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1. Introduction

Our main results in this paper are proofs of stable Big Bang formation (i.e.,
curvature-blowup along an entire spacelike hypersurface) for cosmological1 solutions
to the Cauchy problem for the Einstein-vacuum and Einstein-scalar field systems.
All of our results hold for open sets of solutions without symmetry, except for our
results on polarized U(1)-symmetric solutions to the Einstein-vacuum equations in
1 + 3 dimensions. We assume that initial data are given on the manifold Σ1 =
TD := [−π, π]D (with the endpoints identified), where D ≥ 3 is the number of
spatial dimensions. Later on, we provide a precise description of which kinds of
data our results apply to and how the value of D is tied to the data. As we will
explain, our results are sharp in the sense that they rigorously confirm the dynamic
stability of the singularity formation in the entire regime where heuristics in the
literature have suggested it might occur. In particular, our results significantly
extend the prior results [58–60], which yield stable Big Bang formation for open
sets of solutions without symmetry. We refer readers to Theorem 1.6 for a rough
version of our main results and to Theorems 6.1 and 6.6 for precise statements.
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828 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

The sharpness of our results is possible because we have developed a new analytic
framework for constant mean curvature (CMC) foliations in which we study the
components of various spatial tensors relative to an orthonormal “spatial frame,”
obtained by Fermi–Walker transport, as well as the connection coefficients and
structure coefficients of the frame. We refer readers to Sect. 2 for the precise details
behind the gauge and the corresponding formulation of Einstein’s equations that we
use to derive estimates. We also refer to Sect. 1.9 for an overview of the proof. Our
framework allows us to precisely and efficiently detect the terms in the equations
that are integrable-in-time up to the singularity, which is key to understanding the
stability of the blowup. Our framework also pinpoints the terms in the equations
that might generate instabilities in other regimes; see Remark 1.3.

1.1. The Cauchy problem for the Einstein-scalar field equations.

1.1.1. The Einstein-scalar field equations. Relative to arbitrary coordinates, the
Einstein-scalar field equations can be expressed as:

Ricμν = ∂μψ∂νψ,(1.1a)

�gψ = 0.(1.1b)

In (1.1a)–(1.1b) and throughout, Ric is the Ricci curvature of the spacetime metric
g (which has signature (−,+,+, · · · ,+)), �g := (g−1)αβDαDβ is the covariant
wave operator of g, D is the Levi-Civita connection of g, and ψ is the scalar field.
Note that in the special case ψ ≡ 0, the system is equivalent to the Einstein-vacuum
equations.

1.1.2. The initial value problem formulation and the initial data. It is well-known
that the system (1.1a)–(1.1b) has an initial value problem formulation in which
sufficiently regular initial data give rise to unique solutions. An initial data set

for the system is defined to be (Σ1, g̊, k̊, ψ̊, φ̊), where g̊ is a Riemannian metric on

the manifold Σ1 (in this paper, we assume that Σ1 := TD), k̊ is a symmetric two-

tensor, and ψ̊, φ̊ are a pair of scalar functions. We sometimes refer to such initial
data as “geometric initial data” in order to distinguish them from initial data for
the reduced equations of Proposition 2.2; initial data for those equations – which are
the main PDEs we study in this paper – also involve gauge-dependent quantities,
including initial data for an orthonormal spatial frame (which we discuss later on).
It is well-known that admissible geometric initial data must satisfy the Hamiltonian
and momentum constraint equations, which are respectively:

R̊− |̊k|2 + (tr̊k)2 = φ̊2 + |∇̊ψ̊|2,(1.2a)

d̊iv̊k − ∇̊tr̊k = −φ̊∇̊ψ̊,(1.2b)

where ∇̊ is the Levi-Civita connection of g̊ (with respect to which all covariant

spatial operators along Σ1 are defined) and R̊ is the scalar curvature of g̊.

1.1.3. Globally hyperbolic developments. A globally hyperbolic development of the
geometric initial data, which can be thought of as a solution to the initial value
problem, is a triplet (M,g, ψ) and an embedding i : Σ1 → M such that:

• M is a 1 +D-dimensional spacetime manifold.
• g is a Lorentzian metric onM and ψ is a scalar function onM that together
solve equations (1.1a)–(1.1b).
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STABLE BIG BANG FORMATION 829

• i(Σ1) is a Cauchy hypersurface2 in (M,g).
• The pullbacks (under i) of the first and second fundamental forms of the
image surface i(Σ1) (see Sect. 2 for our sign conventions for the second

fundamental form) are equal to g̊, k̊ respectively, and the pullbacks of the
initial values of the scalar field ψ and its derivative with respect to the

future unit normal to i(Σ1) are equal to ψ̊, φ̊ respectively.

The fundamental work [16] of Choquet-Bruhat and Geroch shows that for suffi-
ciently regular geometric initial data verifying the constraints, there is a unique (up
to diffeomorphism) maximal (classical) globally hyperbolic development
(MMax,gMax, ψMax) (and a corresponding embedding iMax : Σ1 → MMax that we
will suppress), which we refer to as the “maximal development” for short. Roughly,
the solution furnished by [16] is the largest possible classical solution to (1.1a)–
(1.1b) that is uniquely determined by the initial data; we refer the reader to [55]
for detailed discussion of the maximal development. Although it is of philosophical
importance to know that the maximal development exists and is unique, the results
of [16] do not reveal much about its structure. Our goal in this article is to fully
understand its structure for open sets of solutions that exhibit curvature-blowup.

1.2. Connections with Hawking’s singularity theorem. Hawking’s celebrated
“singularity theorem” [33, 34] shows that for cosmological solutions,3 there exist
large sets of regular initial data for the Einstein equations such that the corre-
sponding solutions eventually break down in the sense that the spacetime is causally
geodesically incomplete. The results apply to any matter model verifying the strong
energy condition, including the scalar field model and the vacuum. In particular,
the version of Hawking’s theorem stated as [64, Theorem 9.5.1] guarantees that
under assumptions satisfied by the initial data featured in our main theorems, the
solution is such that all past-directed timelike geodesics are incomplete. Although
these works are of immense philosophical importance in general relativity and have
had a great impact on the direction of the field, they are limited in that their proofs
are by contradiction and do not provide any information about the nature of the
breakdown, aside from geodesic incompleteness. Through various telling examples,
it is known that different kinds of breakdown are possible. A particularly sinister
scenario is found in the Taub–NUT and Kerr spacetimes, where the breakdown is
not caused by any singularity in the metric (including its higher derivatives), but
rather is caused by the development of a Cauchy horizon, across which the solution
can be smoothly extended in more than one way, signifying the failure of deter-
minism past the maximal globally hyperbolic development of the data. A crucial
point is that for the near-Kasner solutions covered by our main results, this sinister
scenario does not occur; the geodesic incompleteness is caused by curvature-blowup
at the boundary of the maximal globally hyperbolic development.

2In this paper, i(Σ1) will be a hypersurface of constant time with respect to a CMC time
function t. To simplify the exposition, we will often slightly abuse notation by suppressing the
embedding and identifying Σ1 with i(Σ1) = {t = 1} ⊂ M.

3See also [34,47] for discussion of the related – but distinct – “singularity theorem” by Penrose,
which for non-compact Cauchy hypersurfaces shows that the presence of a trapped surface in the
initial data leads to geodesically incomplete solutions.
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830 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

1.3. Remarks on Strong Cosmic Censorship. The Strong Cosmic Censorship4

conjecture suggests that, “generically,” the maximal globally hyperbolic develop-
ment of the data is inextendible, roughly due to the formation of some kind of
singularity.5 Confirming some version of the Strong Cosmic Censorship conjecture,
at least in a perturbative regime around explicit solutions, turns out to be extremely
difficult, due to the strength of the non-linearities in the system and the possibility
of complicated dynamics near singularities. For the near-Kasner solutions covered
by our main results, their curvature-blowup shows that a C2-extension of the solu-
tion past the Big Bang is impossible.

It is important to appreciate that regularity considerations are of crucial impor-
tance when defining what is meant by “the Strong Cosmic Censorship conjecture”;
thanks to the remarkable work [27] on the C0-stability of the Kerr Cauchy horizon,6

we now know that the C0 formulation of the Strong Cosmic Censorship conjecture
is not generically true. More precisely, in [27], it was shown that for an open set of
near-Kerr solutions, the metric can be continuously extended beyond the Cauchy
horizon. However, it is conceivable that these metrics generically do not enjoy any
additional regularity and in particular that they cannot even be extended past the
Cauchy horizon as weak solutions to Einstein’s equations. It therefore remains pos-
sible that a revised version of the Strong Cosmic Censorship conjecture is true, in
which “generically, geodesic incompleteness is tied to breakdown at the boundary of
the maximal development,” where “breakdown” is defined to be any loss of regular-
ity that is sufficiently strong to prevent one from extending the solution as a weak
solution to Einstein’s equations. There are works in spherical symmetry that sup-
port this possibility, notably [25,26,44], where [44] has the compelling feature that
it is a large data result. More precisely, [44] proves that for an open and dense set of
two-ended asymptotically flat initial data for the Einstein–Maxwell–(real)–scalar–
field system in spherical symmetry, the maximal development is C2-inextendible.

1.4. Beyond Hawking’s singularity theorem. In the wake of Hawking’s sin-
gularity theorem, there have been many works devoted towards understanding the
precise cause of the geodesic incompleteness. An interesting type of breakdown
that has received extensive attention – rigorous and otherwise – over the past half-
century is the “Kasner-like scenario,” which concerns solutions whose metrics g are
asymptotic to:

gLimiting(t, x) = −dt⊗ dt+
D∑

I=1

t2qI(x)θI(x)⊗ θI(x), θI(x) = θIa(x)dx
a,(1.3)

as t ↓ 0 (i.e., towards the singularity). The form of gLimiting(t, x) is inspired by
the Kasner solutions themselves, which we discuss in Sect. 1.5. It is important to

4See [48] for the original formulation and [18,22] for more modern versions.
5One even hopes to rule out the possibility of continuing the solution weakly past the boundary

of the maximal development since, at least from the PDE point of view, in principle, it might
be possible to make sense of weak solutions in a neighborhood of a classical singularity; see the
discussion on pg. 13 of [21].

6The initial data considered in [27, Theorem 1] are posed on a spacelike hypersurface in the
black hole interior. A full justification that these data are induced by open sets of black hole
solutions that are settling down to a Kerr black hole relies on forthcoming works by various
authors. In particular, the justification relies on a quantitative version of the dynamic stability of
the exterior region of Kerr, and there have been a series of works that seem to be building towards
a definitive proof its stability. We refer to [27, Section 1.3] for further discussion.
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STABLE BIG BANG FORMATION 831

note that the metrics gLimiting are not generally solutions to Einstein’s equations.
However, in the special case that θI = dxI and the {qI}I=1,··· ,D are constants
satisfying two algebraic constraints (see (1.7)), gLimiting is a solution, known as
a Kasner solution in the vacuum case and a “generalized Kasner solution” in the
presence of matter (for short, we sometimes refer to all such solutions simply as
“Kasner solutions”). The Kasner solutions are spatially homogeneous and, excep-
tional cases aside, exhibit monotonic Big Bang formation (i.e., monotonic blowup

of the spacetime Kretschmann scalar RiemαμβνRiemαμβν along a spacelike hy-
persurface) as t ↓ 0, as do the metrics gLimiting. We stress that Big Bang formation
is consistent with the assertions of a C2-inextendibility formulation of the Strong
Cosmic Censorship conjecture. We also note that in the remainder of the paper,
we often denote the (constant) Kasner exponents by {q̃I}I=1,··· ,D, where the tilde
emphasizes that they are associated to a “background Kasner solution.”

A standout question, then, is: besides the explicit Kasner solutions (which we
describe in Sect. 1.5), are there any other cosmological solutions to Einstein’s equa-
tions – in particular ones with spatial dependence – that are asymptotic to a metric
of the form gLimiting and thus exhibit monotonic-type Big Bang formation? In an
influential paper [40], the authors gave heuristic arguments suggesting that in 1+3
dimensions, cosmological solutions that are asymptotic to a metric of the form
gLimiting should be non-generic (in particular, unstable). More precisely, their
heuristics led them to deduce “the absence of a real singularity in the general solu-
tion” and that “the general case of an arbitrary distribution of matter and gravi-
tational field does not lead to the appearance of a singularity.” Roughly, the work
[40] predicted that singularity formation along a spacelike hypersurface is unstable
because singularities should form only for solutions such that one of the gravita-
tional degrees of freedom is inactive; see [40, Equation (3.20)]. In the subsequent
work [12], a revised picture of singularities in cosmological solutions to Einstein’s
equations was proposed. Specifically, in [12], the authors used heuristic arguments
to predict that “there exists a general solution which exhibits a physical singularity
with respect to time,” even for the Einstein-vacuum equations in 1+ 3 dimensions.
In a more modern language, [12] proposed that there are families of cosmological
solutions that (i) contain all gravitational degrees of freedom (e.g., 4 functional
degrees of freedom for the Einstein-vacuum equations in 1+3 dimensions) and (ii)
exhibit Big Bang formation along a spacelike hypersurface. Moreover, the authors
argued that “generically” (the meaning of “generic” was not rigorously defined),
solutions that exhibit Big Bang formation “should” – unlike the Kasner solutions
– be highly oscillatory in time as the singularity is approached. The alleged oscil-
latory behavior is sometimes referred to as the “Mixmaster scenario,” where the
terminology goes back to Misner’s important paper [45] on oscillatory solutions with
Bianchi IX symmetry. The oscillations are one of several features that have been
conjectured to hold for “most” cosmological 1 + 3-dimensional Einstein-vacuum
solutions that have incomplete timelike geodesics. This picture has come to be
known, somewhat imprecisely, as the “BKL conjecture.”

Remark 1.1 (Open problem). In light of the above discussion, we would like to high-
light the following open problem, brought to our attention by Mihalis Dafermos:
construct any open set of initial data without symmetry for the Einstein-vacuum
equations in 1+3 dimensions such that the maximal development exhibits a space-
like singularity.
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We highlight that, whatever one’s interpretation of the BKL conjecture,
Dafermos–Luk’s aforementioned work [27] shows (assuming, as mentioned in Foot-
note 6, the stability of the exterior region of Kerr) that some of its basic qualitative
assertions fail to hold for 1+3-dimensional Einstein-vacuum solutions corresponding
to near-Kerr-black-hole initial data. In particular, in [27], the authors announced
(see [27, Theorem 2] and the discussion in [27, Section 1.3.3]) their forthcoming
follow-up work, which implies that Cauchy horizons develop for an open set of
near-Kerr asymptotically flat initial data for the Einstein-vacuum equations. Since
the Cauchy horizons are null, this shows that, at least in the setting of black hole in-
teriors, it is not generically true that incompleteness is tied to some kind of blowup
along a spacelike hypersurface. Note that solutions arising from near-Kerr asymp-
totically flat initial data have qualitatively distinct topologies compared to the solu-
tions that are usually discussed in literature in connection with the BKL conjecture;
that literature is centered on cosmological spacetimes, which have compact spatial
topology. Nonetheless, in view of Remark 1.1, it is important to appreciate that as
of the present, the results of Dafermos–Luk provide the only known open sets of
solutions to the Einstein-vacuum equations in 1 + 3 dimensions without symmetry
for which the precise nature of geodesic incompleteness has been understood.

Despite the points made above, within the class of spatially homogeneous cos-
mological solutions, there are rigorous7 results showing that some solutions ex-
hibit oscillatory behavior towards a spacelike singularity. Notable among these is
Ringström’s paper [50], in which he showed that in the vacuum case and for var-
ious fluid matter models, solutions with Bianchi IX symmetry generically exhibit
oscillatory8 behavior towards their singularity. See also [10,14,30,35,42] for related
works.

In the wake of the works [12, 40], there were further heuristic works suggesting
that if the Einstein equations are coupled to a scalar field [11] or a stiff fluid9 [8],
or if one considers the Einstein-vacuum equations in 1+D dimensions with D ≥ 10
[29], then the oscillations can be silenced, leading back to the Kasner-like scenario.
More precisely, there “should” exist open sets of initial data whose solutions exhibit
monotonic Big Bang formation. The essence of these works is that the following
“sub-criticality condition” (which we sometimes refer to as a “stability condition”)
for the Kasner exponents {qI(x)}I=1,··· ,D might be sufficient to ensure the existence
of sets of solutions – containing all the gravitational degrees of freedom – that have
Kasner-like Big Bang singularities:

max
I,J,B=1,··· ,D

I<J

{qI(x) + qJ (x)− qB(x)} < 1.(1.4)

The condition (1.4) is central10 to our main results, and we will discuss its impli-
cations in detail below.

7For a discussion of numerical work on singularity formation in Einstein’s equations, see [13]
and the references therein.

8In the special case of a stiff fluid, which is also discussed in the next paragraph, Ringström
proved that the dynamics are monotonic towards the singularity.

9A stiff fluid is such that the speed of sound is equal to the speed of light. It can be viewed as
an analog of the scalar field model that allows for non-zero vorticity.

10More precisely, our main results rely on the assumption that the background solution satisfies
(1.8), which is (1.4) in the special case of a generalized Kasner solution.
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STABLE BIG BANG FORMATION 833

We highlight that, due to the constraints (1.7), for the Einstein-vacuum equa-
tions in 1 +D dimensions, the condition (1.4) can be satisfied only if D ≥ 10; this
algebraic fact was first observed in [29]. The papers described in the previous para-
graph, which were in favor of the dynamic stability of the Big Bang, were based
on heuristic justifications of the claim that the condition (1.4) “should” lead to
asymptotically velocity term dominated (AVTD) behavior in perturbed solutions.
Roughly, AVTD behavior for a solution is such that in Einstein’s equations, the spa-
tial derivative terms become negligible compared to the time derivative terms as
the singularity is approached. Put differently, AVTD behavior is such that the solu-
tion becomes asymptotic to a truncated version of Einstein’s equations in which all
spatial derivative terms are thrown away. Since the truncated equations are ODEs
at each fixed spatial point x, one could say that AVTD solutions are asymptoti-
cally x-parameterized ODE solutions. As we will later explain, the condition (1.4)
(see also (1.8)) suggests that for perturbations of the Kasner solution, the Ricci
tensor of the perturbed spatial metric, which we denote by Ric, should satisfy, for
some σ > 0, |Ric| � t−2+σ as t ↓ 0. It turns out that, when available, this bound
leads to the time-integrability of various terms in Einstein’s equations. In turn, the
time-integrability is key to proving the AVTD nature of perturbations of Kasner
solutions and for controlling the dynamics up to the singularity. In Sect. 1.7, we
provide a more detailed explanation of the significance of the bound |Ric| � t−2+σ

for the proofs of our main results.
Clearly, any rigorous justification of the above circle of ideas requires, at a min-

imum, the construction of a gauge relative to which the AVTD behavior can be
exhibited. In the present paper, we introduce a general gauge + framework for
proving stable singularity formation for “Kasner-like” solutions with spatial depen-
dence and for proving the AVTD behavior. As in previous works on stable Big Bang
formation [58–61], we rely on constant mean curvature foliations in which the level
sets of the time function t have mean curvature11 equal to − 1

Dt , and we control the

lapse n := [−(g−1)αβ∂αt∂βt]
−1/2 via elliptic estimates. The main new idea in our

paper lies in our approach to controlling the dynamic “spatial12 tensorfields”: we
construct a gauge for Einstein’s equations in which the main dynamical unknowns
are the components of various spatial tensorfields relative to an orthonormal “spa-
tial frame” {eI}I=1,··· ,D, obtained by Fermi–Walker transport (see equation (2.8)
and Remark 2.1), as well as the connection coefficients γIJB := g(DeIeJ , eB). One
of our key observations is: as a consequence of the special structure of Einstein’s
equations and the Fermi–Walker transport equation (2.8), the frame is one de-
gree more differentiable than naive estimates suggest. More precisely, the
transport equation (2.23a), which is an equivalent formulation of (2.8), suggests
that the frame vectorfield components {eiI}I,i=1,··· ,D are only as regular as the sec-
ond fundamental form k of Σt. However, our gauge allows us to prove that, in fact,
the connection coefficients {γIJB}I,J,B=1,··· ,D of the frame enjoy the same Sobolev
regularity as the components {kIJ}I,J=1,··· ,D where kIJ := k(eI , eJ ) = kcde

c
Ie

d
J ;

this signifies a gain of one derivative for the connection coefficients. Roughly, the
gain in regularity stems from the fact that {γIJB}I,J,B=1,··· ,D and {kIJ}I,J=1,··· ,D

11The mean curvature of a constant-time slice Σt is defined to be the trace of its second
fundamental form divided by the number of spatial dimensions D.

12By spatial tensorfields, we simply mean ones that are tangent to the level sets of the CMC
time function t.
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834 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

satisfy a system of wavelike equations (coupled to n and the scalar field) that allow
us to propagate the Sobolev regularity of their initial data. We refer readers to
Lemma 5.19 for a differential version of the basic energy identity that we use to
obtain the desired regularity for γ and k.

A second key observation is that the structure coefficients of the frame, namely13

g([eI , eJ ], eB) = γIJB + γJBI , satisfy an evolution equation system (see Proposi-
tion 5.7) that is diagonal up to quadratic error terms, and such that the strength of
the main linear terms in the equations is controlled by the Kasner stability condition

(1.8). More precisely, we have ∂t(γIJB+γJBI) = − (q̃I+q̃J−q̃B)

t (γIJB+γJBI)+ · · · ,
where here and throughout the paper, we do not sum over repeated underlined
indices. From this equation and the condition (1.8), we are able to prove that there
exists a constant q < 1 such that:

max
I,J,B=1,··· ,D

I<J

tq|γIJB + γJBI | � data, (t, x) ∈ (0, 1]× T
D,(1.5)

where “data” denotes a small term that is controlled by the size of the perturbation
of the initial data from the Kasner data (in particular, “data” vanishes for Kasner
solutions). The estimate (1.5) leads to the time-integrability of many terms in the
evolution equations, allows us to rigorously justify the aforementioned spatial Ricci
curvature bound14 |Ric| � t−2+σ, and allows us to prove the AVTD behavior of
perturbations of any Kasner solution with exponents verifying (1.8).

Remark 1.2 (A basis of structure coefficient functions). The antisymmetry prop-
erty15 γIJB + γJBI = −(γJIB + γIBJ), which follows from (2.20), implies that
{γIJB + γJBI | 1 ≤ I, J, B ≤ D, I < J} forms a basis for the structure coefficient
functions. This explains the condition I < J on LHS (1.5). We use this simple fact
throughout the article without always explicitly mentioning it.

Remark 1.3 (Sharply identifying possible obstructions to stability: three distinct
indices). Recall that we only have to consider structure coefficients with I < J
(see Remark 1.2) and that (aside from the trivial case of a single non-zero Kasner
exponent equal to unity) we have max

I=1,··· ,D
|q̃I | < 1 (see Remark 1.4). It follows

that when I < J , unless all three indices are distinct, two of the terms in the
sum q̃I + q̃J − q̃B must cancel each other, leaving us with a single term qsurvivor
satisfying |qsurvivor| < 1. Recalling also the evolution equation ∂t(γIJB + γJBI) =

− (q̃I+q̃J−q̃B)
t (γIJB +γJBI) + · · · mentioned above, we see that when I < J , unless

all three indices are distinct, the structure coefficient γIJB + γJBI is expected
to behave (modulo the error terms “· · · ”) like t−qsurvivor . In particular, modulo
the effect of the error terms “· · · ,” such structure coefficients are integrable with
respect to t near t = 0 and are compatible with our proof of the stability of the Big
Bang. Thus, for perturbations of Kasner solutions, the only structure coefficients
γIJB + γJBI (with I < J) that in principle could serve as an obstruction to stable
Big Bang formation are those such that the sum q̃I + q̃J − q̃B is greater than 1, and

13The identity g([eI , eJ ], eB) = γIJB + γJBI is a simple consequence of the torsion-free prop-
erty of the connection D.

14We also need to adequately control the first derivatives of the structure coefficients to obtain
the desired bound for the Ricci curvature.

15This is equivalent to the antisymmetry of the commutator [eI , eJ ] with respect to inter-
changes of I and J .
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STABLE BIG BANG FORMATION 835

this is possible only when all three indices are distinct; the stability condition (1.8)
is the assumption that this obstruction is absent.

Finally, we highlight that our framework also extends to some symmetric sub-
regimes of regimes where Mixmaster-related instabilities might generally occur,
such as in the vacuum case in 1+ 3 dimensions. More precisely, one does not truly
need the condition (1.8) to prove monotonic-type Big Bang formation; our approach
works as long as one can prove the estimate (1.5) (for some constant q < 1). The
point is that by imposing symmetries on solutions, one can eliminate some of the
gravitational degrees of freedom in the problem, and it can become possible to
prove the estimate (1.5) even if the condition (1.8) fails. Roughly, this is sometimes
possible because symmetries can force some of the structure coefficients to vanish.
For example, in this paper, we treat in detail the case of polarized U(1)-symmetric
solutions to the 1+3-dimensional Einstein-vacuum equations, and under symmetric
perturbations, we prove the stability of the Big Bang for all Kasner solutions – not
just ones that satisfy (1.8). In the next section, we precisely describe the models
that we treat in detail. Moreover, in Sect. 1.10, we describe other contexts in which
our methods are potentially applicable.

1.5. The models. Our main results yield stable curvature-blowup for a subset of
the family of generalized Kasner solutions on (0,∞)×T

D, which can be expressed
as follows:

g̃ = −dt⊗ dt+ g̃, g̃ :=
∑

I=1,··· ,D
t2q̃IdxI ⊗ dxI , ψ̃ = B̃ log t.(1.6)

The Kasner exponents {q̃I}I=1,··· ,D and B̃ are constants constrained by the follow-
ing two algebraic equations:

D∑
I=1

q̃I = 1,

D∑
I=1

q̃2I = 1− B̃2.(1.7)

The equations in (1.7) are consequences of two other equations: (i) the mean

curvature condition trk̃ = − 1
t (which we discuss in more detail later), where k̃

is the second fundamental form of Σt with respect to g̃, and (ii) the Hamiltonian
constraint (1.2a). One can check that under the above assumptions, the tensorfields

(g̃, ψ̃) are solutions to the 1+D-dimensional Einstein-scalar field equations (1.1a)–
(1.1b).

Our main results come in two flavors. In the first case, we make no symmetry
assumptions on the initial data, and our results yield the dynamic stability of the
Kasner Big Bang singularity whenever the exponents of the background Kasner
solution themselves verify the sub-criticality condition (1.4) (which we also refer to
as the “stability condition”), in which case it reads:

max
I,J,B=1,··· ,D

I<J

{q̃I + q̃J − q̃B} < 1.(1.8)

Since our results imply that the final Kasner exponents of the perturbed singular
solution are close to those of the background (see (6.6)), and since (1.8) is an open
condition, our perturbed Kasner-like solutions will satisfy the original condition
(1.4) as well.
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836 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Remark 1.4. The Kasner constraints (1.7) imply that, aside from the trivial case
in which one of the q̃I is equal to 1 and the others vanish (in which case the Kasner
spacetime metric is flat), we must have max

I=1,··· ,D
|q̃I | < 1. Thus, assuming the Kasner

exponent constraints, we could replace (1.8) with the following condition:

max
I,J,B=1,··· ,D
I �=J �=B �=I

{q̃I + q̃J − q̃B} < 1.(1.9)

In stating our main results, we prefer to refer to the condition (1.8) because the
case I = B explicitly indicates that q̃J < 1 for J = 2, · · · ,D, while the case I = 1
with J = B explicitly indicates that q̃1 < 1 too.

In the second case, we consider polarized U(1)-symmetric solutions to the
Einstein-vacuum equations in 1 + 3 dimensions and prove stable Big Bang forma-
tion for symmetric perturbations of any Kasner solution (with exponents verifying

the constraints (1.7), B̃ = 0, and excluding the trivial case of a single non-zero
Kasner exponent equal to unity). We emphasize that for polarized U(1)-symmetric
solutions, the spatial connection coefficients featuring three distinct indices auto-
matically vanish (see Lemma 5.11 for a proof and Remark 1.3 for a discussion of
the relevance of this fact), which leads to a simple proof of (1.5) (see the end of the
proof of Proposition 5.26).

We will now describe these two setups in more detail.

1.5.1. Regimes with no symmetry assumptions on the perturbed initial data. Under
the following assumptions, our results yield the stability of the Kasner Big Bang
singularity for non-empty sets of background Kasner solutions:

(1) The Einstein-vacuum equations (i.e., ψ = 0) for D ≥ 10.
(2) The Einstein-scalar field equations for D ≥ 3.

As we have stressed, without symmetry, we require that the background Kasner
exponents satisfy the stability condition (1.8), which, for example, for any D ≥ 3,
is satisfied when all Kasner exponents are positive (which can be achieved in the

presence of a non-zero scalar field, i.e., B̃ �= 0). Also, as was observed in [29], in

vacuum (i.e., B̃ = 0), the set of Kasner exponents satisfying the condition (1.8) is
non-empty when D ≥ 10, while for D ≤ 9, (1.8) is algebraically impossible, given
the constraints (1.7).

1.5.2. The definition of the polarized U(1)-symmetry class. Our discussion in this
section refers to polarized U(1)-symmetric solutions to the Einstein-vacuum equa-
tions (i.e., ψ ≡ 0) on I ×T

3, where I is an interval of time. This symmetry class is
defined as follows:

(1) Polarized U(1)-symmetric initial data. There exists a non-degenerate,16

hypersurface-orthogonal, spacelike Killing vectorfield X on Σ1 � T3 with

T1 orbits such that LX g̊ = LX k̊ = 0, where L is the Lie derivative oper-

ator. Moreover, the second fundamental form of Σ1 satisfies k̊(X,Y ) = 0
for every Σ1-tangent vectorfield Y such that g̊(X,Y ) = 0. For such data,
we can construct coordinates17 {xi}i=1,2,3 on Σ1 such that all coordinate

16That is, X has no vanishing points.
17Although the coordinate functions {xi}i=1,2,3 are only locally defined, the corresponding

partial derivative vectorfield frame {∂i}i=1,2,3 can be extended to a smooth global frame on T3.
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STABLE BIG BANG FORMATION 837

components of g̊ and k̊ are independent of x3 and such that X = ∂3, i.e.

g̊13 = g̊23 = k̊13 = k̊23 ≡ 0; see the discussion in [37, Section 2].
(2) Polarized U(1)-symmetric solutions. Einstein-vacuum spacetimes that

arise from such data contain a non-degenerate, hypersurface-orthogonal,
spacelike Killing vectorfield X, such that X

∣∣
Σ1

= X. In fact, relative to

appropriately constructed CMC-transported spatial coordinates, we have
X = ∂3; see Lemma 2.3.

One can easily check that in 1 + 3 spacetime dimensions in the vacuum case, the
condition (1.8) is violated by all Kasner solutions, i.e., by all Kasner exponents

satisfying (1.7) with B̃ = 0. Indeed, the algebraic relations (1.7) imply that at
least one Kasner exponent must be negative and that:

max
I,J,B=1,2,3

I<J

{q̃I + q̃J − q̃B} ≥ 1− 2 min
B=1,2,3

{q̃B} > 1.(1.10)

Hence, in 1 + 3 spacetime dimensions in the vacuum case, without symmetries or
other additional assumptions, the Kasner singularity might not be stable under
perturbations of the Kasner initial data on Σ1. However, we show that within
the class of polarized U(1)-symmetric solutions, the Kasner singularity is in fact
stable. There are both heuristic and analytic reasons for this phenomenon, which
we discuss in Sects. 1.7 and 1.9.

1.6. Rough version of the main theorem. Given a “background” generalized
Kasner solution (1.6), within the regimes described in Sect. 1.5, we perturb its
initial data on Σ1 = {t = 1} and study the corresponding maximal development in
the past of Σ1. As in the previous works of the last two authors [58–61], in order
to synchronize the singularity along {t = 0}, we use a constant mean curvature
(CMC) foliation that is realized by the level sets Σt of a time function t ∈ (0, 1]; as
we describe below, this gauge features an elliptic PDE, which involves an infinite
speed of propagation, allowing for a synchronization of the singularity. Relative
to “transported” spatial coordinates {xi}i=1,··· ,D, which by definition are constant
along the integral curves of the future-directed unit normal to Σt, the perturbed
spacetime metric takes the form (see also (2.37) in the polarized U(1)-symmetric
case):

g = −n2dt⊗ dt+ gcddx
c ⊗ dxd, n = [−(g−1)αβ∂αt∂βt]

− 1
2 ,(1.11)

where g is the first fundamental form of Σt (i.e., the Riemannian metric on Σt

induced by g) and n > 0 is the lapse of the Σt foliation. The CMC condition is:

trk = −1

t
,(1.12)

where k is the second fundamental form of Σt. We emphasize that (1.12) is the
gauge condition tied to the infinite speed of propagation, since it implies an elliptic
equation for n (see (2.25)).

Remark 1.5 (Initial CMC slice). The condition (1.12) presupposes that the data
on the initial Cauchy hypersurface Σ1 have constant mean curvature trk|Σ1

= −1.
Such an assumption can be made without loss of generality for solutions that start
out close to background Kasner solutions. The reason is that for near-Kasner data
(not necessarily CMC data), one can first use the standard wave coordinate gauge to
solve Einstein’s equations in a neighborhood of Σ1, and then prove the existence of
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838 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

a CMC slice in that neighborhood with the desired properties; see [59, Proposition
14.4] and [9, Theorem 4.2].

Polarized U(1)-symmetric case. In the polarized U(1)-symmetric vacuum case
with D = 3, our setup will be such that x3 corresponds to the symmetry. In partic-
ular, relative to the transported spatial coordinates {xi}i=1,2,3, n, {gij}i,j=1,2,3, and
{kij}i,j=1,2,3 will not depend on x3. Moreover, ∂3 will be a hypersurface-orthogonal
Killing vectorfield, everywhere defined in the past of Σ1 and with positive norm
away from the singularity; see Lemma 2.3.

We now state a first, rough version of our main stability results. See Theorems 6.1
and 6.6 for precise statements.

Theorem 1.6 (Stable Big Bang formation (rough version)). In 1 + D spacetime
dimensions, consider an explicit generalized “background” Kasner solution (1.6)
whose Kasner exponents satisfy the condition (1.8), which is possible for D ≥ 3 in

the presence of a scalar field and for D ≥ 10 in vacuum (i.e., with B̃ = 0 in (1.6)).
These background solutions are dynamically stable under perturbations – without
symmetry – of their initial data near their Big Bang singularities, as solutions to

the Einstein-scalar field equations in the case D ≥ 3, and, when B̃ = 0, as solutions
to the Einstein-vacuum equations in the case D ≥ 10. Moreover, in 1+3 spacetime

dimensions, all Kasner solutions (with B̃ = 0) are dynamically stable solutions to
the Einstein-vacuum equations under perturbations – with polarized U(1)-symmetry
– near their Big Bang singularities, even though they all violate the condition (1.8).

More precisely, under the above assumptions, sufficiently regular perturbations
(i.e., perturbations belonging to suitably high order Sobolev spaces) of the Kasner
initial data on Σ1 give rise to maximal developments that terminate in a Big Bang
singularity to the past. In particular, the spacetime solutions in the past of Σ1

are foliated by spacelike hypersurfaces Σt that are equal to the level sets of a time
function t verifying the CMC condition trk = −t−1, and the perturbed Kretschmann
scalars RiemαμβνRiemαμβν blow up like t−4 as t ↓ 0. Finally, the perturbed
solutions exhibit AVTD behavior as the singularity is approached (see just below
equation (1.4) for further discussion of the notion of “AVTD”), and various t-
rescaled solution variables have regular limits as t ↓ 0.

1.7. Background on “Kasner-like behavior”: Heuristics. We now aim to
provide further background on our main results. In Sect. 1.8, we will discuss prior
works in the literature. Many of those works concern solutions that exhibit “Kasner-
like behavior,” a concept that we now discuss. We do not attempt to ascribe
rigorous meaning to this terminology; rather, we will highlight some properties that
are meant to capture the idea that a metric with spatial dependence is “blowing
up in a manner similar to the Kasner solutions.” We find the discussion in [29, 40]
instructive, where the spacetime metric, to leading order near t = 0, is assumed to
take the form:

g = −dt⊗ dt+ g, g ∼=
D∑

I=1

t2qI(x)θI(x)⊗ θI(x), θI = θIa(x)dx
a,(1.13)
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STABLE BIG BANG FORMATION 839

where “∼=” means “asymptotic to as t ↓ 0,” and the scalar functions {qI(x)}I=1,··· ,D
satisfy the following (vacuum) analogs of (1.7):

D∑
I=1

qI(x) =

D∑
I=1

q2I (x) = 1.(1.14)

Note that in (1.13), the one-forms18 {tqI(x)θI(x)}I=1,··· ,D “represent the Kasner-
like directions.” Moreover, although the metric components may vary in x, they
are all monotonic in t at fixed x. We stress that our discussion here is heuristic in
the sense that metrics of the form (1.13) are not generally solutions to Einstein’s
equations, though they might approximate actual solutions.

Let {kIJ}I,J=1,··· ,D denote19 the components of the type
(
1
1

)
second fundamental

form of Σt with respect to the co-frame {θI(x)}I=1,··· ,D and its basis-dual20 frame.
Standard computations yield that for metrics of the form (1.13), we have kIJ ∼ t−1.

On the other hand, in coordinates such that the lapse |g(∂t, ∂t)|1/2 is equal to 1 (as
on RHS (1.13)), the components kIJ satisfy the following evolution equations:

∂tk
I
J − trkkIJ = RicIJ −RicIJ ,(1.15)

where RicIJ denotes a component of the type
(
1
1

)
Ricci curvature of g with respect

to the co-frame {θI(x)}I=1,··· ,D and its basis-dual frame, and similarly for RicIJ .

Heuristic criterion for Kasner-like behavior.

• If Ric = 0 (e.g., if the metric g from (1.13) was already known to be a
solution to the Einstein-vacuum equations), then the leading order behavior
kIJ ∼ t−1 can easily be derived directly from (1.15) if (i) one knew that
trk = −t−1 + O(t−1+σ) for some σ > 0, and (ii) one could prove the
following pointwise estimate for t larger than but close to 0:

max
I,J=1,··· ,D

|RicIJ | � t−2+σ.(1.16)

In our main results, we impose the condition trk = −t−1 by using constant
mean curvature foliations. This gauge is not compatible with the ansatz
(1.13) because it generally requires the lapse [−(g−1)αβ∂αt∂βt]

− 1
2 to be

different from unity. For convenience, we will downplay this issue in the
present discussion.21 In the presence of matter, the same conclusions kIJ ∼
t−1 hold if one can also show that22 max

I,J=1,··· ,D
|RicIJ | � t−2+σ.

18Recall that we do not sum over repeated underlined indices.
19This notation should not be confused with the notation “kIJ” that we use in the bulk of the

article, where kIJ := kcde
c
Ie

d
J denotes the components of k relative to a Fermi–Walker propagated

orthonormal spatial frame.
20If {vI}I=1,··· ,D denotes the basis-dual frame (i.e., θI(vJ ) = δIJ , where δIJ is the Kronecker

delta), then relative to arbitrary coordinates {yi}i=1,··· ,D on TD, we have θI = θIcdy
c, vJ =

vcJ
∂

∂yc , and kIJ := kcdθ
I
cv

d
J , where kab = (g−1)ackcb.

21Since we derive estimates showing that |n − 1| � tσ, the non-constant lapse does not affect
the heuristic analysis.

22In our main results, in the case of the scalar field matter model, we will prove (with
the help of (1.1a)) pointwise estimates showing that max

I,J=1,··· ,D
|Ric(eI , eJ )| � t−2+σ, where

{eI(t, x)}I=1,··· ,D is an orthonormal spatial frame; this frame component bound is sufficient for
the proof of our main results. These technical estimates are in fact derived in the proof of
Lemma 5.17, though it might not be immediately apparent from the statement of the lemma.
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840 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Remark 1.7 (Remarks on our use of time-dependent orthonormal frames). We make
the following remarks:

• The above discussion of heuristics referred to the components of tensor-
fields with respect to the time-independent co-frame {θI(x)}I=1,··· ,D and its
basis-dual frame. Note that {θI(x)}I=1,··· ,D is not g-orthonormal. More-
over, for general small perturbations of Kasner solutions, there is no reason
to believe that there exists a time-independent co-frame in which the per-
turbed metric is asymptotically of the form (1.13). Hence, we again stress
that our approach is based on deriving estimates for the components of
tensorfields relative to an orthonormal spatial frame {eI(t, x)}I=1,··· ,D ob-
tained by Fermi–Walker transport, and that our use of an orthonormal
frame is crucial so that we can exploit the approximately diagonal nature
of the structure coefficient evolution equations (see Sect. 1.9.3).

• In particular, in our main results, we will prove an analog of (1.16) for the
components of Ric relative to an orthonormal frame; see Remark 1.11. That
is, instead of (1.16), our main results will rely on a proof of the following
bound:

|Ric| � t−2+σ,(1.17)

where LHS (1.17) denotes the usual invariant pointwise norm of the spatial
Ricci tensor.

• We also highlight that we are able to close our estimates without showing
that the metric is asymptotic to a metric of the form (1.13). In fact, we close
the proof with only very weak information about the orthonormal frame
{eI(t, x)}I=1,··· ,D and co-frame {ωI(t, x)}I=1,··· ,D: we prove only that their
coordinate components {eiI}I,i=1,··· ,D and {ωI

i (t, x)}I,i=1,··· ,D are bounded
in magnitude by � t−q for some q ∈ (0, 1) depending on the background
Kasner exponents; see also Remark 6.2.

• Despite the previous comment, for the solutions under study, we are able

to prove the existence of “final Kasner exponents”
{
q
(∞)
I (x)

}
I=1,··· ,D

as

the singularity is approached; see Proposition 6.7.

Conditions for the validity of the heuristic criterion (1.16) for metrics of
the form (1.13).

• A computation using (1.13) shows that in the absence of special algebraic
structure, we typically have23:

max
I,J=1,··· ,D

|RicIJ | ≈ max
I,J,B=1,··· ,D

I<J

{t2(qB−qI−qJ )}.(1.18)

• In view of (1.18), we see that the estimate (1.16) holds if:

max
I,J,B=1,··· ,D

I<J

{qI + qJ − qB} < 1.(1.19)

• In 1 + 3 spacetime dimensions in the vacuum case, where the condition
(1.19) is always violated (see (1.10)), one can show that for metrics of the

23Note that the spatial coordinate components {Ricij}i,j=1,··· ,D of the type
(1
1

)
tensor Ric

are bounded in magnitude by � LHS (1.18) and hence the inequality (1.18) would imply the same

bound for max
i,j=1,··· ,D

|Ricij |.
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STABLE BIG BANG FORMATION 841

form (1.13), the estimate (1.16) is valid if the following relation holds, where
d denotes the exterior derivative operator:

θ− ∧ dθ− = 0,(1.20)

where q−(x) < 0 is the24 negative Kasner-like exponent in (1.13) and θ−(x)
is the corresponding one-form, i.e., these quantities are such that the tensor
product θ−(x)⊗ θ−(x) is multiplied by the factor t2q−(x). Standard calcu-
lations show that the condition (1.20) eliminates the terms responsible for
the worst behavior on RHS (1.18), which, if present, would have been more
singular than RHS (1.16).

A geometric interpretation of the condition (1.20) for metrics of the form
(1.13).

• The Frobenius Theorem states that (1.20) is equivalent to the integrability
of the 2-dimensional sub-spaces V −

p annihilated by θ−, where for p ∈ T
3,

V −
p = {Y ∈ TpT

3 : θ−p (Y ) = 0}.(1.21)

We note that (1.20) is equivalent to the existence of functions u, v : T3 → R

such that θ− = udv.

As we already mentioned in Sect. 1.5, for the models that we consider in our
results without symmetry assumptions, it was already observed in [11,29] that the
condition (1.19) is not vacuous, at least in the sense that there exist generalized
Kasner (in particular, spatially homogeneous) solutions whose exponents satisfy it.
We also stress that for solutions with x-dependence, in the context of the heuristic
works [11,29], the condition (1.19) can be interpreted as an inequality that should
be satisfied by the “final Kasner exponents,” i.e., the exponents {qI(x)}I=1,··· ,D of
the alleged asymptotic form (1.13) of an alleged Kasner-like solution. Our main
results in fact justify the existence of (x-dependent) Kasner-like solutions with “final
Kasner exponents” {qI(x)}I=1,··· ,D verifying the stability condition (1.19), at least
when the data are close to generalized Kasner solutions whose exponents verify the
same condition; see Proposition 6.7. Our proof of these facts relies, of course, on
the open nature of the condition (1.19).

The above discussion suggests that in 1 + 3 spacetime dimensions in the vac-
uum case, x-dependent Kasner-like solutions can exist if the “polarization-type”
condition (1.20) holds. However, the condition (1.20) refers to the structure of the
metric “at the singularity” (i.e., since (1.13) is only supposed to capture the as-
ymptotic structure of the metric, (1.20) is a statement about the structure of the
asymptotic behavior of the metric near the singularity), and we are not aware of
any “general method” for solutions without symmetry that allows one to ensure
the validity of (1.20) via assumptions on the initial data on Σ1. Nonetheless, for
polarized U(1)-symmetric solutions, discussed further below, the condition (1.20)
automatically holds.

24Using equation (1.14), one can show that in the vacuum case with D = 3, aside from the
trivial case in which one of the qI is equal to 1 and the others vanish, precisely one of the q’s must
be negative.

Licensed to Vanderbilt Univ. Prepared on Tue May 16 09:43:06 EDT 2023 for download from IP 129.59.122.77.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



842 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Polarized U(1)-symmetric metrics of the form (1.13) satisfy (1.20).

• Recall that we defined the polarized U(1)-symmetry class in Sect. 1.5.2.
Assume that ∂3 is the hypersurface-orthogonal Killing vectorfield with T1-
orbits. This will be the case in our study of solutions with symmetry; see
Lemma 2.3. In addition, assume that the leading order expression (1.13) of
the Kasner-like metrics in question respects the symmetry, i.e., assume that
θ3 is proportional to dx3 and that for I = 1, 2, 3, ∂3qI = 0 and L∂3

θI = 0.
We divide the argument for the validity of (1.20) into the following two
cases, depending on the sign of the Kasner exponent associated to the
norm of the Killing field ∂3:

• If q3 < 0, where q3 is the Kasner-like exponent corresponding to the direc-
tion of symmetry, then for a metric of the form (1.13), the validity of (1.20)
(with θ3 in the role of θ−) follows easily, since, by the previous point, θ3 is
a scalar function multiple of dx3.

• Again assume that ∂3 is the hypersurface-orthogonal Killing vectorfield with
T1-orbits, but now assume that q3 > 0 and (without loss of generality)
q1 < 0, where q3 is still the Kasner-like exponent corresponding to the
direction of symmetry. Then the sub-spaces annihilated by the one-form
θ1 = θ−, corresponding to q1, are 2-dimensional and contain ∂3. Let Y be
a unit-length vectorfield in the kernel of θ1 that is orthogonal to ∂3. Fix
a point p ∈ T3, and consider the integral curve s → ap(s) of Y passing
through it, normalized by ap(0) = p. Then the image of ap times the
orbits of ∂3, i.e., Img(ap) × [−π, π]x3

, is a surface whose tangent planes
are exactly the kernel of θ1, since ∂3 (being Killing and in the kernel of
θ1) commutes with Y . Hence, the planes V −

p are integrable, and by the
Frobenius Theorem, this is equivalent to the condition (1.20).

1.8. Related works. Before outlining the main ideas behind our proof of Theo-
rem 1.6, we first describe some prior results on Kasner-like singularities. There are
many such results, and we roughly divide them into three categories.

1.8.1. Big Bang formation under symmetry assumptions. There are many works
that provide a detailed description of stable Big Bang formation, or more generally,
spacelike singularity formation with AVTD behavior (e.g., in black hole interiors),
for large sets of initial data on a smooth Cauchy hypersurface in a model with
sufficient symmetry such that the problem reduces to a system of ODEs or 1 + 1-
dimensional PDEs. We further divide these results into sub-categories.

The interior of black holes. In Christodoulou’s influential works [19,20] on the
spherically symmetric Einstein-scalar field system with large data, it was shown
that black holes form and contain spacelike singularities in their interior, where
their Kretschmann scalars blow up.

Polarized Gowdy-symmetry. In [23], the authors studied polarized Gowdy-
solutions25 to the Einstein-vacuum equations and proved Strong Cosmic Censor-
ship, that is, for an open and dense set of polarized Gowdy-symmetric initial data

25Roughly, Gowdy-solutions are such that there exists a pair of spacelike Killing vectorfields
X and Y such that the twist constants εαβγδX

αY βDγXδ and εαβγδX
αY βDγY δ vanish, where

ε is the spacetime volume form. Polarized Gowdy-solutions satisfy one additional condition: X
and Y are orthogonal.
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STABLE BIG BANG FORMATION 843

on T3 or S2 × S1, the maximal globally hyperbolic development is inextendible,
and causal geodesics are generically inextendible in one direction due to curvature-
blowup.

Gowdy-symmetry. In [54], Ringström proved a similar result for Gowdy-solutions
with spatial topology T

3, without the polarization assumption. See also the related
works [24, 51, 52] and the survey article [53]. The general Gowdy-case turned out
to be significantly more difficult to handle in view of a possible phenomenon that
was shown to be absent in the polarized case: “spikes.” Roughly, spikes are regions
where spatial derivatives can become large, i.e., regions where solutions do not ex-
hibit AVTD behavior. For an open and dense set of data in the topology of C∞,
Ringström proved that a curvature singularity forms and that the solution exhibits
Kasner-like behavior, except for possibly at a finite number of spikes.

Polarized axi-symmetric initial data. The Schwarzschild black hole singular-
ity is highly unstable, as is shown by the fact that instead of singularities, near-
Schwarzschild Kerr solutions have Cauchy horizons inside their black holes, and
the metric can be smoothly extended across them. However, the Schwarzschild
singularity was recently shown to be stable [1] as a solution to the Einstein-vacuum
equations under symmetric perturbations, specifically those perturbations whose
solutions exhibit a hypersurface-orthogonal, spacelike, Killing vectorfield X with
T1 orbits.26 This symmetry class is closely related to the polarized U(1)-symmetry
class that we study in Theorem 6.6, as we now describe. Compared to the po-
larized U(1)-symmetric solutions with T3 spatial topology that we study in the
present paper, the main difference in [1] is that X degenerates at a 2-dimensional
sub-manifold; since the vectorfield X in [1] is tangent to 2-spheres, such degenera-
cies are topologically unavoidable. This can be concretely seen already in the case
of the background Schwarzschild metric in classical (t, r, θ, φ) coordinates, where
X := ∂φ is the Killing field, and away from the singularity {r = 0}, its (square)

norm gSchwarzschild(∂φ, ∂φ) = r2 sin2 θ vanishes at exactly θ = 0, π. Apart from this
extra feature of the degenerate Killing vectorfield and the difference in topology
(R× S2 instead of the T3 topology considered here), the stability result of [1] can
be seen to correspond27 to a special case of our symmetric blowup-results, specifi-
cally Theorem 6.6, with background Kasner exponents q̃1 = − 1

3 , q̃2 = q̃3 = 2
3 . The

method of proof introduced in [1] is very much tied to the specific symmetry class,
relying on a wave-maps reduction of the Einstein-vacuum equations, and it is there-
fore not applicable to the non-symmetric solutions that we study in Theorem 6.1.
However, it seems that the use of the particular symmetry reduction in [1] allowed
for the derivation of more refined asymptotic behaviors for the spatial components
of the metric compared to the results we derive in Theorem 6.6.

1.8.2. The construction of solutions with Big Bang singularities – without a proof of
stability. Numerous papers have provided a construction of solutions that exhibit a
Kasner-like singularity. Most of these works concern cosmological spacetimes and

26Note that Kerr solutions, although axi-symmetric, do not contain a hypersurface-orthogonal
Killing field.

27To see the correspondence, one must re-parametrize the coordinate r to proper time (recall
that r is a time function in the Schwarzschild black hole interior, whereas t is a spatial coordinate,
in the classical coordinate representation of the Schwarzschild metric).
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employed Fuchsian techniques in regimes where the discussion in Sect. 1.7 suggests
that one might expect the singularity formation to be dynamically stable.

• Gowdy-symmetry. The first result of this type [41] yielded the construction
of analytic solutions with Gowdy-symmetry. The analyticity assumption was re-
moved in [49]. See also [62] for more general topologies and [3] for a treatment in
generalized wave gauges.

• Polarized and half-polarized T
2-symmetry. Analytic singularities in po-

larized T2-symmetry class were first constructed in [36]. The analyticity assumption
was later removed in [2], where the authors also constructed half-polarized solutions.

• Polarized or half-polarized U(1)-symmetry. Polarized and half-polarized
U(1)-symmetric analytic solutions with T

3 spatial topology were constructed in
[37]. More general topologies were later treated in [17]. We note that in these
works, the authors defined their notion of polarized and half-polarized solutions
at the singularity, i.e., at t = 0, by eliminating free functions relative to a given
ansatz, in the spirit of (1.13) and (1.20).

• Einstein-scalar field or stiff fluid. The first construction of singular solu-
tions without symmetries was carried out in [7]. The authors studied the Einstein-
scalar field and Einstein-stiff fluid systems and used Fuchsian techniques to con-
struct analytic solutions whose “final Kasner exponents” (see the last point of
Remark 1.7 and Proposition 6.7) are all positive.

• Sub-critical Einstein-matter systems. In [28], the authors extended the
results of [7] by constructing singular, analytic, Kasner-like solutions without sym-
metries to various Einstein-matter systems and to the Einstein-vacuum equations
in 1 + D dimensions with D ≥ 10. As in the present paper, the solution regimes
treated in [28] were sub-critical in the sense that the solutions exhibited the crucial
bound (1.17) for the spatial Ricci curvature. Roughly, our present work shows that
an open set of solutions constructed in [28] is dynamically stable under Sobolev-
class perturbations of their initial data near their Big Bangs, at least in the vacuum
and scalar field matter model cases.

• 1 + 3 vacuum without symmetries. As we alluded to in Sect. 1.4, Kasner
solutions might be unstable under general perturbations without symmetries, unless
some kind of condition, such as a polarization condition of the type (1.20), is
imposed. Nevertheless, in [39], the author constructed analytic Kasner-like singular
solutions without symmetries, demonstrating that such solutions exist, even though
they might be unstable. Moreover, in [32], for distinct Kasner exponents, the
first author and Luk constructed Sobolev-class solutions that exhibit Kasner-like
singularities. The solutions do not a priori enjoy any symmetry, but they satisfy
the polarization condition (1.20).

• Asymptotically Schwarzschild on a 2-sphere. Finally, we mention the
first author’s work [31], which, in a Lorentz gauge, yielded the construction of
a class of spacetimes that converge to a portion of the Schwarzschild black hole
singularity. The construction requires no symmetry or analyticity assumptions.
While the construction does not yield a full spacelike singular hypersurface, it does
provide a spacelike singular 2-sphere.

1.8.3. Stable Big Bang formation without symmetry assumptions. The stability of
some Kasner solutions towards their Big Bang singularities, without symmetries and
for open sets of initial data, was only fairly recently shown by the last two authors.
For the scalar field and stiff fluid matter models, the stability of the (isotropic)

Licensed to Vanderbilt Univ. Prepared on Tue May 16 09:43:06 EDT 2023 for download from IP 129.59.122.77.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABLE BIG BANG FORMATION 845

Friedmann–Lemâıtre–Robertson–Walker (FLRW) solutions with T3 spatial topol-

ogy (i.e., q̃1 = q̃2 = q̃3 = 1
3 and B̃ =

√
2/3) was shown in [58,59], while the case of

the scalar field matter model with S3 topology was handled in [61]. The Einstein-
vacuum equations were handled in [60] under a “moderate anisotropy” assumption
on the Kasner exponents, specifically max

I=1,··· ,D
|q̃I | < 1

6 , which is possible in 1 + D

spacetime dimensions when D ≥ 38. Some aspects of our analysis here are in the
spirit of the analysis in [60].

1.8.4. Conditional Kasner-like behavior. There are recent results that derive
Kasner-like behavior for solutions under assumed bounds on certain key quantities.
For example, assuming mainly scale invariant bounds on the Riemann curvature
of Hubble-normalized time slices, Lott [43] showed that the corresponding singular
solutions converge to Kasner flows in appropriate topologies. Ringström [56, 57]
derived sharp results on the geometry of Kasner-like solutions by assuming mainly
bounds on the normalized Weingarten map.28 Ringström’s sharp estimates cru-
cially rely on a frame that asymptotically diagonalizes the normalized Weingarten
map. This frame is very different from ours, which is Fermi-propagated from Σ1.
It would be interesting to explore whether a change of frames could yield more
refined estimates for the spatial frame and connection coefficients compared to the
estimates we obtain in Theorem 6.1; see also Remarks 1.10 and 6.3.

1.9. Overview of our proof. Our proofs of Theorems 6.1 and 6.6 are based on
deriving estimates for a set of reduced variables that solve an elliptic-hyperbolic
PDE system. Here we will summarize the main features of the system and how
its structures allow us to prove our main results. We will confine our discussion
to sketching proofs of various low order and high order a priori estimates for near-
Kasner initial data given on Σ1 = {t = 1}. In practice, the low order and high
order estimates are coupled, and we derive them via a bootstrap argument. The a
priori estimates are sufficient to ensure that the solution exists on (0, 1]× T

D (see
Proposition 5.28), which is the main step in the paper. The proof of curvature-
blowup and other aspects of the solution are relatively straightforward consequences
of the a priori estimates. We will not discuss those results in this section; instead,
we refer readers to Sect. 6 for those details.

1.9.1. The gauge. We use a constant mean curvature foliation in which, for t ∈
(0, 1], the level sets Σt of the time function t satisfy trk = − 1

t , where k is the

second fundamental form of Σt. We also use spatial coordinates {xi}i=1,··· ,D that
are transported along the unit normals to Σt. In this gauge, the spacetime metric
satisfies g = −n2dt ⊗ dt + gabdx

a ⊗ dxb, where n is the lapse and g is the first
fundamental form of Σt. This setup is the same as in [58–60]. However, to derive
the sharp results of the present paper, we use a crucial additional ingredient: we
use Fermi–Walker transport to construct a Σt-tangent orthonormal “spatial frame”
{eI}I=1,··· ,D, which is globally defined in space. When supplemented with e0 :=
n−1∂t, we obtain an orthonormal spacetime frame. We then formulate Einstein’s
equations in such a way that the unknowns are n, the components {eiI}I,i=1,··· ,D
of the orthonormal frame with respect to the transported spatial coordinates, the
components {ωI

i }I,i=1,··· ,D of the corresponding dual co-frame with respect to the

28The Weingarten map is the second fundamental form in type
(1
1

)
form, i.e., in the notation

of the present paper, the tensorfield with components kij := (g−1)iakaj .

Licensed to Vanderbilt Univ. Prepared on Tue May 16 09:43:06 EDT 2023 for download from IP 129.59.122.77.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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transported spatial coordinates, the frame components kIJ := kcde
c
Ie

d
J of the second

fundamental form with respect to the frame, the connection coefficients γIJB :=
g(∇eIeJ , eB) of the spatial frame (where ∇ is the Levi-Civita connection of g),
the future-directed-timelike-unit-normal-derivative of the scalar field, denoted by
e0ψ, and the spatial frame derivatives {eIψ}I=1,··· ,D of the scalar field.29 We refer
readers to Sect. 2 for the details.

1.9.2. The lapse, the dynamic variables, and the “less singular” nature of spatial
derivative terms. The lapse n satisfies an elliptic PDE (see (2.25)) with source
terms depending on some of the other solution variables, specifically the “dynamic
variables” eiI , γIJB, and eIψ. Thus, to control n, we use elliptic estimates to control
it in terms of these dynamic variables. These estimates are rather standard, and
we will not discuss them in detail here. We simply highlight that it is crucial
for our results that the right-hand side of the elliptic lapse PDE depends only
on the spatial derivatives of various tensorfields, i.e., there are no time derivative
terms, the point being that in the problem under study, spatial derivative terms
are less singular with respect to t compared to time derivative terms; this is a
manifestation of AVTD behavior, which we first mentioned in Sect. 1.4. We refer
readers to Sect. 5.4 for a detailed proof of the lapse estimates. To control the
dynamic variables, including eiI , ω

I
i , kIJ , γIJB, e0ψ, and eIψ, we derive “low order”

L∞ estimates and “high order” energy estimates based on first-order formulations of
the flow; we refer to Proposition 2.2 and Lemma 5.22 for the first-order formulations
of the equations. As we explained in the discussion above (1.5), we also crucially
rely on the special “diagonal structure” exhibited by the PDE system satisfied by
the structure coefficients of the spatial frame. We provide this PDE system in
Proposition 5.7, and we will discuss it in more detail in Sect. 1.9.3.

1.9.3. Approximately diagonal form of the structure coefficient evolution equations.
Away from symmetry, to control the γIJB ’s, we rely on the crucial observation that
the terms:

{SIJB := γIJB + γJBI | 1 ≤ I, J, B ≤ D, I < J}(1.22)

solve an evolution equation system whose “main linear part” is diagonal with coeffi-
cient magnitudes that are smaller than t−1, provided the condition (1.8) is satisfied
by the background Kasner exponents; see equation (5.19) for the precise equation,
and equation (1.25b) for an abbreviated version. To caricature, the system is of

the form Ṡ = M
t · S + · · · , where M is a diagonal matrix whose components verify

|MIJ | < 1 when (1.8) holds. This allows us to prove that under (1.8), we have
|S| � t−q for some q < 1. This bound is crucial for the entire proof, as
we use it to show that the solutions exhibit AVTD behavior. The variables SIJB

in (1.22) are precisely the structure coefficients of the spatial orthonormal frame
{eI}I=1,··· ,D. Here we note that by the simple identity (5.22), to control all of the
γIJB’s, it suffices to control the structure coefficients.

Moreover, as we highlighted in Remark 1.3, even in cases such that the stabil-
ity condition (1.8) is violated, only some of the structure coefficients SIJB could
possibly serve as an obstruction to proving the desired estimates: those with three
distinct indices. That is, our work essentially shows that in regimes where (1.8)

29We never need to estimate ψ itself since only its derivatives appear in the system (1.1a)–
(1.1b).
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STABLE BIG BANG FORMATION 847

is violated (such as the Einstein-vacuum equations in 1 + 3 dimensions without
symmetries), any instabilities would arise from the combinations SIJB with dis-
tinct indices. This observation is precisely what allows us to extend our stable
blowup-results to the class of polarized U(1)-symmetric Einstein-vacuum solutions
in 1+3 dimensions: by considering a spatial orthonormal frame {eI}I=1,2,3 such that

e3 = (g33)
− 1

2 ∂3 corresponds to the normalized Killing direction (see Lemma 2.4),
we can conclude that the spatial connection coefficients with distinct indices are
automatically zero (see Lemma 5.11). Hence, the observations described above al-
low us to sufficiently control the non-zero structure coefficients and prove stable
blowup.

We also note that the less singular behavior (than t−1) of the γIJB ’s is consistent
with the normalized second fundamental form frame components tkIJ (t, x) having

a continuous limit, κ
(∞)
IJ (x), as t ↓ 0, which is the main feature of a Kasner-like

singularity (as we described in Sect. 1.7). This is once again a manifestation of

AVTD behavior. The eigenvalues of −κ
(∞)
IJ (x) can be viewed as the “final, x-

dependent” Kasner exponents of the perturbed spacetime; see Proposition 6.7.

1.9.4. The bootstrap argument and initial discussion of the behavior of the high
order energies. In practice, to prove our main results, we rely on a bootstrap ar-
gument in which we assume that various low order and high order norms are small
(indicating that the solution is near-Kasner) on a time interval (TBoot, 1]; see (3.9)
for the precise bootstrap assumptions. Then the main task becomes deriving strict
improvements of the bootstrap assumptions for near-Kasner initial data, where we
remind the reader that the data are given along Σ1 = {t = 1}. In the rest of
Sect. 1.9, to illustrate the main ideas, we will not explain the full bootstrap argu-
ment in detail, but will instead show how the different parts of the analysis consis-
tently fit together. As a starting point, we note that our analysis will eventually
show that we have a top-order energy bound of the following form:

tA∗+1‖kIJ‖ḢN (Σt) + tA∗+1‖γIJB‖ḢN (Σt)
+ tA∗+q‖eiI‖ḢN (Σt)

+ tA∗+1‖e0ψ‖ḢN (Σt)
+ tA∗+1‖eIψ‖ḢN (Σt)

� data,
(1.23)

where q is as in Sect. 1.9.3 (see just above (1.24a) for further discussion) and ‖·‖ḢN

is a standard homogeneous Sobolev norm; see Sect. 3 for the details.
We now highlight some crucial aspects of our analysis of the high order energies:

To close the proof and justify the estimate (1.23), we must first
choose the parameter A∗ to be sufficiently large, then choose the
“regularity parameter” N to be sufficiently large relative to A∗,
and finally choose data to be sufficiently small, where for the rest
of Sect. 1.9, “data” denotes a small number whose size is controlled
by the closeness of the initial data to the Kasner data in a high
order Sobolev norm.

1.9.5. The behavior of the low order L∞ norms. In this section, we will explain
how the availability of a high order energy bound of the form (1.23) allows us to
derive sharp L∞ estimates for the solution variables at the low derivative levels.
We already stress that our proof fundamentally requires that we prove much less
singular (with respect to t) estimates at the low derivative levels compared to (1.23);
here, we are thinking of (1.23) as a “very singular estimate” in the sense that A∗
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is large. In particular, at the low derivative levels, we must prove estimates for
the perturbed kIJ and e0ψ variables showing that they are not more singular than
their Kasner analogs, which blow up like t−1. To keep the presentation short,
in most of the rest of Sect. 1.9, we will focus only on the estimates for eiI , kIJ ,
and γIJB; the estimates for the scalar field can be obtained in a similar fashion.
Moreover, we again highlight that we derive control of the connection coefficients at
the low derivative levels by relying on the structure coefficients SIJB := γIJB+γJBI

(whereas for the energy estimates at the high derivative levels, we can work directly
with the connection coefficients γIJB). Finally, we note that our discussion here
will mainly concern the analysis away from symmetry under the sub-criticality
condition (1.8).

Remark 1.8 (The frame is not precisely adapted). It seems remarkable to us that
away from symmetry, for all sub-critical Kasner exponents, we have a lot of free-
dom in constructing the orthonormal frame. More precisely, in Sect. 5.11, we use
the Gram–Schmidt algorithm to construct an initial orthonormal frame that is a
perturbation of the spatial coordinate frame {∂i}i=1,··· ,D, and then we propagate
this frame using the Fermi–Walker transport equations (2.8). There is nothing spe-
cial about our choice of initial data for the frame; any nearby initial data for the
orthonormal frame would have worked just as well. In particular, we can close the
estimates without using a spatial frame that is adapted to the perturbed Kasner
directions, that is, without the frame being aligned with the eigenvectors of the
perturbed second fundamental form k; see also Remark 6.2. In fact, as of present,
the only way we know how to close the top-order estimates is by using a Fermi–
Walker-transported frame, which is not generally aligned with eigenvectors of k. In
contrast, many previous studies of Kasner-like singularities relied on a frame that
is adapted to the eigenvectors of k (see Sect. 1.8 for discussion of related works).

Remark 1.9 (The role of N0). In our main theorem, there appears a parameter
N0 ≥ 1 that represents, roughly, the number of derivatives that we sharply control
in ‖ · ‖L∞ . We are free to choose it at the start of the bootstrap argument. For
example, N0 = 1 is permissible. However, the choice of N0 will affect the minimal
allowable size of N (see Theorem 6.1). N0 also captures the amount of regularity
that the “limiting normalized solution variables” enjoy along the Big Bang hy-
persurface Σ0 (see Sect. 6.2). We introduced N0 mainly to clarify that for “very
smooth” initial data that fall under the scope of our main results, the corresponding
limiting solution variables will inherit a quantifiable amount of the smoothness. For
convenience, in our heuristic discussion here, we will only discuss the case N0 = 1,
i.e., the L∞ estimates at the level of the undifferentiated equations.

To proceed, we let ẽiI(t) and k̃IJ (t) := k̃cd(t)ẽ
c
I(t)ẽ

d
J(t) respectively denote the

background Kasner frame components and second fundamental form components;
see Sect. 2.3 for the precise definitions. We aim to sketch a proof of the following
pointwise estimates for (t, x) ∈ (0, 1]×TD, where in what follows, q and σ are fixed
constants that satisfy 0 < 2σ < 2σ+ max

I,J,B=1,··· ,D
I<J

{|q̃B |, q̃I + q̃J − q̃B} < q < 1− 2σ

(such constants exist whenever the sub-criticality condition (1.8) holds):

|tkIJ − tk̃IJ |(t, x) � data,(1.24a)

tq|SIJB|(t, x) � data,(1.24b)
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tq|eiI − ẽiI |(t, x) � data.(1.24c)

The estimate (1.24a) is sharp and is of particular importance because it is needed
to control various “borderline terms” in the energy estimates, as we explain in
Sect. 1.9.6. Similar remarks apply for the L∞ estimates for te0ψ (which we do
not discuss here). The estimates (1.24b)–(1.24c) are not quite sharp with respect
to powers of t, and we have chosen the power tq on LHSs (1.24b)–(1.24c) so as
to allow for the simplest possible analysis. Estimates at the low derivative levels,
in the spirit of (1.24a)–(1.24c), are sufficient to allow us to identify the limiting
Kasner-like behavior of the perturbed solutions; see Proposition 6.7 for the details.
We stress that, although Proposition 6.7 shows that the t-weighted scalar functions
tkIJ and te0ψ have non-trivial, regular limits as t ↓ 0, we do not obtain (or need!)
analogous sharp limits for the frame components or spatial derivative-involving
terms; see Remark 6.2.

Remark 1.10 (Refined estimates with a different frame?). It is conceivable that
a different choice of orthonormal frame might yield sharper asymptotic estimates
for the spatial frame and connection coefficients, as in [57]. However, to close a
bootstrap argument with a refined frame, such as a frame that is adapted to the
eigenvectors of k, one would have to overcome serious technical difficulties, such as
a potential loss of derivatives for the frame. It would be interesting to understand
whether such an approach is viable for solutions without symmetry, i.e., whether
the entire proof can be carried out using a refined frame. On the other hand, given
the estimates we prove in Theorems 6.1 and 6.6, as a follow-up problem, one could
try to derive sharper estimates for the asymptotics; see also Remark 6.3.

Remark 1.11 (The crucial bound for the spatial Ricci curvature). Using the esti-
mates (1.24b)–(1.24c) and similar estimates for the spatial derivatives of SIJB , the
algebraic identity (5.22), and the spatial Ricci curvature frame component expres-
sion (2.31), one can conclude that |RicIJ | := |Ric(eI , eJ)| � data × t−2+σ. This
is a frame component analog of the classic sub-criticality condition (1.16), and in
practice, one needs such an estimate to prove (1.24a).

To sketch the main ideas behind the proofs of (1.24a)–(1.24c), we note that the

evolution equations for kIJ − k̃IJ , SIJB , and eiI − ẽiI can be caricatured as follows
(see Proposition 5.7 and Lemmas 5.13 and 5.16 for the precise equations):

∂t(kIJ − k̃IJ ) +
1

t
(kIJ − k̃IJ ) = eiI · ∂γ+ γ · γ+ · · · ,(1.25a)

∂tSIJB +
(q̃I + q̃J − q̃B)

t
SIJB = · · · ,(1.25b)

∂t(e
i
I − ẽiI) +

q̃I
t
(eiI − ẽiI) = · · · ,(1.25c)

where · · · denotes similar or simpler error terms that we ignore to simplify the
discussion, and we recall that we do not sum over repeated underlined indices.

Remark 1.12 (On the approximately diagonal structure of the evolution equations
for the structure coefficients). Note that (1.25b) shows that the SIJB solve an
evolution equation system that is approximately diagonal, as we highlighted in
Sect. 1.9.3.
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Next, we note that the estimates (1.24b) and (1.24c) are easy to derive (modulo
the omitted terms “· · · ”) via integrating factors as a consequence of equations
(1.25b)–(1.25c) and the definition of q. In reality, the proofs of (1.25a)–(1.25c)
must be handled simultaneously, via a bootstrap argument, due to coupling terms,
but we will ignore this issue here; see the proof of Proposition 5.26 for the details.

Next, to illustrate the interplay between low order L∞ estimates and high order
energy estimates, we will now explain how to derive the bound (1.24a) for kIJ ,
assuming the high order energy bound (1.23) and the estimates (1.24b) and (1.24c).
To this end, we must explain how to control the term eiI · ∂γ on RHS (1.25a). This
term loses one derivative and must ultimately be handled with the help of energy
estimates (which we discuss in Sect. 1.9.6), but as we explain, its L∞ norm is sub-
critical with respect to powers of t. By this, we mean that the behavior of eiI · ∂γ
with respect to t is strictly less singular with respect to t, as t ↓ 0, compared to the
terms on LHS (1.25a) (i.e., less singular than t−2) and thus, near the singularity, it
is a negligible error term. To see this, one can use standard Sobolev embedding and
interpolation estimates (see Lemmas 4.1 and 4.2) to infer that there is a constant
δN > 0 (depending on N) such that δN → 0 as N → ∞ and such that the following
crucial estimate holds:

‖∂γ‖L∞(Σt) � ‖γ‖L∞(Σt) + ‖γ‖1−δN

L∞(Σt)
‖γ‖δN

ḢN (Σt)
.(1.26)

Combining (1.26) with (1.23) and (1.24b), and using the fact that the connection
coefficients γ are linear combinations of the structure coefficients S (see (5.22)),
we find that ‖∂γ‖L∞(Σt) � data × t−q + data × t−(1−δN )q × t−δN (A∗+1). Thus, by
choosing N sufficiently large, exploiting that A∗ does not depend on N , and that
δN → 0 as N → ∞, we find that:

‖∂γ‖L∞(Σt) � data× t−1+σ.(1.27)

The importance of (1.26) and (1.27) is that they show that when N
is large, the singularity strength of ‖∂γ‖L∞(Σt) is not much worse
than the singularity strength of ‖γ‖L∞(Σt), even if ‖γ‖ḢN (Σt)

obeys

a much worse estimate of the form ‖γ‖ḢN (Σt)
� data × t−(A∗+1)

(which is the bound afforded by the energy estimate (1.23)).

Hence, also using (1.24c), we conclude that ‖eiI · ∂γ‖L∞(Σt) � data× t−2+σ, i.e.,

this term is less singular than t−2, as desired. Let us now sketch the proof that
these bounds imply the desired estimate (1.24a). Using these bounds, multiplying
the evolution equation (1.25a) by t and noting that the resulting LHS is equal to

∂t[t(kIJ − k̃IJ )], and then using the fundamental theorem of calculus, we deduce
the pointwise bound:

|tkIJ − tk̃IJ |(t, x) � |tkIJ − tk̃IJ |(1, x)

+

∫ 1

t

s|eiI |(s, x) · |∂γ|(s, x) ds+
∫ 1

t

s|γ|(s, x) · |γ|(s, x) ds+ · · ·

� data+ data

∫ 1

t

s−1+σ ds+ · · · � data+ · · · ,

(1.28)
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STABLE BIG BANG FORMATION 851

which yields the desired bound (1.24a), up to the error terms “· · · .” We close this
section by highlighting that in a fully detailed proof of (1.28), the estimate (1.17)
is crucial for obtaining the power s−1+σ in the next-to-last inequality in (1.28).

Remark 1.13 (How large does N need to be?). The following natural question
emerges from the above discussion: how large does N need to be for the above
scheme to work? The interpolation inequality (1.26) already suggests that the
rough estimate N ∼ σ−1 is sufficient to guarantee that ‖∂γIJB‖L∞(Σt) is less

singular than t−1, given the high order energy bounds (1.23) for tA∗+1‖γIJB‖ḢN (Σt)

and the fact that γ satisfies |γIJB | � data × t−1+σ and that δN ∼ N−1 (see
the proof of Lemma 4.2 for some details on the N -dependence of the δN that
appear in our interpolation estimates). The precise largeness of N needed for this
argument to go through depends on D and the size of A∗, which we discuss in
Remark 1.14. We also note that, even in the best case scenario, we would expect
the behavior of at least one of the connection coefficient norms ‖γIJB‖L∞(Σt) to

be at least as singular as t
− max

I=1,··· ,D
q̃I
. Hence, in view of our choice (3.6) of the

parameters q and σ, we see that σ has order of magnitude at least as small as
1− max

I=1,··· ,D
q̃I . In particular, this implies that as the background Kasner exponents

tend towards an extreme case, e.g., as max
I=1,··· ,D

q̃I → 1 (and hence σ → 0), the

number of derivatives N we would need to close our bootstrap argument would
tend to ∞. Similarly, as LHS (1.8) tends towards 1, our arguments would require
N to tend to ∞ as well. Moreover, going back to Remark 1.9, we note that one
could use similar interpolation arguments (see Lemmas 4.1 and 4.2) to infer that
choosing N ∼ N0σ

−1 would be sufficient to guarantee that ‖∂N0γIJB‖L∞(Σt) is less

singular than t−1.

1.9.6. The high order energy estimates. We now explain how we derive our top-
order energy estimates for the dynamic variables eiI , kIJ , γIJB , e0ψ, and eIψ, that
is, how we prove (1.23). We will highlight the role played by the L∞ estimates
of Sect. 1.9.5. We first commute the evolution equations (recall that in our for-
mulation, all of the evolution equations are first-order) with ∂ι, where ∂ι is an
N th-order differential operator corresponding to repeated differentiation with re-
spect to the transported spatial coordinate partial derivative vectorfields. We then
derive energy identities for solutions to the commuted equations, where we incor-
porate tA∗+1-weights into the identities. Below we will explain the analytic role of
the weights. The energy identity for the scalar field is standard, and we will not
discuss it in detail here; we refer readers to Lemma 5.24 for a differential version
of that energy identity. Similar remarks apply for the energy identity for the frame
component functions eiI .

However, the derivation of the energy identity for the second fundamental form
frame components kIJ and the connection coefficients γIJB is more subtle, since
the identity corresponds to a surprising gain of one derivative for the connection
coefficients, as we highlighted in Sect. 1.4. The identity can be derived using a mod-
ification of the approach used in [58–60]. The main difficulty is that the evolution
equations (2.22a)–(2.22b) for γ and k do not form a symmetric hyperbolic system,
which, at first glance, seems to obstruct the availability of a basic energy identity.
However, one can use differentiation by parts and the momentum constraint equa-
tion, as well as the special structure of the equations relative to CMC foliations (see
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852 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

(2.26b)), to replace the problematic terms with source terms that enjoy a sufficient
amount of regularity. We refer readers to Lemma 5.19 for this top-order energy
identity, expressed in differential form.

We will now describe our top-order energy estimates. We will give a simplified,
schematic presentation in order to focus on the main ideas. We define the following
top-order energy30:

EN (t) := tA∗+1‖k‖ḢN + tA∗+1‖γ‖ḢN + tA∗+q
∑

I,i=1,··· ,D
‖eiI‖ḢN

+ tA∗+1‖e0ψ‖ḢN + tA∗+1
∑

I=1,··· ,D
‖eIψ‖ḢN .

(1.29)

We will sketch a proof that if A∗ is chosen to be sufficiently large and then N is
chosen to be sufficiently large such that the L∞ estimates of Sect. 1.9.5 hold, then
we have the following bound31: EN (t) ≤ CN × data, i.e., the estimate (1.23) holds.
To obtain this bound, we combine the energy identities mentioned in the previous
paragraphs with elliptic estimates for the lapse, and we use the L∞ estimates from
Sect. 1.9.5 and interpolation to control the non-linear error terms. This allows us
to derive the following energy integral inequality for t ∈ (0, 1] (see Proposition 5.27
for the precise inequalities), where C∗ is a constant that captures the strength of
the borderline terms in the equations and that can be chosen to be independent
of N and A∗ (as long as “data” is small), while CN > 0 is a large, N -dependent
constant:

E
2
N (t) ≤ data2 + (C∗ −A∗)

∫ 1

t

E
2
N (s)

s
ds+ CN

∫ 1

t

s−1+σ
E
2
N (s) ds.(1.30)

The crucial point is that if we choose A∗ to be larger than C∗, then the time
integral on RHS (1.30) becomes non-positive, and we can discard it. Finally, from
(1.30) and Grönwall’s lemma, we obtain that EN (t) ≤ CN × data as desired. This
concludes our schematic discussion of the a priori estimates.

Some closing remarks are in order.

• The negative definite integral −A∗
∫ 1

t
E
2
N (s)
s ds on RHS (1.30) arises from

our energy identities, specifically from the tA∗+1 weights that we have in-
corporated into them. This negative definite integral allows us to absorb

the dangerous borderline error integral C∗
∫ 1

t
E
2
N (s)
s ds, but at the expense

of forcing us to work with energies that are very degenerate near t = 0.
• Above we mentioned the notion of a “borderline term.” To handle such
terms, we must rely on the sharp L∞ estimates from Sect. 1.9.5; for bor-
derline terms, there is “no room” in the L∞ estimates. In the context
of energy estimates, borderline terms contribute to the dangerous integral

C∗
∫ 1

t
E
2
N (s)
s ds on RHS (1.30). One example of a borderline error integral

is
∫ 1

t

∫
Σs

s2(A∗+1) · k · ∂ιγ · ∂ιγ dx ds, where ∂ι is an N th-order spatial dif-

ferential operator of the type mentioned earlier. To bound this integral

30Note that as we have defined it, the energy EN scales linearly with respect to the quantities
that it controls. This is a different convention than is usually used in the literature, in which
energies are typically defined so as to scale quadratically in the quantities that they control.
Similar remarks apply to the energies we use in the proof of Lemma 2.3.

31In practice, we also derive top-order energy estimates for the co-frame components
{ωI

i }I,i=1,··· ,D.
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STABLE BIG BANG FORMATION 853

by C∗
∫ 1

t
E
2
N (s)
s ds, we need to use the sharp estimate ‖kIJ‖L∞(Σs) ≤ C∗

s
implied by (1.24a). If, instead of this sharp bound, we only knew that
‖kIJ‖L∞(Σs) ≤ C∗s

−(1+ε) for some ε > 0, then on RHS (1.30), we would

have an additional error integral of the form C∗
∫ 1

t
E
2
N (s)
s1+ε ds. By virtue of

Grönwall’s lemma, this integral would lead to dramatically worse a pri-
ori estimates, which would in turn prevent us from closing our bootstrap
argument.

Remark 1.14 (The size of A∗). It is possible, in principle, to compute how large
A∗ has to be for the above proof to work; one simply needs to derive an explicit
upper bound for the constant C∗ on RHS (1.30). We will provide an outline of how
to estimate C∗ (and thus A∗), although we do not provide an explicit estimate.
To shorten the discussion, we will restrict our attention to the Einstein-vacuum
equations, i.e., we will assume that ψ = 0. In short, the constant C∗ can be
controlled by the number of borderline terms in the top-order energy estimates
and elliptic estimates and the size of the coefficients in front of these terms. More
precisely, the borderline terms in the energy estimates for the connection coefficients
and second fundamental form are generated by the terms on RHSs (5.32a), (5.32c),
and (5.32e). The main terms driving the size of C∗ are the top-order ones with

coefficients of size ≈ s−1 along Σs, e.g., the term ∂ι(n− 1) · k̃ on RHS (5.32a) and

the terms n · k̃ · ∂ιγ and k̃ · ∂ι�en on RHS (5.32c). These terms lead to borderline

error integrals in the energy estimates, such as the integral
∫ 1

t

∫
Σs

s2(A∗+1) · k ·
∂ιγ · ∂ιγ dx ds mentioned above. In each borderline term, the coefficient of the
top-order term, specifically k in the previous integral, can be bounded in the norm
‖ · ‖L∞(Σs) by (|q̃I | + Cε)s−1 for some I, where q̃I can be any of the background
exponents and Cε can be as small as desired, by taking the initial data on Σ1 to be

sufficiently close to the Kasner data. More precisely, decomposing k = k̃+ (k− k̃),

we see that the factor |q̃I |s−1 is generated by k̃ (see (2.58)), while the factor Cεs−1

is generated by the bound (1.24a). Since |q̃I | < 1, by counting all borderline
terms, we could crudely bound the contribution of these terms to the constant
C∗ by ≤ (number of borderline terms) + Cε. The sum of all the corresponding

top-order error integrals would then be bounded by C∗
∫ 1

t
E
2
N (s)
s ds. We also stress

that one encounters borderline terms in the elliptic estimates for the top-order
derivatives of n (see, for example, the C∗-involving term on RHS (5.5a)), and that
these borderline terms propagate into the top-order energy estimates via terms

such as the one ∂ι(n− 1) · k̃ mentioned above. In particular, these terms affect the
size of C∗. We also note that the arguments given here allow for the possibility
that C∗ might increase with respect to D. Finally, we note that the estimate for
C∗ sketched here is not necessarily optimal. In fact, in the near-FLRW regime
(where all Kasner exponents are nearly equal), the last two authors [58,59] showed
that striking cancellations take place, and A∗ can in fact be taken very small, i.e.,
C∗ = Cε. It is not known to us whether such cancellations exist for perturbations
of highly anisotropic background Kasner solutions.

1.10. Applicability of the method.

1.10.1. Polarized T
2-symmetry. We already mentioned that Kasner-like singulari-

ties have been constructed [2, 36] for the Einstein-vacuum equations in 1 + 3 di-
mensions within the polarized T2-symmetry class. This symmetry class contains
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854 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

vacuum spacetimes with two orthogonal, spacelike, Killing vectorfields X,Y that
commute, and it is more general than the polarized Gowdy-class in the sense
that the twist constants, which measure the obstruction to the integrability of
the 2-dimensional orthogonal planes to X,Y , do not have to vanish. It turns
out that polarized T2-symmetric solutions can be viewed as special cases of po-
larized U(1)-symmetric solutions in which one extra symmetry is present. This
fact is not immediately apparent in the sense that our definition of polarized U(1)-
symmetry (recall the discussion in Sect. 1.5.2) requires a spacelike Killing field to
be hypersurface-orthogonal, whereas the definition of polarized T2-symmetry does
not refer to hypersurface orthogonality. Nevertheless, for polarized T2-symmetric
solutions, it is always possible32 to construct coordinates such that one of the twist
constants vanishes and such that one of the spatial coordinate partial derivative
vectorfields associated to the T2-symmetry is Killing and hypersurface-orthogonal;
see [4, Section 2.2], where this coordinate Killing vectorfield is denoted by “∂x.”
Given such coordinates, the corresponding solutions can indeed be viewed as spe-
cial cases of polarized U(1)-symmetric solutions in which one extra symmetry is
present. Hence, our results on polarized U(1)-symmetric solutions imply, as a spe-
cial case, that all (singular) Kasner solutions are also stable (as solutions to the
Einstein-vacuum equations in 1 + 3 dimensions) near their Big Bangs under po-
larized T2-symmetric perturbations. Here, by “stable,” we mean that the results
of Theorem 6.6 hold for the near-Kasner polarized T2-symmetric solutions, where
the hypersurface-orthogonal Killing vectorfield “∂3” from Theorem 6.6 corresponds
to the vectorfield “∂x” from [4]. We refer to Remark 6.3 for further discussion of
polarized T2-symmetric solutions and their asymptotics near the singularity.

1.10.2. Potential further applications. Our approach could likely be adapted to
prove stable Big Bang formation in other models that are not, strictly speaking,
covered in the present paper. We mention here some interesting cases.

• The stiff-fluid model, for D ≥ 3. This matter model reduces to the scalar
field matter model in the case of vanishing vorticity. In [59], stable Big Bang
formation was proved in the special case D = 3 for the background FLRW solution,
in which q̃1 = q̃2 = q̃3 = 1/3, and the presence of matter is needed to ensure the
validity of the Kasner exponent constraints (1.7).

• Perturbing around fixed, non-explicit, backgrounds/solutions with
large spatial dependence. The stability problems that we study in detail in this
paper concern perturbations of explicit, spatially homogeneous, singularity-forming
solutions. However, one could try to use our methods to study perturbations of any
of the singular solutions constructed in the works that we mentioned in Sect. 1.8,
including solutions with spatial dependence. From an analytical point of view,
when dealing with background solutions that exhibit spatial dependence, one en-
counters additional technical difficulties in the derivation of various estimates. In
particular, when estimating the perturbed solution’s higher spatial derivatives, one
must control terms in which derivatives hit the background solution and thus do
not have to be small (whereas in the present article, the background solution’s spa-
tial derivatives vanish). Nevertheless, our method is still potentially applicable. To
simplify the approach, one could consider data with large spatial derivatives given
on a hypersurface close to the expected singularity, that is, on ΣtData

, with tData

32We are grateful to the authors of [4] for pointing this out to us.
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STABLE BIG BANG FORMATION 855

larger than but close to 0 (where tData has to be chosen to be small in a manner
that depends on the largeness of the data); the point is that the smallness of the
amount of time for which one needs to control the solution can compensate for the
largeness of the data. Moreover, by applying this philosophy to the setup of the
present paper, one could produce open sets of singularity-forming solutions that
have “substantial x-dependence.”

• Black hole interior. There are numerous examples of black hole spacetimes
containing a spacelike singularity, such as the classical Oppenheimer–Snyder model
of gravitational collapse or the solutions detected by Christodoulou in his aforemen-
tioned studies [19,20] of the spherically symmetric Einstein-scalar field model. For
the latter solutions, it would be interesting to see whether Kasner-like blowup holds
for perturbations of solutions (in some class other than spherical symmetry, which
was handled in [19, 20]). Compared to our work here, the difference in topology
might pose additional analytical difficulties. Moreover, one would have to grapple
with the question of whether the initial data given only in the interior of a black
hole could arise as induced data of solutions to the global Cauchy problem.

1.11. Paper outline. In Sect. 2, we introduce our analytic framework, including
the reduced solution variables and a formulation of the Einstein-scalar field equa-
tions relative to CMC-transported spatial coordinates with a Fermi–Walker trans-
ported orthonormal frame. In Sect. 3, we define various norms and introduce our
bootstrap assumptions for perturbations of Kasner solutions. Our bootstrap as-
sumptions involve t-weighted L∞ norms at the low derivative levels and t-weighted
Sobolev norms at the high derivative levels, where the t-weights are much smaller at
the high derivative levels (which corresponds to our allowing for very singular high
order derivatives as t ↓ 0). In Sect. 4, we provide standard Sobolev and interpola-
tion estimates that we will use to control various error terms when we derive our
main estimates. In Sect. 5, we derive the core estimates at both the low and high
derivative levels. These estimates in particular yield a strict improvement of the
bootstrap assumptions. Finally, in Sect. 6, we use the estimates of Sect. 5 to prove
our main theorems exhibiting the stability of the Kasner Big Bang singularity.

1.12. Notation and conventions. In the rest of the paper, we use the following
notation and conventions.

• {xi}i=1,··· ,D denote standard local spatial coordinates on TD that are trans-

ported in the sense described in Sect. 2.1.1, and ∂i :=
∂

∂xi denote the cor-
responding spatial partial derivative vectorfields. The frame {∂i}i=1,··· ,D
extends to a smooth global holonomic frame on T

D, and by abuse of no-
tation, we denote the globally defined vectorfields by the symbols ∂i, even
though the coordinate functions are not globally defined.

• Lowercase Latin “spatial” indices such as a, b, i, j range over {1, · · · ,D} and
correspond to the transported spatial coordinates x1, · · · , xD (see Sect. 2).
For example, gij := g(∂i, ∂j). Lowercase Greek “spacetime” indices such
as α, β, μ, ν range over {0, 1, · · · ,D} and usually correspond to the space-
time coordinates t, x1, · · · , xD, where the “0” index corresponds to t. For
example, g0i = gti := g(∂t, ∂i). In a few instances, {eα}α=0,··· ,D denotes
an orthonormal spacetime frame, i.e., g(eα, eβ) = mαβ , where mαβ :=
diag(−1, 1, · · · , 1). Uppercase Latin “spatial frame” indices such as A,B, I,
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J range over {1, · · · ,D} and, with one exception, correspond to the or-
thonormal spatial frame {eI}I=1,··· ,D or co-frame {ωI}I=1,··· ,D (see Sect. 2).
For example, kIJ := k(eI , eJ) = kcde

c
Ie

d
J . The exception is that for back-

ground Kasner tensors, uppercase Latin indices denote their components
with respect to the background Kasner orthonormal frame {ẽI}I=1,··· ,D;
see Remark 2.6 for further discussion. We used primed indices, such as a′,
in the same way we use their non-primed counterparts.

• We use Einstein summation for repeated indices, including frame indices.
We stress that no metric is directly involved in contractions involving the

frame indices. For example, kICγCJB stands for
∑D

C=1 kICγCJB , where D
is the number of spatial dimensions.

• If X is a vectorfield and f is a scalar function, then Xf := Xα∂αf denotes
the derivative of f in the direction X.

• {dxi}i=1,··· ,D denotes the globally defined basis-dual co-frame of
{∂i}i=1,··· ,D, i.e., dxi(∂j) := δij , with δij the Kronecker delta.

• No summation of underlined terms. In a handful of key terms that explicitly
involve the Kasner exponents, we will not use Einstein summation conven-
tion for some of the indices. More precisely, in a given product, whenever
there is no summation over a particular index, we indicate this by under-
lining all instances of that index in the product. For example, there is no

summation over the index I in the following expression:
q̃I
t γIJB .

• If X and Y are vectorfields, then XYf := Xα∂α(Y
β∂βf). Similarly, if T

is a tensorfield andD denotes the Levi-Civita connection of g, thenDXT :=
XαDαT and DXDYT := XαDα(Y

βDβT). In addition, D2
XYT :=

XαYβDαDβT. Note that in the latter expression, contractions are taken
after covariant differentiation and thus generally, D2

XYT �= DXDYT.
• If X and Y are vectorfields, then g(X,Y) := gαβX

αYβ. We use similar
notation for contractions of higher-order tensorfields against vectorfields.
For example,

Riem(W,X,Y,Z) := RiemαβγδW
αXβYγZδ.

• ι denotes a spatial multi-index. That is, for some positive integer m, ι =
(a1, · · · , am), where ai ∈ {1, · · · ,D} for 1 ≤ i ≤ m and |ι| := m denotes the
length of the index. ∂ι := ∂a1

· · · ∂am
denotes the corresponding mth-order

differential operator involving repeated differentiation with respect to the
transported spatial coordinate partial derivative vectorfields. ι1 ∪ ι2 = ι
means that for some r with 1 ≤ r ≤ m, we have ι1 = (ai1 , · · · , air) and
ι2 = (air+1

, · · · , aim), where (i1, · · · , im) is a permutation of (1, · · · ,m)
such that i1 < i2 < · · · < ir and ir+1 < ir+2 < · · · < im. ι1 ∪ ι2 ∪ ι3 = ι,
ι1 ∪ ι2 ∪ ι3 ∪ ι4 = ι, etc. have analogous meanings.

Note that our multi-index convention in D spatial dimensions differs
from the more standard one, in which multi-indices α satisfy α ∈ ND.
For instance, in the more standard notation, in 3 spatial dimensions, α :=
(1, 1, 0) corresponds to ∂α = ∂1∂2, whereas with our multi-index notation
in 3 spatial dimensions, ι = (1, 1) corresponds to ∂ι = ∂1∂1.

Parameters.

• A∗ ≥ 1 denotes a “time-weight exponent parameter” that is featured in the
high order solution norms from Definition 3.1. To close our estimates, we
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STABLE BIG BANG FORMATION 857

will choose A∗ to be large enough to overwhelm various universal constants
C∗ (see below). This corresponds to our use of high order energies featuring
large powers of t, which leads to weak high order energies near t = 0.

• 0 < q < 1 is a constant, fixed throughout the proof, that bounds the crucial
quantity

max
I,J,B=1,··· ,D

I<J

{|q̃B |, q̃I + q̃J − q̃B}.

• σ > 0 is a small constant, fixed throughout the proof, that we use to simplify
the proofs of various estimates that “have room in them.”

• q and σ are constrained by (3.6).
• N0 ≥ 1 roughly corresponds to the number of derivatives of the solution
that we control in L∞ (the precise derivative count depends on the solution
variable – see Definition 3.1).

• N denotes the maximum number of times that we commute the equations
with spatial derivatives (e.g., k ∈ HN (Σt) and n ∈ HN+1(Σt)– see Defini-
tion 3.1). To close our estimates, we will choose N to be sufficiently large
in a (non-explicit) manner that depends on N0, A∗, D, q, and σ.

• δ > 0 is a small (N,D)-dependent parameter that is allowed to vary from
line to line and that is generated by the estimates of Lemma 4.1. We use the
convention that a sum of two δ’s is another δ. The only important feature of
δ that we exploit throughout the paper is the following: at fixed D, we have
limN→∞ δ = 0. In particular, if A∗ is also fixed, then limN→∞ A∗δ = 0.

• ε is a small “bootstrap parameter” that, in our bootstrap argument, bounds
the size of the solution norms; see (3.9). The smallness of ε needed to close
the estimates is allowed to depend on the parameters N , N0, A∗, D, q, and
σ.

Constants.

• C denotes a positive constant that is free to vary from line to line. C can
depend on N , N0, A∗, D, q, and σ, but it can be chosen to be independent
of all ε > 0 that are sufficiently small in the manner described just above.

• C∗ denotes a positive constant that is free to vary from line to line and that
can depend on D. Like C, C∗ can be chosen to be independent of all ε > 0
that are sufficiently small in the manner described just above. However,
unlike C, C∗ can be chosen to be independent of N , N0, and A∗. C∗ can
be chosen to be independent of q, and σ, but that is less important in the
sense that we view q and σ to be fixed throughout the article. For example,
1+CN !ε ≤ C∗ while N ! = C and N !/σ = C, where C and C∗ are as above.

• We write v � w to indicate that v ≤ Cw, with C as above.
• We write v = O(w) to indicate that |v| ≤ C|w|, with C as above.

2. Analytic setup and the formulation of the Einstein-scalar field

equations

In this section, we introduce the framework that we will use to study perturba-
tions of Kasner solutions. In particular, we provide the formulation of the Einstein-
scalar field equations that we will use to derive estimates.
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2.1. The reduced equations relative to a CMC-transported orthonormal
frame. Our main goal in this section is to prove Proposition 2.2, which provides
the formulation of the Einstein-scalar equations that forms the starting point for
our analysis. We start by providing some basic constructions.

2.1.1. The form of the spacetime metric, the lapse, and the transported spatial
coordinates. Relative to CMC-transported spatial coordinates on a slab (t, x) ∈
(T, 1]× TD, the spacetime metric g takes the form:

g = −n2dt⊗ dt+ gabdx
a ⊗ dxb,(2.1)

where n is the lapse and g is the first fundamental form of the constant-time slice
Σt := {(s, x) ∈ (T, 1] × TD | s = t}, i.e., g is the Riemannian metric induced by
g on Σt. Here and throughout, t is the time function. In Sect. 2.1.3, we state our
CMC normalization condition for t. The spatial coordinates {xi}i=1,··· ,D are said
to be “transported” because n−1∂tx

i = 0, where n−1∂t is the future-directed unit
normal to Σt.

2.1.2. The orthonormal frame. Our proofs fundamentally rely on expressing Ein-
stein’s equations relative to an orthonormal frame:

e0 = n−1∂t, eI = ecI∂c, I = 1, · · · ,D,(2.2)

where e0 is the future-directed unit normal to Σt (in particular, g(e0, e0) = −1 and
g(e0, X) = 0 for all Σt-tangent vectorfields X), the “spatial” frame {eI}I=1,··· ,D is
Σt-tangent and normalized by:

g(eI , eJ ) = δIJ , δIJ = the Kronecker delta,(2.3)

and the spatially-globally defined (see Sect. 1.12) scalar functions {eiI}i=1,··· ,D in
(2.2) are the components of eI relative to the transported spatial coordinates. Just
below, we will describe how we construct the spatial frame. We let {ωI}I=1,··· ,D
denote the corresponding Σt-tangent one-forms that are a co-frame for the spatial
frame {eI}I=1,··· ,D, defined by:

ωI(eJ) = δIJ ,(2.4)

where δIJ is the Kronecker delta. Note that ωI = ωI
adx

a, where the spatially-
globally defined scalar functions {ωI

i }i=1,··· ,D are the components of ωI relative to
the transported spatial coordinates. Thus, we have:

ωI
ae

a
J = δIJ , ωA

j e
i
A = δij , I, J, i, j = 1, · · · ,D.(2.5)

Moreover, since {eI}I=1,··· ,D is orthonormal, ωI is in fact the g-dual of eI , that is:

ωI
i = giae

a
I , I, i = 1, · · · ,D.(2.6)

We also note that from (2.5) and the relation eI = ecI∂c, it follows that:

∂i = ωC
i eC , i = 1, · · · ,D.(2.7)

We now describe our construction of a spatial frame. There is freedom in the
construction; see Remark 1.8. In Sect. 5.11, we use the Gram–Schmidt process to
construct an initial orthonormal spatial frame on Σ1 that is suitable for proving
our main results. Given this frame on Σ1, we propagate it to slabs of the form
(T, 1]× TD by solving the propagation equations:

De0eI = n−1(eIn)e0,(2.8)
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where D is the Levi-Civita connection of g.
From equation (2.8), it follows that the scalar functions {eiI}I,i=1,··· ,D satisfy a

system of transport equations; see (2.23a). It is straightforward to check (for exam-
ple, with the help of equation (2.14)) that if g is C1 on (T, 1]× TD and the initial
spatial frame on Σ1 is orthonormal and C1, then the frame {eI}I=1,··· ,D obtained
by propagating the initial frame via the transport equations (2.8) is orthonormal
and tangent to Σt for t ∈ (T, 1]. In particular, we have:

g(eα, eβ) = mαβ , α, β = 0, 1, · · · ,D,(2.9)

where mαβ := diag(−1, 1, · · · , 1), and:
eI t = 0, I = 1, · · · ,D.(2.10)

Moreover, relative to the orthonormal frame {eα}α=0,1,··· ,D, with mμν :=
diag(−1, 1, · · · , 1) and δIJ the Kronecker delta, we have:

g−1 = mγδeγ ⊗ eδ, g−1 = δCDeC ⊗ eD.(2.11)

In addition, differentiating (2.9), we find that:

g(Deαeβ , eγ) = −g(eβ ,Deαeγ),(2.12)

which in particular implies that:

g(Deαeβ , eγ) = 0, if β = γ.(2.13)

We also note the following identity, which is straightforward to verify using the
form (2.1) of the metric:

De0e0 = n−1(eCn)eC .(2.14)

Remark 2.1 (Fermi–Walker transport). When the frame initial data are Σ1-tangent,
equation (2.8) is equivalent to the well-known Fermi–Walker transport equation
for eI along the integral curves of e0 (which, up to re-parametrization, are the
same as the integral curves of ∂t). We remark that the “standard” Fermi–Walker
transport equation is De0eI = n−1(eIn)e0 − g(eI , e0)n

−1(eCn)eC , and that we
have omitted the term −g(eI , e0)n

−1(eCn)eC from RHS (2.8). This term vanishes
in the present context because our frame initial data will verify g(eI , e0)|Σ1

= 0 and
g(eI , eJ )|Σ1

= δIJ , and these orthogonality conditions are propagated by solutions
to equation (2.8).

2.1.3. The second fundamental form, the CMC condition, and the connection co-
efficients. Relative to the transported spatial coordinates {xi}i=1,··· ,D on Σt, the
second fundamental form k of Σt is the Σt-tangent tensorfield with components
kij := −g(D∂i

e0, ∂j). Hence, the components of the second fundamental form with
respect to the frame {eI}I=1,··· ,D are:

kIJ = −g(DeIe0, eJ ) = kJI ,(2.15)

where the symmetry property kIJ = kJI is a well-known consequence of the torsion-
free property of D and the fact that the commutators [eI , eJ ] are Σt-tangent (and
thus orthogonal to e0). Note that (2.9), (2.13), and (2.15) imply that:

DeI e0 = −kICeC .(2.16)

We now normalize the time function t according to the CMC condition:

trk := kaa := (g−1)abkab = kAA = −1

t
.(2.17)
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860 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

It is well-known that (2.17) leads to an elliptic equation for the lapse n (see (2.25)),
which means in particular that our gauge involves an infinite speed of propagation.

In our analysis, we also study the spatial connection coefficients of the frame
{eI}I=1,··· ,D, which are defined by:

γIJB := g(DeIeJ , eB) = g(∇eIeJ , eB).(2.18)

In (2.18) and throughout, ∇ denotes the Levi-Civita connection of g. Note that
(2.9), (2.12), (2.15), and (2.18) imply that:

DeI eJ = −kIJe0 + γIJCeC , ∇eI eJ = γIJCeC .(2.19)

Finally, by differentiating the relation g(eJ , eB) = δJB with DeI , we deduce the
following antisymmetry property:

γIJB = −γIBJ .(2.20)

2.1.4. Curvature tensors. Our sign conventions for the Riemann curvature Riem
of g, the Ricci curvature Ric of g, and the scalar curvature R of g are as follows
relative to the orthonormal frame {eα}α=0,1,··· ,D constructed in Sect. 2.1.2, where
mαβ is as in (2.11):

g
(
D2

eαeβ
eν −D2

eβeα
eν , eμ

)
:= Riem(eα, eβ , eμ, eν),(2.21a)

Ric(eα, eβ) := mμνRiem(eα, eμ, eβ , eν),(2.21b)

R := mμνRic(eμ, eν).(2.21c)

Our sign conventions for the curvature of tensors of g, namely its Riemann curvature
Riem, Ricci curvature Ric, and scalar curvature R, are analogous to the ones in
(2.21a)–(2.21c).

2.1.5. The reduced equations. In Proposition 2.2, we provide the PDEs that we use
to study perturbations of generalized Kasner solutions.

Proposition 2.2 (The reduced Einstein-scalar field equations relative to CM-
C-transported spatial coordinates and a Fermi-Walker transported orthonormal
frame). Let T ∈ (0, 1), and let (g, ψ) respectively be a Lorentzian metric and a
scalar function on the manifold (T, 1] × T

D. Assume that (T, 1] × T
D is equipped

with a CMC time function t and transported spatial coordinates {xi}i=1,··· ,D such
that the level sets Σt = {t} × T

D are CMC hypersurfaces normalized by (2.17), as
is described in Sects. 2.1.1–2.1.3 (in particular, the {xi}i=1,··· ,D are coordinates on
each Σt). Let n be the lapse, let e0 = n−1∂t be the future-directed normal to Σt, let
{eI}I=1,··· ,D be the Σt-tangent orthonormal spatial frame described in Sects. 2.1.1–
2.1.3, and let {ωI}I=1,··· ,D be the corresponding Σt-tangent orthonormal spatial
co-frame. Let {eiI}i=1,··· ,D denote the components of eI with respect to the trans-
ported spatial coordinates, and similarly for {ωI

i }i=1,··· ,D. Let {kIJ}I,J=1,··· ,D de-
note the components of the second fundamental form of Σt with respect to the
orthonormal spatial frame, and let {γIJB}I,J=1,··· ,B denote the connection coef-
ficients of {eI}I=1,··· ,D, as described in Sect. 2.1.3. Then the scalar functions
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kIJ ,γIJB, e
i
I ,ω

I
i , n, ψ, I, J, B, i = 1, · · · ,D, satisfy all33 of the following34 “re-

duced” equations on (T, 1]× TD if and only if (g, ψ) are solutions to the Einstein-
scalar field equations (1.1a)–(1.1b), where the spacetime metric can be expressed in
terms of the reduced variables via the formulas g = −n2dt⊗ dt+ gabdx

a ⊗ dxb and
gij = g(∂i, ∂j) = ωA

i ω
A
j :

Evolution equations for the second fundamental form and connection
coefficient components

e0kIJ = −n−1eIeJn+ eCγIJC − eIγCJC − 1

t
kIJ

+ n−1γIJCeCn− γDICγCJD − γDDCγIJC − (eIψ)eJψ,
(2.22a)

e0γIJB = eBkIJ − eJkBI

− kICγBJC − kCJγBIC + kICγJBC + kBCγJIC + kICγCJB

+ n−1(eBn)kIJ − n−1(eJn)kBI .

(2.22b)

Evolution equations for the frame components and co-frame
components

e0e
i
I = kICe

i
C ,(2.23a)

e0ω
I
i = −kICω

C
i .(2.23b)

Wave equation for the scalar field

e0e0ψ = eCeCψ − 1

t
e0ψ + n−1(eCn)eCψ − γCCDeDψ.(2.24)

Elliptic lapse equation

eCeC(n− 1)− t−2(n− 1) = γCCDeD(n− 1) + 2neCγDDC

− n {γCDEγEDC + γCCDγEED + (eCψ)eCψ} .

(2.25)

Hamiltonian and momentum constraint equations

2eCγDDC − γCDEγEDC − γCCDγEED − kCDkCD + t−2 = (e0ψ)
2 + (eCψ)eCψ,

(2.26a)

eCkCI = γCCDkID + γCIDkCD − (e0ψ)eIψ.(2.26b)

Finally, we also have the following formula:

γIJB =
1

2

{
ωB

c (eIe
c
J − eJe

c
I)−ωI

c(eJe
c
B − eBe

c
J ) +ωJ

c (eBe
c
I − eIe

c
B)
}
.(2.27)

Proof. We will prove in detail that solutions to the Einstein-scalar field equations
(1.1a)–(1.1b) yield solutions to the reduced equations stated in Proposition 2.2.
The converse can be proved by similar arguments, and we will omit the details.

33We clarify that some of these equations, such as (2.23a)–(2.23b) and (2.27), are independent
of the Einstein–scalar field equations and follow from the constructions given in Sects. 2.1.1–2.1.3.

34Recall that e0kIJ := n−1∂t(kIJ ) = n−1∂t(kcde
c
Ie

d
J ), eCγIJC := ecC∂c(γIJC), etc.
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862 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Proof of (2.22a). We first use (2.8), (2.9), (2.14), and (2.19) to compute the fol-
lowing identity:

Riem(e0, eI , e0, eJ ) = g
(
(D2

e0eI −D2
eIe0)eJ , e0

)
= e0kIJ − kICkCJ + n−1∇2

eIeJn.

(2.28)

We then use Gauss’ equation, namely:

Riem(eC , eI , eD, eJ ) = Riem(eC , eI , eD, eJ) + kCDkIJ − kCJkID,(2.29)

Einstein’s field equations (1.1a), and (2.21b) to rewrite LHS (2.28) as follows:

Riem(e0, eI , e0, eJ ) = −Ric(eI , eJ ) +Riem(eC , eI , eC , eJ )

= −(eIψ)eJψ +Ric(eI , eJ) + trkkIJ − kICkJC .
(2.30)

Next, we compute that the frame components of the Ricci tensor of g can be
expressed as follows:

Ric(eI , eJ)

= Riem(eC , eI , eC , eJ ) = g
(
(∇2

eCeI −∇2
eIeC )eJ , eC

)
= eCγIJC − eIγCJC − γCIDγDJC − γCCDγIJD + γICDγDJC + γICDγDCJ︸ ︷︷ ︸

0

,

(2.31)

where we have noticed that the last two products γICDγDJC + γICDγDCJ can-
cel, due to the antisymmetry property (2.20). Next, we use (2.18) to deduce the
following identity for the factor ∇2

eIeJn on RHS (2.28):

∇2
eIeJn = eIeJn− γIJCeCn.(2.32)

The evolution equation (2.22a) for kIJ now follows from combining (2.28)–(2.32)
and using the CMC condition (2.17).

Proof of (2.22b). First, we take the e0 derivative of (2.18) and use (2.8), (2.9),
(2.14), (2.16), (2.19), the symmetries of the curvature tensor, and the Codazzi
equations, namely:

(∇k)IJB − (∇k)JIB = Riem(eI , eJ , e0, eB)(2.33)

(where throughout this proof, ∇k denotes the type
(
0
3

)
Σt-tangent tensorfield with

coordinate components (∇k)abc = ∇akbc), to compute:

e0γIJB

= g(D2
e0eIeJ , eB) + g((De0e

α
I )DαeJ , eB) + g(DeIeJ ,De0eB)

= Riem(e0, eI , eB, eJ )+g(D2
eIe0eJ , eB)+g((De0e

α
I )DαeJ , eB)+ g(DeIeJ ,De0eB)

= Riem(e0, eI , eB, eJ ) + g(DeI (De0eJ ), eB)

+ g((De0e
α
I )DαeJ , eB)− g((DeIe

α
0 )DαeJ , eB) + g(DeIeJ ,De0eB)

= Riem(eB, eJ , e0, eI) + kICγCJB − n−1(eJn)kIB + n−1(eBn)kIJ

= (∇k)BJI − (∇k)JBI + kICγCJB − n−1(eJn)kIB + n−1(eBn)kIJ

= eBkIJ − eJkIB − kCJγBIC − kICγBJC + kCBγJIC + kICγJBC

+ kICγCJB − n−1(eJn)kIB + n−1(eBn)kIJ ,

(2.34)

which yields the desired evolution equation.
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STABLE BIG BANG FORMATION 863

Proofs of (2.23a)–(2.23b). First, we use (2.2), (2.8), (2.16), and the torsion-free
property of the connection D to compute the following identity:

(∂te
c
I)∂c = [∂t, e

c
I∂c] = [∂t, eI ] = D∂t

eI −DeI (ne0) = nkICeC = nkICe
c
C∂c.

(2.35)

Considering the i component of (2.35) relative to the transported spatial coordi-
nates and again using (2.2), we arrive at the desired transport equation (2.23a).
Using the relations (2.5), we also deduce (2.23b) as a consequence of (2.23a).

Proof of (2.25). We simply take the IJ-trace of equation (2.22a) and use the CMC
condition (2.17) and the antisymmetry property (2.20).

Proof of (2.26a). We first note that for solutions to the Einstein-scalar field equa-
tions (1.1a)–(1.1b), the Hamiltonian constraint (1.2a) holds along all constant-time
hypersurfaces, that is: R − |k|2 + (trk)2 = (e0ψ)

2 + |∇ψ|2. We refer to the discus-
sion surrounding [64, Equation (10.2.30)] for a proof of this standard fact in the
context of the Einstein-vacuum equations, and we note that the arguments given
there can be modified in a straightforward fashion to apply to the Einstein-scalar
field equations. We also note that the sign convention for k used in [64] is the
opposite of the one we use here. From this equation, (2.11), (2.31), the identity
R = Ric(eC , eC), the antisymmetry property (2.20), and the CMC condition (2.17),
we arrive at (2.26a).

Proof of (2.26b). We first note that for solutions to the Einstein-scalar field equa-
tions (1.1a)–(1.1b), the momentum constraint (1.2b) holds along all constant-time
hypersurfaces, that is: (∇k)CIC − (∇k)ICC = −(e0ψ)eIψ. We refer to the discus-
sion surrounding [64, Equation (10.2.28)] for a proof of this standard fact in the
context of the Einstein-vacuum equations, and we note that the arguments given
there can be modified in a straightforward fashion to apply to the Einstein-scalar
field equations. We again note that the sign convention for k used in [64] is the op-
posite of the one we use here. From this identity and the CMC condition (2.17), we
find that (∇k)CIC = −(e0ψ)eIψ. Next, using (2.11), (2.18), and the Leibniz rule for
covariant differentiation, we find that (∇k)CIC = eCkIC − γCIDkDC − γCCDkID.
Combining the above equations, we arrive at (2.26b).

Proof of (2.27). This identity follows from the Koszul formula:

γIJB =
1

2
{g([eI , eJ ], eB)− g([eJ , eB ], eI) + g([eB, eI ], eJ )}(2.36)

and the identity [eI , eJ ] = ωC
l (eIe

l
J − eJe

l
I)eC .

Proof of (2.24). We first note that (1.1b) and (2.11) imply that −e0e0ψ+eCeCψ =
−(De0e0)

αDαψ+(DeCeC)
αDαψ. From this equation, (2.14), and (2.19), we deduce

that e0e0ψ = eCeCψ + kCCe0ψ + n−1(eCn)eCψ − γCCDeDψ. From this equation
and the CMC condition kCC = kaa = − 1

t , we arrive at (2.24). �

2.2. Polarized U(1)-symmetry. As we discussed in Sect. 1.5.2, polarized U(1)-
symmetric initial data on T3 for the Einstein-vacuum equations are such that all

coordinate components of g̊ and k̊ are independent of x3 and such that g̊13 = g̊23 =

k̊13 = k̊23 ≡ 0; see also the discussion in [37, Section 2].
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864 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

2.2.1. Propagation of symmetry. In this section, we show that for polarized U(1)-
symmetric initial data for the Einstein-vacuum equations, the corresponding so-
lution to the equations of Proposition 2.2 is such that all solution variables are
independent of x3 and such that g13 = g23 = k13 = k23 ≡ 0. Note that this implies
that (g−1)13 = (g−1)23 = k13 = k31 = k23 = k32 = k13 = k23 ≡ 0. In particular, rel-
ative to CMC-transported spatial coordinates, the corresponding spacetime metric
takes the form:

g = −n2dt⊗ dt+
∑

c,d=1,2

gcddx
c ⊗ dxd + g33dx

3 ⊗ dx3 n = [−(g−1)αβ∂αt∂βt]
− 1

2 .

(2.37)

We provide the main propagation-of-symmetry result in the next lemma, namely
Lemma 2.3. The result is standard, so we only provide the main steps in the proof.
We refer readers to [15, Chapter XVI.3] for an alternate approach to propagating the
polarized U(1)-symmetry via a wave map-type reduction of Einstein’s equations.
Although the approach of [15, Chapter XVI.3] is superior from a geometric point
of view, Lemma 2.3 is better adapted to the setup of the present paper because
it directly refers to the CMC-transported spatial coordinates, thus allowing us to
avoid working with multiple gauges.

Lemma 2.3 (Propagation of polarized U(1)-symmetry). Let T ∈ (0, 1), and let
g be a solution to the Einstein-vacuum equations (i.e., (1.1a) with ψ ≡ 0) on the
manifold (T, 1]×T

3. Assume that (T, 1]×T
3 is equipped with a CMC time function t

and transported spatial coordinates {xi}i=1,2,3 such that the level sets Σt = {t}×T3

are CMC hypersurfaces normalized by (2.17), as is described in Sects. 2.1.1–2.1.3 (in
particular, the {xi}i=1,2,3 are coordinates on each Σt). Assume that relative to the

coordinates (t, x1, x2, x3), the components of g belong to C2
(
(T, 1]× T

3
)
. Let (̊g, k̊)

be the corresponding data on Σ1, i.e., the first and second fundamental forms of Σ1.
Assume that the data are polarized and U(1)-symmetric. More precisely, assume

that all coordinate components of g̊ and k̊ are independent of x3 and that g̊13 = g̊23 =

k̊13 = k̊23 ≡ 0. Then relative to the CMC-transported spatial coordinates, g has the
polarized form (2.37), and the lapse n, the coordinate components {gij}i,j=1,2,3, and
the coordinate components {kij}i,j=1,2,3 of the second fundamental form of Σt are
all independent of x3.

Proof. We divide the proof into the following two steps:

Step 1 (Propagation of U(1)-symmetry). In Sect. 5, we derive a priori estimates
for the system of equations in Proposition 2.2 by commuting the equations with
sufficiently many spatial derivatives. Here, to propagate the U(1)-symmetry, we
consider the case in which the equations are commuted with only a single spatial
derivative ∂3. More precisely, we consider equations (5.7), (5.27a), (5.27b), (5.31a),
(5.31b), and (5.31c) with ∂ι := ∂3 and P := 0. It is straightforward to see that these
commuted equations form a linear PDE system in the “unknowns” U3 := {∂3n}∪V3,
V3 := {∂3eiI , ∂3ωI

i , ∂3kIJ , ∂3γIJB}I,J,B,i=1,2,3 such that, because we are assuming
the existence of a classical C2 solution, all coefficients in front of the principal PDE
terms are C1, all inhomogeneous terms are continuous, and all inhomogeneous terms
are precisely linear in U3. Hence, for t ∈ (T, 1], we can use arguments similar to
the ones we use in Sect. 5 to derive the elliptic estimate ‖∂3n‖L2(Σt) � ‖V3‖L2(Σt)
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STABLE BIG BANG FORMATION 865

and the following energy estimate:

‖V3‖L2(Σt) � ‖V3‖L2(Σ1) +

∫ 1

s=t

‖V3‖L2(Σs) ds.(2.38)

We clarify that on RHS (2.38), the implicit constants depend on the C2 norm of the
classical solution and thus are allowed to grow as t ↓ T . However, that is not relevant
for the proof of the lemma. Next, we note that by assumption, the initial data (on
Σ1) of V3 are trivial, i.e., ‖V3‖L2(Σ1) = 0. Hence, applying Grönwall’s lemma to
(2.38), we conclude that ‖V3‖L2(Σt) = 0 ( and thus ‖∂3n‖L2(Σt) = 0 = ‖U3‖L2(Σt)

too) for t ∈ (T, 1]. In total, we have shown that the U(1)-symmetry of the data
is propagated to the entire region (t, x) ∈ (T, 1] × T3 of classical existence, and in
particular, ∂3 is a g-Killing vectorfield.

Step 2 (Using the U(1)-symmetry to propagate the polarization). We now ex-
plain how to propagate the vanishing of g13 = g(∂1, ∂3), g23 = g(∂2, ∂3), k13 =
−g(∂3,D∂1

e0), and k23 = −g(∂3,D∂2
e0) from the initial hypersurface Σ1 to the

entire region of classical existence. To this end, we first derive PDEs satisfied by
these variables relative to the transported spatial coordinates. We will exploit the
fact, shown in Step 1, that ∂3 is g-Killing. Specifically, the relevant PDEs for this
step are the following standard “ADM equations” and momentum constraint equa-
tion (see, for example, [59, Proposition 3.1]), where in the remainder of the proof,
i, j ∈ {1, 2}, and Γ a

b c :=
1
2 (g

−1)ad(∂bgdc+∂cgbd−∂dgbc) are the Christoffel symbols
of g relative to the transported spatial coordinates:

∂tgi3 = −2nki3,(2.39)

∂t∂jgi3 = −2n∂jki3 − 2(∂jn)ki3,(2.40)

∂tki3 = −∇2
∂i∂3

n+ nRic(∂i, ∂3) + ntrkki3 − 2n(g−1)abkiak3b,(2.41)

(g−1)ab∇akb3 = (g−1)ab∂akb3 − (g−1)abΓ c
a bkc3 − (g−1)abΓ c

a 3kbc = 0.(2.42)

We clarify that (2.40) follows from differentiating (2.39) with ∂j . Next, using
straightforward computations and exploiting that ∂3 is g-Killing, we expand the
Hessian of n and the spatial Ricci components as follows:

−∇2
∂i∂3

n(2.43)

= Γ 1
i 3∂1n+ Γ 2

i 3∂2n =
1

2
(g−1)1a(∂iga3 − ∂agi3)∂1n

+
1

2
(g−1)2a(∂iga3 − ∂agi3)∂2n

=
1

2
(g−1)11(∂ig13 − ∂1gi3)∂1n+

1

2
(g−1)12(∂ig23 − ∂2gi3)∂1n

+
1

2
(g−1)13(∂ig33)∂1n

+
1

2
(g−1)21(∂ig13 − ∂1gi3)∂2n+

1

2
(g−1)22(∂ig23 − ∂2gi3)∂2n

+
1

2
(g−1)23(∂ig33)∂2n,
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Ric(∂i, ∂3) = Ric(∂3, ∂i) = ∂aΓ
a
3 i − ∂3Γ

a
a i + Γ b

i 3Γ
a
b a − Γ b

i aΓ
a
3 b

(2.44)

=
1

2
∂a

[
(g−1)ab(∂ig3b − ∂bgi3)

]
+

1

4
(g−1)bd(g−1)ac(∂ig3c − ∂cgi3)∂bgad

− 1

4
(g−1)bc(g−1)ad(∂igac + ∂agic − ∂cgia)(∂bg3d − ∂dg3b).

We now note that (2.39)–(2.42) can be viewed as a linear PDE system in the
“unknowns”

V := (g13, g23, ∂1g13, ∂1g23, ∂2g13, ∂2g23, k13, k23)

such that, because we are assuming the existence of a classical C2 solution, all
coefficients in front of the principal PDE terms are C1, all inhomogeneous terms
are continuous, and all inhomogeneous terms are linear in V . To see this, we note
that the components (g−1)13 and (g−1)23 of g−1 can be expressed in terms of g13
and g23 via the following linear algebraic identity, which follows easily from the
identity gac(g

−1)cb = δba:(
(g−1)13

(g−1)23

)
= −(g−1)33

(
g11 g12
g21 g22

)−1(
g13
g23

)
.(2.45)

Note that the positive definiteness of the 3×3 matrix (gab)a,b=1,2,3 implies the posi-
tive definiteness of 2×2 sub-block (gab)a,b=1,2, which in turn implies the invertibility
of the matrix on RHS (2.45). To finish the proof of the lemma, we will derive en-
ergy estimates showing, in particular, that ‖V‖L2(Σt) = 0 for t ∈ (T, 1]. To this
end, we first use (2.43)–(2.44) and the above observations to express (2.39)–(2.42)
in the following form, where L (V) schematically denotes terms that are linear35 in
V with continuous coefficients:

∂tgi3 = L (V),(2.46)

∂t∂jgi3 = −2n∂jki3 + L (V),(2.47)

∂tki3 = −1

2

∑
a,b=1,2

n(g−1)ab∂a∂bgi3+
1

2

∑
a,b=1,2

n(g−1)ab∂a∂igb3+L (V),(2.48)

∑
a,b=1,2

(g−1)ab∂akb3 = L (V).
(2.49)

We clarify that, for example, we have used (2.45) to soak the term 1
2n(g

−1)13∂1∂ig33
on RHS (2.41) (see the first term on RHS (2.44)) into the term L (V) on RHS (2.48)
and to soak the term (g−1)13∂1k33 from (2.42) into the term L (V) on RHS (2.49).
To derive energy estimates for solutions to (2.46)–(2.49), we will rely on the energy

35Here, we consider, e.g., terms of type V · V to be linear in V with continuous coefficients
because the first factor of V is assumed to be continuous.
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E(t) ≥ 0 defined by:

E
2(t) :=

∫
Σt

⎧⎨⎩ ∑
a,b,a′,b′=1,2

1

4
(g−1)bb

′
(g−1)aa

′
(∂bga3)∂b′ga′3+

∑
a,b=1,2

(g−1)abka3kb3

⎫⎬⎭ dx

+

∫
Σt

∑
a,b=1,2

(g−1)abga3gb3 dx.

(2.50)

Note that the positive definiteness of the 3 × 3 matrix ((g−1)ab)a,b=1,2,3 implies
the positive definiteness of 2× 2 sub-block ((g−1)ab)a,b=1,2. Hence, from definition
(2.50) and the definition of V , we find that:

E(t) ≈
∑
a=1,2

‖ga3‖L2(Σt) +
∑
i=1,2

∑
a=1,2

‖∂iga3‖L2(Σt) +
∑
a=1,2

‖ka3‖L2(Σt) ≈ ‖V‖L2(Σt).

(2.51)

Therefore, to show that V vanishes on the region of classical existence, it suffices
to show that E(t) = 0 for t ∈ (T, 1]. To this end, we will show that the following
estimate holds for t ∈ (T, 1]:

∣∣∣∣ ddtE2(t)

∣∣∣∣ � E
2(t),(2.52)

where on RHS (2.52) the implicit constants depend on the C2 norm of the classical
solution and thus are allowed to grow as t ↓ T . As in Step 1, this is not important
for the proof. Since our assumption of polarized initial data implies that E(1) = 0,
it follows from (2.52) and Grönwall’s lemma that E(t) = 0 for t ∈ (T, 1], as desired.
In total, we have shown that the polarization condition V = 0 is propagated from
the data to the entire region (t, x) ∈ (T, 1]× T

3 of classical existence. To complete
the proof of the lemma, it remains for us to show (2.52). To proceed, we differentiate
(2.50) with respect to time under the integral and use equations (2.46)–(2.48) to
substitute time derivatives with spatial derivatives, thereby arriving at the following
identity, where in the rest of the proof, we freely integrate by parts from line to
line, and “· · · ” denotes error integrals that can easily be bounded in magnitude by
� E2(t) by virtue of the Cauchy–Schwarz inequality:

d

dt
E
2(t) =

∫
Σt

∑
a,b,a′,b′=1,2

(g−1)bb
′
(g−1)aa

′
(−n∂bka3)(∂b′ga′3) dx

+

∫
Σt

∑
a,b,c,d=1,2

(g−1)abkb3
{
−n(g−1)cd∂c∂dga3+n(g−1)cd∂c∂agd3

}
dx+· · ·

(2.53)
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868 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

= (upon integrating by parts on the last line of RHS (2.53))∫
Σt

∑
a,b,c,d=1,2

[
∂c(n(g

−1)ab(g−1)cd)
]
kb3∂dga3 dx

−
∫
Σt

∑
a,b,c,d=1,2

[
∂a(n(g

−1)ab(g−1)cd)
]
kb3∂cgd3 dx

−
∫
Σt

∑
a,b,c,d=1,2

(
(g−1)ab∂akb3

)
n(g−1)cd∂cgd3 dx+ · · ·

(2.54)

= (upon using (2.49) for substitution in the last integral on RHS (2.54))∫
Σt

∑
a,b,c,d=1,2

[
∂c(n(g

−1)ab(g−1)cd)
]
kb3∂dga3 dx

−
∫
Σt

∑
a,b,c,d=1,2

[
∂a(n(g

−1)ab(g−1)cd)
]
kb3∂cgd3 dx+ · · · .

(2.55)

Since all terms on RHS (2.55) are bounded in magnitude by ≤ CE2(t), we have
therefore shown (2.52) and finished the proof of the lemma.

�
2.2.2. The normalized Killing vectorfield in polarized U(1)-symmetry in 1 + 3 di-
mensions. In Lemma 2.4, for polarized U(1)-symmetric Einstein-vacuum solutions
with D = 3 such that the transported coordinate vectorfield ∂3 is Killing, we con-
struct an orthonormal spatial frame e1, e2, e3 such that e3 is everywhere parallel
to ∂3 and such that L∂3

eI = 0 for I = 1, 2, 3. We use Lemma 2.4 in the proof of
Theorem 6.6, i.e., in the proof of our symmetric stable blowup-results.

Lemma 2.4 (Normalized Killing vectorfield). Suppose that on (T, 1] × T3, g is
a polarized and U(1)-symmetric C2 metric of the form (2.37), where ∂3 is the
hypersurface-orthogonal Killing vectorfield, and the components of g are indepen-
dent of x3. Define E3 := (g33)

− 1
2 ∂3, and note that g(E3, E3) = 1. Let e̊1, e̊2 be

an orthonormal pair on Σ1 that is orthogonal to ∂3 along Σ1 and that respects the
symmetry, that is, L∂3

e̊1 = L∂3
e̊2 = 0, where L denotes Lie differentiation. In

particular, {̊e1, e̊2, E3|Σ1
} is an orthonormal frame on Σ1; we refer to Sect. 5.11

for our construction of such a frame. For (t, x) ∈ (T, 1] × T3, let {eI}I=1,2,3 be
the orthonormal frame on Σt obtained by solving the Fermi–Walker transport equa-
tions (2.8) with initial data e1|Σ1

:= e̊1, e2|Σ1
:= e̊2, e3|Σ1

:= E3|Σ1
. Then on

(T, 1]×T3, we have E3 = e3, and for I = 1, 2, 3, we have L∂3
eI = 0. In particular,

{e1, e2, e3 = (g33)
− 1

2 ∂3} is an orthonormal frame on (T, 1]× T3.

Proof. We will show that De0E3 = 0 on (T, 1] × T
3. Then since ∂3 is Killing (in

particular, E3n = 0), this guarantees that E3 satisfies the propagation equation
(2.8). Moreover, since De0e3 = 0 and e3|Σ1

= E3|Σ1
, ODE uniqueness then implies

that E3 = e3 on (T, 1] × T3, as is desired. To show that De0E3 = 0, we start by
noting that since ∂3 is the vectorfield of symmetry and since g(e0, E3) = 0, the e0
component of De0E3 equals:

g(De0E3, e0) = −g(E3,De0e0)
(2.14)
= −n−1(g33)

− 1
2 ∂3n = 0.(2.56)
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STABLE BIG BANG FORMATION 869

Similarly, using that g(E3, E3)=1, we compute that g(De0E3, E3)=
1
2e0{g(E3, E3)}

= 0 and hence the ∂3 component of De0E3 vanishes. Thus, the desired relation
De0E3 = 0 follows from the vanishing of these two components as well as the
following identities:

g(De0E3, ∂i) = n−1(g33)
− 1

2
1

2
(∂tg3i + ∂3gti − ∂igt3) = 0, i = 1, 2.(2.57)

In obtaining these identities, we have used the identity g(D∂t
∂3, ∂i) = 1

2 (∂tg3i +
∂3gti−∂igt3), the fact that ∂3 is orthogonal to the elements of {∂t, ∂1, ∂2}, the fact
that ∂t is orthogonal to Σt, and the fact that the components of g are independent
of x3. To show that L∂3

eI = 0 on (T, 1]×T3, we commute equation (2.23a) (which
is equivalent to equation (2.8)) with L∂3

. We find that for metrics g satisfying the

assumptions of the lemma, the scalar function array �φ := {∂3eiI}I,i=1,2,3 satisfies a

system of transport equations of the schematic form ∂t�φ = F · �φ, where F is smooth

on (T, 1]× T3. Moreover, the assumptions of the lemma guarantee that �φ|Σ1
= 0.

Hence, from ODE uniqueness, we find that �φ ≡ 0 on (T, 1]×T
3. We have therefore

proved the lemma. �
Remark 2.5. Throughout the paper, in our analysis of polarized U(1)-symmetric
solutions with D = 3, we will always assume that e3 is the ∂3-parallel frame vec-
torfield constructed in Lemma 2.4.

2.3. The background Kasner variables. Our main results concern perturba-
tions of the explicit generalized Kasner solutions presented in Sect. 1.5. Straight-
forward computations imply that the reduced variables (see Sects. 2.1.1–2.1.3) of
the generalized Kasner solutions can be expressed as follows:

(2.58)
ñ := 1, ẽiI := t−q̃IδiI , ω̃I

i := tq̃Iδ
I
i , ẽI := t−q̃IδcI∂c, k̃IJ := − q̃I

t
δIJ ,

γ̃IJB = 0, ψ̃ = B̃ log t,

where δiI , δ
I
i , and δIJ are Kronecker deltas, and we recall that repeated underlined

indices are not summed.

Remark 2.6 (The components of “tilde-decorated” tensors). Note that as defined

in (2.58), k̃IJ = k̃(ẽI , ẽJ ) �= k̃(eI , eJ ). Put differently, k̃IJ denotes a component of

k̃ relative to the background Kasner-orthonormal frame {ẽI}I=1,··· ,D, rather than
the perturbed g-orthonormal frame {eI}I=1,··· ,D. Similar remarks apply to other
“tilde-decorated” tensors. That is, for tilde-decorated tensors, capital Latin indices
denote components relative to the background Kasner frame or co-frame, whereas
for non-tilde-decorated tensors, capital Latin indices denote components relative to
the g-orthonormal frame or co-frame.

3. Norms, key parameters, and bootstrap assumptions

The proofs of our main theorems rely on a continuity argument for solutions
to the reduced equations of Proposition 2.2. We make bootstrap assumptions for
the size of various norms of the perturbed solution on a time interval (TBoot, 1] for
some TBoot ∈ (0, 1). Then, in Proposition 5.1, we derive a priori estimates for the
perturbed solution that imply a strict improvement of the bootstrap assumptions
on (TBoot, 1]; this is the difficult part of the proof. Once we have established a
priori estimates, standard arguments yield that the perturbed solution exists on
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870 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

(0, 1] × TD and satisfies the a priori estimates on (0, 1]; see Proposition 5.28 for
the details. Based on the existence result and the a priori estimates, the proof of
curvature-blowup as t ↓ 0 and the derivation of other interesting properties of the
solution are relatively straightforward; see Sect. 6. Our bootstrap assumptions are
formulated in terms of various norms of the reduced variables along the Σt slices,
with well-chosen t-weights. Before stating the bootstrap assumptions, we will first
define the norms and the key parameters q,σ, A∗, N,N0 that lie at the core of our
framework.

3.1. Running assumption. In the rest of the paper, it is understood that we
are studying general perturbations of a background generalized Kasner solution
whose Kasner exponents verify the stability condition (1.8), or that we are studying
polarized U(1)-symmetric perturbations of an arbitrary vacuum Kasner solution in
1 + 3-dimensions; see Sect. 1.5. We will often refrain from explicitly stating this
assumption.

3.2. Some additional differentiation notation. If f is a scalar function, then
�ef := {eCf}C=1,··· ,D, where {eC}C=1,··· ,D denotes the orthonormal spatial frame.
Similarly, �ek := {eCkIJ}C,I,J=1,··· ,D, �eγ := {eCγIJB}B,C,I,J=1,··· ,D, �ee
:= {eCeiI}C,I,i=1,··· ,D, and �eω := {eCωI

i }C,I,i=1,··· ,D. Note that in the above
expressions, all quantities that are differentiated are scalar functions.

3.3. Sobolev norms of the reduced variables. For scalar functions v, we define
its norm ‖v‖L2(Σt) ≥ 0 by:

‖v‖2L2(Σt)
:=

∫
Σt

v2(t, x) dx,(3.1)

where dx := dx1 · · · dxD denotes the Euclidean volume form on Σt. We also define
standard HM (Σt), Ḣ

M (Σt), W
M,∞(Σt), and ẆM,∞(Σt) norms of scalar functions

v:

‖v‖2HM (Σt)
:=

∑
|ι|≤M

‖∂ιv‖2L2(Σt)
, ‖v‖2

ḢM (Σt)
:=

∑
|ι|=M

‖∂ιv‖2L2(Σt)
,(3.2)

‖v‖WM,∞(Σt) :=
∑

|ι|≤M

‖∂ιv‖L∞(Σt), ‖v‖ẆM,∞(Σt)
:=

∑
|ι|=M

‖∂ιv‖L∞(Σt),(3.3)

where ι is a spatial multi-index, ∂ι is the corresponding operator involving re-
peated differentiation with respect to the transported spatial coordinate vector-
fields {∂i}i=1,··· ,D (see Sect. 1.12), and ‖v‖L∞(Σt) := esssupx∈TD |v(t, x)|. As is

standard, we write “L∞” instead of “W 0,∞.” If v is a Σt-tangent tensorfield, then
we define its L2(Σt), H

M (Σt), Ḣ
M (Σt), W

M,∞(Σt), and ẆM,∞(Σt) norms in an
analogous fashion, but also summing over all “frame indices.” More precisely, with

the background Kasner variables k̃IJ , etc., as defined in Sect. 2.3 (see in particular
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Remark 2.6), we define:

‖k − k̃‖2HM (Σt)
:=

D∑
I,J=1

‖kIJ − k̃IJ‖2HM (Σt)
, ‖γ‖2HM (Σt)

:=

D∑
I,J,B=1

‖γIJB‖2HM (Σt)
,

‖e− ẽ‖2HM (Σt)
:=

D∑
I,i=1

‖eiI − ẽiI‖2HM (Σt)
, ‖ω− ω̃‖2HM (Σt)

:=
D∑

I,i=1

‖ωI
i − ω̃I

i ‖2HM (Σt)
,

‖�en‖2HM (Σt)
:=

D∑
I=1

‖eIn‖2HM (Σt)
, ‖�eψ‖2HM (Σt)

:=

D∑
I=1

‖eIψ‖2HM (Σt)
,

(3.4)

and:
(3.5)

‖k − k̃‖WM,∞(Σt) :=
D∑

I,J=1

‖kIJ − k̃IJ‖WM,∞(Σt), ‖γ‖WM,∞(Σt)

:=
D∑

I,J,B=1

‖γIJB‖WM,∞(Σt),

‖e− ẽ‖WM,∞(Σt) :=

D∑
I,i=1

‖eiI − ẽiI‖WM,∞(Σt), ‖ω− ω̃‖WM,∞(Σt)

:=
D∑

I,i=1

‖ωI
i − ω̃I

i ‖WM,∞(Σt),

‖�en‖WM,∞(Σt) :=

D∑
I=1

‖eIn‖WM,∞(Σt), ‖�eψ‖WM,∞(Σt) :=

D∑
I=1

‖eIψ‖WM,∞(Σt),

and similarly for the homogeneous norms (such as ‖k − k̃‖2
ḢM (Σt)

:=∑D

I,J=1 ‖kIJ − k̃IJ‖2ḢM (Σt)
).

3.4. Key parameters. We will formulate the bootstrap assumptions using two
key parameters, namely σ, q, which are any two fixed real numbers verifying the
following inequalities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 < 2σ < 2σ+ max
1≤I,J,B≤D

I<J

{|q̃B|, q̃I + q̃J − q̃B} < q < 1− 2σ,

non-symmetric cases,

0 < 2σ < 2σ+max{|q̃1|, |q̃2|, |q̃3|} < q < 1− 2σ,

Polarized U(1)-symmetric 1+3 vacuum.

(3.6)

The set of Kasner exponents for which such parameters σ, q exist is non-empty and
open in all the models that we consider; see Sect. 1.5.

Next, we introduce the positive-integer-valued parameters N0, N , which, roughly
speaking, represent the number of derivatives we will use to control the solution
in L∞ at the low orders (i.e., derivative levels approximately equal to N0) and in
L2 at the top-orders (i.e., derivative levels approximately equal to N); we refer
to Remark 3.2 for an important remark about the precise number of low order
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872 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

derivatives that we use in our proof. Our choice of N0 and N will be related to
another parameter, A∗, which controls the strength of the t-weights (which will be
of order tA∗) that we use in our high order energies. For our bootstrap argument
to close, the parameters will have to satisfy the following inequalities:

N � N0 ≥ 1, A∗ � 1,(3.7)

where throughout the paper, we adjust the size of the parameters as necessary.
Roughly, we will first choose A∗ ≥ 1 to be large enough to dominate various order-
unity structural constants (denoted by the symbol “C∗” throughout the paper) in
the PDEs. We then fix any N0 ≥ 1. We will then choose N to be sufficiently
large in a manner that depends on N0, A∗, q, and σ (as well as D, the number of
spatial dimensions). See also Remarks 1.13 and 1.14 for discussion on how to obtain
crude estimates for N and A∗. Finally, we will use a small parameter 0 < ε � 1
to capture the smallness of the overall norms that measure the closeness of the
perturbed solution to the background generalized Kasner metric. Roughly, for our
bootstrap argument to close, we will first have to choose the other parameters as
described above and then choose ε to be sufficiently small in a manner that depends
on N , N0, A∗, D, q, and σ.

3.5. Definitions of the solution norms. In our bootstrap argument, we will
rely on the t-weighted norms in Definition 3.1. Roughly, our main theorem shows
that all of the norms in Definition 3.1 remain small throughout the entire interval
t ∈ (0, 1] if they are small at t = 1.

Definition 3.1 (Solution norms). Recall that the parameter N0 verifies N0 ≥ 1,
that q,σ ∈ (0, 1) are the constants fixed in Sect. 3.4, and that we introduced the
notation “�ef” in Sect. 3.2. We define the low order norms:

L(e,ω)(t) := max
{
tq‖e− ẽ‖WN0,∞(Σt), t

q‖ω− ω̃‖WN0,∞(Σt)

}
,

L(n)(t) := max
{
t−σ‖n− 1‖WN0+1,∞(Σt), t

q−σ‖�en‖WN0,∞(Σt)

}
,

L(γ,k)(t) := max
{
tq‖γ‖WN0,∞(Σt), t‖k − k̃‖WN0+1,∞(Σt)

}
,

L(ψ)(t) := max
{
tq‖�eψ‖WN0,∞(Σt), t‖e0ψ − ∂tψ̃‖WN0+1,∞(Σt)

}
,

L(e,ω,γ,k,ψ)(t) := L(e,ω)(t) + L(γ,k)(t) + L(ψ)(t),

(3.8a)

and the high order norms:

H(e,ω)(t) := max
{
tA∗+q‖e‖ḢN (Σt)

, tA∗+q‖ω‖ḢN (Σt)

}
,

H(n)(t) := max
{
tA∗‖n‖ḢN (Σt)

, tA∗+1‖�en‖ḢN (Σt)

}
,

H(γ,k)(t) := max
{
tA∗+1‖γ‖ḢN (Σt)

, tA∗+1‖k‖ḢN (Σt)

}
,

H(ψ)(t) := max
{
tA∗+1‖�eψ‖ḢN (Σt)

, tA∗+1‖e0ψ‖ḢN (Σt)

}
,

H(e,ω,γ,k,ψ)(t) := H(e,ω)(t) +H(γ,k)(t) +H(ψ)(t).

(3.8b)
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We also find it convenient to define the following “total norm” for the “dynamic”
variables (i.e., the non-lapse36 variables):

D(t) := L(e,ω,γ,k,ψ)(t) +H(e,ω,γ,k,ψ)(t).(3.8c)

Remark 3.2 (Derivative counts involving N0). Note that the low order norms
in (3.8a) yield control over the “kinetic” (i.e., time-derivative-involving) terms

{kIJ − k̃IJ}I,J=1,··· ,D and e0ψ − ∂tψ̃ at one derivative level higher than the re-
maining terms. This is important for our bootstrap argument, more precisely for
our derivation of the lower order estimates; see, for example, Lemma 5.10 and the
proof of (5.23a).

3.6. Bootstrap assumptions. Our bootstrap assumptions are that there is a
“bootstrap time” TBoot ∈ [0, 1) such that:

D(t) + L(n)(t) +H(n)(t) ≤ ε, ∀t ∈ (TBoot, 1].(3.9)

In the proof of our main theorem, such a TBoot ∈ [0, 1) will exist due to our near-
Kasner assumptions on the data and Cauchy stability.

4. Basic estimates and identities

In this section, we provide some basic inequalities and commutation formulas
that we will frequently use in our main estimates, i.e., in Sect. 5.

4.1. Interpolation and product inequalities. In our ensuing analysis, we will
control various error terms with the help of the classical interpolation and Sobolev
inequalities provided in Lemma 4.1.

Lemma 4.1 (Sobolev interpolation and product inequalities). Let v be a Σt-tangent
tensorfield, let M1,M2 be two non-negative integers, and let ι1, · · · , ιR be spatial

multi-indices such that
∑R

r=1 |ιr| = M1. Then the following estimates hold, where
norms of tensorfields are defined as in Sect. 3.3, and the implicit constants depend
on M1, M2, and D:

‖v‖ḢM1 (Σt)
� ‖v‖

1−M1
M2

L∞(Σt)
‖v‖

M1
M2

ḢM2 (Σt)
� ‖v‖L∞(Σt) + ‖v‖ḢM2 (Σt)

,(4.1)

if M2 ≥ M1,

‖v‖WM1,∞(Σt) � ‖v‖
H

M1+1+�D
2 �(Σt)

� ‖v‖L∞(Σt) + ‖v‖ḢM2 (Σt)
,(4.2)

if M2 ≥ M1 + 1 +

⌊
D

2

⌋
,

‖∂ι1v1 · · · ∂ιRvR‖L2(Σt) �
R∑

r=1

‖vr‖ḢM1(Σt)

∏
s �=r

‖vs‖L∞(Σt),(4.3)

where
⌊
D

2

⌋
is the integer part of D

2 . Moreover, if 1 ≤ R0 ≤ R and ι1, · · · , ιR are

spatial multi-indices such that
∑R

r=1 |ιr| = M1 and |ιR−R0+1|, · · · , |ιR| ≤ M1 − 1,

36In Sect. 5.4, we will use elliptic estimates to show that the lapse can be controlled in terms
of the dynamic variables; see (5.6).
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then the following product inequality holds, where implicit constant depends on M1,
R, R0, and D:

‖∂ι1v1 · · · ∂ιRvR‖L2(Σt)

�
R−R0∑
r=1

(
‖vr‖W 1,∞(Σt) + ‖vr‖ḢM1(Σt)

)∏
s �=r

‖vs‖W 1,∞(Σt)

+

R∑
r=R−R0+1

(
‖vr‖W 1,∞(Σt) + ‖vr‖ḢM1−1(Σt)

)∏
s �=r

‖vs‖W 1,∞(Σt).

(4.4)

Proof. The first inequality in (4.1) is immediate37 from Plancherel’s identity,
Hölder’s inequality, and the bound ‖v‖L2(Σt) � ‖v‖L∞(Σt) for scalar functions v

(which holds because T
D is compact). The second inequality in (4.1) follows from

the first and Young’s inequality. In the case Σt = RD, the inequality (4.3) was
proved as [55, Lemma 6.16], and the same proof works in the case Σt = TD. The
first inequality in (4.2) is standard Sobolev embedding, while the second inequality

in (4.2) follows from applying (4.1) to the homogeneous norms ḢM ′
1(Σt) of v, for

every M ′
1 ≤ M1 + 1+ �D

2 �. To derive (4.4), we first note that either all derivatives
act on one of the terms v1, · · · , vR−R0

, say v1, or there exist at least two factors
having at least one derivative, say v1, va, where a > 1. Then setting u1 := ∂v1 in
the first case or u1 := ∂v1, ua := ∂va in the second case, we apply (4.3) and (4.1)
to the product, where we view u1 and ua to be terms in the product that are hit
with one fewer derivative than v1 and va. This yields the desired estimate. �

As an immediate application of Lemma 4.1, we provide Lemma 4.2, which yields
control of the reduced solution variables at orders slightly higher than N0. The
price we pay is that the estimates are slightly (when N is large) more singular with
respect to powers of t compared to the very-low-order estimates. Nevertheless, a
small increase in the singularity strength is allowable for treating error terms that
are sub-critical with respect to powers of t.

Lemma 4.2 (L∞ control at slightly higher orders than N0 – with only a mild
increase in singularity strength for large N). Assume that the bootstrap assumptions
(3.9) hold. Then there exists a constant δ = δ(N,D) (which is free to vary from
line to line) such that δ → 0 as N → ∞ and such that if N ≥ N0 + 4 +

⌊
D

2

⌋
, then

the following estimates hold for t ∈ (TBoot, 1]:

‖e− ẽ‖WN0+2,∞(Σt) + ‖ω− ω̃‖WN0+2,∞(Σt) � t−q−δA∗
{
L(e,ω)(t) +H(e,ω)(t)

}
,

(4.5)

‖γ− γ̃‖WN0+2,∞(Σt) � t−q−δA∗
{
L(γ,k)(t) +H(γ,k)(t)

}
,(4.6)

‖k − k̃‖WN0+2,∞(Σt) � t−1−δA∗
{
L(γ,k)(t) +H(γ,k)(t)

}
,(4.7)

‖n− 1‖WN0+3,∞(Σt) + tq‖�en‖WN0+2,∞(Σt) � tσ−δA∗
{
L(n)(t) +H(n)(t)

}
,

(4.8)

tq‖�eψ‖WN0+2,∞(Σt) + t‖∂tψ‖WN0+2,∞(Σt) � t−δA∗
{
L(ψ)(t) +H(ψ)(t)

}
.(4.9)

37Alternatively, (4.1) could be derived as a straightforward consequence of Nirenberg’s inter-
polation results [46], an approach that has the added advantage that it is easy to generalize to
topologies other than TD.
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Proof. The argument for all inequalities is essentially the same, so we only prove
(4.8). Using first (4.2) and then (4.1), we find that for N ≥ N0+4+

⌊
D

2

⌋
, we have:

‖n− 1‖WN0+3,∞(Σt) � ‖n− 1‖L∞(Σt) + ‖n− 1‖
Ḣ

N0+4+�D
2 �(Σt)

� ‖n− 1‖L∞(Σt) + ‖n− 1‖1−˜δ
L∞(Σt)

‖n− 1‖˜δ

ḢN (Σt)

≤ tσL(n)(t) +
(
tσL(n)(t)

)1−˜δ(
t−A∗H(n)(t)

)˜δ

= tσL(n)(t) + tσ−(A∗+σ)˜δ
L
1−˜δ
(n) (t)H

˜δ
(n)(t)

� tσ−δA∗
{
L(n)(t) +H(n)(t)

}
,

where δ̃ :=
N0+4+�D

2 �
N ≤ 1, and for the last inequality, we used Young’s inequality

and set δ := A∗+σ
A∗

δ̃. It is clear that δ → 0, as N → ∞, at a rate that is indepen-

dent of how large A∗ ≥ 1 is. This yields (4.8) for the term ‖n − 1‖WN0+3,∞(Σt).
The estimate for the term tq‖�en‖WN0+2,∞(Σt) would then follow from the Leib-
niz rule, the estimate for the term ‖n − 1‖WN0+3,∞(Σt), and the estimate (4.5) for
the term ‖e − ẽ‖WN0+2,∞(Σt) (which for purposes of exposition we assume to have
already been proved). We clarify that by this argument, the value of δ correspond-
ing to the estimate for tq‖�en‖WN0+2,∞(Σt) might be larger than the value of δ for
‖n− 1‖WN0+3,∞(Σt), but nevertheless, all “δ’s” tend to 0 as N → ∞. �

Remark 4.3 (δ can vary from line to line). In the rest of the paper, δ = δ(N,D)
denotes a small positive constant that is free to vary from line to line, but that
always has the property that δ → 0 as N → ∞ (as in Lemma 4.2). In particular,
we sometimes express the sum of two δ’s as another δ.

Remark 4.4 (Smallness of δA∗). Later in the paper, when we use Lemma 4.2 to de-
rive estimates for the solution, we will always assume (sometimes without explicitly
mentioning it) that δA∗ is as small as we need it to be. In particular, we assume
that it is small enough such that δA∗ < σ so that, for example, t2σ−δA∗ ≤ tσ for
t ∈ (0, 1]. At fixed A∗, the desired smallness can be ensured by choosing N to be
sufficiently large.

Remark 4.5 (Large interpolation constants are not an obstacle to stability). The
implicit constants in the interpolation inequalities of Lemmas 4.1 and 4.2 depend
on M1,M2, N0, N , and the number of spatial dimensions D. One might worry,
especially when taking N sufficiently large to make δ small, that the constants in
the elliptic and energy estimates, corresponding to the terms that we treat using
these inequalities, can be quite large. While the constants “C” can in fact be large,
largeness does not obstruct the proofs of our results. The reason is that we only
apply these inequalities to handle two kinds of error terms: (i) error terms that are
sub-critical with respect to powers of t, for which the largeness of C is admissible
within the context of our Grönwall estimates; and (ii) critical “borderline” products
with one factor that yields a smallness factor of ε, so that the effective coefficient
Cε can be made as small as one wants by choosing the bootstrap parameter ε to
be small (which is possible for initial data on Σ1 that are sufficiently close to the
Kasner data). In particular, in our estimates, the implicit constants in Lemmas 4.1
and 4.2 do not affect the size of the important constants “C∗” (see Sect. 1.12 for
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876 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

our conventions for constants “C∗”) or the value of the parameter A∗. See also
Sect. 5.3 for further discussion of borderline and below-borderline terms.

4.2. Two simple commutation formulas. To derive estimates for the solution’s
derivatives, we will repeatedly commute the reduced equations with the transported
spatial coordinate partial derivative vectorfields {∂i}i=1,··· ,D, and we will use the
following commutation relation to uncover the structure of various error terms (see
Sect. 1.12 for our conventions for multi-indices):

[∂ι, eI ]v =
∑

ι1∪ι2=ι, |ι2|<|ι|
(∂ι1ecI)∂

ι2∂cv.(4.10)

The identity (4.10) follows easily from expanding eI = ecI∂c. In our forthcoming
analysis, we will sometimes use it silently.

We will also use the following commutation identity:

[∂t, eI ] = nkICe
c
C∂c,(4.11)

which we derived in (2.35).

5. Main estimates

Our main goal in this section is to establish Proposition 5.1, which forms the
analytical cornerstone of the paper. Proposition 5.1 provides a priori estimates for
perturbations of the Kasner background solution and in particular yields improve-
ments of the bootstrap assumptions when the data are sufficiently near-Kasner. We
also highlight that for near-Kasner data, the a priori estimates and standard argu-
ments collectively imply that the solution exists on the entire half-slab (0, 1]× TD

and enjoys the quantitative properties afforded by the a priori estimates; see Propo-
sition 5.28 for those details.

5.1. Statement of the main a priori estimates. In Proposition 5.1, we state
our main a priori estimates. The proof is located in Sect. 5.9. In the sections
that precede it, we will establish a series of preliminary identities and estimates
for n,γ, k, the frame {eI}I=1,··· ,D, and the co-frame {ωI}I=1,··· ,D. The proof of
Proposition 5.1 essentially amounts to combining the preliminary results.

Proposition 5.1 (The main a priori estimates). Let (n, kIJ ,γIJB, e
i
I ,ω

I
i ,

ψ)I,J,B,i=1,··· ,D be a solution to the reduced equations of Proposition 2.2 on (TBoot, 1]
× TD. Recall that D(t) is the total norm of the dynamic variables and that L(n)(t)
and H(n)(t) are norms of the lapse (see Definition 3.1). Let ε̊ denote the initial
value of the total norm of the dynamic variables:

ε̊ := D(1) = L(e,ω)(1) + L(γ,k)(1) + L(ψ)(1) +H(e,ω)(1) +H(γ,k)(1) +H(ψ)(1).

(5.1)

Assume that the bootstrap assumptions (3.9) hold for t ∈ (TBoot, 1]. If A∗ is suffi-
ciently large and N0 ≥ 1, then there exists a constant CN,N0,A∗,D,q,σ > 0 such that
if N is sufficiently large in a manner that depends on N0, A∗, D, q, and σ, and if
ε is sufficiently small (in a manner that depends on N , N0, A∗, D, q, and σ), then
the following estimate holds for t ∈ (TBoot, 1]:

D(t) + L(n)(t) +H(n)(t) ≤ CN,N0,A∗,D,q,σε̊.(5.2)

In particular, if CN,N0,A∗,D,q,σε̊ < ε, then (5.2) yields a strict improvement of the
bootstrap assumptions (3.9).

Licensed to Vanderbilt Univ. Prepared on Tue May 16 09:43:06 EDT 2023 for download from IP 129.59.122.77.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



STABLE BIG BANG FORMATION 877

5.2. Schematic notation. We will use schematic notation to simplify the presen-
tation of various formulas when the precise structure of the terms is not impor-
tant. ∂ denotes an arbitrary partial derivative with respect to one of the trans-
ported spatial coordinate vectorfields. k denotes an arbitrary element of the array
(kIJ)I,J=1,··· ,D of components of the second fundamental form with respect to the
orthonormal frame. ∂ιk denotes an arbitrary element of the array (∂ιkIJ )I,J=1,··· ,D.
Similarly, γ denotes an arbitrary element of the array (γIJB)I,J,B=1,··· ,D and ∂ιγ

denotes an arbitrary element of the array (∂ιγIJB)I,J,B=1,··· ,D. e denotes an ar-
bitrary element of the array (eiI)I,i=1,··· ,D, while ω denotes an arbitrary element
of the array (ωI

i )I,i=1,··· ,D. If f is a scalar function, then �ef denotes the array
(eIf)I=1,··· ,D.

As an example, with the help of the notation from Sect. 1.12, we can express the
commutator ∂ι(neCγIJC) − neC∂

ιγIJC in the following schematic form:∑
ι1∪ι2∪ι3=ι,|ι3|<|ι| ∂

ι1n · ∂ι2e · ∂∂ι3γ. We remark that we use schematic notation

only when the overall signs and precise numerical coefficients in front of the terms
are not important. Thus, when using schematic notation for terms, we do
not account for their overall signs or precise numerical coefficients.

5.3. Borderline terms vs. junk terms. In our top-order energy estimates, we
encounter some delicate error terms that cannot be treated by Grönwall’s lemma
uniformly in TBoot∈ (0, 1). That is, if treated crudely, these terms would prevent
us from deriving an energy estimate that would lead to an improvement of our
bootstrap assumptions. We described one example of such a term at the end of
Sect. 1.9.6. Let us revisit this issue in more detail. In our top-order energy esti-
mates, we encounter “borderline” error integrands with the following strength:

1

t
· t2A∗+2∂ιγ · ∂ιγ,

1

t
· t2A∗+2∂ιk · ∂ιk,

1

t
· t2A∗+2∂ιγ · ∂ι(eIn).(5.3)

The difficulty is that the integrands in (5.3) are more singular than the energy
density itself due to the factors of 1

t . To handle these error terms, we exploit the
following crucial fact, which we must justify in our analysis:

In the energy identities, the coefficients of all of the borderline terms
can be bounded by a uniform constant C∗, independent of A∗ and
N , as long as the bootstrap parameter ε is sufficiently small (in
a manner that is allowed to depend on N and A∗). Such terms
contribute to the C∗-multiplied integrals on the right-hand side of
the energy inequalities of Proposition 5.27.

We refer readers to Remark 5.18 for further comments on our use of the terminology
“borderline.”

At this point, the role of the t2A∗+2 weights in our energy identities emerges: the
weights also generate borderline terms (roughly, when the ∂t derivative falls on the
weights in the energy identities) of the same strength as those in (5.3), but unlike
the terms in (5.3), the error terms generated by the weights have a favorable sign
towards the singularity with an overall coefficient that is proportional to A∗. These
terms contribute to the favorable −A∗-multiplied integrals on the right-hand side
of the energy inequalities of Proposition 5.27. Thus, if A∗ is chosen sufficiently
large, the overall coefficient C∗−A∗ of the borderline terms becomes negative, and
in our energy estimates, the corresponding integral has a “good sign” and can be
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discarded. We again stress that for this argument to work, it is crucial that C∗ can
be chosen to be independent of A∗, N , at least when ε is small.

On the other hand, there are many terms in the energy estimates that are “junk”
in the sense that they can be bounded by our norms times a factor of strength
Ct−1+σ. Although “C” is allowed to depend on A∗, N , and other parameters (cf.
Remark 4.5 regarding the size of the constants C in the interpolation inequalities),
such terms do not pose any difficulty in the a priori energy estimates. The reason is
that Ct−1+σ is integrable in time near t = 0 and thus, in the context of Grönwall’s
lemma, the factor Ct−1+σ causes only finite growth of our energies, which is per-
fectly compatible with our bootstrap argument and our proof of stability.

Remark 5.2 (“Border” and “Junk” notation). To help the reader navigate the en-
ergy estimates, in our ensuing analysis, we label error terms that generate borderline
(in the sense above) error terms with the superscript “Border,” and we label er-
ror terms that generate junk (in the sense above) error terms with the superscript

“Junk.” See, for example, the terms tP−1K
(Border;ι)
IJ and tPK

(Junk;ι)
IJ on RHS (5.31a).

We sometimes use similar notation to distinguish between “borderline terms”
and “junk terms” in our pointwise estimates; see, however, Remark 5.18.

5.4. Control of the lapse n in terms of the dynamic solution variables. Our
main goal in this subsection is to prove Proposition 5.3, which yields control of the
lapse in terms of the remaining “dynamic” solution variables. This is a preliminary
step in our derivation of a priori estimates for all solution variables. The proof
of Proposition 5.3 relies on elliptic estimates and the bootstrap assumptions (3.9)
and is located in Sect. 5.4.4. Before proving Proposition 5.3, we first establish some
preliminary identities and estimates.

Proposition 5.3 (Estimates for the lapse in terms of the dynamic solution vari-
ables). Recall that L(n)(t), H(n)(t), H(γ,k)(t), and D(t) are norms from Defini-
tion 3.1. Under the assumptions of Proposition 5.1, there exists a constant C∗ > 0
independent of N , N0, and A∗ and a constant C = CN,N0,A∗,D,q,σ > 0 such that if
N0 ≥ 1 and N is sufficiently large in a manner that depends on N0, A∗, D, q, and
σ, and if ε is sufficiently small (in a manner that depends on N , N0, A∗, D, q,
and σ), then the following estimates hold for t ∈ (TBoot, 1]:

‖n− 1‖WN0+1,∞(Σt) + tq‖�en‖WN0,∞(Σt) ≤ CtσD(t).(5.4)

Moreover, if ι is any spatial multi-index with |ι| = N , then we have:

tA∗+1‖∂ι�en‖L2(Σt) + tA∗‖∂ιn‖L2(Σt) ≤ C∗t
A∗+1‖∂ιγ‖L2(Σt) + CtσD(t),(5.5a)

tA∗+1‖�en‖ḢN (Σt)
+ tA∗‖n‖ḢN (Σt)

≤ C∗H(γ,k)(t) + CtσD(t).(5.5b)

Finally, the lapse norms are bounded by the dynamic variable norm:

L(n)(t) +H(n)(t) ≤ CD(t).(5.6)

5.4.1. Equations for controlling the lapse. We start by deriving the elliptic equa-
tions satisfied by the derivatives of the lapse.

Lemma 5.4 (The commuted lapse equation). For solutions n to the lapse equation
(2.25) and spatial coordinate multi-indices ι with |ι| ≤ N , the following equation
holds:

eC∂
ιeC(n− 1)− t−2∂ι(n− 1) = 2neD∂ιγCCD +N(ι),(5.7)
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where:

N
(ι) :=

∑
ι1∪ι2=ι,|ι2|<|ι|

∂ι1e · ∂∂ι2�en

+
∑

ι1∪ι2∪ι3=ι,|ι3|<|ι|
∂ι1n · ∂ι2e · ∂∂ι3γ+

∑
ι1∪ι2=ι

∂ι1γ · ∂ι2�en

+
∑

ι1∪ι2∪ι3=ι

∂ι1n · ∂ι2γ · ∂ι3γ+
∑

ι1∪ι2∪ι3=ι

∂ι1n · ∂ι2�eψ · ∂ι3�eψ.

(5.8)

Proof. (5.7) follows from differentiating (2.25) with ∂ι and using the commutation
formula (4.10) and the Leibniz rule. �

5.4.2. A standard elliptic identity. In Lemma 5.5, we provide a standard elliptic
identity for the lapse. We will use the identity to establish L2-control of the lapse
at the top order.

Lemma 5.5 (Elliptic identity for n). Let ι be a spatial coordinate multi-index with
1 ≤ |ι| ≤ N . Then for solutions to equation (5.7), the following identity holds:

t2A∗+2(∂ιeCn)∂
ιeCn+ t2A∗(∂ιn)2

= 2n(tA∗+1∂ιeDn)(tA∗+1∂ιγCCD)− (tA∗∂ιn)(tA+2N(ι)) + t2A∗+2R(ι)

+ ∂c
{
t2A∗+2ecC(∂

ιeCn)∂
ιn
}
− ∂c

{
2t2A∗+2necD(∂ιn)∂ιγCCD

}
,

(5.9)

R(ι) := (∂ιeCn)([∂
ι, eC ])n− 2n([∂ι, eD]n)∂ιγCCD

− (∂ce
c
C)(∂

ιeCn)∂
ιn+ {∂c(2necD)} (∂ιn)∂ιγCCD.

(5.10)

Proof. We first multiply (5.7) with −∂ιn and differentiate by parts in the top-order
terms after expanding eC = ecC∂c and eD = ecD∂c to obtain the following identity:

− ∂c
{
ecC(∂

ιeCn)∂
ιn
}
+ (∂ce

c
C)(∂

ιeCn)∂
ιn

+ (∂ιeCn)[eC , ∂
ι]n+ (∂ιeCn)∂

ιeCn+ t−2(∂ιn)2

= −2∂c
{
n(∂ιn)ecD∂ιγCCD

}
+ {∂c(2necD)} (∂ιn)∂ιγCCD + 2n([eD, ∂ι]n)∂ιγCCD

+ 2n(∂ιeDn)∂ιγCCD − (∂ιn)N(ι).

(5.11)

Multiplying (5.11) by t2A∗+2 and rearranging the terms, we arrive at the desired
identity (5.9). �

5.4.3. Control of the error terms in the top-order commuted lapse equation. In
Lemma 5.6, we derive L2-control of the error terms in the top-order commuted
lapse equation.

Lemma 5.6 (L2-control of the error terms in the top-order commuted lapse equa-
tion). Recall that D(t) is the total norm of the dynamic variables from Defini-
tion 3.1. Let N(ι) and R(ι) denote the lapse equation error terms defined respectively
in (5.8) and (5.10) (these terms appear on the right-hand side of (5.9)). Under
the assumptions of Proposition 5.3, there exists a constant C = CN,N0,A∗,D,q,σ > 0
such that the following estimates hold fort ∈ (TBoot, 1]:
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880 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

tA∗+2
∑
|ι|=N

‖N(ι)‖L2(Σt) ≤ Cεt2σD(t),

(5.12)

t2A∗+2

∫
Σt

|R(ι)| dx ≤Cεt2σD(t)
{
tA∗‖∂ιn‖L2(Σt)+tA∗+1‖∂ι�en‖L2(Σt)+D(t)

}
,

(5.13)

if |ι| = N.

Proof. Using the inequalities provided by Lemma 4.1, it is straightforward to esti-
mate every product term in the expressions (5.8) and (5.10) by accounting for the
control afforded by our bootstrap assumptions (3.9) and taking into account the
powers of t featured in the solution norms of Definition 3.1. We provide the details
for two representative terms. First, using Lemma 4.1 and Definition 3.1, we see
that the following term in N(ι) (i.e., the third sum on RHS (5.8)) satisfies:∥∥∥∥∥ ∑

ι1∪ι2=ι

∂ι1γ · ∂ι2�en

∥∥∥∥∥
L2(Σt)

(5.14)

� ‖γ‖L∞(Σt)‖�en‖ḢN (Σt)
+ ‖�en‖L∞(Σt)‖γ‖ḢN (Σt)

� εt−A∗−1−q
D(t).

The factor of ε on RHS (5.14) comes from the bootstrap assumptions (3.9) and
the fact that the LHS is quadratic with respect to quantities that vanish for the
background Kasner solution. Hence, multiplying (5.14) with tA∗+2 and recalling
our assumptions (3.6) on the parameters q,σ, we conclude that the resulting term
is ≤ RHS (5.12) as desired.

We now give a second example, this time for the L1(Σt)-type inequality (5.13).
Specifically, we bound a term in R(ι) (the second term on RHS (5.10)) as follows
by using (4.10), Lemma 4.1, Definition 3.1, and the bootstrap assumptions (3.9)
(which in particular imply that ‖n‖L∞(Σt) ≤ 2):∫

Σt

|2n([∂ι, eD]n)(∂ιγCCD)| dx

� ‖n‖L∞(Σt)

∑
ι1∪ι2=ι, |ι2|<|ι|

‖(∂ι1ecI)(∂
ι2∂cn)‖L2(Σt)

‖∂ιγCCD‖L2(Σt)

�
{
‖e− ẽ‖W 1,∞(Σt)‖n− 1‖W 1,∞(Σt) + ‖e− ẽ‖W 1,∞(Σt)‖n‖ḢN (Σt)

+‖n− 1‖W 1,∞(Σt)‖e− ẽ‖ḢN (Σt)

}
× ‖γ‖ḢN (Σt)

≤ Cε(t−A∗−1−q+σ + t−2A∗−1−q + t−2A∗−q+σ)D2(t).

(5.15)

Multiplying (5.15) by t2A∗+2 and using the inequality (3.6), we deduce that the
resulting term is ≤ RHS (5.13) as desired.

The remaining terms that need to be bounded can be handled with similar
arguments, and we omit the details. �

5.4.4. Proof of Proposition 5.3. Throughout this proof, we will silently assume
that N is large enough such that we can use the smallness of δA∗ described in
Remark 4.4.
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STABLE BIG BANG FORMATION 881

Proof of (5.4). First, for |ι| ≤ N0 + 1, we use (5.7) to solve for eCeC∂
ι(n −

1) − t−2∂ι(n − 1) and then bound the resulting terms in L∞ using the bootstrap
assumptions and Lemma 4.2, in particular bounding all terms involving n− 1 and
its derivatives by � tσ−δA∗ , which yields the following pointwise estimate for |ι| ≤
N0 + 1 (see Remark 4.3):∣∣eCeC∂ι(n− 1)− t−2∂ι(n− 1)

∣∣
�
∣∣∣2necD∂c∂

ιγCCD +N(ι) + ecC∂c
{
[edC , ∂

ι]∂d(n− 1)
}∣∣∣

� t−2q−δA∗D(t).

(5.16)

From (5.16) and the maximum principle, noting that eCeC∂
ι(n−1) ≤ 0 (≥ 0) at the

maxima (minima) of ∂ι(n−1) in Σt, and using the inequalities in (3.6), we find that
‖t−2(n− 1)‖WN0+1,∞(Σt) � t−2+σD(t). Multiplying this inequality by t2, we arrive

at the desired estimate (5.4) for the first term ‖n− 1‖WN0+1,∞(Σt) on the LHS. To
complete the proof of (5.4), we must show that tq‖�en‖WN0,∞(Σt) � tσD(t). Since
eIn = ecI∂cn, the desired estimate is a simple consequence of the already obtained
bound ‖n − 1‖WN0+1,∞(Σt) � tσD(t) and the estimate tq‖�e‖WN0,∞(Σt) � 1, which
follows from the bootstrap assumptions, the definition of the background Kasner
scalar functions ẽiI given in (2.58), and the inequalities in (3.6).

Proof of (5.5a)–(5.5b). We will show that there are constants C∗ > 0 and C > 0,
as in the statement of Proposition 5.3, such that for each spatial multi-index ι with
|ι| = N , we have:

t2A∗+2‖∂ι�en‖2L2(Σt)
+ t2A∗‖∂ιn‖2L2(Σt)

≤ 1

2
t2A∗+2‖∂ι�en‖2L2(Σt)

+
1

2
t2A∗‖∂ιn‖2L2(Σt)

+ C∗t
2A∗+2‖∂ιγ‖2L2(Σt)

+ Cεt2σD2(t).

(5.17)

Once we have proved (5.17), we absorb the first two terms on RHS (5.17) back into
the left, at the expense of doubling the constants in front of the remaining terms.
Afterward, taking the square root, we conclude (5.5a). We then sum the square of
(5.5a) over all ι with |ι| = N and take the square root, thereby concluding, in view
of Definition 3.1, the desired estimate (5.5b).

It remains for us to prove (5.17). We integrate equation (5.9) over T
D with

respect to dx, note that the integrals of the last two terms on RHS (5.9) vanish, use
the Cauchy–Schwarz inequality for integrals, and use the estimate ‖n‖L∞(Σt) ≤ 2
(which follows from the bootstrap assumptions) to obtain:

t2A∗+2‖∂ι�en‖2L2(Σt)
+ t2A∗‖∂ιn‖2L2(Σt)

≤ C∗‖tA∗+1∂ι�en‖L2(Σt)‖tA∗+1∂ιγ‖L2(Σt)

+ ‖tA∗∂ιn‖L2(Σt)‖tA∗+2
N

(ι)‖L2(Σt) +

∫
Σt

t2A∗+2|R(ι)| dx.
(5.18)

From (5.18), the error estimates in Lemma 5.6, our bootstrap assumptions (3.9),
Young’s inequality, and Definition 3.1, we conclude when ε is sufficiently small, the
desired bound (5.17) holds (for a different C∗, which is nevertheless independent of
A∗, N0, and N).

Proof of (5.6). The estimate (5.6) follows easily from Definition 3.1 and the esti-
mates (5.4)–(5.5b). �
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882 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

5.5. Preliminary identities and inequalities for k, γ, e, and ω. In this
section, we derive preliminary low order and high order identities and inequalities
for γ, k, e, and ω by using the evolution equations (2.22a)–(2.22b) and (2.23a)–
(2.23b), as well as the key evolution equations for the structure coefficients provided
by Proposition 5.7. Roughly, we control the inhomogeneous terms in their evolution
equations in terms of our solution norms, and we derive differential versions of our
energy identities. In Sects. 5.7–5.9, we will combine these preliminary results with
related ones for the lapse and scalar field to derive our main a priori estimates, i.e.,
to prove Proposition 5.1.

5.5.1. The key evolution equation verified by the structure coefficients. To control
the connection coefficients γIJB at the low derivative levels, we will use Proposition
5.7, which provides evolution equations for the structure coefficients γIJB + γJBI

of the orthonormal spatial frame {eI}I=1,··· ,D. Although its proof is simple, Propo-
sition 5.7 is of profound significance for our main results. As we mentioned in
Sect. 1.9, the main virtues of Proposition 5.7 are: it shows that up to error terms,
the evolution equation system for the structure coefficients is diagonal, and it shows
that the strength of the main linear terms driving the dynamics is controlled by
the Kasner stability condition (1.8). The connection coefficients themselves can be
controlled in terms of the structure coefficients via the identity (5.22).

Proposition 5.7 (The key evolution equations for the structure coefficients of the
orthonormal frame). For solutions to the equations of Proposition 2.2, the structure
coefficients of the orthonormal frame {eI}I=1,··· ,D, namely γIJB+γJBI with I < J
(see Remark 1.2), verify the following evolution equations, whose left-hand sides
exhibit a diagonal structure, where the Kasner background scalars {ẽiI}I,i=1,··· ,D
and {k̃IJ}I,J=1,··· ,D are defined in (2.58) (see also Remark 2.6) and we recall that
we do not sum underlined repeated indices:

∂t(γIJB + γJBI) +
(q̃I + q̃J − q̃B)

t
(γIJB + γJBI)

= (n− 1) {kICγCJB − kCIγBJC − kJCγBIC + kCIγJBC + kBCγJIC}
+ (n− 1) {kJCγCBI − kCJγIBC − kBCγIJC + kCJγBIC + kICγBJC}
+ (kIC − k̃IC)γCJB − (kCI − k̃CI)γBJC − (kJC − k̃JC)γBIC

+ (kCI − k̃CI)γJBC + (kBC − k̃BC)γJIC

+ (kJC − k̃JC)γCBI − (kCJ − k̃CJ )γIBC − (kBC − k̃BC)γIJC

+ (kCJ − k̃CJ )γBIC + (kIC − k̃IC)γBJC

+ n(ecI − ẽcI)∂ckBJ − n(ecJ − ẽcJ )∂ckBI

+ nẽcI∂ckBJ − nẽcJ∂ckBI + (eIn)kBJ − (eJn)kBI .

(5.19)

Moreover, for spatial coordinate multi-indices ι with |ι| ≤ N0, the following evo-
lution equation holds:

∂t[t
q∂ι(γIJB + γJBI)]

(5.20)

=
{
q − (q̃I + q̃J − q̃B)

}
tq−1∂ι(γIJB + γJBI) + tqS

(Border;ι)
IJB + tqS

(Junk;ι)
IJB ,
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STABLE BIG BANG FORMATION 883

where:

S
(Border;ι)
IJB :=

∑
ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2γ+
∑

ι1∪ι2=ι

n · ∂ι1(e− ẽ) · ∂∂ι2k,

(5.21a)

S
(Junk;ι)
IJB :=

∑
ι1∪ι2∪ι3=ι

∂ι1(n− 1) · ∂ι2k · ∂ι3γ+
∑

ι1∪ι2=ι

∂ι1n · ẽ · ∂∂ι2k

+
∑

ι1∪ι2∪ι3=ι, 1≤|ι1|
∂ι1n · ∂ι2(e− ẽ) · ∂∂ι3k +

∑
ι1∪ι2=ι

∂ι1�en · ∂ι2k.

(5.21b)

Finally, the scalar function γIJB can be expressed as a linear combination of
three structure coefficients:

γIJB =
1

2
{γIJB + γJBI}+

1

2
{γBJI + γJIB}+

1

2
{γBIJ + γIJB} .(5.22)

Remark 5.8 (Connection between equation (5.19) and the stability condition (1.8)).
If we were to ignore the terms on RHS (5.19), then equation (5.19) would allow us
to conclude that |γIJB + γJBI | � t−(q̃I+q̃J−q̃B). This makes the significance of the
stability condition (1.8) for equation (5.19) clear: under this condition, the quantity

max
I,J,B=1,··· ,D

I<J

|γIJB + γJBI | is integrable in t near 0, and by (5.22) (cf. Remark 1.2),

max
I,J,B=1,··· ,D

|γIJB| is also integrable in t. In our ensuing analysis, we will in fact

control the terms on RHS (5.19) and show that max
I,J,B=1,··· ,D

|γIJB | is integrable,

which is a crucial step in our proof of stable blowup.

Remark 5.9. Interestingly, if we were to try to control the γIJB ’s at the low de-
rivative levels by using the formula (2.27) and separately controlling each of the
factors eiI ,ω

I
i , then we would not be able to close our estimates for the full range of

Kasner exponents verifying the stability condition (1.8). In fact, since RHS (2.27)
is cubic in eiI ,ω

I
i and their derivatives, the crudest version of that approach would

yield only |γIJB| � t−3q, which, when q is near 1, is far too singular for proving
stability. Moreover, the evolution equation (2.22b) for the γIJB ’s is not diagonal at
the linear level and thus, a crude treatment based only on this equation would lead
to far too singular estimates38 for the connection coefficients at the lower derivative
levels. Thus, the diagonal structure revealed by Proposition 5.7 is essential to our
overall argument.

Proof of Proposition 5.7. Equation (5.19) follows from the evolution equation
(2.22b), the definition of the background Kasner scalar functions in (2.58), the
antisymmetry property (2.20), and straightforward algebraic computations. (5.20)
then follows from differentiating (5.19) with ∂ι, applying the product rule, multi-
plying both sides of the resulting identity by tq, and then commuting the factor of
tq under the operator ∂t on the LHS and accounting for the commutator [tq, ∂t].

38However, the structure of equation (2.22b) is sufficient for our top-order energy estimates,
which are allowed to be much more singular within the scope of our approach; this explains why
in Lemma 5.16, we derive commuted versions of equation (2.22b) to set up our energy estimates
for γ and k.
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884 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

(5.22) is an immediate consequence of the Koszul formula for an orthonormal
frame and the antisymmetry property (2.20). �

5.5.2. Pointwise estimates for the error terms in the structure coefficient evolution
equations. In Lemma 5.10, we derive pointwise estimates at the low derivative levels
for the error terms from Proposition 5.7.

Lemma 5.10 (Pointwise estimates for the error terms in the structure coefficient
evolution equations at orders ≤ N0). Recall that D(t) is the total norm of the
dynamic variables from Definition 3.1. Assume that the bootstrap assumptions
(3.9) hold. There exists a constant C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1
and N is sufficiently large in a manner that depends on N0, A∗, D, q, and σ, and
if ε is sufficiently small (in a manner that depends on N , N0, A∗, D, q, and σ),
then the following pointwise estimates hold on (TBoot, 1] × T

D for the error terms

S
(Border;ι)
IJB and S

(Junk;ι)
IJB defined in (5.21a)–(5.21b):

∑
|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

tq|S(Border;ι)
IJB |(t, x) ≤ Cεtq−1

∑
|ι|≤N0

∑
I,J,B=1,··· ,D

|∂ιγIJB |(t, x)

+ Cεtq−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

|∂ι(eiI − ẽiI)|(t, x),

(5.23a)

∑
|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

tq|S(Junk;ι)
IJB |(t, x) ≤ Ct−1+σ

D(t).

(5.23b)

Proof. Based on equations (5.21a)–(5.21b), the estimates (5.23a)–(5.23b) follow as
straightforward consequences of (2.58), the inequalities in (3.6), Definition 3.1, the
bootstrap assumptions (3.9), and the already derived low order estimates (5.4) for n.
Note in particular that we have used the fact that the low order norm (3.8a) controls

k− k̃ at derivative levels ≤ N0 +1 (see Remark 3.2); for example, for |ι| ≤ N0, this
allows us to pointwise bound the magnitude of the sum

∑
ι1∪ι2=ι n ·∂ι1(e− ẽ) ·∂∂ι2k

on RHS (5.21a) by � εt−1
∑

|ι|≤N0
|∂ι(e− ẽ)|(t, x). �

5.5.3. Absence of certain structure coefficients in polarized U(1)-symmetry. In
Lemma 5.11, we show that for polarized U(1)-symmetric metrics with D = 3,
relative to an orthonormal spatial frame of the type provided by Lemma 2.4, all
structure coefficients with three distinct indices vanish. As we explained in Re-
mark 1.3, this vanishing is crucial for the proof of our main results in the case of
the Einstein-vacuum equations in 1+3 dimensions under polarized U(1)-symmetry.

Lemma 5.11 (The vanishing of key variables in polarized U(1)-symmetry). Sup-
pose that D = 3 and that g is a polarized U(1)-symmetric metric satisfying the
hypotheses and conclusions of Lemma 2.4. Moreover, let {e1, e2, e3} be an or-
thonormal spatial frame satisfying the hypotheses and conclusions of Lemma 2.4.
In particular, e3 = (g33)

− 1
2 ∂3 and L∂3

eI = 0 for I = 1, 2, 3, where ∂3 is the
hypersurface-orthogonal Killing vectorfield. Then the following spatial connection
coefficients vanish:

γ123 = γ231 = γ312 = 0.(5.24)
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STABLE BIG BANG FORMATION 885

Moreover, under the same assumptions, we have:

γIJB + γJBI =

{
0, if I = J,

0, if I, J, B are distinct.
(5.25)

Proof. Under the assumptions and conclusions of Lemma 2.4, ∂3 is parallel to e3
and orthogonal to ∂1 and ∂2, and we have e31 = e32 = e13 = e23 = ω1

3 = ω2
3 = ω3

1 =
ω3

2 = e3e
i
I = 0. Hence, using (2.27) we compute:

γ123 =
1

2

{
ω3

l (e1e
l
2 − e2e

l
1)−ω1

l (e2e
l
3 − e3e

l
2) +ω2

l (e3e
l
1 − e1e

l
3)
}
= 0,

γ231 =
1

2

{
ω1

l (e2e
l
3 − e3e

l
2)−ω2

l (e3e
l
1 − e1e

l
3) +ω3

l (e1e
l
2 − e2e

l
1)
}
= 0,

γ312 =
1

2

{
ω2

l (e3e
l
1 − e1e

l
3)−ω3

l (e1e
l
2 − e2e

l
1) +ω1

l (e2e
l
3 − e3e

l
2)
}
= 0,

which yields (5.24). A more conceptual justification of the above computations is
that in the present setting, g([eI , eJ ], eB) = 0 whenever I, J, B are distinct indices;
using this fact and the Koszul formula, we conclude that γIJB = 0 whenever I, J, B
are distinct indices, as desired.

(5.25) follows from (5.24) and the antisymmetry property (2.20). �

Remark 5.12 (The role of polarized U(1)-symmetry). In proving our stable Big
Bang formation results for the Einstein-vacuum equations in 1 + 3 dimensions,
there is precisely one way in which our polarized U(1)-symmetry assumption is
important for our analysis: it allows us to use the results of Lemma 5.11; see also
Remark 1.3 and the end of the proof of Proposition 5.26. Put differently, if we were
to assume the conclusions (5.24)–(5.25) of Lemma 5.11, then the rest of our proof
of stable Big Bang formation would go through.

5.5.4. Commuted evolution equations for e and ω. In this section, we provide the
evolution equations that we will use to control the scalar functions {eiI}I,i=1,··· ,D
and {ωI

i }I,i=1,··· ,D as well as their derivatives.

Lemma 5.13 (Evolution equations for {eiI}I,i=1,··· ,D, {ωI
i }I,i=1,··· ,D, and their

derivatives). The evolution equations (2.23a)–(2.23b) can be rewritten as follows,
where the Kasner background scalars {ẽiI}I,i=1,··· ,D, {ω̃I

i }I,i=1,··· ,D, and

{k̃IJ}I,J=1,··· ,D are defined in (2.58) (see also Remark 2.6), and we recall that
we do not sum over repeated underlined indices:

∂t(e
i
I − ẽiI) +

q̃I
t
(eiI − ẽiI) = (n− 1)kIC(e

i
C − ẽiC) + (kIC − k̃IC)(e

i
C − ẽiC)

+ (n− 1)k̃IC ẽ
i
C + n(kIC − k̃IC)ẽ

i
C ,

(5.26a)

∂t(ω
I
i − ω̃I

i )−
q̃I
t
(ω

I
i − ω̃

I
i ) = −(n− 1)kIC(ω

C
i − ω̃C

i )− (kIC − k̃IC)(ω
C
i − ω̃C

i )

− (n− 1)k̃ICω̃
C
i − n(kIC − k̃IC)ω̃

C
i .

(5.26b)
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886 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Moreover, let ι be a spatial multi-index with |ι| ≤ N , and let P ≥ 0 be a real number.
Then the following equations hold:

∂t[t
P ∂ι(eiI − ẽiI)] = (P − q̃I)t

P−1∂ι(eiI − ẽiI) + tPE
i;(Border;ι)
I + tPE

i;(Junk;ι)
I ,

(5.27a)

∂t[t
P ∂ι(ωI

i − ω̃I
i )] = (P + q̃I)t

P−1∂ι(ωI
i − ω̃I

i ) + tPO
i;(Border;ι)
I + tPO

i;(Junk;ι)
I ,

(5.27b)

where:

E
i;(Border;ι)
I :=

∑
ι1∪ι2∪ι3=ι

∂ι1(n− 1) · ∂ι2k · ∂ι3(e− ẽ)(5.28a)

+
∑

ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2(e− ẽ),

E
i;(Junk;ι)
I := ∂ι(n− 1) · k̃ · ẽ+

∑
ι1∪ι2=ι

∂ι1n · ∂ι2(k − k̃) · ẽ,(5.28b)

O
i;(Border;ι)
I :=

∑
ι1∪ι2∪ι3=ι

∂ι1(n− 1) · ∂ι2k · ∂ι3(ω− ω̃)(5.28c)

+
∑

ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2(ω− ω̃),

O
i;(Junk;ι)
I := ∂ι(n− 1) · k̃ · ω̃+

∑
ι1∪ι2=ι

∂ι1n · ∂ι2(k − k̃) · ω̃.(5.28d)

Proof. (5.26a)–(5.26b) follow from equations (2.23a)–(2.23b) and straightforward
algebraic computations. (5.27a)–(5.27b) then follow from differentiating (5.26a)–
(5.26b) with ∂ι, using the Leibniz rule, multiplying both sides of the resulting
equations by tP , and commuting the factors of tP under the operator ∂t on the
LHSs and accounting for the commutator [tP , ∂t]. �

5.5.5. Pointwise estimates for the error terms in the frame component evolution
equations. In this section, at the low derivative levels, we derive pointwise estimates
for the error terms in the evolution equations of Lemma 5.13.

Lemma 5.14 (Pointwise estimates for the error terms in the evolution equations
for ∂≤N0(e−ẽ) and ∂≤N0(ω−ω̃)). Recall that D(t) is the total norm of the dynamic
variables from Definition 3.1. Assume that the bootstrap assumptions (3.9) hold.
There exists a constant C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is
sufficiently large in a manner that depends on N0, A∗, D, q, and σ, and if ε is
sufficiently small (in a manner that depends on N , N0, A∗, D, q, and σ), then the

error terms E
i;(Border;ι)
I , E

i;(Junk;ι)
I , O

i;(Border;ι)
I , and O

i;(Junk;ι)
I defined in (5.28a)–

(5.28d) verify the following pointwise estimates for (t, x) ∈ (TBoot, 1]×TD, where the
Kasner background scalars {ẽiI}I,i=1,··· ,D and {ω̃I

i }I,i=1,··· ,D are defined in(2.58):
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STABLE BIG BANG FORMATION 887

∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Ei;(Border;ι)
I |(t, x) ≤ Cεtq−1

∑
|ι|≤N0

∑
I,i=1,··· ,D

|∂ι(eiI − ẽiI)|(t, x),
(5.29a)

∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Ei;(Junk;ι)
I |(t, x) ≤ Ct−1+σ

D(t),

(5.29b)

∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Oi;(Border;ι)
I |(t, x) ≤ Cεtq−1

∑
|ι|≤N0

∑
I,i=1,··· ,D

|∂ι(ωI
i − ω̃I

i )|(t, x),
(5.29c)

∑
|ι|≤N0

∑
I,i=1,··· ,D

tq|Oi;(Junk;ι)
I |(t, x) ≤ Ct−1+σ

D(t).

(5.29d)

Proof. The lemma follows from the expressions (5.28a)–(5.28d), the bootstrap as-
sumptions, the definition of the lower order norms (3.8a), the explicit formulas
(2.58), the inequalities in (3.6), and the already derived low order estimates (5.4)
for n.39 �

5.5.6. L2-control of the error terms in the top-order commuted frame component
evolution equations. In this section, at the top-order derivative level, we derive L2

estimates for the error terms in the evolution equations of Lemma 5.13.

Lemma 5.15 (L2-control of the error terms in the top-order commuted frame com-
ponent evolution equations). Recall that H(γ,k)(t), H(e,ω)(t), and D(t) are norms
from Definition 3.1, and assume that the bootstrap assumptions (3.9) hold. There
exists a constant C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is sufficiently
large in a manner that depends on N0, A∗, D, q, and σ, and if ε is sufficiently
small (in a manner that depends on N , N0, A∗, D, q, and σ), then the error terms

E
i;(Border;ι)
I , E

i;(Junk;ι)
I , O

i;(Border;ι)
I , and O

i;(Junk;ι)
I defined in (5.28a)–(5.28d) verify

the following L2 estimates for t ∈ (TBoot, 1]:

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

‖Ei;(Border;ι)
I ‖2L2(Σt)

(5.30a)

≤ Cεt−1
H(γ,k)(t) + Cεt−1

H(e,ω)(t) + Ct−1+σ
D(t),

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

‖Ei;(Junk;ι)
I ‖2L2(Σt)

≤ Ct−1+σ
D(t),(5.30b)

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

‖Oi;(Border;ι)
I ‖2L2(Σt)

≤ Cεt−1
H(γ,k)(t)(5.30c)

+ Cεt−1
H(e,ω)(t) + Ct−1+σ

D(t),

tA∗+q

√ ∑
|ι|=N

∑
I,i=1,··· ,D

‖Oi;(Junk;ι)
I ‖2L2(Σt)

≤ Ct−1+σ
D(t).(5.30d)

39Note in particular that we do not use the interpolation inequalities of Lemma 4.2 in this
proof.
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888 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Proof. The lemma follows from the expressions (5.28a)–(5.28d), the explicit formu-
las (2.58), the inequalities in (3.6), Definition 3.1, the bootstrap assumptions, the
product inequality (4.3), and the already derived estimates (5.4)–(5.6) for n. �

5.5.7. Commuted equations for k and γ. In this section, we provide the evolu-
tion equations that we will use to control the scalar functions {kIJ}I,J=1,··· ,D and
{γIJB}I,J,B=1,··· ,D as well as their derivatives.

Lemma 5.16 (∂ι-Commuted equations for γ and k). Let ι be a spatial multi-index
with |ι| ≤ N , and let P ≥ 0 be a real number. Then for solutions to the equations
of Proposition 2.2, the following evolution equations hold, where the Kasner back-

ground scalars {k̃IJ}I,J=1,··· ,D and ψ̃ are defined in (2.58) (see also Remark 2.6):

∂t[t
P∂ι(kIJ − k̃IJ )] = (P − 1)tP−1∂ι(kIJ − k̃IJ )

+ tPneC∂
ιγIJC − tPneI∂

ιγCJC − tP eI∂
ιeJn

+ tP−1K
(Border;ι)
IJ + tPK

(Junk;ι)
IJ ,

(5.31a)

∂t(t
P∂ιγIJB) = PtP−1∂ιγIJB + tPneB∂

ιkJI − tPneJ∂
ιkBI

+ tPG
(Border;ι)
IJB + tPG

(Junk;ι)
IJB ,

(5.31b)

tP eC∂
ιkCI = tPM

(Border;ι)
I + tPM

(Junk;ι)
I ,(5.31c)

where:

K
(Border;ι)
IJ := ∂ι(n− 1) · k̃ +

∑
ι1∪ι2=ι

∂ι1(n− 1) · ∂ι2(k − k̃),

(5.32a)

K
(Junk;ι)
IJ :=

∑
ι1∪ι2=ι, |ι2|<|ι|

∂ι1e · ∂∂ι2�en+
∑

ι1∪ι2=ι, |ι2|<|ι|
∂ι1γ · ∂ι2�en

+
∑

ι1∪ι2∪ι3=ι, |ι3|<|ι|
∂ι1n · ∂ι2e · ∂ι3∂γ

+
∑

v∈{γ,�eψ}

∑
ι1∪ι2∪ι3=ι

∂ι1n · ∂ι2v · ∂ι3v,

(5.32b)

G
(Border;ι)
IJB := n · k̃ · ∂ιγ+

∑
ι1∪ι2=ι

n∂ι1(k − k̃) · ∂ι2γ+ k̃ · ∂ι�en

(5.32c)

+
∑

ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2�en,

G
(Junk;ι)
IJB :=

∑
ι1∪ι2∪ι3=ι, |ι1|≥1

∂ι1n · ∂ι2k · ∂ι3γ+
∑

ι1∪ι2∪ι3=ι, |ι3|<|ι|
∂ι1n · ∂ι2e · ∂ι3∂k,

(5.32d)
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STABLE BIG BANG FORMATION 889

M
(Border;ι)
I := k̃ · ∂ιγ+

∑
ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2γ+ ∂tψ̃ · ∂ι�eψ

(5.32e)

+
∑

ι1∪ι2=ι

∂ι1(e0ψ − ∂tψ̃) · ∂ι2�eψ,

M
(Junk;ι)
I :=

∑
ι1∪ι2=ι, |ι2|<|ι|

∂ι1e · ∂∂ι2k.

(5.32f)

Proof. Equations (5.31a)–(5.31b) follow from straightforward computations based
on first multiplying equations (2.22a)–(2.22b) by n, using that ∂t = ne0, differenti-
ating the resulting equations with ∂ι, applying the Leibniz rule, multiplying both
sides of the resulting identities by tP , and then commuting the factor of tP under
the operator ∂t on the LHSs and accounting for the commutator [tP , ∂t]. Similarly,
equation (5.31c) follows from differentiating equation (2.26b) with ∂ι, applying the
Leibniz rule, and then multiplying both sides of the resulting identity by tP . �

5.5.8. Pointwise estimates for the error terms in the spatial metric evolution equa-
tions. In this section, we derive pointwise estimates for the error terms in the

equations of Lemma 5.16 that we will later use to control k− k̃ at derivative levels
≤ N0 + 1.

Lemma 5.17 (Pointwise estimates for the error terms in the evolution equations

for ∂≤N0+1(k− k̃)). Recall that D(t) is the total norm of the dynamic variables from
Definition 3.1. Assume that the bootstrap assumptions (3.9) hold. There exists a
constant C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is sufficiently large in
a manner that depends on N0, A∗, D, q, and σ, and if ε is sufficiently small (in
a manner that depends on N , N0, A∗, D, q, and σ), then the following pointwise

estimates hold for (t, x) ∈ (TBoot, 1]×TD, where K
(Border;ι)
IJ and K

(Junk;ι)
IJ are defined

in (5.32a)–(5.32b):∑
|ι|≤N0+1

∑
I,J=1,··· ,D

t |neC∂ιγIJC − neI∂
ιγCJC − eI∂

ιeJn| (t, x)(5.33a)

≤ Ct−1+σ
D(t),∑

|ι|≤N0+1

∑
I,J=1,··· ,D

|K(Border;ι)
IJ |(t, x) +

∑
|ι|≤N0+1

∑
I,J=1,··· ,D

t|K(Junk;ι)
IJ |(t, x)(5.33b)

≤ Ct−1+σ
D(t).

Proof. The lemma follows from the explicit formulas (2.58), the inequalities in (3.6),
Definition 3.1, the bootstrap assumptions, the interpolation estimates of Lemma 4.2
(see Remark 4.4), and the already derived lower order estimate (5.4) for n− 1. �

Remark 5.18 (On the meaning of “Borderline”). Quantities featuring the super-
script “Borderline” contain terms that are either borderline with respect to our
low order estimates or our high order estimates (or both). For example, the esti-

mate (5.33b) reveals that at the lower orders, K
(Border;ι)
IJ is not a borderline term

(see also (5.48)), while the presence of the C∗-involving term on RHS (5.35a) in
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890 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

Lemma 5.21 shows that K
(Border;ι)
IJ is indeed borderline in the context of our top-

order energy estimates. Similar remarks apply to other quantities featuring the
superscript “Borderline.”

5.5.9. Differential energy identity for the second fundamental form and connection
coefficients. We will derive our top-order energy estimates for the second fundamen-
tal form and connection coefficients by integrating the differential identity provided
by Lemma 5.19.

Lemma 5.19 (Top-order differential energy identity for {kIJ}I,J=1,··· ,D and
{γIJB}I,J,B=1,··· ,D). Let ι be a top-order spatial multi-index, i.e., |ι| = N . Then for
solutions to the ∂ι-commuted equations (5.31a)–(5.31c) with P := A∗ + 1, the fol-

lowing differential energy identity holds, where the error terms K
(Border;ι)
IJ , K

(Junk;ι)
IJ ,

G
(Border;ι)
IJB , G

(Junk;ι)
IJB , M

(Border;ι)
I , and M

(Junk;ι)
I are defined in (5.32a)–(5.32f):

∂t
{
(tA∗+1∂ιkIJ )(t

A∗+1∂ιkIJ )
}
+

1

2
∂t
{
(tA∗+1∂ιγIJB)(t

A∗+1∂ιγIJB)
}

=
2A∗
t

(tA∗+1∂ιkIJ )(t
A∗+1∂ιkIJ ) +

(A∗ + 1)

t
(tA∗+1∂ιγIJB)(t

A∗+1∂ιγIJB)

+ 2(tA∗+1∂ιkIJ )
(
tA∗K

(Border;ι)
IJ + tA∗+1K

(Junk;ι)
IJ

)
+ (tA∗+1∂ιγIJB)

(
tA∗+1G

(Border;ι)
IJB + tA∗+1G

(Junk;ι)
IJB

)
+ 2(tA∗+1∂ιeJn)

(
tA∗+1

M
(Border;ι)
J + tA∗+1

M
(Junk;ι)
J

)
+ 2n(tA∗+1∂ιγCJC)

(
tA∗+1M

(Border;ι)
J + tA∗+1M

(Junk;ι)
J

)
+ 2(∂ce

c
I)(t

A∗+1∂ιeJn)(t
A∗+1∂ιkIJ )

+ 2 {∂c(necI)} (tA∗+1∂ιkIJ )(t
A∗+1∂ιγCJC)

− 2 {∂c(necC)} (tA∗+1∂ιkIJ )(t
A∗+1∂ιγIJC)

− 2∂c
{
t2A∗+2ecI(∂

ιeJn)∂
ιkIJ

}
− 2∂c

{
t2A∗+2ecIn(∂

ιkIJ )∂
ιγCJC

}
+ 2∂c

{
t2A∗+2necC(∂

ιkIJ )∂
ιγIJC

}
.

(5.34)

Proof. The proof is a calculation that, although lengthy, is straightforward; hence,

we only explain the main steps. We first note that ∂ιk̃IJ = 0 and thus we can ig-
nore the formal presence of this term on LHS (5.31a). Next, we expand LHS (5.34)
using the Leibniz rule. When ∂t falls on tA∗+1∂ιkIJ , we plug in (5.31a) with
P := A∗ + 1. When ∂t falls on tA∗+1∂ιγIJB , we plug in (5.31b) with P := A∗ + 1.
We then differentiate the resulting terms by parts. Next, we use the (differenti-
ated) momentum constraint (5.31c) with P := A∗ + 1 to substitute for the terms
tA∗+1eI∂

ιkIJ in the product 2(tA∗+1∂ιeJn) · tA∗+1eI∂
ιkIJ (which is “present” in

the sense that it is needed to cancel a corresponding product obtained from expand-
ing the third-to-last term −2∂c

{
t2A∗+2ecI(∂

ιeJn)∂
ιkIJ

}
on RHS (5.34)). Similarly,

we use (5.31c) with P := A∗ + 1 to substitute for the terms tA∗+1eI∂
ιkIJ in the

product 2ntA∗+1eI∂
ιkIJ · tA∗+1∂ιγCJC (which is “present” in the sense that it is

needed to cancel a corresponding product obtained from expanding the next-to-last
term −2∂c

{
t2A∗+2ecIn(∂

ιkIJ )∂
ιγCJC

}
on RHS (5.34)). �
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STABLE BIG BANG FORMATION 891

Remark 5.20 (Comments tied to the momentum constraint and well-posedness in
CMC-transported spatial coordinates). The (differentiated) momentum constraint
(5.31c) plays a crucial role in our proof of Lemma 5.19; without this constraint
equation, the corresponding differential energy identity would have featured terms
involving one too many derivatives of kIJ , which in turn would have led to a fatal
loss of one derivative in the top-order estimates. An alternate way to overcome the
derivative loss is to use spatial harmonic coordinates on each time slice Σt, as in
[6]. However, such coordinates lead to the presence of a non-zero shift vector in
the coordinate expression for the spacetime metric, and it is not currently known
whether the corresponding error terms are compatible with a proof of stable Big
Bang formation. We also emphasize that for similar reasons, the momentum con-
straint equation plays a crucial role in proving local well-posedness for Einstein’s
equations in CMC-transported spatial coordinates; see [59, Theorem 14.1]. More-
over, we also highlight that while energy identities such as (5.34) can be used to
derive a priori energy estimates for solutions to the non-linear reduced equations
(where by “reduced,” we roughly mean gauge-dependent equations in the spirit
of the ones stated in Proposition 2.2), the proof of local well-posedness given by
[59, Theorem 14.1] relies on a modified system, which can be shown to be equivalent
to the non-linear reduced equations (and hence, by the “if and only if” aspect of
Proposition 2.2, equivalent to Einstein’s equations too) for initial data that satisfy
the constraints and the CMC condition (1.12) at t = 1. The key advantage of the
modified system is that it does not involve constraint equations; this allows one to
show that solutions to linearized versions of the modified system also enjoy good en-
ergy estimates, which is important for the standard iteration/contraction mapping
schemes that are used in proofs of local well-posedness for quasilinear equations.

5.5.10. Control of the error terms in the top-order commuted spatial metric equa-
tions. In this section, at the top-order derivative level, we derive L2 estimates for
the error terms in the equations of Lemma 5.16.

Lemma 5.21 (L2-control of the error terms in the top-order commuted evolution
equations for k and γ). Recall that H(γ,k), H(ψ), and D(t) are norms from Defini-
tion 3.1, and assume that the bootstrap assumptions (3.9) hold. Recall that the error

terms K
(Border;ι)
IJ , K

(Junk;ι)
IJ , G

(Border;ι)
IJB , G

(Junk;ι)
IJB , M

(Border;ι)
I , and M

(Junk;ι)
I are de-

fined in (5.32a)–(5.32f). There exists a constant C∗ > 0 independent of N , N0,
and A∗ and a constant C = CN,N0,A∗,D,q,σ > 0 such that if N is sufficiently large
in a manner that depends on N0, A∗, D, q, and σ, and if ε is sufficiently small (in
a manner that depends on N , N0, A∗, D, q, and σ), then the following estimates
hold for t ∈ (TBoot, 1]:

tA∗

√ ∑
|ι|=N

∑
I,J=1,··· ,D

‖K(Border;ι)
IJ ‖2L2(Σt)

≤ C∗t
−1

H(γ,k)(t) + Ct−1+σ
D(t),(5.35a)

tA∗+1

√ ∑
|ι|=N

∑
I,J,B=1,··· ,D

‖G(Border;ι)
IJB ‖2L2(Σt)

≤ C∗t
−1

H(γ,k)(t) + Ct−1+σ
D(t),

(5.35b)
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892 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

‖M(Border;ι)
I ‖2L2(Σt)

≤ C∗t
−1

H(γ,k)(t) + C∗t
−1

H(ψ)(t)

(5.35c)

+ Ct−1+σ
D(t),

tA∗+1

√ ∑
|ι|=N

∑
I,J=1,··· ,D

‖K(Junk;ι)
IJ ‖2L2(Σt)

≤ Ct−1+σ
D(t),(5.36a)

tA∗+1

√ ∑
|ι|=N

∑
I,J,B=1,··· ,D

‖G(Junk;ι)
IJB ‖2L2(Σt)

≤ Ct−1+σ
D(t),(5.36b)

tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

‖M(Junk;ι)
I ‖2L2(Σt)

≤ Ct−1+σ
D(t).(5.36c)

Proof. We will give the proofs of (5.35a) and (5.36a). The remaining estimates can
be proved using similar arguments, and we omit the details. To prove (5.35a), we let
ι be any spatial multi-index with |ι| = N . We multiply both sides of (5.32a) by tA∗

and take the ‖·‖L2(Σt) norm. Using the bootstrap assumptions, the explicit formulas
(2.58), the inequalities in (3.6), Definition 3.1, and the product estimate (4.3),

we find that tA∗‖K(Border;ι)
IJ ‖L2(Σt) ≤ C∗t

A∗−1‖∂ιn‖L2(Σt) + CεtA∗−1‖n‖ḢN (Σt)
+

Cεt−1+σ
D(t). We then square this estimate, sum over all ι with |ι| = N , sum over

all 1 ≤ I, J ≤ D, and then take the square root. We find that LHS (5.35a) ≤
(C∗ + Cε)tA∗−1‖n‖ḢN (Σt)

+ Cεt−1+σD(t) ≤ C∗t
A∗−1‖n‖ḢN (Σt)

+ Cεt−1+σD(t).

From this bound and the already derived high order estimate (5.5b) for n, we
arrive at the desired bound (5.35a).

The estimate (5.36a) can be proved by multiplying equation (5.32b) by tA∗+1

and combing arguments similar to the ones we used above with the estimates of
Lemma 4.1. �

5.6. Preliminary identities and inequalities for the scalar field ψ. This
section is an analog of Sect. 5.5 for the scalar field ψ. That is, we derive prelimi-
nary low order and high order identities and inequalities for ψ by using the wave
equation (2.24). In order to avoid the time derivative of n appearing as an er-
ror term in the equations (which would unnecessarily complicate our derivation
of the main estimates), we treat e0ψ, {eIψ}I=1,··· ,D as separate variables satis-
fying a first-order system derived from the wave equation, cf. [61]. Roughly, we
bound the inhomogeneous terms in the evolution equations in terms of our solu-
tion norms, and we derive an energy identity in differential form. In Sects. 5.7–5.9,
we will combine these preliminary results with related ones for n, {kIJ}I,J=1,··· ,D,
{γIJB}I,J,B=1,··· ,D, {eiI}I,i=1,··· ,D, and {ωI

i }I,i=1,··· ,D to derive our main a priori
estimates, i.e., to prove Proposition 5.1.

5.6.1. Commuted evolution equations for e0ψ and eIψ. In this section, we provide
the first-order evolution equations that we will use to control the scalar functions
e0ψ and {eIψ}I=1,··· ,D as well as their derivatives.

Lemma 5.22 (The first-order evolution system for e0ψ, {eIψ}I=1,··· ,D, and their
derivatives). For solutions to the equations of Proposition 2.2, the g-orthonormal
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frame derivatives of ψ, namely e0ψ and {eIψ}I=1,··· ,D, satisfy the following first-

order symmetric hyperbolic system, where the Kasner background scalars ψ̃ =

B̃ log t and {k̃IJ}I,J=1,··· ,D are defined in (2.58) (see also Remark 2.6), and we
recall that we do not sum over repeated underlined indices:

∂t[t(e0ψ − ∂tψ̃)] = tneCeCψ − tnγCCDeDψ + t(eCn)eCψ

(5.37a)

− (n− 1)∂tψ̃ − (n− 1)(e0ψ − ∂tψ̃),

∂teIψ =−q̃I
t
eIψ+neIe0ψ+(n−1)kICeCψ+(kIC−k̃IC)eCψ+(eIn)∂tψ̃

+ (eIn)(e0ψ − ∂tψ̃).

(5.37b)

Moreover, if ι is a spatial coordinate multi-index and P ≥ 0 is any real number,
then the following equations hold:

∂t[t
P ∂ι(e0ψ − ∂tψ̃)] = (P − 1)[tP−1∂ι(e0ψ − ∂tψ̃)] + tPneC∂

ιeCψ

+ tP−1
P

(Border;ι) + tPP(Junk;ι),
(5.38a)

∂t(t
P∂ιeIψ) = (P − q̃I)t

P−1∂ιeIψ(5.38b)

+ tPneI∂
ιe0ψ + tPQ

(Border;ι)
I + tPQ

(Junk;ι)
I ,

where:

P
(Border;ι) := ∂ι(n− 1) · ∂tψ̃ +

∑
ι1∪ι2=ι

∂ι1(n− 1) · ∂ι2(e0ψ − ∂tψ̃),

(5.39a)

P
(Junk;ι) :=

∑
ι1∪ι2∪ι3=ι, |ι3|<|ι|

∂ι1n · ∂ι2e · ∂∂ι3�eψ

+
∑

ι1∪ι2∪ι3=ι

∂ι1n · ∂ι2γ · ∂ι3�eψ +
∑

ι1∪ι2=ι

∂ι1�en · ∂ι2�eψ,

(5.39b)

Q
(Border;ι)
I :=

∑
ι1∪ι2=ι

∂ι1(k − k̃) · ∂ι2�eψ + ∂ι�en · ∂tψ̃ +
∑

ι1∪ι2=ι

∂ι1�en · ∂ι2(e0ψ − ∂tψ̃)

(5.39c)

+
∑

ι1∪ι2=ι, |ι2|<|ι|
∂ι1e · ∂∂ι2e0ψ,

Q
(Junk;ι)
I :=

∑
ι1∪ι2∪ι3=ι, |ι3|<|ι|

∂ι1(n− 1) · ∂ι2e · ∂∂ι3e0ψ +
∑

ι1∪ι2∪ι3=ι

∂ι1(n− 1)

(5.39d)

· ∂ι2k · ∂ι3�eψ.

Proof. Equation (5.37a) follows from multiplying both sides of (2.24) by nt, us-

ing that ∂t(t∂tψ̃) = 0, and carrying out straightforward algebraic computations.
(5.37b) follows from the identity ∂t = ne0, the commutation identity (4.11), and
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894 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

straightforward algebraic computations. (5.38a)–(5.38b) then follow from differen-
tiating (5.37a)–(5.37b) with ∂ι, using the Leibniz rule, multiplying both sides of
the resulting equations by tP−1 and tP respectively, commuting the factors of tP−1

and tP under the operator ∂t on the LHSs, and accounting for the commutators
[tP−1, ∂t] and [tP , ∂t]. �

5.6.2. Pointwise estimates for the error terms in the scalar field evolution equations.
In this section, we derive the pointwise estimates for the error terms in the equations

of Lemma 5.22 that we will later use to control e0ψ−∂tψ̃ at derivative levels≤ N0+1
and eIψ at derivative levels ≤ N0.

Lemma 5.23 (Pointwise estimates for the error terms in the evolution equa-

tions for ∂≤N0+1(e0ψ − ∂tψ̃) and {∂≤N0eIψ}I=1,··· ,D). Recall that D(t) is the to-
tal norm of the dynamic variables from Definition 3.1, and assume that the boot-
strap assumptions (3.9) hold. Recall that the error terms P(Border;ι), P(Junk;ι),

Q
(Border;ι)
I , and Q

(Junk;ι)
I are defined in (5.39a)–(5.39d). There exists a constant

C = CN,N0,A∗,D,q,σ > 0 such that if N is sufficiently large in a manner that de-
pends on N0, A∗, D, q, and σ, and if ε is sufficiently small (in a manner that
depends on N , N0, A∗, D, q, and σ), then the following pointwise estimates hold
for (t, x) ∈ (TBoot, 1]× TD:

∑
|ι|≤N0+1

t|neC∂ιeCψ|(t, x) ≤ Ct−1+σ
D(t),

(5.40a)

∑
|ι|≤N0+1

|P(Border;ι)|(t, x) +
∑

|ι|≤N0+1

t|P(Junk;ι)|(t, x) ≤ Ct−1+σ
D(t),

(5.40b)

∑
|ι|≤N0

∑
I=1,··· ,D

tq |neI∂ιe0ψ| (t, x) ≤ Cε
∑

|ι|≤N0

∑
I,i=1,··· ,D

tq−1|∂ι(eiI − ẽiI)|(t, x)
(5.40c)

+ Ct−1+σ
D(t),

∑
|ι|≤N0

∑
I=1,··· ,D

tq|Q(Border;ι)
I |(t, x) ≤ Cε

∑
|ι|≤N0

∑
I=1,·,D

tq−1|∂ιeIψ|(t, x)
(5.40d)

+ Cε
∑

|ι|≤N0

∑
I,i=1,··· ,D

tq−1|∂ι(eiI − ẽiI)|(t, x)

+ Ct−1+σ
D(t),

∑
|ι|≤N0

∑
I=1,··· ,D

tq|Q(Junk;ι)
I |(t, x) ≤ Ct−1+σ

D(t).

(5.40e)

Proof. We apply the same arguments we used in the proof of Lemma 5.10 and
Lemma 5.17, taking into account the structure of the terms on RHS (5.39a)–(5.39d)
and the fact that the low order norm (3.8a) controls e0ψ at up to derivative level
N0 + 1 (in particular, we use this fact to derive (5.40b)–(5.40c)). We also clarify
that to obtain (5.40c), we use the triangle inequality to bound the summand on
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STABLE BIG BANG FORMATION 895

the LHS by ≤ tq|n(ecI − ẽcI)∂c∂
ιe0ψ|+ tq|nẽcI∂c∂ιe0ψ| and then bound (rather ineffi-

ciently) the first product by the term Cε
∑

|ι|≤N0

∑
I,i=1,··· ,D tq−1|∂ι(eiI − ẽiI)|(t, x)

on RHS (5.40c) and, with the help of (2.58) and (3.6), the second product by the
term Ct−1+σD(t) on RHS (5.40c). �

5.6.3. Differential energy identity for the scalar field. We will derive our top-order
energy estimates for the scalar field by integrating the differential identity provided
by Lemma 5.24.

Lemma 5.24 (Top-order differential energy identity for e0ψ and {eIψ}I=1,··· ,D).
Let ι be a top-order spatial multi-index, i.e., |ι| = N . Then for solutions to the
∂ι-commuted equations (5.38a)–(5.38b) with P := A∗ +1, the following differential

energy identity holds, where the error terms P(Border;ι), P(Junk;ι), Q
(Border;ι)
I , and

Q
(Junk;ι)
I are defined in (5.39a)–(5.39d):

∂t
{
(tA∗+1∂ιe0ψ)

2
}
+ ∂t

{
(tA∗+1∂ιeIψ)(t

A∗+1∂ιeIψ)
}

=
2A∗
t

(tA∗+1∂ιe0ψ)
2 +

2(A∗ + 1− q̃I)

t
(tA∗+1∂ιeIψ)(t

A∗+1∂ιeIψ)

+ 2(tA∗+1∂ιe0ψ)
(
tA∗P(Border;ι) + tA∗+1P(Junk;ι)

)
+ 2(tA∗+1∂ιeIψ)

(
tA∗+1

Q
(Border;ι)
I + tA∗+1

Q
(Junk;ι)
I

)
− 2 {∂c(necC)} (tA∗+1∂ιeCψ)(t

A∗+1∂ιe0ψ) + 2t2A∗+2∂c {necC(∂ιeCψ)(∂
ιe0ψ)} .

(5.41)

Proof. This lemma follows from straightforward calculation, so we only explain the

main steps. We first note that ∂ι∂tψ̃ = 0 and thus we can ignore the formal presence
of this term on LHS (5.38a). Next, we expand LHS (5.41) using the Leibniz rule.
When ∂t falls on tA∗+1∂ιe0ψ, we plug in (5.38a) with P := A∗ + 1. When ∂t falls
on tA∗+1∂ιeIψ, we plug in (5.38b) with P := A∗ + 1. Also differentiating by parts,
we arrive at the desired identity (5.41). �

5.6.4. Control of the error terms in the top-order commuted scalar field evolution
equations. In this section, at the top-order derivative level, we derive L2 estimates
for the error terms in the evolution equations of Lemma 5.22.

Lemma 5.25 (L2-control of the error terms in the top-order commuted scalar
field equations). Recall that H(γ,k), H(ψ), and D(t) are norms from Definition 3.1,
and assume that the bootstrap assumptions (3.9) hold. Recall that the error terms

P(Border;ι), P(Junk;ι), Q
(Border;ι)
I , and Q

(Junk;ι)
I are defined in (5.39a)–(5.39d).

There exists a constant C∗ > 0 independent of N , N0, and A∗ and a constant C =
CN,N0,A∗,D,q,σ > 0 such that if N is sufficiently large in a manner that depends on
N0, A∗, D, q, and σ, and if ε is sufficiently small (in a manner that depends on
N , N0, A∗, D, q, and σ), then the following estimates hold for t ∈ (TBoot, 1]:

tA∗

√ ∑
|ι|=N

‖P(Border;ι)‖2L2(Σt)
+ tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

‖Q(Border;ι)
I ‖2L2(Σt)

≤ C∗t
−1

H(γ,k)(t) + C∗t
−1

H(ψ)(t) + Ct−1+σ
D(t),

(5.42a)
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896 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

tA∗+1

√ ∑
|ι|=N

‖P(Junk;ι)‖2L2(Σt)
+ tA∗+1

√ ∑
|ι|=N

∑
I=1,··· ,D

‖Q(Junk;ι)
I ‖2L2(Σt)

≤ Ct−1+σ
D(t).

(5.42b)

Proof. We apply the same arguments that we used in the proof of Lemma 5.21 to
the terms on RHSs (5.39a)–(5.39d). �

5.7. Integral inequality for the low order solution norms. In Proposition
5.26, we combine some of the results derived earlier in Sect. 5 to obtain an integral
inequality for the low order solution norms. In Sect. 5.8, we will derive a related
integral inequality for the high order solution norms. Then, in Sect. 5.9, we will
combine the two integral inequalities and carry out the proof of our main a priori
estimates.

Proposition 5.26 (Integral inequality for the low order solution norms). Re-
call that L(e,ω,γ,k,ψ)(t) is a low order norm and that D(t) is the total norm of
the dynamic solution variables (see Definition 3.1). Under the assumptions of
Proposition 5.1, including the bootstrap assumptions (3.9), there exists a constant
C = CN,N0,A∗,D,q,σ > 0 such that if N0 ≥ 1 and N is sufficiently large in a manner
that depends on N0, A∗, D, q, and σ, and if ε is sufficiently small (in a manner
that depends on N , N0, A∗, D, q, and σ), then the following estimate holds for
t ∈ (TBoot, 1]:

L
2
(e,ω,γ,k,ψ)(t) ≤ CL

2
(e,ω,γ,k,ψ)(1) + C

∫ 1

t

s−1+σ
D

2(s) ds.(5.43)

Proof. The polarized U(1)-symmetric case will require an additional observation,
which we provide at the end of the proof.

The proof except for the polarized U(1)-symmetric case. Recall (5.22) and
Remark 1.2. We define the scalar function Q(t, x) ≥ 0 as follows, where the back-
ground Kasner scalars are defined in Sect. 2.3 and we suppress the (t, x) arguments
on RHS (5.44):

Q2 = Q2(t, x)

:=
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[tq∂ι(γIJB+γJBI)]
2+

∑
|ι|≤N0+1

∑
I,J=1,··· ,D

[
t∂ι(kIJ − k̃IJ )

]2

+
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
tq∂ι(eiI − ẽiI)

]2
+

∑
|ι|≤N0

∑
I,i=1,··· ,D

[
tq∂ι(ωI

i − ω̃I
i )
]2

+
∑

|ι|≤N0+1

[
t∂ι(e0ψ − ∂tψ̃)

]2
+

∑
|ι|≤N0

∑
I=1,··· ,D

[tq∂ιeIψ]
2.

(5.44)

Throughout the proof, we will silently use the estimates C−1‖Q‖L∞(Σt) ≤
L(e,ω,γ,k,ψ)(t) ≤ C‖Q‖L∞(Σt) and ‖Q‖L∞(Σt) ≤ CD(t), which follow easily from
the definitions of the quantities involved and the identity (5.22). In particular, to
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STABLE BIG BANG FORMATION 897

prove (5.43), it suffices to derive the following pointwise bound for Q2(t, x):

Q2(t, x) � L
2
(e,ω,γ,k,ψ)(1) +

∫ 1

t

s−1+σ
D

2(s) ds.(5.45)

To prove (5.45), we will derive the following pointwise bound for (t, x) ∈ (TBoot, 1]×
T
D:

Q2(t, x)

≤CL
2
(e,ω,γ,k,ψ)(1)+(Cε−4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[sq∂ι(γIJB+γJBI)(s, x)]
2 ds

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I=1,··· ,D

[sq∂ιeIψ(s, x)]
2 ds

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
sq∂ι(eiI − ẽiI)(s, x)

]2
ds

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
sq∂ι(ωI

i − ω̃I
i )(s, x)

]2
ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds.

(5.46)

Then for ε sufficiently small, the first four integrals on RHS (5.46) are negative,
and we can discard them; the desired bound (5.45) then follows.

It remains for us to prove (5.46). We will show that the following pointwise
estimates hold for (t, x) ∈ (TBoot, 1]×T

D, where to condense the notation, we omit
the arguments (t, x) on the LHSs and the integrand arguments (s, x) on the RHSs:∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[tq∂ι(γIJB + γJBI)]
2(5.47)

≤ CL
2
(γ,k)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[sq∂ι(γIJB + γJBI)]
2
ds

+ Cε

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
sq∂ι(eiI − ẽiI)

]2
ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds,∑
|ι|≤N0+1

∑
I,J=1,··· ,D

[
t∂ι(kIJ − k̃IJ )

]2
(5.48)

≤ CL
2
(γ,k)(1)

+ C

∫ 1

t

s−1+σ
D

2(s) ds,
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898 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK∑
|ι|≤N0

∑
I,i=1,··· ,D

[
tq∂ι(eiI − ẽiI)

]2
(5.49)

≤ CL
2
(e,ω)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
sq∂ι(eiI − ẽiI)

]2
ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds,∑
|ι|≤N0

∑
I,i=1,··· ,D

[
tq∂ι(ωI

i − ω̃I
i )
]2

(5.50)

≤ CL
2
(e,ω)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
sq∂ι(ωI

i − ω̃I
i )
]2

ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds,∑
|ι|≤N0+1

[
t∂ι(e0ψ − ∂tψ̃)

]2
(5.51)

≤ CL
2
(ψ)(1)

+ C

∫ 1

t

s−1+σ
D

2(s) ds,∑
|ι|≤N0

∑
I=1,··· ,D

[tq∂ιeIψ]
2(5.52)

≤ CL
2
(ψ)(1)

+ (Cε− 4σ)

∫ 1

t

s−1
∑

|ι|≤N0

∑
I=1,··· ,D

[sq∂ιeIψ]
2 ds

+ Cε

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,i=1,··· ,D

[
sq∂ι(eiI − ẽiI)

]2
ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds.

Then adding (5.47)–(5.52), we arrive at (5.46).
To prove (5.47), we first multiply equation (5.20) by 2[tq∂ι(γIJB + γJBI)] to

obtain the evolution equation ∂t
{
[tq∂ι(γIJB + γJBI)]

2
}
= 2[tq∂ι(γIJB + γJBI)]×

RHS (5.20). We then integrate this equation in time over [t, 1] with respect to ds,
apply the fundamental theorem of calculus, and then sum the resulting identity
over all ι with |ι| ≤ N0 and over all I, J, B = 1, · · · ,D with I < J . In the resulting

identity, we place the term
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[tq∂ι(γIJB + γJBI)(t, x)]
2 on the

left-hand side (as the only term on LHS (5.47)), while the resulting initial data term
(on Σ1) is ≤ the term CL2

(γ,k)(1) on RHS (5.47). Next, noting that the first term{
q − (q̃I + q̃J − q̃B)

}
tq−1∂ι(γIJB + γJBI) on RHS (5.20) generates the integrals
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−2
{
q − (q̃I + q̃J − q̃B)

} ∫ 1

t
s−1

∑
|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[sq∂ι(γIJB + γJBI)]
2 ds (where

the overall minus sign in front of these integrals is correct because t ∈ (TBoot, 1] and∑
|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[tq∂ι(γIJB + γJBI)(t, x)]
2
is on LHS (5.47)), we can use (3.6)

to bound these integrals by ≤ the negative-definite term

−4σ

∫ 1

t

s−1
∑

|ι|≤N0

∑
I,J,B=1,··· ,D

I<J

[sq∂ι(γIJB + γJBI)]
2 ds

on RHS (5.47). Finally, with the help of the identity (5.22), the error term estimates
(5.23a)–(5.23b), and Young’s inequality, we see that the terms generated by the
remaining terms on RHS (5.20) are ≤ the sum of the remaining terms on RHS (5.47)
as desired.

The estimate (5.48) follows from a similar argument based on equation (5.31a)
with P := 1 and |ι| ≤ N0 + 1 and the error term estimates (5.33a)–(5.33b).

The estimate (5.49) follows from a similar argument based on equation (5.27a)
with P := q and the error term estimates (5.29a)–(5.29b). The estimate (5.50) can
be proved via similar arguments based on equation (5.27b) with P := q and the
error term estimates (5.29c)–(5.29d).

The estimate (5.51) follows from a similar argument based on equation (5.38a)
with P := 1 and |ι| ≤ N0 + 1 and the error term estimates (5.40a)–(5.40b).

Finally, the estimate (5.52) follows from a similar argument based on equation
(5.38b) with P := q and the error term estimates (5.40c)–(5.40e). This completes
the proof except in the polarized U(1)-symmetric case.

The proof in the polarized U(1)-symmetric case. By (5.25), in polarized
U(1)-symmetry with D = 3, the structure coefficient γIJB + γJBI vanishes unless
I = B �= J (in which case (2.20) implies γIJB+γJBI = γIJB – though this identity
is not needed for our results) or B = J �= I. The key point is that for the non-zero

structure coefficients, when I = B, the factor
q̃I+q̃J−q̃B

t on LHS (5.19) reduces to
q̃J
t , and similarly, when B = J , the factor

q̃I+q̃J−q̃B
t on LHS (5.19) reduces to

q̃I
t .

Hence, using the definition (3.6) of q in the polarized U(1)-symmetric case, we can
repeat the proof of (5.47) given above in the non-symmetric case – but making the

change
(q̃I+q̃J−q̃B)

t → q̃J
t or

(q̃I+q̃J−q̃B)

t → q̃I
t in the relevant spots – to derive the

desired estimates. �

5.8. Integral inequality for the high order solution norms. In Proposition
5.27, we combine some of the results derived earlier in Sect. 5 to obtain an integral
inequality for the high order solution norms.

Proposition 5.27 (Top-order energy integral inequalities). Recall that H(γ,k),
H(ψ), H(e,ω), and D(t) are norms from Definition 3.1. Under the assumptions of
Proposition 5.1, including the bootstrap assumptions (3.9), there exists a constant
C∗ > 0 independent of N , N0, and A∗ and a constant C = CN,N0,A∗,D,q,σ > 0 such
that if N0 ≥ 1 and N is sufficiently large in a manner that depends on N0, A∗, D,
q, and σ, and if ε is sufficiently small (in a manner that depends on N , N0, A∗,
D, q, and σ), then the following estimates hold for t ∈ (TBoot, 1]:
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H
2
(γ,k)(t) ≤ CH

2
(γ,k)(1)(5.53a)

+ (C∗ − A∗)

∫ 1

t

s−1
H

2
(γ,k)(s) ds+ C∗

∫ 1

t

s−1
H

2
(ψ)(s) ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds,

H
2
(ψ)(t) ≤ CH

2
(ψ)(1)(5.53b)

+ C∗

∫ 1

t

s−1
H

2
(γ,k)(s) ds+ (C∗ −A∗)

∫ 1

t

s−1
H

2
(ψ)(s) ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds,

H
2
(e,ω)(t) ≤ CH

2
(e,ω)(1)(5.53c)

+ C∗

∫ 1

t

s−1
H

2
(γ,k)(s) ds+ (C∗ −A∗)

∫ 1

t

s−1
H

2
(e,ω)(s) ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds.

Proof. We stress that throughout the proof, C and C∗ denote constants that have
the properties stated in Sect. 1.12, and that these constants can vary from line to
line. In particular, the “final constants” appearing in (5.53a)–(5.53c) do not have
to coincide with the constants appearing in the proof.

To prove (5.53a), we first integrate the differential energy identity (5.34) over
[t, 1]× TD with respect to ds dx, note that the integrals of the last three (perfect-
spatial-derivative) terms on RHS (5.34) vanish, sum the resulting identity over all
ι with |ι| = N , use (5.5a) to control the top-order derivatives of the lapse, use the
estimates ‖n − 1‖W 1,∞(Σt) � tσ and ‖e‖W 1,∞(Σt) � t−1+2σ (which are simple con-
sequences of (2.58), the inequalities in (3.6), and the bootstrap assumptions), and
use the Cauchy–Schwarz inequality for integrals and sums and Young’s inequality
to deduce that the following estimate holds for t ∈ (TBoot), 1], where C∗ > 0 and
C > 0 are as in the statement of the proposition:

∑
|ι|=N

∑
I,J=1,··· ,D

t2A∗+2‖∂ιkIJ‖2L2(Σt)

(5.54)

+
1

2
t2A∗+2

∑
|ι|=N

∑
I,J,B=1,··· ,D

‖∂ι
γIJB‖2L2(Σt)

≤ CH
2
(γ,k)(1)

+ (C∗− A∗)

∫ 1

t⎧⎨
⎩

∑
|ι|=N

∑
I,J=1,··· ,D

s2A∗+1‖∂ιkIJ‖2L2(Σs)
+

∑
|ι|=N

∑
I,J,B=1,··· ,D

s2A∗+1‖∂ι
γIJB‖2L2(Σs)

⎫⎬
⎭ds

+
∑

|ι|=N

∑
I,J=1,··· ,D

∫ 1

t

s2A∗+1
∥∥∥K(Border;ι)

IJ

∥∥∥2

L2(Σs)
ds

+
∑

|ι|=N

∑
I,J,B=1,··· ,D

∫ 1

t

s2A∗+3
∥∥∥G(Border;ι)

IJB

∥∥∥2

L2(Σs)
ds

+
∑

|ι|=N

∑
J=1,··· ,D

∫ 1

t

s2A∗+3
∥∥∥M(Border;ι)

J

∥∥∥2

L2(Σs)
ds
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+ C
∑

|ι|=N

∑
I,J=1,··· ,D

∫ 1

t

‖sA∗+1∂ιkIJ‖L2(Σs)

∥∥∥sA∗+1
K

(Junk;ι)
IJ

∥∥∥
L2(Σs)

ds

+ C
∑

|ι|=N

∑
I,J,B=1,··· ,D

∫ 1

t

‖sA∗+1∂ι
γIJB‖L2(Σs)

∥∥∥sA∗+1
G

(Junk;ι)
IJB

∥∥∥
L2(Σs)

ds

+ C
∑

|ι|=N

∑
I,J,B,E=1,··· ,D∫ 1

t

{
‖sA∗+1∂ι

γIJB‖L2(Σs) + sσD(s)
}∥∥∥sA∗+1

M
(Junk;ι)
E

∥∥∥
L2(Σs)

ds

+ C
∑

|ι|=N

∑
I,J,B,E,F=1,··· ,D∫ 1

t

s−1+σ‖sA∗+1∂ιkIJ‖L2(Σs)

{
‖sA∗+1∂ι

γBEF ‖L2(Σs) + sσD(s)
}

ds

+ C

∫ 1

t

s−1+σ
D

2(s) ds.

Using Lemma 5.21, we deduce that the three integrals involving the borderline

terms K
(Border;ι)
IJ , G

(Border;ι)
IJB , and M

(Border;ι)
J are bounded by:

≤ C∗

∫ 1

t

s−1
{
H

2
(γ,k)(s) +H

2
(ψ)(s)

}
ds+ C

∫ 1

t

s−1+σ
D

2(s) ds,

and that (in view of Definition 3.1) the three integrals involving the terms K
(Junk;ι)
IJ ,

G
(Junk;ι)
IJB , and M

(Junk;ι)
J are bounded by ≤ C

∫ 1

t
s−1+σD2(s) ds. Moreover, appeal-

ing to Definition 3.1, we see that the integrals

C
∑

|ι|=N

∑
I,J,B,E,F=1,··· ,D

∫ 1

t
s−1+σ‖sA∗+1∂ιkIJ‖L2(Σs)

{
‖sA∗+1∂ιγBEF ‖L2(Σs)

+ sσD(s)
}

ds

on the next-to-last line of RHS (5.54) are bounded by ≤ C
∫ 1

t
s−1+σD2(s) ds. From

these estimates, we arrive, in view of Definition 3.1, at the desired estimate (5.53a).
The inequality (5.53b) follows from a similar argument based on the scalar field

differential energy identity (5.41) and the error term estimates of Lemma 5.25; we
omit the details.

To prove (5.53c), we first set P := A∗ + q in equation (5.27a) and multiply it by
2[tA∗+q∂ι(eiI − ẽiI)] to deduce:

∂t

{[
tA∗+q∂ι(eiI − ẽiI)

]2}
=

2(A∗ + q − q̃I)

t

[
tA∗+q∂ι(eiI − ẽiI)

]2
+ 2(tA∗+q

E
i;(Border;ι)
I )

[
tA∗+q∂ι(e

i
I − ẽ

i
I)
]

+ 2(tA∗+qE
i;(Junk;ι)
I )

[
tA∗+q∂ι(e

i
I − ẽ

i
I)
]
.

(5.55)

We then argue as in the proof of (5.53a), but using (5.55) in place of (5.34) and the
error term estimates of Lemma 5.15 in place of those of Lemma 5.21. Summing the
resulting inequality over I, i = 1, · · · ,D and also noting that Cε ≤ C∗, we deduce
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902 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

that the following estimate holds for t ∈ (TBoot), 1]:

t2(A∗+q)‖e‖2
ḢN (Σt)

≤ ‖e‖2
ḢN (Σ1)

+ C∗

∫ 1

t

s−1
H

2
(γ,k)(s) ds+ C∗

∫ 1

t

s−1
H

2
(e,ω)(s) ds

−A∗

∫ 1

t

s−1
{
s2(A∗+q)‖e‖2

ḢN (Σs)

}
ds+ C

∫ 1

t

s−1+σ
D

2(s) ds.

(5.56)

Next, we note that the one-form components {ωI
i }I,i=1,··· ,D satisfy the same in-

equality, that is, (5.56) holds with ω in place of e; to see this, one argues as in the
proof of (5.56), but using the evolution equation (5.27b) with P := A∗ + q and the
last two error term estimates in Lemma 5.15. Adding this top-order energy inequal-
ity for the {ωI

i }I,i=1,··· ,D to the inequality (5.56), and considering the definition
(3.8b) of H(e,ω)(t), we arrive at the desired estimate (5.53c). We have therefore
proved the proposition. �

5.9. Proof of Proposition 5.1. We start by adding the integral inequalities (5.43)
and (5.53a)–(5.53c) to obtain, in view of Definition 3.1 and (5.1), the following
inequality for t ∈ (TBoot, 1], valid under largeness/smallness assumptions on the
parameters that we describe just below (and we again stress that constants labeled
“C∗” – though we allow them to vary from line to line – are always independent of
N0, N and A∗):

D
2(t) ≤ Cε̊2 + (C∗ −A∗)

∫ 1

t

s−1
H

2
(e,ω,γ,k,ψ)(s) ds+ C

∫ 1

t

s−1+σ
D

2(s) ds.(5.57)

We now fix A∗ to be sufficiently large so that the factor C∗ −A∗ on RHS (5.57) is
negative. For this fixed value of A∗ and any fixed integer N0 ≥ 1, we choose N to
be sufficiently large (in a manner that depends on N0, A∗, D, q, and σ) and then
ε to be sufficiently small (in a manner that depends on N , N0, A∗, D, q, and σ)
such that all of the previous estimates proved in the paper hold true. For this fixed
value of A∗, this justifies inequality (5.57). We now note that the negativity of the
factor C∗ − A∗ ensures that we can discard the first time integral on RHS (5.57),

that is, for t ∈ (TBoot, 1], we have D2(t) ≤ Cε̊2 + C
∫ 1

t
s−1+σD2(s) ds. From this

inequality and Grönwall’s lemma, we deduce that D2(t) ≤ Cε̊2. From this estimate
and (5.6), we conclude the desired bound (5.2).

5.10. Existence of perturbed solutions on the entire half-slab (0, 1] × TD.
In Proposition 5.28, we use the a priori estimates of Proposition 5.1 and standard
local well-posedness/continuation results to show that the perturbed solution exists
on (0, 1]× TD.

Proposition 5.28 (Existence of perturbed solutions on the entire half-slab

(0, 1]×TD). Let (Σ1 = TD, g̊, k̊, ψ̊, φ̊) be geometric initial data (see Sect. 1.1) for the
Einstein-scalar field equations verifying the constraint equations (1.2a)–(1.2b) and
the CMC condition trk = −1 (see Remark 1.5), and let {̊eI}I=1,··· ,D be the initial
orthonormal frame (on Σ1) constructed in Sect. 5.11. Recall that L(n)(t),H(n)(t),
and D(t) are norms from Definition 3.1 and that ε̊ := D(1) (see (5.1)). Assume
that the following conditions are satisfied:

• N0 ≥ 1.
• A∗ ≥ 1 is sufficiently large.
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STABLE BIG BANG FORMATION 903

• N is sufficiently large in a manner that depends on N0, A∗, D, q, and σ.
• The norm ε̊ defined in (5.1) is sufficiently small in a manner that depends
on N , N0, A∗, D, q, and σ.

Then there exists a constant CN,N0,A∗,D,q,σ > 0 such these data launch a perturbed
solution

(n, kIJ ,γIJB , e
i
I ,ω

I
i , ψ)I,J,B,i=1,··· ,D

to the reduced equations of Proposition 2.2 that exists classically on (0, 1]×TD and
satisfies the following estimate for t ∈ (0, 1]:

D(t) + L(n)(t) +H(n)(t) ≤ CN,N0,A∗,D,q,σε̊.(5.58)

Moreover, if we define gij and g in terms of the reduced variables by gij :=
ωA

i ω
A
j and g := −n2dt⊗ dt+ gabdx

a⊗ dxb (where t is the CMC time function and

{xi}i=1,··· ,D are the transported spatial coordinates), then the tensorfields (g, ψ) are
also classical solutions to the Einstein-scalar field system (1.1a)–(1.1b) on (0, 1]×
TD.

Proof. We first fix N0 ≥ 1, A∗ sufficiently large, and N sufficiently large such
that if the bootstrap smallness parameter ε is sufficiently small, then all of the
estimates proved in the previous subsections hold true on (TBoot, 1] × TD, as long
as the bootstrap assumption (3.9) holds for t ∈ (TBoot, 1]. By standard local well-
posedness, if ε̊ is sufficiently small and C is sufficiently large, then there exists a
minimal time TMin ∈ [0, 1), such that the solution (n, k,γ, e,ω, n, ψ) to the reduced
equations of Proposition 2.2 exists classically for (t, x) ∈ (TMin, 1]×TD and such that
the bootstrap assumptions (3.9) hold with TBoot = TMin and ε := Cε̊. By enlarging
C if necessary, we can assume that C ≥ 2CN,N0,A∗,D,q,σ, where CN,N0,A∗,D,q,σ is
the constant on RHS (5.2). For the reader’s convenience, we now comment on the
“standard local well-posedness” mentioned above. Specifically, readers can consult
[6] for the main ideas behind the proof of local well-posedness in a similar but
distinct elliptic-hyperbolic gauge for Einstein’s equations, or [59, Theorem 14.1] for
a sketch of a proof of local well-posedness in CMC-transported spatial coordinates;
local well-posedness for the equations of Proposition 2.2 can be proved via similar
arguments. We emphasize that, as is stated in Proposition 2.2, solutions to the
reduced equations (including the constraints) are also solutions to the Einstein-
scalar field system (1.1a)–(1.1b), where the spacetime metric can be reconstructed
from the reduced variables via the equations g = −n2dt ⊗ dt + gabdx

a ⊗ dxb and
gij = g(∂i, ∂j) = ωA

i ω
A
j (see (2.7) and (2.3)). Moreover, in view of the norms

defined in Definition 3.1, it is a standard result (again, see [6] for the main ideas)
that if ε is sufficiently small, then either (i) TMin = 0 or (ii) TMin ∈ (0, 1) and the
bootstrap assumptions are saturated on the time interval (TMin, 1], that is,

sup
t∈(TMin,1]

{
D(t) + L(n)(t) +H(n)(t)

}
= ε.(5.59)

The latter possibility is ruled out by inequality (5.2) when ε̊ is small enough. Thus,
TMin = 0. In particular, the solution exists classically for (t, x) ∈ (0, 1] × TD, and
the estimate (5.58) holds for t ∈ (0, 1]. �

5.11. Construction of the initial orthonormal spatial frame. Thus far, we
have not explained how to construct the initial orthonormal spatial frame
{̊eI}I=1,··· ,D on Σ1. To achieve this away from symmetry, we simply apply the
Gram–Schmidt process to the transported spatial coordinate vectorfield frame
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904 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

{∂i}i=1,··· ,D. More precisely, with g̊ denoting the Riemannian metric on Σ1, we
set:

e̊1 :=
∂1√
g̊11

=
∂1√

g̊(∂1, ∂1)
,(5.60a)

E̊M+1 := ∂M+1 −
∑

L=1,··· ,M
g̊cdδ

c
M+1e̊

d
L︸ ︷︷ ︸

g̊(∂M+1,e̊L)

e̊L, M = 1, · · · ,D− 1,(5.60b)

e̊M+1 :=
E̊M+1√

g̊cdE̊c
M+1E̊

d
M+1

, M = 1, · · · ,D− 1.(5.60c)

By construction, for 1 ≤ I, J ≤ D, we have the desired identity g̊(̊eI , e̊J ) = δIJ ,
where δIJ is the Kronecker delta.

In the polarized U(1)-symmetric case withD = 3, we proceed in a similar fashion,
but starting with e̊3 := ∂3√

g̊33
= ∂3√

g̊(∂3,∂3)
. Note that for metrics that are initially

polarized and U(1)-symmetric in the sense described in Lemma 2.3, this Gram–
Schmidt process leads to an initial frame that respects the ∂3 symmetry: L∂3

e̊I = 0
for I = 1, 2, 3. Hence, Lemma 2.4 ensures that throughout the classical evolution,
we have e3 = ∂3√

g33
and L∂3

eI = 0 for I = 1, 2, 3.

5.12. The near-Kasner smallness condition on the geometric initial data.
Before proving our main theorems, we will first define a norm of the “geometric”

initial data (Σ1 = TD, g̊, k̊, ψ̊, φ̊) minus the background Kasner data. The small-
ness of this difference will be sufficient for the validity of our main results. We
highlight that the lapse n is not among the geometric initial data; it is a gauge-
dependent quantity that can be controlled in terms of the geometric data. Then,
in Lemma 5.29, we show that if the geometric data are sufficiently near-Kasner,
then the full data norm D(1) + L(n)(1) + H(n)(1) is small, i.e., we have smallness
not only for the geometric data, but also for all of the gauge-dependent quantities

such as n− 1, eiI − ẽiI , kIJ − k̃IJ , etc.

To proceed, we let (Σ1 = TD, g̊, k̊, ψ̊, φ̊) be a geometric initial data set, as
described in Sect. 1.1. Recall that relative to standard coordinates on T

D, the
Kasner background data (on Σ1) have the following components: g̊KAS

ij := δij ,

k̊KAS
ij := −q̃iδij , ψ̊

KAS := 0, φ̊KAS := B̃, where δij is the Kronecker delta, we do
not sum over repeated underlined indices, and by assumption, the Kasner exponent
constraints (1.7) are satisfied. For N ∈ N, we define the following norm which, rela-
tive to the standard coordinates on TD, measures the perturbation of the geometric
initial data set away from the Kasner background:

α̊ = α̊(N) :=
∑

i,j=1,··· ,D
‖̊gij − δij‖HN+1(TD) +

∑
i,j=1,··· ,D

‖̊kij + q̃iδij‖HN (TD)

+ ‖ψ̊‖HN+1(TD) + ‖φ̊− B̃‖HN (TD).

(5.61)

In Lemma 5.29, we show that the norms appearing in the bootstrap assumptions
(3.9) are initially small, provided α̊ is sufficiently small.

Lemma 5.29 (A near-Kasner smallness condition on the geometric initial data
implies smallness of all reduced solution variables along Σ1). Recall that D(t) is the
total norm of the dynamic variables and that L(n) and H(n) are the norms of the
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STABLE BIG BANG FORMATION 905

lapse (see Definition 3.1). For N ∈ N, we define:

η̊ = η̊(N) := D(1) + L(n)(1) +H(n)(1).(5.62)

Let α̊ be the norm of the perturbation of the geometric initial data away from the
Kasner data, as defined in (5.61). Let {̊eI}I=1,··· ,D be the initial orthonormal
frame constructed in Sect. 5.11, and let the initial lapse n̊ := n|Σ1

be the solution
to the elliptic PDE (2.25) (with t = 1). Fix N0 ≥ 1. There exists a constant
C = CN,N0,D > 0 such that if N is sufficiently large in a manner that depends on
N0 and D, and if α̊ is sufficiently small, then:

η̊ ≤ Cα̊.(5.63)

In particular, since the initial norm ε̊ of the dynamic variables defined in (5.1)
satisfies ε̊ ≤ η̊, it follows from (5.63) that:

ε̊ ≤ Cα̊.(5.64)

Sketch of proof. This is a standard result, so we will only sketch the proof. Through-
out, we will assume that α̊ is sufficiently small. From (5.61), we see that the D×D

matrix g̊ij is equal to the identity matrix up to an error matrix whose components
are bounded in the norm ‖ · ‖HN+1(TD) by � α̊. From this fact, the Gram–Schmidt
process described in Sect. 5.11, and the standard Sobolev calculus (i.e., estimates
of the type appearing in Lemma 4.1), it follows that for 1 ≤ I, i ≤ D, we have
‖̊eiI − δiI‖HN+1(TD) � α̊, where δiI denotes the Kronecker delta. To complete the
proof of (5.63), we must show that when t = 1, the remaining norms in Definition 3.1
are all � α̊. This can be achieved by working relative to the standard spatial co-
ordinates {xi}i=1,··· ,D on Σ1 and using the definition of α̊, the definitions of the
quantities appearing in the norms of Definition 3.1, the standard Sobolev calculus,
and elliptic estimates for the lapse, similar to the ones we used to prove Proposi-
tion 5.3. As one example, we will show that ‖γIJB‖HN (Σ1) � α̊. First, we note that

γIJB|Σ1
= g̊abe̊

c
I(∂ce̊

a
J )̊e

b
B + e̊iI e̊

j
J e̊

b
BΓ̊ibj , where Γ̊ibj = 1

2 {∂ig̊bj + ∂j g̊ib − ∂bg̊ij} are

the (lowered) Christoffel symbols of g̊ relative to the spatial coordinates {xi}i=1,··· ,D
on Σ1. Thus, from this expression for γIJB |Σ1

, definition (5.61), the estimates
‖̊eiI − δiI‖HN+1(TD) � α̊ and ‖̊gij − δij‖HN+1(TD) � α̊, and the standard Sobolev
calculus, we conclude the desired bound ‖γIJB‖HN (Σ1) � α̊. This concludes our
proof sketch. �

6. The two stable blowup theorems

In this section, we prove our two main theorems. The derivation of the a priori
estimate (5.58) was the difficult part of the proof, and based on this estimate, the
proofs of the main results will unfold in a natural fashion.

6.1. Statement of the theorems. In this section, we state the two theorems.
The proofs are located in Sect. 6.4. Before proving the theorems, we will first
establish, in separate sections, some of their key aspects. We start by stating our
main theorem for solutions without symmetry.

Theorem 6.1 (Precise version of stable Big Bang formation without symmetry

assumptions). Let g̃ := −dt⊗ dt+
∑D

I=1 t
2q̃IdxI ⊗ dxI , ψ̃ := B̃ log t be an explicit

generalized Kasner solution on (0,∞)× TD, where the constants {q̃I}I=1,··· ,D and
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906 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

B̃ satisfy the algebraic constraints
∑D

I=1 q̃I = 1 and
∑D

I=1 q̃
2
I = 1 − B̃2 as well as

the following stability condition:

max
I,J,B=1,··· ,D

I<J

{q̃I + q̃J − q̃B} < 1.(6.1)

Note that in the vacuum case, we have B̃ = 0. As we discussed in Sect. 1.5, in
the vacuum case, the set of Kasner solutions satisfying the algebraic constraints
and the condition (6.1) is non-empty when D ≥ 10, while in the presence of a
scalar field, the set of Kasner solutions satisfying the algebraic constraints and the

condition (6.1) is non-empty when D ≥ 3. Let k̃IJ = −q̃IδIJ t
−1 be the components

of the second fundamental form of Σt relative to the Kasner metric, with respect to
the background orthonormal frame vectors ẽI = t−q̃I∂I , where we recall that we do

not sum repeated underlined indices. Let (Σ1 = T
D, g̊, k̊, ψ̊, φ̊) be geometric initial

data (see Sect. 1.1) for the Einstein-scalar field equations verifying the constraint
equations (1.2a)–(1.2b) and the CMC condition trk = −1 (see Remark 1.5), and
let {̊eI}I=1,··· ,D be the initial orthonormal frame (on Σ1) constructed in Sect. 5.11.

Note that ψ̊ = φ̊ = 0 corresponds to the Einstein-vacuum equations. Let:

α̊ :=
∑

i,j=1,··· ,D
‖̊gij − δij‖HN+1(TD) +

∑
i,j=1,··· ,D

‖̊kij + q̃iδij‖HN (TD)

+ ‖ψ̊‖HN+1(TD) + ‖φ̊− B̃‖HN (TD)

(6.2)

denote the norm of the perturbation of the geometric initial data away from the
Kasner data, as defined in (5.61). Assume that:

• N0 ≥ 1 is a fixed positive integer (we are free to choose N0).
• A∗ is sufficiently large in a manner that depends on D and the parameters
q and σ fixed in (3.6).

• N is sufficiently large in a manner that depends on N0, A∗, D, q, and σ.
• α̊ is sufficiently small in a manner that depends on N , N0, A∗, D, q, and
σ.

Then the following conclusions hold.

Existence and norm estimates on (0, 1]× TD. The initial data launch a
unique solution

(n, kIJ ,γIJB , e
i
I ,ω

I
i , ψ)I,J,B,i=1,··· ,D

to the reduced Einstein-scalar field equations of Proposition 2.2 existing on the slab
(t, x) ∈ (0, 1] × TD. Moreover, if we define gij and g in terms of the reduced
variables by gij := ωA

i ω
A
j and g := −n2dt ⊗ dt + gabdx

a ⊗ dxb (where t is the

CMC time function and {xi}i=1,··· ,D are the transported spatial coordinates), then
the tensorfields (g, ψ) are also classical solutions to the Einstein-scalar field system
(1.1a)–(1.1b) on (0, 1]×TD. In addition, there exists a constant C = CN,N0,A∗,D,q,σ
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STABLE BIG BANG FORMATION 907

such that the following estimates hold for t ∈ (0, 1]:
D∑

I,i=1

tq‖eiI − ẽiI‖WN0,∞(Σt)
+

D∑
I,i=1

tq‖ωI
i − ω̃I

i ‖WN0,∞(Σt)

+
D∑

I,J,B=1

tq‖γIJB‖WN0,∞(Σt)
+

D∑
I,J=1

t‖kIJ − k̃IJ‖WN0+1,∞(Σt)

+
D∑

I=1

tq‖eIψ‖WN0,∞(Σt)
+ ‖t∂tψ − B̃‖WN0+1,∞(Σt)

+ t−σ‖n− 1‖WN0+1,∞(Σt)
+

D∑
I

tq−σ‖eIn‖WN0,∞(Σt)

≤ Cα̊,

(6.3a)

D∑
I,i=1

tA∗+q‖eiI − ẽiI‖ḢN (Σt)
+

D∑
I,i=1

tA∗+q‖ωI
i − ω̃I

i ‖ḢN (Σt)

+
D∑

I,J,B=1

tA∗+1‖γIJB‖ḢN (Σt)
+

D∑
I,J=1

tA∗+1‖kIJ‖ḢN (Σt)

+
D∑

I=1

tA∗+1‖eIψ‖ḢN (Σt)
+ tA∗+1‖∂tψ‖ḢN (Σt)

+ tA∗‖n‖ḢN (Σt)
+ tA∗+1‖�en‖ḢN (Σt)

≤ Cα̊.

(6.3b)

Kasner-like behavior. The scalar component functions {tkIJ (t, x)}I,J=1,··· ,D of
the normalized second fundamental form of Σt with respect to the g-orthonormal
frame {eI(t, x)}I=1,··· ,D, as well as the normalized time derivative t∂tψ(t, x) of
the scalar field, have continuous WN0+1,∞(TD) limits, denoted respectively by40{
κ
(∞)
IJ (x)

}
I,J=1,··· ,D

and B(∞)(x), as t ↓ 0. Moreover, the following estimates hold

for t ∈ (0, 1]:

∑
I,J=1,··· ,D

‖tkIJ (t, ·)−κ
(∞)
IJ ‖WN0+1,∞(TD) ≤ Cα̊tσ, ‖t∂tψ(t, ·)−B(∞)‖WN0+1,∞(TD) ≤ Cα̊tσ,

(6.4a)

∑
I,J=1,··· ,D

‖κ(∞)
IJ +q̃IδIJ‖WN0+1,∞(TD) ≤ Cα̊, ‖B(∞)−B̃‖WN0+1,∞(TD) ≤ Cα̊.

(6.4b)

In addition, for each x ∈ TD, the symmetric D×D matrix (−κ
(∞)
IJ (x))I,J=1,··· ,D

has D (possibly repeated) eigenvalues q
(∞)
I (x) – which are the “final” Kasner expo-

nents of the perturbed spacetime – that can be ordered such that:

q
(∞)
1 , · · · , q(∞)

D
∈ C0,1(TD),(6.5)

where C0,1(TD) is the space of Lipschitz-continuous functions on TD. Moreover,
the following estimate holds, where

‖f‖C0,1(TD) := ‖f‖L∞(TD) + sup
x,y∈TD, x�=y

|f(x)− f(y)|
d(x, y)

,

40Here, we are slightly abusing notation by, for example, using the expression κ
(∞)
IJ (x) to

denote the function x → κ
(∞)
IJ (x).
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908 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

and d(x, y) is the Euclidean distance between x and y in TD:

‖q(∞)
I − q̃I‖C0,1(TD) ≤ Cα̊.(6.6)

Moreover, the
{
q
(∞)
I (x)

}
I=1,··· ,D

and B(∞)(x) satisfy the following pointwise alge-

braic relations:
D∑

I=1

q
(∞)
I (x) = 1,

D∑
I=1

[
q
(∞)
I (x)

]2
= 1−

[
B(∞)(x)

]2
.(6.7)

Curvature-blowup. The Kretschmann scalar of g, namely RiemαμβνRiemαμβν ,
blows up as t ↓ 0, as is evident from the following pointwise estimate, valid for
(t, x) ∈ (0, 1]× TD:

RiemαμβνRiemαμβν(t, x)

= 4t−4

⎧⎨⎩
D∑

I=1

[
(q

(∞)
I (x))2 − q

(∞)
I (x)

]2
+

∑
1≤I<J≤D

(q
(∞)
I (x))2(q

(∞)
J (x))2

⎫⎬⎭
+O(α̊t−4+σ)

= 4t−4

⎧⎨⎩
D∑

I=1

[
q̃2I − q̃I

]2
+

∑
1≤I<J≤D

q̃2I q̃
2
J

⎫⎬⎭+O(α̊t−4).

(6.8)

Inextendibility. The spacetime is past-inextendible as a C2 Lorentzian manifold.

Remark 6.2 (No regular limit is claimed for the orthonormal frame vectorfields). De-
spite the convergence of the normalized component functions {tkIJ (t, x)}I,J=1,··· ,D,

our proof does not yield (or require!) that the component functions
{eiI(t, x)}I,i=1,··· ,D of the frame vectorfields with respect to the transported spa-
tial coordinates can be rescaled by powers of t so as to have non-trivial, regular
limits as t ↓ 0.

Remark 6.3 (Sharper asymptotics). Although Theorems 6.1 and 6.6 yield the most
interesting and salient features of the stable blowup, by using the estimates pro-
vided by the theorems, one could try to derive sharper asymptotics for the solution
by treating the evolution equations as ODEs (with derivative-losing source terms),
perhaps also employing a different gauge for the already constructed singular so-
lution. In some symmetric regimes, gauges are known in which one can prove
stability and sharp asymptotics at the level of the metric components. For exam-
ple, in polarized U(1)-symmetry [1],41 the authors proved Big Bang formation and
derived sharp asymptotics for various solution variables by using frames that are
well-adapted to the different Kasner directions. See also the recent works [4, 5] on
the Einstein-vacuum equations in three spatial dimensions, in which the authors
used an areal time foliation to prove stability and sharper asymptotics at the level

41The work [1] is concerned with the near-Schwarzschild black hole interior problem, where
the symmetry class is called “polarized axi-symmetry.” This regime has some analytical common-
alities with the polarized U(1)-symmetric solutions that we treat in Theorem 6.6; see the end of
Sect. 1.8.1.
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STABLE BIG BANG FORMATION 909

of the metric components for a subset of the Kasner solutions near their Big Bang
singularities under polarized T2-symmetric perturbations of the initial data.

Remark 6.4 (In general, no additional regularity is claimed for the final Kasner

exponents). Although κ
(∞)
IJ ∈ WN0+1(TD) (where we assume N0 ≥ 1), in general,

the function space C0,1(TD) in (6.5) and the norm ‖ · ‖C0,1(TD) on LHS (6.6) are

optimal (e.g., they cannot be improved to Cm(TD) for any integer m ≥ 2), due
to the fact that the background solution is allowed to have repeated Kasner expo-
nents. However, by analyzing the dependence of the characteristic polynomial of the
matrix (tkIJ (t, x))I,J=1,··· ,D on the entries tkIJ , we could show that if q̃I �= q̃J for

1 ≤ I < J ≤ D, then the space C0,1(TD) in (6.5) could be replaced with CN0+1(TD)
and the norm ‖·‖C0,1(TD) on LHS (6.6) could be replaced with ‖·‖WN0+1,∞(TD). This
would require an additional smallness assumption on α̊: α̊ � min

1≤I<J≤D
|q̃I − q̃J |.

We thank one of the referees for providing helpful comments tied to this issue.

Remark 6.5. The eigenvectors of the symmetric matrix (κ
(∞)
IJ (x))I,J=1,··· ,D might

fail to be continuous in x, for example, in the case where the q
(∞)
I (x)’s have contact

points of infinite order; see [38, Chapter 2, Example 5.3].

We now state our main theorem for polarized U(1)-symmetric solutions.

Theorem 6.6 (Precise version of stable Big Bang formation for polarized U(1)-
symmetric Einstein-vacuum solutions in 1 + 3 dimensions). Let g̃ = −dt ⊗ dt +
t2q̃1dx1 ⊗ dx1 + t2q̃2dx2 ⊗ dx2 + t2q̃3dx3 ⊗ dx3 be a “background” Kasner solution
on (0,∞)× T3 with Kasner exponents satisfying:

3∑
I=1

q̃I =
3∑

I=1

q̃2I = 1, max
I=1,2,3

q̃I < 1.(6.9)

Let k̃IJ = −q̃IδIJ t
−1 be the components of the second fundamental form of Σt

relative to the Kasner metric, with respect to the background orthonormal frame

vectors ẽI = t−q̃I∂I . Let (Σ1 = T
3, g̊, k̊) be polarized U(1)-symmetric initial data

(see Sects. 1.1 and 1.5.2) for the Einstein-vacuum equations verifying the constraint

equations (1.2a)–(1.2b) (with ψ̊ = φ̊ ≡ 0) and the CMC condition tr̊k = −1 (see

Remark 1.5), and such that X̊ := ∂3 is the hypersurface-orthogonal Killing vec-
torfield of the data. Let α̊ be the norm of the perturbation of the initial data
away from the Kasner data, as defined in (5.61) (where the scalar field data on
RHS (5.61) are vanishing by assumption). Let {eI}I=1,2,3 be the g-orthonormal
frame obtained by constructing the initial orthonormal frame as in Sect. 5.11 and
then using Lemma 2.4 to ensure that throughout the evolution, the corresponding
frame solution to the Fermi–Walker transport equation (2.8) verifies e3 = ∂3√

g33
and

L∂3
eI = 0 for I = 1, 2, 3, where L denotes Lie differentiation. Assume that the

parameters N , N0, A∗, q, σ, α̊ satisfy the assumptions of Theorem 6.1, where in
polarized U(1)-symmetry, q,σ are fixed constants satisfying:

0 < 2σ < 2σ+max{|q̃1|, |q̃2|, |q̃3|} < q < 1− 2σ.(6.10)

Then the conclusions stated in Theorem 6.1 hold for the solution to the reduced
equations of Proposition 2.2 (which also yields a solution to the Einstein-vacuum
equations, i.e., (1.1a) with ψ ≡ 0) that arises from the prescribed polarized U(1)-

symmetric initial data (̊g, k̊). Moreover, the solution is polarized U(1)-symmetric
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910 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

in the sense that relative to the transported spatial coordinates, ∂3 is a hypersurface-
orthogonal Killing vectorfield of the spacetime metric g, and g is of the form (2.37).

6.2. Limiting functions and Kasner-like behavior. In Proposition 6.7, we
show that the scalar functions {tkIJ (t, ·)}I,J=1,··· ,D and t∂tψ(t, ·) have limits in

WN0+1(Td), as t ↓ 0. Moreover, the limiting fields obey a limiting Hamiltonian
constraint equation and exhibit other “Kasner-like” properties.

Proposition 6.7 (Asymptotic, Kasner-like limits). Under the assumptions and
conclusions of Proposition 5.28, the scalar component functions
{tkIJ (t, x)}I,J=1,··· ,D of the normalized second fundamental form of Σt with re-

spect to the g-orthonormal frame {eI(t, x)}I=1,··· ,D and the normalized scalar field
velocity t∂tψ(t, x) have continuous limits in WN0+1,∞(TD), denoted respectively by{
κ
(∞)
IJ (x)

}
I,J=1,··· ,D

and B(∞)(x), as t ↓ 0. Moreover, the following estimates hold:

∑
I,J=1,··· ,D

‖tkIJ(t, ·)− κ
(∞)
IJ ‖WN0+1,∞(TD) � ε̊tσ, ‖t∂tψ(t, ·)−B(∞)‖WN0+1,∞(TD) � ε̊tσ,

(6.11a)

∑
I,J=1,··· ,D

‖κ(∞)
IJ + q̃IδIJ‖WN0+1,∞(TD) � ε̊, ‖B(∞) − B̃‖WN0+1,∞(TD) � ε̊.

(6.11b)

In addition, for each x ∈ TD, the symmetric D×D matrix (−κ
(∞)
IJ (x))I,J=1,··· ,D

has D (possibly repeated) eigenvalues q
(∞)
I (x) – which are the “final” Kasner expo-

nents of the perturbed spacetime – that can be ordered such that q
(∞)
1 , · · · , q(∞)

D
∈

C0,1(TD) (see the discussion surrounding (6.5) for the definition of this function
space and the norm) and such that the following estimate holds:∑

I=1,··· ,D
‖q(∞)

I − q̃I‖C0,1(TD) � ε̊.(6.12)

Moreover, the
{
q
(∞)
I (x)

}
I=1,··· ,D

and B(∞)(x) satisfy the following pointwise

algebraic relations:

D∑
I=1

q
(∞)
I (x) = 1,

D∑
I=1

[
q
(∞)
I (x)

]2
= 1−

[
B(∞)(x)

]2
.(6.13)

Proof. Let {tn}∞n=1 ⊂ (0, 1] be a decreasing sequence of times such that limn→∞ tn
= 0. A straightforward modification of the proof of (5.48), based on the evolu-
tion equation (5.31a) and the estimate (5.58), yields that when 0 < a < b ≤ 1,

we have ‖akIJ (a, ·) − bkIJ (b, ·)‖WN0+1,∞(TD) � ε̊
∫ b

a
s−1+σD(s) ds � ε̊bσ. Hence,

{tnkIJ (tn, ·)}∞n=1 is a Cauchy sequence in WN0+1,∞(TD), and its limit, which we

denote by κ
(∞)
IJ , verifies ‖κ(∞)

IJ − tkIJ (t, ·)‖WN0+1,∞(TD) � ε̊tσ for t ∈ (0, 1]. In par-

ticular, ‖κ(∞)
IJ − kIJ (1, ·)‖WN0+1,∞(TD) � ε̊. Since ‖kIJ (1, ·)+ q̃IδIJ‖WN0+1,∞(TD) =

‖kIJ (1, ·)− k̃IJ‖WN0+1,∞(TD) � ε̊, we infer from the triangle inequality that ‖κ(∞)
IJ +

q̃IδIJ‖WN0+1,∞(TD) � ε̊. We have therefore proved (6.11a) and (6.11b) for κ
(∞)
IJ .

Moreover, the symmetric matrix (κ
(∞)
IJ (x))I,J=1,··· ,D is O(̊ε)-close to the diago-

nal matrix diag(−q̃1, · · · ,−q̃D). Thus, at each fixed x, −(κ
(∞)
IJ (x))I,J=1,··· ,D is

diagonalizable, and by standard perturbation theory (see [63, Equation (3.6) in
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STABLE BIG BANG FORMATION 911

Chapter IV]), its (possibly repeated) eigenvalues qI(x) can be ordered such that

q
(∞)
1 (x), · · · , q(∞)

D
(x) ∈ C0,1(TD) and such that the following pointwise estimate

holds for all x, y ∈ TD:∑
I=1,··· ,D

∣∣∣q(∞)
I (x)− q̃I

∣∣∣ � max
I,J=1,··· ,D

∣∣∣κ(∞)
IJ (x) + q̃IδIJ

∣∣∣ ,(6.14)

∑
I=1,··· ,D

∣∣∣q(∞)
I (x)− q

(∞)
I (y)

∣∣∣ � max
I,J=1,··· ,D

∣∣∣κ(∞)
IJ (x)− κ

(∞)
IJ (y)

∣∣∣ .(6.15)

From (6.14)–(6.15), the standard inequality∣∣∣κ(∞)
IJ (x)− κ

(∞)
IJ (y)

∣∣∣ � ‖κ(∞)
IJ ‖Ẇ 1,∞(TD)d(x, y)

(where d(x, y) is the Euclidean distance between x and y in TD), and the first
estimate in (6.11b), we conclude (6.12).

The convergence results and estimates for t∂tψ can be proved in a similar fashion
by making straightforward modifications to the proof of (5.51).

To derive the first equation in (6.13), we employ the CMC condition (2.17) and

the estimate ‖κ(∞)
IJ − tkIJ (t, ·)‖WN0+1,∞(TD) � ε̊tσ proved above to deduce the

following pointwise estimate:

−1 = ttrk(t, x) = O(̊εtσ) + trκ(∞)(x) = O(̊εtσ)−
D∑

I=1

q
(∞)
I (x),(6.16)

where to obtain the last equality, we used that the trace of the D × D matrix(
κ
(∞)
IJ

)
I,J=1,··· ,D

is the sum of its eigenvalues −q
(∞)
1 , · · · ,−q

(∞)
D

. Taking the limit

t ↓ 0 on RHS (6.16), we obtain the desired equation.
To derive the second equation in (6.13), we multiply the Hamiltonian con-

straint (2.26a) by t2 and use Definition 3.1, the estimate (5.58), the inequali-

ties in (3.6), and the estimates ‖κ(∞)
IJ − tkIJ (t, ·)‖WN0+1,∞(TD) � ε̊tσ and

‖B(∞)−t∂tψ(t, ·)‖WN0+1,∞(TD) � ε̊tσ noted above to deduce the following pointwise
estimate:

1 = t2kCD(t, x)kCD(t, x)− t2 {2eCγDDC − γCDEγEDC − γCCDγEED} (t, x)
+ n−2 [t∂tψ(t, x)]

2 + t2 [eCψ(t, x)] eCψ(t, x)

= κ
(∞)
CD (x)κ

(∞)
CD (x) +

[
B(∞)(x)

]2
+O(̊εtσ) =

D∑
I=1

[
q
(∞)
I (x)

]2
+

[
B(∞)(x)

]2
+O(̊εtσ),

(6.17)

where to obtain the last equality, we used the fact that κ
(∞)
CD (x)κ

(∞)
CD (x) is equal to

the sum of the squares of eigenvalues of the matrix
(
κ
(∞)
IJ

)
I,J=1,··· ,D

. The desired

second equation in (6.13) now follows from taking the limit t ↓ 0 on RHS (6.17).
This completes the proof of the proposition. �

6.3. Monotonic blowup of curvature. In Proposition 6.8, we show that the
Kretschmann scalars of the solutions studied in the present paper blow up like t−4.

Proposition 6.8 (Monotonic blowup of the Kretschmann scalar). Under the as-
sumptions and conclusions of Proposition 5.28, the Kretschmann scalar
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912 G. FOURNODAVLOS, I. RODNIANSKI, AND J. SPECK

RiemαμβνRiemαμβν obeys the following pointwise estimate for (t, x) ∈ (0, 1]×TD,

where the functions
{
q
(∞)
I (x)

}
I=1,··· ,D

are as in the conclusions of Proposition 6.7:

RiemαμβνRiemαμβν(t, x)

= 4t−4

⎧⎨⎩
D∑

I=1

[
(q

(∞)
I (x))2 − q

(∞)
I (x)

]2
+

∑
1≤I<J≤D

(q
(∞)
I (x))2(q

(∞)
J (x))2

⎫⎬⎭
+O(̊εt−4+σ)

= 4t−4

⎧⎨⎩
D∑

I=1

[
q̃2I − q̃I

]2
+

∑
1≤I<J≤D

q̃2I q̃
2
J

⎫⎬⎭+O(̊εt−4).

(6.18)

Proof. We first use the standard symmetries and antisymmetries of the Riemann
curvature tensor of g to compute the following identity for its Kretschmann scalar:

RiemαμβνRiemαμβν = Riem(eA, eI , eB , eJ )Riem(eA, eI , eB , eJ )

+ 4Riem(e0, eI , e0, eJ)Riem(e0, eI , e0, eJ )

− 4Riem(eA, eI , e0, eJ )Riem(eA, eI , e0, eJ ).

(6.19)

Next, using Gauss’ equation (2.29), (2.9), (2.19), Definition 3.1, the estimate (5.58),
the inequalities in (3.6), and the convergence estimate (6.11a) for tkIJ , we derive
the following pointwise estimate:

t2Riem(eA, eI , eB , eJ )

= (tkIJ )(tkAB)− (tkAJ )(tkBI) + t2eAγIJB − t2eIγAJB

− t2γAICγCJB − t2γIJCγABC + t2γIACγCJB + t2γAJCγIBC

= (tkIJ )(tkAB)− (tkAJ )(tkBI) +O(̊ε)tσ = κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI +O(̊ε)tσ.

(6.20)

Similarly, with the help of the Codazzi equations (2.33) and (2.19), we compute the
following pointwise estimate:

t2Riem(eA, eI , e0, eJ )

= t2 {ecA∂ckIJ − ecI∂ckAJ − γAIBkBJ − γAJBkIB + γIABkBJ + γIJBkAB}
= O(̊ε)tσ.

(6.21)

Similarly, with the help of (2.28) and the evolution equation (2.22a), we deduce the
following pointwise estimate:

t2Riem(e0, eI , e0, eJ)

= −tkIJ − (tkIC)(tkCJ )

+ t2 {ecD∂cγIJD − ecI∂cγDJD − γDICγCJD − γDDCγIJC − (eIψ)eJψ}

= −κ
(∞)
IJ − κ

(∞)
IC κ

(∞)
CJ +O(̊ε)tσ.

(6.22)
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Inserting (6.20)–(6.22) into (6.19), we deduce the following pointwise estimate:

RiemαμβνRiemαμβν

= t−4
{(

κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI

)(
κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI

)
+ 4

(
κ
(∞)
IJ + κ

(∞)
IB κ

(∞)
BJ

)(
κ
(∞)
IJ + κ

(∞)
IC κ

(∞)
CJ

)}
+O(̊εt−4+σ).

(6.23)

Consider now the symmetric matrix K :=
(
κ
(∞)
IJ

)
I,J=1,··· ,D

, whose eigenvalues are

−q
(∞)
I , · · · ,−q

(∞)
D

. Using that for m ∈ N, we have tr(Km) =
∑D

I=1

[
−q

(∞)
I

]m
, we

rewrite the expression in braces on RHS (6.23) as follows:

(
κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI

)(
κ
(∞)
IJ κ

(∞)
AB − κ

(∞)
AJ κ

(∞)
BI

)
+ 4

(
κ
(∞)
IJ + κ

(∞)
IB κ

(∞)
BJ

)(
κ
(∞)
IJ + κ

(∞)
IC κ

(∞)
CJ

)
= 2 [tr(KK)]2 + 4tr(KK) + 8tr(KKK) + 2tr(KKKK)

= 4

⎧⎨
⎩

D∑
I=1

[
(q

(∞)
I )2 − q

(∞)
I

]2
+

∑
1≤I<J≤D

(q
(∞)
I )2(q

(∞)
J )2

⎫⎬
⎭ .

(6.24)

Combining (6.23)–(6.24), we arrive at the first equality stated in (6.18). To prove
the second equality stated in (6.18), we simply use (6.11b) to replace all factors

of κ
(∞)
IJ on RHS (6.23) with −q̃IδIJ up to O(̊ε) error terms (which, in view of the

factor of t−4 in front of the braces in (6.23), leads to the error term O(̊εt−4) on
RHS (6.18)). This completes the proof of the proposition. �

6.4. Proof of Theorems 6.1 and 6.6. We first prove Theorem 6.1. The con-
clusions regarding existence and norm estimates, generalized Kasner behavior, and
blowup of curvature follow from Propositions 5.28, 6.7, and 6.8, and the estimate
(5.64). The C2-inextendibility is a direct consequence of the curvature-blowup.

To prove Theorem 6.6, we simply note that the polarized U(1)-symmetric so-
lutions satisfy the same estimates as the solutions from Theorem 6.1. Hence, the
same arguments used to prove Theorem 6.1 also yield Theorem 6.6. Finally, we
note that the symmetry properties of polarized U(1)-symmetric solutions relative
to CMC-transported spatial coordinates stated in the conclusions of the theorem
are provided by Lemma 2.3.
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