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ABSTRACT

We compute the involutive knot invariants for pretzel knots of the form P(—2,m,n)
for m and n odd and greater than or equal to 3.
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1. Introduction

Heegaard Floer homology is a collection of invariants of three-manifolds and knots
and links within them introduced by Ozsvath and Szabé [10-12] and in the knot
case independently by Rasmussen [20] in the early 2000s. The knot version asso-
ciates to a knot K C S3 a (Z & Z)-filtered, Z-graded chain complex over F[U, U 1]
called CFK®°(K). This chain complex recovers the data of the classical Alexander
polynomial [10] and detects the knot genus [14] and whether the knot is fibered
[2, 9]. Furthermore, a plethora of interesting invariants of knot concordance have
been extracted from it [6, 14-16, 21].

*Corresponding author.
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In 2015, Hendricks and Manolescu [5] introduced a refinement of Heegaard Floer
homology called involutive Heegaard Floer homology, which incorporates the data
of a conjugation symmetry on the Heegaard Floer chain complexes. In the knot
case, this takes the form of a skew-filtered automorphism

Lt CFK™®(K) = CFK™(K),

which is order four up to filtered chain homotopy. From this additional data, they
construct two new concordance invariants Vo(K) and Vo(K), which are analogs of
a concordance invariant Vo(K) from the non-involutive setting [15, 17, 21]. These
invariants are particularly interesting in that, unlike many concordance invariants
from Heegaard Floer homology and the related knot homology theory Khovanov
homology, they can take nonzero values on knots of finite concordance order. For
example, V(41) = 1; the invariants therefore detect the nonsliceness of the figure
eight knot. The authors give combinatorial computations of the involutive concor-
dance invariants for L-space knots (which include the torus knots) and thin knots
(which include alternating and quasi-alternating knots).

Following a similar strategy to Hendricks and Manolescu’s computation for thin
knots [5, Sec. 8], in this paper, we compute the involutive concordance invariants
of P(—2,m,n) pretzel knots for m and n odd, and their mirrors. The complexes
CFK*(P(—2,m,n)) associated to these knots were computed by Goda et al. [3].
The reader should compare the statement of our result below with [5, Proposi-
tion 8.2]. We include the values of the ordinary concordance invariant Vo (K) in the
statement for ease of comparison.

Theorem 1.1. Let m,n be odd numbers such that m > n > 3. The involutive knot
concordance invariants of the pretzel knots K = P(—2,m,n) are as follows:

o Ifm#n (mod 4), then Vo(K) = Vo(K) = 0 and Vo(K) = — 22,

e Ifm=n (mod 4), then Vo(K) =Vo(K) =0 and Vo(K) = —2tn=2,
Moreover, the involutive knot concordance invariants of the mirrors K =
P(2,—m,—n) are as follows:

o Ifm#n (mod 4), then Vo(K) =Vo(K)=Vo(K) = ’”I"-
o Ifm=n=3 (mod4), then Vo(K) =Vo(K) =Vo(K) = %H'

e fm=n=1 (mod4), then Vo(K) = "t1E2 and Vo(K) = Vo (K) = =2,

This computation comes from analyzing four essentially distinct cases for the
structure of the chain complex CFK > (K), corresponding to the values of m and n
modulo four, as we explain further in Sec. 3.2.

Remark 1.2. In the case that n = 3, the involutive concordance invariants were
already known. The knots P(—2,m, 3) are mirrors of L-space knots [13]. Hendricks
and Manolescu computed the involutive concordance invariants of L-space knots
and their mirrors [5, Sec. 7]; we review the results of their computation in Sec. 2.
We include the case n = 3 above for completeness.
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Remark 1.3. The computation of knot Floer homology for the pretzel knots dis-
cussed in this note is particularly simple because they are (1, 1) knots [3]. In general,
(1,1) knots admit Heegaard diagrams depending only on a set of four integer pa-
rameters, whose knot Floer homology may be computed combinatorially [1, 19, 22].
A possible future research direction is to attempt to give a general, hopefully com-
binatorial, formula for the skew-filtered chain homotopy equivalence class of ¢ for
knots admitting such diagrams.

Organization

This paper is organized as follows. In Sec. 2, we review some necessary background;
in particular, in Sec. 2.1, we review some properties of Heegaard Floer homology
for knots, and in Sec. 2.2, we recall involutive Heegaard Floer homology for knots
and the construction of the involutive concordance invariants. In Sec. 3.1, we recall
the Heegaard Floer complexes associated to the pretzel knots P(—2,m,n) and
carry out a convenient change of basis. In Sec. 3.2, we present the computation
of the involutive invariants associated to these knots and conclude the proof of
Theorem 1.1.

2. Background on Heegaard Floer Homology and Involutive
Heegaard Floer Homology

In this section, we recall some background on Heegaard Floer homology for knots
and involutive Heegaard Floer homology for knots.

2.1. Heegaard Floer homology for knots

We begin by briefly reviewing the construction of knot Floer homology, after which
we will give a more focused description of some of its algebraic aspects; for a more
detailed look, see [10], or [7] for an expository view.

Let F be the field of two elements. Recall that a doubly-pointed Heegaard diagram
is a tuple H = (¥, a0, B, z, w) such that

e Y is a closed oriented surface of genus g;

o « (respectively, 3) is a tuple {a1, . .., ay } of pairwise disjoint circles (respectively,
{B1,...,B4}) in ¥ which span a g-dimensional subspace of H;(%;F).

e The curves a; and (; intersect transversely for all 7, j

e w and z are points in the complement of a and (3.

Momentarily ignoring the basepoint z, the tuple (X, a,3,w) specifies a 3-
manifold Y via thickening 3 to ¥ x [0, 1], attaching thickened disks along each
a; x {0} and B; x {1}, and capping off each of the two remaining S® boundary
components with three-balls. A knot K inside of Y is determined by connecting w
to z in the complement of the -disks and z to w in the complement of the a-disks.
An example of a Heegaard diagram for the right-handed trefoil appears in Fig. 1.
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Fig. 1. (Color online) A Heegaard diagram H for the right-handed trefoil. Here, g = 1 and the
single o curve is drawn in red while the single 8 curve is drawn in blue. The complex CFK*°(H)
is generated over F[U, U 1] by the three intersection points a, b, and c.

Given a Heegaard diagram H for K C S® as above, knot Floer homology as-
sociates to H a free finitely-generated (Z @ Z)-filtered chain complex CFK > (H)
over F[U,U~1] [10, 20]. The construction of this complex uses the g-fold symmet-
ric product Sym?(¥) = ¥9/5,, where here X9 denotes the ordinary product of
g copies of ¥ and the quotient is by the action of the symmetric group S,. This
points of this symmetric product are unordered g-tuples of points on the surface
3; moreover, Sym?(X) has the structure of a g-dimensional complex manifold. In-
side this symmetric product one may consider the tori To, = a3 X -+ X g and
Tg = B1 X - x B,. The generators of CFK*(H) as an F[U,U~!]-complex are
the finitely-many intersection points = € T h Tg; concretely, this means that the
generators consist of unordered g-tuples of intersection points between the curves
a; and §;, such that each curve is used exactly once. The differential is defined
by counting pseudoholomorphic curves in the symmetric product; for more detail,
see [10].

To the set of generators To M T, Ozsvath and Szabé define maps A, M : T th
Tg — Z, called the Alezander and Maslov (or homological) gradings, respectively.
With these maps in hand, the generators of CFK°°(H) as an F-vector space may
be written

U~'z = [x,4,j] such that o € Ty, hTg, (i,j) € ZSZ, Alz) = j —i.

These generators are conventionally drawn on a plane; the element [x;1, j] lies at
(,7) and is said to have planar grading (i, 7). One may then extend the functions
A and M to CFK*(H) via

gr([zsi, j]) = M([x; i, j]) = M(z) + 2i A([zsd,4]) = J.
The action of the U-variable is now given by
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and the effect on the gradings of U-multiplication is

The (i,7) level of the Z @ Z filtration is F; ;) = {[z;7,j'] € CFK*(K) : (i',j') <
(i,7)}, where Z & Z is given the dictionary order. The differential 9 on CFK*°(K)
respects the filtration and is U-equivariant; moreover if

a[w;i, j1) =Y _lyid's '),

where each [y;4'j'] appears at most once (that is, there are no cancelling pairs in
the expression) then for each [y; i, j'] we have

M([y;4',§']) = M ([z;1,5]) — 1.

While the construction of CFK®(H) requires a choice of Heegaard diagram,
Ozsvath and Szabd show that all such choices produce chain homotopy equivalent
chain complexes [10]; indeed, work of Juhdsz et al. [8] shows that these chain homo-
topies are themselves canonical up to homotopy, from which it follows that there is
a well-defined filtered chain homotopy equivalence class of complexes CFK*(K).
Throughout the paper, we will generally take some representative for the filtered
chain homotopy equivalence class of CFK °°(K); in some cases, such as Example 2.2
below, this representative will not be the chain complex associated to any Heegaard
diagram for the knot.

The homology H.(CFK*(K)) is always isomorphic to F[U,U~!] [10, 12, 20].

Example 2.1. A representative for the filtered chain homotopy equivalence class
of the knot Floer complex associated to the right-handed trefoil is shown in Fig. 2;
in fact, it is exactly CFK*°(#H) for the Heegaard diagram H of Fig. 1. As an
F[U, U~1]-module, it has three generators a = [a;0, 0] in homological grading —1,
b = [b;0, 1] in homological grading 0, and ¢ = [¢; 0, —1] in homological grading —2,
with differential given by

Oda=Ub+c 0b=0c=0.
The homology of the chain complex is generated over F[U, U] by [b] = [U~1¢].

Example 2.2. A representative for the filtered chain homotopy equivalence class
of the knot Floer complex associated to the figure-eight knot is shown in Fig. 3.
As an F[U, U~ !-module, it has five generators a = [a;0,0] in homological grading
0, b = [b; —1,0] in homological grading —1, ¢ = [¢;0, —1] in homological grading
—1, e = [e;0,0] in homological grading 0, and x = [x;0, 0] in homological grading 0
with nonzero differentials given by

Ja=b+c Ob=0c=Ue Oe=0x=0.
The homology of the chain complex is generated over F[U,U~!] by [z].
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Fig. 2. A representative for the filtered chain homotopy equivalence class of the knot Floer
complex associated to the right-handed trefoil.

]
—e .

Fig. 3. A representative for the filtered chain homotopy equivalence class of the knot Floer
complex associated to the figure-eight knot.

If K is a knot and K is its mirror, then CFK*(K) is the dual complex
CFK*(K)* over F[U,U1].

Example 2.3. One may obtain a representative for the filtered chain homotopy
equivalence class of the knot Floer complex associated to the left-handed trefoil
by dualizing the complex for the right-handed trefoil shown in Fig. 2; the result
is shown in Fig. 4. As an F[U, U~ 1]-module, it has three generators a = [a;0,0] in
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Fig. 4. A representative for the filtered chain homotopy equivalence class of the knot Floer
complex associated to the left-handed trefoil.

homological grading 1, b = [b;0, —1] in homological grading 0, and ¢ = [¢;0,1] in
homological grading 2, with differential specified by

0b=Ua Oc=a Ja=0.
The homology of the complex is generated over F[U,U ] by [b+ Uc].

We will have occasion to consider several special subsets of CFK°(K) which
are chain complexes over either the ring F[U] or over the vector space F. Given
a subset X € Z ® Z, let CX denote the F-vector space with basis consisting of
elements with planar grading (4,7) € X. Some examples of particular importance
to us include

e The complex A; = C{i,j < 0}, consisting of the portion of CFK*(K) lying in
the third quadrant of the plane, which has the structure of a chain complex over
F[U].

e B, = C{i < 0}, consisting of the portion of CFK > (K) lying in the second and
third quadrants of the plane, which has the structure of a chain complex over
F[U].

e C{i=0}=C{i <0}/C{i < 0}, consisting of the portion of CFK > (K) lying on
the j-axis, which has the structure of a chain complex over F.

Let us begin by considering the first two complexes. The homology H. (A )
always admits a (noncanonical) decomposition as a direct sum

k
FIU] & (EB F[U] /U’”)

2250044-7
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for some natural numbers 1 < ny < --- < ng; this follows from the fact
that the homology of CFK*(K) is the Heegaard Floer three-manifold invariant
HF>(S%) ~ F[U,U~" [10, 12, 20]. Moreover, the homology H. (B ) is isomor-
phic to a copy of F[U] with the property that gr(1) = 0. (In particular, H,(By )
is the three-manifold Heegaard Floer invariant HF ~(S%).) There is a chain map
vo: Ay — By given by inclusion. For sufficiently large n, the induced map on
homology U"H,(Ay) — U™H,.(By ) is a nonzero map F[U] — F[U] which must
therefore be given by multiplication by some UY0(5)  where V;(K) is a nonnegative
integer. Since the map vy is grading-preserving, the integer V5 (K ) may be computed
from the homological degree of the element 1 in the “tower” summand F[U] in any
decomposition of H,(Ay) into a direct sum of an F[U] summand and U-torsion
summands. In other words, we see that

1
Vo (K) = —§max{r :3x e H(Ay),Yn, Uz # 0},

where H,.(Ay ) denotes the homology in homological grading r. Peters [17, Propo-
sition 2.1] and Rasmussen [21, Theorem 2.3] showed that V5(K) is an invariant of
knot concordance, in Peters’s case under the name d(S%,(K)) = —2Vy(K) and in

Rasmussen’s case under the name ho(K). For more on the context of the concor-
dance invariant V5 (K), see e.g. [7, Sec. 3.2.2].

Now, consider the complex C{i = 0}, whose chain homotopy equivalence class
is called CFK (K), which is naturally Z-filtered by the Alexander filtration. The
homology of the associated graded object of C{i = 0} is

HFE (K) = @ HFE (K, w)
wEZ

=P H.(C{i=0,j =w}) (2.1)
wEZ

and is often referred to as the knot Floer homology. If we include the homological
grading s, we get a further decomposition

HFE(K)= @ HFE. (K w).
wEZL,sEL

This theory is symmetric in the sense that ﬁﬁ(s(K, w) =~ HFK 5, (K, —w) and
furthermore it detects the knot genus via

9(K) = max{w : ﬁﬁ((K,w) # 0}.

Finally, the graded Euler characteristic of the knot Floer homology is the Alexander
polynomial of the knot, that is,

Ax(t) = Y x(HFEK (K, w))t".

We also consider the vertical and horizontal homologies associated to CFK*(K),
as follows. Let 0 = 21 ; 0;; where 0;; is the term in the differential which decreases
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the two planar gradings by 7 and j, respectively. Then the vertical differential is
Overt = Zj 0o,j. The vertical homology is the F[U, U ~!]-module

H.(CFE™(K), dvert) EBH (C{i=1i"}).

Likewise the horizontal differential is Onor, = ; 0i,0 and the horizontal homology
is

H*(CFK™(K), Ohors) = GBH Cc{i=ih.

For any knot K, the ranks of the vertical and horizontal homologies are one as
F[U, U~ ']-modules; alternately, if we ignore the action of U, the dimensions of each
H.(C{j =j'}) and H.(C{i =1i'}) are one as an F-vector space.

The action of a Dehn twist around the knot K in S induces a filtered chain
homotopy equivalence o on CFK*(K) with the property that 0 ~ Id, where ~
denotes filtered chain homotopy [23]. Zemke [24] shows that o admits a simple
computation, as follows. Let

=0y U= 0y

,j20 i,j>0
i odd 7 odd

‘We then have
o=1d+U"'®o V.

We briefly mention two special types of knots. A knot K is said to be L-space if it
admits a positive surgery which is a three-manifold with Heegaard Floer homology
of minimal rank (called a Heegaard Floer L-space). Ozsvéth and Szabé showed [13]
that if K is an L-space knot, the filtered chain homotopy equivalence class of the
complex CFK°(K) has a particularly simple representative. To describe it, we
begin by introducing the following notation.

A positive staircase complex is a (Z ® Z)-filtered F-chain complex generated by
elements 2o, 2!, 22 where r ranges from 1 to some integer v > 1. The element zy has
planar grading (0, 0); moreover, the planar gradmgs of z} —(2w+t1) differ
only in the i grading and the planar gradings of va(zw +1) and va(zw +2) differ only

wandz

in the j grading. The planar gradings have the symmetry property that if 2} lies at
planar grading (i,7) then 22 lies at planar grading (j,4). If v is even, the nonzero
differentials in this complex are

0(z)) =21+ 2z for 1L <r<wrodd 0(z]) = 20 + 23,
whereas if v is odd they are

O(2f) = 25_  + 25, forr > 0,7 even 9(z0) = z{ + 27.

Examples of the two possible forms of a positive staircase are shown in Fig. 5. The
dual of a positive staircase is a negative staircase complex. Again the generators are
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Fig. 5. Positive staircase complexes for the case that v is even (on the left) and odd (on the
right).

elements 2o, 2}, 22 where r ranges from 1 to some integer v > 1. The element zy has

planar grading (0, 0); moreover, the planar gradings of z!_,,, and z})_(% +1) differ
differ only

1
v—(2w+2)

in the i grading. The planar gradings have the symmetry property that if 2} lies at

only in the j grading and the planar gradings of z})f(m +1) and z

planar grading (i, j) then 22 is at (j,4). If v is even, the nonzero differentials of this
complex are

8(20) = Z% + Z%v

0(z)) =21+ 2, for0<r <wv,reven,

whereas if v is odd they are
9(z7) = 20 + 23,
a(z

9(z) = 251

) =21+ 2, forl<r<wv,rodd,

S
T

Examples of the two possible forms of negative staircase complexes are shown in
Fig. 6.

We now turn to the specific case of an L-space knot, which by work of Ozsvath
and Szabé [13] has Alexander polynomial

Ar(t) = (1) + 3 (1) 4 )
=1
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o o—e

Fig. 6. Negative staircase complexes for the case that v is even (on the left) and odd (on the
right).

for some sequence of positive integers 0 < w; < we < -+ < w, = g(K). Let
4; = w; — w;—1 and let n(K) denote the sum

n(K) = wy — wy—1 + -+ (=1)" " 2wo + (—1)" "y,

Then the filtered chain homotopy equivalence class of CFK*°(K) has a representa-
tive given by C @ F[U, U 1] where C is a positive staircase complex with generators
20,25, ...,25 such that the planar grading of z! is (n(K),g(K) — n(K)), and in
general the gradings of z! ,, and z})_(% 4y differ in the i grading by £,_2, and
the planar gradings of 21117(2w+1) and 21117(2w72) differ in the j grading by £, _(2u41)-
We call the F-complex C' a model complex, or in this case a model complex for
CFK*(K). The complex associated to the mirror of an L-space knot is generated
by the elements of the negative staircase produced by dualizing.

In the construction above, we see that the sum n(K) appears in the positive
staircase complex associated to the L-space knot as the sum of the lengths of
the horizontal arrows in the top half of the staircase. For an arbitrary knot, if
a representative of the filtered chain homotopy equivalence class of CFK*(K)
contains a direct summand generated over F[U, U ~!] by a positive staircase complex,
we let this fact be a definition of the quantity n(K). If CFK*(K) contains a
direct summand generated by a negative staircase complex, we let the sum of the
lengths of the horizontal arrows in the top half of the dual of the complex be
n(K); this is equivalent to the sum of the lengths of the vertical arrows in the
top half of the complex. Note that any staircase summand contributes a rank one
summand F[U, U] to the vertical homology and to the horizontal homology of the
chain complex, and therefore there can be at most one staircase summand in any
representation of the chain complex.

2250044-11
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We now turn to our second special type of knot. A knot is said to be thin if its
knot Floer homology ﬁﬁ((K) = @ﬁﬁ(s(l{,w) has the property that w — s is a
constant k for all HFK (K, w) # {0}. The terminology here is because if the knot
Floer homology HFK were graphed with the Maslov grading on one axis and the
Alexander on the other, the support of HFK would lie in a single diagonal. More
generally, a thin complex is a graded Z @ Z-filtered F[U, U ~!] chain complex with
the property that there is a constant k such that generators at planar grading (2, j)
always have homological grading s = i4j—k; this implies that the generators [z; 0, j]
on the j-axis have constant difference between their Alexander and homological
gradings. A thin knot K admits a representative of CFK®(K) which is a thin
complex [18, Lemma 5].

Petkova [18] showed that complexes associated to thin knots have an especially
simple form up to chain homotopy equivalence, which we now review. Let the
square complexr Cy, also known as a one-by-one bor complex, refer to an F-chain
complex with generators a,b, ¢, Ue, in filtration levels (i + 1,5 + 1), (4,5 + 1), (5 +
1,1), (i,7), respectively, and homological gradings k + 2,k + 1, k + 1, k, respectively,
with differential

da)=b+c, 0Ob)=Ue, 0()=Ue, 09Ue)=0.

One readily checks that ker 0 and im 0 are both the vector space span of b+ ¢ and
Ue; hence, Cs is acyclic. If i = j the square complex is said to be on the main
diagonal, see Fig. 7 for a picture of Cj.

Lemma 2.4 ([18, Lemma 7]). Suppose C is a thin complex with horizontal and
vertical homologies of rank at most one. Then C is filtered chain homotopy equiv-
alent to the tensor product of F[U, U~ with a direct sum of square complezes and
at most one staircase complex all of whose steps are length one.

Indeed, Petkova shows this result for any Z @ Z-filtered F[U, U ~!]-complex with
the property that all differentials lower one of the horizontal and vertical filtrations
by exactly one, that is, such that all arrows in the complex are either horizontal of
length one or vertical of length one (which must be true of a thin complex). The
case analysis involved in the proof also determines the length of the staircase (that
is, the integer v) and whether the staircase is positive or negative.

Ue c

Fig. 7. A copy of the square complex Cs.
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2.2. Involutive Heegaard Floer homology for knots

Recall that if C' is a (Z & Z)-filtered complex, a chain map «: C' — C' is said to be
skew-filtered if a(F; ;) C F; ;. In [5, Sec. 6], Hendricks and Manolescu use a conju-
gation operation on knot Floer homology to define a skew-filtered automorphism

LK H: CFKOO(H) — CFKOO(H)

The pair (CFK*(H),tx ) is an invariant of the knot up to equivariant chain
homotopy equivalence, sometimes called strong equivalence. Specifically, two pairs
(Ci, ;) for i = 1,2 for which C; is a finitely-generated Z & Z-filtered F[U, U ~}]-
complex and ¢; is a skew-filtered automorphism are said to be strongly equivalent
if there are filtered chain maps f : C7 — Cs and g : Co — C; with the property
that

gf ~Ide, gf ~Ide, fu~wf 19~ gia,

where the first two equivalences are filtered chain homotopy equivalence and the
second two are skew-filtered chain homotopy equivalence.

In general we take some representative for the strong equivalence class
(CFK*°(K), 1K), not always one arising from a Heegaard diagram. The map tx
is in principle difficult to compute. However, it has the following useful property.

Lemma 2.5 ([5]). The square of the map tx is filtered chain homotopic to the
Sarkar involution; that is, we have

LK2 ~ 0.

Note that this implies that tx* is filtered chain homotopic to the identity map.
In [5, Secs. 7 and 8], Hendricks and Manolescu show that this is enough to uniquely
determine tx up to filtered chain homotopy for L-space knots and thin knots.

There are two knot concordance invariants analogous to Vp(K) arising from
this complex, as follows. First, choosing some representative for (CFK*(K), k),
we consider the complex

CI* = ((CFK™(K) ® FIQ]/(Q*))[-1],0 + Q(1 + tx))

or equivalently the mapping cone

Q(l4wk

CT% = (Cone(CFK™(K) L QOFK™ (K)[-1])),

where multiplication by @ lowers the homological grading by 1 and the term [—1]
denotes an upward shift on the homological grading by 1. Note that this specifically
implies that if  is a generator in our representative for CFK° (K) having homo-
logical grading gr(x) = s, then in the complex C'I* the element x has homological
grading s + 1 and the element @z has homological grading s. To distinguish the
involutive differential from the ordinary differential, we let 9* = 9 + Q(1 + tk)
denote the involutive differential throughout.
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Observe that there is an exact triangle
o Hy (CI®) = Hyyy (CFE®(K)) 295 g (QCFK™ (K))
— H.(CI*®)) — -

Since H,(C) ~ F[U,U~!] is at most one-dimensional in any given homological
grading and (¢x )+ is an isomorphism, we see that 1+ (¢x )« is a zero map, and

H,(CI®) ~F[U,U ", Q]/(Q%).

Now, consider the subcomplex Ay of our representative for CFK®°, which is
preserved by tx. As previously, denote its boundary map by 0. Then we consider
the F[U, Q]/(Q?)-complex

Aly = (45 ® FIQ)/(Q@))[-1],0 + Q(1 + tk)).
This may also be expressed as the mapping cone
QAy [-1]).

A similar argument using the exact triangle associated to the mapping cone shows

Al; = Cone(4, —>Q(1+LK)

that the homology H.(AI; ) always admits a (noncanonical) decomposition as an
F[U]-module into a direct sum of two copies of F[U] along with some U-torsion
summands. Of the two F[U] summands, one has a generator [z1] lying in an odd
homological grading with the property that U™[z;] is never in the image of @ for
any n > 0, and one has a generator [z3] lying in an even homological grading with
the property that U™[x2] C Im(Q) for n > 0. Indeed, [z1] and [x2] may be chosen
such that Q[x1] = U™[z3] for some sufficiently large m. As in the non-involutive
case, the top gradings of these two summands, which is to say the gradings of the
generators [x1] and [z2], are concordance invariants associated to the knot. The
involutive concordance invariants are then

1
Vo(K) = —§(max{r :3z e H (Al ),Yn, Uz # 0 and Uz ¢ Im(Q)} — 1)
and
Vo(K) = f%max{r :3z e H (Al ),Yn, Utz #0;3m > 0s.t. Uz € Im(Q)}.

This is not quite Hendricks and Manolescu’s original definition, which is given
in terms of correction terms of surgeries on knots [5, Theorem 1.6] and rephrased
in terms of the gradings of Al = C{(,5) :4 >0 or j > 0} [5, p. 45]; our definition
is equivalent via the duality of the minus and plus variants of Heegaard Floer
homology (cf. for example the discussion in [4, Sec. 3.8]).

We briefly recall two special cases. The standard staircase map on a staircase
complex C' is the reflection across the line i = j.

Proposition 2.6 ([5, Sec. 7]). Let K be an L-space knot, so that CFK*(K) ~
C @ F[U,U~1] for C a positive staircase complex. The involution on CFK*(K) is
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generated by the standard staircase map, and the involutive concordance invariants
are

Vo(K) =Vo(K) =Vo(K) =n(K)
and
Vo(K) =Vo(K) =0, Vo(K)=—-n(K).

Computations are also accessible for thin knots. We first define a standard map
on a pair of square complexes. Consider two square complexes Cs generated by
a,b,c,Ue and C’ generated by a’,b’,¢’,Ue’, with such that a lies in planar grading
(t+1,7+ 1) and o’ lies in planar grading (j + 1,7 + 1), as in Fig. 8. The standard
square map between Cy @ F[U, U] and C’. @ F[U, U] is

ig(a) =d +¢, xg)=7, iglc)=V, 1x(Ue)=Ué,

k(@) =a, tx)=c, 1g(c)= 1 (Ue') = Ue.

Observe that this is a chain map with the property that tx? = o, as o(a) = a + e
and o(a’) =ad +¢.

Proposition 2.7 ([5, Proposition 8.1]). Let K be a thin knot. The complex
(CFK*(K),tx) admits a representative which decomposes as a direct sum of pairs
of square complexes Cs@F[U, U] and C.@F[U, U] interchanged by the standard
square map, and a complex C @ F[U, U] preserved by tx such that C' consists of
a staircase complex and at most one square complex on the main diagonal.

The key fact used in the proof of Proposition 2.7 is that for a thin complex,
grading considerations ensure that tx interchanges the planar gradings (i,7) and
(4,1) and that tx2 = o on the nose (that is, the filtered chain homotopy H relating
them must be zero). Hendricks and Manolescu use Proposition 2.7 to compute the
involutive correction terms of thin knots [5, Proposition 8.2].

We conclude this subsection with a look at the involutive concordance invariants
of the example complexes introduced so far, all of which fall into one of the special
cases above.

Ue c

Ue' ./

Fig. 8. A pair of square complexes.

2250044-15



J. Knot Theory Ramifications 2022.31. Downloaded from www.worldscientific.com
by Kristen Hendricks on 01/02/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

K. Hendricks, M. Issac & N. McConnell

Example 2.8. Let K be the right-handed trefoil, with a representative of
CFK*(K) as in Fig. 2. The automorphism ¢ is given by

k() =U"tc 1g(c)=Ub tx(a)=a.
The right-handed trefoil K is an L-space knot with n(K) = 1; therefore we have
Vo(K) =Vo(K)=Vo(K)=1.

In more detail, the homology of H.(Ay) is isomorphic to F(_9)[U] generated
over F[U] by the maximally-graded element [b] in the tower, with the consequence
that

The homology of the mapping cone

Al; = Cone(A4qy ——%Q(HLK)

QAq [-1])
is shown in Fig. 9; we see that as an F[U]-module,

H.(AIy) ~F U] ®F_y)U],

where the tower summand F(_[U] is generated by the element [c + Qa] and the
tower summand F(_y)[U] is generated by [Qc] = Q[c+ Qa]. Here, we have that [c+

[c+ \Qa]
Q]
[Uc+ QUa] >
L 1QUd

[U20+QU2 >
QU]

Fig. 9. The homology H.(AIj ) for the right-handed trefoil, in terms of the representative for
the filtered chain homotopy equivalence class for CFK°°(K) of Fig. 2. Curved lines denote the
action of the variable U, and dashed lines denote the action of the variable Q. The element [c+ Qal]
lies in homological grading —1 and the element [Qc] lies in grading —2.
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Qa] is a maximally-graded element which is not U-torsion and such that U™[c+ Qa]
is never in the image of @, so that

1 1
Vo(K) = 5 lgrle+ Qo] = 1) = —5 (-1 1) =1
and likewise [Qc] is a maximally-graded element which is not U-torsion and lies in
the image of @), such that

1 1
Vo(K) = *§(gr[QC]) = *5(*2) =1
For the left-handed trefoil K with CFK*(K) as in Fig. 4, we have
k() =Uc 1g(c)=U""b 1kg(a) = a.

Since K is the mirror of an L-space knot with n(K) = 1 we have

Vo(K)=Vo(K)=0, Vy(K)=-1.
More precisely, we see that H.(Ay) ~ F)[U] @ F(1), where the summand F ) [U]
is generated over F[U] by [b + Uc| and the summand F(;) has an F-basis [a]. We
have that the homology class [b + Uc] is a maximally-graded element which is not
U-torsion, and gr([b+ Uc]) =0, so Vp(K) = 0.

T [QUb + QU]

~

QU+ QU3

Fig. 10. The homology Hx(AI ) for the left-handed trefoil, in terms of the representative for the
filtered chain homotopy equivalence class for CFK *°(K) of Fig. 4. Curved lines denote the action
of the variable U, and dashed lines denote the action of the variable Q. The element [b+ Uc] lies
in homological grading 1 and the element [a] lies in homological grading 2; the element [Qa] lies
in homological grading 1.
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The homology of the mapping cone complex Al is shown in Fig. 10. We see
that as an F[U]-module we have

Ho(Aly) =F)[U] @ F)[U] @ F o),

where the summand F(;)[U] is generated over F[U] by [b+Uc|, the summand [F o) [U]
is generated over F[U] by [a], and the summand F(;) has an F-basis [Qa]. Note, in
particular, that Ula] = [Ua] = [Qb+ QU¢], since

8 (b) = A(b) + Q(1 + 1x)(b) = Ua + Q(b + Ue).

Therefore, in the homology H.(AI; ), the element [b+ Uc| is a maximally-graded
element which is not U-torsion and for which no U-power lies in the image of @, so

— 1 1
Vo(K) = —i(gr[b—l— Ud) = —5(1 —-1)=0,
whereas [a] is a maximally-graded element which is not U-torsion and such that
Ula] = [Q(b+ Uc)], so
— 1 1
Vo(K) = —5 (arla) = —3(2) = —1.

Example 2.9. Let K be the figure-eight knot, with CFK°°(K) as in Fig. 3. The
automorphism ¢x is given by

tg(e)=b g(b)=c x(e)=e ig(a)=a+2x 1x(x)=x+e.

We see that the homology H.(Ay ) ~ F()[U] generated by the element [z]. Thus,
[z] is a maximally graded element which is not U-torsion, such that V5(K) =
— % gr[z] = 0. The homology H.(AIy ) appears in Fig. 11. We see that as an F[U]-
module

Ho(Aly) =F () [U] @ Fo)[U] © Fn),

where the summand F_)[U] is generated over F[U] by [Ux + Qc|, the summand
Foy[U] is generated over F[U] by [Qx], and the summand F ;) is generated by [e].
Note in particular that Q[Uz + Qc| = [QUz| = U[Qx]. Then the element [Uz + Qc]
is a maximally-graded element which is not U-torsion and for which no U-power
lies in the image of @, so

Vo(K) = 3 (ax{Ur + Qc) = —5(-1-1) =1

whereas [Qz] is a maximally-graded element which is not U-torsion, so

Vo(K) = *%(gr[Qx]) = f%(O) =0.
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[e]

[Qz]

~

QU]

Fig. 11. The homology H« (Al ) for the figure-eight knot, in terms of the representative for the
filtered chain homotopy equivalence class for CFK *°(K) of Fig. 3. Curved lines denote the action
of the variable U, and dashed lines denote the action of the variable Q. The element [Uz + Qc]
lies in homological grading —1 and the element [Qz] lies in homological grading 0; the element [e]
lies in homological grading 1.

3. Involutive Invariants of (—2, m,n) Pretzel Knots
3.1. The complex CFK*(P(—2,m,n))

In this subsection, we review Goda, Matsuda, and Morifuji’s computation of the
knot Floer homology of P(—2,m,n) [3, Sec. 5] and prove that there is a change
of basis which allows us to simplify the complex. Let m > n > 3. For our proof,
we will require a description of the generators of the complex and their filtration
levels, some information about the differentials of particular generators, and the
final computation of knot Floer homology.

Following [3], we fix the following notation. Let g = be the genus of the

pretzel knot, and set m’ = mT’?’, n = "T’?’,

m-+n
2

-1 -1
1_gT g odd, gT g odd,

v(g) = and d(g) =

1-— g g even, g _ 1 g even.
2 2

With respect to these choices, there is a representative for the complex
CFK*(K) (arising, indeed, from a genus one Heegaard diagram) which has a basis
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as an F-vector space as follows, where ¢t € Z is arbitrary. Setting ¢ = 0 returns a set
of generators of CFK*(K) over F[U,U1].
1,5t +(9) — 1,6+ 6(g9) + 1],
[y2;t +7(g9) = 1,t+0(g)],
[ys;t +0(g), t +~(9) — 1],
[ya;t +0(g) +1,t+~(9) — 1],
[Top+129+1;t +7(9) +p+q+1,t+6(g) —p—q] for0<p<n',0<q<m,
[op+120it+79(9) +P+at+0(g) —p—q] for0<p<n’1<qg<m
[22p2g+15t +9(9) +m +p—q.t+3(g) —m' —p—gq] for
1<p<n/,0<g<m/,
[2p2git +7(9) +m' +p—q,t+0(9) —m' —p+q—1] for
1<p<n/,1<qg<m.

We refer to the generators y; as the exceptional generators and the generators
xr.¢ as the ordinary generators. One may straightforwardly check that the ordinary
generators lie strictly between the lines j —4 = g—1and j —4 = 1 — g and
that [yo;t + v(g) — 1,t + 6(g)] and [ys;t + d(g),t + v(g) — 1] lie on these lines,
respectively. Furthermore, [y1;t + v(g9) — 1,¢t + 6(g) + 1] lies on the line j —i =g
and [y4;t+(g9) + 1,t+v(g) — 1] lies on the line j — i = —g.

We summarize the important aspects of the differential below.

Lemma 3.1 ([3, Sec. 5]). With respect to the basis for CFK®(P(—2,m,n))
above, the differentials of the exceptional generators are

e Oly1;4,j] = [y234,7 — 1]
o Oly2;1,j] =

e Iys;i,j] =0

® Oya;i, jl = [ys;i — 1, j].

Furthermore, the elements whose differential, written as a sum of the generators
above, includes an exceptional generator are

° 8[I1,1;i7j] = [xQ,m72;i7j - 1] + [Il,Q;ivj - 1] + [yQaZ - 27.]]

o a[zn72,m72; 7’7]] = [xn73,1;i - 17]] + [In72,m73;i - 17.]] + [y3a 7’7] - 2]

For all other ordinary generators [x;i,j], the differential is a sum of elements
[w;i—1,7] and [z;1,j — 1]; that is, any arrow appearing in the differential is either
horizontal or vertical of length one.

Note that the computation of [3] is carried out for Z coefficients, so there are
some signs in the original that do not appear above. The computation of the
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knot Floer homology of the pretzel knots carried out from this differential is as
follows.

Lemma 3.2 ([3, Sec. 5]). For m > n > 3, the knot Floer homology of K =
P(—2,m,n) in positive Alexander gradings is equal to

0 w > g,

Fotw —w=g,9-1,
HFK (K, w) =10 w=g-2,

F 3w g-—n<w<g-—2,

-2
Fiitw 0Sw<g—n.
We may now state our first splitting lemma:

Lemma 3.3. Let K be a pretzel knot P(—2,m,n) with m > n > 3. Then
CFK*(K) is chain homotopy equivalent to the tensor product of F[U, U1 with a
direct sum of a single staircase complex together with some number of copies of the
square complex Cl.

Proof. As earlier in this section, we let g = mTM denote the genus of the pretzel
knot. In this proof, we let y1 = [y1; =g, 0], y2 = [y2;—9, —1],y3 = [y3; =1, —g], ya =
[Y4;0,—gl, 11 = [21,1;2 — g,—1], and Zp_2m—2 = [Tn—2,m—2;—1,2 — g]. These
gradings are chosen so that yi,y4, 21,1, and 2,—2 p,—2 lie in homological grading 0

iz mtp=6

O/

Fig. 12. A schematic diagram of the situation in Lemma 3.3. The four exceptional generators
and all of the differentials involving them are shown. The remaining generators in C’ lie strictly
between the two dashed lines.

2250044-21



J. Knot Theory Ramifications 2022.31. Downloaded from www.worldscientific.com
by Kristen Hendricks on 01/02/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

K. Hendricks, M. Issac & N. McConnell

and yo and ys lie in homological grading —1. Moreover, we have

Oy1) =y2 O0(ys) = ys.

Furthermore,

ahorz(xl,l) = Y2 avcr‘c(xn72,m72) =Y3.

A schematic of the situation appears in Fig. 12. We first observe that [y;] is a
nontrivial element of the horizontal homology of CFK*(K), since the only differ-
ential involving y; in the complex is a vertical arrow to y». Since the horizontal
homology has rank one, it in fact must be generated by [y1]. Similarly, the vertical
homology is generated by [y4]. Now, let us consider the complex C’ which is a quo-
tient of C = CFK®(K) by the subcomplex generated by the elements y1,y2, y3,
and y4. In doing so, we have deleted the horizontal arrow from z;,; to y; and the
vertical arrow from z,_2 ;,—2 to y3. If we now consider the horizontal homology of
C’, we see that it is generated by [x1 1] since now z1 ; has trivial horizontal differ-
ential and the horizontal differential is otherwise unchanged. Similarly, the vertical
homology of C” is generated by [¥n—2m—2]. In particular, both the vertical and
horizontal homologies of C’ have rank one. Moreover, the remaining differentials
in C” each lower one of the horizontal or vertical planar gradings by exactly one;
indeed, C” is a thin complex. Therefore, Petkova’s work [18, Lemma 7], reviewed in
Sec. 2 as Lemma 2.4, tells us that up to change of basis C’ may be decomposed as
the tensor product of F[U, U ~!] with a direct sum of a staircase complex and some
number of one-by-one boxes.

However, the case analysis of [18, Sec. 3] also recovers the sign and length of
the staircase complex in question. We start by considering an element lying on
the bottom-most occupied diagonal line j — ¢ = k in C’, which in this case is
ZTn—2m—2 (or any of its U-translates). This element does not lie in the image of a
vertical differential, which corresponds to Case 2 of Lemma 7 of Petkova [18, Sec. 3];
in particular, x,,—2,,—2 must form the lower right corner of a negative staircase
summand. Hence we can split off a staircase complex whose lower-right corner is
Tp—2,m—2. By symmetry of the staircase across the main diagonal, the upper left
corner must lie in planar grading (2 — g, —1) and have homological grading 0; the
only element in C” satisfying this is x1 1.

Now, we include C’ back into C. We see that 21,1 has a horizontal length two
arrow to y2 and x,_2,,—2 has a vertical length two arrow to y3. Hence, the neg-
ative staircase in C’ extends to a negative staircase in C which includes the four
exceptional generators (and now has two steps of length two). The conclusion of
the lemma follows. |

See Fig. 13 for the example of the pretzel knot P(—2,9,9) after this change
of basis. Note that since the change of basis of the preceding lemma affected
only to the ordinary generators, we may continue to distinguish between the four
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Fig. 13. The complex CFK*°(P(—2,9,9)) after a change of basis, with the generators on the
staircase labeled using the staircase notation of Sec. 2. Here an integer k£ in the center of a box
indicates the presence of k boxes on the corresponding diagonal. In the notation of Lemma 3.3,
we have yo = U42é7 Y1 = U‘lz%7 T1,1 = U‘lzé7 and similarly for the bottom half of the complex.

exceptional generators and the remaining ordinary generators in the subsection that
follows.

3.2. Computations for model complexes

In this subsection, we carry out computations for several model complexes. Our
computations are modeled on [5, Sec. 8]. We begin by using the description of the
complexes CFK *°(P(—2,m,n)) given in the previous section to prove a simplifying
lemma.

Lemma 3.4. Let K be a pretzel knot P(—2,m,n),m >n > 3, and C' @ F[U, U]
be the representative for CFK* (K) of Lemma 3.3, consisting of the tensor product
of a negative staircase and some number of square complexes with F[U,U~]. Then

(1) The skew-filtered chain map tx exchanges the planar gradings (i,7) and (j,1).
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(2) If H is a filtered chain homotopy which raises the homological grading by one,
H =0. Hence 1% = 0.

Proof. As previously in this section, let g = ’”T'”’ Let [z;1,j] be a generator of
CFK*(K) with homological grading s. By the proof of Lemma 3.3, we see that
for any nonexceptional generator, there is some constant k such that s =¢+4j — k.
By recalling that the homological grading of 1 1 = [z1,1;2 — g, —1] is zero, we may
solve for k, determining that for any non-exceptional generator

s=i+j+g—1. (3.1)

Furthermore, the non-exceptional generators of even homological grading lie be-
tween or on the lines j —i =g — 3 and j — ¢ = 3 — g. In particular, we see that

i+g—3>2j>2i1+3—g.
Combining this with (3.1), which we may rearrange to be j = s —i — g + 1, we
obtain which may be rearranged to

s s
— — 2<i< - —1.
5 g+ _2_2

A symmetric computation shows the same is true of j, so when s is even we have
that

S S
- — 2<i i< 1.
5 g+ ShI1s g

On the other hand, the generators of odd homological gradings lie between or on

the diagonal lines j —¢ = g —4 and ¢ — j = 4 — g, so the analogous computation
shows that

s+1 s—1
Cg42<ij<iT g
9 g+2=<1,)< 5
If [y;4,j] is an exceptional generator, then if s is even either (i,5) = (5§ —g,3)
or (i,j) = (5,5 — 9). These cases are U-translates of y; and y4, respectively. If s
is odd then we have either (i,j) = (5 — g, 551) or (i,7) = (552, 5% — g). These

cases are U-translates of yo and y3, respectively. In either case, s =i+ j + g.

We now prove part (1). Suppose we have an ordinary generator [z;1, j] of ho-
mological grading s. Then tx([2;4,]]) is a sum of generators [z;i/,5'] such that
i < 4,7 <, and gr([z,7,j']) = s. These restrictions imply that for any [z;4’, ;']
an ordinary generator which appears in this sum with nonzero coefficient, we must
then have i = j and j° = i. Now, suppose that [y;i’,j’] an exceptional generator
which appears in this sum with nonzero coefficient. Then if s is even, one of ¢’ or

5. However, i,j < § — 1, so this contradicts ' < j and j° <. Similarly if s is
odd, then one of i’ or j' is 551, but 7,5 < 551 — 1. Ergo the sum vk ([2;4, j]) cannot
contain any exceptional generators with nonzero coefficient, and indeed ¢x ([2;1, j])
must be a sum of ordinary generators [x;4’, j'] with i = j and j/ = i. An analogous
but simpler argument shows that for the four exceptional generators, ¢k ([ys; 4, j])

7' is
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is either [y5_¢; 7, 4] or zero. We conclude that ¢y interchanges the planar gradings
(i,7) and (4,4). This proves (1).

The reader is at this point invited to examine Fig. 13 as an example and compare
it to the proof above, for clarity. The point is that for any generator [z;1, j] in the
basis shown, all elements in filtration level F;; with the same homological grading
as [z;i,j] have the same type (exceptional or ordinary) as [z;4,j], and therefore
grading considerations imply that ¢x must simply interchange the planar gradings.

We now turn our attention to part (2). Let H be a filtered map which raises
the homological grading by one. Suppose the map H sends a generator [z;1, j]
in homological grading s to a nonzero sum of generators [x;4',j'] in homological
grading t = s + 1 with ¢ <4 and j' < j. For any [z;7, j'] appearing with nonzero
coefficient in this sum, if [z;¢', ;'] is an ordinary generator then t = s+1 =14+ j'+
g — 1 and if [z;4', '] is an exceptional generator then ¢t = s+ 1 =i’ 4+ j' + g. We
deal with each of these two possibilities separately.

In the first case, if s +1 =14+ j' 4+ g — 1, then since ¢’ < i and j’ < j, we have
s+1<i+j+4g— 1, which implies that s < i+ j + g — 2. This is a contradiction
since for any generator [z; 1, j], we either have that s =i+ j+ ¢g—1 (for an ordinary
generator) or s =i + j + ¢ (for an exceptional generator) is true.

In the second case, if s +1 =14’ + j' + g, then we see that the generator [z;4’, j']
is an exceptional generator. As before it follows that s < i+ j 4+ g — 1, so we see
that the original generator [z;4, j] must be ordinary. Moreover, the inequality must
actually be an equality, implying that ¢/ = 7 and j' = j. Therefore, H must send the
ordinary generator [z;1, j] to a sum of exceptional generators [z; 1, j] in homological
grading s 4+ 1 lying in the original planar grading (i, j). However, no exceptional
generators lie in the same planar gradings as ordinary generators anywhere in the
chain complex, so this is impossible. This implies that H = 0, proving (2). O

Lemma 3.4 is the important step in proving that the strong equivalence class of
the pair (CFK*(P(—2,m,n)), i) admits a representative which decomposes into
a direct sum of simple complexes preserved by ¢y . Since it is no longer necessary to
distinguish the ordinary and exceptional generators, from here on out we will use
the notation for staircase complexes introduced in Sec. 2.

Lemma 3.5. Let K be a pretzel knot P(—2,m,n) with m > n > 3. Then the
strong equivalence class of (CFK™(K),tx) admits a representative which decom-
poses equivariantly as the tensor product of F[U, U~ with a direct sum of pairs of
square complezes interchanged by the standard square map, and one of four model
complezes, according to the values of m and n, as follows:

e When m = n = 1 (mod 4), we obtain the model complex Cy consisting of a

%H and a single square complex on the main

negative staircase with n(K) =
diagonal, as in Fig. 14.
o When m = 3 (mod 4) and n = 1 (mod 4), we obtain the model complex Co

m-4n
4

consisting of a negative staircase with n(K) = , as in Fig. 15.

2250044-25



J. Knot Theory Ramifications 2022.31. Downloaded from www.worldscientific.com
by Kristen Hendricks on 01/02/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

K. Hendricks, M. Issac & N. McConnell

e When m = n = 3 (mod 4), we obtain the model complex Cs consisting of a
negative staircase with n(K) = ™t=2 " qs in Fig. 16.
e When m = 1 (mod 4) and n = 3 (mod 4), we obtain the model complex Cy,

consisting of a negative staircase with n(K) = mTM, as in Fig. 17.

Proof. The argument that we can split off pairs of square complexes until we are
left with a staircase complex and at most one square complex on the main diagonal
proceeds as in [5, Proposition 8.1], using Lemma 3.4. It remains to analyze the
staircases involved and determine whether we have a square complex remaining on
the main diagonal.

We first note that in all cases by Lemma 3.3 we have a negative staircase sum-
mand which begins at the top of the staircase with a vertical step of length one
followed by a horizontal step of length two, subsequent to which all steps in the top
half of the complex have length one. Let v be the total number of steps in the top
half of the complex and © = v — 2 be the number of steps in the top half of the
complex after the first two. Then since the total lengths of the steps in the complex
sum to g = ’"TJF" by projecting the elements of the staircase to their U-translates
in the F-subcomplex C{i = 0} of our representative for CFK°(K), we have that

u=g-—3.

We see that if m = n (mod 4) then m+n =2 (mod 4), implying that g = 24 is
odd. Hence u = g—3 is an even number, and therefore so is v, so the number of steps
above the main diagonal is even. However, if it is the case that m # n (mod 4),
then 4 | (m + n) so there is an odd number of steps above the main diagonal.

Before moving on, we also calculate the number n(K) associated to the negative
staircase summand of the complex. If m = n (mod 4), then g is odd and u is even,
and the total lengths of the vertical arrows in the top half of the complex is equal
to 5 + 1, so we have

_g-—3 g—1 m+4+n-—2

= — 1= =
n(K) ===+ 2 1

Conversely if m £ n (mod 4), then u is odd, and the total lengths of the vertical

arrows in the top half of the complex is “T'H + 1, so we have
g—3+1 g m-+n
K = 1 = — = .
n(K) > T 2T g

We now turn to the matter of square complexes, which we analyze by considering
the Alexander polynomial of the knot, which we recall is equal to the Euler charac-
teristic of the knot Floer homology OFK (K), which is itself the homology of the as-
sociated graded of the F-complex C{i = 0} inside any representative of CFK*(K).
In general the tensor product of a square complex with its upper right corner on
the diagonal j = i + s with F[U, U~] contributes a factor of +¢5(—t +2 —t~1) to
the Alexander polynomial of the knot. In our case, because the knot Floer complex
is thin apart from the four exceptional generators, the sign is always (—1)¢. Taking
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the Euler characteristic of the knot Floer homology in Lemma 3.2, we see the total
Alexander polynomial of K is

n—3
g _ tgfl + Z(_l)kflktgfk72 Z g k— 1 7’L _ 2)tk
k=1

n—3
G ey e T
k=1

The staircase summand contributes 9 — 19~ 4 (3973 5 g(— )F=1¢F) — 179 + 79 to
the polynomial. Therefore, the boxes must contribute the remaining terms, which

are:
n—4 g—n
S (DRI 4 Y (—1)9R( tk+z )ektkt3=9,
k=1 k=n—g

This polynomial factors as

Zktg 2k— 3 Ztg n— 2k Z( l)kkt2k+379 (7t+27t71).

k=1

In particular, note that the center sum —Z t97"=2k can be rewritten as

BB (g g2 o 270 4 477 9) If m # n (mod 4), then the constant
term in this polynomial is zero, and we conclude that there are no boxes on the
main diagonal in our representative for CFK*(K). If m = n (mod 4), then the
constant term in this polynomial is T? and we conclude that there are —3 boxes
on the main diagonal. If n = 3 (mod 4), this is an even number of boxes, which
split off equivariantly in pairs. If n = 1 (mod 4), this is an odd number of boxes,
all but one of which split off equivariantly in pairs, leaving a single box on the main

diagonal in the model complex. O

Example 3.6. In light of the high algebraic complexity of the previous proof, we
include a few early cases. First, we consider K1 = P(—2,5,5), an example of the
case m =n =1 (mod 4). The Alexander polynomial of K is

Ag,(t) =t —t* +t2 —2t 43 -2t 172 74 4175
= -t -t 1t Tt ) (27,

where the two parenthesized terms in the second row correspond in order to the
contribution of the staircase and the contribution of a single box on the main
diagonal. This gives us the complex of Fig. 14; in this special case we do not need
to split off any pairs of boxes to obtain the model complex shown. There are as
promised "T’B = 1 boxes on the main diagonal. For a more complicated example
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of the case m = n = 1 (mod 4), consider K| = P(—2,9,5), which has Alexander
polynomial
Agr(t)=tT —t0+¢" =262 + 3t =3t +3 -3t '+ 3t 2 -2t 4171 — 7O 4477
After subtracting the staircase contribution
e A i e A B e A B e A
we are left with
P2 24227 2t = (2P L),

We see we have a single box on the main diagonal, as promised by "T_3 =1, along
with a pair of boxes on the diagonals j—¢ = 1 and j—4 = —1 which are interchanged
by the standard square map; we split off this pair to obtain a version of the model
complex C of Fig. 14.

Next, let Ky = P(—2,7,5) be an example of the case m =3 (mod 4) and n =1
(mod 4). Then we have

A, =18 =5 +¢3 22 + 3t =3+ 3t -2t 2 473 — 75 +¢76.
After subtracting the staircase contribution

T R T A RS s Ul R

L,
n
W

u—t:2
v
*——O

o—eo "

Fig. 14. The model complex C; tensored with F[U, U~!], corresponding to knots P(—2,m,n)
such that m =n =1 (mod 4). The case of m =n =5 is shown.
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we are left with

—t2 2t — 22671 442
which factors as

(—t+2—tHt+th

corresponding to the appearance of a pair of boxes on the diagonals j —¢ =1 and
j — 1 = —1, interchanged by the standard square map. After splitting off this pair
we obtain the staircase model complex C5 of Fig. 15.

Next, consider K3 = P(—2,7,7) as an example of the case n = m =3 (mod 4).
The Alexander polynomial of K3 is

Ap,(t) =17 —t54t* — 263 4 34> — 4t +5— 4t 4 3t72 — 273
4ttt T
After subtracting the staircase contribution
R o e I A NS A I A
we are left with
P42 =B+ 43t At = (2P 24+ 172).

We see there are as promised "T*B = 2 boxes on the main diagonal, which split off
as a pair interchanged by the standard square map. Furthermore, there is a pair

o
o

wn

W

n
o

*——O

Fig. 15. The model complex Cs tensored with F[U,U~!], corresponding to knots P(—2,m,n)
such that m = 3 (mod 4) and n =1 (mod 4). The case of m =7 and n =5 is shown.
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U z,
o " e— o
211 J/ U*l 1
) “———o e
J“ 1 =)
a
o« o

N

Y

¥
<
|

v}

N

wi
u

[NY

*o——0

Fig. 16. The model complex C3 tensored with F[U, U~!], corresponding to knots P(—2,m,n)
such that m =n = 3 (mod 4). The case of m =n = 7 is shown.

of boxes on the diagonals j —¢ =1 and 5 — i = —1 which are interchanged by the
standard square map. After splitting off these pairs we are left with the staircase
model complex Cs of Fig. 16.

Finally, let Ky = P(—2,9,7) be an example of the case m = 1 (mod 4) and
n =3 (mod 4). The Alexander polynomial of K, is

Ag, =18 —tT 465 -2t +3t3 — 4> 4 5t — 54 5t~ — 4¢72

+3t7 =27 0 — T 15
After subtracting the staircase contribution
R A e A e A i o A I o Al A o A A S A AR o A
we are left with

23 3P At — A+ 4 =32

=(—t+2—tHE +2t+ 27 +173).

There is a pair of boxes on the diagonals j — i = 3 and j — i = —3 interchanged
by the standard square map; two boxes on each of the diagonals j —¢ = 1 and
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o— O

o———o
n K
|
o

oo
B
Q
R
e

w
e

1 1
Uz} 25

=}
So
W
o
Y

Fig. 17. The model complex Cy tensored with F[U,U~1], corresponding to knots P(—2,m,n)
such that m =1 (mod 4) and n = 3 (mod 4). The case of m =9 and n = 7 is shown.

j — 1= —1 interchanged in pairs by standard square maps. After splitting off these
summands we are left with the staircase model complex Cy of Fig. 17.

We now conclude with the proof of our main theorem.

Proof of Theorem 1.1. We present the argument for the model complex C; and
its dual; the other cases, being staircase complexes, are substantially easier. Our
computations are similar to Cases 2(e) and 2(c) of [5, Proposition 8.2], respectively.
The expert reader may find it helpful to note that, because of the step of length
two in our staircase complex, we in particular get parallel results to the case of
thin knots in the case that the Oszvath—Szabd concordance invariant 7 is an even
number, even though in our case 7 = g = ™F is odd [3, Sec. 3]. The complex is
pictured in Fig. 14, and has generators a,b, ¢, e, 29, 25 for s € {1,2} and 1 <r < v,
where v = ’"TJF" — 1. The homological gradings are determined by the requirement
that H.(C{i = 0}) = F(y), which fixes gr(U™)22) = 0. The complex has nonzero
differentials

da=b+ec, 0b=0c="Ue,

9(z0) = 21 + 21, A(zy) = 251

0(z) =21+ 2,1, 0<r<wv,reven,
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Up to change of basis, the unique skew-filtered map on C; squaring to the Sarkar
involution is

ti(a) = a+ 2z, 1 (b) = ¢+ 22,

ti(20) = 20 + e, 1 (c) = b+ 21,
ik(zH)=221<r<wv, 1g(zH)=zL1<r<w
ti(e) =e,

We begin by considering the F[U]-complex of C; ® F[U, U~!] with F-basis con-
sisting of elements lying in the third quadrant; via a small abuse of notation as in
[5, Sec. 8], we refer to this subcomplex as A; . This complex is shown in Fig. 18.
We see that this complex is generated over F[U] by the set

s s s 2_s n(K) s
{e;a,b,¢,20,27,Uz5,Uz5,U 24,...,U( )zv}

and differentials inherited from the differentials on C;. The homology H.(Ay) is
isomorphic to

H.(Ay) = F () [U] @ Fianx)- 1) [U)/ U & Fanicy),
where the summand F o) [U] is generated by [U™5) (214 + 2} + 20+ 23 +- - - 22)],

the summand IF(M(K),l)[U]/U”(K) is generated by [21] and the summand Fon (k)
is generated as an F-vector space by [e]. Here, the non-U-torsion part of H, (A, ) is

generated by an element of grading 0, so Vo(K) = 0.

T2y 1 20,@
. L *le, Vg >
. °
b al
Ue ¢
o el
o« o (]
*—eo o
l 1
e
L <—I
.2
.r/ -1
oK) .2
o——e v

Fig. 18. The F[U]-submodule Ay of the complex C1 ® F[U, U~!]. The specific example shown
remains m = n = 5; in this case n(K) = 2.

2250044-32



J. Knot Theory Ramifications 2022.31. Downloaded from www.worldscientific.com
by Kristen Hendricks on 01/02/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

A note on the involutive invariants of certain pretzel knots

We now compute the involutive correction terms. We start by computing the
homology of the grading-shifted mapping cone

1] Q(1+ixk)

CI*® = Cone(C, @ F[U, U~ Q(Cy @ F[U,U))[~1]).

This mapping cone comes to us with a set of generators
{e,a,b,¢,20,27,...,2,,Qe,Qa,Qb,Qc, Qzo, Qz7, ..., Qz}
for s = 1,2 as usual. We do a change of basis to replace this by the set of generators
{e,a,b,b+c, 20, 21,21 +22,..., 20, 28 + 22
Qe, Qa, Qb, Qb+ ¢), Qz0, Qz1, Q21 + Q21 ..., Qz,, Q(z, + 27)}.

After this change of basis the complex breaks up as a direct sum of the tensor prod-
ucts of three model F-complexes D1, Dy, and D3 shown in Fig. 19 with F[U,U1].
The top model complex D; has generators

-1 1 2 1 2
{QU ch€7207zl+Zlv~'~7Zv+Zv}

\/\/\/ \/

z3 +23 ,1 +Z
a /z%\ /zi\ 211)
b+c QZO\z% Q23 + 22) 23 Q23 + 22) 2l Qe 422
Q=} +=D) Q(z3 +23) QG+ 22D

\/J\/\/

Qb+ )

Fig. 19. Model complexes for direct summands appearing in the mapping cone Cone(Ci ®

F[U, U1 Q0+ex), Q(C1 @ F[U,U])[—1]). These complexes are labeled D1, D1, D3 in order

down the page.

2250044-33



J. Knot Theory Ramifications 2022.31. Downloaded from www.worldscientific.com
by Kristen Hendricks on 01/02/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

K. Hendricks, M. Issac & N. McConnell

and nonzero differentials 9" = 9 + Q(1 + tx) given by

2 (QUe) = Qe,

9" (20) = (21 + 27) + Qe,

0" (2 +23) = 251 + 24,

O"(zp +22) = (201 + 22_1) + (7041 +2241), 0<r<w, reven.

We observe that tensor product of D; with F[U,U~1] contributes a summand
F[U, U] to H.(CI®) generated by [0] = [z0+ (24 + 22) +- - -+ (2} +22) + QU 1]
Our next model complex Dy, shown on the middle row of Flg. 19, has generators

{a,b+c,Qz0, 21, -, 25, Q21 +21), ..., Q2L + 22)}

and nonzero differentials

(
(
(
(
0'(Q(zy + 2)) = Qzy1 + 25-1);
(20) =21+ Zi+1 +Q(zr +23), 0<r<w, reven,
(1) =Q(z} +22), 0<r<w, rodd,
Q2 +20) = Qzr 1 + 22 1) + Q201 + 2741), 0<r<w, reven.

We observe that the tensor product of Dy with F[U, U~1] contributes an F[U, U ~}]
summand to the homology H.(CI*) generated by [Qzo + 21] = [Q(z0 + 23 + 25 +
-+ 2zl + 22)] = Q[f]. The final model complex D3 has generators

{Qa,Q(b+¢),c.e,Qz1, ..., Qz,}

and nonzero differentials

9'(Qa) = Q(b+c),
d'(c) =Ue+Q(b+c) + Qzi,
9(Qz,) = Qzy_1,
0(Qz) = Q21 +Qzly, 0<r<wv, reven

This final model complex is acyclic and its tensor product with F[U, U~!] gives
no contribution to the homology of the mapping cone. Hence, the homology of the
mapping cone is generated as a module over F[U, U] by [0] and [Qzo + 21] = Q[6)].
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Now, we compute the homology of the mapping cone AI; . Recall that A; is
generated by the elements

s s s 2.5 n(K) s
{e,a,b,¢c, 20,27, Uz35,Uz5,U 24,...,U( )zv}

for s = 1,2 as usual. Therefore AI; contains the product of U™ for m > n(K) with
all three of the model complexes Dy, D3, and D3 appearing in Fig. 19; for lower
powers we must consider appropriate truncations of these complexes.

We start with D;. We see that (U™ D) NAI; = U™D; for m > n(K), and has
homology U™[6]. To obtain (U™®)~1Dy) N Al , we delete the term z! + z2 and
multiply all other elements by U™¥)~1 after which we have an acyclic complex.
To obtain (U™)=2D,) N Al , we additionally delete the terms z! | 4+ 22_; and
zl o+ 22 ,, and multiply all other elements by U"5)=2_ after which we still have
an acyclic complex. This pattern continues until we reach (UD;) N A, which has
generators

{Qc,QUe, Uz, Uz + Uz, Uzd +Uz2,Uzs + U223}

as an F-vector space and is acyclic. If we then consider D1NAIj , which is generated
by {Qe, 20, 21 +2%}, we see this truncation has homology [Qe]. So the model complex
D, contributes a summand F(;)[U] generated over F[U] by [U™F)g] and a summand
F(an(x)) with F-basis [Qe] to the homology H.(Al; ) considered as an F[U]-module.

We now consider Ds. As previously, (U™ Dg)NAI; = U™Dy for m > n(K), and
has homology U™[Qzo + 21] = Q[f]. One may easily check that this is unchanged
by successive truncations; that is, that the homology of (U*Dy) N Al for 0 < ¢ <
n(K) — 1 remains U*[Qzy + 2{]. The model complex D therefore contributes a
summand F(s,,(x))[U] generated over F[U] by [Qzo + 21] to the homology H.,(AI{)
considered as an F[U]-module.

Finally, we consider D3. We see that (U™D3) N Aly = U™Ds is acyclic for
all m > n(K). However, consider (U™¥)=1D3) N Al , which we may obtain by
deleting Qz! and multiplying all the remaining elements by U K)=1 We see this
complex now has homology generated by

U] = [UnFT1Qz] = - = UM 71Qz, ).

We see the same behavior under successive truncations; that is, the homology of
(U*D3) N Al for —1 < £ < n(K) — 1 is generated by U**![e]. Special mention is
due of the case (U~1D3) N AI(;l, since this is the only case in the computation in
which the product a negative power of U with any of the three model complexes has
nontrivial intersection with Ay, namely, {e}. In total the model complex D3 con-
tributes a summand F[U]2,(x)) /(U )+1) to the homology H. (Al ) considered
as an F[U]-module, generated by the element [e].

To sum up, we conclude that as an F[U] module, the homology of the mapping
cone is

H,(AIy) ~ F[U] @ F a1 [U] @ Fanx) ) [U)/ (O & F o i)
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o
e+ Qzl e
g
UG+ Q)]
oo T v

[Un(K)+19]

~

~

~

[U3(21 + Q20)]

Fig. 20. The homology of the complex Al associated to C1 ® F[U, U~1]. Curved lines denote
the action of the variable U and dashed lines denote the action of the variable Q. The example
of n(K) = 2, as in the case of P(—2,5,5), is shown. The element [U™(5)§] lies in homological
grading 1, the elements [z] + Qzo] and Qe lie in homological grading 2n(k), and the element [e]
lies in homological grading 2n(K) + 1.

The summand F(;)[U] is generated by [U"(5)¢] and the summand Fa,(x))[U] is
generated by [z} + Qz], which notably has the property that U™ [z} 4+ Qzg] =
[QU™P). As for the torsion summands, the summand Fo,(x)41)[U]/(U"FO+)
is generated by [e], which notably has the property that Ule] = Q[z1], and finally
the summand F(9,,()) is generated by [Qe]. This module appears in Fig. 20. This
implies that

Vo(K) = 3 (ex([8) - 1)

and
m+n—2

Vo(K) = —5 (el +Qz)) = 5 (2n(K)) = —n(K) = -

2 2

We now consider the dual C'; of the model complex C;. This complex, which
appears in Fig. 21, has generators a, b, ¢, e, zp and z$ for 1 <r <wv and s € {1, 2}.
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Fig. 21. The dual C'1 of the model complex C1.

The homological gradings are determined by the requirement that H,(C{i = 0}) ~
IF(9), which specifies that gr(U —n(K) 21y = 0, which implies that for example gr(zo) =
—2n(K). The nonzero differentials are as follows:

d(a) =b+c, a(b) = 9(c) = Ue.

0(z)) =25_1 + 2.y, risodd,

Up to change of basis, the unique involution ¢k squaring to the Sarkar map is given
by

ti(a) = a+ zo, tr(b) = ¢,

Lk (20) = 20 + e, vk (c) =0,

1 (21) = 28 + U~ 1b, 1 (23) = 28 + U e,
ik(zh) =22 1<r<wv, 1g(z3) =2 1<r<v
ti(e) =e,

We begin by considering the F[U]-complex of C; ® F[U,U~!] lying in the third
quadrant, again called by convention A;, and shown in Fig. 22. We see this complex
is generated over F[U] by the set

s s 2_s n(K)—1_s n(K)—1_s
{a,b,c,e,20,Uz,Uz5, U 23,...,U( ) zv_3,U( ) Zo_a,

N L
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—1
oo °
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Fig. 22. The F[U]-submodule A5 of C1 ® F[U,U~1].

where s = 1,2 as usual, and has differentials inherited from the differentials on C'.
The homology of A is isomorphic to

F—aon(xy)) ® F—anx)[U],

where the F(_s,(x)) summand is has an F-basis [e] and the F(_y,(x))[U] summand
is generated over F[U] by [z0]. We therefore have Vy(K) = n(K) = Z4tr=2,

Now, consider the mapping cone Cone((C; ® F[U,U~1]) Q) QICy ®

F[U,U~1])[~1]). This mapping cone comes to us with a set of generators
{e,a,b,c,20,27,...,25,Qe,Qa,Qb, Qc, Qz0,Qz7,...,Qz5}
for s = 1,2 as usual. We do a change of basis to replace this by the set of generators
{e,a,b,b+c, 20, 21,21 + 22, ..., 20, 2k + 22, Qe, Qa, Qb, Q(b + c),
Qz0,Q71, Q21 +21), -, Q20 Qz, + 7))

As in the previous case, this breaks up into direct summands over F[U, U~!] each
of which is the tensor product of a model F-complex over F[U, U ~!]. These model
complexes are shown in Fig. 23. The first, F;, has generators

{a,b+c,Q20,Qz,...,Qz}
and nonzero differentials 0" = 9 + Q(1 + tk)
9(a) = (b+¢) + Q,
9(Qz) = Qz 1+ Qz 4y, 1<r<w, rodd
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/ v—1 \ / #3 \ / 21\\
= QGzp_y + 25 1) - QG4+ 23) Qzl+:d) =
Q(z, +23) Q=] +23) Q=3 +22)

/\/\J/\

23 + 22 QUTL(b + <)

Fig. 23. Model complexes for direct summands appearing in the mapping cone Cone(Ci ®

F[U, U1 Q) Q(C1 ® F[U,U~1])[~1]). From top to bottom, the model complexes are

denoted E1, E2, and Es.

The homology of the complex F; is one-dimensional with basis [b+ ¢] = [Qz¢]. The
tensor product By @ F[U,U~!] therefore contributes an F[U, U ~!] summand to the
homology of the mapping cone generated by [b+ ¢] = [Qz0].

Next, we consider the model complex Fs, which has generators

{Q€7 QUﬁlCa 20, Z%? ey 211)7 QZ% + szv ceey QZ1117 QZ?;}

and nonzero differentials

9"(QU™'e) = Qe,

9"(20) = Qe,
' (1) = 20+ 23 + Q21 + 2) + QU™
aL(Z}‘) _ (Q(Zrl + 272‘)’ 1 <r<w, reven,

22+ Q7 +22), 1<r<w, rodd,
Q2 +22) = Qz) 1+ 22_1) + Q2041 + 2241), 1<r<w, rodd
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The homology of this complex is one-dimensional with basis [z0 + QU ~'¢]. So, the
tensor product E1 ® F[U, U~} contributes an F[U, U '] summand to the homology
of the mapping cone.

Finally, we consider the third model complex Fs, which has generators

{e,Uc,QU 1 a,QU (b +c), 21 +22,..., 28 + 22}
and nonzero differentials
2'(QU1a) = b+,
o' (U 1c)fe+QU Yb+c),
O'(zi +23) = 25+ 23 + QU (b +¢),
7)

0 (2t + 2

(z0_1+22_ 1)+(Zr1+1+23+1)7 1<r<w, rodd

This final model complex is acyclic and therefore B3 @ F[U, U 1] does not contribute
anything to the total mapping cone.

We now consider the homology of the mapping cone A1, . We start by consider-
ing the intersection (Ey @ F{U, U ') N AI; . We note that (U™Ey)NAly = U™E;
for all m > n(K) + 1, and has one-dimensional homology with basis [U™(b+ ¢)] =
[U™Qz0]. Subsequently lowering the power of U by one has at each step the effect
of either preserving the complex or of removing pairs of generators 2z} and z{_;
for k even (and changing the exponent on U); in particular, none of these things
alters the fact that the homology of (U*D;) N Al is one-dimensional with basis
[U*Qz0] = [U*(b+c)] for £ > 0. So, (E1 @F[U,U~])NAI;) contributes a summand
F_s,(x)[U] generated by [Qzo] to H.(Al ) considered as an F[U]-module.

We now consider the intersection (E, @ F[U,U~']) N AI;. We observe that
the intersection (U™E3) N Al; = U™Es for all m > n(K) + 1, and has one-
dimensional homology with basis U™ [z + QU ~'c|. The intersection (U™ Ey) N
Al is obtained by truncating the four elements 2}, Q(21+22), 21, Q(zl_,+22_,)
and multiplying everything by U”(F)+1: this does not change the homology of the
complex except for the power of U; it is still generated over F by U™ ) [204+-QU ¢].
Successive truncations either preserve the complex from the previous step or delete
four elements zi,Q(z} + 22), 2}, Q2L + 22) for k even (and change the power of
U); none of this changes the homology of (U*E2) N AI, apart from the power of
U, and it continues to be generated by U‘[zg + QU !c] for £ > 1. For the final
nontrivial intersection Fy N Al , we are left with a complex generated by 2y and e,
which is acyclic. So, the intersection (F2 @ F[U, U ~!])NAI; contributes a summand
F_s,(x)—1[U] generated by [Uzo + Qc| to the homology H.(AIj ) considered as an
F[U]-module.

Finally, we consider the intersection (Es @ F[U, U~')N Al . For m > n(K)+1,
the intersection (U™ E3)NAI; = U™ FEs3 and is acyclic. To obtain (U™5) E3)N Al ,
we truncate 2} + 22 and z!_; 4+ 22_; and multiply the remaining basis elements by
U™XK) | obtaining a complex which remains acyclic. Successive truncations either
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preserve the complex up to changing the power of U or remove pairs of elements
zi+2% and 2} +27_, for k even, leaving the complex acyclic. This persists until we
reach (U°E3)NAI; = EsNAIy , which consists solely of the element e, and has one-
dimensional homology over F generated by the element [e]. So (E3s®F[U, U )NAI;
contributes a summand F(_g,,(x)+1 With basis [e] to the homology of Al considered
as an F[U]-module.

Summing up, we see that

H.(AIy) = F_onk)-1)[U] ® F(_an(x)[U] © F(—an(kx)+1),

where the F(_s,(x)—1)[U] summand is generated by [U(z; + Q(z] + 27))] =
Ulzo + QU™ '¢], the F(_s, (k) [U] summand is generated by [b+ ¢] = [Qz], and
the F(_pn(x)41) summand has basis [e]. This module is shown in Fig. 24. We there-
fore see that

Vo(R) = — 5 (ar(Ulz0 + QU"c)) 1)

- f%(an(K) —1-1)

~

QU]

Fig. 24. The homology of the complex Al associated to C1 ® F[U,U~1]. Curved lines denote
the action of the variable U and dashed lines denote the action of the variable Q. The element
[Uzo + Qc] lies in homological grading —2n(K) — 1, the element [Qzo] lies in homological grading
—2n(K), and the element [e] lies in homological grading —2n(K) + 1. The case of n(K) = 2 as
for the mirror of P(—2,5,5) is shown.
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=n(K)+1
_m+n+2
4
and
- 1 1 m4+n—2
Vo(K) = *i(gf([QZO])) = *5(*2”(K)) =n(K)= a1
as promised. 0
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