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ABSTRACT
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1. Introduction

Heegaard Floer homology is a collection of invariants of three-manifolds and knots

and links within them introduced by Ozsváth and Szabó [10–12] and in the knot

case independently by Rasmussen [20] in the early 2000s. The knot version asso-

ciates to a knot K ⊆ S3 a (Z⊕ Z)-filtered, Z-graded chain complex over F[U,U−1]

called CFK∞(K). This chain complex recovers the data of the classical Alexander

polynomial [10] and detects the knot genus [14] and whether the knot is fibered

[2, 9]. Furthermore, a plethora of interesting invariants of knot concordance have

been extracted from it [6, 14–16, 21].

∗Corresponding author.
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In 2015, Hendricks and Manolescu [5] introduced a refinement of Heegaard Floer

homology called involutive Heegaard Floer homology, which incorporates the data

of a conjugation symmetry on the Heegaard Floer chain complexes. In the knot

case, this takes the form of a skew-filtered automorphism

ιK : CFK∞(K) → CFK∞(K),

which is order four up to filtered chain homotopy. From this additional data, they

construct two new concordance invariants V 0(K) and V 0(K), which are analogs of

a concordance invariant V0(K) from the non-involutive setting [15, 17, 21]. These

invariants are particularly interesting in that, unlike many concordance invariants

from Heegaard Floer homology and the related knot homology theory Khovanov

homology, they can take nonzero values on knots of finite concordance order. For

example, V 0(41) = 1; the invariants therefore detect the nonsliceness of the figure

eight knot. The authors give combinatorial computations of the involutive concor-

dance invariants for L-space knots (which include the torus knots) and thin knots

(which include alternating and quasi-alternating knots).

Following a similar strategy to Hendricks and Manolescu’s computation for thin

knots [5, Sec. 8], in this paper, we compute the involutive concordance invariants

of P (−2,m, n) pretzel knots for m and n odd, and their mirrors. The complexes

CFK∞(P (−2,m, n)) associated to these knots were computed by Goda et al. [3].

The reader should compare the statement of our result below with [5, Proposi-

tion 8.2]. We include the values of the ordinary concordance invariant V0(K) in the

statement for ease of comparison.

Theorem 1.1. Let m,n be odd numbers such that m ≥ n ≥ 3. The involutive knot

concordance invariants of the pretzel knots K = P (−2,m, n) are as follows :

• If m �≡ n (mod 4), then V0(K) = V 0(K) = 0 and V 0(K) = −m+n
4 .

• If m ≡ n (mod 4), then V0(K) = V 0(K) = 0 and V 0(K) = −m+n−2
4 .

Moreover, the involutive knot concordance invariants of the mirrors K =

P (2,−m,−n) are as follows :

• If m �≡ n (mod 4), then V0(K) = V 0(K) = V 0(K) = m+n
4 .

• If m ≡ n ≡ 3 (mod 4), then V0(K) = V 0(K) = V 0(K) = m+n−2
4 .

• If m ≡ n ≡ 1 (mod 4), then V 0(K) = m+n+2
4 and V0(K) = V 0(K) = m+n−2

4 .

This computation comes from analyzing four essentially distinct cases for the

structure of the chain complex CFK∞(K), corresponding to the values of m and n

modulo four, as we explain further in Sec. 3.2.

Remark 1.2. In the case that n = 3, the involutive concordance invariants were

already known. The knots P (−2,m, 3) are mirrors of L-space knots [13]. Hendricks

and Manolescu computed the involutive concordance invariants of L-space knots

and their mirrors [5, Sec. 7]; we review the results of their computation in Sec. 2.

We include the case n = 3 above for completeness.
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Remark 1.3. The computation of knot Floer homology for the pretzel knots dis-

cussed in this note is particularly simple because they are (1, 1) knots [3]. In general,

(1, 1) knots admit Heegaard diagrams depending only on a set of four integer pa-

rameters, whose knot Floer homology may be computed combinatorially [1, 19, 22].

A possible future research direction is to attempt to give a general, hopefully com-

binatorial, formula for the skew-filtered chain homotopy equivalence class of ιK for

knots admitting such diagrams.

Organization

This paper is organized as follows. In Sec. 2, we review some necessary background;

in particular, in Sec. 2.1, we review some properties of Heegaard Floer homology

for knots, and in Sec. 2.2, we recall involutive Heegaard Floer homology for knots

and the construction of the involutive concordance invariants. In Sec. 3.1, we recall

the Heegaard Floer complexes associated to the pretzel knots P (−2,m, n) and

carry out a convenient change of basis. In Sec. 3.2, we present the computation

of the involutive invariants associated to these knots and conclude the proof of

Theorem 1.1.

2. Background on Heegaard Floer Homology and Involutive

Heegaard Floer Homology

In this section, we recall some background on Heegaard Floer homology for knots

and involutive Heegaard Floer homology for knots.

2.1. Heegaard Floer homology for knots

We begin by briefly reviewing the construction of knot Floer homology, after which

we will give a more focused description of some of its algebraic aspects; for a more

detailed look, see [10], or [7] for an expository view.

Let F be the field of two elements. Recall that a doubly-pointed Heegaard diagram

is a tuple H = (Σ,α,β, z, w) such that

• Σ is a closed oriented surface of genus g;

• α (respectively, β) is a tuple {α1, . . . , αg} of pairwise disjoint circles (respectively,
{β1, . . . , βg}) in Σ which span a g-dimensional subspace of H1(Σ;F).

• The curves αi and βj intersect transversely for all i, j

• w and z are points in the complement of α and β.

Momentarily ignoring the basepoint z, the tuple (Σ,α,β, w) specifies a 3-

manifold Y via thickening Σ to Σ × [0, 1], attaching thickened disks along each

αi × {0} and βj × {1}, and capping off each of the two remaining S3 boundary

components with three-balls. A knot K inside of Y is determined by connecting w

to z in the complement of the β-disks and z to w in the complement of the α-disks.

An example of a Heegaard diagram for the right-handed trefoil appears in Fig. 1.
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Fig. 1. (Color online) A Heegaard diagram H for the right-handed trefoil. Here, g = 1 and the
single α curve is drawn in red while the single β curve is drawn in blue. The complex CFK∞(H)
is generated over F[U,U−1] by the three intersection points a, b, and c.

Given a Heegaard diagram H for K ⊂ S3 as above, knot Floer homology as-

sociates to H a free finitely-generated (Z ⊕ Z)-filtered chain complex CFK∞(H)

over F[U,U−1] [10, 20]. The construction of this complex uses the g-fold symmet-

ric product Symg(Σ) = Σg/Sg, where here Σg denotes the ordinary product of

g copies of Σ and the quotient is by the action of the symmetric group Sg. This

points of this symmetric product are unordered g-tuples of points on the surface

Σ; moreover, Symg(Σ) has the structure of a g-dimensional complex manifold. In-

side this symmetric product one may consider the tori Tα = α1 × · · · × αg and

Tβ = β1 × · · · × βg. The generators of CFK∞(H) as an F[U,U−1]-complex are

the finitely-many intersection points x ∈ Tα � Tβ ; concretely, this means that the

generators consist of unordered g-tuples of intersection points between the curves

αi and βj , such that each curve is used exactly once. The differential is defined

by counting pseudoholomorphic curves in the symmetric product; for more detail,

see [10].

To the set of generators Tα � Tβ, Ozsváth and Szabó define maps A,M : Tα �
Tβ → Z, called the Alexander and Maslov (or homological) gradings, respectively.

With these maps in hand, the generators of CFK∞(H) as an F-vector space may

be written

U−ix = [x, i, j] such that x ∈ Tα � Tβ, (i, j) ∈ Z⊕ Z, A(x) = j − i.

These generators are conventionally drawn on a plane; the element [x; i, j] lies at

(i, j) and is said to have planar grading (i, j). One may then extend the functions

A and M to CFK∞(H) via

gr([x; i, j]) = M([x; i, j]) = M(x) + 2i A([x; i, j]) = j.

The action of the U -variable is now given by

U [x; i, j] = [x; i− 1, j − 1]
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and the effect on the gradings of U -multiplication is

M(U [x; i, j]) = M([x; i− 1, j − 1]) = M([x; i, j])− 2,

A(U [x; i, j]) = A([x; i − 1, j − 1]) = j − 1.

The (i, j) level of the Z ⊕ Z filtration is F(i,j) = {[x; i′, j′] ∈ CFK∞(K) : (i′, j′) ≤
(i, j)}, where Z⊕ Z is given the dictionary order. The differential ∂ on CFK∞(K)

respects the filtration and is U -equivariant; moreover if

∂([x; i, j]) =
∑

[y; i′, j′],

where each [y; i′j′] appears at most once (that is, there are no cancelling pairs in

the expression) then for each [y; i′, j′] we have

M([y; i′, j′]) = M([x; i, j])− 1.

While the construction of CFK∞(H) requires a choice of Heegaard diagram,

Ozsváth and Szabó show that all such choices produce chain homotopy equivalent

chain complexes [10]; indeed, work of Juhász et al. [8] shows that these chain homo-

topies are themselves canonical up to homotopy, from which it follows that there is

a well-defined filtered chain homotopy equivalence class of complexes CFK∞(K).

Throughout the paper, we will generally take some representative for the filtered

chain homotopy equivalence class of CFK∞(K); in some cases, such as Example 2.2

below, this representative will not be the chain complex associated to any Heegaard

diagram for the knot.

The homology H∗(CFK∞(K)) is always isomorphic to F[U,U−1] [10, 12, 20].

Example 2.1. A representative for the filtered chain homotopy equivalence class

of the knot Floer complex associated to the right-handed trefoil is shown in Fig. 2;

in fact, it is exactly CFK∞(H) for the Heegaard diagram H of Fig. 1. As an

F[U,U−1]-module, it has three generators a = [a; 0, 0] in homological grading −1,

b = [b; 0, 1] in homological grading 0, and c = [c; 0,−1] in homological grading −2,

with differential given by

∂a = Ub+ c ∂b = ∂c = 0.

The homology of the chain complex is generated over F[U,U−1] by [b] = [U−1c].

Example 2.2. A representative for the filtered chain homotopy equivalence class

of the knot Floer complex associated to the figure-eight knot is shown in Fig. 3.

As an F[U,U−1]-module, it has five generators a = [a; 0, 0] in homological grading

0, b = [b;−1, 0] in homological grading −1, c = [c; 0,−1] in homological grading

−1, e = [e; 0, 0] in homological grading 0, and x = [x; 0, 0] in homological grading 0

with nonzero differentials given by

∂a = b+ c ∂b = ∂c = Ue ∂e = ∂x = 0.

The homology of the chain complex is generated over F[U,U−1] by [x].
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b U−1a

U−1cUb a

cU2b Ua

Uc

. .
.

. .
.

Fig. 2. A representative for the filtered chain homotopy equivalence class of the knot Floer
complex associated to the right-handed trefoil.

j

i

U−1x

U−1e

x

e

U−1b

U−1c
a

Ux

b

c

. .
.

. .
.

Fig. 3. A representative for the filtered chain homotopy equivalence class of the knot Floer
complex associated to the figure-eight knot.

If K is a knot and K is its mirror, then CFK∞(K) is the dual complex

CFK∞(K)∗ over F[U,U−1].

Example 2.3. One may obtain a representative for the filtered chain homotopy

equivalence class of the knot Floer complex associated to the left-handed trefoil

by dualizing the complex for the right-handed trefoil shown in Fig. 2; the result

is shown in Fig. 4. As an F[U,U−1]-module, it has three generators a = [a; 0, 0] in
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j

i

U−1c

U−1a U−2b

c

a U−1b

Uc

Ua b

. .
.

. .
.

Fig. 4. A representative for the filtered chain homotopy equivalence class of the knot Floer
complex associated to the left-handed trefoil.

homological grading 1, b = [b; 0,−1] in homological grading 0, and c = [c; 0, 1] in

homological grading 2, with differential specified by

∂b = Ua ∂c = a ∂a = 0.

The homology of the complex is generated over F[U,U−1] by [b+ Uc].

We will have occasion to consider several special subsets of CFK∞(K) which

are chain complexes over either the ring F[U ] or over the vector space F. Given

a subset X ∈ Z ⊕ Z, let CX denote the F-vector space with basis consisting of

elements with planar grading (i, j) ∈ X . Some examples of particular importance

to us include

• The complex A−
0 = C{i, j ≤ 0}, consisting of the portion of CFK∞(K) lying in

the third quadrant of the plane, which has the structure of a chain complex over

F[U ].

• B−
0 = C{i ≤ 0}, consisting of the portion of CFK∞(K) lying in the second and

third quadrants of the plane, which has the structure of a chain complex over

F[U ].

• C{i = 0} = C{i ≤ 0}/C{i < 0}, consisting of the portion of CFK∞(K) lying on

the j-axis, which has the structure of a chain complex over F.

Let us begin by considering the first two complexes. The homology H∗(A−
0 )

always admits a (noncanonical) decomposition as a direct sum

F[U ]⊕
(

k⊕
i=1

F[U ]/Uni

)
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for some natural numbers 1 ≤ n1 ≤ · · · ≤ nk; this follows from the fact

that the homology of CFK∞(K) is the Heegaard Floer three-manifold invariant

HF∞(S3) � F[U,U−1] [10, 12, 20]. Moreover, the homology H∗(B−
0 ) is isomor-

phic to a copy of F[U ] with the property that gr(1) = 0. (In particular, H∗(B−
0 )

is the three-manifold Heegaard Floer invariant HF−(S3).) There is a chain map

v0 : A
−
0 → B−

0 given by inclusion. For sufficiently large n, the induced map on

homology UnH∗(A−
0 ) → UnH∗(B−

0 ) is a nonzero map F[U ] → F[U ] which must

therefore be given by multiplication by some UV0(K), where V0(K) is a nonnegative

integer. Since the map v0 is grading-preserving, the integer V0(K) may be computed

from the homological degree of the element 1 in the “tower” summand F[U ] in any

decomposition of H∗(A−
0 ) into a direct sum of an F[U ] summand and U -torsion

summands. In other words, we see that

V0(K) = −1

2
max{r : ∃x ∈ Hr(A

−
0 ), ∀n, Unx �= 0},

where Hr(A
−
0 ) denotes the homology in homological grading r. Peters [17, Propo-

sition 2.1] and Rasmussen [21, Theorem 2.3] showed that V0(K) is an invariant of

knot concordance, in Peters’s case under the name d(S3
+1(K)) = −2V0(K) and in

Rasmussen’s case under the name h0(K). For more on the context of the concor-

dance invariant V0(K), see e.g. [7, Sec. 3.2.2].

Now, consider the complex C{i = 0}, whose chain homotopy equivalence class

is called ĈFK (K), which is naturally Z-filtered by the Alexander filtration. The

homology of the associated graded object of C{i = 0} is

ĤFK (K) =
⊕
w∈Z

ĤFK (K,w)

=
⊕
w∈Z

H∗(C{i = 0, j = w}) (2.1)

and is often referred to as the knot Floer homology. If we include the homological

grading s, we get a further decomposition

ĤFK (K) =
⊕

w∈Z,s∈Z

ĤFK s(K,w).

This theory is symmetric in the sense that ĤFK s(K,w) � ĤFK s−2w(K,−w) and

furthermore it detects the knot genus via

g(K) = max{w : ĤFK (K,w) �= 0}.
Finally, the graded Euler characteristic of the knot Floer homology is the Alexander

polynomial of the knot, that is,

ΔK(t) =
∑
w

χ(ĤFK (K,w))tw .

We also consider the vertical and horizontal homologies associated to CFK∞(K),

as follows. Let ∂ =
∑

i,j ∂ij where ∂ij is the term in the differential which decreases
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the two planar gradings by i and j, respectively. Then the vertical differential is

∂vert =
∑

j ∂0,j . The vertical homology is the F[U,U−1]-module

H∗(CFK∞(K), ∂vert) =
⊕
i′

H∗(C{i = i′}).

Likewise the horizontal differential is ∂horz =
∑

i ∂i,0 and the horizontal homology

is

H∗(CFK∞(K), ∂horz) =
⊕
j′

H∗(C{j = j′}).

For any knot K, the ranks of the vertical and horizontal homologies are one as

F[U,U−1]-modules; alternately, if we ignore the action of U , the dimensions of each

H∗(C{j = j′}) and H∗(C{i = i′}) are one as an F-vector space.

The action of a Dehn twist around the knot K in S3 induces a filtered chain

homotopy equivalence σ on CFK∞(K) with the property that σ2 ∼ Id, where ∼
denotes filtered chain homotopy [23]. Zemke [24] shows that σ admits a simple

computation, as follows. Let

Φ =
∑
i,j≥0
i odd

∂ij Ψ =
∑
i,j≥0
j odd

∂ij .

We then have

σ = Id+U−1Φ ◦Ψ.

We briefly mention two special types of knots. A knotK is said to be L-space if it

admits a positive surgery which is a three-manifold with Heegaard Floer homology

of minimal rank (called a Heegaard Floer L-space). Ozsváth and Szabó showed [13]

that if K is an L-space knot, the filtered chain homotopy equivalence class of the

complex CFK∞(K) has a particularly simple representative. To describe it, we

begin by introducing the following notation.

A positive staircase complex is a (Z⊕Z)-filtered F-chain complex generated by

elements z0, z
1
r , z

2
r where r ranges from 1 to some integer v ≥ 1. The element z0 has

planar grading (0, 0); moreover, the planar gradings of z1v−2w and z1v−(2w+1) differ

only in the i grading and the planar gradings of z1v−(2w+1) and z1v−(2w+2) differ only

in the j grading. The planar gradings have the symmetry property that if z1r lies at

planar grading (i, j) then z2r lies at planar grading (j, i). If v is even, the nonzero

differentials in this complex are

∂(zsr) = zsr−1 + zsr+1 for 1 < r < v, r odd ∂(zs1) = z0 + zs2,

whereas if v is odd they are

∂(zsr) = zsr−1 + zsr+1 for r > 0, r even ∂(z0) = z11 + z21 .

Examples of the two possible forms of a positive staircase are shown in Fig. 5. The

dual of a positive staircase is a negative staircase complex. Again the generators are
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z1v−2

z1v−1z1v

. . .

z0 z21

z11

. . .

z2v−2

z2v−1

z2v

z2v−1

z2v

. ..

z0z11

z21

. . .

z1v−1

z1v

Fig. 5. Positive staircase complexes for the case that v is even (on the left) and odd (on the
right).

elements z0, z
1
r , z

2
r where r ranges from 1 to some integer v ≥ 1. The element z0 has

planar grading (0, 0); moreover, the planar gradings of z1v−2w and z1v−(2w+1) differ

only in the j grading and the planar gradings of z1v−(2w+1) and z1v−(2w+2) differ only

in the i grading. The planar gradings have the symmetry property that if z1r lies at

planar grading (i, j) then z2r is at (j, i). If v is even, the nonzero differentials of this

complex are

∂(z0) = z11 + z21 ,

∂(zsr) = zsr−1 + zsr+1 for 0 < r < v, r even,

∂(zsv) = zsv−1,

whereas if v is odd they are

∂(zs1) = z0 + zs2,

∂(zsr) = zsr−1 + zsr+1 for 1 < r < v, r odd,

∂(zsv) = zsv−1.

Examples of the two possible forms of negative staircase complexes are shown in

Fig. 6.

We now turn to the specific case of an L-space knot, which by work of Ozsváth

and Szabó [13] has Alexander polynomial

ΔK(t) = (−1)v +

v∑
i=1

(−1)v−i(twi + t−wi)
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z2v−2

z2v−1 z2v

. ..

z0z11

z21

. . .

z1v−2

z1v−1

z1v

z1v−1

z1v

. . .

z0 z21

z11

. . .

z2v−1

z2v

Fig. 6. Negative staircase complexes for the case that v is even (on the left) and odd (on the
right).

for some sequence of positive integers 0 < w1 < w2 < · · · < wv = g(K). Let

�i = wi − wi−1 and let n(K) denote the sum

n(K) = wv − wv−1 + · · ·+ (−1)v−2w2 + (−1)v−1w1.

Then the filtered chain homotopy equivalence class of CFK∞(K) has a representa-

tive given by C⊗F[U,U−1] where C is a positive staircase complex with generators

z0, z
s
1, . . . , z

s
v such that the planar grading of z1v is (n(K), g(K) − n(K)), and in

general the gradings of z1v−2w and z1v−(2w+1) differ in the i grading by �v−2w and

the planar gradings of z1v−(2w+1) and z1v−(2w−2) differ in the j grading by �v−(2w+1).

We call the F-complex C a model complex, or in this case a model complex for

CFK∞(K). The complex associated to the mirror of an L-space knot is generated

by the elements of the negative staircase produced by dualizing.

In the construction above, we see that the sum n(K) appears in the positive

staircase complex associated to the L-space knot as the sum of the lengths of

the horizontal arrows in the top half of the staircase. For an arbitrary knot, if

a representative of the filtered chain homotopy equivalence class of CFK∞(K)

contains a direct summand generated over F[U,U−1] by a positive staircase complex,

we let this fact be a definition of the quantity n(K). If CFK∞(K) contains a

direct summand generated by a negative staircase complex, we let the sum of the

lengths of the horizontal arrows in the top half of the dual of the complex be

n(K); this is equivalent to the sum of the lengths of the vertical arrows in the

top half of the complex. Note that any staircase summand contributes a rank one

summand F[U,U−1] to the vertical homology and to the horizontal homology of the

chain complex, and therefore there can be at most one staircase summand in any

representation of the chain complex.
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We now turn to our second special type of knot. A knot is said to be thin if its

knot Floer homology ĤFK (K) = ⊕ĤFK s(K,w) has the property that w − s is a

constant k for all ĤFK s(K,w) �= {0}. The terminology here is because if the knot

Floer homology ĤFK were graphed with the Maslov grading on one axis and the

Alexander on the other, the support of ĤFK would lie in a single diagonal. More

generally, a thin complex is a graded Z ⊕ Z-filtered F[U,U−1] chain complex with

the property that there is a constant k such that generators at planar grading (i, j)

always have homological grading s = i+j−k; this implies that the generators [x; 0, j]

on the j-axis have constant difference between their Alexander and homological

gradings. A thin knot K admits a representative of CFK∞(K) which is a thin

complex [18, Lemma 5].

Petkova [18] showed that complexes associated to thin knots have an especially

simple form up to chain homotopy equivalence, which we now review. Let the

square complex Cs, also known as a one-by-one box complex, refer to an F-chain

complex with generators a, b, c, Ue, in filtration levels (i + 1, j + 1), (i, j + 1), (j +

1, i), (i, j), respectively, and homological gradings k+2, k+1, k+1, k, respectively,

with differential

∂(a) = b+ c, ∂(b) = Ue, ∂(c) = Ue, ∂(Ue) = 0.

One readily checks that ker ∂ and im ∂ are both the vector space span of b+ c and

Ue; hence, Cs is acyclic. If i = j the square complex is said to be on the main

diagonal, see Fig. 7 for a picture of Cs.

Lemma 2.4 ([18, Lemma 7]). Suppose C is a thin complex with horizontal and

vertical homologies of rank at most one. Then C is filtered chain homotopy equiv-

alent to the tensor product of F[U,U−1] with a direct sum of square complexes and

at most one staircase complex all of whose steps are length one.

Indeed, Petkova shows this result for any Z⊕Z-filtered F[U,U−1]-complex with

the property that all differentials lower one of the horizontal and vertical filtrations

by exactly one, that is, such that all arrows in the complex are either horizontal of

length one or vertical of length one (which must be true of a thin complex). The

case analysis involved in the proof also determines the length of the staircase (that

is, the integer v) and whether the staircase is positive or negative.

Ue c

b a

Fig. 7. A copy of the square complex Cs.

2250044-12

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
02

2.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
ri

st
en

 H
en

dr
ic

ks
 o

n 
01

/0
2/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2022 12:5 WSPC/S0218-2165 134-JKTR 2250044

A note on the involutive invariants of certain pretzel knots

2.2. Involutive Heegaard Floer homology for knots

Recall that if C is a (Z⊕ Z)-filtered complex, a chain map α : C → C is said to be

skew-filtered if α(Fj,i) ⊂ Fi,j . In [5, Sec. 6], Hendricks and Manolescu use a conju-

gation operation on knot Floer homology to define a skew-filtered automorphism

ιK,H : CFK∞(H) → CFK∞(H).

The pair (CFK∞(H), ιK,H) is an invariant of the knot up to equivariant chain

homotopy equivalence, sometimes called strong equivalence. Specifically, two pairs

(Ci, ιi) for i = 1, 2 for which Ci is a finitely-generated Z ⊕ Z-filtered F[U,U−1]-

complex and ιi is a skew-filtered automorphism are said to be strongly equivalent

if there are filtered chain maps f : C1 → C2 and g : C2 → C1 with the property

that

gf ∼ IdC1 gf ∼ IdC2 fι1 ∼ ι2f ι1g ∼ gι2,

where the first two equivalences are filtered chain homotopy equivalence and the

second two are skew-filtered chain homotopy equivalence.

In general we take some representative for the strong equivalence class

(CFK∞(K), ιK), not always one arising from a Heegaard diagram. The map ιK
is in principle difficult to compute. However, it has the following useful property.

Lemma 2.5 ([5]). The square of the map ιK is filtered chain homotopic to the

Sarkar involution; that is, we have

ιK
2 ∼ σ.

Note that this implies that ιK
4 is filtered chain homotopic to the identity map.

In [5, Secs. 7 and 8], Hendricks and Manolescu show that this is enough to uniquely

determine ιK up to filtered chain homotopy for L-space knots and thin knots.

There are two knot concordance invariants analogous to V0(K) arising from

this complex, as follows. First, choosing some representative for (CFK∞(K), ιK),

we consider the complex

CI∞ = ((CFK∞(K)⊗ F[Q]/(Q2))[−1], ∂ +Q(1 + ιK))

or equivalently the mapping cone

CI∞ = (Cone(CFK∞(K)
Q(1+ιK)−−−−−−→ QCFK∞(K)[−1])),

where multiplication by Q lowers the homological grading by 1 and the term [−1]

denotes an upward shift on the homological grading by 1. Note that this specifically

implies that if x is a generator in our representative for CFK∞(K) having homo-

logical grading gr(x) = s, then in the complex CI∞ the element x has homological

grading s + 1 and the element Qx has homological grading s. To distinguish the

involutive differential from the ordinary differential, we let ∂ι = ∂ + Q(1 + ιK)

denote the involutive differential throughout.
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Observe that there is an exact triangle

· · · → Hr+1(CI∞) → Hr+1(CFK
∞(K))

Q(1+ιK)−−−−−−→ Hr(QCFK∞(K))

→ Hr(CI∞)) → · · ·
Since H∗(C) � F[U,U−1] is at most one-dimensional in any given homological

grading and (ιK)∗ is an isomorphism, we see that 1 + (ιK)∗ is a zero map, and

H∗(CI∞) � F[U,U−1, Q]/(Q2).

Now, consider the subcomplex A−
0 of our representative for CFK∞, which is

preserved by ιK . As previously, denote its boundary map by ∂. Then we consider

the F[U,Q]/(Q2)-complex

AI−0 = ((A−
0 ⊗ F[Q]/(Q2))[−1], ∂ +Q(1 + ιK)).

This may also be expressed as the mapping cone

AI−0 = Cone(A−
0

Q(1+ιK)−−−−−−→ QA−
0 [−1]).

A similar argument using the exact triangle associated to the mapping cone shows

that the homology H∗(AI−0 ) always admits a (noncanonical) decomposition as an

F[U ]-module into a direct sum of two copies of F[U ] along with some U -torsion

summands. Of the two F[U ] summands, one has a generator [x1] lying in an odd

homological grading with the property that Un[x1] is never in the image of Q for

any n ≥ 0, and one has a generator [x2] lying in an even homological grading with

the property that Un[x2] ⊂ Im(Q) for n � 0. Indeed, [x1] and [x2] may be chosen

such that Q[x1] = Um[x2] for some sufficiently large m. As in the non-involutive

case, the top gradings of these two summands, which is to say the gradings of the

generators [x1] and [x2], are concordance invariants associated to the knot. The

involutive concordance invariants are then

V 0(K) = −1

2
(max{r : ∃x ∈ Hr(AI

−
0 ), ∀n, Unx �= 0 and Unx /∈ Im(Q)} − 1)

and

V 0(K) = −1

2
max{r : ∃x ∈ Hr(AI

−
0 ), ∀n, Unx �= 0; ∃m ≥ 0 s.t. Umx ∈ Im(Q)}.

This is not quite Hendricks and Manolescu’s original definition, which is given

in terms of correction terms of surgeries on knots [5, Theorem 1.6] and rephrased

in terms of the gradings of A+
0 = C{(i, j) : i ≥ 0 or j ≥ 0} [5, p. 45]; our definition

is equivalent via the duality of the minus and plus variants of Heegaard Floer

homology (cf. for example the discussion in [4, Sec. 3.8]).

We briefly recall two special cases. The standard staircase map on a staircase

complex C is the reflection across the line i = j.

Proposition 2.6 ([5, Sec. 7]). Let K be an L-space knot, so that CFK∞(K) �
C ⊗ F[U,U−1] for C a positive staircase complex. The involution on CFK∞(K) is
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generated by the standard staircase map, and the involutive concordance invariants

are

V0(K) = V 0(K) = V 0(K) = n(K)

and

V0(K) = V 0(K) = 0, V 0(K) = −n(K).

Computations are also accessible for thin knots. We first define a standard map

on a pair of square complexes. Consider two square complexes Cs generated by

a, b, c, Ue and C′
s generated by a′, b′, c′, Ue′, with such that a lies in planar grading

(i + 1, j + 1) and a′ lies in planar grading (j + 1, i+ 1), as in Fig. 8. The standard

square map between Cs ⊗ F[U,U−1] and C′
s ⊗ F[U,U−1] is

ιK(a) = a′ + e′, ιK(b) = c′, ιK(c) = b′, ιK(Ue) = Ue′,

ιK(a′) = a, ιK(b′) = c, ιK(c′) = b, ιK(Ue′) = Ue.

Observe that this is a chain map with the property that ιK
2 = σ, as σ(a) = a+ e

and σ(a′) = a′ + e′.

Proposition 2.7 ([5, Proposition 8.1]). Let K be a thin knot. The complex

(CFK∞(K), ιK) admits a representative which decomposes as a direct sum of pairs

of square complexes Cs⊗F[U,U−1] and C′
s⊗F[U,U−1] interchanged by the standard

square map, and a complex C ⊗ F[U,U−1] preserved by ιK such that C consists of

a staircase complex and at most one square complex on the main diagonal.

The key fact used in the proof of Proposition 2.7 is that for a thin complex,

grading considerations ensure that ιK interchanges the planar gradings (i, j) and

(j, i) and that ιK
2 = σ on the nose (that is, the filtered chain homotopy H relating

them must be zero). Hendricks and Manolescu use Proposition 2.7 to compute the

involutive correction terms of thin knots [5, Proposition 8.2].

We conclude this subsection with a look at the involutive concordance invariants

of the example complexes introduced so far, all of which fall into one of the special

cases above.

Ue c

b a

Ue′ c′

b′ a′

Fig. 8. A pair of square complexes.
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Example 2.8. Let K be the right-handed trefoil, with a representative of

CFK∞(K) as in Fig. 2. The automorphism ιK is given by

ιK(b) = U−1c ιK(c) = Ub ιK(a) = a.

The right-handed trefoil K is an L-space knot with n(K) = 1; therefore we have

V0(K) = V 0(K) = V 0(K) = 1.

In more detail, the homology of H∗(A−
0 ) is isomorphic to F(−2)[U ] generated

over F[U ] by the maximally-graded element [b] in the tower, with the consequence

that

V0(K) = −1

2
gr[b] = −1

2
(−2) = 1.

The homology of the mapping cone

AI−0 = Cone(A−
0

Q(1+ιK)−−−−−−→ QA−
0 [−1])

is shown in Fig. 9; we see that as an F[U ]-module,

H∗(AI−0 ) � F(−1)[U ]⊕ F(−2)[U ],

where the tower summand F(−1)[U ] is generated by the element [c + Qa] and the

tower summand F(−2)[U ] is generated by [Qc] = Q[c+Qa]. Here, we have that [c+

[c+Qa]

[Uc+QUa]

[U2c+QU2a]

[Qc]

[QUc]

[QU2c]

· · ·
Fig. 9. The homology H∗(AI−0 ) for the right-handed trefoil, in terms of the representative for
the filtered chain homotopy equivalence class for CFK∞(K) of Fig. 2. Curved lines denote the
action of the variable U , and dashed lines denote the action of the variable Q. The element [c+Qa]
lies in homological grading −1 and the element [Qc] lies in grading −2.
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Qa] is a maximally-graded element which is not U -torsion and such that Un[c+Qa]

is never in the image of Q, so that

V 0(K) = −1

2
(gr[c+Qa]− 1) = −1

2
(−1− 1) = 1

and likewise [Qc] is a maximally-graded element which is not U -torsion and lies in

the image of Q, such that

V 0(K) = −1

2
(gr[Qc]) = −1

2
(−2) = 1.

For the left-handed trefoil K with CFK∞(K) as in Fig. 4, we have

ιK(b) = Uc ιK(c) = U−1b ιK(a) = a.

Since K is the mirror of an L-space knot with n(K) = 1 we have

V0(K) = V 0(K) = 0, V 0(K) = −1.

More precisely, we see that H∗(A−
0 ) � F(0)[U ] ⊕ F(1), where the summand F(0)[U ]

is generated over F[U ] by [b + Uc] and the summand F(1) has an F-basis [a]. We

have that the homology class [b+ Uc] is a maximally-graded element which is not

U -torsion, and gr([b + Uc]) = 0, so V0(K) = 0.

[b+ Uc]

[Ub+ U2c]

[U2b+ U3c]

[a]

[Qb+QUc]

[QUb+QU2c]

[QU2b+QU3c]

[Qa]

· · ·
Fig. 10. The homology H∗(AI−0 ) for the left-handed trefoil, in terms of the representative for the
filtered chain homotopy equivalence class for CFK∞(K) of Fig. 4. Curved lines denote the action
of the variable U , and dashed lines denote the action of the variable Q. The element [b+ Uc] lies
in homological grading 1 and the element [a] lies in homological grading 2; the element [Qa] lies
in homological grading 1.

2250044-17

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
02

2.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
ri

st
en

 H
en

dr
ic

ks
 o

n 
01

/0
2/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2022 12:5 WSPC/S0218-2165 134-JKTR 2250044

K. Hendricks, M. Issac & N. McConnell

The homology of the mapping cone complex AI−0 is shown in Fig. 10. We see

that as an F[U ]-module we have

H∗(AI−0 ) � F(1)[U ]⊕ F(2)[U ]⊕ F(1),

where the summand F(1)[U ] is generated over F[U ] by [b+Uc], the summand F(2)[U ]

is generated over F[U ] by [a], and the summand F(1) has an F-basis [Qa]. Note, in

particular, that U [a] = [Ua] = [Qb+QUc], since

∂ι(b) = ∂(b) +Q(1 + ιK)(b) = Ua+Q(b+ Uc).

Therefore, in the homology H∗(AI−0 ), the element [b + Uc] is a maximally-graded

element which is not U -torsion and for which no U -power lies in the image of Q, so

V 0(K) = −1

2
(gr[b+ Uc]) = −1

2
(1 − 1) = 0,

whereas [a] is a maximally-graded element which is not U -torsion and such that

U [a] = [Q(b+ Uc)], so

V 0(K) = −1

2
(gr[a]) = −1

2
(2) = −1.

Example 2.9. Let K be the figure-eight knot, with CFK∞(K) as in Fig. 3. The

automorphism ιK is given by

ιK(c) = b ιK(b) = c ιK(e) = e ιK(a) = a+ x ιK(x) = x+ e.

We see that the homology H∗(A−
0 ) � F(0)[U ] generated by the element [x]. Thus,

[x] is a maximally graded element which is not U -torsion, such that V0(K) =

− 1
2 gr[x] = 0. The homology H∗(AI−0 ) appears in Fig. 11. We see that as an F[U ]-

module

H∗(AI−0 ) � F(−1)[U ]⊕ F(0)[U ]⊕ F(1),

where the summand F(−1)[U ] is generated over F[U ] by [Ux + Qc], the summand

F(0)[U ] is generated over F[U ] by [Qx], and the summand F(1) is generated by [e].

Note in particular that Q[Ux+Qc] = [QUx] = U [Qx]. Then the element [Ux+Qc]

is a maximally-graded element which is not U -torsion and for which no U -power

lies in the image of Q, so

V 0(K) = −1

2
(gr[Ux+Qc]) = −1

2
(−1− 1) = 1

whereas [Qx] is a maximally-graded element which is not U -torsion, so

V 0(K) = −1

2
(gr[Qx]) = −1

2
(0) = 0.
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[e]

[Ux+Qc]

[U2x+QUc]

[U3x+QU2c]

[Qx]

[QUx]

[QU2x]

[QU3x]

· · ·
Fig. 11. The homology H∗(AI−0 ) for the figure-eight knot, in terms of the representative for the
filtered chain homotopy equivalence class for CFK∞(K) of Fig. 3. Curved lines denote the action
of the variable U , and dashed lines denote the action of the variable Q. The element [Ux + Qc]
lies in homological grading −1 and the element [Qx] lies in homological grading 0; the element [e]
lies in homological grading 1.

3. Involutive Invariants of (−2,m, n) Pretzel Knots

3.1. The complex CFK∞(P (−2,m, n))

In this subsection, we review Goda, Matsuda, and Morifuji’s computation of the

knot Floer homology of P (−2,m, n) [3, Sec. 5] and prove that there is a change

of basis which allows us to simplify the complex. Let m ≥ n ≥ 3. For our proof,

we will require a description of the generators of the complex and their filtration

levels, some information about the differentials of particular generators, and the

final computation of knot Floer homology.

Following [3], we fix the following notation. Let g = m+n
2 be the genus of the

pretzel knot, and set m′ = m−3
2 , n′ = n−3

2 ,

γ(g) =

⎧⎪⎪⎨
⎪⎪⎩
1− g − 1

2
g odd,

1− g

2
g even,

and δ(g) =

⎧⎪⎪⎨
⎪⎪⎩
g − 1

2
g odd,

g

2
− 1 g even.

With respect to these choices, there is a representative for the complex

CFK∞(K) (arising, indeed, from a genus one Heegaard diagram) which has a basis
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as an F-vector space as follows, where t ∈ Z is arbitrary. Setting t = 0 returns a set

of generators of CFK∞(K) over F[U,U−1].

[y1, ; t+ γ(g)− 1, t+ δ(g) + 1],

[y2; t+ γ(g)− 1, t+ δ(g)],

[y3; t+ δ(g), t+ γ(g)− 1],

[y4; t+ δ(g) + 1, t+ γ(g)− 1],

[x2p+1,2q+1; t+ γ(g) + p+ q + 1, t+ δ(g)− p− q] for 0 ≤ p ≤ n′, 0 ≤ q ≤ m′,

[x2p+1,2q ; t+ γ(g) + p+ q, t+ δ(g)− p− q] for 0 ≤ p ≤ n′, 1 ≤ q ≤ m′,

[x2p,2q+1; t+ γ(g) +m′ + p− q, t+ δ(g)−m′ − p− q] for

1 ≤ p ≤ n′, 0 ≤ q ≤ m′,

[x2p,2q ; t+ γ(g) +m′ + p− q, t+ δ(g)−m′ − p+ q − 1] for

1 ≤ p ≤ n′, 1 ≤ q ≤ m′.

We refer to the generators yi as the exceptional generators and the generators

xk,� as the ordinary generators. One may straightforwardly check that the ordinary

generators lie strictly between the lines j − i = g − 1 and j − i = 1 − g and

that [y2; t + γ(g) − 1, t + δ(g)] and [y3; t + δ(g), t + γ(g) − 1] lie on these lines,

respectively. Furthermore, [y1; t + γ(g) − 1, t + δ(g) + 1] lies on the line j − i = g

and [y4; t+ δ(g) + 1, t+ γ(g)− 1] lies on the line j − i = −g.

We summarize the important aspects of the differential below.

Lemma 3.1 ([3, Sec. 5]). With respect to the basis for CFK∞(P (−2,m, n))

above, the differentials of the exceptional generators are

• ∂[y1; i, j] = [y2; i, j − 1]

• ∂[y2; i, j] = 0

• ∂[y3; i, j] = 0

• ∂[y4; i, j] = [y3; i− 1, j].

Furthermore, the elements whose differential, written as a sum of the generators

above, includes an exceptional generator are

• ∂[x1,1; i, j] = [x2,m−2; i, j − 1] + [x1,2; i, j − 1] + [y2; i− 2, j]

• ∂[xn−2,m−2; i, j] = [xn−3,1; i− 1, j] + [xn−2,m−3; i− 1, j] + [y3; i, j − 2].

For all other ordinary generators [x; i, j], the differential is a sum of elements

[w; i− 1, j] and [z; i, j − 1]; that is, any arrow appearing in the differential is either

horizontal or vertical of length one.

Note that the computation of [3] is carried out for Z coefficients, so there are

some signs in the original that do not appear above. The computation of the
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knot Floer homology of the pretzel knots carried out from this differential is as

follows.

Lemma 3.2 ([3, Sec. 5]). For m ≥ n ≥ 3, the knot Floer homology of K =

P (−2,m, n) in positive Alexander gradings is equal to

ĤFK (K,w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 w > g,

Fg+w w = g, g − 1,

0 w = g − 2,

F
g−2−w
g−1+w g − n ≤ w < g − 2,

Fn−2
g−1+w 0 ≤ w < g − n.

We may now state our first splitting lemma:

Lemma 3.3. Let K be a pretzel knot P (−2,m, n) with m ≥ n > 3. Then

CFK∞(K) is chain homotopy equivalent to the tensor product of F[U,U−1] with a

direct sum of a single staircase complex together with some number of copies of the

square complex Cs.

Proof. As earlier in this section, we let g = m+n
2 denote the genus of the pretzel

knot. In this proof, we let y1 = [y1;−g, 0], y2 = [y2;−g,−1], y3 = [y3;−1,−g], y4 =

[y4; 0,−g], x1,1 = [x1,1; 2 − g,−1], and xn−2,m−2 = [xn−2,m−2;−1, 2 − g]. These

gradings are chosen so that y1, y4, x1,1, and xn−2,m−2 lie in homological grading 0

x1,1y2

y1

xn−2,m−2

y3 y4

C ′

j − i = m+n−6
2

j − i = 6−m−n
2

Fig. 12. A schematic diagram of the situation in Lemma 3.3. The four exceptional generators
and all of the differentials involving them are shown. The remaining generators in C′ lie strictly
between the two dashed lines.
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and y2 and y3 lie in homological grading −1. Moreover, we have

∂(y1) = y2 ∂(y4) = y3.

Furthermore,

∂horz(x1,1) = y2 ∂vert(xn−2,m−2) = y3.

A schematic of the situation appears in Fig. 12. We first observe that [y1] is a

nontrivial element of the horizontal homology of CFK∞(K), since the only differ-

ential involving y1 in the complex is a vertical arrow to y2. Since the horizontal

homology has rank one, it in fact must be generated by [y1]. Similarly, the vertical

homology is generated by [y4]. Now, let us consider the complex C′ which is a quo-

tient of C = CFK∞(K) by the subcomplex generated by the elements y1, y2, y3,

and y4. In doing so, we have deleted the horizontal arrow from x1,1 to y2 and the

vertical arrow from xn−2,m−2 to y3. If we now consider the horizontal homology of

C′, we see that it is generated by [x1,1] since now x1,1 has trivial horizontal differ-

ential and the horizontal differential is otherwise unchanged. Similarly, the vertical

homology of C′ is generated by [xn−2,m−2]. In particular, both the vertical and

horizontal homologies of C′ have rank one. Moreover, the remaining differentials

in C′ each lower one of the horizontal or vertical planar gradings by exactly one;

indeed, C′ is a thin complex. Therefore, Petkova’s work [18, Lemma 7], reviewed in

Sec. 2 as Lemma 2.4, tells us that up to change of basis C′ may be decomposed as

the tensor product of F[U,U−1] with a direct sum of a staircase complex and some

number of one-by-one boxes.

However, the case analysis of [18, Sec. 3] also recovers the sign and length of

the staircase complex in question. We start by considering an element lying on

the bottom-most occupied diagonal line j − i = k in C′, which in this case is

xn−2,m−2 (or any of its U -translates). This element does not lie in the image of a

vertical differential, which corresponds to Case 2 of Lemma 7 of Petkova [18, Sec. 3];

in particular, xn−2,m−2 must form the lower right corner of a negative staircase

summand. Hence we can split off a staircase complex whose lower-right corner is

xn−2,m−2. By symmetry of the staircase across the main diagonal, the upper left

corner must lie in planar grading (2 − g,−1) and have homological grading 0; the

only element in C′ satisfying this is x1,1.

Now, we include C′ back into C. We see that x1,1 has a horizontal length two

arrow to y2 and xn−2,m−2 has a vertical length two arrow to y3. Hence, the neg-

ative staircase in C′ extends to a negative staircase in C which includes the four

exceptional generators (and now has two steps of length two). The conclusion of

the lemma follows.

See Fig. 13 for the example of the pretzel knot P (−2, 9, 9) after this change

of basis. Note that since the change of basis of the preceding lemma affected

only to the ordinary generators, we may continue to distinguish between the four
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j

i

. .
.

. .
.

z18

z17 z16

z15

z14

z13

z12

z11

z0

z21

z22

z23

z24

z25 z26

z27 z28

2

3

2

2

3

22

3

2

Fig. 13. The complex CFK∞(P (−2, 9, 9)) after a change of basis, with the generators on the
staircase labeled using the staircase notation of Sec. 2. Here an integer k in the center of a box
indicates the presence of k boxes on the corresponding diagonal. In the notation of Lemma 3.3,
we have y0 = U4z18 , y1 = U4z17 , x1,1 = U4z16 , and similarly for the bottom half of the complex.

exceptional generators and the remaining ordinary generators in the subsection that

follows.

3.2. Computations for model complexes

In this subsection, we carry out computations for several model complexes. Our

computations are modeled on [5, Sec. 8]. We begin by using the description of the

complexes CFK∞(P (−2,m, n)) given in the previous section to prove a simplifying

lemma.

Lemma 3.4. Let K be a pretzel knot P (−2,m, n),m ≥ n > 3, and C′ ⊗ F[U,U−1]

be the representative for CFK∞(K) of Lemma 3.3, consisting of the tensor product

of a negative staircase and some number of square complexes with F[U,U−1]. Then

(1) The skew-filtered chain map ιK exchanges the planar gradings (i, j) and (j, i).
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(2) If H is a filtered chain homotopy which raises the homological grading by one,

H = 0. Hence ιK
2 = σ.

Proof. As previously in this section, let g = m+n
2 . Let [x; i, j] be a generator of

CFK∞(K) with homological grading s. By the proof of Lemma 3.3, we see that

for any nonexceptional generator, there is some constant k such that s = i+ j − k.

By recalling that the homological grading of x1,1 = [x1,1; 2− g,−1] is zero, we may

solve for k, determining that for any non-exceptional generator

s = i+ j + g − 1. (3.1)

Furthermore, the non-exceptional generators of even homological grading lie be-

tween or on the lines j − i = g − 3 and j − i = 3− g. In particular, we see that

i+ g − 3 ≥ j ≥ i+ 3− g.

Combining this with (3.1), which we may rearrange to be j = s − i − g + 1, we

obtain which may be rearranged to

s

2
− g + 2 ≤ i ≤ s

2
− 1.

A symmetric computation shows the same is true of j, so when s is even we have

that

s

2
− g + 2 ≤ i, j ≤ s

2
− 1.

On the other hand, the generators of odd homological gradings lie between or on

the diagonal lines j − i = g − 4 and i − j = 4 − g, so the analogous computation

shows that

s+ 1

2
− g + 2 ≤ i, j ≤ s− 1

2
− 1.

If [y; i, j] is an exceptional generator, then if s is even either (i, j) = ( s2 − g, s
2 )

or (i, j) = ( s2 ,
s
2 − g). These cases are U -translates of y1 and y4, respectively. If s

is odd then we have either (i, j) = ( s+1
2 − g, s−1

2 ) or (i, j) = ( s−1
2 , s+1

2 − g). These

cases are U -translates of y2 and y3, respectively. In either case, s = i+ j + g.

We now prove part (1). Suppose we have an ordinary generator [z; i, j] of ho-

mological grading s. Then ιK([z; i, j]) is a sum of generators [x; i′, j′] such that

i′ ≤ j, j′ ≤ i, and gr([x, i′, j′]) = s. These restrictions imply that for any [x; i′, j′]
an ordinary generator which appears in this sum with nonzero coefficient, we must

then have i′ = j and j′ = i. Now, suppose that [y; i′, j′] an exceptional generator

which appears in this sum with nonzero coefficient. Then if s is even, one of i′ or
j′ is s

2 . However, i, j ≤ s
2 − 1, so this contradicts i′ ≤ j and j′ ≤ i. Similarly if s is

odd, then one of i′ or j′ is s−1
2 , but i, j ≤ s−1

2 − 1. Ergo the sum ιK([z; i, j]) cannot

contain any exceptional generators with nonzero coefficient, and indeed ιK([z; i, j])

must be a sum of ordinary generators [x; i′, j′] with i′ = j and j′ = i. An analogous

but simpler argument shows that for the four exceptional generators, ιK([y�; i, j])
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is either [y5−�; j, i] or zero. We conclude that ιK interchanges the planar gradings

(i, j) and (j, i). This proves (1).

The reader is at this point invited to examine Fig. 13 as an example and compare

it to the proof above, for clarity. The point is that for any generator [x; i, j] in the

basis shown, all elements in filtration level Fj,i with the same homological grading

as [x; i, j] have the same type (exceptional or ordinary) as [x; i, j], and therefore

grading considerations imply that ιK must simply interchange the planar gradings.

We now turn our attention to part (2). Let H be a filtered map which raises

the homological grading by one. Suppose the map H sends a generator [z; i, j]

in homological grading s to a nonzero sum of generators [x; i′, j′] in homological

grading t = s+ 1 with i′ ≤ i and j′ ≤ j. For any [x; i′, j′] appearing with nonzero

coefficient in this sum, if [x; i′, j′] is an ordinary generator then t = s+1 = i′+ j′+
g − 1 and if [x; i′, j′] is an exceptional generator then t = s + 1 = i′ + j′ + g. We

deal with each of these two possibilities separately.

In the first case, if s+ 1 = i′ + j′ + g − 1, then since i′ ≤ i and j′ ≤ j, we have

s+ 1 ≤ i + j + g − 1, which implies that s ≤ i+ j + g − 2. This is a contradiction

since for any generator [z; i, j], we either have that s = i+ j+g−1 (for an ordinary

generator) or s = i+ j + g (for an exceptional generator) is true.

In the second case, if s+1 = i′ + j′ + g, then we see that the generator [x; i′, j′]
is an exceptional generator. As before it follows that s ≤ i + j + g − 1, so we see

that the original generator [z; i, j] must be ordinary. Moreover, the inequality must

actually be an equality, implying that i′ = i and j′ = j. Therefore, H must send the

ordinary generator [z; i, j] to a sum of exceptional generators [x; i, j] in homological

grading s + 1 lying in the original planar grading (i, j). However, no exceptional

generators lie in the same planar gradings as ordinary generators anywhere in the

chain complex, so this is impossible. This implies that H = 0, proving (2).

Lemma 3.4 is the important step in proving that the strong equivalence class of

the pair (CFK∞(P (−2,m, n)), ιK) admits a representative which decomposes into

a direct sum of simple complexes preserved by ιK . Since it is no longer necessary to

distinguish the ordinary and exceptional generators, from here on out we will use

the notation for staircase complexes introduced in Sec. 2.

Lemma 3.5. Let K be a pretzel knot P (−2,m, n) with m ≥ n > 3. Then the

strong equivalence class of (CFK∞(K), ιK) admits a representative which decom-

poses equivariantly as the tensor product of F[U,U−1] with a direct sum of pairs of

square complexes interchanged by the standard square map, and one of four model

complexes, according to the values of m and n, as follows :

• When m ≡ n ≡ 1 (mod 4), we obtain the model complex C1 consisting of a

negative staircase with n(K) = m+n−2
4 and a single square complex on the main

diagonal, as in Fig. 14.

• When m ≡ 3 (mod 4) and n ≡ 1 (mod 4), we obtain the model complex C2

consisting of a negative staircase with n(K) = m+n
4 , as in Fig. 15.
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• When m ≡ n ≡ 3 (mod 4), we obtain the model complex C3 consisting of a

negative staircase with n(K) = m+n−2
4 , as in Fig. 16.

• When m ≡ 1 (mod 4) and n ≡ 3 (mod 4), we obtain the model complex C4,

consisting of a negative staircase with n(K) = m+n
4 , as in Fig. 17.

Proof. The argument that we can split off pairs of square complexes until we are

left with a staircase complex and at most one square complex on the main diagonal

proceeds as in [5, Proposition 8.1], using Lemma 3.4. It remains to analyze the

staircases involved and determine whether we have a square complex remaining on

the main diagonal.

We first note that in all cases by Lemma 3.3 we have a negative staircase sum-

mand which begins at the top of the staircase with a vertical step of length one

followed by a horizontal step of length two, subsequent to which all steps in the top

half of the complex have length one. Let v be the total number of steps in the top

half of the complex and u = v − 2 be the number of steps in the top half of the

complex after the first two. Then since the total lengths of the steps in the complex

sum to g = m+n
2 by projecting the elements of the staircase to their U -translates

in the F-subcomplex C{i = 0} of our representative for CFK∞(K), we have that

u = g − 3.

We see that if m ≡ n (mod 4) then m+ n ≡ 2 (mod 4), implying that g = m+n
2 is

odd. Hence u = g−3 is an even number, and therefore so is v, so the number of steps

above the main diagonal is even. However, if it is the case that m �≡ n (mod 4),

then 4 | (m+ n) so there is an odd number of steps above the main diagonal.

Before moving on, we also calculate the number n(K) associated to the negative

staircase summand of the complex. If m ≡ n (mod 4), then g is odd and u is even,

and the total lengths of the vertical arrows in the top half of the complex is equal

to u
2 + 1, so we have

n(K) =
g − 3

2
+ 1 =

g − 1

2
=

m+ n− 2

4
.

Conversely if m �≡ n (mod 4), then u is odd, and the total lengths of the vertical

arrows in the top half of the complex is u+1
2 + 1, so we have

n(K) =
g − 3 + 1

2
+ 1 =

g

2
=

m+ n

4
.

We now turn to the matter of square complexes, which we analyze by considering

the Alexander polynomial of the knot, which we recall is equal to the Euler charac-

teristic of the knot Floer homology ĤFK (K), which is itself the homology of the as-

sociated graded of the F-complex C{i = 0} inside any representative of CFK∞(K).

In general the tensor product of a square complex with its upper right corner on

the diagonal j = i + s with F[U,U−1] contributes a factor of ±ts(−t+ 2− t−1) to

the Alexander polynomial of the knot. In our case, because the knot Floer complex

is thin apart from the four exceptional generators, the sign is always (−1)s. Taking
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the Euler characteristic of the knot Floer homology in Lemma 3.2, we see the total

Alexander polynomial of K is

tg − tg−1 +

n−3∑
k=1

(−1)k−1ktg−k−2 +

g−n∑
k=n−g

(−1)g−k−1(n− 2)tk

+

n−3∑
k=1

(−1)k−1ktk+2−g − t1−g + t−g.

The staircase summand contributes tg − tg−1+(
∑g−3

k=3−g(−1)k−1tk)− t1−g + t−g to

the polynomial. Therefore, the boxes must contribute the remaining terms, which

are:

n−4∑
k=1

(−1)kktg−k−3 +

g−n∑
k=n−g

(−1)g−k−1(n− 3)tk +

n−4∑
k=1

(−1)kktk+3−g.

This polynomial factors as⎛
⎝

n−5
2∑

k=1

ktg−2k−3 +
n− 3

2

g−n∑
0

tg−n−2k +

n−5
2∑

k=1

(−1)kkt2k+3−g

⎞
⎠ (−t+ 2− t−1).

In particular, note that the center sum n−3
2

∑g−n
0 tg−n−2k can be rewritten as

n−3
2 (tg−n + tg−n−2 + · · · + tn+2−g + tn−g). If m �≡ n (mod 4), then the constant

term in this polynomial is zero, and we conclude that there are no boxes on the

main diagonal in our representative for CFK∞(K). If m ≡ n (mod 4), then the

constant term in this polynomial is n−3
2 , and we conclude that there are n−3

2 boxes

on the main diagonal. If n ≡ 3 (mod 4), this is an even number of boxes, which

split off equivariantly in pairs. If n ≡ 1 (mod 4), this is an odd number of boxes,

all but one of which split off equivariantly in pairs, leaving a single box on the main

diagonal in the model complex.

Example 3.6. In light of the high algebraic complexity of the previous proof, we

include a few early cases. First, we consider K1 = P (−2, 5, 5), an example of the

case m ≡ n ≡ 1 (mod 4). The Alexander polynomial of K1 is

ΔK1(t) = t5 − t4 + t2 − 2t+ 3− 2t−1 + t−2 − t−4 + t−5

= (t5 − t4 + t2 − t+ 1− t−1 + t−2 − t−4 + t−5) + (−t+ 2− t−1),

where the two parenthesized terms in the second row correspond in order to the

contribution of the staircase and the contribution of a single box on the main

diagonal. This gives us the complex of Fig. 14; in this special case we do not need

to split off any pairs of boxes to obtain the model complex shown. There are as

promised n−3
2 = 1 boxes on the main diagonal. For a more complicated example
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of the case m ≡ n ≡ 1 (mod 4), consider K ′
1 = P (−2, 9, 5), which has Alexander

polynomial

ΔK′
1
(t) = t7 − t6 + t4 − 2t3 + 3t2 − 3t+ 3− 3t−1 + 3t−2 − 2t−3 + t−4 − t−6 + t−7.

After subtracting the staircase contribution

t7 − t6 + t4 − t3 + t2 − t+ 1− t−1 + t−2 − t−3 + t−4 − t−6 + t−7

we are left with

−t3 + 2t2 − 2t+ 2− 2t−1 + 2t−2 − t−3 = (−t+ 2− t−1)(t2 + 1 + t−2).

We see we have a single box on the main diagonal, as promised by n−3
2 = 1, along

with a pair of boxes on the diagonals j−i = 1 and j−i = −1 which are interchanged

by the standard square map; we split off this pair to obtain a version of the model

complex C1 of Fig. 14.

Next, let K2 = P (−2, 7, 5) be an example of the case m ≡ 3 (mod 4) and n ≡ 1

(mod 4). Then we have

ΔK2 = t6 − t5 + t3 − 2t2 + 3t− 3 + 3t−1 − 2t−2 + t−3 − t−5 + t−6.

After subtracting the staircase contribution

t6 − t5 + t3 − t2 + t− 1 + t−1 − t−2 + t−3 − t−5 + t−6

j

i

z1v

z1v−1

z2v−1

z2v

z12

z22

z0z11

z21

b a

Ue

e

c

U−1z1v

U−1z2v

Fig. 14. The model complex C1 tensored with F[U,U−1], corresponding to knots P (−2, m, n)
such that m ≡ n ≡ 1 (mod 4). The case of m = n = 5 is shown.
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A note on the involutive invariants of certain pretzel knots

we are left with

−t2 + 2t− 2 + 2t−1 + t2,

which factors as

(−t+ 2− t−1)(t+ t−1)

corresponding to the appearance of a pair of boxes on the diagonals j − i = 1 and

j − i = −1, interchanged by the standard square map. After splitting off this pair

we obtain the staircase model complex C2 of Fig. 15.

Next, consider K3 = P (−2, 7, 7) as an example of the case n ≡ m ≡ 3 (mod 4).

The Alexander polynomial of K3 is

ΔK3(t) = t7 − t6 + t4 − 2t3 + 3t2 − 4t+ 5− 4t−1 + 3t−2 − 2t−3

+ t−4 − t−6 + t−7.

After subtracting the staircase contribution

t7 − t6 + t4 − t3 + t2 − t+ 1− t−1 + t−2 − t−3 + t−4 − t−6 + t−7

we are left with

−t3 + 2t2 − 3t+ 4− 3t−1 + 2t−2 − t−3 = (−t+ 2− t−1)(t2 + 2 + t−2).

We see there are as promised n−3
2 = 2 boxes on the main diagonal, which split off

as a pair interchanged by the standard square map. Furthermore, there is a pair

j

i

z1v

z1v−1 z13

z12 z11

z0 z21

z22 z23

z2v−1 z2v

Uz1v

Uz13

Uz11

Uz21

Uz23

Uz2v

Fig. 15. The model complex C2 tensored with F[U,U−1], corresponding to knots P (−2, m, n)
such that m ≡ 3 (mod 4) and n ≡ 1 (mod 4). The case of m = 7 and n = 5 is shown.
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j

i

U−1z1v

U−1z14

U−1z0

U−1z24

U−1z2v

z1v

z1v−1 z14

z13 z12

z11
z0

z21 z22

z23 z24

z2v−1 z2v

Fig. 16. The model complex C3 tensored with F[U,U−1], corresponding to knots P (−2, m, n)
such that m ≡ n ≡ 3 (mod 4). The case of m = n = 7 is shown.

of boxes on the diagonals j − i = 1 and j − i = −1 which are interchanged by the

standard square map. After splitting off these pairs we are left with the staircase

model complex C3 of Fig. 16.

Finally, let K4 = P (−2, 9, 7) be an example of the case m ≡ 1 (mod 4) and

n ≡ 3 (mod 4). The Alexander polynomial of K4 is

ΔK4 = t8 − t7 + t5 − 2t4 + 3t3 − 4t2 + 5t− 5 + 5t−1 − 4t−2

+3t−3 − 2t−4 + t5 − t7 + t8.

After subtracting the staircase contribution

t8 − t7 + t5 − t4 + t3 − t2 + t− 1 + t−1 − t−2 + t−3 − t−4 + t−5 − t−7 + t−8

we are left with

−t4 + 2t3 − 3t2 + 4t− 4 + 4t−1 − 3t−2 + 2t−3 − t−4

= (−t+ 2− t−1)(t3 + 2t+ 2t−1 + t−3).

There is a pair of boxes on the diagonals j − i = 3 and j − i = −3 interchanged

by the standard square map; two boxes on each of the diagonals j − i = 1 and
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j

i

z1v

z1v−1 z15

z14 z13

z12 z11

z0 z21

z22 z23

z24 z25

z2v−1 z2v

Uz1v

Uz15

Uz13

Uz11

Uz21

Uz23

Uz25

Uz2v

Fig. 17. The model complex C4 tensored with F[U,U−1], corresponding to knots P (−2, m, n)
such that m ≡ 1 (mod 4) and n ≡ 3 (mod 4). The case of m = 9 and n = 7 is shown.

j − i = −1 interchanged in pairs by standard square maps. After splitting off these

summands we are left with the staircase model complex C4 of Fig. 17.

We now conclude with the proof of our main theorem.

Proof of Theorem 1.1. We present the argument for the model complex C1 and

its dual; the other cases, being staircase complexes, are substantially easier. Our

computations are similar to Cases 2(e) and 2(c) of [5, Proposition 8.2], respectively.

The expert reader may find it helpful to note that, because of the step of length

two in our staircase complex, we in particular get parallel results to the case of

thin knots in the case that the Oszváth–Szabó concordance invariant τ is an even

number, even though in our case τ = g = m+n
2 is odd [3, Sec. 3]. The complex is

pictured in Fig. 14, and has generators a, b, c, e, z0, z
s
r for s ∈ {1, 2} and 1 ≤ r ≤ v,

where v = m+n
2 − 1. The homological gradings are determined by the requirement

that H∗(C{i = 0}) = F(0), which fixes gr(Un(K)z2v) = 0. The complex has nonzero

differentials

∂a = b+ c, ∂b = ∂c = Ue,

∂(z0) = z11 + z21 , ∂(zsv) = zsv−1.

∂(zsr) = zsr−1 + zsr+1, 0 < r < v, r even,
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Up to change of basis, the unique skew-filtered map on C1 squaring to the Sarkar

involution is

ιK(a) = a+ z0, ιK(b) = c+ z21 ,

ιK(z0) = z0 + e, ιK(c) = b+ z11 ,

ιK(z1r ) = z2r , 1 < r ≤ v, ιK(z2r) = z1r , 1 ≤ r ≤ v.

ιK(e) = e,

We begin by considering the F[U ]-complex of C1 ⊗ F[U,U−1] with F-basis con-

sisting of elements lying in the third quadrant; via a small abuse of notation as in

[5, Sec. 8], we refer to this subcomplex as A−
0 . This complex is shown in Fig. 18.

We see that this complex is generated over F[U ] by the set

{e, a, b, c, z0, zs1, Uzs2, Uzs3, U
2zs4, . . . , U

n(K)zsv}
and differentials inherited from the differentials on C1. The homology H∗(A−

0 ) is

isomorphic to

H∗(A−
0 )

∼= F(0)[U ]⊕ F(2n(K)−1)[U ]/Un(K) ⊕ F(2n(K)),

where the summand F(0)[U ] is generated by [Un(K)(z1v + · · ·+z12 +z0+z22 + · · · z2v)],
the summand F(2n(K)−1)[U ]/Un(K) is generated by [z11 ] and the summand F(2n(K))

is generated as an F-vector space by [e]. Here, the non-U -torsion part of H∗(A−
0 ) is

generated by an element of grading 0, so V0(K) = 0.

j

i

z0z11

z21

b a

Ue

e

c

Uz1v−1

Uz2v−1

Un(K)z1v

Un(K)z2v

. .
.

. .
.

. .
.

Fig. 18. The F[U ]-submodule A−
0 of the complex C1 ⊗ F[U,U−1]. The specific example shown

remains m = n = 5; in this case n(K) = 2.
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We now compute the involutive correction terms. We start by computing the

homology of the grading-shifted mapping cone

CI∞ = Cone(C1 ⊗ F[U,U−1]
Q(1+ιK)−−−−−−→ Q(C1 ⊗ F[U,U−1])[−1]).

This mapping cone comes to us with a set of generators

{e, a, b, c, z0, zs1, . . . , zsv, Qe,Qa,Qb,Qc,Qz0, Qzs1, . . . , Qzsv}
for s = 1, 2 as usual. We do a change of basis to replace this by the set of generators

{e, a, b, b+ c, z0, z
1
1 , z

1
1 + z21 , . . . , z

v
1 , z

1
v + z2v ,

Qe,Qa,Qb,Q(b+ c), Qz0, Qz11 , Qz11 +Qz21 , . . . , Qz1v, Q(z1v + z2v)}.
After this change of basis the complex breaks up as a direct sum of the tensor prod-

ucts of three model F-complexes D1, D2, and D3 shown in Fig. 19 with F[U,U−1].

The top model complex D1 has generators

{QU−1c,Qe, z0, z
1
1 + z21 , . . . , z

1
v + z2v}

QU−1c

Qe

z0

z11 + z21

z12 + z22

z13 + z23

. . .

z1v−1 + z2v−1

z1v + z2v

a

b + c Qz0 z11

Q(z11 + z21)

z12

Q(z12 + z22) z13

Q(z13 + z23)

z14

Q(z14 + z24) . . . z1v−1

. . . Q(z1v−1 + z2v−1)

z1v

Q(z1v + z2v)

Qa

Q(b + c)

c

Ue Qz11

Qz12

. . .

Qz1v

Fig. 19. Model complexes for direct summands appearing in the mapping cone Cone(C1 ⊗
F[U,U−1]

Q(1+ιK )−−−−−−→ Q(C1 ⊗ F[U,U−1])[−1]). These complexes are labeled D1, D1, D3 in order
down the page.
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and nonzero differentials ∂ι = ∂ +Q(1 + ιK) given by

∂ι(QU−1c) = Qe,

∂ι(z0) = (z11 + z21) +Qe,

∂ι(z1v + z2v) = z1v−1 + z2v−2,

∂ι(z1r + z2r) = (z1r−1 + z2r−1) + (z1r+1 + z2r+1), 0 < r < v, r even.

We observe that tensor product of D1 with F[U,U−1] contributes a summand

F[U,U−1] to H∗(CI∞) generated by [θ] = [z0+(z12 +z22)+ · · ·+(z1v +z2v)+QU−1c].

Our next model complex D2, shown on the middle row of Fig. 19, has generators

{a, b+ c,Qz0, z
1
1 , . . . , z

1
v , Q(z11 + z21), . . . , Q(z1v + z2v)}

and nonzero differentials

∂ι(a) = (b+ c) +Qz0,

∂ι(b+ c) = Q(z11 + z21),

∂ι(Qz0) = Q(z11 + z21),

∂ι(z1v) = z1v−1 +Q(z1v + z2v),

∂ι(Q(z1v + z2v)) = Q(z1v−1 + z2v−1),

∂ι(z1r ) = z1r−1 + z1r+1 +Q(z1r + z2r ), 0 < r < v, r even,

∂ι(z1r ) = Q(z1r + z2r), 0 < r < v, r odd,

∂ι(Q(z1r + z2r )) = Q(z1r−1 + z2r−1) +Q(z1r+1 + z2r+1), 0 < r < v, r even.

We observe that the tensor product of D2 with F[U,U−1] contributes an F[U,U−1]

summand to the homology H∗(CI∞) generated by [Qz0 + z11 ] = [Q(z0 + z12 + z22 +

· · ·+ z1v + z2v)] = Q[θ]. The final model complex D3 has generators

{Qa,Q(b+ c), c, e, Qz11 , . . . , Qz1v}
and nonzero differentials

∂ι(Qa) = Q(b+ c),

∂ι(c) = Ue+Q(b+ c) +Qz11 ,

∂ι(Qz1v) = Qz1v−1,

∂ι(Qz1r ) = Qz1r−1 +Qz1r+1, 0 < r < v, r even

This final model complex is acyclic and its tensor product with F[U,U−1] gives

no contribution to the homology of the mapping cone. Hence, the homology of the

mapping cone is generated as a module over F[U,U−1] by [θ] and [Qz0+z11 ] = Q[θ].
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Now, we compute the homology of the mapping cone AI−0 . Recall that A−
0 is

generated by the elements

{e, a, b, c, z0, zs1, Uzs2, Uzs3, U
2zs4, . . . , U

n(K)zsv}
for s = 1, 2 as usual. Therefore AI−0 contains the product of Um for m ≥ n(K) with

all three of the model complexes D1, D2, and D3 appearing in Fig. 19; for lower

powers we must consider appropriate truncations of these complexes.

We start with D1. We see that (UmD1)∩AI−0 = UmD1 for m ≥ n(K), and has

homology Um[θ]. To obtain (Un(K)−1D1) ∩ AI−0 , we delete the term z1v + z2v and

multiply all other elements by Un(K)−1 after which we have an acyclic complex.

To obtain (Un(K)−2D2) ∩ AI−0 , we additionally delete the terms z1v−1 + z2v−1 and

z1v−2 + z2v−2, and multiply all other elements by Un(K)−2, after which we still have

an acyclic complex. This pattern continues until we reach (UD1) ∩AI10 , which has

generators

{Qc,QUe, Uz0, Uz11 + Uz21 , Uz12 + Uz22 , Uz13 + Uz23}
as an F-vector space and is acyclic. If we then considerD1∩AI−0 , which is generated

by {Qe, z0, z
1
1+z21}, we see this truncation has homology [Qe]. So the model complex

D1 contributes a summand F(1)[U ] generated over F[U ] by [Un(K)θ] and a summand

F(2n(K)) with F-basis [Qe] to the homologyH∗(AI−0 ) considered as an F[U ]-module.

We now consider D2. As previously, (U
mD2)∩AI−0 = UmD2 for m ≥ n(K), and

has homology Um[Qz0 + z11 ] = Q[θ]. One may easily check that this is unchanged

by successive truncations; that is, that the homology of (U �D2) ∩ AI−0 for 0 ≤ � ≤
n(K) − 1 remains U �[Qz0 + z11 ]. The model complex D2 therefore contributes a

summand F(2n(K))[U ] generated over F[U ] by [Qz0 + z11] to the homology H∗(AI−0 )

considered as an F[U ]-module.

Finally, we consider D3. We see that (UmD3) ∩ AI−0 = UmD3 is acyclic for

all m ≥ n(K). However, consider (Un(K)−1D3) ∩ AI−0 , which we may obtain by

deleting Qz1v and multiplying all the remaining elements by Un(K)−1. We see this

complex now has homology generated by

[Un(K)e] = [Un(K)−1Qz11 ] = · · · = [Un(K)−1Qz1v−1].

We see the same behavior under successive truncations; that is, the homology of

(U �D3) ∩ AI−0 for −1 ≤ � ≤ n(K) − 1 is generated by U �+1[e]. Special mention is

due of the case (U−1D3) ∩ AI−1
0 , since this is the only case in the computation in

which the product a negative power of U with any of the three model complexes has

nontrivial intersection with AI−0 , namely, {e}. In total the model complex D3 con-

tributes a summand F[U ](2n(K))/(U
n(K)+1) to the homology H∗(AI−0 ) considered

as an F[U ]-module, generated by the element [e].

To sum up, we conclude that as an F[U ] module, the homology of the mapping

cone is

H∗(AI−0 ) � F(1)[U ]⊕ F(2n(K))[U ]⊕ F(2n(K)+1)[U ]/(Un(K)+1)⊕ F(2n(K)).
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[Qe]

[Un(K)θ]

[Un(K)+1θ]

[U2(z11 +Qz0)]

[U3(z11 +Qz0)]

· · ·

[U(z11 +Qz0)]

[z11 +Qz0]

[e]

[Qz11 ]

[QUz11 ]

Fig. 20. The homology of the complex AI−0 associated to C1 ⊗ F [U,U−1]. Curved lines denote
the action of the variable U and dashed lines denote the action of the variable Q. The example
of n(K) = 2, as in the case of P (−2, 5, 5), is shown. The element [Un(K)θ] lies in homological
grading 1, the elements [z11 +Qz0] and Qe lie in homological grading 2n(K), and the element [e]
lies in homological grading 2n(K) + 1.

The summand F(1)[U ] is generated by [Un(K)θ] and the summand F(2n(K))[U ] is

generated by [z11 + Qz0], which notably has the property that Un(K)[z11 + Qz0] =

[QUn(K)θ]. As for the torsion summands, the summand F(2n(K)+1)[U ]/(Un(K)+1)

is generated by [e], which notably has the property that U [e] = Q[z11 ], and finally

the summand F(2n(K)) is generated by [Qe]. This module appears in Fig. 20. This

implies that

V 0(K) = −1

2
(gr([θ])− 1)

= −1

2
(1− 1)

= 0

and

V 0(K) = −1

2
(gr([z11 +Qz0])) = −1

2
(2n(K)) = −n(K) = −m+ n− 2

4
.

We now consider the dual C1 of the model complex C1. This complex, which

appears in Fig. 21, has generators a, b, c, e, z0 and zsr for 1 ≤ r ≤ v and s ∈ {1, 2}.
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i

j

z2v

z2v−1

z1v−1

z1v

z22

z12

z0
z21

z11

e

a

Uz2v

Uz1v

bUe

c

Fig. 21. The dual C1 of the model complex C1.

The homological gradings are determined by the requirement that H∗(C{i = 0}) �
F(0), which specifies that gr(U−n(K)z1v) = 0, which implies that for example gr(z0) =

−2n(K). The nonzero differentials are as follows:

∂(a) = b+ c, ∂(b) = ∂(c) = Ue.

∂(zsr) = zsr−1 + zsr+1, r is odd,

Up to change of basis, the unique involution ιK squaring to the Sarkar map is given

by

ιK(a) = a+ z0, ιK(b) = c,

ιK(z0) = z0 + e, ιK(c) = b,

ιK(z11) = z21 + U−1b, ιK(z21) = z11 + U−1c,

ιK(z1r ) = z2r , 1 < r ≤ v, ιK(z2r) = z1r , 1 ≤ r ≤ v.

ιK(e) = e,

We begin by considering the F[U ]-complex of C1 ⊗ F[U,U−1] lying in the third

quadrant, again called by convention A−
0 , and shown in Fig. 22. We see this complex

is generated over F[U ] by the set

{a, b, c, e, z0, Uzs1, Uzs2, U
2zs3, . . . , U

n(K)−1zsv−3, U
n(K)−1zsv−2,

Un(K)+1zsv−1, U
n(K)+1zsv},
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z0

e

a

bUe

c

Uz22

Uz12

Uz21

Uz11

Un(K)+1z2v−1

Un(K)+1z1v−1

Un(K)+1z2v

Un(K)+1z1v

. .
.

. .
.

. .
.

Fig. 22. The F[U ]-submodule A−
0 of C1 ⊗ F[U,U−1].

where s = 1, 2 as usual, and has differentials inherited from the differentials on C1.

The homology of A−
0 is isomorphic to

F(−2n(K)) ⊕ F(−2n(K))[U ],

where the F(−2n(K)) summand is has an F-basis [e] and the F(−2n(K))[U ] summand

is generated over F[U ] by [z0]. We therefore have V0(K) = n(K) = m+n−2
4 .

Now, consider the mapping cone Cone((C1 ⊗ F[U,U−1])
Q(1+ιK)−−−−−−→ Q(C1 ⊗

F[U,U−1])[−1]). This mapping cone comes to us with a set of generators

{e, a, b, c, z0, zs1, . . . , zsv, Qe,Qa,Qb,Qc,Qz0, Qzs1, . . . , Qzsv}
for s = 1, 2 as usual. We do a change of basis to replace this by the set of generators

{e, a, b, b+ c, z0, z
1
1 , z

1
1 + z21 , . . . , z

v
1 , z

1
v + z2v , Qe,Qa,Qb,Q(b+ c),

Qz0, Qz11 , Q(z11 + z21), . . . , Qz1v, Q(z1v + z2v)}.
As in the previous case, this breaks up into direct summands over F[U,U−1] each

of which is the tensor product of a model F-complex over F[U,U−1]. These model

complexes are shown in Fig. 23. The first, E1, has generators

{a, b+ c,Qz0, Qz11 , . . . , Qz1v}
and nonzero differentials ∂ι = ∂ +Q(1 + ιK)

∂ι(a) = (b+ c) +Qz0,

∂ι(Qz1r) = Qz1r−1 +Qz1r+1, 1 ≤ r < v, r odd.

2250044-38

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
02

2.
31

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 K
ri

st
en

 H
en

dr
ic

ks
 o

n 
01

/0
2/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



August 2, 2022 12:5 WSPC/S0218-2165 134-JKTR 2250044

A note on the involutive invariants of certain pretzel knots

b + c

a

Qz0

Qz11

Qz12

Qz13

. . .

Qz1v−1

Qz1v

Qe

QU−1cz0Q(z11 + z21)

z11

Q(z12 + z22)

z12Q(z13 + z23)

z13

Q(z14 + z24)

z14
. . .Q(z1v−1 + z2v−1)

. . .z1v−1

Q(z1v + z2v)

z1v

e

U−1c

QU−1(b + c)

QU−1az11 + z21

z12 + z22

. . .

z1v + z2v

Fig. 23. Model complexes for direct summands appearing in the mapping cone Cone(C1 ⊗
F[U,U−1]

Q(1+ιK)−−−−−−→ Q(C1 ⊗ F[U,U−1])[−1]). From top to bottom, the model complexes are
denoted E1, E2, and E3.

The homology of the complex E1 is one-dimensional with basis [b+ c] = [Qz0]. The

tensor product E1 ⊗ F[U,U−1] therefore contributes an F[U,U−1] summand to the

homology of the mapping cone generated by [b+ c] = [Qz0].

Next, we consider the model complex E2, which has generators

{Qe,QU−1c, z0, z
1
1 , . . . , z

1
v , Qz11 +Qz21 , . . . , Qz1v, Qz2v}

and nonzero differentials

∂ι(QU−1c) = Qe,

∂ι(z0) = Qe,

∂ι(z11) = z0 + z12 +Q(z11 + z21) +QU−1c,

∂ι(z1r ) =

{
(Q(z1r + z2r ), 1 < r ≤ v, r even,

z1r−1 + z1r+1 +Q(z1r + z2r), 1 < r < v, r odd,

∂ι(Q(z1r + z2r)) = Q(z1r−1 + z2r−1) +Q(z1r+1 + z2r+1), 1 < r < v, r odd.
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The homology of this complex is one-dimensional with basis [z0 +QU−1c]. So, the

tensor product E1⊗F[U,U−1] contributes an F[U,U−1] summand to the homology

of the mapping cone.

Finally, we consider the third model complex E3, which has generators

{e, U−1c,QU−1a,QU−1(b + c), z11 + z21 , . . . , z
1
v + z2v}

and nonzero differentials

∂ι(QU−1a) = QU−1(b + c),

∂ι(U−1c) = e+QU−1(b+ c),

∂ι(z11 + z21) = z12 + z22 +QU−1(b + c),

∂ι(z1r + z2r) = (z1r−1 + z2r−1) + (z1r+1 + z2r+1), 1 < r < v, r odd.

This final model complex is acyclic and therefore E3⊗F[U,U−1] does not contribute

anything to the total mapping cone.

We now consider the homology of the mapping cone AI−0 . We start by consider-

ing the intersection (E1 ⊗F[U,U−1])∩AI−0 . We note that (UmE1)∩AI−0 = UmE1

for all m ≥ n(K) + 1, and has one-dimensional homology with basis [Um(b+ c)] =

[UmQz0]. Subsequently lowering the power of U by one has at each step the effect

of either preserving the complex or of removing pairs of generators z1k and z1k−1

for k even (and changing the exponent on U); in particular, none of these things

alters the fact that the homology of (U �D1) ∩ AI−0 is one-dimensional with basis

[U �Qz0] = [U �(b+c)] for � ≥ 0. So, (E1⊗F[U,U−1])∩AI−0 ) contributes a summand

F−2n(K)[U ] generated by [Qz0] to H∗(AI−0 ) considered as an F[U ]-module.

We now consider the intersection (E2 ⊗ F[U,U−1]) ∩ AI−0 . We observe that

the intersection (UmE2) ∩ AI−0 = UmE2 for all m ≥ n(K) + 1, and has one-

dimensional homology with basis Um[z0 + QU−1c]. The intersection (Un(K)E2) ∩
AI−0 is obtained by truncating the four elements z1v , Q(z1v+z2v), z

1
v−1, Q(z1v−1+z2v−1)

and multiplying everything by Un(K)+1; this does not change the homology of the

complex except for the power of U ; it is still generated over F by Un(K)[z0+QU−1c].

Successive truncations either preserve the complex from the previous step or delete

four elements z1k, Q(z1k + z2k), z
1
k, Q(z1k + z2k) for k even (and change the power of

U); none of this changes the homology of (U �E2) ∩ AI−0 apart from the power of

U , and it continues to be generated by U �[z0 + QU−1c] for � ≥ 1. For the final

nontrivial intersection E2 ∩AI−0 , we are left with a complex generated by z0 and e,

which is acyclic. So, the intersection (E2⊗F[U,U−1])∩AI−0 contributes a summand

F−2n(K)−1[U ] generated by [Uz0 +Qc] to the homology H∗(AI−0 ) considered as an

F[U ]-module.

Finally, we consider the intersection (E3⊗F[U,U−1])∩AI−0 . For m ≥ n(K)+1,

the intersection (UmE3)∩AI−0 = UmE3 and is acyclic. To obtain (Un(K)E3)∩AI−0 ,

we truncate z1v + z2v and z1v−1 + z2v−1 and multiply the remaining basis elements by

Un(K), obtaining a complex which remains acyclic. Successive truncations either
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preserve the complex up to changing the power of U or remove pairs of elements

z1k+z2k and z1k−1+z2k−1 for k even, leaving the complex acyclic. This persists until we

reach (U0E3)∩AI−0 = E3∩AI−0 , which consists solely of the element e, and has one-

dimensional homology over F generated by the element [e]. So (E3⊗F[U,U−1])∩AI−0
contributes a summand F(−2n(K)+1 with basis [e] to the homology ofAI−0 considered

as an F[U ]-module.

Summing up, we see that

H∗(AI−0 ) � F(−2n(K)−1)[U ]⊕ F(−2n(K))[U ]⊕ F(−2n(K)+1),

where the F(−2n(K)−1)[U ] summand is generated by [U(z12 + Q(z11 + z21))] =

U [z0 + QU−1c], the F(−2n(K))[U ] summand is generated by [b + c] = [Qz0], and

the F(−2n(K)+1) summand has basis [e]. This module is shown in Fig. 24. We there-

fore see that

V 0(K) = −1

2
(gr(U [z0 +QU−1c])− 1)

= −1

2
(−2n(K)− 1− 1)

[e]

[Uz0 +Qc]

[U2z0 +QUc]

[U3z0 +QU2c]

[Qz0]

[QUz0]

[QU2x]

[QU3x]

· · ·
Fig. 24. The homology of the complex AI−0 associated to C1 ⊗ F[U,U−1]. Curved lines denote
the action of the variable U and dashed lines denote the action of the variable Q. The element
[Uz0 +Qc] lies in homological grading −2n(K)− 1, the element [Qz0] lies in homological grading
−2n(K), and the element [e] lies in homological grading −2n(K) + 1. The case of n(K) = 2 as
for the mirror of P (−2, 5, 5) is shown.
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= n(K) + 1

=
m+ n+ 2

4

and

V 0(K) = −1

2
(gr([Qz0])) = −1

2
(−2n(K)) = n(K) =

m+ n− 2

4

as promised.
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