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Abstract For an arbitrary Nakajima quiver variety X , we construct an analog
of the quantum dynamical Weyl group acting in its equivariant K-theory. The
correct generalization of the Weyl group here is the fundamental groupoid
of a certain periodic locally finite hyperplane arrangement in Pic(X) ⊗ C.
We identify the lattice part of this groupoid with the operators of quantum
difference equation for X . The cases of quivers of finite and affine type are
illustrated by explicit examples.
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1 Introduction

1.1 The quantum differential equation

1.1.1
This paper is about enumerative K -theory of rational curves in Nakajima

quiver varieties. The cohomological version of the questions that we answer
here may be asked very generally, for example one may replace a Nakajima
variety X by a general smooth quasiprojective variety overC as long as rational
curves in X satisfy certain properness conditions.

Consider the cone of effective curves in H2(X, Z) and its semigroup alge-
bra spanned by monomials zd , where d ∈ H2(X, Z)effective. It has a natural
completion which we denote C[[zd ]]. The cup product in H •(X, C) has an
associative supercommutative deformation

α � β = α ∪ β + O(z) (1)

parametrized by C[[zd ]], in which one counts not only triple intersections
of cycles but also rational curves meeting three given cycles, see [12] for an
introduction. The corresponding algebra is known as the quantum cohomology
of X . The construction works equivariantly with respect to Aut(X); in what
follows, it will be important to work equivariantly with respect to a torus
G ⊂ Aut(X).

Associated to (1) is a remarkable flat connection on the trivial H •G(X, C)-
bundle over SpecC[[zd ]] known as the quantum connection, the Dubrovin
connection, or the quantum differential equation. It has the form

d

dλ
�(z) = λ � �(z) , �(z) ∈ H •(X) ,

d

dλ
zd = (λ, d) zd , (2)

where λ ∈ H2(X, C). Flat sections of this connection play a very important
enumerative role.

1.1.2
For Nakajima varieties, the formal series in z in (1) converge to rational

functions, and the connection extends as a connectionwith regular singularities
to a certain toric compactification

Kähler moduli space ⊃ Pic(X)⊗ C
× � z .

In fact, the following representation-theoretic interpretation of this connection
was proven in [37].

Recall thatNakajima quiver varieties [39,40] play a central role in geometric
representation theory and very interesting algebras act by correspondences
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Quantum difference equation for Nakajima varieties 1205

between Nakajima varieties. In particular, quantum loop algebras Uh̄ (̂gKM)

associated to a Kac–Moody Lie algebra gKM were realized geometrically by
Nakajima in equivariant K-theory of his quiver varieties, see [41]. Parallel
results for Yangians Y (gKM) in cohomology were proven by Varagnolo in
[69].

A representation-theoretic description of the quantum differential equation
requires a certain largerLie algebrag ⊃ gKM. It coincideswith theKac–Moody
Lie algebra for quivers of finite ADE type and otherwise can be significantly
larger. This Lie algebra, together with the corresponding Yangian Y (g), was
constructed in [37]. This construction will be recalled in Sect. 3 below, in the
generality of quantum loop algebras.

The Lie algebra g has a root decomposition

g = h⊕
⊕

α

gα

in which h = Pic(X)⊗C⊕ center and α ∈ ±H2(X, Z)effective. The root sub-
spaces are finite-dimensional and g−α = g∗α with respect to a nondegenerate
symmetric invariant form.

The main result of [37] reads

c1(λ)� modif = c1(λ) ∪ −h̄
∑

θ ·α>0

(λ, α)
zα

1− zα
eαe−α + . . . , (3)

where

λ ∈ Pic(X)⊗ C ⊂ h

and the subscript in � modif means a shift of the form zd 
→ (−1)(d,κ)zd for a
certain canonically defined κ ∈ H2(X, Z/2). We will see a parallel shift in
our formulas below (see the footnote after Theorem 4). Further in (3),

h̄ ∈ H2
G(pt) = (LieG)∗

is the equivariant weight of the symplectic form and the pairing θ · α with
the stability parameter θ ∈ H2(X, R) selects the effective representative from
each ±α pair. The abbreviation

eαe−α ∈ gαg−α ⊂ U (g)

stands for the image of the canonical element of gα ⊗ g−α under multipli-
cation. Finally, the dots in (3) stand for the a multiple of the identity. Such
normalization ambiguity is typical, and is resolved e.g. by the requirement
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1206 A. Okounkov, A. Smirnov

that the purely quantum part of (3) annihilates 1 ∈ H0(X). We will see a
similar multiplicative scalar ambiguity in our main formula.

The poles in (3) are contained in

{zα = 1 , 0 < α ≤ v} , (4)

where v is the dimension vector for a given quiver variety. The condition
α ≤ v is necessary for gαH

•
(X) 
= 0 and hence for the occurrence of the

corresponding pole in (3). The singularities (4) lift to a periodic locally finite
arrangement of hyperplanes

{(λ, α) ∈ Z , 0 < α ≤ v} (5)

on the universal cover H2(X, C) of the Kähler torus Pic(X) ⊗ C
×. These

affine root hyperplanes will play an important role below.

1.1.3
The Yangian Y (g) is a certain Hopf algebra deformation of the algebra

U (g[t]) of polynomial loops and one of its basic features is that the oper-
ator c1(λ) is a deformation of tλ ∈ h[t]. Thus (3) becomes an instance of
the trigonometric Casimir connection, studied in [68] for Yangians of finite-
dimensional semisimple Lie algebras, see also the work [66,67] by Tarasov
and Varchenko.

In fact, the program of constructing the general Yangians Y (g) and iden-
tifying their Casimir connections with the quantum connection for Nakajima
varieties was born out of conjectures made by Nekrasov and Shatashvili on
one hand [45,46] , and Bezrukavnikov and his collaborators—on the other.

Already back then it was predicted by Etingof that the correct K-theoretic
version of the quantum connection should be identified with a similar gen-
eralization of dynamical difference equations studied by Tarasov, Varchenko,
Etingof, and others (see e.g. [17,65] ) for finite-dimensional Lie algebras g. In
particular, Balagovic proved [4] that for a finite-dimensional g, the dynamical
equations degenerate to the Casimir connection in the appropriate limit. While
both our methods and objects of study differ significantly from the above cited
works, it is fundamentally this vision of Etingof that is realized in the present
paper.

1.1.4
For quivers of affine ADE type, Nakajima varieties are moduli of framed

coherent sheaves on the corresponding surfaces. In particular, the Hilbert
schemes Hilb(S, points), where S is an ADE surface, are Nakajima varieties.
Quantum differential equations for those were determined earlier in [35,50],
and play a key role in enumerative geometry of curves in threefolds. Such enu-
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merative theories exist in different flavors known as the Gromov–Witten and
the Donaldson-Thomas theories1. A highly nontrivial equivalence between
the two was conjectured in [33,34] and its proof for toric varieties given in
[36] rests on reconstructing both from the quantum difference equation for the
Hilbert schemes of points in An surfaces.

In fact, it may be accurate to say that the GW/DT correspondence in the
generality known today, see especially [51] for state of the art results, is proven
by breaking the threefolds in pieces until we get to an ADE surface fibration,
for which the computations on both sides can be equated to a computation
in quantum cohomology of Hilb(S, points). It is not surprising that such a
connection exists, because a curve

C → Hilb(S, points)

defines a subscheme of C × S. However, it is very important for S to be a
symplectic surface for this correspondence to remain precise enumeratively,
and not be corrected by contributions of nonmatching strata in differentmoduli
spaces.

As a particular case of our general result, we compute the quantum dif-
ference connection in the quantum K-theory of Hilb(S, points). This has an
entirely parallel use in K-theoretic Donaldson-Thomas theory of threefolds,
see [47]. There is a great interest in this theory, for instance because of its con-
jectural connection to a certain curve-counting in Calabi–Yau fivefolds, which
is expected to be an algebro-geometric version of computing the contribution
of membranes to the index of M-theory, see [44].

1.1.5
Another reasonwhy quantumdifferential equations are important is because

the conjectures of Bezrukavnikov and his collaborators relate them to repre-
sentation theory of quantizations of X , see for example [15] and also e.g. [7]
for subsequent developments.

Much technical and conceptual progress in representation theory has been
achieved by treating algebras of interest, such as e.g. universal enveloping
algebras of semisimple Lie algebras, as quantizations of algebraic symplectic
varieties, see e.g. [5,6,8,22], especially in prime characteristic. By con-
struction, Nakajima varieties are algebraic symplectic reductions of linear
symplectic representations, and hence come with a natural family of quan-
tizations ̂Xλ. Here λ is a parameter of the quantization, which is of the same

1 Here the threefold neednot beCalabi–Yau, to point out a frequentmisconception. For example,
the equivariant Donaldson-Thomas theory of toric varieties is a very rich subject with many
applications in mathematical physics.
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nature as commutative deformations of X , e.g. the central character in the case

U (g)
/

central character = Quantization of T ∗G/B .

For example, the Hilbert scheme of n points in the plane yields the spherical
subalgebra of Cherednik’s double affine Hecke algebra of gl(n)—a structure
of great depth and importance in applications.

Using quantization in characteristic p � 0, one constructs an action of
the fundamental group of the complement of a certain periodic locally finite
arrangement of rational hyperplanes in H2(X, C) by autoequivalences of
Db
G(Coh X). It is known in special cases and conjectured in general that these

hyperplanes coincide with (5) and, moreover, one conjectures a precise identi-
fication of the resulting action on KG(X)with the monodromy of the quantum
differential equation. This can be verified for the Hilbert schemes of points
and other Nakajima varieties whose fixed loci under a torus action consists
of isolated points [9,50] and it is quite possible that similar arguments can be
made to work for general Nakajima varieties. There are parallel links between
the singularities of (3) and representation theory of ̂Xλ for special values of λ

in characteristic 0, see [15].

1.1.6
An important structurewhich emerges from the quantization viewpoint is an

association of a t-structure on Db
G(Coh X) to each alcove of the complement

of (5) in H2(X, R). The abelian hearts of the corresponding t-structures are
identified with ̂Xλ-modules for the corresponding range of parameters λ. In
this way, the action of the fundamental group by derived autoequivalences of
Coh X fits into an action of the fundamental groupoid

B = π1
(

H2(X, C) \ affine root hyperplanes)

by derived equivalences between the categories of ̂Xλ-modules. In particular,
B acts on the common K-theory KG(X) of all these categories.

The main object constructed in this paper is a dynamical extension of the
action ofB on KG(X). By definition, this means that the operators ofB depend
on the Kähler variables z and the braid relations are understood accordingly.

To be precise, in this paper we construct a dynamical action of B and we
prove its relation to the quantum difference equation. The connection with
quantization in characteristic p � 0 is not considered in this paper, see [9].
Similarly, a categorical lift of the dynamical action at this point remains an
open problem. It is possible that it easier to categorify the monodromy of the
quantum difference equation, which can be characterized in terms of an action
of an elliptic quantum group on the elliptic cohomology of Nakajima varieties,
see [2].
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1.2 Quantum difference equations

1.2.1
The quantum difference equation is a flat q-difference connection

�(qL z) =ML (z)�(z)

on functions of z with values in KG(X). It shifts the argument by

z 
→ qL z ,

where L ∈ Pic(X) is a line bundle on X or, equivalently, a cocharacter of
the Kähler torus Pic(X)⊗C

×. See [47] for an introductory exposition of their
construction and enumerative significance; these are briefly recalled in Sect.
4.

In particular, in [47] it is shown that these equations commutewith the quan-
tumKnizhnik–Zamolodchikov equations for theUh̄ (̂g)-action on KG(X). This
commutation property will be the key ingredient in determining the quantum
difference equation.

1.2.2
The arrangement (5) is periodic under the action of the lattice Pic(X) and

hence there is a copy of this lattice in the fundamental groupoid. Our main
result is the identification of this lattice with the operators of the quantum
difference equation.

Concretely, this means the following formula for the quantum difference
equation. Let

∇ ⊂ Pic(X)⊗ R \ {affine root hyperplanes}
be the unique alcove contained in minus the ample cone and whose closure
contains the origin. LetL be an ample line bundle and choose a path connect-
ing ∇ to the alcove ∇ −L . Let w1, w2, . . . be the ordered list of affine root
hyperplanes that this path crosses.

Eachw determines a set of affine roots that vanish on it and the correspond-
ing rank 1 subalgebra

gw ⊂ ĝ = g⊗ C[t±1] .
While there is no canonical root subalgebraUh̄(gw) ⊂ Uh̄ (̂g) in the quantized
loop algebra, the choice of a path as above is precisely the additional data
needed to fix such Uh̄(gw).

Each Uh̄(gw) is a triangular Hopf algebra and to any such one can asso-
ciate a universal element Bw(λ), λ ∈ hw, in its completion. It reduces to the
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dynamical operator of Etingof and Varchenko when gw
∼= sl2. When gw is a

Heisenberg algebra, which happens in the case of Hilbert schemes of points
in ADE surfaces, there is an equally explicit formula for the element Bw(λ),
see Sects. 6 and 7.

Our main result, Theorem 9, says that

ML = constL · · ·Bw3Bw2Bw1

where L is the operator of tensor product by L in KG(X). By the basic
property of the fundamental groupoid, the result is independent of the choice
of the path.

1.2.3
Intertwining operators between Verma modules, which are the main tech-

nical tool of [17], are only available for real roots and gw
∼= sl2. Outside

quivers of finite ADE type, these do not generate a large enough dynamical
Weyl group. It is therefore important to use an abstract formula for the operator
Bw(λ).

Such a general formula is given by

Bw(λ) = m
(

1⊗ Sw( J−w(λ)−1 )
)∣

∣

∣

λ→λ+shift , (6)

where J− lies in a completion of the tensor square of Uh̄(gw) and is a funda-
mental solution of a qKZ-like equation known as the ABRR equation in honor
of D. Arnaudon, E. Buffenoir, E. Ragoucy, and Ph. Roche [3]. One then applies
the antipode Sw of Uh̄(gw) in one of the tensor factors and the multiplication
map

m : Uh̄(gw)⊗2→ Uh̄(gw)

to get an element in the completion of Uh̄(gw).
One makes Bw a function of λ ∈̂h via the natural surjection

̂h→ hw → 0 , (7)

where hw
∼= C is the Cartan subalgebra of gw and̂h is the Cartan subalgebra

of ĝ that includes h and the infinitesimal loop rotation t d
dt . In particular, the

operator Bw(λ) depends on q via

q
d

dq

→ t

d

dt
.
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The shift in (6) includes the shift by h̄κ , where

2κ = w − Cv

is the weight of the component with dimension vector v with respect to the
geometric action of the quantum loop algebra. Here C is the Cartan matrix
of the quiver. The shifts by h̄κ in all formulas can be traced to the h̄codim /4

prefactor in R-matrices, see Sect. 2.3.7.
For quivers of finite or affine type, all root subalgebras are either sl2 or

Heisenberg algebras, and the general formula for Bw(λ) may be converted
into something very explicit. We consider these examples in Sects. 6 and 7.

1.2.4
The main result of this paper is a description of the quantum difference

equations that arise in the enumerative K-theory of quasimaps to Nakajima
varieties, see [47] for an introduction. This is the natural generality in which
our methods of geometric representation theory work.

There exist both more general and more special problems in enumerative
K-theory. A very general study of K-theoretic questions using the moduli
spaces of stable mapswas initiated many years ago by Givental. In that theory,
there exist difference equations as shown by Givental and Tonita [20]. The
general theory lacks certain crucial self-duality properties that are exploited
in the construction of the quantum Knizhnik–Zamolodchikov equations, see
the discussion in [47], and it remains to be seen how much progress one can
make in the study of the difference equations of [20].

On the other side, there exist quantum K-theory of homogeneous spaces,
initiated by Givental and Lee [19] who discovered, in particular, its connection
to the difference Toda equations. One expects this theory to extend to symplec-
tic resolutions T ∗G/P , with a connection toMacdonald theory similar to [10].
For G = GL(n), these were studied in [19]. In this case, T ∗G/P is a Naka-
jima variety for a linear quiver and so is covered by our result. The relation
of the quantum dynamical Weyl group to Macdonald operators was already
explicitly present in the original work of Etingof, Tarasov, and Varchenko.

1.3 Other directions

Substantial progress has beenmade since the first release of this paper in 2016.
The construction of stable envelope, which is an important tool of this paper,
was generalized to elliptic cohomology setting in [2]. Explicit combinatorial
formulas for the elliptic, K-theoretic and cohomological stable envelopes are
now available for many classes of varieties [14,60,62]. The class of varieties
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for which the stable envelope exists has been extended in [49], see also [55]
for a super-algebra generalization.

An important new feature of the elliptic stable envelope is that, in addition
to the torus equivariant parameters, it depends on the Kähler parameters. This
makes the elliptic stable envelope a natural object in the study of the so called
three-dimensional mirror symmetry which, among other things, interchanges
the equivariant and the Kähler parameters. Three-dimensional mirror symme-
try of the elliptic stable envelope has been investigated and proven for many
examples of symplectic varieties, see [13,56–58,64].

The elliptic stable envelope provides the transitionmatrices between various
bases of solutions of the quantum difference equations which we study in this
paper, see [2]. In particular, one can use the elliptic stable envelope to describe
the monodromy of these equations and to obtain integral representations for
their solutions [1,48]. These results, combined with the three-dimensional
mirror symmetry, lead to a new geometric descriptions of many constructions
of our paper. As an example, the dynamical braid group generators (6), playing
the most fundamental role in this paper, can be identified with K-theoretic R-
matrices of certain subvarieties of the 3D-mirror variety [63], see also [25,26]
for similar applications.

The q → 1 limit of the quantum difference equations provides a natu-
ral description of the quantum K-theory ring of corresponding varieties. Our
results can be used to relate quantum K-theory rings to known integrable
systems and give a proof of various predictions from theoretical physics
[27,28,52].

2 Equivariant K-theory of Nakajima varieties and R-matrices

2.1 Stable envelopes in K-theory

2.1.1
Let X be an algebraic symplectic variety and G a reductive group acting

on X . Since the algebraic symplectic form ω on X is unique up to a multiple,
the group G scales ω by a character h̄. Replacing G by its double cover if
necessary, we can assume that h̄1/2 exists.

LetA ⊂ G be a torus in the center ofG and in the kernel of h̄. By definition,
the K-theoretic stable envelope is a K-theory class on the product [47]:

Stab ⊂ KG(X × XA) ,

uniquely defined by certain support, degree, and normalization conditions.
The corresponding conditions are summarized in the Theorem 1 below. The
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stable envelope provides a wrong way map

Stab : KG(XA)→ KG(X) ,

which we denote by the same symbol.

2.1.2
The construction of stable envelopes requires additional data, namely the

choice of:

• a cone C ⊂ Lie(A), which divides the normal directions to XA into attract-
ing and repelling ones and determines the support of Stab,
• a polarization T 1/2 ∈ KG(X), which is a choice of a half of the tangent
bundle T X ∈ KG(X), that is, a solution of

T 1/2 + h̄−1 ⊗ (T 1/2)∨ = T X (8)

in KG(X),
• a slope s ∈ Pic(X)⊗Z Q, which should be suitably generic, see below.

Of these pieces of data, the cone C is exactly the same as in cohomology [37].
The polarization reduces in cohomology to a certain sign, while the slope
parameter is genuinely K -theoretic.

We recall from [37], Sect. 2.2.7, that a Nakajima variety, like any symplectic
reduction of a cotangent bundle, has natural polarizations. For any polarization
T 1/2, there is the opposite polarization

T 1/2
opp = h̄−1 ⊗ (T 1/2)∨ . (9)

2.1.3
LetN be the normal bundle to XA in X . The A-weights v appearing inN

define hyperplanes {v = 0} in LieA. By definition, a cone

C ⊂ LieA \
⋃

v

{v = 0}

is one of the chambers of the complement. We write v > 0 if v is positive on
C. A choice of C thus determines the decomposition

N = N+ ⊕N−
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into attracting and repelling directions, with the corresponding attracting man-
ifold

Attr =
{

(x, y), lim
a→0

a · x = y

}

⊂ X × XA,

where a→ 0 means that v(a)→ 0 for all v > 0.
We define the full attracting set Attr f ⊂ X × XA as the minimal closed set

which contains the diagonal XA × XA and is invariant under taking Attr(·).
In other words, the components of Attr f are obtained from the components
of the diagonal XA × XA iterating taking Attr(·) and the closure. The stable
envelope is supported at the full attracting set:

supp(Stab) ⊂ Attr f . (10)

2.1.4
Let F be a component of XA. By Koszul resolution,

OAttr

∣

∣

∣

F×F = Odiag F ⊗�
•
−N

∨− ,

where the subscript in �
•
− indicates an alternating sum of exterior powers. We

require

Stab
∣

∣

∣

F×F = ± line bundle⊗ OAttr

∣

∣

∣

F×F
where the sign and the line bundle are determined by the choice of polarization.

Concretely, let

T 1/2
∣

∣

F = T 1/2
0 ⊕ T 1/2


=0

be the splitting of the polarization into trivial and nontrivial A-characters. We
have

N− � T 1/2

=0 = h̄−1

(

T 1/2
>0

)∨ � T 1/2
>0 ,

and therefore the determinant of this virtual vector bundle is a square (recall
that we replace G by its double cover if the character h̄ is not a square). We
set

Stab
∣

∣

∣

F×F = (−1)rk T 1/2
>0

(

detN−
det T 1/2


=0

)1/2

⊗ OAttr

∣

∣

∣

F×F . (11)
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2.1.5
The key property of stable envelopes are degree bounds satisfied by

Stab
∣

∣

F2×F1 , where F1 and F2 are two different components of XA. Note that
because of the support condition, this restriction vanishes unless F2 < F1 in
the partial ordering defined by the closures of attracting manifolds, that is, by

∃x, lim
a→0

a±1x ∈ F± ⇒ F+ > F− .

Recall that in cohomology the degree bound reads

degA Stab
∣

∣

∣

F2×F1
< degA Stab

∣

∣

∣

F2×F2
, (12)

where degA for an element of

H •G(XA, Q) ∼= H •G/A(XA, Q)⊗Q[LieA]

is its degree in the variables LieA.

2.1.6
Now in K-theory the degree degA f of a Laurent polynomial

f =
∑

μ∈A∧
fμ aμ ∈ Z[A] = KA(pt)

is its Newton polygon

degA f = Convex hull
({μ, fμ 
= 0}) ⊂ A∧ ⊗Z Q ,

with the natural partial ordering on polygons defined by inclusion.
Such a definition has a caveat, in that the degree of an invertible function aμ

should really be zero, and so the Newton polygons should really be considered
up to translation by the latticeA∧. If wewant to compare twoNewton polygons
by inclusion, a possibility of inclusion after a shift appears, and this is where
the slope parameter s comes in.

The K-theoretic analog of (12) is the following condition:

degA Stabs
∣

∣

∣

F2×F1
⊗ s

∣

∣

∣

F1
⊂ degA Stabs

∣

∣

∣

F2×F2
⊗ s

∣

∣

∣

F2
, (13)

where the weight of a fractional line bundle s ∈ Pic(X)⊗Z Q is a fractional
weight, that is, an element of A∧ ⊗Z Q. Note that (13) is independent of the
A-linearization of s. The dependence of the stable envelope Stabs on the slope
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s is indicated for emphasis in the LHS of (13). The degree of Stab
∣

∣

∣

F2×F2
is

given by (11) and is independent of s.

Remark 1 Observe that for a sufficiently generic s the inclusion in (13) is nec-
essarily strict, as the inclusion between fractional shifts of integral polytopes.

2.1.7
Let us summarize the above definitions in the following result:

Theorem 1 Let X be a Nakajima variety, then for an arbitrary choice of
chamber C ⊂ Lie(A), polarization T 1/2 ⊂ KG(X) and generic slope s ∈
Pic(X)⊗Z Q there exists a unique K-theory class StabC,T 1/2,s ∈ KG(X× XA)

which satisfies

(1) support condition (10),
(2) degree condition (13),
(3) normalization condition (11).

Remark 2 Stronger results were obtained since the first release of this paper.
For the Nakajima varieties a version of above theorem for the elliptic stable
envelopewas proven in [2]. The existence and uniqueness of the elliptic stable
envelope then implies Theorem 1 in the K-theoretic degeneration of elliptic
cohomology, see Sect. 4.5 in [2]. The existence of the stable envelope under
weaker conditions on X was also proved in [49]. In particular, the existence
of polarization of X is replaced in [49] by a weaker condition of existence of
attracting line bundles. With these new tools, many constructions of this paper
translate to a setting more general than Nakajima varieties.

Uniqueness of stable envelopes implies the following transformation law
under duality on X × XA

(

StabC, T 1/2, s

)∨ = h̄− codim(XA)/4 Stab
C, T 1/2

opp ,−s . (14)

Here T 1/2
opp is the opposite polarization (9).

2.1.8
To keep track of the weights of the line bundles s restricted to components

of the fixed locus, it is convenient to introduce a locally constant map (a form
of moment map)

μ : XA → H2(X, Z)⊗ A∧ , (15)

defined up to an overall translation, such that

μ(F1)− μ(F2) = [C] ⊗ v
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Quantum difference equation for Nakajima varieties 1217

if there is an irreducible A invariant curve C joining F1 and F2 with tangent
weight v at F1. For any s, we then have

weight s
∣

∣

F1
− weight s

∣

∣

F2
= (s,C) v .

By construction

Stab
∣

∣

∣

F2×F1

= 0⇒ μ(F1)− μ(F2) ∈ H2(X, Z)eff ⊗ A∧>0 , (16)

where A∧>0 is the cone of weights positive on C.

2.2 Slope R-matrices

2.2.1
Following the sign conventions set in Sect. 3.1.3 of [37], we define the

transposition

K (X × Y ) � E 
→ E τ ∈ K (Y × X)

as a permutation of factors together with a sign (−1)(dim X−dim Y )/2.
The following is an analog of Theorem 4.4.1 in [37].

Proposition 1
Stabτ

−C, T 1/2
opp ,−s ◦StabC, T 1/2, s = 1 . (17)

Here we do not distinguish between the structure sheaf of the diagonal and the
identity operator by which it acts on the K-theory.

Proof Since the support of stable envelopes is the same as in cohomology, the
convolution (17) is an integral K-theory class on XA × XA.

Denoting by S and S ′ the two stable envelopes in (17), we have

(

S ′τ ◦S )

F3×F1 =
∑

F1≥F2≥F3
(−1) codim F3

2
S ′
∣

∣

F2×F3 ⊗S
∣

∣

F2×F1
�•−N

∨
F2

(18)

by equivariant localization and the support condition,where Fi are components
of the fixed point locus XA.

Since the convolution (18) is integral, its Newton polygonmay be estimated
directly from (18). We denote by

μ = 〈μ(F3)− μ(F1), s〉 ∈ A∧ ⊗Q
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1218 A. Okounkov, A. Smirnov

the difference ofweights of s at F3 and F1.Wehaveμ /∈ A∧ for generic s unless
F3 = F1 because an ample line bundle will pair nonzero with μ(F3)−μ(F1).
The degree bound (13) implies each term is O(|a|μ) as a ∈ A goes to

infinity in any direction. Since this number is fractional for F3 
= F1 while the
asymptotics are integral, it follows that terms with F1 
= F3 in (18) vanish.

The remaining terms with F1 = F2 = F3 are easily seen to give the identity
operator. ��

2.2.2
In the same way, stable envelopes may be defined for real slopes s ∈

H2(X, R). They depend on the slope in a locally constant way and change
as s crosses certain rational hyperplanes

w
def= {s ∈ H2(X, R) : (s, α)+ n = 0} , (19)

which we will call walls. Here

α̂ = (α, n) ∈ H2(X, Z)⊕ Z (20)

is an integral affine function on H2(X), which we call an affine root of X .
The connected components of the complements to the walls in H2(X, R) are
called alcoves.

Below we will see that ±α is an effective curve class for any affine root α̂.
If n 
= 0, we set

α̂′ = 1
nα ∈ H2(X, Q) .

This depends only on the wall and not on the particular normalization of its
equation.

2.2.3
Let us consider two slopes s and s′ separated by a single wallw. To examine

the change in stable envelopes across the wall, we define the wall R-matrix:

RC
w = Stab−1

C, T 1/2, s′ ◦StabC, T 1/2, s . (21)

To distinguish RC
w from its inverse, we assume

〈s′ − s, α〉 > 0 .

for the positive root α defining the corresponding wall. If we cross the wall
from s to s′ we say that it is crossed in the positive direction.
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Quantum difference equation for Nakajima varieties 1219

Theorem 2 We have

RC
w

∣

∣

∣

F3×F1
= 0

unless
μ(F1)− μ(F3) = α̂′ ⊗ μ (22)

where α̂′ ∈ H2(X, Q)eff and μ is an integral weight of A positive on C. In this
case

degA RC
w

∣

∣

∣

F3×F1
= μ .

If n = 0 the condition (22) means μ = 0 and that μ(F1)− μ(F3) is propor-
tional to α.

As a corollary of the proof, we will see that

RC
w

∣

∣

∣

F1×F1
= 1 .

Proof As in the proof of Proposition 1, we see that RC
w is an integral K-theory

class and we compute its restriction to F3 × F1 by localization as in (18).
Consider the localization term corresponding to a component F2 of XA. The

slope-dependent part of its degree is

〈μ(F2)− μ(F1), s〉 + 〈μ(F3)− μ(F2), s
′〉

= 〈μ(F3)− μ(F1), s
′〉 + 〈μ(F2)− μ(F1), s − s′〉 (23)

= 〈μ(F3)− μ(F1), s〉 + 〈μ(F2)− μ(F3), s − s′〉 . (24)

Since the ample cone is open, wemay assume that±(s−s′) is ample. If s > s′,
the second summand in (23) is a negative weight, while the second summand
in (24) is a positive weight. If s < s′, these conclusions are reversed. But in
either case,

RC
w

∣

∣

∣

F3×F1
= O(|a|μ)

as a→ 0 or a→∞, where

μ = 〈μ(F3)− μ(F1), x〉
for x ∈ w and a→ 0 as before means that v(a)→ 0 for every positive weight
v. Since this is a Laurent polynomial in a, this means vanishing unless μ is an

integral weight and RC
w

∣

∣

∣

F3×F1
is a monomial.

123



1220 A. Okounkov, A. Smirnov

For generic s on the hyperplane (19) the weight μ is integral only if

μ(F1)− μ(F3) ∈ Q α ⊗ A∧ .

From (16) and since (x, α̂′) = −1 for n 
= 0 by construction, we conclude
(22). If n = 0 we have (x, α) = 0 and hence μ = 0. ��

2.3 Root subalgebras

2.3.1
We recall that Nakajima varieties depend on a quiver with a vertex set I , two

dimension vectors v,w ∈ N
I , and a stability parameter θ ∈ R

I . The complex
deformation parameter ζ ∈ C

I , which is the value of the complex moment
map in symplectic reduction, will always be set to zero in this paper. We fix θ

and denote

M (w) =
⊔

v

Mθ (v,w) .

We take the canonical polarization from Sect. 2.2.7 in [37] as polarization T 1/2

of Nakajima varieties.

2.3.2
Let W be a framing space defining a Nakajima variety with dimension w.

Let us consider its arbitrary decomposition into a direct sum of subspaces
W = W ′ ⊕ W ′′ with dimensions w′ and w′′. Assume that a torus A = C

×
acts on W scaling W ′ with a character a′ and W ′′ with a character a′′. In this
situation we say that A splits the framing w = a′w′ + a′′w′′.

This action induces an action of A on the Nakajima variety M (w). The
basic property of the Nakajima varieties is that the set of the A fixed points is
the product of Nakajima varieties for the same quiver but different framings:

M (w)A =M (w′)×M (w′′),

such that after localization:

KG(M (w)A) = KG(M (w′))⊗ KG(M (w′′)).

One checks that the A characters appearing in the normal bundle to M (w)A

are of the form u±1, where u = a′/a′′. Thus, we only have two chamberswhich
correspond to u → 0 and u →∞. We denote them by + and − respectively.
For a slope s these give the stable maps:

Stab±,s : KG(M (w))⊗ KG(M (w′))→ KG(M (w + w′))
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Quantum difference equation for Nakajima varieties 1221

for any G that commutes with A. To examine the change of the stable map
under the change of the chamber we introduce the following total R-matrix
with slope s:

Rs(u) = Stab−1−,s ◦Stab+, s , (25)

One checks that it depends only on the ratio u. Just like the cohomological R-
matrices,Rs(u) acts in a localization KG(M (w))⊗ KG(M (w′)). However,
the coefficients of the u → 0 or u → ∞ expansion of Rs(u) are operators
in nonlocalized K-theory. The variable u is traditionally called the spectral
parameter. The operators Rs(u) satisfy the Yang-Baxter and unitarity equa-
tions for arbitrary slope s, see (9.2.20) and (9.2.22) in [47] for explicit form
of these equations.

2.3.3
Let F1 
= F2 be two components of XA. Let us consider the degree condition

(13) as the slope s approaches infinity along the ample or anti-ample direction
inPic(X)⊗ZQ. By (13) in this limit theA characters appearing in the restriction
Stab|F1×F2 approach infinity in Lie(A). Thus, in the suitable topology of power
series we have

lim
s→±∞ Stab±,s

∣

∣

F1×F2 = 0.

Therefore, we can characterize Stab±,∞ as the classes with restrictions (11)
near diagonal and vanishing at non-diagonal terms of XA × XA. Explicitly:

Stab±,+∞ = Stab±,−∞ = i∗
(

(−1)rk T 1/2
>0

( det(N∓)

det(T 1/2

=0 )

)1/2

S•(N ∨± )
)

∈ KG(X × XA)loc,

where i is the inclusion of diagonal XA × XA → X × XA.
We can include the given slope s into an doubly infinite sequence

. . . s−2, s−1, s0 = s, s1, s2, . . . (26)

such that

si →±∞ , i →±∞ ,

where si → +∞ means that si goes to infinity inside the ample cone of X .
We can assume that si and si+1 are separated by exactly one wall wi and that
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1222 A. Okounkov, A. Smirnov

the sequence {si } crosses each wall once. We can write the following obvious
identity:

Stab+, s = Stab+,+∞ · · ·Stab+, s2 Stab
−1+, s2 Stab+, s1 Stab

−1+, s1 Stab+, s

= Stab+,+∞ · · · R+w2
R+w1

R+w0
.

Similarly for the negative chamber:

Stab−, s = Stab−,−∞ · · ·Stab−, s−2 Stab
−1−, s−2 Stab−, s−1 Stab

−1−, s−1 Stab−, s

= Stab−,−∞ · · · (R−w−3)−1(R−w−2)−1(R−w−1)−1.

In the last case we cross the walls in the negative direction and by our conven-
tion from Sect. 2.2.3 the corresponding contribution is given by the inverse of
the wall R-matrix.

From definitions we find

Stab+,∞(γ )
∣

∣

F = (−1)rk T 1/2
>0

(

detN−
det T 1/2


=0

)1/2

�•−(N ∨− )⊗ γ

Stab−,−∞(γ )
∣

∣

F = (−1)rk T 1/2
<0

(

detN+
det T 1/2


=0

)1/2

�•−(N ∨+ )⊗ γ

for any γ supported at a component F ⊂ XA. The restriction of Stab±,∓∞(γ )

to other components of XA vanish and thus R∞ := Stab−1−,−∞ ◦Stab+,∞ is
diagonal in the basis of fixed components with the following matrix elements:

R∞
∣

∣

F×F = (−1)codim(F)/2
∏

v<0(v
1/2 − v−1/2)

∏

v>0(v
1/2 − v−1/2)

(27)

where v are the Chern roots of NF . All together this gives the following
factorization of the total R-matrix:

Rs(u)
de f= Stab−1−, s Stab+, s =

←−
∏

i<0

R−wi
R∞
←−
∏

i≥0
R+wi

, (28)

where
←−∏

i stands for the product of matrices ordered from right to left as
the index i increases. The factorization (28) converges in the topology of the
formal power series around u = ∞ as will be explained in the next section.
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Quantum difference equation for Nakajima varieties 1223

Similarly we can factorize the total R-matrix into infinite product near u = 0.
We consider:

Stab+, s = Stab+,−∞ · · ·Stab+, s−2 Stab
−1+, s−2 Stab+, s−1 Stab

−1+, s−1 Stab+, s

= Stab+,−∞ · · · (R+w−3)−1(R+w−2)−1(R+w−1)−1.

and

Stab−, s = Stab−,+∞ · · ·Stab−, s2 Stab
−1−, s2 Stab−, s1 Stab

−1−, s1 Stab−, s

= Stab−,+∞ · · · R−w2
R−w1

R−w0
.

This gives another factorization:

Rs(u)
de f= Stab−1−, s Stab+, s =

−→
∏

i≥0
(R−wi

)−1 R∞
−→
∏

i<0

(R+wi
)−1 , (29)

with the same R∞ given by (27). We will call these formulas Koroshkin-
Tolstoy (KT) factorizations of total R-matrices. An explicit example of KT
factorization for the simplest quiver variety X = T ∗P1 can be found in Sect.
6.1.7. For the quivers of finite type this formula reproduces the factorization
of quantum R-matrices considered in [23].

2.3.4
Recall that the partial ordering on the components of the fixed point set

coincides with “ample partial ordering”. If θ ∈ Pic(X) is a choice of ample
line bundle, and σ ∈ C is a character of A then:

F2 � F1 ⇔ 〈θF1, σ 〉 ≤ 〈θF2, σ 〉

The choice of the stability parameter θ ∈ Z
I for a Nakajima variety defines

a certain ample line bundle. If the fixed components have the form F =
M (v,w) ×M (v′,w′) then the function defining the ordering takes the fol-
lowing explicit form:

〈θF , σ 〉 = 〈v, θ〉σ + 〈v′, θ〉σ ′

All the operators A acting in K -theory which we consider in this paper will
preserve the total weight, i.e., A =⊕

α

Aα with:

Aα : KG(F1) −→ KG(F2)
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1224 A. Okounkov, A. Smirnov

and F1 = M (v,w) ×M (v′,w′), F2 = M (v + α,w) ×M (v′ − α,w′).
Therefore the difference of ordering function takes the form:

〈θF2, σ 〉 − 〈θF1, σ 〉 = 〈α, θ〉(σ − σ ′). (30)

In the present text wewill always assume that the fixed components are ordered
using the positive chamber σ − σ ′ > 0. Thus the sign of the difference (30) is
given by a sign of 〈α, θ〉.

We will use the following terminology: an operator A = ⊕

α

Aα with Aα

as above is upper-triangular if 〈α, θ〉 > 0 and lower-triangular if 〈α, θ〉 < 0
for all α 
= 0. We say that A is strictly upper-triangular or strictly lower-
triangular if in addition A0 = 1. For example, the wall R-matrices R+w and
R−w are strictly upper and strictly lower triangular respectively. In particular,
the Khoroshkin-Tolstoy factorization (28) gives a LU decomposition of the
total R-matrix.

2.3.5
LetLw be a line bundle on thewallw. Thewall R-matrices R±w are triangular

with monomial in spectral parameter u matrix elements:

R±w
∣

∣

F2×F1 =

⎧

⎪

⎨

⎪

⎩

1 , F1 = F2 ,

∝ u〈μ(F2)−μ(F1),Lw〉 , F1 ≷ F2 ,

0 , otherwise .

(31)

The condition (16) means

R±w → 1 , w→±∞ ,

in the topology of formal power series.

2.3.6
From (27) we obtain

lim
u→0

R∞ = h̄−� , lim
u→∞ R∞ = h̄� (32)

where � is the codimension function:

�(γ ) = codim(F)

4
γ (33)

for a class γ supported on the fixed set component F ∈M (w)A.
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2.3.7
For Nakajima varieties, the codimension function (33) has the following

description. For a torus A splitting the framing w = a′w′ + a′′w′′, every
component F ∈M (v,w)A is of the form

F =M (v′,w′)×M (v′′,w′′) (34)

for some dimension vectors v′, v′′. We have, see e.g. Sect. 2.4.2 in [37],

� = codim F

4
= 1

2
(w′, v′′)+ 1

2
(w′′, v′)− 1

2
(v′,Cv′′) , (35)

where C is the Cartan matrix of the quiver, see e.g. Sect. 2.2.5 of [37]. The
map μ has the form:

μ(F) = v′ ⊗ 1 (36)

where 1 ∈ A∧ is the weight of u, see e.g. Sect. 3.2.8 in [37].

2.3.8
Letwk be awall labeled by k ∈ Z as in Sect. 2.3.3 and letLwk be a fractional

line bundle at wk . We denote

R̃s(u)k = U−1k Rs(u)Uk,

where Uk is a block diagonal matrix with the block corresponding to compo-
nent (34) given by

Uk

∣

∣

∣

F
= (a′)〈v′,Lwk 〉(a′′)〈v′′,Lwk 〉.

Similarly we define:

˜R±wi ,k
= U−1k R±wi

Uk .

If F1 = M (v′1,w′1) ×M (v′′1,w′′1) and F2 = M (v′2,w′2) ×M (v′′2,w′′2) are
two components of M (v,w)A, then we have

˜R±wi ,k

∣

∣

∣

F1×F2
= R±wi

∣

∣

∣

F1×F2
(a′)〈v′2,Lwk 〉(a′′)〈v′′2 ,Lwk 〉

(a′)〈v′1,Lwk 〉(a′′)〈v′′1 ,Lwk 〉
.

Noting that v′1 + v′′1 = v′2 + v′′2 we can rewrite this as

˜R±wi ,k

∣

∣

∣

F1×F2
= R±wi

∣

∣

∣

F1×F2
u〈v′2−v′1,Lwk 〉,
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where u = a′/a′′. From (31) and (36) we then find

˜R±wi ,k

∣

∣

F1×F2 =

⎧

⎪

⎨

⎪

⎩

1 , F1 = F2 ,

∝ u〈v′2−v′1,Lwk−Lwi 〉 , F1 ≷ F2 ,

0 , otherwise .

(37)

By construction of the sequence (26) we have:

〈α,Lwk −Lwi 〉 ≷ 0 , i ≶ k , 〈α,Lwk −Lwi 〉 = 0 , i = k.

when α is effective. From block-triangularity of ˜R+wi ,k
we see that in the limit

u →∞ all non-diagonal matrix elements vanish for k < i . The matrix ele-

ments of ˜R+wi ,k
do not depend on u if i = k. In summary we can write it

as

Uk

(

lim
u→∞

˜R+wi ,k

)

U−1k =
⎧

⎨

⎩

DNE, k > i,
R+wi

, k = i,
1, k < i,

(38)

where DNE means that the corresponding limit may be undefined in this case.

The matrices ˜R−wi ,k
are lower-triangular and similar consideration gives:

Uk

(

lim
u→∞

˜R−wi ,k

)

U−1k =
⎧

⎨

⎩

1, k > i,
R−wi

, k = i,
DNE, k < i,

(39)

Conjugating KT factorization around u = ∞ (28) by Uk we obtain:

R̃s(u)k =
←−
∏

i<0

˜R−wi ,k
R∞
←−
∏

i≥0
˜R+wi ,k

.

From (38), (39) and (32)we see that k = 0 and k = −1 are the only two choices
for which the limit u → ∞ of all factors in this product is well defined. For
these values the limit equals:

Uk

(

lim
u→∞ R̃s(u)k

)

U−1k =
{

h̄� R+w0
, k = 0 ,

R−w−1 h̄
� , k = −1 .

(40)
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Arguing similarly for KT-factorization near u = 0 (29) we find:

Uk

(

lim
u→0

R̃s(u)k

)

U−1k =
{

(R−w0
)−1h̄−� , k = 0 ,

h̄−� (R+w−1)
−1 , k = −1 .

(41)

In summary, we see that the wall R-matrices for w0, w−1 which are the walls
immediately before and after the slope s in (26) can be obtained as limits of

R̃s(u). As R̃s(u) solves the quantum Yang-Baxter equation for any s, the
same is true for their limits. We thus obtain:

Theorem 3 The wall R-matrices multiplied by h̄�:

h̄�R±w, R±w h̄�

satisfy the quantum Yang-Baxter equation for any wall w.

In what follows we denote

R±w = h̄�R±w. (42)

2.3.9
Let us show that K-theoretic R-matrices (25) are unitary for an arbitrary

slope s. The derivation follows the same steps as in cohomology and we refer
to Sect. 4.5 of [37] for more details.

Let A = C
× and let us consider the action of A on a Nakajima variety

M (v,w) corresponding to the splitting of the framing w = aw′ + w′′. Let
F =M (v′,w′)×M (v′′,w′′) be a component of M (v,w)A.
Similarly, let us consider the A-action onM (v,w) corresponding the split-

tingw = aw′′+w′. We denote by F21 =M (v′′,w′′)×M (v′,w′) theA-fixed
component corresponding to F under this action.

In the second case the A-action onM (v,w) is the opposite of the A-action
in the first case. This means that the original action of A is precomposed with
the automorphism

φ : A→ A, φ : a 
→ a−1.

We note that the correspondence StabC,T 1/2,s is exactly the correspondence
Stab−C,T 1/2,s for the opposite action. Note also that the G-characters of the
normal bundles in these cases are related by:

N−|F = φ∗(N+|F21).
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By uniqueness of the stable envelopes we obtain:

StabC,T 1/2,s

∣

∣

F×F ′ =
(

Stab−C,T 1/2,s

∣

∣

F21×F ′21
)∣

∣

∣

a→a−1
. (43)

For an operator A ∈ End(KG(M (w′)) ⊗ KG(M (w′′))) we denote by
A21 ∈ End(KG(M (w′′)) ⊗ KG(M (w′))) the operator corresponding to the
permuted matrix elements:

(A21)F,F ′ = AF21,F ′21 .

With these notations from (43) we obtain the following result:

Proposition 2 K-theoretic R-matrices (25) of Nakajima varieties satisfy the
unitary condition:

Rs(u) = Rs(u−1)−121 . (44)

Remark 3 For an explicit example of identity (43) we refer to (120) and (121)
describing the stable envelopes for X = T ∗P1. In notations of this example
XA = {p1, p2} with (p1)21 = p2, (p2)21 = p1. We also encourage the reader
to check that (44) holds for matrix (122).

3 Construction of quantum groups

As we explain in Sect. 2.3.1 the equivariant K-theory of a Nakajima variety
provides a set of vector spaces KG(M (w)) labeled by a dimension vector
w ∈ Z

|I |. For any splitting of the framing w = uw′ + w′′ our construction
gives an R-matrix which acts in KG(M (w′))⊗KG(M (w′′)) and satisfies the
quantum Yang-Baxter equation. This is a well known set up for the Faddeev-
Reshetikhin-Takhtajan formalism [54]. Using these data the FRT construction
provides a triangular Hopf algebra Uh̄ (̂gQ) acting in KG(M (w)) for all w.

Similarly, applying the FRT construction to the wall R-matrices R±w one
constructs a set of triangular Hopf algebras Uh̄(gw) which are, in fact, subal-
gebras of Uh̄ (̂gQ).

The aim of this section is to review the FRT method and to explain the
interaction between Hopf structures of different wall subalgebras Uh̄(gw).

3.1 Quiver algebra Uh̄ (̂gQ)

3.1.1
For a splitting w = u1w1+ · · · + unwn and a slope s ⊂ H2(M (w), R) the

construction of Sect. 2.3.2 provides a set of R-matrices
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Rs
Vi ,Vj

(ui/u j ) ⊂ End
(

V1 ⊗ · · · ⊗ Vn
)

⊗ C[u±11 , ..., u±1n ],

with Vk = KG(M (wk)) satisfying the Yang-Baxter equation. We denote

Vi (u)
de f= Vi ⊗ C[u±1]

and more generally

Vi1(u1)⊗ · · · ⊗ Vin (un)
de f= Vi1 ⊗ · · · ⊗ Vin ⊗ C[u±11 , ..., u±1n ].

3.1.2
We have a set of vector spacesV such that for any pair Vi , Vj ∈ V we have

an R-matrixRs
Vi ,Vj

(ui/u j ).
First, we note that this set is closed with respect to the tensor product. The

R-matrix for the tensor products has the following form:

Rs←
⊗

i∈I
Vi (ui ),

←
⊗

j∈J
Vi (ui )

=
→
∏

i∈I

←
∏

j∈J
Rs

Vi ,Vj
(ui/u j ). (45)

Second, following [53] we can assume that this set contains dual vector spaces
V ∗i with R-matrices defined by the following rules:

Rs
V ∗1 ,V2

= ((Rs
V1,V2

)−1)∗1,
Rs

V1,V ∗2
= ((Rs

V1,V2
)−1)∗2,

Rs
V ∗1 ,V ∗2

= (Rs
V1,V2

)∗12,

where ∗k means transpose with respect to the k-th factor. One checks that the
R-matrices defined this way satisfy the quantum Yang-Baxter equation in the
tensor product of any three spaces from the set V.

3.1.3
In the FRT formalism the quantum algebra U s

h̄ (̂gQ) is defined as the sub-
algebra

U s
h̄ (̂gQ) ⊂

∏

V∈V
End(V )

generated by matrix elements of

Rs
V,V0(u) ∈ End(V )⊗ End(V0) (46)

in the “auxiliary space” V0 for all choices of V0 ∈ V.
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An element ofU s
h̄ (̂gQ) is fixed by a choice of the following data: an auxiliary

space V0, a finite rank operator

m(a0) ∈ End(V0)(a0)

an integer l ∈ Z and i ∈ {+,−}. The element of U s
h̄ (̂gQ) corresponding to

this data acts in a representation V (a) as the following operator:

ρi
V0,m,l = Coeff i

al0

(

trV0(1⊗ m(a0)R
s
V,V0(u))

)

∈ End(V (a)), (47)

whereRs
V,V0

(u) is the R-matrix acting in V (a)⊗ V0(a0) with u = a/a0, and

Coeff+
al0
, Coeff−

al0
denote the coefficient of al0 in the Laurent series expansions

near a0 = 0 or a0 = ∞ respectively. Since m(a0) is of finite rank the trace
over the auxiliary space V0 is defined even if it is infinite-dimensional.

The algebra U s
h̄ (̂gQ) is generated by all ρi

V0,m,l .

Proposition 3 The algebras U s
h̄ (̂gQ) are isomorphic for all s.

Proof Let s and s′ be two slopes separated by a single wall w. Enough to
show that U s

h̄ (̂gQ) and U s′
h̄ (̂gQ) are isomorphic. From Khoroshkin–Tolstoy

factorization we find that

Rs(u) = (R−w(u))−1Rs′(u)R+w(u) = (R+w(u−1)21)−1Rs′(u) R+w(u),

where the last equality is by (48) and definition (42).
It is known that the wall R-matrices R+w satisfy the cocycle condition, see

Corollary 2 in Sect. 5.3.1. Thus, the R-matrices Rs(u) and Rs′(u) provide
isomorphic algebras by Theorem 2.3.4 in [32]. ��
Proposition 4

R∓w = (R±w)21
∣

∣

u=u−1 , R∓w = (R±w)21
∣

∣

u=u−1 . (48)

Proof The first equality follows from (44) together with limits (40) and (41).
In notations of Sect. 2.3.9, the codimensions of the torus fixed component

F =M (v′,w′)×M (v′′,w′′) and F21 =M (v′′,w′′)×M (v′,w′) inM (v,w)

are equal. Therefore � = �21 which gives the second equality. ��
As the algebras U s

h̄ (̂gQ) are isomorphic for all s we will denote them
by Uh̄ (̂gQ).
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3.2 Wall subalgebra Uh̄(gw) ⊂ Uh̄ (̂gQ)

3.2.1
Let us define the wall algebra:

Uh̄(gw) ⊂
∏

V∈V
End(V ) (49)

as an algebra generated by the matrix elements of (R+w)V,V0 and of (R−w)−1V,V0
in the auxiliary space V0 for all V0 ∈ V.

For a choice of an auxiliary space V0 and a finite rank operatorm ∈ End(V0)
we have an element ofUh̄(gw) acting in a representation V (a) as the following
operator:

ρ+V0,m = trV0(1⊗ m (R+w)V,V0

∣

∣

a0=1) ∈ End(V ). (50)

Note that by Theorem 2 the matrix elements of (R±w)V,V0 are monomials in
u = a/a0. Thus we do not need to consider all coefficients in the Laurent
series expansion as in (47).

Algebra (49) is generated by all such ρ+V0,m and also ρ−V0,m which are given

by (50) with R+w substituted by (R−w)−1.

3.2.2
Next we show that Uh̄(gw) is a subalgebra of Uh̄ (̂gQ). For this we show

that all matrix elements (50) appear as matrix elements (47) for some choices
of l and m.

Let w be a wall and s be a generic slope obtained by a shift s = w − ε

for an infinitesimal ample ε. Let Rs
V,V0

(u) with u = a/a0 be the R-matrix
with slope s acting in V (a)⊗ V0(a0). Let U be the diagonal matrix acting in
V0(a0) by U |M (v0,w0) = a〈v0,Lw〉

0 . The action of U by conjugation gives the
decomposition:

End(V0) =
⊕

l

Endl(V0)

with Endl(V0) = {m ∈ End(V0) : UmU−1 = al0m}. Since Lw is a fractional
line bundle, the weights l appearing in this decomposition are rational. We
denote by End(w)(V0) the subspace spanned by integral weights:

End(w)(V0) =
⊕

l∈Z
Endl(V0). (51)
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Let m ∈ Endl(V0) for some l ∈ Z which is constant in a0. Let us consider an
element (47) corresponding to this data:

ρ+V0,m,−l = Coeff+
a−l0

(trV0(1⊗ mRs
V,V0(u))). (52)

Since UmU−1 = al0m we have

ρ+V0,m,−l = Const(trV0(1⊗ m (1⊗U )−1Rs
V,V0(u) (1⊗U ))),

where Const denotes the constant term in the series expansion at a0 = 0. By
(40), at a0 = 0 we have the following expansion:

(1⊗U )−1Rs
V,V0(u)(1⊗U ) = (1⊗U )−1(R+w)V,V0(1⊗U )+ . . . ,

where . . . denote the higher order terms vanishing at a0 = 0. Note that by (31)
the first term (1⊗U )−1(R+w)V,V0(1⊗U ) does not depend on a0. Thus, since
m does not depend on a0 we have:

ρ+V0,m,−l = trV0(1⊗ m (1⊗U )−1(R+w)V,V0(1⊗U ))

= trV0(1⊗ m (R+w)V,V0

∣

∣

a0=1).

We find that ρ+V0,m,−l is of the form (50) and therefore represents an element

from Uh̄(gw). By Theorem 2 the matrix elements of R+w are non-trivial only
for m ∈ Endl(V0) with integral l. Thus, all generators ρ+V0,m (50) appear as
(47) with m from (51).

Applying the same logic to the power series expansion near a0 = ∞ we
also find that all generators of Uh̄(gw) corresponding to ρ−V0,m appear in the
same way.

By definition, these elements generate Uh̄(gw) and therefore Uh̄(gw) is a
subalgebra of U s

h̄ (̂gQ). Finally, since U s
h̄ (̂gQ) are isomorphic for all s we

obtain the following result:

Proposition 5 Uh̄(gw) is a subalgebra of Uh̄ (̂gQ) for every wall w.

Remark 4 The quantumgroup elements (47) are defined as coefficient al0 of R-
matrices depending on u = a/a0. This means that ρ+V0,m,l acts as a monomials

a−l in any representation V (a).

Remark 5 In the following text we often understand the R-matrices and other
operators as universal elements of the corresponding quantum groups or their
completions. In particular, such universal elements do not depend on the eval-
uation parameters u, which are the parameters of the representations, not of
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the quantum groups. For instance, the unitarity relation (44) for the universal
R-matrix takes the form:

Rs = (Rs
21)
−1,

where 21 denotes the permutation of factors Rs ∈ Uh̄ (̂gQ)⊗Uh̄ (̂gQ). Simi-
larly, thewall R-matrices give the universal elementsR±w ∈ Uh̄(gw)⊗Uh̄(gw).
Relations (48) are understood as

(R±w)21 = R∓w, (R±w)21 = R∓w (53)

for these elements.
As an example we refer to explicit formulas for universal R-matrices of

U√h̄(̂gl2) given by (129) and (130), which are related by permutation of tensor
factors (53). The generators of this algebra act in a representation C

2(a) as
monomials Ew ∼ aw and Fw ∼ a−w. Evaluation of these universal elements
in a representationC

2(u1)⊗C
2(u2) gives (123) which depends on the spectral

parameter u = u1/u2. The unitarity relation should be understood as (48) for
these matrices.

3.3 Hopf structures

3.3.1
The algebraUh̄ (̂gQ) carries Hopf structures labeled by the slope s. The set

V is closed with respect to tensor product. It induces the natural projection:

∏

V∈V
End(V ) →

∏

V1,V2∈V
End(V1 ⊗ V2),

which restricts to a coproduct map on matrix elements ofRs(u):

�s : Uh̄ (̂gQ)→ Uh̄ (̂gQ)⊗̂Uh̄ (̂gQ).

Note that this map depends on KT factorization of R-matrix and thus on the
slope s.

The set V is closed with respect to taking dual ∗ and thus we have an
antipode map:

Ss : Uh̄ (̂gQ)→ Uh̄ (̂gQ),

which is the restriction of

End(V )
∗−→ End(V ∗).
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The set V contains the trivial representation C which, similarly, induces a
counit map:

εs : Uh̄ (̂gQ)→ C.

The main result of FRT procedure is that (�s, Ss, εs) provides Uh̄ (̂gQ) with
a Hopf algebra structure for arbitrary slope s. The algebraUh̄ (̂gQ) becomes a
triangular Hopf algebra with the triangular structureRs(u).

3.3.2
The same procedure applied to R+w in place of Rs(u) defines a structure

of triangular Hopf algebra (�w, Sw, εw) on Uh̄(gw). It should be clear from
definitions that (�w, Sw, εw) does not necessarily coincide with restriction of
(�s , Ss , εs) from the ambient algebra Uh̄ (̂gQ). The next proposition explains
the relation between these Hopf structures.

Proposition 6 Assume that the Khoroshkin-Tolstoy factorization for a total
R-matrix with slope s starts with some wall w, i.e. has the form:

Rs(u) = · · · R+w1
R+w

then the Hopf structure (�w, Sw, εw) onUh̄(gw) coincides with the restriction
of (�s , Ss , εs) from the ambient algebra Uh̄ (̂gQ).

Proof Enough to check this statement for coproducts. Let V1 and V2 be two
representations ofUh̄ (̂gQ). We need to show that for any element x ∈ Uh̄(gw),
the identity �s(x) = �w(x) holds in End(V1 ⊗ V2).

Assume that x is a generator of Uh̄(gw) as in Sect. 3.2.2 corresponding to
an auxiliary space V0 and a matrix element m ∈ Endl(V0).

By definition�s(x) and�w(x) act in V1⊗V2 by ρi
V0,m,−l and ρi

V0,m
defined

by formulas (47) and (50) for V = V1 ⊗ V2. But in Sect. 3.2.2 we proved the
equality ρi

V0,m,−l = ρi
V0,m

for an arbitrary V . The Proposition follows since
such elements generate Uh̄(gw). ��
Corollary 1 If s andw are as in the previous proposition then for x ∈ Uh̄(gw)

we have:

Rs(u) �s(x)R
s(u)−1 = R+w�w(x)(R+w)−1 = (R−w)−1�w(x)R−w (54)

with R±w as in Theorem 3.

Proof In any triangular Hopf algebra we have Rs(u)�s(x)Rs(u)−1 =
�

op
s (x). But, for x ∈ Uh̄(gw)wehave�

op
s (x) = �

op
w (x) = R+w�w(x)(R+w)−1.

This proves the first equality. Applying (53) we arrive at the second equality.
��
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3.3.3
Let s and s′ be two slopes and let � be a path in H2(X, R) connecting them.

This path intersects finitely many walls in some order I� = {w1, w2, ..., wn}.
We define operators:

T+ =
←
∏

w∈I�
R+w, T− =

←
∏

w∈I�
R−w.

Then, from Khoroshkin–Tolstoy factorization we obtain:

Rs′(u)T+ = T−Rs(u),

which implies that coproducts at different slopes are related by

T+�s = �s′T
+, T−�

op
s = �

op
s′ T

−. (55)

3.3.4
As a slope s approaches infinity (in the ample cone) we obtain a special

Hopf structure with the coproduct which we denote by �∞. The correspond-
ing wall subalgebra Uh̄(g∞) is generated by the matrix elements of (27).
This infinite slope R-matrix is diagonal in the basis of fixed components with
matrix elements given by operators of multiplication by tautological bundles
in the equivariant K -theory (27). In particular, these operators are elements of
Uh̄(g∞). Moreover, the line bundlesL ∈ Pic(X) are group-like:

�∞(L ) = L ⊗L . (56)

3.3.5
Let κ = (κ1, κ2) where each κi ∈ (12Z)I is a function on the vertices of

the quiver with values in 1
2Z. Define an operator h̄κ acting in KG(M (w))

by multiplication by h̄〈κ1,v〉+〈κ2,w〉 on the componentM (v,w) (recall that the
square root h̄1/2 exists in the equivariant K -theory, see Sect. 2.1.1). As we
discussed above, the operators of multiplications by tautological bundles, and
in particular the operators ofmultiplication by their dimensions are elements of
Uh̄ (̂gQ). Thus h̄κ ∈ Uh̄ (̂gQ). These elements enjoy the following properties:

�w(h̄κ) = h̄κ ⊗ h̄κ, Sw(h̄κ) = h̄−κ . (57)

Recall that the codimension function � is quadratic in w, v which gives:

Sw ⊗ Sw(�) = �. (58)
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Finally, in any triangular Hopf algebra we have

Sw ⊗ Sw(R+w) = R+w. (59)

and thus from (58) we conclude:

Sw ⊗ Sw(R+w) = h̄−� R+w h̄�. (60)

4 Quantum K-theory of Nakajima varieties

In this section we recall the main facts about the commuting difference equa-
tions which govern the quasimap count for Nakajima varieties. We refer the
reader to [47] for a detailed exposition.

4.1 Stable quasimaps to Nakajima varieties

4.1.1
Let us consider a quiver with set of vertices I and mi j arrows from a vertex

i ∈ I to a vertex j ∈ I . Let n = |I | be the number of vertices.
Recall that a Nakajima varietyM (v,w) with dimension vectors v,w ∈ N

n

is defined as the following symplectic reduction:

M (v,w) = T ∗M////θG = μ−1(0)//θG (61)

where M is the representation of the quiver

M =
⊕

i, j∈I
Hom(Vi , Vj )⊗ Qi j ⊕

⊕

i∈I
Hom(Wi , Vi )

by vector spaces Vi of dimensions vi and framing spacesWi of dimensionswi .
We denote by Qi j the linear vector space of dimension mi j (the multiplicity
space). The representation M is equipped with an obvious action of G =
∏

i∈I
GL(Vi ) and

μ : T ∗M → Lie(G)∗

stands for the corresponding moment map. Finally, θ ∈ Z
n denotes the char-

acter of G

θ : (gi )
n
i=1→

n
∏

i=1
det(gi )

θi

123



Quantum difference equation for Nakajima varieties 1237

which defines a stability parameter for GIT quotient (61).
The Nakajima varieties come together with a natural action of a group Aut

whose action preserves the symplectic form. Let G = A × C
×
h̄ where A is a

maximal torus of Aut and C
×
h̄ is one-dimensional torus scaling the cotangent

direction in (61) with a character h̄−1.

4.1.2
The general theory of quasimaps to GIT quotients was developed in [11].

Here we briefly recall this construction specialized to the case of Nakajima
quiver varieties, see also Sect. 4.3 in [47].

A quasimap

f : C ��� X

with a domain C $ P
1 to a Nakajima variety X =M (v,w) is defined by the

following data:

• A collection of vector bundles Vi , i ∈ I on C with ranks vi .
• A collection of trivial vector bundlesQi j andWi , i, j ∈ I on C with ranks
mi j and wi respectively
• A section

f ∈ H0
(

C,M ⊕M ∗ ⊗ h̄−1
)

satisfying the the moment map condition μ = 0, where

M =
⊕

i, j∈I
Hom (Vi ,V j )⊗Qi j ⊕

⊕

i∈I
Hom (Wi ,Vi ).

and h̄−1 stands for a trivial line bundle on C with G-equivariant weight
h̄−1.

The degree of a quasimap is defined as d = (deg(Vi ))
n
i=1 ∈ Z

n .

4.1.3
Let p ∈ C be a point in the domain of a quasimap f and fix a local

trivialization ofQi, j andWi at p. The value f (p) defines anG-orbit inμ−1(0).
This orbit does not necessarily consist of semistable points inμ−1(0) and thus
it only defines an evaluation map into a quotient stack:

evp : f 
→ f (p) ∈ μ−1(0)/G.

The quotient stack contains the Nakajima variety as an open subset

X = μ−1(0)stable/G ⊂ μ−1(0)/G.
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A quasimap f is called stable if f (p) ∈ X for all but finitely many points
p ∈ C . The finite set of points for which f (p) /∈ X is called singularities of
the quasimap.

The moduli spaceQMd(X) parameterizes the degree d stable quasimaps up
to isomorphismwhich is required to be identity on the curveC , themultiplicity
Qi, j and the framing bundles Wi [11]:

QMd(X) = {degree d stable quasimaps to X}/ ∼=

This means that moving a point on this moduli space results in varying the
bundles Vi and the section f , while the curve C , bundles Wi and Qi j remain
fixed.

Let QMd(X)nonsing p ⊂ QMd(X) be the open subset of the moduli space
corresponding to the stable quasimaps nonsingular at a point p. By definition
this open subset is equipped with the evaluation morphism:

QMd(X)nonsing p
evp−→ X. (62)

The moduli space of relative quasimaps QMd(X)relative p is a compacti-
fication of the map evp meaning that it fits into the following commutative
diagram:

QMd(X)relative p

ẽvp

QMd(X)nonsing p
evp

X

with proper evaluation map ẽvp. The construction of the moduli space of
relative quasimaps QMd(X)relative p is explained in Sect. 6 of [47]. It follows
similar constructions of relative moduli spaces in Gromow-Witten theory [29,
30] and Donaldson-Thomas theory [31].

4.2 Difference equations

4.2.1
As explained in [47] the moduli spaces defined in the previous sections

carry natural virtual structure sheaves ̂Ovir. Using these virtual sheaves one
constructs different enumerative invariants of X . For example, one of the main
objects in quantum K-theory is the capping operator which is defined as fol-
lows: let us consider the moduli space QMd

relativep1
nonsingp2

(X) of quasimaps with
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relative conditions at p1 ∈ C and nonsingular at p2 ∈ C (we will assume
that p1 = 0 and p2 = ∞ in C = P

1). These two marked points define the
evaluation map:

ev = ẽvp1 × evp2 : QMd
relativep1
nonsingp2

(X) −→ X × X (63)

This moduli space is equipped with an action of G × C
×
q where the action

of G comes from its action on X and C
×
q scales the local coordinate of C at

the point p1 with character q. Note that this action preserves p1 and p2. The
capping operator is defined as the G × C

×
q equivariant push-forward:

J =
∑

d∈Zn

zdev∗
(

QMd
relativep1
nonsingp2

(X), ̂Ovir

)

∈ KG×C
×
q
(X)⊗2localized ⊗Q[[z]].

(64)

The map (63) is not proper, as we already mentioned in the previ-
ous section. However, it becomes proper on the subset of fixed points
QMd

relativep1
nonsingp2

(X)G×C
×
q , see [47]. Thus the pushforward (64) is well defined

in the localized K -theory.
The degrees of the quasimaps are counted with weight zd = zd11 · · · zdnn . The

parameters zi are referred to as Kähler parameters.

4.2.2
Assume that we fixed some basis in KG(X), then the capping operator is

represented by amatrixwhose entries are certain power series inKähler param-
eters with coefficients given by rational functions of equivariant parameters
forG×C

×
q . By theorems 8.1.16 and 8.2.20 from [47] this matrix is the matrix

of fundamental solution of a system of q-difference equations2:

J(u, zqL )L =ML (u, z)J(u, z),

J(uq, z)E(u, z) = S(u, z)J(u, z).
(65)

HereL denotes the operator of multiplication by a line bundleL ∈ Pic(X),
E(u, z) is the operator of multiplication by K-theory class given by (8.2.13)
in [47]. In particular E(u, z) andL commute.

Recall that the Pic(X) is generated by the tautological line bundles Li =
det(Vi ), i = 1, . . . , n. For a bundleL = L ⊗m1

1 ⊗· · ·⊗L ⊗mn
n the following

2 S(u, z) is denoted by Sσ (u, z) in [47] for a shift u → uqσ by a specific A-character σ .
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notation is used in (65):

zqL = (z1q
m1, . . . , znq

mn ).

The operators S(u, z) shifting the equivariant parameters are called shift
operators. The operatorsML (u, z) corresponding to line bundlesL ∈ Pic(X)

are called the quantum difference operators. They are the main object of study
in our paper.

4.2.3
We can write the system (65) in the following equivalent form:

K J(u, z) = J(u, z)K∞

AL J(u, z) = J(u, z)A∞L
(66)

with the following q-difference operators:

K = T−1u S(u, z), K∞ = T−1u E(u, z),

AL = T−1L ML (u, z) A∞L = T−1L L ,

(67)

where TL f (u, z) = f (u, zqL ) and Tu f (u, z) = f (uq, z). AsL andE(u, z)
commute, the consistency of this system of difference equations can be repre-
sented in the form of “zero curvature” condition:

[AL ,AL ′ ] = 0, [AL ,K] = 0, (68)

where by [A, B] = AB − BA we denote the commutators for q-difference
operators.

4.2.4
Let A = C

× be a torus splitting the framing as w = uw′ + w′′. This torus
acts on the Nakajima variety X =M (v,w) with the set of fixed points:

XA =
∐

v′+v′′=v
M (v′,w′)×M (v′′,w′′).

The stable map defined in the previous section can be used to identify KG(X)

with KG(XA).After such identification, thefirst equation in (66) gets identified
with the quantum Knizhnik–Zamolodchikov equation (qKZ):3

3 See Theorem 9.3.1 in [37] for similar statement in the case of equivariant cohomology.

123



Quantum difference equation for Nakajima varieties 1241

Theorem 4 ( [47], Sect. 10)Let∇ ⊂ H2(X, R) be the alcove uniquely defined
by the conditions:

(1) 0 ∈ H2(X, R) is one of the vertices of ∇,
(2) ∇ ⊂ −Cample ( opposite of the ample cone)

, then for all s ∈ ∇ we have4

Stab−1+,T 1/2,s
K Stab+,T 1/2,s = K s

where K is the q-difference operator defined by (67) andK s is the quantum
Knizhnik–Zamolodchikov difference operator

K s = h̄λ
(1)T

−1
u Rs(u) (69)

for R-matrixRs(u) with slope s (25) and h̄λ
(1) defined by (72).

Therefore, in the stable basis the first equation in (65) turns to the standard
quantum Knizhnik–Zamolodchikov equation [18]

4.2.5
In Sect. 5.2 we construct a system of difference operators

A s
L = T−1L Bs

L (u, z), L ∈ Pic(X)

withBs
L (u, z) given explicitly in terms of the algebraUh̄ (̂gQ). These operators

commute among themselves and with the qKZ operator (69) for all slopes
s ∈ H2(X, R):

[A s
L ,A s

L ′ ] = 0, [A s
L ,K s] = 0. (70)

We then prove our main result Theorem 9: the quantum difference operator
ML (u, z) is identified with Bs

L (u, z) for s as in Theorem 4. In particular the
compatibility condition (68) is identified with (70) for this slope.

4 Note, that we use modified quantum parameter z which differs by a sign:

zv 
→ (−1)codim/2zv,

see Theorem 10.2.8 in [47]. Explicitly, this change of variables amounts to the following sub-
stitution of Kähler parameters:

zi 
→ (−1)2κi zi
for canonical vector (81). To get rid of the minus sign, we will use modified notations in this
paper. :
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5 Commuting difference operators

5.1 Wall Knizhnik–Zamolodchikov equations

5.1.1
It will be convenient to introduce a vector λ = (t1, ..., tn) such that h̄ti = zi ,

which means that λ is a coordinate on a universal cover H2(X, C) $ C
|I | of

the Kähler moduli space.
Let us consider a Nakajima variety X = M (v,w) and denote by A a

subtorus of the framing torus corresponding to a decomposition:

XA =
∐

v1+...+vn=v
M (v1,w1)× · · · ×M (vn,wn) (71)

In this sectionweconsider rational functions of parameters zi which take values
in End(KG(XA)). Using the above notations we will denote such functions
as f (zi ) or f (λ).

The first function we need h̄λ
(k) ∈ End(KG(XA)) is defined to be diagonal

in the basis supported on the set fixed points:

h̄λ
(k)(γ ) = h̄(λ,vk)γ = z

vk,1
1 · · · zvk,nn γ (72)

for a class γ supported on a component F =M (v1,w1)× · · · ×M (vn,wn).
We will need the so called dynamical notations below. Let κ be a linear

combination of dimension vectors; the particular combination of importance
to us is

κ = 1

2
(Cv − w) ,

where C is the Cartan matrix of the quiver. We define f (λ+ κ̂(i)) by:

f (λ+ κ̂(i))(γ ) = f (λ+ κ(vi ,wi ))(γ )

for a class γ supported on a component F =M (v1,w1)× · · · ×M (vn,wn).
We will refer to such a transformation f (λ)→ f (λ+ κ̂(i)) as the dynamical
shift of f by a weight κ in the i-component. In the case of one component we
will omit subscript (1) and write f (λ+ κ̂).

Define q-difference operators by Tzi f (z1, ..., zi , ..., zn) = f (z1, ..., zi
q, ..., zn). We extend it to the action of Pic(X) $ Z

n by q-difference operators
TL as in Sects. 4.2.2, 4.2.3.
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5.1.2
Below, we use definitions of triangular operators from Sect. 2.3.4. The torus

A is as defined in Sect. 4.2.4.

Proposition 7 There exist unique strictly upper triangular J+w (λ) and strictly
lower triangular J−w (λ) solutions of the following ABRR equations:

J+w (λ)h̄−λ
(1) R

+
w = h̄−λ

(1) h̄
� J+w (λ), R−w h̄−λ

(1) J
−
w (λ) = J−w (λ)h̄�h̄−λ

(1) . (73)

Moreover, J±w (λ) are elements in a completion Uh̄(gw)̂⊗Uh̄(gw) satisfying:

Sw ⊗ Sw

(

(J+w (λ))21

)

= J−w (λ), (74)

where the subscript (21) stands for the transposition (a⊗ b)(21) = b⊗ a and
Sw is the antipode in Uh̄(gw).

Proof We write the first ABRR equation in the form:

Adh̄λ
(1)h̄
−�

(

J+w (λ)
)

= J+w (λ)(R+w)−1

(recall that R+w and R+w are related by Theorem 3). By assumption J+w (λ) =
⊕

〈α,θ〉>0
J+w (λ)α where θ is the stability parameter of the Nakajima variety. The

wall R-matrix R+w is upper triangular, thus, it has the same decomposition. In
the components the last equation is equivalent to the following system:

Adh̄λ
(1)h̄
−�

(

J+w (λ)α

)

= J+w (λ)α + · · · ,

where · · · stands for the lower terms J+w (λ)α′ , i.e., the terms with 〈α, θ〉 >

〈α′, θ〉. The operator Adh̄λ
(1)h̄
−� − 1 is invertible for general λ, thus we can

solve the last system recursively starting from the component of the minimal
weight J+w (λ)0 = 1. Thus the solution is unique. By construction of the wall
quantum algebra the R-matrixR+w is an element ofUh̄(gw)⊗2. Thus, the same
is true for J+w (λ).

Next, we apply the antipode Sw⊗Sw and the transposition to the first ABRR
equation and use (59)–(58) to obtain:

R−w h̄λ
(2)Sw ⊗ Sw

(

(J+w (λ))21

)

= Sw ⊗ Sw

(

(J+w (λ))21

)

h̄λ
(2) h̄

�.
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It is clear that for any upper or lower triangular operator X wehave h̄λ
(2)Xh̄

−λ
(2) =

h̄−λ
(1) Xh̄

λ
(1), therefore, the last equation takes the form:

R−w h̄−λ
(1) Sw ⊗ Sw

(

(J+w (λ))21

)

= Sw ⊗ Sw

(

(J+w (λ))21

)

h̄−λ
(1) h̄

�

By uniqueness of the solution we conclude Sw ⊗ Sw

(

(J+w (λ))21

)

= J−w (λ).
��

Let f (z) = f (z1, . . . , zn) be a function of the Kähler variables and θ =
(θ1, . . . , θn) be the stability parameter of the Nakajima variety. We denote

f (0θ ) = lim
z→0

f (zθ1, . . . , zθn ), f (∞θ ) = lim
z→∞ f (zθ1, . . . , zθn )

if these limits exist.

Proposition 8

J+w (∞θ ) = 1, J+w (0θ ) = R+w.

Proof We write the first ABRR equation in the form:

Adh̄λ
(1)h̄
−�

(

J+w (λ)
)

= J+w (λ)(R+w)−1. (75)

Let us consider the corresponding components:

J+w (λ) = 1+
⊕

〈α,θ〉>0

Jα(z), (R+w)−1 = 1+
⊕

〈α,θ〉>0

Rα.

The α-component of (75) is

Jα(z)zα h̄m = Jα(z)+
∑

γ+δ=α
〈γ,θ〉<〈α,θ〉

Jγ (z)Rδ

for some m and where zα = zα11 · · · zαnn . Thus

Jα(z) = 1

zα h̄m − 1

∑

γ+δ=α
〈γ,θ〉<〈α,θ〉

Jγ (z)Rδ.
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By induction, assume that Jγ (∞θ ) = 0 for all γ 
= 0 with 〈γ, θ〉 < 〈α, θ〉. By
triangularity 〈α, θ〉 > 0, and thus

Jα(∞θ ) = lim
z→∞

( 1

z〈α,θ〉h̄m − 1

∑

γ+δ=α
〈γ,θ〉<〈α,θ〉

Jγ (zθ1, . . . , zθn )Rδ

)

= 0.

Therefore J+w (∞θ ) = 1.
Similarly, by induction, assume that Jγ (0θ ) exists for all γ with
〈γ, θ〉 < 〈α, θ〉. Then

Jα(0θ ) = lim
z→0

( 1

z〈α,θ〉h̄m − 1

∑

γ+δ=α
〈γ,θ〉<〈α,θ〉

Jγ (zθ1, . . . , zθn )Rδ

)

also exists. We conclude that J+w (0θ ) exists.
Let us denote J̃+w (λ) = h̄λ

(1) J
+
w (λ)h̄−λ

(1) . Then

J̃+w (λ) = 1+
⊕

〈α,θ〉>0

J̃α(z)

with J̃α(z) = zα Jα(z). Since Jα(0θ ) = lim
z→0

Jα(zθ1, . . . , zθn ) exists and

〈α, θ〉 > 0 we have

J̃α(0θ ) = lim
z→0

Jα(zθ1, . . . , zθn )z〈α,θ〉 = 0.

Therefore J̃+w (0θ ) = 1.
Finally, we rewrite the ABRR equation in the form:

J̃+w (λ)R+w = h̄� J+w (λ).

Using above limits at 0θ we obtain:

R+w = h̄� J+w (0θ )

and therefore J+w (0θ ) = R+w . ��
5.1.3

Let F = M (v1,w1) ×M (v2,w2) and F ′ = M (v′1,w′1) ×M (v′2,w′2)
be two fixed components. As we discussed in Sect. 2.3.5 the dependence of
matrix elements of a wall R-matrix on the equivariant parameter u is given by

R+w(u)
∣

∣

F×F ′ ∼ u〈v1−v′1,Lw〉.
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Thus, for s with h̄s = q and τw = sLw we have

h̄τw

(1) R
+
w(u) h̄−τw

(1) = R+w(uq). (76)

From the previous proposition we obtain:

h̄τw

(1) J
+
w (u) h̄−τw

(1) = J+w (uq). (77)

Shifting λ → λ − τw in the ABRR Eq. (73) and using the previous two
identities we find:

J+w (u, λ− τw)h̄−λ
(1) R

+
w(uq) = h̄−λ

(1) h̄
� J+w (uq, λ− τw)

and same for J−w . Finally, denoting

J±w(λ) = J±w (λ− τw) (78)

we rewrite the last relation in the form:

Proposition 9 There exist unique strictly upper triangularJ+w(λ) ∈ Uh̄(gw)⊗2
and strictly lower triangular J−w(λ) ∈ Uh̄(gw)⊗2 solutions of wall Knizhnik–
Zamolodchikov equations:

J+w(λ)h̄−λ
(1)TuR

+
w = h̄−λ

(1) Tuh̄
�J+w(λ),

R−w h̄−λ
(1) TuJ

−
w(λ) = J−w(λ)h̄−λ

(1) Tuh̄
�

(79)

where Tu f (u) = f (uq).

5.2 Dynamical operators Bs
L (λ)

5.2.1
The following operator is playing a fundamental role in our paper. For a

wall w in the hyperplane arrangement (19) we define

Bw(λ) = m
(

1⊗ Sw( J−w(λ)−1 )
)∣

∣

∣

λ→λ+κ
(80)

Here Sw is the antipode of the Hopf algebra Uh̄(gw) and m(a ⊗ b)
de f= ab.

We denote by λ→ λ+ κ the dynamical shift by the following vector:

κ = (Cv − w)/2, (81)
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where C is the Cartan matrix of the corresponding quiver. Note that this oper-
ator is well defined in the evaluation modules (even infinite dimensional)
because the operator J−w(λ) is lower triangular and thus Bw(λ) is normally
ordered. Note that by definition Bw(λ) is an element in a completion of
Uh̄(gw)(z1, . . . , zn).

Remark 6 In Sect. 6.3.5 we compute a universal formula for Bw(λ) in the case
of Uh̄(̂gl2). Up to a difference in notations, this operator coincides with the
element of the dynamical quantum group associated to a real root reflection.
See Proposition 14 in [17] for an explicit formula in this case. Thus, in the case
of real roots the operator (80) coincides with the one constructed by Etingof-
Varchenko. In contrast with the approach of [17], the element (80) is defined
in a more general situation, see examples in Sect. 7 for imaginary roots.

5.2.2
Let L ∈ Pic(X) be a line bundle. Let us fix a slope s ∈ H2(X, R) and

choose a path in H2(X, R) from s to s −L . This path crosses finitely many
walls in some order {w1, w2, ..., wm}. For this choice of a slope, line bundle
and a path we associate the following operator:

Bs
L (λ) = L Bwm (λ) · · · Bw1(λ) (82)

The symbol L on the right side denotes the operator of multiplication by a
line bundle in KG(X). By construction, Bs

L (λ) is an element in a completion
of Uh̄ (̂gQ)(z1, . . . , zn).

We define the q-difference operators:

A s
L = T−1L Bs

L (λ). (83)

In Sect. 5.4.3 we will show that (82) does not depend on a choice of a path
and for every slope s the operators (83) commute. Thus, they provide a repre-
sentation of Pic(X) by q-difference operators.

5.3 Some properties of Bw(λ)

In this sectionwediscuss various properties of the operators (82) and associated
q-difference connection (83). Our approach is close to one used in [16].

5.3.1
Let J±w (λ) be the operators introduced in Proposition 7. Let us denote

J±(λ)12 = J±w (λ)⊗ 1, J±(λ)23 = 1⊗ J±w (λ), J±(λ)12,3 = (�w⊗ 1)J±w (λ),
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J±(λ)1,23 = (1⊗�w)J±w (λ) the operators in the corresponding completion
of Uh̄(gw)⊗3.

Theorem 5 The operators J±(λ) satisfy the dynamical cocycle conditions:

J−(λ)12,3 J−(λ+ κ̂(3))
12 = J−(λ)1,23 J−(λ− κ̂(1))

23

J+(λ+ κ̂(3))
12 J+(λ)12,3 = J+(λ− κ̂(1))

23 J+(λ)1,23
(84)

with dynamical shift κ = (Cv − w)/2 where C is the Cartan matrix of the
quiver.

We will need the three-component analog of Proposition 7. We start with the
definition of upper/lower triangular operators acting in a tensor product of
three Uh̄(gw) modules. Let X =M (v,w) - be a Nakajima variety, and let A
be a torus splitting the framing such that:

XA =
∐

v1+v2+v3=v
M (v1,w1)×M (v2,w2)×M (v3,w3). (85)

We say that an operator A ∈ End(KG(XA)) is upper triangular if A =
⊕

〈α,θ〉>0〈β,θ〉<0
Aα,β where θ is the stability parameter of the Nakajima vari-

ety and:

Aα,β : KG(M (v1,w1)×M (v2,w2)×M (v3,w3))→

KG(M (v1 + α,w1)×M (v2 + γ,w2)×M (v3 + β,w3))

where γ is fixed by the conditionα+β+γ = 0. Similarly, the operator is lower
triangular if A = ⊕

〈α,θ〉<0
〈β,θ〉>0

Aα,β with the same Aα,β as above. Finally,we say that

an operator is strictly upper or lower triangular if, in addition, A0,0 = 1. For
example, the product of wall R-matrices R+,13

w R+,12
w or R+,13

w R+,23
w (where

the indices indicate in which components of (85) the R-matrices act), are
strictly upper triangular.

In the three-component case we have two types of qKZ operators
h̄λ

(3)R
+,13
w R+,23

w and h̄−λ
(1)R

+,13
w R+,12

w which correspond to the coproducts of
the wall qKZ operators in the first or the second component.
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Proposition 10 If there exists a strictly upper triangular operator J (λ) ∈
End(KG(XA)) satisfying:

J (λ) h̄λ
(3)R

+,13
w R+,23

w = h̄λ
(3)h̄

�13+�23 J (λ)

J (λ) h̄−λ
(1)R

+,13
w R+,12

w = h̄−λ
(1) h̄

�13+�12 J (λ)

(86)

or a strictly lower-triangular operator J (λ) ∈ End(KG(XA)) satisfying

R−,23
w R−,13

w h̄λ
(3) J (λ) = J (λ)h̄�23+�13 h̄λ

(3)

R−,12
w R−,13

w h̄−λ
(1) J (λ) = J (λ)h̄�12+�13 h̄−λ

(1)

then it is unique.

Proof Weprove the upper-triangular case. The lower-triangular case is similar.
Following [17] we introduce the operators:

AR(X) = h̄−�13−�23 h̄−λ
(3) Xh̄

λ
(3)R

+,13
w R+,23

w ,

AL(X) = h̄−�13−�12 h̄λ
(1)Xh̄

−λ
(1)R

+,13
w R+,12

w .

Assume that there exists an operator J (λ) satisfying the conditions of the
proposition. Then AR AL(J (λ)) = J (λ). It is enough to check that the solution
for this equation is unique. We are given that J (λ) = ⊕

〈α,θ〉>0
〈β,θ〉<0

Jα,β(λ), and thus

this equation has the following form in components:

Jα,β(λ) = Ad
h̄λ

(1)h̄
−λ
(3) h̄

−�̄

(

Jα,β(λ)
)

+ · · · (87)

where �̄ = 2�13 + �23 + �12 and · · · stands for the lower terms Jα′,β ′(λ)

with

〈α′ − β ′, θ〉 < 〈α − β, θ〉.

Note that the operator 1− Ad
h̄λ

(1)h̄
−λ
(3) h̄

−�̄ is invertible for generic λ. This means

that all Jα,β(λ) can be expressed through the lowest term J0,0(λ) = 1 and
therefore they are uniquely determined by (87). ��

Let J (λ) be as in Proposition 7. It is obvious that J+(λ+ κ̂(3))
12 J+(λ)12,3

is a solution of AR(X) = X . Similarly J+(λ− κ̂(1))
23 J+(λ)1,23 is a solution
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of AL(X) = X . Thus, by the previous proposition, to prove Theorem 5 it is
enough to prove the following lemma:

Lemma 1

X = J+(λ+ κ̂(3))
12 J+(λ)12,3 is a solution of AL(X) = X,

X = J+(λ− κ̂(1))
23 J+(λ)1,23 is a solution of AR(X) = X.

Proof As noted above the element X = J+(λ+ κ̂(3))
12 J+(λ)12,3 is a solution

of AR(X) = X . Note that AR and AL commute (due to the Yang-Baxter
equation for R+w). Thus, Y = AL(X) is also a solution of this equation. The
solution of AR(X) = X is uniquely determined by the degree zero part in the
third component. Let us denote this component of X by X0 and similarly for
Y by Y0. Enough to prove that X0 = Y0. For X0 we obtain

X0 = J+(λ+ κ̂(3))
12.

For Y0 we have

Y0 = h̄−�13−�12 h̄λ
(1) J

+(λ+ κ̂(3))
12 h̄−λ

(1) h̄
�13R+,12

w . (88)

Set Z = J+(λ + κ̂(3))
12. By triangularity of R-matrix and J (λ) it factors

Z = ⊕

α∈NI

Zα with:

Zα : KG

(

M (v1,w1)×M (v2,w2)×M (v3,w3)
)

→ KG

(

M (v1 + α,w1)×M (v2 − α,w2)×M (v3,w3)
)

Thus, by the definition of codimension function (35) we have h̄−�13Zα h̄�13 =
h̄mα Zα where

mα =

1
2

(

〈v1,w3〉 + 〈v3,w1〉 − 〈v1,Cv3〉
)

− 1
2

(

〈v1 + α,w3〉 + 〈v3,w1〉 − 〈v1 + α,Cv3〉
)

= 〈α, κ(3)〉

with κ(3) = (Cv3 − w3)/2. Therefore, using the dynamical notations we can
write the Eq. (88) in the form:

Y0 = h̄−�12 h̄
λ+κ̂(3)
(1) J+(λ+ κ̂(3))

12 h̄
−λ−κ̂(3)
(1) R+,12

w
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As J+(λ) satisfies the condition of Proposition 7 we obtain Y0 = J+(λ +
κ̂(3))

12. Therefore Y = X . ��
Corollary 2 The wall R-matrices R+w satisfy the cocycle condition:

(R+w)12(R+w)12,3 = (R+w)23(R+w)1,23

Proof By Proposition 8, J+w (0θ ) = R+w . The result follows by evaluating the
limit of the second identity in Theorem 5 at 0θ . ��
5.3.2

Let us consider the operators:

B̃ ′w(λ) = m
(

1⊗ Sw(J−w (λ)−1)
)

, B ′w(λ) = m21

(

S−1w ⊗ 1(J−w (λ)−1)
)

,

where Sw is the antipode ofUh̄(gw) and m(a⊗b)
de f= ab, m21(a⊗b)

de f= ba.
We define:

B̃w(λ) = B̃ ′w(λ+ κ̂), Bw(λ) = B ′w(λ− κ̂) (89)

with κ as in Theorem 5.

Theorem 6

1) �w B̃w(λ) = J−w (λ)
(

B̃w(λ+ κ̂(2))⊗ B̃w(λ− κ̂(1))
)

J+w (λ)

2) �wBw(λ) = J−w (λ)
(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

J+w (λ)

Proof Let X (λ) = J−w (λ)−1. By Theorem 5:

X12(λ+ κ̂(3))X
12,3(λ) = X23(λ− κ̂(1))X

1,23(λ) (90)

Set h̄(λ,m) = zm = zm1
1 · · · znmn where m = (m1, · · · ,mn) is a multi-index.

We write our operators as power series:

X (λ) =
∑

i,m

ai,m ⊗ bi,mz
m, J−w (λ) = X−1(λ) =

∑

i,m

āi,m ⊗ b̄i,mz
m

then

B̃ ′w(λ) = m
(

1⊗ Sw(X (λ))
)

=
∑

i,m

ai,mSw(bi,m)zm
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and in the sumless Sweedler notations we have:

�w B̃ ′w(λ) =
∑

i,m

a(1)
i,mSw(b(2)

i,m)⊗ a(2)
i,mSw(b(1)

i,m)zm

We denote by Â the following contraction:

Â(a1 ⊗ a2 ⊗ a3 ⊗ a4) = a1Sw(a4)⊗ a2Sw(a3),

then, obviously �w B̃ ′w(λ) = Â(�w ⊗�w(X)). From (90) we have:

�w ⊗ 1(X (λ)) = X12(λ+ κ̂(3))
−1X23(λ− κ̂(1))X

1,23(λ)

or in the components:

�w ⊗ 1(X (λ)) =
∑

(āi,m ⊗ b̄i,m ⊗ Km)(K−s ⊗ a j,s ⊗ b j,s)(ak,l ⊗ b(1)
k,l ⊗ b(2)

k,l ) z
m+s+l =

=
∑

(āi,mK−sak,l ⊗ b̄i,ma j,sb
(1)
k,l ⊗ Kmb j,sb

(2)
k,l ) z

m+s+l

where we denoted by K = h̄κ . Now, �w⊗�w = (1⊗ 1⊗�w)(�w⊗ 1) and
therefore:

�w ⊗�wX (λ)

=
∑

(āi,mK
−sak,l ⊗ b̄i,ma j,sb

(1)
k,l ⊗ Kmb(1)

j,sb
(2),(1)
k,l ⊗ Kmb(2)

j,sb
(2),(2)
k,l ) zm+s+l

Applying contraction Â, taking into account that the antipode Sw is an antiho-
momorphism and Sw(K ) = K−1 by (57) we obtain:

Â(�w ⊗�wX) =
∑

āi,mK−sak,l Sw(b(2),(2)
k,l )Sw(b(2)

j,s)K
−m

⊗b̄i,ma j,sb
(1)
k,l Sw(b(2),(1)

k,l )Sw(b(1)
j,s)K

−m zm+s+l

= J−w (λ− κ̂(1) − κ̂(2))
∑

K−sak,l Sw(b(2),(2)
k,l )Sw(b(2)

j,s)

⊗a j,sb
(1)
k,l Sw(b(2),(1)

k,l )Sw(b(1)
j,s) z

s+l

where J−w (λ− κ̂(1) − κ̂(2)) =∑ āi,mK−m ⊗ b̄i,mK−mzm and in the last step
we used that the whole operator is weight zero and therefore commutes with
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K ⊗ K . From the simple Lemma 2 below, we obtain:

Â(�w ⊗�wX (λ)) =

J−w (λ− κ̂(1) − κ̂(2))
∑

K−sak,l Sw(bk,l)Sw(b(2)
j,s)⊗ a j,s Sw(b(1)

j,s) z
s+l =

J−w (λ− κ̂(1) − κ̂(2))B̃ ′w(λ)⊗ 1 ·
(

∑

K−s Sw(b(2)
j,s)⊗ a j,s Sw(b(1)

j,s) z
s
)

.

Let us consider the contraction defined by P̂(a1 ⊗ a2 ⊗ a3) = Sw(a3) ⊗
a1Sw(a2). For the expression in the brackets in the last formula we have:

∑

K−s Sw(b(2)
j,s)⊗ a j,s Sw(b(1)

j,s) z
s = P̂

(

X1,23(λ+ κ̂(3))
)

Again, by (90) we have:

X1,23(λ+ κ(3)) = X23(λ− κ̂(1) + κ̂(3))
−1X12(λ+ 2κ̂(3))X12,3(λ+ κ̂(3))

=∑ K−ma j,sa
(1)
k,l ⊗ āi,mb j,sa

(2)
k,l ⊗ b̄i,mKm+2sbk,l K l zs+m+l .

Thus

P̂
(

X1,23(λ+ κ̂(3))
)

=
∑

K−l Sw(bk,l)K−m−2s Sw(b̄i,m)⊗ K−ma j,sa
(1)
k,l S(a(2)

k,l )Sw(b j,s)Sw(āi,m)zs+m+l

Noting that a(1)
k,l Sw(a(2)

k,l ) = εw(ak,l) we find:

P̂
(

X1,23(λ+ κ̂(3))
)

=∑ K−m−2s Sw(b̄i,m)⊗ K−ma j,s Sw(b j,s)Sw(āi,m)zs+m

=
(

∑

K−2s ⊗ a j,s Sw(b j,s)zs
)(

∑

K−mSw(b̄i,m)⊗ K−mSw(āi,m)zm
)

=
(

1⊗ B̃ ′w(λ− 2κ̂(1))
)

Sw ⊗ Sw((J−w )21)(λ− κ̂(1) − κ̂(2))

Overall we obtain the identity:

�w B̃ ′w(λ) = J−w (λ− κ̂(1) − κ̂(2))
(

B̃ ′w(λ)⊗ B̃ ′w(λ− 2κ̂(1))
)

Sw ⊗ Sw((J−w )21)(λ− κ̂(1) − κ̂(2))
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1254 A. Okounkov, A. Smirnov

Finally, after shifting λ→ λ + κ̂(1) + κ̂(2) and using (74) we obtain 1). The
equation 2) is obtained similarly. ��

Lemma 2

∑

S(x (2),(2))⊗ x (1)S(x (2),(1)) = S(x)⊗ 1 (91)

Proof Consider the contraction Ĉ(a1 ⊗ a2 ⊗ a3) = S(a3) ⊗ a1S(a2) then,
obviously

∑

S(x (2),(2))⊗ x (1)S(x (2),(1)) = Ĉ
(

1⊗�(�x)
)

= Ĉ
(

�⊗ 1(�x)
)

= S(x (2))⊗ x (1)(1)S(x (1)(2)) = S(x (2))⊗ ε(x (1)) = S(x)⊗ 1

��

Corollary 3 The coproduct of the operator Bw(λ) defined by (80) has the
following form:

�w(Bw(λ)) = J−w(λ)
(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

J+w(λ) (92)

Proof Shift λ→ λ− τw and use definitions (78) and (80). ��

5.3.3
Let us consider the wall qKZ operators as in the Proposition 9:

K +
w = Tuh̄

−λ
(1)R

+
w, K −

w = R−wTuh̄−λ
(1) (93)

acting in the tensor product of two evaluation modules of Uh̄ (̂gQ).

Proposition 11

K −
w �w(Bw(λ)) = �w(Bw(λ))K +

w (94)
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Proof We have

K −
w �w(Bw(λ))

(92)=

R−wTuh̄−λ
(1)J−w(λ)

(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

J+w(λ)
(79)=

J−w(λ)Tuh̄
−λ
(1) h̄

�
(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

J+w(λ) =

J−w(λ)
(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

Tuh̄
−λ
(1) h̄

�J+w(λ)
(79)=

J−w(λ)
(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

J+w(λ)h̄−λ
(1)TuR

+
w =

�w(Bw(λ))K +
w

��

Proposition 12 For L ∈ Pic(X) the operators Bw(λ) satisfy:

L T−1L Bw(λ) = Bw+L (λ)L T−1L . (95)

Proof Let A be a torus splitting the framing w = u′w′ + u′′w′′. For a
Nakajima variety X = M (v,w) the components of XA are of the form
Fi =M (v′i ,w′)×M (v′′i ,w′′). Let us consider the operators:

SC,s = i∗
XA ◦ StabC,T 1/2,s : KG(XA) −→ KG(XA)

where iXA is the inclusion map. LetL ∈ Pic(X) be a line bundle. We denote
by U (L ) a block diagonal operator acting in KG(XA) with the following
matrix elements:

U (L )|Fi×Fi = L |Fi

Let us consider an operator S̄C,s = U (L )SC,sU (L )−1. A conjugation by a
diagonal matrix does not change the diagonal elements, thus:

S̄C,s
∣

∣

Fi×Fi = SC,s
∣

∣

Fi×Fi (96)
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For the non-diagonal elements we have:

degA
(

S̄C,s
∣

∣

F2×F1
)

= degA
(

SC,s
∣

∣

F2×F1
L |F2
L |F1

)

(13)⊂ degA
(

SC,s
∣

∣

F2×F2
s ⊗L |F2
s ⊗L |F1

)

(96)= degA
(

S̄C,s
∣

∣

F2×F2
s ⊗L |F2
s ⊗L |F1

)

(97)

Note that the stable map is defined uniquely by these restrictions and thus we
conclude: S̄C,s = SC,s+L .

Recall that the wall R-matrices are defined by R±w = S−1±,s2S±,s1 for two
slopes s1 and s2 separated by a single wall w. Therefore:

U (L )R±wU (L )−1 = R±w+L .

Conjugating both sides of ABRR Eq. (73) by U (L ) we get:

R−w+L h̄−λ
(1)U (L )J−w (λ)U (L )−1 = U (L )J−w (λ)U (L )−1h̄−λ

(1) h̄
�

Thus, by uniqueness of the solution of this equation:

U (L )J−w (λ)U (L )−1 = J−w+L (λ) (98)

Without a loss of generality we can assume that L = det(Vk) is the k-th
tautological line bundle. Then, we have:

U (L ) = L̃ ⊗ L̃

where L̃ is the same tautological bundle twisted by some powers of trivial line
bundles u′ and u′′: explicitly for the component F =M (v′,w′)×M (v′′,w′′)
we have: L |F = (u′)v′kL ⊗ (u′′)v′′kL .

Let (J−w (λ))−1 =∑i ai ⊗bi , (J
−
w+L (λ))−1 =∑i a

′
i ⊗b′i so that B̃ ′w(λ) =

∑

i ai Sw(bi ). Then we have:

L B̃ ′w(λ)L −1 = L̃ B̃ ′w(λ)L̃ −1 =∑i L̃ ai Sw(L̃ bi ) =

m
(

1⊗ Sw(
∑

i L̃ ai ⊗ L̃ bi )
)

(98)= m
(

1⊗ Sw(
∑

i a
′
iL̃ ⊗ b′iL̃ )

)

=∑i a
′
i Sw(b′i ) = B̃ ′w+L (λ).
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In the first equality we substituted L by L̃ because for the one component
case the u-factors cancel. Thus we proved that:

L B̃ ′w(λ) = B̃ ′w+L (λ)L

Note that B̃ ′w(λ) = Bw(λ− κ + τw) and thus:

L Bw(λ− κ + τw) = Bw+L (λ− κ + τw+L )L

By definition τw+L −τw = sL thus, after substitution λ→ λ+κ−τw− sL
we obtain:

L Bw(λ− sL ) = Bw+L (λ)L

which gives (95). ��
5.3.4

The following proposition describes the action of the difference operators
(83) in the tensor product of two Uh̄ (̂gQ) modules.

Proposition 13

�s(A
s
L ) = Ww0(λ)Ww1(λ) · · ·Wwm−1(λ)�∞(L )T−1L

wherew0, · · · , wm−1 is the ordered set of walls separating slopes s and s+L ,
Ww(λ) = �w(Bw(λ))(R+w)−1 and �∞ is the infinite slope coproduct from
Sect. 3.3.4.

Proof First, by definition (82) we have:

A s
L = T−1L L Bw−m (λ) · · ·Bw−2(λ)Bw−1(λ)

where, we denote by w−1, · · · , w−m the ordered set of walls between the
slope s and s − L . By Proposition 12 we know that T−1L L Bwk (λ) =
Bwk+m (λ)T−1L L and thus we obtain:

A s
L = Bw0(λ)Bw1(λ) · · ·Bwm−1(λ)L T−1L

where we denote wk+m = wk +L (recall that the hyperplane arrangement is
Pic(X) periodic).

Next, for the coproduct we have:

�s(A
s
L ) = �s(Bw0(λ)Bw1(λ) · · ·Bwm−1(λ)L )T−1L
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and by (55) the coproducts at different slopes are related as follows

�s(Bwk (λ)) = (R+w0
)−1 · · · (R+wk−1)

−1�wk (Bwk )R
+
wk−1 · · · R+w0

.

Thus we obtain:

�s(A
s
L ) = �w0(Bw0(λ))(R+w0

)−1 · · ·
�wm−1(Bwm−1(λ))(R+wm−1)

−1R+wm−1 · · · R+w0
�s(L )T−1L

The proposition follows from next Lemma. ��
Lemma 3 Letw0, · · · , wm−1 be the ordered set of walls between s and s+L .
Then we have:

�∞(L ) = R+wm−1 · · · R+w0
�s(L ) (99)

Proof By (55) the coproducts are related as follows:

�s(L ) = (R+w0
)−1 · · · (R+∞)−1�∞(L )R+∞ · · · R+w0

.

By definition �∞(L ) = L ⊗L . In particular,

�∞(L )R+wk
�∞(L )−1 = R+wk+L = R+wk+m .

We use this identity to cancel all but finitely many factors in the previous
expression. ��
5.3.5

Assume the torus A splits the framing w = w′u′ + w′′u′′. Let Rs(u)

be be the corresponding R-matrix with slope s acting in the tensor product
KG(M (w′)) ⊗ KG(M (w′′)). Let us define the qKZ operator with a slope s
by

K s = h̄λ
(1)T

−1
u Rs(u). (100)

where u = u′/u′′.

Theorem 7 Let s, s′ be two slopes separated by a single wallw, thenwe have:

W−1K sW = K s′, W−1A s
LW = A s′

L (101)

where W = �w(Bw(λ))(R+w)−1 and we assume that passing from s to s ′ we
cross the wall w in the positive direction.
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Proof We have

K s = h̄λ
(1)T

−1
u Rs(u), K s′ = h̄λ

(1)T
−1
u Rs′(u), W = �w(Bw(λ))(R+w)−1.

We need to check thatK sW = WK s′ . We have:

K sW = h̄λ
(1)T

−1
u Rs(u)�w(Bw(λ))(R+w)−1 =

h̄λ
(1)T

−1
u �

op
w (Bw(λ))Rs(u)(R+w)−1 =

h̄λ
(1)T

−1
u (R−w)−1R−w�

op
w (Bw(λ))Rs(u)(R+w)−1 =

h̄λ
(1)T

−1
u (R−w)−1�w(Bw(λ))h̄�R−wRs(u)(R+w)−1 (94)=

�w(Bw(λ))(R+w)−1h̄λ
(1)T

−1
u R−wRs(u)(R+w)−1 = WK s′

where the last equality uses Rs′(u) = R−wRs(u)(R+w)−1 because by assump-
tion s and s′ are separated by a single wall w.

Let s and s′ be two slopes separated by a single wall w0. We choose a
path from slope s to s+L crossing some sequence of walls w0, w1..., wm−1.
Similarly, the path from s′ to s′ + L crosses the walls w1, w2..., wm with
wm = w0 +L . By Proposition 13 we have:

�s(A
s
L ) = Ww0(λ) · · ·Wwm−1(λ) �∞(L ) T−1L

�s′(A s′
L ) = Ww1(λ) · · ·Wwm (λ) �∞(L ) T−1L

To finish the proof of the theorem we need to note that

Ww0(λ)−1�s(A
s
L )Ww0(λ) = �s′(A

s′
L ),

which follows from an identity obtained by applying �w to (95). ��

Theorem 8 For arbitrary line bundles L ,L
′ ∈ Pic(X) and a slope s the

qKZ operators (100) commute with q-difference operators (83)

�s(A
s
L )K s = K s�s(A

s
L ).
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Proof Follows from Proposition 13. Indeed, we obtain

K s�s(A
s
L ) = K sWw0(λ)Ww1(λ) · · ·Wwm−1(λ)�∞(L )T−1L

(101)=

Ww0(λ)Ww1(λ) · · ·Wwm−1(λ)K s+L �∞(L )T−1L = �s(A
s
L )K s

��

5.4 Identification of Bs
L (λ) and ML (u, λ)

Our main result is the identification of quantum difference operator ML (λ)

withBs
L (λ)5. Recall that the quantum difference operatorsML (u, λ) forL ∈

Pic(X) and the shift operator S(u, λ) form a compatible system of difference
equations (65). The Theorem 4 then identifies the shift operator S(u, λ) with
qKZ operatorK s for some canonical choice of the slope s.We now generalize
this theorem to the case of quantum difference operator:

5.4.1

Theorem 9 Let ∇ ⊂ H2(X, R) be the alcove uniquely defined by the condi-
tions:

1) 0 ∈ H2(X, R) is one of the vertices of ∇
2) ∇ ⊂ −Cample ( opposite of the ample cone)

then for s ∈ ∇ we have:

Stab−1+,T 1/2,s
K Stab+,T 1/2,s = K s

Stab−1+,T 1/2,s
AL Stab+,T 1/2,s = A s

L

where K and AL are the quantum difference operators defined by (67), K s

is qKZ operator (100) and

A s
L = Const · T−1L Bs

L (u, z)

for some constant Const and L ∈ Pic(X).

Equivalently, up to amultiple, the operatorML (u, z) from (65) coincides with
operator (82) for the slope s specified in the above theorem.

5 In this section we often switch from the variables z, denoting Kähler parameters, to their
logarithms λ and back. The two are related via (72).
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Proof Let A = C
× be a torus splitting the framing w = uw′ + w′′. We

denote the components of XA of a Nakajima variety X =M (v,w) by Fv′ =
M (v′,w′) ×M (v′′,w′′). Note that we label them by the weight in the first
component. For a line bundle L we have two difference operators acting in
KG(w′) ⊗ KG(w′′) and commuting with the qKZ operator (100). First, by
Theorem 4:

AL = T−1L Ns
L (u, λ)

for Ns
L (u, λ) = Stab−1+,T 1/2,s

ML (u, λ) Stab+,T 1/2,s commutes with qKZ
operator at the slope s. Second, by Theorem 8 the operator:

AL = T−1L Bs
L (u, λ)

commutes with the same qKZ operator (here by Bs
L (u, λ)wemean the action

of the coproduct �s(Bs
L (u, λ)) in KG(w′)⊗ KG(w′′)). We want to prove that

they coincide up to a constant multiple:

Bs
L (u, λ) = Ns

L (u, λ)Const

Both NL (u, λ) and Bs
L (u, λ) are defined in integral K -theory, in partic-

ular they and their inverses are Laurent polynomials in u. It follows that the
operator:

U (u) = Bs
L (u, λ)N−1L (u, λ)

is a Laurent polynomial in u. By construction, this operator commutes with
qKZ at a slope s which means that:

U (uq) = h̄λ
(1)R

s(u)U (u)
(

h̄λ
(1)R

s(u)
)−1

.

From Khoroshkin–Tolstoy factorization for the slope s R-matrix we obtain:

Rs(∞) = h̄�

←
∏

0∈w
R+w Rs(0) =

→
∏

0∈w
(R−w)−1 h̄−�

where R+w and R−w are strictly upper and lower triangular wall R-matrices.
The products run over walls passing through 0 ∈ H2(X, R). Therefore, the
eigenvalues of conjugation by h̄λ

(1)R
s(u) at u = 0,∞ are either 1 or zmh̄m

′

with m 
= 0. Solutions in Laurent series in u thus necessarily correspond to
eigenvalue 1. In particular, they are regular at u = 0 and u = ∞. It follows
that U is a constant matrix in u.
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The constant matrixU commutes with h̄λ
(1)R

s(u). Diagonalizing the matrix

h̄λ
(1)R

s(0) we find that U is block upper triangular. Similarly diagonalizing

h̄λ
(1)R

s(∞) we find that U is block lower triangular. We conclude that U is
block diagonal.

Let us consider the diagonal block U0,0 of the matrix U corresponding to
the lowest component of the fixed point set:

U0,0 : KG(F0)→ KG(F0).

Since U commutes with qKZ, the block U0,0 commutes with the correspond-
ing block of the R-matrix Rs

0,0(u). From the definition of the R-matrix the
matrix element Rs

0,0(u) is the generating function for operators of classical
multiplication by tautological classes on F0. As KG(F0) is generated by tau-
tological classes [38] the operator U0,0 is itself an operator of multiplication
by a K-theory class in KG(F0). To finish the proof it remains to note that

U0,0 = UF0, (102)

whereUF0 denotes the same operatorU for quiver variety F0. Indeed, applying
(102) to X in place of F0 we conclude that U is an operator of multiplication
in KG(X). However, no such nonscalar operator can be diagonal in the stable
basis. We conclude that U = Const . ��
5.4.2

To finish the proof of the theorem we need to prove (102). It follows from
Propositions 14 and 15 below.

Proposition 14 The matrix of quantum difference operatorML (0, λ) has the
following form:

ML (0, λ)v2,v1 = 0 for v1 
= 0, ML (0, λ)0,0 = ML (λ− κ)|F0 . (103)

Proof First, let us consider the limit u→ 0 in the quantumdifference Equation
(65):

ML (u, z)J(u, λ) = J(u, zqL )L .

First, we have Lv2,v1 ∼ u〈L ,v2〉. Second, the matrix of fundamental solution
J(0, λ) is block upper triangular, moreover, the “vacuum matrix element” has
the form

J(0, λ)0,0 = J|F0 (λ− κ)

Thus, we conclude that the operator ML (u, λ) has the form (103).
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The limit J(0, λ) in the stable basis exists by (10.2.19) from [47]. The upper-
triangularity statement follows by inspection of the breaking nodes. Every one
of them has the weight of the form (1 − qmak) and it has to be the case that
k > 0 for all of them for the limit to be non-vanishing. In particular, the curves
which contribute to J(0, λ)0,0 never break, therefore, stay entirely within the
component F0. Thus J(0, λ)0,0 = J|F0 (λ + ...). The exact form of the shift
indicated by dots can be computed as the index limit computation for the vertex
Sect. 7.4 in [47] and gives exactly κ . ��

Let us denote B(u) = Bs
L (λ) for the slope s as in the Theorem 9 and

tautological line bundleL .

Proposition 15

B(0)v2,v1 = 0 for v1 
= 0, B(0)0,0 = B(λ− κ)|F0 . (104)

Proof First by Proposition 13, in the tensor product of two Uh̄ (̂gQ) modules
we have:

B(u) = Ww0(λ)Ww1(λ) · · ·Wwn−1(λ)�∞(L ). (105)

whereWw(λ) = �w(Bw)(R+w)−1 and w0, · · ·wn−1 is the ordered set of walls
crossed by a straight-line path from s to s +L .

By Corollary 92 we have:

�w(Bw(λ)) = J−w(λ)
(

Bw(λ+ κ̂(2))⊗ Bw(λ− κ̂(1))
)

J+w(λ)

Recall that the operators J−w(λ) and R+w are triangularwith the followingmatrix
elements:

J±w(λ) =
∞
⊕

s=0,
±〈α,θ〉>0

Jsα, R±w(λ) =
∞
⊕

s=0,
±〈α,θ〉>0

Rsα

where θ is the stability parameter of the quiver and α is the root defining the
wall w:

w = {x ∈ H2(X, R)|〈x, α〉 = m}.

The matrix elements are of the form:

Jsα, Rsα : KG(Fv) −→ KG(Fv+sα)
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and by Theorem 2 they have the following dependence on the equivariant
parameter u:

Jsα, Rsα ∼ us〈α,Lw〉.

whereLw is a line bundle on the wallw. We conclude that the matrix elements
of Ww(λ) have the following form:

Ww(λ)v2,v1 ∼ u〈sα,Lw〉, if v2 = v1 + sα. (106)

From (105) we see that the matrix element Bv2,v1 has the form:

Bv2,v1 =
∞
∑

s0,··· ,sn−1=0
Bv2,v1(s0, · · · , sn−1)

where Bv2,v1(s0, · · · , sn−1) is the contribution of the following combination
of matrix elements:

Bv2,v1(s0, · · · , sn−1) :

KG(Fv1)
�∞(L )−→

KG(Fv1)
Wwn−1 (λ)−→ KG(Fv1+sn−1αn−1)

Wwn−2 (λ)−→ KG(Fv1+sn−1αn−1+sn−2αn−2)

Wwn−3 (λ)−→ · · ·Ww0 (λ)−→ KG(Fv2)

such that

s0α0 + · · · + sn−1αn−1 = v2 − v1 (107)

From (106)we see that thismatrix element has the following dependence on the
spectral parameter: Bv2,v1(s0, · · · , sn−1) ∼ udv2,v1 (s0,··· ,sn−1), with exponent:

dv2,v1(s0, ..., sn−1) = s0〈α0,L0〉 + ...+ sn−1〈αn−1,Ln−1〉 + 〈v1,Ln〉
(108)

wherewedenote byLi the point atwhich the straight-line path (s, s+L ) inter-
sects the wall wi and Ln = L . The last term 〈v1,Ln〉 comes from �∞(L )

which is a diagonal operator with diagonal matrix elements �∞(L )v1,v1 ∼
u〈v1,L 〉.
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By our choice, we can assume that the slope s lies in an arbitrarily small
neighborhood of 0 ∈ H2(X, R). Thus we can assume thatL0 = 0 and write:

dv2,v1(s0, ..., sn−1) =

s1〈α1,L1 −L0〉 + ...+ sn−1〈αn−1,Ln−1 −L0〉 + 〈v1,Ln −L0〉
(109)

We rewrite this equality in the following form:

dv2,v1(s0, ..., sn−1) =

〈v1,Ln −Ln−1〉+

〈v1 + sn−1αn−1,Ln−1 −Ln−2〉+

+ · · · +

〈v1 + sn−1αn−1 + · · · + s1α1,L1 −L0〉

(110)

Now, we have the set of inequalities:

v1 + sn−1αn−1 ≥ 0

v1 + sn−1αn−1 + sn−2αn−2 ≥ 0

· · ·

v1 + sn−1αn−1 + · · · + s1α1 ≥ 0

(111)

where v ≥ 0 means that the inequality holds for all components of the
dimension vector: vi ≥ 0. If they are not satisfied, the matrix element
Bv2,v1(s0, s1, ..., sn−1) vanishes as the corresponding operator annihilates any
class supported on component Fv1 .

By construction ofLi we have 〈v,Li −Li−1〉 ≥ 0 for v ≥ 0 and 〈v,Li −
Li−1〉 > 0 for v > 0. We conclude that for v1 > 0

dv2,v1(s0, ..., sn−1) ≥ 〈v1,Ln −Ln−1〉 > 0

and therefore

lim
u→0

Bv2,v1 = 0 for v1 
= 0.

Next, let us analyze the case v2 = v1 = 0. Substituting v1 = 0 into (110) we
see that dv2,v1(s0, ..., sn−1) = 0 only when s1 = s2 = · · · = sn−1 = 0. Thus,
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from (107) we conclude: s0α0 = v2 = 0, so that s0 = 0. It means that only
the diagonal matrix elements (all si = 0) of Wwk (λ) contribute to the vacuum
matrix element B(u)0,0. From (105) we obtain:

B(0)0,0 = Bw0(λ− κ) · · ·Bwn−1(λ− κ)L = Bs
L−1

∣

∣

F0
(λ− κ)

The proposition is proven. ��
5.4.3

Corollary 4 The operatorBs
L (λ) does not depend on the choice of path made

in (82).

Proof Let Bs
L (λ) and Bs

L (λ)
′
be two elements given by formula (82) corre-

sponding to different choices of a path from s to s+L . Assume that the slope
s belongs to the anti-fundamental alcove ∇ ⊂ −Cample as in the theorem
above. By Theorem 9, D = Bs

L (λ)
′
Bs
L (λ)−1 is a constant. Recall that the

wall operators Bw(λ) are normally ordered (see Sect. 5.2.1). It means that for
a component of minimal weight γ we have Bw(λ)γ = γ . Thus D(γ ) = γ and
the constant is 1. Finally, by Theorem 7 this statement holds true for arbitrary
slope. ��
Corollary 5 For arbitrary line bundles L ,L ′ ∈ Pic(X) and slopes s ∈
H2(X, R) the corresponding q-difference operators commute:

A s
LA s

L ′ = A s
L ′A

s
L

Proof By Proposition 12A s
LA s

L ′ andA
s
L ′A

s
L give an operatorA s

L+L ′ with
two different choices of a path for Bs

L+L ′(λ). The result is independent on
the choice of a path by Corollary 4. ��

6 Cotangent bundles to Grassmannians

In this section we consider the simplest quiver, which consists of one vertex.
In this case the dimension vectors are given by a couple of natural numbers
(v,w) = (k, n) ∈ N

2, and the corresponding varieties are isomorphic to cotan-
gent bundles to Grassmannians of k -dimensional subspaces in n-dimensional
space:

M (v,w) = T ∗Gr(k, n) (112)

The framing torusA $ (C×)n acts onW = C
n in a standard way. This induces

an action of A on T ∗Gr(k, n). Note that this action preserves the symplectic
form on T ∗Gr(k, n). Let us denote byG = A×C

× where the extra factor acts
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by scaling the fibers of the cotangent bundle. This torus scales the symplectic
form with character which we denote h̄.

6.1 Algebra Uh̄ (̂gQ) and wall subalgebras Uh̄(gw)

6.1.1
Let us denote

X =M (w) =
∐

v

M (v,w) =
n
∐

k=0
T ∗Gr(k, n) (113)

Note that M (1) is a variety consisting of two points, thus KG(M (1)) is
two dimensional over KG(pt). Therefore, if the torus A splits the framing as
w = u1 + · · · + un then we have:

KG(X) = C
2(u1)⊗ · · · ⊗ C

2(un) (114)

so that the total dimension is 2n . Note that T ∗Gr(k, n)A consists of n!/k!/(n−
k)! points, such that XA is a set of 2n points pi . The fixed point basis of
(localized) KG(X) consists of sheaves Opi .

6.1.2
We start from the case n = 2. We have:

X = pt ∪ T ∗P1 ∪ pt

where pt stands for a Nakajima variety consisting of one point. Therefore, the
only nontrivial block of the R-matrix corresponds to T ∗P1. The action of torus
G = A × C

× is represented in Fig. 1. In this picture p1 and p2 are two fixed
points, corresponding to the points z = 0 and z = ∞ of the base P

1 ⊂ T ∗P1.
We also specify explicitly the characters of the tangent spaces to T ∗P1 at the
fixed points. For example the tangent space at p1 is spanned by the tangent
space to the base with character u1/u2 and the tangent space to the cotangent
fiber with character u2/(u1h̄).

To compute the stable envelopes of the fixed points we need to choose a
polarization T 1/2 and a chamber C. We choose the positive chamber C such
that u1/u2 → 0. The arrows in Fig. 1 represent the attracting and repelling
directions with respect to this chamber. We choose a polarization T 1/2 given
by the cotangent directions.

We have H2(T ∗P1, R) = R, thus we identify the set of slopes with real
numbers s ∈ R.
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Fig. 1 Toric representation
of T ∗P1. Arrows represent
the repelling and attractive
directions with respect to the
chamber C = u1/u2 → 0

6.1.3
Let us consider the restrictions of the stable envelopes to the fixed compo-

nents. By (11) we have:

StabC,T 1/2,s(p)
∣

∣

p = (−1)rkT 1/2
>0

( detN−
det T 1/2


=0

) 1
2
�
•
−N

∨−

By definition N− is the repelling part of the normal bundle to p, T 1/2
>0 is the

attracting part of the polarization and T 1/2

=0 is the non-stationary part of the

polarization.
From the Fig. 1 at p2 we haveN− = u2/u1, rkT

1/2
>0 = 1, T 1/2


=0 = u1/(u2h̄).
Thus we find:

StabC,T 1/2,s(p2)
∣

∣

p2
= (1− u2/u1)h̄

1/2 (115)

The support condition for the stable envelopes gives StabC,T 1/2,s(p2)
∣

∣

p1
= 0.

The unique K-theory class with these restrictions at the fixed points equals

StabC,T 1/2,s(p2) = (1−O(1)/u1)
√
h

whereO(1) is the tautological bundle restricting to the fixed points by the rule
O(1)|pi = ui
Next, from Fig. 1 at p1 we find: N− = u2/u1/h̄, rkT

1/2
>0 = 0, T 1/2


=0 =
N− = u2/u1/h̄. Thus:

StabC,T 1/2,s(p1)
∣

∣

p1
= 1− h̄u1/u2 (116)

The fractional line bundle corresponding to slope s isO(1)s . The degree con-
dition (13) for the point p1 gives:

degA
(

StabC,T 1/2,s(p1)
∣

∣

p2

)

⊂ degA
(

StabC,T 1/2,s(p2)
∣

∣

p2
× O(1)s |p2

O(1)s |p1
)

123



Quantum difference equation for Nakajima varieties 1269

Thus by (115):

degA
(

StabC,T 1/2,s(p1)
∣

∣

p2

)

⊂ degA
(

(1− u2/u1)
√
h (u2/u1)

s
)

= (s, s + 1)

For generic s this condition implies that StabC,T 1/2,s(p1)
∣

∣

p2
is a monomial

StabC,T 1/2,s(p1)
∣

∣

p2
= c(h̄)(u2/u1)

's+1( (117)

with unknown coefficient c(h̄).
The points p1 and p2 are connected by an equivariant P

1 with weights of
the tangent spaces given by (u1/u2)±1. This means that for any equivariant
K-theory class F , we have F |p1 = F |p2 at u1/u2 = 1. Applying this to
F = StabC,T 1/2,s(p1), from (116) and (117) we obtain

c(h̄) = 1− h̄

We conclude that

StabC,T 1/2,s(p1)
∣

∣

p2
= (1− h̄)(u2/u1)

's+1( (118)

The unique K-theory class which has restrictions (116) and (118) equals

StabC,T 1/2,s(p1) = (1− h̄O(1)/u2)

(O(1)

u1

)'1+s(

6.1.4
For the opposite chamber−C we have u1/u2→∞. It means that in Fig. 1

all arrows are reversed. In particular the stable envelope for −C is obtained
from the last formula by permuting the fixed points:

Stab−C,T 1/2,s(p1) = (1−O(1)/u2)
√
h

Stab−C,T 1/2,s(p2) = (1− h̄O(1)/u1)

(O(1)

u2

)'1+s( (119)
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6.1.5
In agreement with our general theory we see that the stable envelopes are

locally constant functions of the parameter s. From the last set of formulas we
see that it changes only when s crosses an integer point. We conclude that the
set of walls can be identified with Z ⊂ R and thus alcoves are of the form
(w, w + 1) ⊂ R.

The alcove specified by Theorem 9 has the form ∇ = (−1, 0). To compute
the R-matrix corresponding to this alcove we choose s ∈ ∇, then in the basis
of fixed points ordered as [p2, p1], from the above formulas we compute:

i∗StabC,T 1/2,s =
[(

1− u−1
)√

h̄ 1− h̄
0 1− h̄u

]

(120)

i∗Stab−C,T 1/2,s =
[

1− h̄u−1 0
1− h̄ (1− u)

√
h̄

]

(121)

where we denote u = u1/u2 and i∗ is the operation of restriction to fixed
points. The total R-matrix for slope s is defined as follows:

Rs(u) = Stab−1−C,T 1/2,s
StabC,T 1/2,s = (i∗Stab−C,T 1/2,s)

−1 (i∗StabC,T 1/2,s)

and we obtain:

Rs(u) =

⎡

⎢

⎢

⎣

(1− u) h̄
1
2

h̄ − u

u (h̄ − 1)

h̄ − u
h̄ − 1

h̄ − u

(1− u) h̄
1
2

h̄ − u

⎤

⎥

⎥

⎦

(122)

6.1.6
The wall R-matrices are defined by (21) and similarly to what we have

above:

R±w = (i∗Stab±C,T 1/2,s′)
−1 (i∗Stab±C,T 1/2,s)

where s and s′ are two slopes separated by a wall w. Let w be an integer
representing the wall and s = w − ε, s′ = w + ε for sufficiently small ε

(obviously enough to take 0 < ε < 1). Then from the above formulas we
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obtain:

R+w =
⎡

⎣

1
1− h̄

uw
√
h̄

0 1

⎤

⎦ R−w =
⎡

⎣

1 0
uw (1− h̄)√

h̄
1

⎤

⎦ (123)

Observe that these matrices are related by transposition as in (48).

6.1.7
The KT factorization of R-matrix s ∈ ∇ has the form (28):

Rs(u) =
→
∏

w<0

R−w R∞
←
∏

w≥0
R+w (124)

This infinite product is convergent in the topology of power series in u−1.
From (123) we obtain:

U =
←
∏

w≥0
R+w = · · · R+1 R+0 =

⎡

⎣

1
1− h̄√

h̄
(1+ u−1 + · · · )

0 1

⎤

⎦

=
⎡

⎣

1
(1− h̄)u√
h̄ (u − 1)

0 1

⎤

⎦

L =
→
∏

w<0

R−w = R−−1R
−
−2 · · · =

⎡

⎣

1 0
(1− h̄)√

h̄
(u−1 + · · · ) 1

⎤

⎦

=
⎡

⎣

1 0
(1− h̄)√
h̄ (u − 1)

1

⎤

⎦

Finally, the infinity slope R-matrix is given by (27). The attracting and repelling
directions are obvious from Fig. 1 and we obtain:

R∞ = −

⎡

⎢

⎢

⎢

⎣

u− 1
2 − u

1
2

u
1
2 h̄− 1

2 − u− 1
2 h̄

1
2

0

0
u− 1

2 h̄− 1
2 − u

1
2 h̄

1
2

u
1
2 − u− 1

2

⎤

⎥

⎥

⎥

⎦

One easily checks that in agreement with (122) we have Rs(u) = L R∞U .
This gives canonical LU decomposition of the R-matrix.
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6.1.8
The R-matrix for the whole Nakajima variety X given by (113) is of the

form

Rs(u) =
⎡

⎣

1
Rs

T ∗P1

1

⎤

⎦ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0

0
(1− u)h̄

1
2

h̄ − u

u(h̄ − 1)

h̄ − u
0

0
h̄ − 1

h̄ − u

(1− u)h̄
1
2

h̄ − u
0

0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Up to a scalar multiple one recognizes the standard R-matrix for U√h̄(̂gl2)
acting in the tensor product of two fundamental evaluation modules C

2(u1)⊗
C
2(u2). We conclude that the quiver algebra corresponding to cotangent bun-

dles to Grassmannians is Uh̄ (̂gQ) = U√h̄(̂gl2).

6.1.9
The codimension function (35) for X is given, obviously, by the following

diagonal matrix:

h̄� = diag(1, h̄
1
2 , h̄

1
2 , 1)

Weobtain that thewall R-matrices definedby theTheorem3have the following
explicit form:

R+w =

⎡

⎢

⎢

⎣

1 0 0 0

0 h̄
1
2 (1− h̄)u−w 0

0 0 h̄
1
2 0

0 0 0 1

⎤

⎥

⎥

⎦

In particular all wall R-matrices are conjugated to the zeroth one by a line
bundle:

R+w = O(w)R+0 O(w)−1 (125)

with O(w) = diag(1, uw
2 , uw

1 , 1). One recognizes that up to a multiple R+0
coincides with the standard R-matrix for U√h̄(sl2) in the tensor product of
two fundamental representations. Thus, the wall subalgebra, which is built by
FRT procedure from this R-matrix isUh̄(g0) $ U√h̄(sl2). As the R-matrices
for other walls are conjugates of R+0 , we conclude that Uh̄(gw) $ U√h̄(sl2)
for arbitrary wall w.
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6.1.10
To get rid of the square roots it is convenient to change the notations h̄→ h̄2,

which we assume starting from here and to the end of this section. With this
notation we have the algebra Uh̄ (̂gQ) = Uh̄(̂gl2) and a set of subalgebras
Uh̄(gw) $ Uh̄(sl2) indexed by walls w ∈ Z. It is convenient to organize this
data as follows: let E , F and K be the standard generators ofUh̄(sl2)whichwe
understand asUh̄(g0). Then by (125) the wall subalgebraUh̄(gw) is generated
by Ew, Fw and K :

Ew = O(w)EO(w)−1, Fw = O(w)FO(w)−1. (126)

Let us denote x+(w) = Ew, x−(w) = F−w. One can check that the relations
among these generators can be summarized as the Drinfeld’s realization of
Uh̄(̂gl2): the algebra Uh̄(̂gl2) is an associative algebra with 1 generated over
C(h̄) by the elements x±(k), a(l), K±1 (k ∈ Z, l ∈ Z\{0}) with the following
relations:

KK−1 = K−1K = 1

[a(k), a(m)] = 0, [a(k), K±] = 0

Kx±(k)K−1 = h̄±2x±(k)

[x+(k), x−(l)] = 1

h̄ − h̄−1
(

ψ(k + l)− ϕ(k + l)
)

[a(k), x±(l)] = ±[2k]h̄
k

x±(l + k)

(127)

with

∞
∑

m=0
ψ(m)z−m = K exp

(

(h̄ − h̄−1)
∞
∑

k=1
a(k)z−k

)

∞
∑

m=0
ϕ(−m)zm = K−1 exp

(

−(h̄ − h̄−1)
∞
∑

k=1
a(−k)zk

)

and h̄-number [n]h̄ := (h̄n − h̄−n)/(h̄ − h̄−1).
It may be convenient to visualizeUh̄(̂gl2) and its subalgebras as in the Fig. 2:

the wall Uh̄(gw) corresponds to a line with integer slope w.
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Fig. 2 The structure of
Uh̄(̂gl2). The line through
zero corresponds to the slope
2 subalgebra
Uq (sl2) ⊂ Uh̄(̂gl2)
generated by E2, F2, K

6.2 R-matrices

6.2.1
To write the formulas for R-matrices for a general variety (113) it is enough

to substitute all formulas from the previous section by their “universal” ver-
sions.

The universal R-matrix for Uh̄(sl2) is well known:

R = h̄−H⊗H/2
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k−1)/2

[k]h̄ ! Fk ⊗ Ek (128)

with [k]h̄ ! = [1]h̄[2]h̄ . . . [k]h̄ and H related to K as K = h̄H . Up to a scalar
multiple the codimension function is given by6 h̄2� = h̄−H⊗H/2 thus, we
conclude that there is the following universal formula for the wall R-matrices:

R+w =
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k−1)/2

[k]h̄ ! Fk
w ⊗ Ek

w, (129)

6 Note the substitution h̄ → h̄2 on the left side of this equality which was intro-
duced at the begining of Sect. 6.1.10. We have h̄2� = diag(1, h̄, h̄, 1) and h̄−H⊗H/2 =
diag(h̄−1/2, h̄1/2, h̄1/2, h̄−1/2) = h̄−1/2h̄2�.
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The lower triangularwall R-matrix is obtained by transposition R−w = (R+w)21:

R−w =
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k−1)/2

[k]h̄ ! Ek
w ⊗ Fk

w, (130)

6.2.2
The KT factorization (28) provides the following universal formula for the

total R-matrix:

Rs(u) =
←−
∏

w<s

R−w R∞
←−
∏

w≥s
R+w (131)

with R±w with given explicitly by (129). The R -matrix R∞ is the operator
of multiplication by the class of normal bundles (27). It can be conveniently
expressed in terms of generators a(n) corresponding to the infinite slope in
the Fig. 2:

R∞ = c h̄H⊗H/2 exp
(

(h̄ − h̄−1)
∞
∑

n=1

n

[2n]h̄ a(−n)⊗ a(n)
)

where c is some scalar multiple depending on normalization.

6.3 The quantum difference operator ML (z)

6.3.1
By definition h̄λ acts on K -theory of M (1) =M (1, 1)

∐

M (0, 1) as:

h̄λ =
{

z on M (1, 1)
1 on M (0, 1)

⇔ h̄λ =
(

z 0
0 1

)

= z
1
2 zH/2

From this and (129) we see that the ABRR equation for Uh̄(sl2) takes the
following form:

J+(z)z−H⊗1/2R = z−H⊗1/2 h̄−H⊗H/2 J+(z)

withR given by (128). This is an equation for strictly upper triangular operator
J (z), which means that:

J+(z) = 1+
∞
∑

k=1
J+k (z) Fk ⊗ Ek
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The Proposition 7 says that the ABRR equation determines the coefficients
Jk(z) uniquely. Computation gives:

J+(z) =
∞
∑

k=0

(−1)k h̄−k(k−1)/2(h̄ − h̄−1)k

[k]h̄ !
k
∏

i=1
(1− z−1K ⊗ K−1h̄2i )

Fk ⊗ Ek

6.3.2
By definition (78) we have J+w(λ) = J+w (λ − τw). In our case τw = sw

and this corresponds to a shift z → zh̄−sw = zq−w for integer wall w. We
conclude that:

J+w(z) =
∞
∑

k=0

(−1)k h̄−k(k−1)/2(h̄ − h̄−1)k

[k]h̄ !
k
∏

i=1
(1− z−1qwK ⊗ K−1h̄2i )

Fk
w ⊗ Ek

w (132)

6.3.3
The operator Bw(z) is given by (80). To compute it, we need the formulas

for antipode Sw of Uh̄(gw). They can be obtained directly from the wall R-
matrix (129). First, from 1 ⊗ �(R) = R13R12 and � ⊗ 1(R) = R13R23 we
obtain:

�(E) = K−1 ⊗ E + E ⊗ 1, �(F) = 1⊗ F + F ⊗ K , �(K ) = K ⊗ K (133)

and thus the antipode corresponding to this coproduct has the form:

S(E) = −K E, S(F) = −FK−1, S(K ) = K−1

6.3.4
The lower triangular solutions of the ABRR equation can be computed from

(132) by J−w(z) = Sw ⊗ Sw(J+w(z)21), which gives:

J−w(z) =
∞
∑

k=0

(−1)k h̄−2k2−k(k−1)/2(h̄ − h̄−1)k K k ⊗ K−k

[k]h̄ !
k
∏

i=1
(1− z−1qwK ⊗ K−1h̄2i−4k)

Ek ⊗ Fk

To compute the inverse of this operator we write

J−w(z)−1 = 1+
∞
∑

m=1
am Em ⊗ Fm

and determine the unknown coefficients an from the equation J−w(z)−1J−w(z) =
1. Comparing coefficients of En ⊗ Fn we find the following system of linear
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equations:

∑

k+m=n
am

(−1)k h̄−2k2−k(k−1)/2−4km(h̄ − h̄−1)k K k ⊗ K−k

[k]h̄ !
k
∏

i=1
(1− z−1qwK ⊗ K−1h̄2i−4k−4m)

= 0, n = 1, 2, . . .

The coefficients am are determined uniquely from this system. For instance,
for n = 1 we obtain

a1 = h̄−2(h̄ − h̄−1)K ⊗ K−1

1− z−1qwK ⊗ K−1h̄−2

For n = 2 we have

a2 − a1
h̄−6(h̄ − h̄−1)K ⊗ K−1

(1− z−1qwK ⊗ K−1h̄−6)
+

+ h̄−9(h̄ − h̄−1)2K 2 ⊗ K−2

(h̄ + h̄−1)(1− z−1qwK ⊗ K−1h̄−6)(1− z−1qwK ⊗ K−1h̄−4)
= 0

which gives

a2 = h̄−7(h̄ − h̄−1)2K 2 ⊗ K−2

[2]h̄ !(1− z−1qwK ⊗ K−1h̄−2)(1− z−1qwK ⊗ K−1h̄−4)

In general

ak = h̄−
k(3k+1)

2 (h̄ − h̄−1)k K k ⊗ K−k

[k]h̄ !
k
∏

i=1
(1− z−1qwK ⊗ K−1h̄−2i )

.

which can be proved by induction on k. Finally, we obtain

m
(

1⊗ Sw(J−w(z)−1)
)

=
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k+3)/2

[k]h̄ !
k
∏

i=1
(1− z−1qwK 2h̄−2i )

KkEk
wFk

w.

6.3.5
To compute the operator Bw(z) we need to shift parameter z by κ . By defi-

nition κ = (Cv−w)/2. Enough to compute the action of κ in one evaluation
module C

2(u) of Uh̄(̂gl2). This module corresponds to w = 1. The Cartan
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matrix corresponding to our case is C = 2. We therefore find

κ =
{

1/2 on M (1, 1)
−1/2 on M (0, 1)

⇔ κ =
(

1/2 0
0 −1/2

)

= H/2.

Thus, we conclude that the shift λ→ λ+ κ̂ is given by7

z→ zh̄2κ = zh̄H = zK 1.

Thus, from the definition (80) we obtain:

Bw(z) =
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k+3)/2

[k]h̄ !
k
∏

i=1
(1− z−1qwK h̄−2i )

KkEk
wFk

w.

6.3.6
The alcove specified by Theorem 9 corresponds to the interval∇ = (−1, 0).

Let s ∈ ∇ and L = O(1). There is only one wall w = −1 between s and
s − 1. Thus, the definition (82) and Theorem 9 give the following explicit
formula for the quantum difference operator:

MO(1)(z) = Const O(1)
∞
∑

k=0
(−1)k(h̄ − h̄−1)k h̄−k(k+3)/2

[k]h̄ !
k
∏

i=1
(1− z−1q−1K h̄−2i )

KkEk−1Fk−1

(134)

We expect that the constant factor in Theorem 9 is Const = 1 for the case
k ≤ n/2 and non-trivial for k > n/2.8 In the rest of this section we assume
that Const = 1 for simplicity.

7 The factor 2 in h̄2κ is from our conventions introduced at the beginning of Sect. 6.1.10.
8 This expectation is in agreement with explicit computations of capped vertex functions [47]
for the first values of k and n.
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6.3.7
Using (126) we can also rewrite this operator as:

MO(1)(z) =
(
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k+3)/2

[k]h̄ !
k
∏

i=1
(1− z−1q−1K h̄−2i )

KkEk Fk
)

O(1). (135)

This form is particularly convenient for explicit computations as it expresses
the difference operator through the standard Uh̄(sl2).

6.3.8
An important feature of quasimap quantum K-theory of Nakajima varieties

is the degeneration formula, see Sect. 6.5 in [47]. This formula relates the count
of quasimaps from a curve C and from its nodal degeneration C → C1∪p C2.
Themain element of the degeneration formula is the “glue operator”G defined
by (6.5.20) in [47]. We have the following result:

Theorem 10 (Corollary 8.1.19, [47])

lim
q→0

ML (z) = L

lim
q→∞ ML (zq−1)L −1 = G

(136)

It is elementary to check that the first limit in this Theorem is in agreement
with our formula (135). From the second limit we obtain a formula for the
glue operator in terms of representation theory:

G =
∞
∑

k=0

(−1)k(h̄ − h̄−1)k h̄−k(k+3)/2

[k]h̄ !
k
∏

i=1
(1− z−1K h̄−2i )

KkEk Fk .

6.3.9
Let us compute the matrices of the operator MO(1)(z/q) for the first few

cases. Let e1 and e2 be the standard basis ofC2 with standard action ofUh̄(̂gl2):

Ee1 = 0, Ee2 = e1, Fe1 = e2, Fe2 = 0, Ke1 = h̄e1, Ke2 = h̄−1e2

The K-theory of T ∗P1 corresponds to the 0-weight subspace of C
2(u1) ⊗

C
2(u2). We use the stable map to identify the basis e1⊗ e2 and e2⊗ e1 in this

spacewith the basis of stable envelopes for an anti-canonical slope s ∈ (−1, 0)
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which we computed in Sect. 6.1.3 . As E2 = F2 = 0 and�(K ) = K⊗K = 1
we have:

B0(z) = 1− (h̄ − h̄−1)h̄−2

1− z−1h̄−2
�(E)�(F)

where � is coproduct (133). In the basis e1 ⊗ e2, e2 ⊗ e1 we compute

�(E)�(F) =
[

h̄−1 1
1 h̄

]

Thus, in the stable basis we have:

B0(z)stab =

⎡

⎢

⎢

⎢

⎣

h̄4z − zh̄2 − h̄2 + z

h̄2
(

zh̄2 − 1
)

(

h̄ − h̄−1
)

z

1− zh̄2
(

h̄ − h̄−1
)

z

1− zh̄2
1− z

1− zh̄2

⎤

⎥

⎥

⎥

⎦

Next, the matrix of the operator of multiplication byO(1) in the basis of fixed
points equals:

O(1) f p =
[

u1 0
0 u2

]

To compute the action of this operator in the stable basis we use explicit
formulas from Sect. 6.1.3. The transition matrix between the basis of fixed
points and the stable basis for s ∈ (−1, 0) is computed by:9

Ti, j =
StabC,T 1/2,s(p j )

∣

∣

pi

�•(Tpi X
∨)

=
⎡

⎢

⎣

u1
−u2 + u1

0

− (h̄ − 1) (h̄ + 1) u2u1
(−u2 + u1)

(

u2h̄2 − u1
)

u2h̄

u2h̄2 − u1

⎤

⎥

⎦

(137)

Thus, the action of O(1) in the stable basis is given by

O(1)stab = T−1O(1) f p T =
⎡

⎣

u1 0
(h̄ − 1) (h̄ + 1) u1

h̄
u2

⎤

⎦

9 Note that we need to substitute h̄ → h̄2 in the geometric formulas to relate them to the action
of Uh̄(̂gl2), as we explain in Sect. 6.1.10.
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Finally, we compute:

MO(1)(z/q)stab = B0(z)stabO(1)stab =

⎡

⎢

⎢

⎢

⎣

u1 (z − 1)

zh2 − 1

(

h̄ − h̄−1
)

zu2
(

1− zh̄2
)

(

h̄ − h̄−1
)

u1
(

1− zh̄2
)

(z − 1) u2
zh̄2 − 1

⎤

⎥

⎥

⎥

⎦

For T ∗P2 the computation is the same: we consider the subspace spanned
by e1⊗ e2⊗ e2, e2⊗ e1⊗ e2, e2⊗ e2⊗ e1 in C

2(u1)⊗C
2(u2)⊗C

2(u3). The
element K acts on this subspace via�(K ) = K⊗K⊗K , i.e., asmultiplication
by h̄−1. As F2 = 0 we find:

B0(z) = 1− (h̄ − h̄−1)h̄−3

1− z−1h̄−3
�2(E)�2(F)

The computation gives:

�2(E)�2(F) =
⎡

⎣

h̄−2 h̄−1 1
h̄−1 1 h̄
1 h̄ h̄2

⎤

⎦

Next, computing the stable envelopes for T ∗P2 as in Sect. 6.1.3 for s ∈ (−1, 0)
would give

StabC,T 1/2,s(p1) = (1−O(1)h̄2/u2)(1−O(1)h̄2/u3)
StabC,T 1/2,s(p2) = h̄(1−O(1)/u1)(1−O(1)h̄2/u3)
StabC,T 1/2,s(p3) = h̄2(1−O(1)/u1)(1−O(1)/u2)

Using these formulas we find:

O(1)stab = T−1O(1) f p T =

⎡

⎢

⎢

⎢

⎢

⎣

u1 0 0
(

h̄2 − 1
)

u1
h̄

u2 0

(

h̄2 − 1
)

u1
u2
(

h̄2 − 1
)

h̄
u3

⎤

⎥

⎥

⎥

⎥

⎦

where

O(1) f p =
⎡

⎣

u1 0 0
0 u2 0
0 0 u3

⎤

⎦
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and T is the transitionmatrix computed as in (137). Combining all this together
for MO(1)(z/q)stab = B0(z)stabO(1)stab we find:

MO(1)(z/q)stab =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(1− h̄z) u1
1− zh̄3

(

h̄ − h̄−1
)

h̄zu2

1− zh̄3

(

h̄ − h̄−1
)

zu3

1− zh̄3
(

h̄ − h̄−1
)

u1
(

1− zh̄3
)

(1− h̄z) u2
1− zh̄3

(

h̄ − h̄−1
)

h̄zu3

1− zh̄3
(

h̄ − h̄−1
)

h̄u1

1− zh̄3

(

h̄ − h̄−1
)

u2

1− zh̄3
(1− h̄z) u3
1− zh̄3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

7 Instanton moduli spaces

In this section we consider the example of Jordan quiver: the quiver consisting
of one vertex and a single loop. The dimension vectors are given by two non-
negative integer numbers v = m, w = r . The corresponding varietyM (m, r)
is the moduli space of framed rank r torsion-free sheaves F on P

2 with fixed
second Chern class c2(F) = m. A framing of a sheaf F is a choice of an
isomorphism:

φ : F |L∞ → O⊕rL∞ (138)

where L∞ is the line at infinity of C
2 ⊂ P

2. This moduli space is usually
referred to as instanton moduli space.

Let A $ (C×)r be the framing torus acting on M (m, r) by changing the
isomorphism (138). This torus acts on the instanton moduli space preserving
the symplectic form.

Let us denote by G = A× (C×)2 where the second factor acts on C
2 ⊂ P

2

by scaling the coordinates. This induces an action ofG onM (m, r). The action
of this torus scales the symplectic form with a character which we denote by
h̄.

We denote the equivariant parameters corresponding to A by u1, · · · , ur ,
and to torus G/A by t1, t2 such that the weight of the symplectic form is:

h̄ = t1t2

7.1 Algebra Uh̄ (̂gQ) and wall subalgebras Uh̄(gw)

7.1.1
In the special case r = 1 the instanton moduli space is isomorphic to the

Hilbert scheme of m points on the complex plane M (m, 1) = Hilbm(C2).
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As a vector space, the K -theory of Hilbert schemes can be identified with
polynomials in an infinite number of variables.

∞
⊕

m=0
KG(Hilbm(C2)) = F(u1)

de f= Q[p1, p2, · · · ] ⊗Q[u±11 , t±11 , t±12 ]

(139)

If we introduce a grading in the polynomial ring Q[p1, p2, · · · ] by deg(pk) =
k. Then the m-th term on the left side of (139) corresponds to degree m.

7.1.2
The fixed point set Hilbm(C2)G is discrete. Its elements are labeled by

partitions ν with |ν| = m. The structure sheaves of the fixed points Oν form
a basis of the localized K -theory. The polynomials representing the elements
of this basis under isomorphism (139) are the Macdonald polynomials Pν

in Haiman normalization [21]. To fix the norms we write the first several
Macdonald polynomials here:

P[1] = p1, P[2] = 1+ t1
2

p21 +
1− t1
2

p2,

P[1,1] = 1+ t2
2

p21 +
1− t2
2

p2

P[3] = (1+ t1)(1+ t1 + t21 )

6

p31 +
(1− t1)(1+ t1 + t21 )

2

p1 p2 + (1+ t1)(1− t1)2

3
p3

P[1,1,1] = (1+ t2)(1+ t2 + t22 )

6

p31 +
(1− t2)(1+ t2 + t22 )

2

p1 p2 + (1+ t2)(1− t2)2

3
p3

P[2,1] = 1+ t1t2 + 2t1 + 2t2
6
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p31 +
1− t1t2

2
p2 p1 + (1− t1)(1− t2)

3
p3

7.1.3
Assume, that the torus A splits the framing by w = u1 + · · · + ur then in

the notations of Sect. 2.3.2 we obtain:

∞
⊕

n=0
KG(M (n, r)) = F(u1)⊗ · · · ⊗ F(ur ) (140)

7.1.4
Let us set Z = Z

2, Z∗ = Z \ {(0, 0)} and:
Z+ = {(i, j) ∈ Z; i > 0 or i = 0, j > 0}, Z− = −Z+

Set

nk = (t
k
2
1 − t

− k
2

1 )(t
k
2
2 − t

− k
2

2 )(h̄− k
2 − h̄

k
2 )

k

and for vector a = (a1, a2) ∈ Z denote by deg(a) the greatest common divisor
of a1 and a2, in particular deg((m, 0)) = deg((0,m)) = m. We set εa = ±1
for a ∈ Z±. For a pair of non-collinear vectors we set εa,b = sign(det(a, b)).

The “toroidal” algebra Uq(̂̂gl1) is an associative algebra with 1 generated by
elements ea and Ka with a ∈ Z∗, subject to the following relations [59]:
• elements Ka are central and

K0 = 1, KaKb = Ka+b

• if a, b are two collinear vectors then:

[ea, eb] = δa+b
K−1a − Ka

ndeg(a)

(141)

• if a and b are such that deg(a) = 1 and the triangle {(0, 0), a, a + b} has
no interior lattice points then

[ea, eb] = εb,aKα(b,a)

�a+b

n1

where

α(a, b) =
{

εa(εaa+ εbb− εa+b(a+ b))/2 if εa,b = 1
εb(εaa+ εbb− εa+b(a+ b))/2 if εa,b = −1
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Fig. 3 The line with slope 2
corresponds to the
Heisenberg subalgebra
generated by ek,2k for
k ∈ Z \ {0}

and elements �a are defined by:

∞
∑

k=0
�kaz

k = exp
(
∞
∑

i=1
ni ei a z

i
)

for a ∈ Z such that deg(a) = 1.

7.1.5
For w ∈ Q ∪ {∞} we denote by d(w) and n(w) the denominator and

numerator of w. We set d(∞) = 0 and n(∞) = 1. From (141) we see that

αw
k = e(d(w)k,n(w)k), k ∈ Z\{0}

generate a Heisenberg subalgebra of Hw ⊂ Uq(̂̂gl1) with the following rela-
tions:

[αw−k, αw
k ] =

Kkd(w)
(1,0) − K−kd(w)

(1,0)

nk

It is convenient to visualize the algebraUq(̂̂gl1) as in the Fig. 3. TheHeisenberg
subalgebras ofUq(̂̂gl1) are labeled byw ∈ Q and correspond to lineswith slope
w in this picture.

7.1.6
The action of Uq(̂̂gl1) on the K -theory (139) was constructed in [59]. The

central elements act in this representation by:
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K(1,0) = t
− 1

2
1 t

− 1
2

2 , K(0,1) = 1 (142)

In particular, the “vertical” generators commute in this representation:

[e(0,m), e(0,n)] = 0

The “horizontal” Heisenberg subalgebra:

[e(m,0), e(n,0)] = −m
(tm/2
1 − t−m/2

1 )(tm/2
2 − t−m/2

2 )
δn+m

acts explicitly as follows:

e(m,0) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

(tm/2
1 − t−m/2

1 )(tm/2
2 − t−m/2

2 )
p−m m < 0

−m ∂

∂pm
m > 0

(143)

The action of vertical subalgebra is diagonal in Macdonald polynomials:

e(0,l)(Pλ) = u−l1 sign(l)

(

1

1− t−l1

∞
∑

i=1
t−lλi1 t−l(i−1)2

)

Pλ (144)

The infinite sum here should be understood as the series expansion of a rational
function:

∞
∑

i=1
t−lλi1 t−l(i−1)2 =

length(λ)
∑

i=1
t−lλi1 t−l(i−1)2 + t−length(λ)l

2

1− t−l2

.

It is clear that e(0,l) and e(l,0) generate the whole Uq(̂̂gl1). Thus, the last two
formulas determine the action of Uq(̂̂gl1) on the Fock space.

7.1.7
It is expected that the geometric algebra Uh̄ (̂gQ) is isomorphic to Uq(̂̂gl1),

see [43] for discussion. Among other things, this isomorphism implies that
the R-matrix of Uh̄ (̂gQ) evaluated in the tensor product of the Fock modules
coincides with the geometric R-matrix for the instanton moduli spaces. In
particular, comparing the “universal formula” for the R-matrix of Uq(̂̂gl1)
obtained in [42]with theKT-factorization (28),wefind that thewall R-matrices
ofUh̄ (̂gQ) coincide with the R-matrices of the slope Heisenberg algebras Hw
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(to see that it is enough to compare the limits (41) of the R-matrices). This
way, this leads to an isomorphism of the wall subalgebrasUh̄(gw) ⊂ Uh̄ (̂gQ)

and Heisenberg subalgebras Hw ⊂ Uq(̂̂gl1).
In the remaining part of this section we derive formulas for the quantum

difference equation for the instanton moduli spaces assuming the above iso-
morphism exists.

7.2 R-matrices

7.2.1
Recall that the quantum Heisenberg algebra is an algebra generated by

elements e, f and a central element K modulo the following relations:

[e, e] = [ f, f ] = 0, [e, f ] = K − K−1

c − c−1
(145)

The Fock space F = Q[x] ⊗Q[c±1] is a natural module over the Heisenberg
algebra with the following action:

e(p) = xp, f (p) = −dp

dx
, K (p) = cp

so that c is a formal parameter fixing the value of central element K in F. The
Heisenberg algebra is a Hopf algebra with the following coproduct:

�(e) = e ⊗ 1+ K−1 ⊗ e

�( f ) = f ⊗ K + 1⊗ f

�(K ) = K ⊗ K

antipode:

S(e) = −Ke, S( f ) = −K−1 f, S(K ) = K−1

and counit:

ε(e) = ε( f ) = 0, ε(K ) = 1

We consider the tensor product F⊗ F = Q[x, y] ⊗Q[c±1], and define codi-
mension function by c�(xi y j ) = ci+ j x i y j . We consider the following upper
and lower triangular R-matrices.

R+ = c−� exp(−(c − c−1) f ⊗ e), R− = c−� exp(−(c − c−1) e ⊗ f )
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Proposition 16 The R-matrices satisfy the QYBE in F⊗3:

R±23R
±
13R
±
12 = R±12R

±
13R
±
23

and have the following properties:

R+� = �21R+, R−�21 = �R−

where �21 is the opposite coproduct, and

1⊗�(R+) = R+13R
+
12, �⊗ 1(R+) = R+13R

+
23

1⊗�(R−) = R−12R
−
13, �⊗ 1(R−) = R−23R

−
13

7.2.2
The Picard group Pic(X) = Z is generated byO(1). It acts on H2(X, R) =

R by shifts. The explicit computation of stable map for M (m, r) [14,62]
shows that Stabs is a locally constant function which changes only at the
walls:

walls = {w = a

b
∈ R : a ∈ Z, b ∈ {1, 2, ...,m}}

Therefore, the set ofwalls forM (r) =
∞
∐

m=0
M (m, r) is identifiedwith rational

numbers Q ⊂ R.

7.2.3
We conclude that the R-matrix R+w for the wallw ∈ Q corresponding to the

Heisenberg subalgebra Uh̄(gw) takes the form:

R+w =
∞
∏

k=1
exp(−nk αw

k ⊗ αw−k) = exp
(

−
∞
∑

k=1
nk αw

k ⊗ αw−k
)

(146)

The lower triangular R-matrix is obtained by the transposition:

R−w =
∞
∏

k=1
exp(−nk αw−k ⊗ αw

k ) = exp
(

−
∞
∑

k=1
nk αw−k ⊗ αw

k

)

(147)

As the central element of the elliptic Hall algebra acts in the Fock space by
K(1,0) = h̄−1/2, the central parameter c of the quantum Heisenberg algebra
generatedby e = αw−k and f = αw

k is givenby c = h̄−kd(w)/2 = (t1t2)−kd(w)/2.
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7.2.4
Let us fix a slope s ∈ H2(X, R) = R. TheKhoroshkin-Tolstoy factorization

(28) provides the following universal formula for the total R-matrix:

Rs(u) =
→
∏

w∈Q
w<s

R−w R∞
←
∏

w∈Q
w>s

R+w (148)

The infinite slope R -matrix R∞ is the operator of multiplication by normal
bundles (27). From explicit formula for action of α∞k (144) we can obtain:

R∞ = exp
(

−
∞
∑

k=1
nk α∞−k ⊗ α∞k

)

This, together with formulas from the previous section give the following
universal expression for a slope s R-matrix:

Rs(u) =
←s
∏

w∈Q∪{∞}
exp

(

−
∞
∑

k=1
nk αw−k ⊗ αw

k

)

.

As we mentioned above, this universal factorization of toroidal R-matrix is
expected to coincide with one obtained in [42].

Remark 7 The geometric R-matrices associated to a Nakajima variety with
a quiver Q can be expressed as infinite products of R-matrices associated
with the universal cover quiver ̂Q, see Sect. 4.3 in [37]. This leads to infinite
product formulas for R-matrices different from the KT-factorization described
above. For the Jordan quiver Q, the universal cover ̂Q is the A∞-type quiver,
and thus the R-matrices for the instanton moduli factor to infinite products
of the Uh̄(̂gl∞) R-matrices. In equivariant cohomology an example of such
factorization is considered in [61]. A similar formula holds in equivariant K -
theory.

7.3 The quantum difference operator ML (z)

7.3.1
In this section we derive the solution of the ABRR equation. We assume

that A splits the framing by r = r1u1 + r2u2 so that

KG(M (r)A) = F⊗r1(u1)⊗ F⊗r2(u2).

123



1290 A. Okounkov, A. Smirnov

Let F = M (m1, r1) × M (m2, r2) be a component of M (m, r)A. As
dimM (m, r) = 2rm we obtain that the corresponding eigenvalue of �

equals:

� = codim(F)

4
= 2rm − 2r1m1 − 2r2m2

4
= m1r2 + m2r1

2
. (149)

The ABRR Eq. (73) for a wall w ∈ Q takes the form:

h̄�R−w h̄−λ
(1) J

−
w (z) = J−w (z)h̄�h̄−λ

(1) (150)

We are looking for a strictly lower-triangular solution J−w (z) ∈ Uh̄(gw)⊗2
which means that J−w (z) is of the form:

J−w (z) = exp
(
∞
∑

k=1
Jk(z) αw−k ⊗ αw

k

)

We have:

R−w h̄−λ
(1) J

−
w (z)h̄λ

(1) = h̄−� J−w (z)h̄� (151)

and

h̄−λ
(1) J

−
w (z)h̄λ

(1) = exp
(
∞
∑

k=1
Jk(z)z

−kd(w) αw−k ⊗ αw
k

)

. (152)

We note that αw−k ⊗ αw
k acts by

KG(M (m1, r1)×M (m2, r2)) −→ KG(M (m1 + kd(w), r1)

×M (m2 − kd(w), r2))

Thus, (149) for the corresponding matrix element we have:

h̄−�αw−k ⊗ αw
k h̄

� = h̄
kd(w)r1−kd(w)r2

2 αw−k ⊗ αw
k .

We note that K(1,0) acts on F by the scalar h̄−1/2 and thus it acts on F⊗r via
�r (K1,0) = K⊗r(1,0), i.e., by the scalar h̄

−r/2. In this view, we can write the last
equation in universal form

h̄−�αw−k ⊗ αw
k h̄

� = K−kd(w)
(1,0) ⊗ Kkd(w)

(1,0) αw−k ⊗ αw
k .
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We conclude

h̄−� J−w (z)h̄� = exp
(
∞
∑

k=1
Jk(z) K

−kd(w)
(1,0) ⊗ Kkd(w)

(1,0) αw−k ⊗ αw
k

)

. (153)

Substituting (152) , (153) and (147) to the ABRR Eq. (151) gives the linear
system for the coefficients Jk(z):

−nk + Jk(z)z
−kd(w) = Jk(z)K

−kd(w)
(1,0) ⊗ Kkd(w)

(1,0)

which gives

J−w (z) = exp
(

−
∞
∑

k=1

nk K
kd(w)
(1,0) ⊗ K−kd(w)

(1,0)

1− z−kd(w)Kkd(w)
(1,0) ⊗ K−kd(w)

(1,0)

αw−k ⊗ αw
k

)

.

7.3.2
The shift λ → λ − τw corresponds to substitution z → zq−w. Thus by

definition (78) we obtain:

J−w(z) = exp
(

−
∞
∑

k=1

nk K
kd(w)
(1,0) ⊗ K−kd(w)

(1,0)

1− z−kd(w)qkn(w)Kkd(w)
(1,0) ⊗ K−kd(w)

(1,0)

αw−k ⊗ αw
k

)

and

J−w(z)−1 = exp
(
∞
∑

k=1

nk K
kd(w)
(1,0) ⊗ K−kd(w)

(1,0)

1− z−kd(w)qkn(w)Kkd(w)
(1,0) ⊗ K−kd(w)

(1,0)

αw−k ⊗ αw
k

)

.

7.3.3
From Sect. 7.2.1 it is clear that the antipode of Uh̄(gw) has the following

form:

Sw(αw
k ) = −K−kd(w)

(1,0) αw
k

From this we obtain:

m
(

1⊗ Sw(J−w(z)−1)
) = : exp

(

−
∞
∑

k=1

nk K
kd(w)
(1,0)

1− z−kd(w)qkn(w)K 2kd(w)
(1,0)

αw−kαw
k

)

:
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The symbol :: stands for the normal ordering meaning that all “annihilation”
operators αw

k with k > 0 act first.

7.3.4
The Cartan matrix of the Jordan quiver is C = 0 and therefore κ = (Cv −

w)/2 = −r/2. Thus the shift λ → λ + κ corresponds to z → zh̄−r/2 =
z K(1,0). From (80) we obtain:

Bw(z) =: exp
(

−
∞
∑

k=1

nk K
kd(w)
(1,0)

1− z−kd(w)qkn(w)Kkd(w)
(1,0)

αw−kαw
k

)

:

7.3.5
Let L = O(1) be the generator of the Picard group. Let ∇ ⊂ R be the

alcove specified by Theorem 9. If s ∈ ∇, then the interval (s −L , s) contains
all walls w ∈ Q such that −1 ≤ w < 0. We assume that Const in Theorem
9 for the case of M (n, r) is trivial for all values of n and r .10 Therefore, by
definition (82) we obtain the following explicit formula for quantum difference
operator:

MO(1)(z) = O(1)
←
∏

w∈Q
−1≤w<0

:exp
(

−
∞
∑

k=1
nk h̄
−krd(w)/2

1− z−kd(w)qkn(w)h̄−krd(w)/2
αw−kαw

k

)

:

(154)

where we used that in the K-theory of instanton moduli space M (m, r) the
central element acts by the scalar K(1,0) = h̄−r/2.

7.3.6
Let us consider some limits of the difference operator. First, for all terms in

in the previous formula d(w) > 0 and n(w) < 0. Thus we have:

lim
q→0

MO(1)(z) = lim
z→0

MO(1)(z) = O(1)

Second, to compute the limit of MO(1)(zq−1) as q → ∞ we note that for
all terms in (154) d(w) + n(w) ≥ 0. Moreover d(w) + n(w) = 0 only for

10 This expectation is in agreement with explicit computations of the capped vertex functions
[47] for the first several values of n and r .
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w = −1. We conclude that:

lim
q→∞ MO(1)(zq

−1) = O(1) : exp
(

−
∞
∑

k=1

nk h̄−kr/2

1− z−k h̄−kr/2
α−1−kα

−1
k

)

:

From (136) and O(1)αw
k O(1)−1 = αw+1

k we find a formula for the glue
operator in this case:

G =: exp
(

−
∞
∑

k=1

nk h̄−kr/2

1− z−k h̄−kr/2
α0−kα0

k

)

:

The action of “horizontal” Heisenberg algebra α0
k on the K -theory is given by

(143). Using these formula glue operator can be easily computed explicitly.

7.3.7
Let us consider the example of X = Hilb2(C2). The walls which contribute

to (154) are w = −1 and w = −1/2. The quantum difference operator takes
the form:

AO(1) = T−1z O(1)B−1(z)B− 1
2
(z)

Using the identity (95) we can also write it in the form:

AO(1) = B0(z)B 1
2
(z)O(1)T−1z

which means that:

MO(1)(zq
−1) = B0(z)B 1

2
(z)O(1)

Similarly, for X = Hilb3(C2) we have:

MO(1)(zq
−1) = B0(z)B 1

3
(z)B 1

2
(z)B 2

3
(z)O(1)

7.3.8
The torus acting on X is two-dimensional. The corresponding coordinates

are t1 and t2. The framing torus does not act on X since r = 1.We consider the
one-dimensional torus corresponding to ker(h̄). The coordinate on this torus
is given by t1/t2. For this torus let Stab±(λ) be the stable envelope of a fixed
point λ with a slope from the anti-canonical alcove, chambers (t1/t2)± → 0
and the standard polarization. Up to a multiple, as the elements of the Fock
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space, Stab+(λ) and Stab−(λ) coincide with the so called plethystic Schur
polynomials:

sλ
( p1
1− t1

,
p2

1− t21
, . . .

)

, sλ
( p1

1− t−12

,
p2

1− t−22

, . . .
)

respectively.Here sλ(p1, p2, . . . ) denotes the standard Schur polynomial asso-
ciated with a partition λ. See Proposition 3.3 in [24] for a proof.

Using a computer we find the following explicit examples in the basis of
plethystic Schur polynomials corresponding to the chamber (t1/t2)→ 0.11 If
the basis of partitions of 2 is ordered as [1, 1], [2] we compute:

B0(zh̄
1/2) = z − 1

(

z2t12t22 − 1
)

(zt1t2 − 1)

[

z2t1t2 − 1 − (t1t2 − 1) z
− (t1t2 − 1) z z2t1t2 − 1

]

B 1
2
(zh̄1/2) = 1+ z2 (t1t2 − 1)

z2t12t22 − q

[−1 t2
t1 −t1t2

]

O(1) =
[

t2 0
−t1t2 + 1 t1

]

If the basis of partitions of 3 is ordered as [1, 1, 1], [2, 1], [3] we compute:

B0(zh̄
1/2) = (z − 1) (zt1t2 + 1) (t1t2 − 1)

(

z3t13t23 − 1
) (

z2t12t22 − 1
)

(zt1t2 − 1)
×

⎡

⎢

⎢

⎣

(

z2t1t2−1
)(

z3t12t22−1
)

(t1t2−1)(zt1t2+1) −z (z2t1t2 − 1
) z2

(

zt12t22−1
)

zt1t2+1
−z (z2t1t2 − 1

) z4t12t22−z3t12t22+z2t12t22−2 z2t1t2+z2−z+1
t1t2−1 −z (z2t1t2 − 1

)

z2
(

zt12t22−1
)

zt1t2+1 −z (z2t1t2 − 1
)

(

z2t1t2−1
)(

z3t12t22−1
)

(t1t2−1)(zt1t2+1)

⎤

⎥

⎥

⎦

B1/3(zh̄
1/2) = 1+ z3 (t1t2 − 1)

z3t13t23 − q

⎡

⎣

−1 t2 −t22
t1 −t1t2 t1t22

−t12 t12t2 −t22t12

⎤

⎦

B1/2(zh̄
1/2) = 1+ z2t1t2 (t1t2 − 1)

z2t12t22 − q
×

⎡

⎢

⎢

⎣

− t1t2+t1−1
t12t2

t1t2−1
t12

t2
t12

(t1t2−1)(t1t2+t1−1)
t22t12

− (t1t2−1)2
t12t2

− t1t2−1
t12

− (t1t2+t1−1)(t1t2−t1−1)
t1t22

(t1t2−1)(t1t2−t1−1)
t1t2

t1t2−t1−1
t1

⎤

⎥

⎥

⎦

B2/3(zh̄
1/2) = 1+ z3 (t1t2 − 1) t1t2

z3t13t23 − q2
×

11 We use a Maple package, implemented by the second author, which computes the action of
Uq (̂̂gl1) on the Fock space. The package is available from the author upon request.
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⎡

⎢

⎢

⎣

t1t22−t1−t2
t12t2

− t2(t1t2−t1−1)
t12

− t22

t12

− (t1t2+t1−1)
(

t1t22−t1−t2
)

t22t12
(t1t2+t1−1)(t1t2−t1−1)

t12
t2(t1t2+t1−1)

t12(

t12+t1t2−1
)(

t1t22−t1−t2
)

t1t22
− (t1t2−t1−1)

(

t12+t1t2−1
)

t1
− t2

(

t12+t1t2−1
)

t1

⎤

⎥

⎥

⎦

O(1) =
⎡

⎣

t23 0 0
− (t1t2 − 1) (t2 + 1) t2 t1t2 0

(t1t2 − 1)
(

t2t12 + t22t1 − 1
) − (t1t2 − 1) (t1 + 1) t1 t13

⎤

⎦

7.3.9
The operators Bw(z) have remarkable symmetries and applications which

are far from obvious. The explicit formulas for matrices of Bw(z) simplify

drastically if computed in the “mixed” stable basis. Let us denote by
�

Bw(z)
the matrix of the operator Bw(z) in the mixed stable basis: the input is the
stable basis before a wall w,

sw−ε
λ := Stab+,w−ε(λ) (155)

and the output in the stable basis after w:

sw+ε
λ := Stab+,w+ε(λ). (156)

for small enough ε. Explicitly, we have

Bw(z)(sw−ε
λ ) =

∑

μ

�

Bw(z)μ,λ s
w+ε
μ (157)

One can show that the matrix elements of
�

Bw(z) only depend on parameters
z and h̄ = t1t2 but are independent on the equivariant parameter a = t1/t2.

Moreover, the matrix
�

Bw(z) coincides with the K -theoretic R-matrix of the
cyclic quiver varietywith d(w) vertices. This variety appears as a subvariety in
the “symplectic dual” Hilbert scheme. Both z and h̄ play a role of equivariant
parameters of a certain torus acting on the dual side. We refer to Theorem 12
in [63] for a proof. The examples of the corresponding K-theoretic R-matrices
for cyclic quiver varieties can be found in Appendix D of [63].

We note also that the operator

Bw := lim
z→∞Bw(z)

describes the monodromy of the quantum differential equation for Hilbn(C2)

[50], around a loop containing the singularity zw = exp(2π iw). This means,
in particular, that the operatorsBw provide a representation of the fundamental
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group

π1(P
1 \ {singularities of qde for Hilbn(C2)}, 0)

in the Fock space. We refer to Theorem 17 of [63] for details a proof. A
categorical version of these results is a topic of ongoing research [9].
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