X' for
which the elliptic stable envelope exists. Then 1),2),3) hold for (9).

It has been shown that the elliptic stable envelopes exists for quite general
examples of X, we refer to [28, 29] for discussion.

2.6

From the proof of Lemma 1 it is clear that for generic w the limit (7) does
not depend on variables a, i.e, is an element of C(z). The points for which
this is not true play crucial role.

Definition 2. Let s(a,z) be a section balanced in variables a. The point
w € R™ is called a resonance of s(a, z) if the limit (7) is a non-trivial function
of a:
VZlim s(ag”,2) & C(2)
q—0

We say that w is a resonance of a collection of balanced sections {s;(a, z) }ier
if it is a resonance for at least one of them.

We will denote by Res({s;(a,z)}icr) C R™ the set of resonances of a
collection {s;(a, z) }ies.

Assume we are given a finite set of a-balanced sections {s;(a, z) };e;. Con-
sider the set of weights

L={l=(ly,...,l,) € Z" : appearing in (6) for all s;(a,z),7 € I}

Let A* C R™ be the lattice generated by L, and let A be the dual lattice. We
can assume that A C R™ by identifying R" with its dual.

8



Proposition 2. The set Res({si(a, z)}icr) is a A-periodic arrangement of
hyperplanes in R™.

Proof. 1t is clear from the explicit form (6) and limit (7) that w is a resonance
only if ([,w) = m for some integral m. This is a A-periodic arrangement of
hyperplanes. [

Note 1. Res({s;(a, 2)}icr) is a subarrangement of the hyperplane arrange-
ment given by
(l,w) =m

for [ € L, m € Z (but does not necessarily coincide with it).

2.7

The K-theoretic stable envelope (we refer to Section 9 of [27] for its definition)
can be obtained from the elliptic as the following limit:

Proposition 3 (Proposition 4.3 in [2]). For generic s € Pic(X)®@R we have:

det(P)™/2 @ limy (Stabf p(V)],_,.) © det(Pro)"/* = Stab{e (1) (10)

where Stabifg’l[f](k) is the K-theoretic stable envelope of X\ with slope s. Py
denotes the restriction of P to a fized point X and P\ is the component of
Py which has zero degree in a, see (17).

The K-theoretic stable envelopes for the slopes which are close to 0 €
Pic(X) ® R play a special role in representation theory, see Theorem 10.2.11
in [27] for an example. If % C Pic(X)®R is a small analytic neighborhood of
0 then the K-theoretic stable envelope changes only when the slope crosses
certain hyperplanes passing through 0 € Pic(X) ® R. These hyperplanes
divide the neighborhood into a set of chambers:

U \ {hyperplanes} = H 9D;. (11)

We will denote K-theoretic stable envelopes with the slope from these cham-

bers by:
o Stab$ ¢ p(\) := Stab ep
aby ¢ p(A) := Staby ¢ p'(A), s €D.



If we denote

lim f(z):=lim f(¢°), s€D, (12)

z—0p q—0
then for small slopes (i.e., from %) the above proposition gives:

Proposition 4. Let us Denote by
S(\) :=det(P)? ® (g% Stab)E(fl@’P()\)) ® det(Pyo)"? € K1(X) ® C(z)

then

lim S(\) = Staby ¢ p(A) (13)

z—0p

2.8

From the definition of the elliptic stable envelope we know that the section (9)
has the following quasiperiods:

s(aq",z) _ ZXX(U:')*X;L(UV)S(&, z) S(a,zqé) — am(-,ﬁ)fxu(-,é)s(mz) (14)

where ¢ € cochar(A) and § € cochar(K), and y, is the pairing defined in
Section 2.1.7 of [30]:

X : cochar(A) x cochar(K) — Z.

(here we denote the Kéhler torus of X by K = Pic(X) ®; C*). By Lemma 1
this section has a well defined limit when ¢ — 0, moreover:

Lemma 2. Ifw € cochar(A) ® R and v € cochar(K) @ R then the limits

lim <z’XA(W")+X“(W") lim s(aqw,z)> and lim (a’”("")ﬂ“("") lim s(a, zq"))
z—09 q—0 a—0¢ q—0

exist for all chambers € and ®.

Proof. Assume that both A and K are one-dimensional. The general case
then follows from choosing arbitrary one-dimensional subtori in A and K.
We prove the Lemma for the first limit. For the second the argument is the
same after switching the roles of a and z.

10



For a one-dimensional torus K there are only two chambers. Thus, to
show that the limits z — Op exist for all chambers ® we need to show that
the expression

=X (W, ) Fxp(w,) 1; w
z (lll_%s(aq ,2)

has well defined limits as z — 0 and 2= — 0.
As s(a, z) is balanced and poles in a and z are separated, it must have
the form:

(0.9 = 3 F@oo T g (15

where f(a) and g(z) are some balanced sections depending only on a and z
respectively. We note that

lim 9(z) = 22 — 271/
q—0

which is obvious from the definition (2). Using this and (8) we compute

»= [wng |m;

1’ W7, ¢ Y/
. w o zmi —
1115% 3(aq ) Z) — T(a, Z) H (1 _ anizmi)z*nimiwi
(1 —am)(zmi —1) "~
with 7(a, z) such that the limits lim r(a,z) € Q(a) exist.
zt1-0

wn; € Z

)

If A and K are one-dimensional then w € R and xx(-,-) € Z. Using (4)
from (14) we compute that

() = xul ) = — anmz (16)

The terms in the sum (15) are sections of the same line bundle, and thus the
value (16) must be the same for each term. Thus, we have

M (wni—|wn; )

CREAS . v & 2
—xx (W, ) +xp (w,e) 12 w o Zmi —
XA u }{1_1}1(1) s(aq”, z) =r(a, 2) H (1 — amizm)
i , wn; € Z
(1 —am)(zm —1)

It is clear that

) (1 _ anizmi) ‘ Zmi(wni—Lwnij)

lim <00, lim —— <>

2150 (1 —ani)(zm — 1) A0 2ZMi—1

The second pair of limits follows from 0 < wn; — [wn;| < 1. O

11



3 Subvarieties invariant under finite subgroups

3.1

Let v, C A be a cyclic subgroup of order b and let X** be its fixed set. The
action of A on X factors through the map 1 : A — A" = A/v,. We denote
Z = (g ")) The group Z acts on Etr(X¥*) by translations in the
equivariant parameters a — aq".

We fix an element ¢" € Z such that (¢¥)" € ¢oohar®\O hyt (¢v)™ ¢
g A) for 0 < m < b. We denote the corresponding translation of the
elliptic cohomology scheme by wy:

ET(XVb) ﬂ>ET(X"b)

o T

a—aq"
Bt xve — BT x7-

3.2

The restriction of the polarization to a fixed point has the following decom-
position:

Py = Py>0® Px<o® Pro € Ka(pt) (17)

where the three terms denote the parts whose A-characters take positive,
negative or zero values at the chamber €. The positive part is called index
of the fixed point A:

indy = P)\’>0 S KA(pt).

Similarly we have a decomposition of the tangent spaces at the fixed points:
T\X = Ny & N;.
Assume ind, is of the form

ind, = Z a’.

[

i.e., the sum is over the set of A-characters appearing in indy. Then, for
w € cochar(A) ® R we denote

lindy - w| =) [(o,w)].

o

12



Lemma 3. If PY*, N, """ ind}" denote vy-invariant parts of Py, Ny and indy,
then for w as in Section 3.1 we have:

\ v indy-w]+rk(indy)/2 o/ NV
lim ([G(N/\ )] ) — (_1)rk(indk)7rk(indAb) plindawitrk(indy)/2 Ao (N 720)
q—0 a—ag"

O(Py) det(ind¥®) det(Py)'/2 A*(Py")
(18)

Proof. In our notations, the tangent space at a fixed point A\ equals:
ThX = P, +hP;
Thus, its repelling part is
Ny = Py<o+h(Pys0)"
and thus

O(Ny) _ O(Pr<«)O(h(Ps0)") (_1>rk(indk)6(h_1 Pyso) 1
O(Py)  O(Pr<0)O(Px>0)O(Pro) O(Py>0) ©O(Pao)

where the last equality is by (3). In this form, the limit is easily computed
from (8). The result follows after some simple algebra.
O

3.3

Let us recall that the elliptic stable envelope is normalized by its restriction
near the diagonal:

Stabye p(V)|, = (1) TNO(NY)

see Section 3.3.5 in [2]. We recall also that the K-theoretic stable envelope
can be obtained from the elliptic via limit (10). In particular, the K-theoretic
stable envelope in this approach is normalized by its diagonal components,

(_ 1)rk(indk) hrk(ind,\)/2

det(indy) NNy (19)

Stabi e (V)| =
= A
which we also assume in this paper.

13



3.4

The chamber € and the v,-invariant part of the polarization P*» € K1(X"?)
define the elliptic and K-theoretic stable envelopes for X**. The inclusion
X% — X induces a map of extended elliptic cohomology schemes:

1 ET(XVb) — ET(X)

If ® is a chamber from (11) then we denote by ©’ the corresponding chamber
for X*# defined by the property:

K(D) C D' (20)

where k : Pic(X) ® R — Pic(X**) ® R is the induced map.
For w € cochar(A) @ R let us define a char(K)-valued function on X' by

A = xa(w, -) € char(K).
Here is our main result.

Theorem 1. Assume that Congjecture 1 holds for a variety X. Let w,, be the
translation in equivariant parameters as in Section 3.1. Define

Ell
StabX,Q,P

Si= X\ — A(P*)ow? oi ( o(P)

(A)) o det(Py )2,

then

lim (ZX(W")_XA(W") liI% S()\)> = 72 Stabu, ¢ pry (A)-
q— T

z—0p

with coefficient vy = Alindxwl+rk(indy)/2—rk(ind}?)/2,

Proof. Let us assume that A = C*. If not, we can choose a cocharacter

C* — A whose image contains v}, then the shift w] does not affect the

equivariant parameters in A/C* and thus they do not change the limit ¢ — 0.
Let us denote

. [ Stab¥e p(\)
Eyula, z) =1 (—@X(]QD})D

o
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These are the fixed point components of certain meromorphic section over
Er(X*). We have
Stab® (A
Exu(aq”, z) = w0 (&%ﬁ’() (21)

By Corollary 1 the sections E ,(a, z) are balanced, i.e., are of the form (6).
By Lemma 1 the limit
llll—r>% E)\,u<aq } Z)

exists. By (8), only the factors ¥(a”...) (... stands for monomials in z and
h) in the numerator and denominator of E ,(ag", z) with b | n can contribute
a nontrivial function of a in this limit. The factors with b4 n in the limit
g — 0 can only produce monomials in z and i. The factors O(P) with b | n
are exactly those from the invariant part ©(P*?). Thus, one can cancel all
poles in the limit of (21) by tensoring it with A*(P**). We conclude that

Ky ,(a,z) = A'(pu"”) ® lirr(l] Ey,(ag™, 2) ® det(P,\jo)l/2
q—

are holomorphic in equivariant parameters a.
These are the fixed point components of a holomorphic (in @) function
on Spec(KT(X*?)) ® K, which we denote by

_ Stab%'s p(\) .
e [ ) vy : * * %k [hnd) /2
K(X\):=A(P")o ll}lg% Wy 01 <—@(P) odet(Pyo) (22)

From the support condition for Stab)E(l,lQ p(A) (see Section 3.3.5 [2]) we find
that K'(\) is supported at:
Supp(K(\)) € X N Attrk () = Attrl., (V). (23)

By definition of the elliptic stable envelope Stab%la p(N)] Sy = (—1)*dg(N xa)
The factors in ©(Ny,) with b | n are exactly those in ©(Nyw, ,). From
Lemma 3 we find that the diagonal components of K () have the form:

) ] -1 rk(indub)
K()\)’)\ — hLlndA~WJ+rk(1ndA)/2( ) *

~— — A(Ngw, ). 24
det(lndzb) ( X b,A) ( )

15



The K-theoretic stable envelope is characterized by a-degree bound on its
fixed point components, see Section 9.1.9 in [27]. In particular, Proposition 4
implies that we have the following bounds:

_ StabZ% ()
deg, [ 1im <A'(PM)®hm abx.e.r(M)

)

z—0qp q—0 @(P)
' (25)
. P . Stab)E(llCP(M) 1
C degp Zlirgl@ <A (PM) & (111£I(l) W > ®Ssx &S,
I

where s, denotes the restriction of a line bundle s € © from (11).

If we consider the same limits with additional shift w as in (22) the only
the terms ¥(a™...) with b | n contribute. Thus, taking the v-invariant part
of (25) we obtain:

degA(}H& W) =X (W) K(M)],) C degA(Zl_iglg K(p)], ®s\® sh)(26)
Note that the limits exist by Lemma 2. By dega(f) we denote the Newton
polytope of a Laurent polynomial f. Inclusion (26) denotes the inclusion of
the corresponding Newton polytopes. Now, (23), (24) and (26) say that the
K-theory class
lim ZX/\(Wa')_X(Wa')K()\)
z—09
satisfies all three defining properties of the K-theoretic stable envelope with
slope s, see Section 9 in [27].
Comparing (24) with (19) we find that the normalization of this K-
theoretic stable envelope differs from the one accepted in this paper by a
factor

htindij+rk(indx)/2*rk(ind§b)/2

The theorem follows from the uniqueness of the stable envelope in K-theory
see Proposition 9.2.2 in [27]. O

3.5

For practical computations, it might be more convenient to formulate the
above theorem as follows. Let us consider the normalized matrix of restric-
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tions:
Stabf ()],

T,\7 (a,2) = _
02 = S G,

(27)

This is a triangular matrix with trivial diagonal Ty x(a,2) = 1 and other

coefficients given by certain elliptic functions. Similarly we denote
Stab?(ubﬁ,]gub (A)

Stab?(,Vb,c,P"b (1) ‘

Ky ,(a, k) = £ (28)

I

the matrix of K-theoretic stable envelopes of X** with a slope from ®’ nor-
malized in the same fashion.

Theorem 2. Assume that Conjecture 1 holds for a variety X, then the matriz
K(a, h) can be obtained from the matriz T ,(a, z) as the following limit:

lim Z(lim T(aq", z)) Z'=HK(a,h)H™* (29)

z—0p q—0

where Z denotes the diagonal matriz

= diag(zx*(w"))hexT
and H denotes the diagonal matrix with eigenvalues:

Hyy = Ry wlrk(inds)/2-rk(ind®)/2 qog(py )=1/2

Proof. We note that

Ny = Py o+ hPy~o (30)
and thus by (17) we have
StabyerW], _ (ZDM™OW) |1 OB gy
O(Py) O(Py) O(Pyo) O(Prso)

We conclude that this ratio is a balanced function in the equivariant param-
eters a. Dividing any balanced function by this ratio is clearly a balanced
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function again and thus all elliptic functions (27) are balanced in a. By
Lemma 1 we conclude that the limits ¢ — 0 in (29) are well defined for all w.
Conjugation by the diagonal matrix Z gives:

j:')\“u<a/7 Z) N ZXH(Wr')fo(W")T)\ju(a’ Z),

Thus, the existence of the limit z — 0p follows from Theorem 1 (note that
the ratio (31) does not depend on the Kéhler parameters and thus can not
affect asymptotic behavior at z — 0g).

Applying Theorem 1 we find:

( lim Z(lim T(aq", 2, h, q))Z‘1> =

z2—0p q—0 W

alindawl-rk(indy)/2=rk(ind3®)/2 qet( Py 0)71/2 StabFu, ¢ pry (V)

£ = f(&u(% h)H/\,A/Huvu

flindu-w]+rk(ind,,) /2—rk(ind,;*) /2 det(PMo)*l/Z Stab?(/ub @P”b(,u)‘

: & "
which finished the proof. O
3.6

For w € Lieg(A) let us consider the cyclic subgroup v,, = (¢*™) C A. We
denote

Res(X) = {w € Lieg(A) : X" # XA},

We will call the points from Res(X) C Lieg(A) resonances. We will now show
that this terminology is in agreement with Definition 2.

Proposition 5. The sets
1. Sl = Res({f\#(a, Z)}A,MEXT)7
2. Sy = Res(X),
3. S3 = {w € Lieg(A) : (a,w) + m =0, m € Z, « € chara(T)\X), X €
XA
are equal.
Proof. Assume that w € Sy, then X*» # XA, X¥v is a A-invariant subvariety
of X, with the same set of A-fixed points. Let A be an A-fixed point in a
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nontrivial component of X** (i.e., this component does not consists of a
single point A). Let a® be a an A weight from T\ X**. It is invariant under
Vy, which means that e>™@") = 1, or that w € S;. Thus we showed that
Sy C S3.

Next assume w € S3. Then there exists a fixed point A and a direction
in 75X with character a for which (a,w) € Z. This means that this whole
direction in X is preserved under the action of v,,, i.e., X" is larger that
XA. Thus w € S, and therefore S5 C S5. We conclude Sy = Ss.

Next, assume that w € Sy. The variety X** is a non-trivial (not finite)
and thus the matrix of restrictions of K-theoretic stable envelopes K ,(a)
defined by (28) depends on parameters a non-trivially. By Theorem 2,

lim Z( lim T'(aq", z)) 7z
q—0

z—0p

is then a non-trivial function of a. This is only possible if lin(l) T(aq‘”, z)is a
q—

non-trivial function of a. Thus, thus~w € S, and so Sy C 5.
Finally, the a-balanced sections T} ,(a, z) as defined by (27) all have de-
nominators

Stab¥e p(N)|, = =+ 11 W ...)

a®eweightsp (T X)

(l,o)<0
where ... stand for some power of h. We conclude that the set Sy is a subset
of the hyperplane arrangement
(I,w) = m,

where m € Z and [ runs over all characters appearing 7 X such that (I,0) < 0
(by Proposition 2 and Note 1). But, this is clearly the same set as for all [
appearing in T\ X. In other words S; C Ss.

m

4 Application to the case of the Hilbert Scheme

In this section we consider an application of Theorem 1 to the case of X
given by the Hilbert scheme of n points on C2 In this section we follow
notations of [39], where the explicit formula for the elliptic stable envelope
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for this variety was obtained. In particular, the tori A C T acting on X, the
set of fixed points X T, the choice of the polarization P and the chambers ¢
were described in Section 3 of [39]. Since X is a quiver variety, Conjecture 1
holds and thus Theorems 1 and 2 can be applied.

4.1

Recall that the Hilbert scheme X is a Nakajima variety associated to the
quiver in Fig.1, with dimension n, framing dimension 1 and stability condi-
tions:

s : g — det(g)*
see [24] or Section 3.3 in [39].

[t
Figure 1: The quiver defining the Hilbert scheme X.

For b € N we consider the cyclic subgroup:
vy={uw"k=0,....b—1} CA=C*.
of b-th roots of 1 generated by w = e2™V=1/?,

Proposition 6. The fized set of vy, has the following form

XV = H X(no,...,nb_l)

nQ,nys Ny
nottnp_1=n

where X (ng,...,np_1) is the Nakajima quiver variety associated with the
cyclic quiver of length b (see Fig.2) with dimensions no,...,np_1, framing
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dimensions r = (1,0, ...,0) and stability conditions

b—1
b . +1
gﬂ: : (go, . ,gb_l) — H det(gz) .
i=0
ns
Ty na
/
/
|
\
ny
Np—1
2 1o

[ i

Figure 2: The quiver defining X (ng, n1,...,np_1)-

We note that it is possible that X (ng,...,n,—1) = @ for some choices
(no, c ,nb_l).

Proof. Here is the sketch of a proof. As a Nakajima variety associated to
Fig.1, X is given by the symplectic reduction of

T*R = T*Hom(C, C") ® T*Hom(C",C").

by the natural action of GL(n). Recall that the torus A, and thus vy, act by
scaling the loop in the quiver. It means that, if (J,Y) is an element from R
then vy, acts by (J,Y) — (J,Yw).

We have a decomposition

b—1
C" = @C"i, Wen; = e (32)

1=0

The vp-invariant part of R then has the form

b—1
R* = Hom(C,C™) & @) Hom(C™,C™*') with C™ :=C™.

1=0
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and the symplectic reduction of T R*® is exactly the quiver variety associated
to Fig.2.

To complete the proof we also need to show that %.-stable points in T* RV
satisfying the moment map condition for [[, GL(n;) are also ,-semistable
in T*R and satisfy the moment map condition for GL(n). This is straight-
forward and we leave it to the reader. O

Recall that the fixed points X T = X* are labeled by the Young diagrams
with n boxes. It is also clear from the previous proposition that

XT = H X(no,...,nb,l)T.

LV R |
nottnp_1=n

Proposition 7. For a fized point A € X we have
A€ X(ng,...,mp—1) & HO€A:¢(@) modb=i}|=mn;, i=1,...,b—1.
where ¢(0) is the content of a box O in the Young diagram .

Proof. 1t is convenient to use the description of X as a space of ideals in
Clx,y], see Section 3.1-3.2 in [39]. A box in the Young diagram A with coor-
dinates (4, j) then corresponds to the monomial 277!y*~!. These monomials

form a basis of C" in (32) above. The A-character of this monomial equals
2m+/—1¢;
1—j = cp. It means that w acts on it by e™ @ = and thus it is from

C"enmed® - Since these monomials form a basis, we have

n; =dimC" = [{ € A : ¢(0) mod b =1}

4.2

The T-character of the canonical polarization P, is given explicitly by

A:thzwﬁ—zﬁ (33)

K3
A
1EA 1,JEX 903 1,JEX SOJ

Here the sums are over boxes 7,7 in the Young diagram A representing the
fixed point. The function ¢} denotes the T-content of the box i, see Sections
3 of [38] for notations.
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To compute the index we substitute t; = ah'/?,ty = a~'h/? to the Lau-
rent polynomial (33) and collect the terms with positive powers of a. Explic-
itly:

A

. i tl 902
indy:=Pyso=Y ¢} + > - (34)
PEN i,JEX SO] P,JEN
c;>0 c;—cj+1>0 >0

Similarity, the A -invariant part corresponds to the terms which do not de-
pend on a:

A
P)\O _ Z@l + Z (,thl Z 901 (35)

LE)\ i,JEN (103 i,JEN

Gi= cj+1=0 c;j—c;=0

The rank of index is the number of terms in (34) weighted with sign, i.e.:

k(ind)) =Y 14+ Y 1- > 1

PEA i,JEN ,JEN
¢;>0 ci—c]-+l>0 Ci_cj>0

From (35) we also obtain:
o= () (I (I )

26/\ i,JEX S0] 7,JEX 801

—C]‘+1:O cl-fcjzo

Since vy, acts on (33) by a — a e>™V =1/t the py-invariant part of the polariza-
tion P," is obtained from (33) by collecting the terms a™ with b | m. Then,
ind}" and rk(ind}") are computed from Py” in the same way.

4.3

For the Hilbert scheme X we have K = Pic(X)®C* = C* and there are two
chambers in (11) corresponding to

z—0 or z— oo.

We will denote by D* the corresponding chambers (20) for a vy-fixed point
component X (ng,...,ny). These chambers correspond to the slopes from
canonical and anticanonical alcoves of X (ng, ..., np).

23



If s(a,z) is as in (9), then for the Hilbert scheme X it has the following
transformation laws:

dx—d

s(aq, z) = 22" s(a, 2), s(a,zq) = a™ % s(a, 2)

and thus y,(w, ) = wd,.

4.4
Let us choose a vy-fixed component X (ng,...,ny_1) C X, and consider the
matrix:
~ Stabl ()
T’)\7 ((I, Z) = — M, )\,u EX(nO,...,nb_l)T.
A S,
and let .
~ Stabg(no,...,nb_l),Q,Pub ()\) ’M
K/\,u(a7 h) -

£
Stab?((noy--mbfl)v@vp"b ('u) ‘M

be the normalized matrix of restrictions of K-theoretic stable envelopes for
the cyclic quiver variety X (ng,...,ny_1), with slopes corresponding to the
canonical and anticanonical alcoves, then the Theorem 2 gives:

Theorem 3. Let w = § € Q such that ged(a,b) = 1. Then

lim Z( hH(l) T(aq", z)) Z7' = HK*(a,h)H™ !,
q—

z—0

lim Z(lirr(l)T(an, z))Z*1 = HK (a,h)H ",
q—

Z—00

with diagonal matrices Z and H which have the following diagonal elements:

Z/\ \ = zwd>\ H)\ = h[indij+rk(ind)\)/2—rk(ind:b)/2 det(P,\ 0)—1/2‘

Y

Let us also denote

Ell
Staby ¢ p(A) ‘u ApeXT

Ty u(a,z) = ,
) S,

We note that X** may have nontrivial fixed components (i.e. not just XT)
only if b < n. The above theorem then gives:
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Corollary 2. The limits are non-trivial:

lim Z( lir% T(aq", z)> Z71#£1d
q—

z—0

(Id denotes the identity matriz of size | X7|) only for:

WE{%EQ:gcd(a,b)zl, 1§b§n}.

5 Finite subgroups of framing torus

5.1

For this section X (n,r) denotes a Nakajima quiver variety with the dimen-
sion vector n = (ny,...,n;) and the framing dimensions r = (ry,...,7)
where [ is the number of vertices in the quiver (see [12, 23] for introductions
to quiver varieties). The framing torus acting on X (n,r) has the form

A= (C*)" x - x (C).

We denote by ay,...,a; with |r| =71 + -+ r; the coordinates on A. We
fix the hyperplane arrangement in Lieg(A) defined by the equations:

H" ={a; — a; =n} C Lieg(A), i,j€l, neL,

where a;,7 € I = {1,...,|r|} denote the corresponding coordinates on Lieg(A).
For a subset of indices J C I we associate a one-dimensional subtorus

Ly : C*— A

defined by a; = z if © € J or a; = 1 otherwise, where z denotes the cordinate
on C*.

5.2

Let us fix a point w € Lieg(A). We say that two indices i, j € I are equivalent

ifw e Hi(,?‘) for some n. This equivalence relation induces a decomposition of
the set of indices:

I=5LU---Ul, (36)
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Note that
r=ri+--+7r, (37)
with |r| = |I;|. Let Z(w) C A be the m-dimensional subtorus given by
Ly, X oooe Xy, (C)™ — Al (38)

For example, if w = 0 then all indexes are equivalent to each other, i.e.,
m = 1 and (36) takes the form [ = I;. Thus Z(w) = C*. By definition (38)
this subtorus acts by scaling all framing spaces with the same weight, thus
it acts trivially on X.

The other extreme case is when w is generic, i.e., does not belong to any
of the walls HZ-(Z). In this case m = |r| and each subset in (36) contains only
one index. In this case Z(w) = A.

We recall the following well known property of quiver varieties (the tensor
product structure):

Lemma 4. The fized point set of the torus Z(w) has the following form:

X)) = [ X(nir) % x X(np 7).

ni+-+nm=n

The A-weights appearing in the normal bundle Nx(, 2w are of the form
a;/a; with i and j from different subsets of decomposition (36).

Proof. See Section 2.4 in [21]. O

For example, if w = 0 then X(n,7)?™) = X(n,r). For generic w
X(n,r)?W = X(n,r)?.

Informally speaking, we have the following picture. For each point w €
Lieg(A) we associate a subvariety X (r, 7)?™) in X (n, ). For a point w which
is in the complement of all hyperplanes, this subvariety is simply X (n, 7).
If w arrives at a hyperplane then the subvariety gets larger. Further, if w
is at an intersection of two hyperplanes the fixed point set gets even larger
and so on. Finally, when we arrive at the intersection of maximal number of
hyperplanes the corresponding variety gets maximally large, i.e., X (n,r).
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5.3

Let € and P be a choice of a chamber and a polarization for a quiver variety
X (n,r). We denote the Z(w)-invariant part of P by P(w). Clearly,

&
1=0

where P; is a polarization for X (n;,r;). We denote by ind} the index of A
associated with P(w) and the chamber €.

As the varieties X (n,r) and X(n;,r;) are all associated to the same
quiver, the map & is an isomorphism and we write ©' = D.

For a point w € Lieg(A), as in the previous section, we denote by w,, the
translation acting on sections of line bundles over &x by:

waflar, ... ap) = flarg™, ..., apg™"). (39)
Theorem 1 then gives:

Theorem 4. For any w € Lieg(A) we have:

~ Stab%l A
A*(P(w)) o lim (ZX( =X hmw* o1* < X(n.r) QP( )>> Odet(Po,A)l/2

z—0p q—0 C) (P)
(40)

hl_lnd)\ WJ"rrk(lnd)\)/Q rk( lnd )/2 Stab Z(W) ,&,P(w )()\>’

where X (n,r)*™) is described in Lemma 4.

Proof. We have w = (wq,...,wj) with w; € Q. We consider a cyclic sub-
group of v, C A generated by the element:

(271w i= (e L PV € AL (41)

Clearly v, C Z(w) and thus we have an A-equivariant embedding X (n, r)?™) C
X(n,r)¥r.

If X(n,r)?™ # X(n,r)” then we have a non-zero rank, A-equivariant
normal bundle N to X (n, )%™ in X (n,r)*. By Lemma 4 all the A - weights
appearing in N are of the form a;/a; with indices ¢ and j from different
subsets in decomposition (36). The subgroup v, acts on such weights via

ai/a; — a;fa;e*™ 1 Wimwi),
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Since this action must be trivial we have w; —w; = n € Z, which means that

w € Hi(,?)' Thus 7 and j must be from the same subset in decomposition (36).
We arrive at a contradiction, thus X (n, 7)™ = X (n,r)"

Finally, we see that the shift (39) satisfies the conditions described in

Section 3.1 for vy, and the result follows from Theorem 1. n
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