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Abstract

Faced with massive data, subsampling is a commonly used technique to improve
computational efficiency, and using nonuniform subsampling probabilities is an effective
approach to improve estimation efficiency. For computational efficiency, subsampling
is often implemented with replacement or through Poisson subsampling. However, no
rigorous investigation has been performed to study the difference between the two sub-
sampling procedures such as their estimation efficiency and computational convenience.
This paper performs a comparative study on these two different sampling procedures.
In the context of maximizing a general target function, we first derive asymptotic
distributions for estimators obtained from the two sampling procedures. The results
show that the Poisson subsampling may have a higher estimation efficiency. Based
on the asymptotic distributions for both subsampling with replacement and Poisson
subsampling, we derive optimal subsampling probabilities that minimize the variance
functions of the subsampling estimators. These subsampling probabilities further re-
veal the similarities and differences between subsampling with replacement and Poisson
subsampling. The theoretical characterizations and comparisons on the two subsam-
pling procedures provide guidance to select a more appropriate subsampling approach
in practice. Furthermore, practically implementable algorithms are proposed based
on the optimal structural results, which are evaluated through both theoretical and
empirical analyses.
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1 Introduction

With fast development of technology, data collecting is becoming easier and easier, and
the volumes of available data sets are increasing exponentially. To extract useful information
from these massive data, a major challenge lies with the thirst for computing resources.
Subsampling is a commonly used technique to reduce computational burden, and it has been
an important topic in computer science and statistics with a long standing of literature, such
as Drineas et al. (2006a,b,c), Mahoney & Drineas (2009), Drineas et al. (2011), Mahoney
(2011), Clarkson & Woodruff (2013), Kleiner et al. (2014), McWilliams et al. (2014), Yang
et al. (2016).

To improve the estimation efficiency1, nonuniform subsampling probabilities are often
used so that more informative data points are sampled with higher probabilities. A popular
choice is the leverage-based subsampling in which the subsampling distribution is the nor-
malized statistical leverage scores of the design matrix (Drineas et al. 2012, Ma et al. 2015).
Yang et al. (2015) showed that if statistical leverage scores are very nonuniform, then using
their normalized square roots as the subsampling distribution yields better approximation.
For logistic regression, Wang et al. (2018) derived an optimal subsampling distribution that
minimizes the asymptotic variance of the subsampling estimator, and Wang (2019) further
developed a more efficient estimation approach based on the selected subsample. Ting &
Brochu (2018) investigated optimal subsampling with influence functions. Wang et al. (2019)
proposed a method called information-based optimal subdata selection which selects data
points deterministically for linear regression. The subsampling approach has a close connec-
tion to the technique of coreset approximation (Campbell & Broderick 2018, 2019), which
also use a subset of the data with associated weights instead of the full data to reduce calcu-
lations. The coreset approximation is often used in Bayes analysis and the problem is often
to better approximate the objective function in a functional space, while this paper focuses
on approximating the full data estimator.

For computational efficiency, subsampling is often implemented with replacement or
through Poisson subsampling. Subsampling with replacement needs to use all subsampling
probabilities simultaneously to generate random numbers from a multinomial distribution.
The resultant subsample observations are independent and identically distributed (i.i.d.)
conditional on the full data, but their unconditional distributions are not independent. Pois-

1The estimation efficiency is different from that discussed in Chapter 8 of van der Vaart (1998), which
focuses on achieving the asymptotic lower bound of regular estimators. Here we focus on taking a sub-
sample that better approximates the full data estimator, and we consider it with computational efficiency
simultaneously.
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son subsampling considers each data point and determines if it should be included in the
subsample by generating a random number from the uniform distribution. If the subsam-
pling probabilities in Poisson subsample are all equal, then the subsampling procedure is
also called the Bernoulli subsampling (Särndal et al. 2003). For Poisson subsampling, the
resultant subsample observations do not have identical conditional distributions, but their
unconditional distributions can be independent.

Although subsampling with replacement and Poisson subsampling are commonly used in
practice, no rigorous investigation has been performed to compare them, especially in the
context of optimal subsampling. When they perform similarly and when one is preferable to
the other? This paper studies this topic, and has the following major contributions. 1) In the
context when an estimator is obtained by maximizing a target function, we first derive condi-
tional and unconditional asymptotic distributions for estimators from both subsampling with
replacement and Poisson subsampling. These asymptotic distributions accurately character-
ize the subsampling approximation errors, and we derive general structure results of optimal
subsampling probabilities to minimize these errors for the two subsampling procedures. 2)
We systematically compare subsampling with replacement and Poisson subsampling, both
theoretically and empirically. We identify conditions when the asymptotic distributions for
subsampling with replacement and for Poisson subsampling are the same, and when they are
different. We also discuss the similarity and difference for the two subsampling procedures in
terms of the structural results of optimal subsampling probabilities. 3) Based on the optimal
subsampling probabilities, we propose practical algorithms and evaluate their performance
through both theoretical analysis and numerical experiments.

It is worth mentioning that our investigation views subsampling as a computational tool
and investigates it within a statistical framework. For computer scientists, subsampling is a
commonly used randomized device to speed up computing by using a subsample estimator
to approximate the full data estimator (e.g., McWilliams et al. 2014, Woodruff et al. 2014),
while for statisticians resampling is widely adopted in exchangeable bootstrap schemes to
build confidence regions (e.g., Shao & Tu 1995, Politis et al. 1999). This paper lies in
the middle of these two communities. We derive asymptotic distributions of subsampling
estimators in a similar fashion to existing literature on bootstrap. However, our purpose is
not to establish the bootstrap consistency. Instead, we utilize the asymptotic distributions to
develop better subsampling probabilities so that the subsample estimator better approximate
the full data estimator. In addition, we focus on data dependent subsampling probabilities
for which existing investigations and techniques on bootstrap do not apply because they
require data independent and exchangeable sampling weights (Præstgaard & Wellner 1993,
Cheng & Huang 2010).
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The rest of the paper is organized as follows. We present the model setup and asymptotic
distributions in Section 2. In Section 3, we derive optimal subsampling probabilities and
propose practical algorithms. We will also obtain theoretical properties for the practical
algorithms. In Section 4, we perform numerical experiments demonstrating the performance
of the proposed methods. Proofs of our theoretical results are provided in the appendix.

Here are some notation conventions to be used in the paper. We use ∗ to indicate subsam-
ple quantities; useˆto indicate full data estimator; use˜to indicate subsample estimator; use

R and P to indicate subsampling with replacement and Poisson subsampling, respectively;
use ṁ and m̈ to denote the gradient and Hessian matrix of a function m with respect to the
parameter θ; use oP (1) or OP (1) to denote a sequence that converges to zero in probability
or is bounded in probability, respectively; use ⇝ to denote convergence in distribution; use
∥v∥ to denote the Euclidean norm of a vector v; and use ∥A∥ to denote the Frobenius norm
of a matrix A.

2 Problem setup and asymptotic distributions

Suppose that a set of training data Dn = {Zi}ni=1 consists of independent observations
from the distribution that generates Z. To estimate some parameter θ ∈ Rd about the data
distribution, we want to calculate θ̂n, the maximizer of

Mn(θ) =
1

n

n∑
i=1

m(Zi,θ).

Here the dimension of Zi does not have to be the same as θ, e.g., in softmax regression.
Usually, there is no closed-form solution to θ̂n, and an iterative algorithm is required to find
the solution numerically. For massive data, iterative calculations on the full data of size
n are often too expensive, so subsampling is adopted to produce a subsampling estimator
θ̃ to approximate θ̂n. Nonuniform subsampling probabilities are often used to improve the
estimation efficiency.

Let π = {πn,i}ni=1 be a subsampling distribution such that πn,i > 0 and
∑n

i=1 πn,i = 1.
For Poisson subsampling, we further assume that πn,i ≤ s−1

n , where sn is the expected
subsample size. As stated early, we use ∗ to indicate quantities with randomness due to
subsampling. For instance, let Z∗

1 , ..., Z
∗
sn denote the resampled sample and let π∗

n,1, ..., π
∗
n,sn

be the corresponding resampled subsampling probabilities.
We present the general subsampling estimators θ̃sn,R based on subsampling with replace-

ment and θ̃sn,P based on Poisson subsampling, comparatively, in the following Algorithm 1.
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Algorithm 1 Subsampling with replacement vs Poisson subsampling
Sampling with replacement

• Calculate π = {πn,i}ni=1 based on Dn;

• generate sn independent random num-
bers from multinomial distribution with
π to determine a subsample D∗

sn =

{Z∗
1 , Z

∗
2 , ..., Z

∗
sn};

• record {π∗
n,1, π

∗
n,2, ..., π

∗
n,sn} in the sub-

sample;

• obtain the subsample estimator

θ̃sn,R = argmax
θ

sn∑
i=1

m(Z∗
i ,θ)

nsnπ∗
n,i

. (1)

Poisson Sampling:

• For each i = 1, ..., n, calculate an indi-
vidual πn,i such that πn,i ≤ s−1

n based
on Zi;

• generate ui ∼ U(0, 1);

• if ui ≤ snπn,i, include Zi in the subsam-
ple and record πn,i;

• obtain the subsample estimator

θ̃sn,P = argmax
θ

s∗n∑
i=1

m(Z∗
i ,θ)

ns∗nπ
∗
n,i

. (2)

Remark 1. In Algorithm 1, we see that subsampling with replacement requires to access the
whole sampling distribution π = {πn,i}ni=1, i.e., all πn,i’s, because they are the parameters
in the multinomial distribution from which random numbers are generated. On the other
hand, Poisson subsampling only needs to access one πn,i in each sampling consideration. This
makes the Poisson subsampling more convenient to implement, especially when the available
memory cannot hold all πn,i’s or in distributed computing platforms. For subsampling with
replacement, the subsample size is equal to sn and there may be replicates in the subsample.
Here πn,i is the probability that observation Zi is selected when only one data point is
selected, and the probability to include Zi in the subsample of size sn is 1 − (1 − πn,i)

sn ,
which is smaller than snπn,i. For Poisson subsampling, the subsample size s∗n is random with
E(s∗n) = sn; there is no replicates in the subsample; and snπn,i is the probability of including
Zi in the subsample of expected size sn.

Remark 2. Another way of implementing Poisson subsampling is to remove the condition
of πn,i ≤ s−1

n and replace πn,i with min(snπn,i, 1). The expected subsample size from this
approach would be difficult to determine as πn,i’s are often calculated on the go as scanning
through the full data. We only know that the expected subsample size would be smaller than
sn. In this paper, we focus on the Poisson subsampling procedure described in Algorithm 1.

We now derive asymptotic properties of θ̃sn,R in (1) and θ̃sn,P in (2), respectively, to
compare their estimation efficiency theoretically. We need some regularity assumptions listed
below.
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Assumption 1. The parameter θ belongs to a compact set.

Assumption 2. The function m(Z,θ) is a concave function of θ with a unique and finite
maximum, and it satisfies that E{m2(Z,θ)} <∞ for any θ.

Assumption 3. The matrix −E{m̈(Z,θ)} is positive-definite, E{m̈2
k,l(Z,θ)} < ∞, and

m̈(Z,θ) is Lipschitz continuous in θ so that there exists a function ψ(z) with E{ψ2(Z)} <∞
and for every θ1 and θ2, |m̈k,l(z,θ1)− m̈k,l(z,θ2)| ≤ ψ(z)∥θ1 − θ2∥, k, l = 1, 2, ..., d.

Assumption 4. The matrix Λ(θ) = E{ṁ(Z,θ)ṁT(Z,θ)} is positive-definite, and for θ in
the neighborhood of θ̂n, 1

n

∑n
i=1 ∥ṁ(Zi,θ)∥4 = OP (1).

Assumption 5. The sampling distribution π satisfies that maxi=1,...,n(nπn,i)
−1 = OP (1).

Assumptions 1 and 2 are very mild, and they assure that the target function has a
finite and unique maximum. Assumptions 3 and 4 impose some constraints on the Hessian
matrix and gradient of m(Z,θ); Assumption 3 is used to prove the consistency of subsample
estimators and Assumption 4 is used to establish the asymptotic normality of subsample
estimators. Assumption 5 essentially requires that the minimum subsampling probability
is at the same order of 1

n
in probability. Here, πn,i can be random as it is allowed to

depend on the data, so the notation OP (1) is used. This assumption is required so that the
objective function based on a subsample would not be dominated by data points with very
small πn,i’s. Very small πn,i’s may not matter when characterizing the worst-case bound,
e.g., Drineas et al. (2012), but they do impact the statistical properties of subsampling
algorithms. Due to this, Ma et al. (2015) proposed the “shrinkage” leverage scores to prevent
the statistical performance of algorithmic leveraging algorithm from being deteriorated by
very small leverage scores.

Let θ0 = argmaxθ E{m(Z,θ)} be the true parameter that generates the data. The
following proposition is a known result (see, e.g., Chapter 5 of van der Vaart 1998).

Proposition 1. Under Assumptions 1 and 3, if Λ(θ) is positive-definite (the first part of
Assumption 4), then

√
n(θ̂n − θ0)⇝ N{0, V (θ0)},

where V (θ) = M̈−1(θ)Λ(θ)M̈−1(θ) and M(θ) = E{m(θ, Z)}.

To assess the distributional properties of subsample estimators, we need to derive the
distribution asymptotically, i.e., to assume that sn → ∞ and n → ∞. We assume that
sn < n, because a primary goal of subsampling is to reduce the subsample size, but we do
not require sn = o(n).
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We define some notations for convergence in conditional distribution and probability
before presenting our results. Let ∆n,sn be a vector function of a subsample of size sn from
the full data Dn, e.g., a subsample estimator. We say that ∆n,sn converges in conditional
probability given Dn in probability and write it as ∆n,sn = oP |Dn(1), if P(∥∆n,sn∥ > δ|Dn) =

oP (1) for any δ > 0; this can be equivalently stated as for any δ > 0 and ϵ > 0, as sn → ∞
and n→ ∞,

P
{
P(∥∆n,sn∥ > δ|Dn) ≤ ϵ

}
→ 1.

We say that ∆n,sn is bounded in conditional probability given Dn in probability and write
it as ∆n,sn = OP |Dn(1), if for any ϵ > 0 there exists a 0 < Kϵ <∞ such that as sn → ∞ and
n→ ∞,

P
{
P(∥∆n,sn∥ > Kϵ|Dn) ≤ ϵ

}
→ 1.

We say that ∆n,sn (of dimension d) converges in conditional distribution to a continuous

random vector U given Dn in probability and denote this as ∆n,sn

|Dn
⇝ U , if P(∆n,sn ≤

x|Dn) − P(U ≤ x) = oP (1) for every x ∈ Rd; this can also be stated as that for any ϵ > 0

and every x ∈ Rd, as sn → ∞ and n→ ∞,

P
{∣∣∣P(∆n,sn ≤ x|Dn)− P(U ≤ x)

∣∣∣ ≤ ϵ
}
→ 1.

Proposition 2. The following results hold for conditional convergence.

(a) If ∆n,sn = oP |Dn(1) then ∆n,sn = oP (1), and vice versa.

(b) If ∆n,sn = OP |Dn(1) then ∆n,sn = OP (1), and vice versa.

(c) If ∆n,sn

|Dn
⇝ U then ∆n,sn ⇝ U , and vice versa.

The following Theorems 1 and 2 present conditional asymptotic distributions of θ̃sn,R in
(1) and θ̃sn,P in (2), respectively, when approximating the full data estimator θ̂n.

Theorem 1. Under Assumptions 1-5, as sn → ∞ and n → ∞, the estimator θ̃sn,R in (1)
satisfies that

√
sn{Vn,R(θ̂n)}−1/2(θ̃sn,R − θ̂n)

|Dn
⇝ N(0, Id), (3)

where N(0, Id) is a multivariate Gaussian distribution with mean 0 and variance Id (the
identity matrix of dimension d), Vn,R(θ) = M̈−1

n (θ)Λn,R(θ)M̈
−1
n (θ),

M̈n(θ) =
1

n

n∑
i=1

m̈(Zi,θ), and Λn,R(θ) =
1

n2

n∑
i=1

ṁ(Zi,θ)ṁ
T(Zi,θ)

πn,i
. (4)
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Theorem 2. Under Assumptions 1-5, as sn → ∞ and n → ∞, the estimator θ̃sn,P in (2)
satisfies that,

√
sn{Vn,P (θ̂n)}−1/2(θ̃sn,P − θ̂n)

|Dn
⇝ N (0, Id) , (5)

where Vn,P (θ) = M̈−1
n (θ)Λn,P (θ)M̈

−1
n (θ), M̈n(θ) is the same as in (4), and

Λn,P (θ) = Λn,R(θ)−
sn
n2

n∑
i=1

ṁ(Zi,θ)ṁ
T(Zi,θ). (6)

Remark 3. The asymptotic distributions in (3) and (5) mean that given a full data set for
any δ > 0, the probability that ∥θ̃sn,R − θ̂n∥ > δ is accurately approximated by P(∥UR∥ >
δ) where UR ∼ N{0, Vn,R(θ̂n)}, and the probability that ∥θ̃sn,P − θ̂n∥ > δ is accurately
approximated by P(∥UP∥ > δ) where UP ∼ N{0, Vn,P (θ̂n)}. Thus, a smaller variance means
a smaller probability of excess error at the same error bound, or a smaller error bound for
the same excess probability.

Remark 4. Both θ̃sn,R and θ̃sn,P have Gaussian asymptotic distributions, but they have
different asymptotic variances Vn,R(θ̂n) and Vn,P (θ̂n), respectively. Under Assumption 4, the
second term on the right-hand-side of (6) goes to zero in probability if sn/n → 0, and it
converges to a positive-definite matrix in probability if sn/n → c > 0. Thus, the difference
Vn,R(θ̂n) − Vn,P (θ̂n) → 0 in probability if sn/n → 0, and it converges to a positive-definite
matrix in probability if sn/n converges to a positive constant. This means that subsampling
with replacement and Poisson subsampling have the same asymptotic estimation efficiency
only if the subsampling ratio sn/n goes to zero; otherwise, Poisson subsampling has a higher
estimation efficiency. Thus, to obtain more accurate estimates in practice, Poisson subsam-
pling is recommended unless the subsampling ratio sn/n is very small.

Remark 5. If the sampling distribution π is constructed so that Λn,R(θ) → Λ(θ) in proba-
bility uniformly in a neighborhood of θ0, then Vn,R(θ̂n) and (1− c)−1Vn,P (θ̂n) both converge
in probability to V (θ0), the scaled asymptotic variance of θ̂. This means both subsample
estimators have the bootstrap consistency in this scenario. A class of sampling distributions
satisfies this situation if π does not dependent on the data, such as the class of exchange-
able bootstrap weights which includes the uniform sampling distribution (see Præstgaard &
Wellner 1993, Cheng & Huang 2010). However if π depends on the data, then Λn,R(θ) may
not converge to Λ(θ) 2, and in this case the subsample estimators do not have the bootstrap
consistency. The goal of this paper is different from the line of research about bootstrap

2This is still possible in some special cases such as the local case control subsampling for logistic regression
(Fithian & Hastie 2014, Wang 2019).
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that focuses on constructing conference region nor approximating complicated distributions
(see Bickel et al. 1997, Politis et al. 1999), so bootstrap inconsistency is not a concern. Nev-
ertheless, if multiple subsamples are taken, then the average of the subsample estimates is
recommended and the variance can be estimated from these subsample estimates using the
approach proposed in Wang & Ma (2021).

Although the convergence in conditional distribution
|Dn
⇝ can be replaced by ⇝ because

of Proposition 2 (c), Theorems 1 and 2 are about approximating the full data estimator
and they are conditional results in nature. In the following, we derive the unconditional
asymptotic distribution when the true parameter is of interest to further compare the two
subsampling approaches.

Theorem 1’. Under Assumptions 1-5, if Λn,R(θ0) converges to a positive-definite matrix
Λπ(θ0) as sn → ∞ and n→ ∞, then the estimator θ̃sn,R in (1) satisfies that

√
sn(θ̃sn,R − θ0)⇝ N

{
0, V U

R (θ0)
}
,

where V U
R (θ) = M̈−1(θ)ΛU

R(θ)M̈
−1(θ), ΛU

R(θ) = Λπ(θ) + cΛ(θ), and c = lim sn
n
.

Theorem 2’. Under Assumptions 1-5, if Λn,R(θ0) converges to a positive-definite matrix
Λπ(θ0) as sn → ∞ and n→ ∞, then the estimator θ̃sn,P in (2) satisfies that

√
sn(θ̃sn,P − θ0)⇝ N

{
0, V U

P (θ0)
}
,

where V U
P (θ) = M̈−1(θ)Λπ(θ)M̈

−1(θ).

Remark 6. In Theorems 1’ and 2’, the unconditional asymptotic distributions of θ̃sn,R and
θ̃sn,P for estimating the true parameter are also Gaussian with (scaled) variances V U

R (θ0) and
V U
P (θ0), respectively. From the two theorems, we see that V U

R (θ0) = V U
P (θ0)+cV (θ0), where

V (θ0) is the scaled asymptotic variance for the full data estimator in Propositio 1. Here,
V U
P (θ0) can be interpreted as the variation due to subsampling and cV (θ0) can be interpreted

as the variation due to the randomness of the full data. It is interesting to note that the
asymptotic variance components due to the two sources are additive for the subsampling with
replacement estimator θ̃sn,R, while cV (θ0) does not contribute to the asymptotic variance of
the Poisson subsampling estimator θ̃sn,P .

3 Optimal subsampling probabilities

From the results in Theorems 1 and 2, the asymptotic variances Vn,R(θ̂n) and Vn,P (θ̂n)

depend on π = {πn,i}ni=1. To improve the estimation efficiency, we want to choose optimal π
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to minimize Vn,R(θ̂n) or Vn,P (θ̂n). Specifically, we consider the L-optimality criterion (Sec-
tion 10.5 of Atkinson et al. 2007). The L-optimality minimizes the trace of the asymptotic
variance matrix for some linear transformation, say L, of the parameter estimator. For our
case, this is to minimize tr{LVn,R(θ̂n)L

T} or tr{LVn,P (θ̂n)L
T} for some matrix L, because

LVn,R(θ̂n)L
T and LVn,P (θ̂n)L

T are the asymptotic variances of Lθ̃sn,R and Lθ̃sn,R, respec-
tively. If we take L = I, then the resulting criterion is also called the A-optimality; this
is to minimize the average of the variances for all parameter components by minimizing
the trace of the variance matrix, i.e., minimizing tr{Vn,R(θ̂n)} or tr{Vn,P (θ̂n)}. If we take
L = M̈n(θ̂n), then the resultant criterion is to minimize tr{Λn,R(θ̂n)} or tr{Λn,P (θ̂n)}. This
has a computational advantage compared with other choices, so we focus more on this choice
in this paper. The following Theorems 3 and 4 present the optimal subsampling probabilities
for subsampling with replacement and Poisson subsampling, respectively.

Theorem 3. For the subsampling with replacement estimator in (1), the L-optimal subsam-
pling probabilities with L = M̈n(θ̂n) that minimize tr{Λn,R(θ̂n)} are

πopt
n,Ri =

∥ṁ(Zi, θ̂n)∥∑n
j=1 ∥ṁ(Zj, θ̂n)∥

, i = 1, ..., n. (7)

Theorem 4. For the Poisson subsampling estimator in (2), the L-optimal subsampling prob-
abilities with L = M̈n(θ̂n) that minimize tr{Λn,P (θ̂n)} are

πopt
n,P i =

∥ṁ(Zi, θ̂n)∥ ∧H∑n
j=1{∥ṁ(Zj, θ̂n)∥ ∧H}

, i = 1, ..., n, (8)

where a ∧ b = min(a, b),

H =

∑n−g
i=1 ∥ṁ(Z, θ̂n)∥(i)

sn − g
, (9)

∥ṁ(Z, θ̂n)∥(1) ≤ ... ≤ ∥ṁ(Z, θ̂n)∥(n) are the order statistics of ∥ṁ(Z1, θ̂n)∥, ..., ∥ṁ(Zn, θ̂n)∥,
and g is an integer such that

∥ṁ(Z, θ̂n)∥(n−g)∑n−g
i=1 ∥ṁ(Z, θ̂n)∥(i)

<
1

sn − g
and

∥ṁ(Z, θ̂n)∥(n−g+1)∑n−g+1
i=1 ∥ṁ(Z, θ̂n)∥(i)

≥ 1

sn − g + 1
, (10)

in which we define ∥ṁ(Z, θ̂n)∥(n+1) = ∞.

Remark 7. For a general choice of L, we can obtain optimal subsampling probabilities by
replacing ∥ṁ(Zi, θ̂n)∥ with ∥ṁ(Zi, θ̂n)∥L = ∥LM̈−1

n (θ̂n)ṁ(Zi, θ̂n)∥. However, these quan-
tities require O(nd2) time to compute when M̈−1

n (θ̂n) and ṁ(Zi, θ̂n) are available, where
n is the full data sample size and d is dimension of θ̂n. On the other hand, it only takes
O(nd) time to compute all ∥ṁ(Zi, θ̂n)∥’s. Thus the choice of L = M̈n(θ̂n) has a significant
computational advantage.
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Remark 8. In Theorems 3 and 4, πopt
n,Ri in (7) and πopt

n,P i in (8) have both similarities and
differences. Assuming that ∥ṁ(Zi, θ̂n)∥ > 0 for all i, then 0 < πopt

n,Ri < 1 while 0 < πopt
n,P i ≤

1
sn

. This means that the inclusion of any data point through optimal subsampling with
replacement is random, while the inclusion of data points with πopt

n,P i =
1
sn

is deterministic
through optimal Poisson subsampling. The order statistics constraint in (10) indicates that if
there are data points such that sn

n
∥ṁ(Zi, θ̂n)∥ > 1

n

∑n
j=1 ∥ṁ(Zj, θ̂n)∥, then πopt

n,Ri and πopt
n,P i are

different. This means that if the subsampling ratio sn
n

is larger or if the tail of the distribution
of ∥ṁ(Z, θ̂n)∥ is heavier, then optimal probabilities for Poisson subsampling and subsampling
with replacement are more likely to be different. If sn∥ṁ(Z, θ̂n)∥(n) <

∑n
i=1 ∥ṁ(Zi, θ̂n)∥,

then πopt
n,Ri and πopt

n,P i are identical. This condition is true with probability approaching one
under some conditions, e.g., when sn log n = o(n) and the distribution of ∥ṁ(Z, θ̂n)∥ has a
sub-Gaussian tail because in this case sn

n
∥ṁ(Z, θ̂n)∥(n) = oP (1) and 1

n

∑n
i=1 ∥ṁ(Zi, θ̂n)∥ goes

to a positive constant in probability.

Remark 9. In Theorem 4, H is the threshold so that all πopt
n,P i are no larger than 1

sn
, and it

satisfies that
∥ṁ(Z, θ̂n)∥(n−g) < H ≤ ∥ṁ(Z, θ̂n)∥(n−g+1). (11)

Here g is the number of cases that πopt
n,P i =

1
sn

, i.e., the number of data points that will be
included in the subsample for sure.

Now we discuss an example to illustrate the optimal structural results. Additional ex-
amples are available in Section A.2 of the Appendix.

Example 1 (Binary response models). Consider a binary classification model such that

P(yi = 1) = p(xi,θ), i = 1, ..., n,

where yi ∈ {0, 1} is the binary class label, xi is the covariate, and θ is the unknown pa-
rameter. To estimate θ using the maximum likelihood estimator (MLE), let Zi = (xi, yi)

and

m(Zi,θ) = yi log{p(xi,θ)}+ (1− yi) log{1− p(xi,θ)}.

Direct calculations yield that

ṁ(Zi, θ̂n) =
yi − p̂i
p̂i(1− p̂i)

ˆ̇pi, and ∥ṁ(Zi, θ̂n)∥ =
|yi − p̂i|
p̂i(1− p̂i)

∥ ˆ̇pi∥, (12)

where p̂i = p(xi, θ̂n), and ˆ̇pi = ṗ(xi, θ̂n) is the gradient of p(xi,θ) evaluated at θ̂n. We can
obtain optimal sampling probabilities by inserting the expression in (12) into Theorems 3
and 4.
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To obtain the general L-optimal subsampling probabilities with any L, the Hessian matrix
m̈(Zi, θ̂) of m(Zi, θ̂) is

m̈(Zi, θ̂) =
yi − p̂i
p̂i(1− p̂i)

ˆ̈pi −
{ yi
p̂2i

+
1− yi

(1− p̂i)2

}
ˆ̇pi ˆ̇p

T
i , (13)

where ˆ̈pi = p̈(xi, θ̂n) is the Hessian matrix of p(xi,θ) evaluated at θ̂n. Thus, we obtain the
general L-optimal sampling probabilities by using

∥ṁ(Zi, θ̂n)∥L =
|yi − p̂i|
p̂i(1− p̂i)

∥LM̈−1
n (θ̂n)ˆ̇pi∥, (14)

to replace ∥ṁ(Zi, θ̂n)∥ in Theorems 3 and 4, for any L, where

M̈n(θ̂n) =
n∑

i=1

yi − p̂i
p̂i(1− p̂i)

ˆ̈pi −
n∑

i=1

{ yi
p̂2i

+
1− yi

(1− p̂i)2

}
ˆ̇pi ˆ̇p

T
i . (15)

Under some regularity conditions, 1
n

∑n
i=1

yi−p̂i
p̂i(1−p̂i)

ˆ̈pi is a small term in (15), and therefore
M̈n(θ̂n) in (14) can be replaced by

M̈a
n(θ̂n) = − 1

n

n∑
i=1

{ yi
p̂2i

+
1− yi

(1− p̂i)2

}
ˆ̇pi ˆ̇p

T
i . (16)

Thus, there is no need to calculate the Hessian matrix ˆ̈pi.
From (12) or (14), the optimal subsampling probabilities are proportional to |yi − p̂i|.

Thus if yi = 1, data points with smaller values of p̂i are sampled with higher probabilities;
if yi = 0, data points with larger values of p̂i are sampled with higher probabilities. The
optimal subsampling probabilities give higher preference to data points that are closer to
the class boundary. This increases the classification accuracy because if these data points
can be classified correctly, then other data points are easier to classify.

Specifically for Logistic regression in which

p(xi,θ) =
ex

T
i θ

(1 + ex
T
i θ)

,

we have ˆ̇pi = p̂i(1− p̂i)xi and ˆ̈pi = p̂i(1− p̂i)(1− 2p̂i)xix
T
i . Thus, for this case

∥ṁ(Zi, θ̂n)∥ = |yi − p̂i|∥xi∥, and (17)

∥ṁ(Zi, θ̂n)∥L = |yi − p̂i|∥LM̈−1
n (θ̂n)xi∥, with M̈n(θ̂n) = − 1

n

n∑
i=1

p̂i(1− p̂i)xix
T
i . (18)

If the expression in (17), or the expression in (18) with L = I, is used in Theorems 3, the
structural results for optimal probabilities of subsampling with replacement are identical to

12



those in Wang et al. (2018). If (16) is used, then the expression of M̈a
n(θ̂n) is M̈a

n(θ̂n) =

− 1
n

∑n
i=1(yi − p̂i)

2xix
T
i , which has the same limit as M̈n(θ̂n) in (18).

From Theorem 4 we see that if there are data points such that sn
n
|yi − p̂i|∥xi∥ >

1
n

∑n
j=1 |yj − p̂j|∥xj∥, then optimal probabilities for Poisson subsampling are different from

that for subsampling with replacement.

3.1 Practical algorithms

The optimal subsampling probabilities depend on the full data estimator θ̂n, so the
structural results in the previous section do not translate into useful algorithms directly.
We need a pilot estimator to approximate the optimal subsampling probabilities in order to
obtain practically implementable algorithms. This can be done by taking a pilot subsample of
size s0 through a subsampling distribution that does not depend on θ̂n. For simplicity, we use
the uniform subsampling distribution πuni = {πn,i = 1

n
}ni=1, and present the approximated

optimal subsampling with replacement procedure in Algorithm 2.
Compared with the exact πopt

n,Ri, the approximated π̃opt
n,Ri in (20) are subject to additional

disturbance due to the randomness of θ̃0∗
s0,R

, the maximizer of (19). From Theorem 1, the
subsampling probabilities are in the denominators of Λn,R(θ̂n). Thus the additional distur-
bance may be amplified for data points with πopt

n,Ri being close to zero, and this may inflate
the asymptotic variance of the subsample estimator. To protect the estimator from these
data points, we adopt the idea of defensive importance sampling (Hesterberg 1995, Owen &
Zhou 2000) and mix the approximated optimal subsampling distribution with the uniform
subsampling distribution. Specifically, we use π̃opt

n,Rαi instead of π̃opt
n,Ri in (20) to perform the

subsampling. The same idea was also adopted in Ma et al. (2015).
In π̃Rαi = {π̃opt

n,Rαi}ni=1, α controls the proportion of mixture, and π̃Rαi is close to the
optimal subsampling distribution if α is close to 0 while it is close to the uniform subsampling
distribution if α is close to 1. If α > 0, then nπopt

n,Rαi are bounded away from zero, which add
to robustness of the subsampling estimator.
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Algorithm 2 Practical algorithm based on optimal subsampling with replacement
• Pilot subsampling: use sampling with replacement with πuni to obtain {Z0∗

1 , ..., Z
0∗
s0
};

obtain θ̃0∗
s0,R

through maximizing

M0∗
R (θ) =

s0∑
i=1

m(Z0∗
i ,θ)

s0
. (19)

• Approximated optimal subsampling:
calculate the whole subsampling distribution π̃Rαi = {π̃opt

n,Rαi}ni=1, where α ∈ (0, 1),

π̃opt
n,Ri =

∥ṁ(Zi, θ̃
0∗
s0,R

)∥∑n
j=1 ∥ṁ(Zj, θ̃0∗

s0,R
)∥

and π̃opt
n,Rαi = (1− α)π̃opt

n,Ri + α
1

n
; (20)

use π̃Rαi to take a subsample {Z∗
1 , ..., Z

∗
sn}, and record the corresponding probabilities

{π̃opt∗
Rα1 , ..., π̃

opt∗
Rαs}.

• Estimation: obtain θ̃α
sn,R

through maximizing

M∗
Rα(θ) =

sn∑
i=1

m(Z∗
i ,θ)

nsnπ̃
opt∗
n,Rαi

. (21)

Algorithm 3 Practical algorithm based on optimal Poisson subsampling
• Pilot subsampling: use Poisson sampling with πuni to obtain {Z0∗

1 , ..., Z
0∗
s∗0
};

obtain θ̃0∗
s0,P

through maximizing

M0∗
P (θ) =

s∗0∑
i=1

m(Z0∗
i ,θ)

s∗0
; (22)

calculate

H0∗ = ∥ṁ(Z0∗
i , θ̃

0∗
s0,P

)∥ s
bn
, and Ψ0∗ =

s∗0∑
i=1

{∥ṁ(Z0∗
i , θ̃

0∗
s0,P

)∥ ∧H0∗}
s∗0

. (23)

• Approximated optimal subsampling: For each i of i = 1, ..., n,
calculate

π̃opt
n,P i =

∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧H0∗

nΨ0∗ , and π̃opt
n,Pαi = (1− α)π̃opt

n,P i + α
1

n
; (24)

generate ui ∼ U(0, 1);
if ui ≤ snπ̃

opt
n,Pαi, include Zi in the subsample and record π̃opt

n,Pαi.
• Estimation: obtain θ̃α

sn,P
through maximizing

M∗
Pα(θ) =

1

n

s∗n∑
i=1

m(Z∗
i ,θ)

(snπ̃
opt∗
n,Pαi) ∧ 1

. (25)
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For the optimal Poisson subsampling probability πopt
n,P i, we also need to use the pilot

subsample to approximate H and Ψ = 1
n

∑n
i=1{∥ṁ(Zi, θ̂n)∥ ∧H} in order to determine the

inclusion probability based on each data point itself, as described in Algorithm 3. From
(11), H is between the (n− g)-th and the (n− g+1)-th order statistics of {∥ṁ(Zi, θ̂n)∥}ni=1,
and g is between 0 and sn, so we can roughly approximate H with ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
bn

, the
upper sn

bn
-th sample quantile of {∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥}s0i=1, where b ≥ 1 is a tuning parameter.
Since g is typically closer to 0 and farther from sn, taking b = 1 underestimates H and
the resulting subsampling probabilities lean towards the uniform subsampling probability (if
H ≤ ∥ṁ(Z, θ̂n)∥(1), then πopt

n,P i would be all equal to 1
n
). When subsampling from massive

data, sn is often much smaller than n and the number of cases for ∥ṁ(Zi, θ̂n)∥ to be larger
than H is small. For this scenario, one may simply ignore H and use ∞ to replace H.
This simple option in general overestimates H, but it may perform reasonably well for small
subsampling ratios. For Ψ, it can be approximated by Ψ0∗ defined in (23).

When we use Ψ0∗ and H0∗ to replace Ψ and H in (24), it is possible that some π̃opt
n,P i in

(24) are larger than 1
sn

and thus snπ̃opt
n,P i are larger than one. Thus, we use one as a threshold

in the denominator of (25).

Remark 10. In Algorithm 2, θ̃0∗
s0,R

and θ̃α
sn,R

can be combined to obtain an aggregated
estimator,

θ̌R =
(
s0M̈

0∗
R + sM̈∗

R

)−1 ×
(
s0M̈

0∗
R × θ̃0∗

s0,R
+ sM̈∗

R × θ̃α
sn,R

)
,

where M̈0∗
R is the Hessian matrix of M0∗

R (θ) in (19) evaluated at θ̃0∗
s0,R

and M̈∗
R is the Hessian

matrix of M∗
R(θ) in (21) evaluated at θ̃α

sn,R
. Similarly, in Algorithm 3, θ̃0∗

s0,P
and θ̃α

sn,P
can

be combined to obtain an aggregated estimator,

θ̌P =
(
s∗0M̈

0∗
P + snM̈

∗
P

)−1 ×
(
s∗0M̈

0∗
P × θ̃0∗

s0,P
+ snM̈

∗
P × θ̃α

sn,P

)
,

where M̈0∗
P is the Hessian matrix of M0∗

P (θ) in (22) evaluated at θ̃0∗
s0,P

and M̈∗
P is the Hessian

matrix of M∗
P (θ) in (25) evaluated at θ̃α

sn,P
. Here, θ̌R is obtained as a linear combination

of θ̃0∗
s0,R

and θ̃α
sn,R

, and θ̌P is obtained as a linear combination of θ̃0∗
s0,P

and θ̃α
sn,P

in a way
similar to the aggregation step in the divide-and-conquer method (Lin & Xie 2011, Schifano
et al. 2016). This further improves the estimation efficiency.

3.2 Theoretical analysis of practical algorithms

We obtain the following distributional results in Theorems 5 and 6 for Algorithms 2 and
3, respectively.
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Theorem 5. For θ̃α
sn,R

obtained from Algorithm 2, under Assumptions 1-4, as s0, sn, and
n get large, the following result holds. Given Dn and θ̃0∗

s0,R
in probability,

√
sn{V α

n,R(θ̂n)}−1/2(θ̃α
sn,R − θ̂n) → N (0, Id) ,

in conditional distribution, where V α
n,R(θ̂n) = M̈−1

n (θ̂n)Λ
α
R(θ̂n)M̈

−1
n (θ̂n),

Λα
R(θ̂n) =

1

n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

πopt
n,Rαi(θ̂n)

, and πopt
n,Rαi(θ̂n) = (1− α)πopt

n,Ri(θ̂n) + α
1

n
.

Theorem 6. For θ̃α
sn,P

obtained from Algorithm 3, under Assumptions 1-4, as s0, sn, and
n get large, if s0 = o(n), ϱn = sn/(bn) → ϱ ∈ [0, 1), and the distribution of Z is continuous,
the following result hold. If ϱ = 0, then given Dn and the pilot estimates in probability,

√
sn{V α

n,P (θ̂n)}−1/2(θ̃α
sn,P − θ̂n) → N (0, Id) ,

in conditional distribution, where V α
n,P (θ̂n) = M̈−1

n (θ̂n)Λ
α
n,P (θ̂n)M̈

−1
n (θ̂n),

Λα
n,P (θ̂n) =

1

n2

n∑
i=1

{1− snπ
opt
n,Pαi(θ̂n)}ṁ(Zi, θ̂n)ṁ

T(Zi, θ̂n)

πopt
n,Pαi(θ̂n)

(26)

and πopt
n,Pαi(θ̂n) = (1 − α)πopt

n,P i(θ̂n) + α 1
n
. If ϱ > 0, then πopt

n,P i(θ̂n) in (26) is replaced by

πopt
n,P i =

∥ṁ(Zi,θ̂n)∥∧Hϱn∑n
j=1{∥ṁ(Zj ,θ̂n)∥∧Hϱn}

, where Hϱn is the ϱn-th upper sample quantile of ∥ṁ(Zi, θ̂n)∥’s
for i = 1, ..., n.

Remark 11. Denote Λopt
R (θ̂n) and Λopt

n,P (θ̂n) as Λn,R(θ̂n) and Λn,P (θ̂n) with optimal subsam-
pling probabilities that produce the minimum trace values, respectively. In Theorems 5 and
6, Λα

R(θ̂n) and Λα
n,P (θ̂n) are different from Λopt

R (θ̂n) and Λopt
n,P (θ̂n), respectively. However, it

can be shown that

tr{Λopt
R (θ̂n)} < tr{Λα

R(θ̂n)} <
tr{Λopt

R (θ̂n)}
1− α

, and tr{Λopt
n,P (θ̂n)} < tr{Λα

n,P (θ̂n)} <
tr{Λopt

n,P (θ̂n)}
1− α

.

Thus, if α is small enough, tr{Λα
R(θ̂n)} and tr{Λopt

R (θ̂n)} can be arbitrarily close, and
tr{Λα

n,P (θ̂n)} and tr{Λopt
n,P (θ̂n)} can be arbitrarily close.

Remark 12. If the pilot subsample size is much smaller than the approximated optimal
subsample size, i.e., s0 = o(sn), then the aggragated estimator θ̌R and θ̌P have the same
asymptotic distributions as those for θ̃α

sn,R
and θ̃α

sn,P
, respectively.

4 Numerical experiments

In this section, we use numerical examples to compare the optimal subsampling probabil-
ities under the two sampling procedures considered in this paper. We will also use numerical
experiments to evaluate the performance of the practical algorithms proposed in Section 3.1.
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4.1 Comparisons of optimal subsampling probabilities

In this section, we use numerical examples to compare the optimal probabilities for
subsampling with replacement presented in Theorem 3 with the optimal Poisson subsampling
probabilities presented in Theorem 4.

Example 2 (Linear regression). Consider solving the OLS for a linear regression model
yi = θ0 + xT

i θ1 + εi, i = 1, ..., n, with n = 105, θ0 = 1, θ1 being a 50 dimensional vector
of ones, and εi being i.i.d. N(0, 1). For the expected subsample sizes, we consider sn =

2× 103, 3× 103, 5× 103, 104, 2× 104, and 5× 104, so that the subsampling ratios are sn/n =

0.02, 0.03, 0.05, 0.1, 0.2, and 0.5. In this example, we use the L-optimality criterion with
L = (XTX)1/2 so that the optimal subsampling probabilities are closely related to the
statistical leverage scores. Specially, πopt

n,Ri ∝ |ε̂i|
√
hi and πopt

n,P i ∝ (|ε̂i|
√
hi) ∧ H for the two

subsampling procedures, respectively. To generate xi’s, we used normal distribution N(0,Σ)

and multivariate t distributions tν(0,Σ) with degrees of freedom v = 5, 4, 3, 2, and 1, where
Σ is a matrix with the (i, j)-th element being 0.5I(i ̸=j) and I() being the indicator function.
For this sequence of covariate distributions, the statistical leverage scores become more and
more nonuniform.

Table 1 gives the values of g in the expression of the optimal Poisson subsampling proba-
bilities in Theorem 4 for different combinations of the subsampling ratio sn/n and covariate
distribution. Note that g is the number of cases that ∥ṁ(Zi, θ̂n)∥ ∝ |ε̂i|

√
hi are truncated

by H. Thus, πopt
n,Ri and πopt

n,P i are more different for larger values of g, and they are identical
if g = 0. It is clear that g increases as sn/n increases, indicating that πopt

n,Ri and πopt
n,P i are

more different as the subsampling ratio sn/n gets larger. We also see that as the tail of the
covariate distribution get heavier, g gets larger. This tells us that the difference between
πopt
n,Ri and πopt

n,P i is more significant if the statistical leverage scores are more nonuniform, as
a heavier-tailed covariate distribution leads to more nonuniform leverage scores.
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Table 1: The values of g in the optimal Poisson subsampling probabilities for OLS with
different expected subsample sizes sn and different distributions of xi’s. The full data sample
size is n = 105.

Distribution of xi’s
sn/n Normal t5 t4 t3 t2 t1

0.02 0 0 0 0 16 120
0.03 0 0 0 7 39 203
0.05 0 0 1 28 113 342
0.1 0 23 58 154 492 756
0.2 15 584 762 1216 2242 1734
0.5 14364 16569 17191 17954 19038 15481

Figure 1 presents histograms and scatter plots of optimal probabilities for the two sub-
sampling procedures to show more details on the distributions of πopt

n,Ri’s and πopt
n,P i’s when

xi’s are from the t3 distribution. In each sub-figure, the left panel is the histogram for πopt
n,P i’s

and the right panel is the scatter plot of πopt
n,P i’s against πopt

n,Ri’s. We multiply all probabilities
by n for better presentations. Note that this does not change the shapes of the figures. We
only create the histogram for πopt

n,P i’s, because the distribution of πopt
n,Ri’s does not depend on

sn and remains the same for all values of sn. In addition, since g = 0 for the case with
sn/n = 0.02, the histogram in Figure 1(a) is the same to the histogram for πopt

n,Ri and we can
compare it with other histograms to see the difference between the distributions of πopt

n,Ri’s
and πopt

n,P i’s. From Figure 1 (a)-(f), we see that as sn/n increases the optimal probabilities
for Poisson sampling and sampling with replacement are more different, because more larger
πopt
n,P i’s are truncated to 1/s.
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(a) sn/n = 0.02 (b) sn/n = 0.03

(c) sn/n = 0.05 (d) sn/n = 0.1

(e) sn/n = 0.2 (f) sn/n = 0.5

Figure 1: Histograms and scatter plots of optimal probabilities for subsampling with replace-
ment and Poisson subsampling for different subsampling ratio sn/n. Here xi’s are from the
t3 distribution.

Figure 2 presents histograms and scatter plots of optimal probabilities πopt
n,Ri’s and πopt

n,P i’s
for different distributions of xi’s when sn/n = 0.1. In each sub-figure, the upper and lower
plots in the left panel are the histograms for πopt

n,Ri’s and πopt
n,P i’s, respectively, and the right

panel is the scatter plot of πopt
n,P i’s against πopt

n,Ri’s. Again, we multiply all probabilities by
n for better presentations. We see that for a fixed subsampling ratio sn/n, πopt

n,Ri’s and
πopt
n,P i’s become more different as the leverage scores become more nonuniform (the tail of the

covariate distribution becomes heavier), because more large values of πopt
n,P i’s are truncated.
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(a) Normal (b) t5

(c) t4 (d) t3

(e) t2 (f) t1

Figure 2: Histograms and scatter plots of optimal probabilities for subsampling with replace-
ment and Poisson subsampling for different covariate distributions. Here the subsampling
ratio sn/n = 0.1.

4.2 Comparison of estimation efficiency of the practical algorithms

We compare the estimation efficiency for the two subsampling procedures using both
synthetic and real data sets.

Example 3 (Logistic regression). Form model P(yi = 1|xi) = eθ0+xT
i θ1/(1 + eθ0+xT

i θ1),
i = 1, ..., n, we generate synthetic data sets by setting n = 105, θ0 = 0.5, and θ1 to be a 9
dimensional vector of 0.5. We consider the following three cases to generate xi. In Cases 1
and 3, the responses yi are balanced, while in Case 2 about 98% of the data points are with
yi = 1.

Case 1: Normal. Generate xi from a multivariate normal distribution, N(0,Σ), where the
(i, j)-th element of Σ is Σij = 0.5I(i ̸=j) and I() is the indicator function. This distribution
is symmetric with light tails.
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Case 2: LogNormal. Generate vi from N(0,Σ) as defined in Case 1 and then set xi = evi ,
where the exponentiation is element-wise. This distribution is asymmetric and positively
skewed.

Case 3: T3. We generate xi from a multivariate t distribution with three degrees of freedom
t3(0,Σ) with Σ defined in Case 1. This distribution is symmetric with heavy tails.

We also consider two real data sets: the covtype data from the LIBSVM data website
(https://www.csie.ntu.edu.tw/~cjlin/libsvm/) and the SUSY data (Baldi et al. 2014).
Both data sets are also available from the UCI data repository (Dheeru & Karra Taniskidou
2017). We present them as Cases 4 and 5 below.

Case 4: Covtype Data. It has n = 581, 012 observations with about 48.76% of the re-
sponses are yi = 1. We use the ten quantitative covariate variables as xi’s.

Case 5: SUSY Data. It has n = 5, 000, 000 observations with about 54.24% of the responses
are yi = 1. We use the 18 kinematic features to classify whether new SUSY particles
are produced.

To implement Algorithms 2 and 3, we set α = 0.1, and choose s0 = 0.01n and different
values for sn so that the sampling ratio (s0 + sn)/n = 0.02, 0.05, 0.1, 0.2, and 0.5. Two dif-
ferent options of H0∗ are considered: H0∗ = ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
5n

and H0∗ = ∞. We aggregate
the pilot estimator with the approximated optimal subsampling estimator using the proce-
dure described in Remark 10. For comparison, we also implement the uniform subsampling
method with expected subsample sizes s0+sn. Newton’s method is used for optimization on
all subsamples. We repeat the simulation for T = 1000 times to calculate the empirical mean
squared error (MSE), defined as MSE= 1

T

∑T
t=1 ∥θ̌(t) − θ̂n∥2, where θ̌(t) is the subsampling

estimate at the t-th repetition and θ̂n is the full data estimate.
Figure 3 plots the empirical MSE (natural logarithm is taken for better presentation)

against the subsampling ratio (s0 + sn)/n. When the subsampling ratio (s0 + sn)/n is close
to zero, subsampling with replacement and Poisson subsampling have similar performance
for both approximated optimal subsampling and uniform subsampling. However, when (s0+

sn)/n gets larger, Poisson subsampling outperforms subsampling with replacement, and the
improvement from subsampling with replacement to Poisson subsampling is more significant
for approximated optimal subsampling than for uniform subsampling. For both subsampling
with replacement and Poisson subsampling, approximated optimal subsampling methods
outperform the uniform subsampling method. Their performances are closer for smaller
(s0+sn)/n because the proportions of uniform subsamples are higher for smaller (s0+sn)/n.
For Poisson subsampling, the results for the two choices of H0∗, H0∗ = ∞ and H0∗ =
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∥ṁ(Z0∗
i , θ̃

0∗
s0,P

)∥ sn
5n

, are similar when (s0 + sn)/n is small, but they start to differ for larger
(s0 + sn)/n.
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Figure 3: Log empirical MSEs (y-axis) against subsampling ratio (s0 + sn)/n (x-axis) for lo-
gistic regression. Here, “optR” means optimal subsampling with replacement; “uniR” means
uniform subsampling with replacement; “optP∞” means approximated optimal Poisson sub-
sampling with H0∗ = ∞; “optPb=5” means approximated optimal Poisson subsampling with
H0∗ = ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
5n

; and“uniP” means uniform Poisson subsampling.

Example 4 (Linear regression). We consider a linear model yi = θ0+xT
i θ1+εi, i = 1, ..., n,

with n = 105, θ0 = 1, θ1 being a 50 dimensional vector of ones, and εi being i.i.d. N(0, 1).
We use the same distributions in Cases 1-3 to generate xi and refer them as Cases 1’-3’. We
also consider a gas sensor data Fonollosa et al. (2015) from the UCI data repository (Dheeru
& Karra Taniskidou 2017). We present it as Case 6 below.

Case 6: Gas Sensor Data. After cleaning, the data contain n = 4, 188, 261 readings on
15 sensors. We use log of readings from the last sensor as responses and log of other
readings as covariates.

To implement Algorithms 2 and 3, we use the same setup for α, s0, sn, and H0∗, as used
in logistic regression. Specifically, α = 0.1, s0 = 0.01n and different values for sn so that
(s0 + sn)/n = 0.02, 0.05, 0.1, 0.2, and 0.5. We also consider both H0∗ = ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
5n

andH0∗ = ∞, and aggregate the pilot estimator with the approximated optimal subsampling
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estimator using the procedure described in Remark 10. We repeat the simulation for T =

1000 times to calculate the empirical MSE.
Figure 4 gives results for empirical MSE from least-squares in linear regression model.

The overall pattern in Figure 4 is similar to that in Figure 3. We see that subsampling
with replacement and Poisson subsampling have similar performance if the subsampling ra-
tio (s0 + sn)/n is close to zero, while Poisson subsampling outperforms subsampling with
replacement as (s0 + sn)/n gets larger. This trend is true for both approximated opti-
mal subsampling and uniform subsampling, and we observe that the advantage of Poisson
subsmapling over subsampling with replacement is more significant for approximated opti-
mal subsampling. Furthermore, for linear regression, the advantage of Poisson subsampling
compared with subsampling with replacement is more significant. For example, in Case
4’, the synthetic data sets with xi’s from the t3 distribution, the uniform Poisson subsam-
pling can even outperform the approximated optimal subsampling with replacement when
(s0+sn)/n = 0.5. We also observe that approximated optimal subsampling methods outper-
form the uniform subsampling methods, and the gap between their performance in terms of
estimation efficiency is larger for larger (s0 + sn)/n. This is because the proportions of more
informative observations in the subsample are higher for larger (s0+sn)/n. Another pattern
is that when the approximated optimal subsampling probabilities are more nonuniform, their
advantage over uniform subsampling is more significant. For example, from the gas sensor
data set, approximated optimal subsampling methods have significantly higher estimation
efficiency than the uniform subsampling methods even when s0 = sn = 1000. For Poisson
subsampling, the performance with H0∗ = ∞ and that with H0∗ = ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
5n

are
similar for small (s0 + sn)/n, but the choice with H0∗ = ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
5n

starts to show its
advantage for larger (s0 + sn)/n.

5 Conclusion and Discussion

In this paper, we derived optimal subsampling probabilities in the context of maximizing
an additive target function for both subsampling with replacement and Poisson subsampling.
Theoretical and empirical results show that the two different subsampling procedure have
similar performance when the subsampling ratio is small. However, when subsampling ratio
does not converge to zero, Poisson subsampling has a higher estimation efficiency. One prob-
lem warrants for further investigation is how to choose the tuning parameter b in Algorithm 3
so that the approximated optimal subsampling probabilities produce an estimator with an
asymptotic variance-covariance matrix that is near optimal even when the subsampling ratio
does not converge to zero.
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Figure 4: Log Empirical MSEs (y-axis) against subsampling ratio (s0 + sn)/n (x-axis) for
linear regression. Here, “optR” means optimal subsampling with replacement; “uniR” means
uniform subsampling with replacement; “optP∞” means approximated optimal Poisson sub-
sampling with H0∗ = ∞; “optPb=5” means approximated optimal Poisson subsampling with
H0∗ = ∥ṁ(Z0∗

i , θ̃
0∗
s0,P

)∥ sn
5n

; and“uniP” means uniform Poisson subsampling.
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Appendix

A.1 Proofs

In this section, we prove all the theoretical results in the paper.

A.1.1 Proof of Proposition 2

Proof. For Proposition 2 (a) since P(∥∆n,sn∥ > δ|Dn) is a nonnegative and bounded random
variable, from Theorem 1.3.6 of Serfling (1980), P(∥∆n,sn∥ > δ|Dn) = oP (1) if and only if
E{P(∥∆n,sn∥ > δ|Dn)} → 0. Note that

E{P(∥∆n,sn∥ > δ|Dn)} = E[E{I(∥∆n,sn∥ > δ)|Dn}] = E{I(∥∆n,sn∥ > δ)} = P(∥∆n,sn∥ > δ).

Thus E{P(∥∆n,sn∥ > δ|Dn)} → 0 if and only if P(∥∆n,sn∥ > δ) → 0, which is true if and
only if ∆n,sn = oP (1).

Now we prove Proposition 2 (b). Note that ∆n,sn = OP |Dn(1) means that for any ϵ > 0

and any δ > 0, there exist a finite Kϵ > 0 and a finite Nϵ,δ > 0 such that P{P(∥∆n,sn∥ >
Kϵ|Dn) > ϵ} < δ for all sn > Nϵ,δ and n > Nϵ,δ. Thus if ∆n,sn = OP |Dn(1), then for any
ϵ > 0 and δ = ϵ, there exist a finite K0.5ϵ > 0 and a finite N0.5ϵ,0.5ϵ > 0 such that for all
sn > N0.5ϵ,0.5ϵ and n > N0.5ϵ,0.5ϵ,

P{P(∥∆n,sn∥ > K0.5ϵ|Dn) > 0.5ϵ} < 0.5ϵ.

Therefore,

P(∥∆n,sn∥ > K0.5ϵ) = E
{
P(∥∆n,sn∥ > K0.5ϵ|Dn)

}
≤ E

[
P(∥∆n,sn∥ > K0.5ϵ|Dn)I{P(∥∆n,sn∥ > K0.5ϵ|Dn) > 0.5ϵ}

]
+ 0.5ϵ

≤ E
[
I{P(∥∆n,sn∥ > K0.5ϵ|Dn) > 0.5ϵ}

]
+ 0.5ϵ

≤ P{P(∥∆n,sn∥ > K0.5ϵ|Dn) > 0.5ϵ}+ 0.5ϵ

≤ ϵ,

meaning that ∆n,sn = OP (1).
On the other hand, if ∆n,sn = OP (1), then for any ϵ > 0 and δ > 0, there exist a finite

Kδϵ and a finite Nδϵ such that P(∥∆n,sn∥ > Kδϵ) ≤ δϵ for all sn > Nδϵ and n > Nδϵ. Thus

P{P(∥∆n,sn∥ > Kδϵ|Dn) > ϵ} ≤ ϵ−1E
{
P(∥∆n,sn∥ > Kδϵ|Dn)

}
= ϵ−1P(∥∆n,sn∥ > Kδϵ) < δ,

25



which means that ∆n,sn = OP |Dn(1).
Now we prove Proposition 2 (c). Because P(∆n,sn ≤ x|Dn) is bounded, P(∆n,sn ≤

x|Dn) − P(U ≤ x) = oP (1) if and only if E{P(∆n,sn ≤ x|Dn)} − P(U ≤ x) = P(∆n,sn ≤
x)− P(U ≤ x) = o(1). Thus ∆n,sn

|Dn
⇝ U if and only if ∆n,sn ⇝ U .

A.1.2 Proof for Theorem 1

Recall that

Mn(θ) =
1

n

n∑
i=1

m(Zi,θ).

For the sampling with replacement estimator in (2), let

M∗
sn(θ) =

1

sn

sn∑
i=1

m(Z∗
i ,θ)

nπ∗
n,i

.

To prove Theorem 1, we first establish Lemma 1 and Lemma 2 in the following.

Lemma 1. Under Assumptions 3 and 5, if ∥θ̃sn,R − θ̂n∥ = oP (1), then conditional on Dn,

Bsn − M̈n(θ̂n) = oP (1),

where

M̈n(θ̂n) =
1

n

n∑
i=1

m̈(Zi, θ̂n),

Bsn =

∫ 1

0

1

sn

sn∑
i=1

m̈{Z∗
i , θ̂n + λ(θ̃sn,R − θ̂n)}

nπ∗
n,i

dλ.

In Lemma 1, the notation oP (1) means convergence to 0 in probability. Here the proba-
bility is conditional probability. From Xiong & Li (2008), Cheng & Huang (2010), a sequence
converges to 0 in conditional probability is equivalent to the fact that it converges to 0 in
unconditional probability. Thus we use oP (1) to indicate convergence to 0 either in uncon-
ditional or conditional probability.

Proof. Firstly, note that

E

(
1

sn

sn∑
i=1

ψ(Z∗
i )

nπ∗
n,i

∣∣∣Dn

)
=

1

n

n∑
i=1

ψ(Zi) = E{ψ(Z)}+ oP (1), and

V

(
1

sn

sn∑
i=1

ψ(Z∗
i )

nπ∗
n,i

∣∣∣Dn

)
=

1

sn

n∑
i=1

ψ2(Zi)

n2πn,i
≤ max

i=1,...,n

(
1

nπn,i

)
1

snn

n∑
i=1

ψ2(Zi) = OP (s
−1
n ).
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Thus,
1

sn

sn∑
i=1

ψ(Z∗
i )

nπ∗
n,i

= OP |Dn(1).

For every k, l = 1, 2, ..., d, from Lipschitz continuity, for λ ∈ (0, 1), we have∣∣∣∣∣ 1sn
sn∑
i=1

m̈k,l{Z∗
i , θ̂n + λ(θ̃sn,R − θ̂n)}

nπ∗
n,i

− 1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ∗
n,i

∣∣∣∣∣
= λ∥θ̃sn,R − θ̂n∥

1

sn

sn∑
i=1

ψ(Z∗
i )

nπ∗
n,i

= oP (1), (A.1)

and for any fixed θ, we have

1

n

n∑
i=1

m̈2
k,l(Zi, θ̂n) ≤

2

n

n∑
i=1

m̈2
k,l(Zi,θ) +

2∥θ̂n − θ∥2

n

n∑
i=1

ψ2(Zi) = OP (1). (A.2)

In addition, according to (A.2),

E

{
1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ∗
n,i

∣∣∣Dn

}
=

1

n

n∑
i=1

m̈k,l(Zi, θ̂n),

V

{
1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ∗
n,i

∣∣∣Dn

}
≤ 1

sn

n∑
i=1

m̈2
k,l(Zi, θ̂n)

n2πn,i

≤ max
i

(
1

nπn,i

)
1

snn

n∑
i=1

m̈2
k,l(Zi, θ̂n) = OP (s

−1
n ).

Thus, by Chebyshev’s inequality, we have∣∣∣∣∣ 1sn
sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ∗
n,i

− 1

n

n∑
i=1

m̈k,l(Zi, θ̂n)

∣∣∣∣∣ = OP |Dn(s
−1/2
n ) = oP |Dn(1). (A.3)

Combining (A.1) and (A.3), we have∣∣∣∣∣Bsn,k,l −
1

n

n∑
i=1

m̈k,l(Zi, θ̂n)

∣∣∣∣∣
≤
∫ 1

0

∣∣∣∣∣ 1sn
sn∑
i=1

m̈k,l{Z∗
i , θ̂n + λ(θ̃sn,R − θ̂n)}

nπ∗
n,i

− 1

n

n∑
i=1

m̈k,l(Zi, θ̂n)

∣∣∣∣∣ dλ
≤
∫ 1

0

[ ∣∣∣∣∣ 1sn
sn∑
i=1

m̈k,l{Z∗
i , θ̂n + λ(θ̃sn,R − θ̂n)}

nπ∗
n,i

− 1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ∗
n,i

∣∣∣∣∣
]
dλ

+

∣∣∣∣∣ 1sn
sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ∗
n,i

− 1

n

n∑
i=1

m̈k,l(Zi, θ̂n)

∣∣∣∣∣
= oP |Dn(1).
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Lemma 2. Under Assumptions 4-5, given Dn in probability,

√
sn{Λn,R(θ̂n)}−1/2Ṁ∗

sn(θ̂n)
|Dn
⇝ N (0, I) , (A.4)

in conditional distribution.

Proof. Note that
√
snṀ

∗
sn(θ̂n) =

1
√
sn

sn∑
i=1

ṁ(Z∗
i , θ̂n)

nπ∗
i

≡ 1
√
sn

sn∑
i=1

ηi (A.5)

Given Dn,η1, ...,ηsn are i.i.d, with

E(η|Dn) =
1

n

n∑
i=1

ṁ(Zi, θ̂n) = 0, and (A.6)

V(ηi|Dn) = Λn,R(θ̂n) =
1

n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

πn,i

≤ max
i=1,...,n

(
1

nπn,i

)
1

n

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n) = OP (1), (A.7)

where the inequality in (A.7) is in the Loewner ordering, i.e., A1 ≤ A2 means A1 −A2 is a
negative semi-definite matrix.

Meanwhile, for every ε > 0 and some δ ∈ (0, 2],

1

sn

sn∑
i=1

E
{
∥ηi∥2I(∥ηi∥ > s1/2n ε)|Dn

}
≤ 1

s
1+δ/2
n εδ

sn∑
i=1

E
{
∥ηi∥2+δI(∥ηi∥ > s1/2n ε)|Dn

}
≤ 1

s
1+δ/2
n εδ

sn∑
i=1

E
(
∥ηi∥2+δ|Dn

)
≤ 1

s
δ/2
n n2+δεδ

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+δ

π1+δ
n,i

= max
i=1,...,n

(
1

nπn,i

)1+δ
1

ns
δ/2
n εδ

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+δ = OP (s
−δ/2
n ).

This shows that Lindeberg’s condition is satisfied in probability. From (A.5), (A.6) and
(A.7), by the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der Vaart
(1998)), conditionally on Dn, (A.4) follows.

Proof of Theorem 1. Based on Lemma 1 and Lemma 2, now we are ready to prove Theorem
1. By direct calculation, we have that for any θ,

E
(
M∗

sn(θ)|Dn

)
=Mn(θ).

By Chebyshev’s inequality, for any ε > 0,

P
{∣∣M∗

sn(θ)−Mn(θ)
∣∣ ≥ ε|Dn

}
≤

V{M∗
sn(θ)|Dn}
ε2

=
1

ε2snn2

n∑
i=1

m2(Zi,θ)

πn,i

28



≤ 1

ε2sn
max

i=1,...,n

(
1

nπn,i

)
1

n

n∑
i=1

m2(Zi,θ) = OP

(
s−1
n

)
.

Thus, for every θ,

M∗
sn(θ)−Mn(θ) = oP |Dn(1). (A.8)

Note that under Assumptions 1, 2, the parameter space is compact and θ̂n is the unique
global maximum of the continuous concave function Mn(θ). Thus from Theorem 5.9 and its
remark of van der Vaart (1998), conditionally on Dn,

∥θ̃sn,R − θ̂n∥ = oP |Dn(1) = oP (1). (A.9)

The consistency ensures that θ̃sn,R is close to θ̂n as long as sn is large. By Taylor expansion,

0 = Ṁ∗
sn(θ̃sn,R) = Ṁ∗

sn(θ̂n) +Bsn(θ̃sn,R − θ̂n), (A.10)

where

Bsn =

∫ 1

0

1

sn

sn∑
i=1

m̈{Z∗
i , θ̂n + λ(θ̃sn,R − θ̂n)}

nπ∗
n,i

dλ.

From (A.10) and Lemma 1,

0 = Ṁ∗
sn(θ̃sn,R) = Ṁ∗

sn(θ̂n) + {M̈n(θ̂n) + oP (1)}(θ̃sn,R − θ̂n), (A.11)

which shows that

θ̃sn,R − θ̂n = −{M̈n(θ̂n) + oP (1)}−1Ṁ∗
sn(θ̂n)

= − 1
√
sn

{M̈n(θ̂n) + oP (1)}−1{Λn,R(θ̂n)}1/2
√
sn{Λn,R(θ̂n)}−1/2Ṁ∗

sn(θ̂n). (A.12)

By Lemma 2 and Slutsky’s theorem, we obtain that, given full data Dn in probability,
√
sn{Vn,R(θ̂n)}−1/2(θ̃sn,R − θ̂n) → N (0, I) , (A.13)

in conditional distribution, and this finishes the proof.

A.1.3 Proof for Theorem 2

Let νi = 1 if the i-th data point is selected in the subsample and νi = 0 otherwise. The
estimator in (2) is the same as the maximizer of

M∗
P (θ) =

1

n

s∗n∑
i=1

m(Z∗
i ,θ)

snπ∗
n,i

=
1

n

n∑
i=1

νim(Zi,θ)

snπn,i
.

Here, we use sn to replace s∗n in (2) for convenience, and the resulting estimator is identical
to θ̃sn,P .

To prove Theorem 2, we first establish the following Lemmas 3 and 4.
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Lemma 3. If Assumptions 4-5 hold, then, given Dn,
√
sn{Λn,P (θ̂n)}−1/2Ṁ∗

P (θ̂n)
|Dn
⇝ N(0, I),

in conditional distribution, where

Λn,P (θ̂n) =
1

n2

n∑
i=1

(1− snπn,i)ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

πn,i
.

Proof. Write

√
snṀ

∗
P (θ̂n) =

n∑
i=1

νiṁ(Zi, θ̂n)

n
√
snπn,i

≡
n∑

i=1

ηPi.

By direct calculation and according to the definition of θ̂n,

E

(
n∑

i=1

ηPi

∣∣∣Dn

)
=

√
sn

n∑
i=1

ṁ(Zi, θ̂n)

n
= 0,

and

V

(
n∑

i=1

ηPi

∣∣∣∣∣Dn

)
=

1

n2

n∑
i=1

V(νi|Dn)ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

rπ2
i

=
1

n2

n∑
i=1

(1− snπn,i)ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

πn,i
= Λn,P (θ̂n)

≤
(
max

i

1

nπn,i

) 1
n

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n) = OP (1).

Next, we check Lindeberg’s condition in conditional distribution. Note that for ρ ∈ (0, 2]

and any ε > 0,
n∑

i=1

E
{
∥ηPi∥I(∥ηPi∥ > ε)

∣∣∣Dn

}
≤ 1

ερ

n∑
i=1

E
{
∥ηPi∥2+ρI(∥ηPi∥ > ε)

∣∣∣Dn

}
≤ 1

ερ

n∑
i=1

E
(
∥ηPi∥2+ρ

∣∣∣Dn

)
=

1

ερ
E

{
n∑

i=1

ν2+ρ
i ∥ṁ(Zi, θ̂n)∥2+ρ

n2+ρs
1+ρ/2
n π2+ρ

n,i

∣∣∣∣∣Dn

}

=
1

ερ

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+ρ

n2+ρs
ρ/2
n π1+ρ

n,i

≤ max
i

(
1

nπn,i

)1+ρ
1

s
ρ/2
n ερn

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+ρ = OP (s
−ρ/2
n ) = oP (1).

According to the Lindeberg-Feller Central Limit Theorem (van der Vaart 1998, cf.), given
Dn,

√
sn{Λn,P (θ̂n)}−1/2Ṁ∗

P (θ̂n) → N(0, I),

in conditional distribution.
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Lemma 4. Under Assumptions 3 and 5, for any usn = oP (1), conditional on Dn,

1

n

n∑
i=1

νim̈(Zi, θ̂n + usn)

snπn,i
− 1

n

n∑
i=1

m̈(Zi, θ̂n) = oP (1).

Proof. First, note that

1

n

n∑
i=1

νiψ(Zi)

snπn,i
= OP |Dn(1), (A.14)

by Chebyshev’s inequality and the fact that

E

(
1

n

n∑
i=1

νiψ(Zi)

snπn,i

∣∣∣∣∣Dn

)
=

1

n

n∑
i=1

ψ(Zi)E(νi|Dn)

snπn,i
=

1

n

n∑
i=1

ψ(Zi) = E{ψ(Zi)}+ oP (1),

V

(
1

n

n∑
i=1

νiψ(Zi)

snπn,i

∣∣∣Dn

)
=

1

n2

n∑
i=1

ψ2(Zi)V(νi|Dn)

s2nπ
2
n,i

≤ 1

n2

n∑
i=1

ψ2(Zi)E(ν2i )
s2nπ

2
n,i

=
1

n2

n∑
i=1

ψ2(Zi)

snπn,i
≤ 1

snn

n∑
i=1

ψ2(Zi)max
i

1

nπn,i
= OP (s

−1
n ).

Thus, for every k, l = 1, 2, ..., d, from Assumption 3, we have∣∣∣∣∣ 1n
n∑

i=1

νim̈k,l(Zi, θ̂n + usn)

snπn,i
− 1

n

n∑
i=1

νim̈k,l(Zi, θ̂n)

snπn,i

∣∣∣∣∣ ≤ ∥usn∥
n

n∑
i=1

νiψ(Zi)

snπn,i
= oP (1).

which shows that

1

n

n∑
i=1

νim̈(Zi, θ̂n + usn)

snπn,i
− 1

n

n∑
i=1

νim̈(Zi, θ̂n)

snπn,i
= oP (1). (A.15)

According to (A.2), for every k, l = 1, 2, ..., d

E

(
1

n

n∑
i=1

νim̈k,l(Zi, θ̂n)

snπn,i

∣∣∣∣∣Dn

)
=

1

n

n∑
i=1

m̈k,l(Zi, θ̂n),

V

(
1

n

n∑
i=1

νim̈k,l(Zi, θ̂n)

snπn,i

∣∣∣∣∣Dn

)
=

1

snn2

n∑
i=1

(1− snπn,i)m̈
2
k,l(Zi, θ̂n)

πn,i
≤ 1

snn2

n∑
i=1

m̈2
k,l(Zi, θ̂n)

πn,i

≤ max
i

(
1

nπn,i

)
1

snn

n∑
i=1

m̈2
k,l(Zi, θ̂n) = OP (s

−1
n ).

Thus, Chebyshev’s inequality tells us that

1

n

n∑
i=1

νim̈(Zi, θ̂n)

snπn,i
− 1

n

n∑
i=1

m̈(Zi, θ̂n) = OP |Dn(s
−1/2
n ) = oP (1). (A.16)
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Therefore, combining (A.15) and (A.16), we have

1

n

n∑
i=1

νim̈(Zi, θ̂n + usn)

snπn,i
− 1

n

n∑
i=1

m̈(Zi, θ̂n) = oP (1).

Proof of Theorem 2. Denote

γP (u) = snM
∗
P (θ̂n + u/

√
sn)− snM

∗
P (θ̂n).

Under Assumption 2,
√
sn(θ̃sn,P −θ̂n) is the unique maximizer of γP (u) as θ̃sn,P is the unique

maximizer of M∗
P (u). By Taylor’s expansion,

γP (u) =
√
snu

TṀ∗
P (θ̂n) +

1

2
uTM̈∗

P (θ̂n + ú/
√
sn)u

where ú lies between 0 and u. From Lemma 3
√
snṀ

∗
P (θ̂n) is stochastically bounded in

conditional probability given Dn. From Lemma 4, conditional on Dn, M̈∗
P (θ̂n + ú/

√
sn) −

M̈n(θ̂n) = oP (1) and M̈n(θ̂n) converges to a positive-definite matrix.
Thus from the Basic Corollary in page 2 of Hjort & Pollard (2011), the maximizer of

snγP (u),
√
sn(θ̃sn,P − θ̂n), satisfies that

√
sn(θ̃sn,P − θ̂n) = M̈−1

n (θ̂n)
√
snṀ

∗
P (θ̂n) + oP (1), (A.17)

which implies that
√
sn{Vn,P (θ̂n)}−1/2(θ̃sn,P − θ̂n) → N(0, I), (A.18)

in conditional distribution, given Dn in probability. This finishes the proof.

A.1.4 Proof of Theorem 1’

Proof of Theorem 1’. Letting Sn,R =
√
sn(θ̃sn,R − θ̂n) and Yn =

√
sn(θ̂n − θ0), we have

√
sn(θ̃sn,R − θ0) = Sn,R + Yn.

According to Theorem 1, we know that under Assumptions 1-5 the characteristic function
of Sn,R given Dn satisfies that

E
(
eit

TSn,R
∣∣Dn

)
= e−0.5tTVn,R(θ̂n)t + oP |Dn(1) = e−0.5tTVn,R(θ̂n)t + oP (1), (A.19)

where i is the imaginary unit. For every k, l = 1, 2, ..., d, from Lipschitz continuity, we have∣∣∣∣∣ 1n
n∑

i=1

m̈k,l(Zi, θ̂n)−
1

n

n∑
i=1

m̈k,l(Zi,θ0)

∣∣∣∣∣ ≤ ∥θ̂n − θ0∥
1

n

n∑
i=1

ψ(Zi) = oP (1).
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Thus, applying the law of large numbers, we know that M̈n(θ̂n) = M̈n(θ0)+oP (1) = M̈(θ0)+

oP (1).
Next we prove that Λn,R(θ̂n) = Λπ(θ0) + oP (1). We have

∥Λn,R(θ̂n)− Λn,R(θ0)∥

=
1

n

∥∥∥∥∥
n∑

i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)− ṁ(Zi,θ0)ṁ

T(Zi,θ0)

nπn,i

∥∥∥∥∥
≤ max

i

(
1

nπn,i

)
1

n

n∑
i=1

∥∥∥ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)− ṁ(Zi, θ̂n)ṁ

T(Zi,θ0)
∥∥∥

+max
i

(
1

nπn,i

)
1

n

n∑
i=1

∥∥∥ṁ(Zi, θ̂n)ṁ
T(Zi,θ0)− ṁ(Zi,θ0)ṁ

T(Zi,θ0)
∥∥∥

= max
i

(
1

nπn,i

)
1

n

n∑
i=1

{
∥ṁ(Zi, θ̂n)∥+ ∥ṁ(Zi,θ0)∥

}
∥ṁ(Zi, θ̂n)− ṁ(Zi,θ0)∥.

Using Taylor’s expansion, we obtain

ṁ(Zi, θ̂n) = ṁ(Zi,θ0) +Bn,i(θ̂n − θ0),

where Bn,i =
∫ 1

0
m̈{Zi,θ0 + λ(θ̂n − θ0)}dλ satisfies that

∥Bn,i − m̈(Zi,θ0)∥ ≤ d

∫ 1

0

λψ(Zi)∥θ̂n − θ0∥dλ = 0.5dψ(Zi)∥θ̂n − θ0∥.

due to the Lipschitz continuity in Assumption 3. This shows that

∥ṁ(Zi, θ̂n)− ṁ(Zi,θ0)∥ ≤ 0.5dψ(Zi)∥θ̂n − θ0∥2 + ∥m̈(Zi,θ0)∥∥(θ̂n − θ0)∥.

Thus,

∥Λn,R(θ̂n)− Λn,R(θ0)∥

≤ max
i

(
1

nπn,i

)[
0.5d∥θ̂n − θ0∥2

{
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥ψ(Zi) +
1

n

n∑
i=1

∥ṁ(Zi,θ0)∥ψ(Zi)

}

+ ∥θ̂n − θ0∥

{
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥∥m̈(Zi,θ0)∥+
1

n

n∑
i=1

∥ṁ(Zi,θ0)∥∥m̈(Zi,θ0)∥

}]
.

From Hölder’s inequality

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥ψ(Zi) ≤

{
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥4
} 1

4
{
1

n

n∑
i=1

ψ(Zi)
4
3

} 3
4

= OP (1).
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Similarly, we can show that 1
n

∑n
i=1 ∥ṁ(Zi,θ0)∥ψ(Zi), 1

n

∑n
i=1 ∥ṁ(Zi, θ̂n)∥∥m̈(Zi,θ0)∥, and

1
n

∑n
i=1 ∥ṁ(Zi,θ0)∥∥m̈(Zi,θ0)∥ are all OP (1). Therefore, ∥Λn,R(θ̂n)−Λn,R(θ0)∥ = oP (1), and

thus (A.19) implies that

E
(
eit

TSn,R
∣∣Dn

)
= e−0.5tTM̈−1(θ0)Λπ(θ0)M̈−1(θ0)t + oP (1),

where the oP (1) is bounded.
Note that Yn =

√
sn
n

√
n(θ̂n − θ0). Using Proposition 1, we have

E(eitTYn) → e−0.5tTcM̈−1(θ0)Λ(θ0)M̈−1(θ0)t.

Since Yn is Dn measurable, we have∣∣∣E{eitT(Yn+Sn,R) − eit
TYne−0.5tTM̈−1(θ0)Λπ(θ0)M̈−1(θ0)t

}∣∣∣
=
∣∣∣E [E{eitT(Yn+Sn,R) − eit

TYne−0.5tTM̈−1(θ0)Λπ(θ0)M̈−1(θ0)t
∣∣∣Dn

}]∣∣∣
=
∣∣∣E [eitTYn

{
E
(
eitSn,R

∣∣Dn

)
− e−0.5tTM̈−1(θ0)Λπ(θ0)M̈−1(θ0)t

}]∣∣∣
≤ E

{∣∣∣E(eitTSn,R |Dn

)
− e−0.5tTM̈−1(θ0)Λπ(θ0)M̈−1(θ0)t

∣∣∣}
= o(1),

where the last step is from the dominated convergence theorem. Therefore,

E
{
eit

T(Yn+Sn,R)
}
= E(eitTYn)e−0.5tTM̈−1(θ0)Λπ(θ0)M̈−1(θ0)t + o(1) → E

{
e−0.5tTV U

R (θ0)t
}
.

Hence, we obtain that
√
sn{V U

R (θ0)}−1/2(θ̃sn,R − θ0)⇝ N(0, Id).

A.1.5 Proof of Theorem 2’

Proof of Theorem 2’. The technique of proving Theorem 2’ is similar to that of proving
Theorem 1’. Denoting Sn,P =

√
sn(θ̃sn,P − θ̂n), we write

√
sn(θ̃sn,P − θ0) = Sn,P + Yn. From

Theorem 2, we know that under Assumptions 1-5,

E
(
eit

TSn,P
∣∣Dn

)
= e−0.5tTVn,P (θ̂n)t + oP |Dn = e−0.5tTVn,P (θ̂n)t + oP (1).

In the proof of Theorem 1’, we have proved that M̈(θ̂n) = M̈(θ0) + oP (1) and Λn,R(θ̂n) =

Λπ + oP (1). Using a similar approach, we can show that

sn
n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n) = cΛ(θ0) + oP (1).
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Therefore,
E
(
eit

TSn,P
∣∣Dn

)
= e−0.5tTM̈−1(θ0){Λπ(θ0)−cΛ(θ0)}M̈−1(θ0)t + oP (1).

Now we use the same technique used in the proof of Theorem 1’. Since Yn is Dn measurable,
we have ∣∣∣E{eitT(Yn+Sn,P ) − eit

TYne−0.5tTM̈−1(θ0){Λπ(θ0)−cΛ(θ0)}M̈−1(θ0)t
}∣∣∣

=
∣∣∣E [eitTYn

{
E
(
eitSn,P |Dn

)
− e−0.5tTM̈−1(θ0){Λπ(θ0)−cΛ(θ0)}M̈−1(θ0)t

}]∣∣∣
≤ E

{∣∣∣E(eitTSn,P |Dn

)
− e−0.5tTM̈−1(θ0){Λπ(θ0)−cΛ(θ0)}M̈−1(θ0)t

∣∣∣}→ 0,

where the last step is from the dominated convergence theorem. Hence,

E
{
eit

T(Yn+Sn,P )
}
= E(eitTYn)e−0.5tTM̈−1(θ0){Λπ(θ0)−cΛ(θ0)}M̈−1(θ0)t + o(1) → E

{
e−0.5tTV U

P (θ0)t
}
,

and this finishes the proof.

A.1.6 Proof of Theorem 3

Proof of Theorem 3. For the result in (7),

tr{Λn,R(θ̂n)} =
1

n2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2

πn,i
=

1

n2

n∑
i=1

πn,i

n∑
i=1

∥ṁ(Zi, θ̂n)∥2

πn,i
≥ 1

n2

{ n∑
i=1

∥ṁ(Zi, θ̂n)∥
}2

.

Here, the last step is from the Cauchy-Schwarz inequality and the equality holds if and only
if πn,i ∝ ∥ṁ(Zi, θ̂n)∥.

A.1.7 Proof of Theorem 4

Proof. Note that

tr{Λn,P (θ̂n)} = tr

{
1

n2

n∑
i=1

(1− snπn,i)ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

πn,i

}

=
1

n2

[
n∑

i=1

∥ṁ(Zi, θ̂n)∥2

πn,i
− sn

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
]
.

Thus, minimizing tr{Λn,P (θ̂n)} is equal to minimizing
∑n

i=1
∥ṁ(Zi,θ̂n)∥2

πn,i
. For i = 1, ..., n,

let ti = ∥ṁ(Zi, θ̂n)∥ and let t(i) denote the order statistics of ∥ṁ(Zi, θ̂n)∥, i.e., t(i) =
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∥ṁ(Z, θ̂n)∥(i). The optimization problem of minimizing tr{Λn,P (θ̂n)} subject to the con-
straints on πn,i can be presented as minimizing

T (π1, π2, ..., πn) =
n∑

i=1

t2(i)
πn,i

, (A.20)

subject to
n∑

i=1

πn,i = 1 and 0 ≤ πn,i ≤
1

sn
, i = 1, 2, ..., n.

Defining slack variables ω2
1, ω

2
2, ..., ω

2
n, to use Lagrangian multiplier method, we can construct

H(π1, ..., πn, τ, µ1, ..., µn, ω1, ..., ωn) =
n∑

i=1

t2(i)
πn,i

+ τ

(
n∑

i=1

πn,i − 1

)
+

n∑
i=1

µi

(
πn,i + ω2

i −
1

sn

)
.

By taking the derivatives, the Karush–Kuhn–Tucker (KKT) conditions (Nocedal & Wright
1999) are

∂H

∂πn,i
= −

t2(i)
π2
n,i

+ τ + µi = 0, i = 1, 2, ..., n. (A.21)

∂H

∂τ
=

n∑
i=1

πn,i − 1 = 0, (A.22)

∂H

∂µi

= πn,i + ω2
i =

1

sn
, i = 1, 2, ..., n. (A.23)

∂H

∂ωi

= 2µiωi = 0, i = 1, 2, ..., n. (A.24)

µi ≥ 0, i = 1, 2, ..., n. (A.25)

From (A.21), we have

πn,i =
t(i)√
τ + µi

, i = 1, 2, ..., n. (A.26)

Combining it with (A.23), we have

t(i)√
τ + µi

+ ω2
i =

1

sn
, i = 1, 2, ..., n. (A.27)

According to (A.24), at least one of µi and ωi must be 0. From (A.26) and (A.27),

if t(i) <
√
τ

s
, µ = 0 and πn,i =

t(i)√
τ
<

1

sn
; (A.28)

if t(i) ≥
√
τ

s
, ωi = 0 and πn,i =

t(i)√
τ + µi

=
1

sn
. (A.29)
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Thus, letting g be the number of cases that t(i) ≥
√
τ
s

, from (A.22) and the fact that t(i) is
non-decreasing in i,

1 =
n∑

i=1

πn,i =

n−g∑
i=1

t(i)√
τ
+

n∑
i=n−g+1

1

sn
=

∑n−g
i=1 t(i)√
τ

+
g

s
, (A.30)

which shows that

√
τ =

s

s− g

n−g∑
i=1

t(i). (A.31)

Combining(A.28), (A.29), and (A.31),

πn,i =


t(i)(sn − g)

sn
∑n−g

i=1 t(i)
, for i = 1, 2, ..., n− g; (A.32)

1

sn
, for i = n− g + 1, ..., n. (A.33)

From (A.31),

H =

∑n−g
i=1 t(i)
sn − g

=

√
τ

sn
, (A.34)

Thus, from (A.28) and (A.29), we know t(i) < H for i = 1, 2, ..., n − g, and t(i) ≥ H, for
i = n− g + 1, ..., n. Therefore

n∑
i=1

(t(i) ∧H) =

n−g∑
i=1

t(i) +
n∑

i=n−g+1

H = snH (A.35)

Thus, from (A.32), for i = 1, 2, ..., n− g,

πn,i =
t(i)
snH

=
t(i) ∧H∑n

i=1(t(i) ∧H)
; (A.36)

from (A.33), for i = n− g + 1, ..., n,

πn,i =
H

snH
=

t(i) ∧H∑n
i=1(t(i) ∧H)

. (A.37)

For the result under the A-optimality, define t(i) = ∥M̈−1
n (θ̂n)ṁ(Z, θ̂n)∥(i) and the proof

is the same as the used for the L-optimality.

A.1.8 Proof of Theorem 5

The proof of Theorem 5 relies on Lemmas 5 and 6 below.
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Lemma 5. Under Assumption 3, if ∥θ̃α
sn,R

− θ̂n∥ = oP (1), then conditional on Dn and θ̃0∗
s0,R

,

B
θ̃0∗
s0,R

sn − M̈n(θ̂n) = oP (1), (A.38)

where

B
θ̃0∗
s0,R

sn =

∫ 1

0

1

sn

sn∑
i=1

m̈
{
Z∗

i , θ̂n + λ(θ̃α
sn,R

− θ̂n)
}

nπ̃opt∗
n,Rαi

dλ.

Proof. For every k, l = 1, 2, ..., d, from Lipschitz continuity, we have∣∣∣∣∣ 1sn
sn∑
i=1

m̈k,l{Z∗
i , θ̂n + λ(θ̃α

sn,R
− θ̂n)}

nπ̃opt∗
n,Rαi

− 1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ̃opt∗
n,Rαi

∣∣∣∣∣
≤ 1

sn

sn∑
i=1

ψ(Z∗
i )∥λ(θ̃α

sn,R
− θ̂n)∥

nπ̃opt∗
n,Rαi

≤ λ∥θ̃α
sn,R − θ̂n∥

1

sn

sn∑
i=1

ψ(Z∗
i )

α
= ∥θ̃α

sn,R − θ̂n∥OP (1) = oP (1). (A.39)

According to (A.2), we have

E

(
1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ̃opt∗
n,Rαi

∣∣∣∣Dn, θ̃
0∗
s0,R

)
=

1

n

n∑
i=1

m̈k,l(Zi, θ̂n),

V

(
1

sn

sn∑
i=1

m̈k,l(Z
∗
i , θ̂n)

nπ̃opt∗
n,Rαi

∣∣∣∣Dn, θ̃
0∗
s0,R

)
≤ 1

sn

n∑
i=1

m̈2
k,l(Zi, θ̂n)

n2πopt
n,Rαi

≤ 1

αsnn

n∑
i=1

m̈2
k,l(Zi, θ̂n) = OP (s

−1
n ).

Thus, by Chebyshev’s inequality, similar to (A.3), we have∥∥∥∥∥ 1

sn

sn∑
i=1

m̈(Z∗
i , θ̂n)

nπ̃opt∗
n,Rαi

− 1

n

n∑
i=1

m̈(Zi, θ̂n)

∥∥∥∥∥ = oP |Dn,θ̃0∗
s0,R

(1). (A.40)

Combining (A.39) and (A.40), we have∥∥∥∥∥Bsn − 1

n

n∑
i=1

m̈(Zi, θ̂n)

∥∥∥∥∥ ≤
∫ 1

0

∥∥∥∥∥ 1

sn

sn∑
i=1

m̈{Z∗
i , θ̂n + λ(θ̃α

sn,R
− θ̂n)}

nπ̃opt∗
n,Rαi

− 1

n

n∑
i=1

m̈(Zi, θ̂n)

∥∥∥∥∥ dλ

≤
∫ 1

0

[∥∥∥∥∥ 1

sn

sn∑
i=1

m̈{Z∗
i , θ̂n + λ(θ̃α

sn,R
− θ̂n)}

nπ̃opt∗
n,Rαi

− 1

sn

sn∑
i=1

m̈(Z∗
i , θ̂n)

nπ̃opt∗
n,Rαi

∥∥∥∥∥
+

∥∥∥∥∥ 1

sn

sn∑
i=1

m̈(Z∗
i , θ̂n)

nπ̃opt∗
n,Rαi

− 1

n

n∑
i=1

m̈(Zi, θ̂n)

∥∥∥∥∥
]
dλ = oP (1),

which finishes the proof.
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Lemma 6. If Assumption 4 hold, then given Dn and θ̃0∗
s0,R

in probability,

√
sn{Λα

R(θ̃
0∗
s0,R

)}−1/2Ṁ∗
Rα(θ̂n) → N (0, I) , (A.41)

in conditional distribution, where

Ṁ∗
Rα(θ̂n) =

1

nsn

sn∑
i=1

ṁ(Z∗
i , θ̂n)

π̃opt∗
n,Rαi

, and Λα
R(θ̃

0∗
s0,R

) =
1

n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

π̃opt
n,Rαi

.

Proof. Note that

√
snṀ

∗
Rα(θ̂n) =

1
√
sn

sn∑
i=1

ṁ(Z∗
i , θ̂n)

nπ̃opt∗
n,Rαi

≡ 1
√
sn

sn∑
i=1

η
θ̃0∗
s0,R

i . (A.42)

Given Dn and θ̃0∗
s0,R

, η
θ̃0∗
s0,R

1 , ...,η
θ̃0∗
s0,R

sn are i.i.d, with

E(η
θ̃0∗
s0,R

i |Dn, θ̃
0∗
s0,R

) =
1

n

n∑
i=1

ṁ(Zi, θ̂n) = 0, and (A.43)

V(η
θ̃0∗
s0,R

i |Dn, θ̃
0∗
s0,R

) = E

{
ṁ(Z∗

i , θ̂n)ṁ
T(Z∗

i , θ̂n)

n2(π̃opt∗
n,Rαi)

2

∣∣∣∣∣Dn, θ̃
0∗
s0,R

}
(A.44)

=
1

n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

π̃opt∗
n,Rαi

= Λα
R(θ̃

0∗
s0,R

). (A.45)

Meanwhile, for every ε > 0 and some δ ∈ (0, 2],

1

sn

sn∑
i=1

E
{
∥η

θ̃0∗
s0,R

i ∥2I(∥η
θ̃0∗
s0,R

i ∥ > s1/2n ε)
∣∣∣Dn, θ̃

0∗
s0,R

}
≤ 1

s
1+δ/2
n εδ

sn∑
i=1

E
{
∥η

θ̃0∗
s0,R

i ∥2+δI(∥η
θ̃0∗
s0,R

i ∥ > s1/2n ε)
∣∣∣Dn, θ̃

0∗
s0,R

}
≤ 1

s
1+δ/2
n εδ

sn∑
i=1

E
(
∥η

θ̃0∗
s0,R

i ∥2+δ
∣∣∣Dn, θ̃

0∗
s0,R

)
≤ 1

s
δ/2
n n2+δεδ

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+δ

(π̃opt∗
n,Rαi)

1+δ

≤ 1

s
δ/2
n α1+δεδ

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+δ = OP (s
−δ/2
n ) = oP (1).

where the second last equality is from Assumption 4. This show that Lindeberg’s condition
is satisfied in probability. From (A.42), (A.43) and (A.45), by the Lindeberg-Feller central
limit theorem (Proposition 2.27 of van der Vaart (1998)), conditional on Dn, θ̃

0∗
s0,R

, we obtain
(A.41).
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Proof of Theorem 5. By direct calculation, we have

E
{
M∗

Rα(θ)
∣∣∣Dn, θ̃

0∗
s0,R

}
=Mn(θ),

V
{
M∗

Rα(θ)
∣∣∣Dn, θ̃

0∗
s0,R

}
≤ 1

snn2

n∑
i=1

m2(Zi,θ)

π̃opt∗
n,Rαi

≤ 1

snn

n∑
i=1

m2(Zi,θ)

α
= OP (s

−1
n ).

By Chebyshev’s inequality, for each θ, we have

M∗
Rα(θ)−Mn(θ) = oP |Dn,θ̃0∗

s0,R
(1).

Under Assumptions 1 and 2, the parameter space is compact and θ̂n is the unique global
maximum of the continuous concave function Mn(θ). Thus from Theorem 5.9 and its remark
of van der Vaart (1998), conditionally on Dn and θ̃0∗

s0,R
,

∥θ̃α
sn,R − θ̂n∥ = oP (1).

By Taylor expansion

0 = Ṁ∗
Rα(θ̃

α
sn,R) = Ṁ∗

Rα(θ̂n) +B
θ̃0∗
s0,R

sn (θ̃α
sn,R − θ̂n),

so

θ̃α
sn,R − θ̂n = −

(
B

θ̃0∗
s0,R

sn

)−1

Ṁ∗
Rα(θ̂n)

= − 1
√
sn

(
B

θ̃0∗
s0,R

sn

)−1

{Λα
R(θ̃

0∗
s0,R

)}1/2
√
sn{Λα

R(θ̃
0∗
s0,R

)}−1/2Ṁ∗
Rα(θ̂n).

Therefore, from Lemma 5 and Lemma 6, conditional on Dn, θ̃
0∗
s0,R

, by Slutsky’s theorem

√
sn{Λα

R(θ̃
0∗
s0,R

)}−1/2M̈n(θ̂n)(θ̃
α
sn,R − θ̂n) → N (0, I) , (A.46)

in conditional distribution.
Next, we check the distance bewtween Λα

R(θ̃
0∗
s0,R

) and Λα
R(θ̂n).

∥Λα
R(θ̃

0∗
s0,R

)− Λα
R(θ̂n)∥

=

∥∥∥∥∥ 1

n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

(1− α)πopt
Ri (θ̃

0∗
s0,R

) + α 1
n

− 1

n2

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

(1− α)πopt
Ri (θ̂n) + α 1

n

∥∥∥∥∥
≤ 1

n2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣∣∣ 1

(1− α)πopt
Ri (θ̃

0∗
s0,R

) + α 1
n

− 1

(1− α)πopt
Ri (θ̂n) + α 1

n

∣∣∣∣∣
<

1

α2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣πopt

Ri (θ̃
0∗
s0,R

)− πopt
Ri (θ̂n)

∣∣∣
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≤ 1

α2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
{∣∣∣∥ṁ(Zi, θ̃

0∗
s0,R

)∥ − ∥ṁ(Zi, θ̂n)∥
∣∣∣∑n

j=1 ∥ṁ(Zj, θ̃0∗
s0,R

)∥

+ ∥ṁ(Zi, θ̂n)∥

∑n
j=1

∣∣∣∥ṁ(Zj, θ̃
0∗
s0,R

)∥ − ∥ṁ(Zj, θ̂n)∥
∣∣∣∑n

j=1 ∥ṁ(Zj, θ̂n)∥
∑n

j=1 ∥ṁ(Zj, θ̃0∗
s0,R

)∥

}

≡ 1

α2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2 (∆1i +∆2i) . (A.47)

Under Assumption 3, for any j = 1, 2, ..., n∣∣∣∥ṁ(Zj, θ̂n)∥ − ∥ṁ(Zj, θ̃
0∗
s0,R

)∥
∣∣∣ ≤ ∥ṁ(Zj, θ̂n)− ṁ(Zj, θ̃

0∗
s0,R

)∥

≤

√√√√ d∑
k=1

{ṁk(Zj, θ̂n)− ṁk(Zj, θ̃0∗
s0,R

)}2 ≤
d∑

k=1

∣∣∣ṁk(Zj, θ̂n)− ṁk(Zj, θ̃
0∗
s0,R

)
∣∣∣

≤
d∑

k=1

∣∣∣m̈T
k (Zj, ξk)(θ̂n − θ̃0∗

s0,R
)
∣∣∣ ≤ ∥θ̂n − θ̃0∗

s0,R
∥

d∑
k=1

∥m̈k(Zj, ξk)∥ ≡ ∥θ̂n − θ̃0∗
s0,R

∥h(Zj),

(A.48)

where ṁk(Zj, θ̂n) is the kth element of ṁ(Zj, θ̂n), m̈k(Zj, θ̂n) is the kth column of m̈(Zj, θ̂n),
and all ξk are between θ̂n and θ̃0∗

s0,R
. Thus,

∆1i ≤
∥θ̂n − θ̃0∗

s0,R
∥h(Zi)∑n

j=1 ∥ṁ(Zj, θ̃0∗
s0,R

)∥
, (A.49)

and

∆2i ≤
∥ṁ(Zi, θ̂n)∥∥θ̂n − θ̃0∗

s0,R
∥
∑n

j=1 h(Zj)∑n
j=1 ∥ṁ(Zj, θ̂n)∥

∑n
j=1 ∥ṁ(Zj, θ̃0∗

s0,R
)∥

(A.50)

From (A.2) and Assumption 3

1

n

n∑
j=1

h2(Zj) ≤ d
1

n

n∑
j=1

d∑
k=1

∥m̈k(Zj, ξk)∥2 = d
1

n

n∑
j=1

d∑
k=1

d∑
l=1

m̈2
k,l(Zj, ξk)

≤ d
1

n

n∑
j=1

d∑
k=1

d∑
l=1

(
2m̈2

k,l(Zj, θ̂n) + 2ψ2(Zj)∥θ̃0∗
s0,R

− θ̂n∥2
)
= OP (1) (A.51)

which also implies that 1
n

∑n
j=1 h(Zj) = OP (1). Thus,

n∑
i=1

∥ṁ(Zi, θ̂n)∥∆1i ≤
OP (∥θ̂n − θ̃0∗

s0,R
∥)

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2h(Zi)
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≤ OP (∥θ̂n − θ̃0∗
s0,R

∥)
{
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥4
} 1

2
{
1

n

n∑
i=1

h2(Zi)

} 1
2

, (A.52)

and
n∑

i=1

∥ṁ(Zi, θ̂n)∥∆2i = OP (∥θ̂n − θ̃0∗
s0,R

∥) 1
n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2 (A.53)

Combining (A.47), (A.52), and (A.53), we obtain that for large s0, sn and n,

∥Λα
R(θ̃

0∗
s0,R

)− Λα
R(θ̂n)∥ = ∥θ̂n − θ̃0∗

s0,R
∥OP (1) = oP (1).

Thus, Slutsky’s theorem and (A.46) indicate that given Dn and θ̃0∗
s0,R

, as s0, sn and n→ ∞
√
sn{V α

n,R(θ̂n)}−1/2(θ̃α
sn,R − θ̂n) → N (0, I) ,

in conditional distribution.

A.1.9 Proof of Theorem 6

The proof of Theorem 6 relies on Lemmas 7, 8 and 9.

Lemma 7. Under Assumptions 4, conditional on Dn and θ̃0∗
s0,R

, then

√
sn{Λα

n,P (θ̃
0∗
s0,P

)}−1/2Ṁ∗
Pα(θ̂n) → N(0, I),

in conditional distribution, where

Λα
n,P (θ̃

0∗
s0,P

) =
sn
n2

n∑
i=1

{1− (snπ̃
opt
n,Pαi) ∧ 1}ṁ(Zi, θ̂n)ṁ

T(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

.

Proof. For the sake of readability, in the sequel, we redefine νi as νi = I(ui ≤ snπ
opt
n,Pαi) and

let

√
snṀ

∗
Pα(θ̂n) =

n∑
i=1

νi
√
snṁ(Zi, θ̂n)

n{(snπ̃opt
n,Pαi) ∧ 1}

≡
n∑

i=1

η
θ̃0∗
s0,P

i . (A.54)

From direct calculation and the definition of θ̂n, we have

E
(√

snṀ
∗
Pα(θ̂n)

∣∣∣Dn, θ̃
0∗
s0,P

)
=

√
sn
n

n∑
i=1

ṁ(Zi, θ̂n) = 0,
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V
(√

snṀ
∗
Pα(θ̂n)

∣∣∣Dn, θ̃
0∗
s0,P

)
=
sn
n2

n∑
i=1

V(νi|Dn, θ̃
0∗
s0,P

)ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n)

{(snπ̃opt
n,Pαi) ∧ 1}2
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=
sn
n2

n∑
i=1

{1− (snπ̃
opt
n,Pαi) ∧ 1}ṁ(Zi, θ̂n)ṁ

T(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

≤ 1

αn

n∑
i=1

ṁ(Zi, θ̂n)ṁ
T(Zi, θ̂n) = OP (1).

Next, we check Lindeberg’s condition. For any ϵ > 0 and ρ ∈ (0, 2],

E

{
n∑

i=1

∥η
θ̃0∗
s0,P

i ∥I(∥η
θ̃0∗
s0,P

i ∥ > ε)

∣∣∣∣∣Dn, θ̃
0∗
s0,P

}

≤ 1

ερ

n∑
i=1

E
{
∥η

θ̃0∗
s0,P

i ∥2+ρI(∥η
θ̃0∗
s0,P

i ∥ > ε)
∣∣∣Dn, θ̃

0∗
s0,P

}

≤ 1

ερ

n∑
i=1

E
(
∥η

θ̃0∗
s0,P

i ∥2+ρ
∣∣∣Dn, θ̃

0∗
s0,P

)
=

s
1+ρ/2
n

ερn2+ρ

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+ρ

{(snπ̃opt
n,Pαi) ∧ 1}1+ρ

≤ s
1+ρ/2
n

ερn2+ρ

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+ρ

(snα/n)1+ρ
=

1

α1+ρερsnρ/2
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2+ρ = OP (sn
−ρ/2).

Thus, from the Lindeberg-Feller Central Limit Theorem (cf. van der Vaart 1998), Lemma 7
follows.

Lemma 8. Under Assumption 3, for any usn = oP (1), conditional on Dn and θ̃0∗
s0,P

,

1

n

n∑
i=1

νim̈(Zi, θ̂n + usn)

(snπ̃
opt
n,Pαi) ∧ 1

− 1

n

n∑
i=1

m̈(Zi, θ̂n) = oP (1).

Proof. First, using an approach similar to the one used to prove (A.14), we can show that
given Dn and θ̃0∗

s0,P
,

1

n

n∑
i=1

νiψ(Zi)

(snπ̃
opt
n,Pαi) ∧ 1

= OP (1). (A.55)

For every k, l = 1, 2, ..., d, from Lipschitz continuity, we have∣∣∣∣∣ 1n
n∑

i=1

νim̈k,l(Zi, θ̂n + usn)

(snπ̃
opt
n,Pαi) ∧ 1

− 1

n

n∑
i=1

νim̈k,l(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

∣∣∣∣∣ ≤ 1

n

n∑
i=1

νiψ(Zi)∥usn∥
(snπ̃

opt
n,Pαi) ∧ 1

= oP (1). (A.56)

For each k, l = 1, 2, ..., d, direct calculations show that

E

{
1

n

n∑
i=1

νim̈k,l(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

∣∣∣∣∣Dn, θ̃
0∗
s0,P

}
=

1

n

n∑
i=1

m̈k,l(Zi, θ̂n),

V

{
1

n

n∑
i=1

νim̈k,l(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

∣∣∣∣∣Dn, θ̃
0∗
s0,P

}
≤ 1

snn2

n∑
i=1

m̈2
k,l(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

≤ 1

αsnn

n∑
i=1

h2(Zi) = OP (s
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According to Chebyshev’s inequality, we obtain

1

n

n∑
i=1

νim̈(Zi, θ̂n)

(snπ̃
opt
n,Pαi) ∧ 1

− 1

n

n∑
i=1

m̈(Zi, θ̂n) = OP (sn
−1/2). (A.57)

Therefore, combining (A.56) and (A.57), we have

1

n

n∑
i=1

νim̈(Zi, θ̂n + usn)

snπ
opt
n,Pαi

− 1

n

n∑
i=1

m̈(Zi, θ̂n) = oP (1).

Lemma 9. Under Assumptions 3 and 4,

1) if ϱn = sn/(bn) → ϱ ∈ (0, 1), then H0∗ −Hϱn = oP (1);

2) Ψ0∗ −Ψϱn = oP (1), where

Ψϱn =
1

n

n∑
i=1

{∥ṁ(Zi, θ̂n)∥ ∧Hϱn}; (A.58)

3) if sn/(bn) → ϱ = 0, then Ψ0∗ −Ψ∞ = oP (1).

Proof. Note that H0∗ is the ⌈s∗0 − s∗0sn/b/n⌉-th order statistics of ∥ṁ(Z0∗
i , θ̃

0∗
s0,P

)∥, i =

1, ..., s∗0. For any ρ > 0, let H̃ρ be the ⌈n(1− ρ)⌉-th order statistics of ∥ṁ(Zi, θ̃
0∗
s0,P

)∥,
i = 1, ..., n. Let ν0(i) = 1 if ∥ṁ(Z, θ̃0∗

s0,P
)∥(i) is included in ∥ṁ(Z0∗

1 , θ̃
0∗
s0,P

)∥, ..., ∥ṁ(Z0∗
s∗0
, θ̃0∗

s0,P
)∥,

and ν0(i) = 0 otherwize. For any ϱ+ > ϱ,

P(H0∗ ≤ H̃ϱ+) = P

( ⌈n(1−ϱ+)⌉∑
i=1

ν0(i) ≥ ⌈s∗0 − s∗0sn/b/n⌉

)
. (A.59)

Note that

1

s0

⌈n(1−ϱ+)⌉∑
i=1

ν0(i) = 1− ϱ+ + oP (1) and
⌈s∗0 − s∗0sn/b/n⌉

s0
= 1− ϱ+ oP (1). (A.60)

Thus,

P(H0∗ ≤ H̃ϱ+) → 0. (A.61)

Similarly, we obtain that for any ϱ− < ϱ,

P(H0∗ ≤ H̃ϱ−) → 1. (A.62)
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Note that H̃ϱ+ is between the ⌈n(1− ϱ+)⌉ − s∗0-th and the ⌈n(1− ϱ+)⌉-th order statistics of
∥ṁ(Zi, θ̃

0∗
s0,P

)∥’s that are not included in ∥ṁ(Z0∗
1 , θ̃

0∗
s0,P

)∥, ..., ∥ṁ(Z0∗
s∗0
, θ̃0∗

s0,P
)∥. The joint dis-

tribution of these ∥ṁ(Zi, θ̃
0∗
s0,P

)∥’s are exchangeable, and s∗0/n→ 0 in probability. Therefore,
both the ⌈n(1− ϱ+)⌉−s∗0-th and the ⌈n(1− ϱ+)⌉-th order statistics of these ∥ṁ(Zi, θ̃

0∗
s0,P

)∥’s
converge to the ϱ+-quantile of the distribution of ∥ṁ(Zi,θ0)∥ in probability (Chanda 1971),
where θ0 = argmaxθ E{m(Z,θ)}. As a result, H̃ϱ+ converge in probability to the ϱ+-quantile
of the distribution of ∥ṁ(Z,θ0)∥, say ζϱ+. Similarly, H̃ϱ− converge in probability to the ϱ−-
quantile of the distribution of ∥ṁ(Z,θ0)∥, say ζϱ−. Thus, (A.61) and (A.62) together imply
that for any ϵ > 0,

P(ζϱ+ − ϵ < H0∗ < ζϱ− + ϵ) → 1. (A.63)

Since the distribution of Z is continuous and so is that of ∥ṁ(Z,θ0)∥, we can choose ϱ+ and
ϱ− close enough to ϱ such that ζϱ− − ζϱ < ϵ and ζϱ − ζϱ+ < ϵ, which implies that

P(ζϱ − 2ϵ < H0∗ < ζϱ + 2ϵ) → 1, (A.64)

for any ϵ. Thus, H0∗ = ζϱ + oP (1). Since ∥ṁ(Z1, θ̂n)∥, ..., ∥ṁ(Zn, θ̂n)∥ are exchangeable,
Hϱn = ζϱ+oP (1), where Hϱn is the ⌈n(1− ϱn)⌉-th order statistics of ∥ṁ(Zi, θ̂n)∥, i = 1, ..., n.
Therefore, H0∗ −Hϱn = oP (1).

Now we prove 2) of Lemma 9. If ϱ = 0 and ∥ṁ(Z,θ)∥ is bounded, then

Ψ0∗ =

⌈s∗0−s∗0sn/b/n⌉∑
i=1

∥ṁ(Z0∗, θ̃0∗
s0,P

)∥(i)
s∗0

+
s∗0 − ⌈s∗0 − s∗0sn/b/n⌉

s∗0
H0∗

=

s∗0∑
i=1

∥ṁ(Z0∗
i , θ̃

0∗
s0,P

)∥
s∗0

+ oP (1),

and similarly,

Ψϱn =
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥+ oP (1).

Thus the proof reduce to prove that
s∗0∑
i=1

∥ṁ(Z0∗
i , θ̃

0∗
s0,P

)∥
s∗0

=
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥+ oP (1),

which can be proved by Taylor’s expansion and Markov’s inequality. To prove other cases,
let ν0i = 1 if the i-th observation is included in the pilot subsample and ν0i = 0 otherwise;
then Ψ0∗ can be written as

Ψ0∗ =
1

s∗0

n∑
i=1

ν0i {∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧H0∗}.
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Define

Ψ0∗
Hϱn

=
1

s∗0

n∑
i=1

ν0i {∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧Hϱn} and Ψ0∗
θ̂n

=
1

s∗0

n∑
i=1

ν0i {∥ṁ(Zi, θ̂n)∥ ∧Hϱn}.

If ϱ > 0, then

|Ψ0∗ −Ψ0∗
Hϱn

| = 1

s∗0

n∑
i=1

ν0i

∣∣∣∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧H0∗ − ∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧Hϱn

∣∣∣
≤ |H0∗ −Hϱn|

s∗0

n∑
i=1

ν0i I
{
∥ṁ(Zi, θ̃

0∗
s0,P

)∥ ≥ H0∗ ∧Hϱn

}
≤ |H0∗ −Hϱn| = oP (1).

If ϱ = 0 and ∥ṁ(Z,θ)∥ is unbounded, then H0∗ ∧ Hϱn → ∞ in probability. Under
Assumptions 3 and 4, it can be shown that 1

s∗0

∑n
i=1 ν

0
i ∥ṁ(Zi, θ̃

0∗
s0,P

)∥2 = OP |Dn(1). Thus,

|Ψ0∗ −Ψ0∗
Hϱn

| ≤ 1

s∗0

n∑
i=1

ν0i ∥ṁ(Zi, θ̃
0∗
s0,P

)∥I
{
∥ṁ(Zi, θ̃

0∗
s0,P

)∥ ≥ H0∗ ∧Hϱn

}
+
H0∗

s∗0

n∑
i=1

ν0i I
{
∥ṁ(Zi, θ̃

0∗
s0,P

)∥ ≥ H0∗
}
+
Hϱn

s∗0

n∑
i=1

ν0i I
{
∥ṁ(Zi, θ̃

0∗
s0,P

)∥ ≥ Hϱn

}
≤

{
1

H0∗ ∧Hϱn

+
1

H0∗ +
1

Hϱn

}
1

s∗0

n∑
i=1

ν0i ∥ṁ(Zi, θ̃
0∗
s0,P

)∥2 = oP (1). (A.65)

Furthermore, we can show that

|Ψ0∗
Hϱn

−Ψ0∗
θ̂n
| ≤ 1

s∗0

n∑
i=1

ν0i {∥ṁ(Zi, θ̃
0∗
s0,P

)∥ − ∥ṁ(Zi, θ̂n)∥}

≤
∥θ̂n − θ̃0∗

s0,P
∥

s∗0

n∑
i=1

ν0i h(Zi) = oP (1)

and

|Ψ0∗
θ̂n

−Ψϱn| = oP (1),

where the last two oP (1) are obtained by mean and variance calculations under the condi-
tional distribution of ν0i ’s. Thus, we have that

|Ψ0∗ −Ψϱn | = oP (1). (A.66)

With 2) of Lemma 9 proved, in order to prove 3), we only need to show that Ψ∞−Ψϱn =

oP (1) if sn/(bn) → ϱ = 0. This is true because if ∥ṁ(Z,θ)∥ is bounded, then

|Ψ∞ −Ψϱn| ≤
1

n

n∑
i=1

∣∣∣∥ṁ(Zi, θ̂n)∥ − ∥ṁ(Zi, θ̂n)∥ ∧Hϱn

∣∣∣
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≤ n− ⌈n(1− ϱn)⌉
n

∥ṁ(Z, θ̂n)∥(n) = oP (1);

otherwise,

|Ψ∞ −Ψϱn| ≤
1

n

n∑
i=1

∣∣∣∥ṁ(Zi, θ̂n)∥ − ∥ṁ(Zi, θ̂n)∥ ∧Hϱn

∣∣∣
≤ 1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
≤ 1

nHϱn

n∑
i=1

∥ṁ(Zi, θ̂n)∥2 = oP (1).

Proof of Theorem 6. For Algorithm 3, M∗
Pα(θ) can be written as

M∗
Pα(θ) =

1

n

n∑
i=1

νim(Zi,θ)

(snπ̃
opt
n,Pαi) ∧ 1

.

Denote

γθ̃0∗
s0,P

P (u) = snM
∗
Pα(θ̂n + u/

√
sn)− snM

∗
Pα(θ̂n).

Under Assumption 2,
√
sn(θ̃

α
sn,P

− θ̂n) is the unique maximizer of γθ̃0∗
s0,P

P (u). By Taylor’s
expansion,

γθ̃0∗
s0,P

P (u) =
√
snu

TṀ∗
Pα(θ̂n) +

uTM̈∗
Pα(θ̂n + ú/

√
sn)u

2

where ú lies between 0 and u. From Lemma 7,
√
snṀ

∗
Pα(θ̂n) is stochastically bounded in

conditional probability given Dn and θ̃0∗
s0,P

; from Lemma 8, conditional on Dn and θ̃0∗
s0,P

,
M̈∗

Pα(θ̂n + ú/
√
sn) − M̈n(θ̂n) = oP (1) and M̈n(θ̂n) converges to a positive-definite ma-

trix. Thus, from the Basic Corollary in page 2 of Hjort & Pollard (2011), the minimizer
of snγ(u),

√
sn(θ̃

α
sn,P

− θ̂n), satisfies that

√
sn(θ̃

α
sn,P − θ̂n) = M̈−1

n (θ̂n)
√
snṀ

∗
P (θ̂n) + oP (1), (A.67)

which implies that

√
sn{Λα

n,P (θ̃
0∗
s0,P

)}−1/2M̈n(θ̂n)(θ̃
α
sn,P − θ̂n) → N(0, I), (A.68)

in conditional distribution given Dn and θ̃0∗
s0,P

.
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Next, we will check the distance between Λα
n,P (θ̃

0∗
s0,P

) and Λα
n,P (θ̂n). Let Λα

Pϱn
(θ̂n) have

the same expression as Λα
n,P (θ̂n) in (26) except that πopt

n,P i(θ̂n) in the denominator is replaced
by

πϱn
n,Pαi(θ̂n) = (1− α)πϱn

n,P i(θ̂n) + α
1

n
with πϱn

n,P i =
∥ṁ(Zi, θ̂n)∥ ∧Hϱn∑n

j=1{∥ṁ(Zj, θ̂n)∥ ∧Hϱn}
.

We have that

∥Λα
n,P (θ̃

0∗
s0,P

)− Λα
Pϱn(θ̂n)∥ ≤ sn

n2

n∑
i=1

∣∣∣∣∣ ∥ṁ(Zi, θ̂n)∥2

{snπ̃opt
n,Pαi(θ̃

0∗
s0,P

)} ∧ 1
− ∥ṁ(Zi, θ̂n)∥2

{snπϱn
n,Pαi(θ̂n)} ∧ 1

∣∣∣∣∣
=
sn
n2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣∣∣ 1

{snπ̃opt
n,Pαi(θ̃

0∗
s0,P

)} ∧ 1
− 1

{snπϱn
n,Pαi(θ̂n)} ∧ 1

∣∣∣∣∣
=
sn
n2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣∣∣{snπ̃

opt
n,Pαi(θ̃

0∗
s0,P

)} ∧ 1− {snπϱn
n,Pαi(θ̂n)} ∧ 1

[{snπ̃opt
n,Pαi(θ̃

0∗
s0,P

)} ∧ 1][{snπϱn
n,Pαi(θ̂n)} ∧ 1]

∣∣∣∣∣
<

1

α2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣π̃opt

n,P i(θ̃
0∗
s0,P

)− πϱn
n,P i(θ̂n)

∣∣∣ (A.69)

If ϱ > 0, then from

n
∣∣∣π̃opt

n,P i(θ̃
0∗
s0,P

)− πϱn
n,P i(θ̂n)

∣∣∣
=

∣∣∣∣∣∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧H0∗

Ψ0∗
ϱn

− ∥ṁ(Zi, θ̂n)∥ ∧Hϱn

Ψϱn

∣∣∣∣∣
≤

∣∣∣∣∣∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧H0∗ − ∥ṁ(Zi, θ̂n)∥ ∧Hϱn

Ψ0∗
ϱn

∣∣∣∣∣+ {∥ṁ(Zi, θ̂n)∥ ∧Hϱn}
∣∣∣∣Ψ0∗

ϱn −Ψϱn

Ψ0∗
ϱnΨϱn

∣∣∣∣
≤

∣∣∣∥ṁ(Zi, θ̃
0∗
s0,P

)∥ − ∥ṁ(Zi, θ̂n)∥
∣∣∣

Ψ0∗
ϱn

+

∣∣H0∗ −Hϱn

∣∣
Ψ0∗

ϱn

+ {∥ṁ(Zi, θ̂n)∥ ∧Hϱn}
∣∣Ψ0∗

ϱn −Ψϱn

∣∣
Ψ0∗

ϱnΨϱn

,

we have that

∥Λα
n,P (θ̃

0∗
s0,P

)− Λα
Pϱn(θ̂n)∥

<
1

α2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣π̃opt

n,P i(θ̃
0∗
s0,P

)− πϱn
n,P i(θ̂n)

∣∣∣
≤ 1

α2Ψ0∗
ϱn

n∑
i=1

∥ṁ(Zi, θ̂n)∥2
∣∣∣∥ṁ(Zi, θ̃

0∗
s0,P

)∥ − ∥ṁ(Zi, θ̂n)∥
∣∣∣

+

∣∣H0∗ −Hϱn

∣∣
α2Ψ0∗

ϱn

n∑
i=1

∥ṁ(Zi, θ̂n)∥2 +
∣∣Ψ0∗

ϱn −Ψϱn

∣∣
α2Ψ0∗

ϱnΨϱn

n∑
i=1

∥ṁ(Zi, θ̂n)∥3 = oP (1),

by (A.52) and Lemma 9.
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If ϱ = 0, then,

n
∣∣∣π̃opt

n,P i(θ̃
0∗
s0,P

)− πϱn
n,P i(θ̂n)

∣∣∣
≤

∣∣∣∥ṁ(Zi, θ̃
0∗
s0,P

)∥ ∧H0∗ − ∥ṁ(Zi, θ̂n)∥ ∧Hϱn

∣∣∣
Ψ0∗

ϱn

+ ∥ṁ(Zi, θ̂n)∥
∣∣∣∣Ψ0∗

ϱn −Ψϱn

Ψ0∗
ϱnΨϱn

∣∣∣∣
≤

∣∣∣∥ṁ(Zi, θ̃
0∗
s0,P

)∥ − ∥ṁ(Zi, θ̂n)∥
∣∣∣

Ψ0∗
ϱn

+ ∥ṁ(Zi, θ̂n)∥
∣∣Ψ0∗

ϱn −Ψϱn

∣∣
Ψ0∗

ϱnΨϱn

+
∥ṁ(Zi, θ̃

0∗
s0,P

)∥
Ψ0∗

ϱn

I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
+
Hϱn

Ψ0∗
ϱn

I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
+

∥ṁ(Zi, θ̂n)∥
Ψ0∗

ϱn

I
{
∥ṁ(Zi, θ̃

0∗
s0,P

)∥ ≥ H0∗
}
+
H0∗

Ψ0∗
ϱn

I
{
∥ṁ(Zi, θ̃

0∗
s0,P

)∥ ≥ H0∗
}

≡ ∆3i +∆4i +∆5i +∆6i +∆7i +∆8i. (A.70)

From (A.52) and Lemma 9, we know that

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆3i = oP (1) and
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆4i = oP (1). (A.71)

Note that

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∥ṁ(Zi, θ̃
0∗
s0,P

)∥I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
≤
{
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥4
} 1

2
{
1

n

n∑
i=1

∥ṁ(Zi, θ̃
0∗
s0,P

)∥4
} 1

4
[
1

n

n∑
i=1

I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}] 1
4

= oP (1),

because

1

n

n∑
i=1

I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
= oP (1),

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥4 = OP (1),

and
1

n

n∑
i=1

∥ṁ(Zi, θ̃
0∗
s0,P

)∥4 = OP (1).

Thus,

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆5i = oP (1). (A.72)

If ∥ṁ(Z,θ)∥ is bounded, then

Hϱn

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
≤ n− ⌈n(1− ϱn)⌉

n
∥ṁ(Z, θ̂n)∥3(n) = oP (1);
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otherwise

Hϱn

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
≤ 1

nHϱn

n∑
i=1

∥ṁ(Zi, θ̂n)∥4 = oP (1).

Thus we know that

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆6i = oP (1). (A.73)

Similarly, we can obtain that

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆7i = oP (1) and
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆8i = oP (1). (A.74)

Combining (A.69), (A.70), (A.71), (A.72), (A.73), and (A.74), we know that

∥Λα
n,P (θ̃

0∗
s0,P

)− Λα
Pϱn(θ̂n)∥ = oP (1).

To finish the proof for the case of ϱ = 0, we only need to show that ∥Λα
Pϱn

(θ̂n)−Λα
R(θ̂n)∥ =

oP (1). Let Ψ∞ = 1
n

∑n
i=1{∥ṁ(Zi, θ̂n)∥}. We notice that

n
∣∣∣πϱn

n,P i(θ̂n)− πopt
n,Ri(θ̂n)

∣∣∣
≤

∣∣∣∥ṁ(Zi, θ̂n)∥ ∧Hϱn − ∥ṁ(Zi, θ̂n)∥
∣∣∣

Ψϱn

+ ∥ṁ(Zi, θ̂n)∥
∣∣∣∣Ψϱn −Ψ∞

ΨϱnΨ∞

∣∣∣∣
≤ ∥ṁ(Zi, θ̂n)∥

Ψϱn

I
{
∥ṁ(Zi, θ̂n)∥ ≥ Hϱn

}
+ ∥ṁ(Zi, θ̂n)∥

∣∣Ψϱn −Ψ∞
∣∣

ΨϱnΨ∞

≤ ∥ṁ(Zi, θ̂n)∥2

ΨϱnHϱn

+ ∥ṁ(Zi, θ̂n)∥
∣∣Ψϱn −Ψ∞

∣∣
ΨϱnΨ∞

≡ ∆9i +∆10i. (A.75)

With this result, it can be shown that

1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆9i = oP (1) and
1

n

n∑
i=1

∥ṁ(Zi, θ̂n)∥2∆10i = oP (1),

which indicates that ∥Λα
Pϱn

(θ̂n)− Λα
R(θ̂n)∥ = oP (1).

From Slutsky’s theorem, we know that given Dn and θ̃0∗
s0,P

, as s0, sn, and n go to infinity,

√
sn{V α

n,P (θ̂n)}−1/2(θ̃α
sn,P − θ̂n) → N (0, I) ,

in conditional distribution.
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Proof of Remark 11. Since Λopt
R (θ̂n) has the minimum trace among all choices of sampling

probabilities, if α ̸= 0 then tr{Λopt
R (θ̂n)} < tr{Λα

R(θ̂n)}. On the other hand,

tr{Λα
R(θ̂n)} =

1

n2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2

(1− α)πRopt
n,i + α 1

n

<
1

n2

n∑
i=1

∥ṁ(Zi, θ̂n)∥2

(1− α)πRopt
n,i

=
1

(1− α)n2

{
n∑

i=1

∥ṁ(Zi, θ̂n)∥

}2

=
tropt{Λn,R(θ̂n)}

1− α
,

and this finishes the proof for Λα
R(θ̂n) from subsampling with replacement. For Λα

n,P (θ̂n)

from Poisson subsampling, the proof is similar.

A.2 Additional examples on optimal structural results

Example 5 (Least-squares). Consider least-squares estimator

θ̂n = argmin
θ

n∑
i=1

{yi − g(xi,θ)}2,

where yi is the response, xi is the covariate, and g(xi,θ) is a smooth function. The least-
squares estimator of θ can be presented in our framework by letting Zi = (xi, yi) and defining

m(Zi,θ) = −0.5{yi − g(xi,θ)}2.

From direct calculation, we have

ṁ(Zi, θ̂n) = ε̂iġ(xi, θ̂n), and m̈(Zi, θ̂n) = ε̂ig̈(xi, θ̂n)− ġ(xi, θ̂n)ġ
T(xi, θ̂n), (A.76)

where ε̂i = yi − g(xi, θ̂n), ġ(xi, θ̂n) and g̈(xi, θ̂n) are the gradient and Hessian matrix of
g(xi,θ), respectively, evaluated at θ̂n. Note that 1

n

∑n
i=1 ε̂ig̈(xi, θ̂n) is a small term, so there

is no need to calculate the Hessian matrix g̈(xi, θ̂n), and M̈n(θ̂n) can be replaced by

M̈a
n(θ̂n) = − 1

n

n∑
i=1

ġ(xi, θ̂n)ġ
T(xi, θ̂n). (A.77)

From (A.76) and (A.77), we obtain optimal sampling probabilities by using

∥ṁ(Zi, θ̂n)∥ = |ε̂i|∥ġ(xi, θ̂n)∥, or ∥ṁ(Zi, θ̂n)∥L = n|ε̂i|
∥∥∥L{M̈a

n(θ̂n)}−1ġ(xi, θ̂n)
∥∥∥,
(A.78)

to replace ∥ṁ(Zi, θ̂n)∥ in Theorems 3 and 4 for different subsampling procedures.
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Specifically for ordinary least-squares (OLS) in linear regression, g(xi,θ) = xT
i θ, ġ(xi, θ̂n) =

xi, and g̈(xi, θ̂n) = 0. Therefore, the expression in (A.78) is simplified to

∥ṁ(Zi, θ̂n)∥ = |ε̂i|∥xi∥, or ∥ṁ(Zi, θ̂n)∥L = n|ε̂i|
∥∥L(XXT)−1xi

∥∥, (A.79)

where X = (x1, ...,xn)
T.

With ∥ṁ(Zi, θ̂n)∥ = |ε̂i|∥xi∥ inserted into (7), the sampling probabilities reduce to
gradient-based sampling probabilities (Zhu 2016). Furthermore, if we take L = {−nM̈n(θ̂n)}1/2 =
(XTX)1/2 in (A.79), the optimal probabilities for subsampling with replacement satisfy that

πopt
n,Ri ∝ |ε̂i|

√
hi, i = 1, ..., n, (A.80)

where hi’s are statistical leverage scores of xi’s, i.e., diagonal elements of X(XTX)−1XT.
This clearly shows the connection between leverage scores and the L optimality.

Form (A.80) and Theorem 4, optimal probabilities for Poisson subsampling and subsam-
pling with replacement differ if there are data points such that sn

n
|ε̂i|

√
hi >

1
n

∑n
j=1 |ε̂j|

√
hj.

This is more likely to happen if |ε̂i|’s or
√
hi’s are more nonuniform. Yang et al. (2015)

showed that if statistical leverage scores are very nonuniform, then using the square roots of
statistical leverage scores to construct subsampling probabilities yields better approximation
than using the original leverage scores. An intuitive explanation for their conclusion is that
taking score roots on leverage scores has some shrinkage effect on the resulting probabilities
toward the uniform subsampling probability. Our results echos their conclusion, and further
indicates that for optimal Poisson subsampling it may be necessary to perform truncation
for high leverage scores.

Example 6 (Generalized linear models). Let yi be the response and xi be the corresponding
covariate. A generalized linear model (GLM) assumes that the conditional mean of the
response yi given the covariate xi, E(yi|xi), satisfies

g{E(yi|xi)} = xT
i β,

where g is the link function, xT
i β is the linear predictor, and β is the regression coefficient.

For most of the commonly used GLMs, it is assumed that the distribution of the response
yi given the covariate xi belongs to the exponential family, namely,

f(yi|xi;β, ϕ) = a(yi, ϕ) exp
[yib(xT

i β)− c(xT
i β)

ϕ

]
,

where a, b and c are known scalar functions, and ϕ is the dispersion parameter. In the
framework of GLM. If the link function g is selected such that b is the identity function, i.e.,
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b(xT
i β) = xT

i β, then the link function is called the canonical link. With a canonical link
function, g{E(yi|xi)} = c′(xT

i β) where c′ is the derivative function of c.
Let Zi = (xi, yi). If both the regression coefficient β and the dispersion parameter ϕ are

of interest, then let θ = (βT, ϕ)T. The MLE of θ corresponds to

m(Zi,θ) =
yib(x

T
i β)− c(xT

i β)

ϕ
+ log{a(yi, ϕ)}.

If β is the only parameter of interest, then θ = β, and the MLE of θ corresponds to

m(Zi,θ) = yib(x
T
i β)− c(xT

i β).

For this case, direct calculations give us that

ṁ(Zi,θ) = {yib′(xT
i β)− c′(xT

i β)}xi and m̈(Zi,θ) = {yib′′(xT
i β)− c′′(xT

i β)}xix
T
i , (A.81)

where b′ and b′′ are the first and second derivative functions of b, and and c′′ is the second
derivative function of c. Thus, optimal sampling probabilities under the L-optimality can be
obtained by using the expressions in (A.81) for Theorems 3 and 4. If the canonical link is
used, then the expressions in (A.81) simplify to

ṁ(Zi,θ) = {yi − c′(xT
i β)}xi and m̈(Zi,θ) = −c′′(xT

i β)xix
T
i .

The following list gives the forms of m(Zi,θ), ṁ(Zi,θ), and m̈(Zi,θ) for commonly used
GLMs with the canonical links.

• Normal distribution, yi|xi ∼ N(µi, σ
2).

– Canonical link: g(µi) = µi = xT
i β.

– Parameter θ = (βT, σ2)T:

∗ m(Zi,θ) =
−(yi−xT

i β)
2

2σ2 − log(σ2)
2

.

∗ ṁ(Zi, θ̂n) =
1
σ̂2

 ε̂ixi

ε̂2i−σ̂2

2σ̂2

, and M̈n(θ̂n) =
−1
nσ̂2

[
XTX 0

0 n
2σ̂2

]
,

where X = (x1, ...,xn)
T, ε̂i = yi − xT

i β̂ and σ̂2 = 1
n

∑n
i=1 ε̂

2
i .

– Parameter θ = βT when σ2 is not of interest:

∗ m(Zi,θ) = −(yi − xT
i β)

2.

∗ ṁ(Zi, θ̂n) and M̈n(θ̂n) are the same to case of OLS in Example 5.

• Binomial distribution, yi|xi ∼ BIN(ki, pi). The problem is often converted to model
the ratio yri = yi/ki.

53



– Canonical link: g(pi) = log( pi
1−pi

) = xT
i β.

– Parameter θ = β:

∗ m(Zi,θ) = ki{yrixT
i β − log(1 + ex

T
i β)}.

∗ ṁ(Zi, θ̂n) = ki(y
r
i − p̂i)xi, and M̈n(θ̂n) = − 1

n

∑n
i=1 kip̂i(1− p̂i)xix

T
i ,

where p̂i = ex
T
i β̂/(1 + ex

T
i β̂).

If ki = 1 for all i, the results reduce to the case of logistic regression in Example 1.

• Poisson distribution, yi|xi ∼ POI(µi).

– Canonical link: g(µi) = log(µi) = xT
i β.

– Parameter θ = β:

∗ m(Zi,θ) = yix
T
i β − ex

T
i β.

∗ ṁ(Zi, θ̂n) = (yi − ex
T
i β)xi, and M̈n(θ̂n) = − 1

n

∑n
i=1 e

xT
i βxix

T
i

• Gamma distribution, yi|xi ∼ GAM(ν, µi), with density function

f(yi) =
νν

Γ(ν)µν
i

yν−1
i e

− νyi
µi , yi > 0, (A.82)

where ν is the shape parameter and µi is the mean parameter.3

– Canonical link: g(µi) =
−1
µi

= xT
i β.

– Parameter θ = (βT, ν)T:

∗ m(Zi,θ) = νyix
T
i β + ν log(−xT

i β) + ν log ν + (ν − 1) log(yi)− log{Γ(ν)}.

∗ ṁ(Zi, θ̂n) =

 ν̂
(
yi +

1

xT
i β̂

)
xi

yix
T
i β̂ + log(−xT

i β̂) + log(ν̂) + 1 + log(yi)− Γ′(ν̂)
Γ(ν̂)

,

and M̈n(θ̂n) =

[
− ν̂

n

∑n
i=1

1

(xT
i β̂)

2
xix

T
i 0

0 1
ν̂
− Γ′′(ν̂)Γ(ν̂)−{Γ′′(ν̂)}2

{Γ(ν̂)}2

]
, where Γ′(ν̂) and

Γ′′(ν̂) are the first and second derivative of Γ(ν) evaluated at ν̂.

– Parameter θ = β:

∗ m(Zi,θ) = yix
T
i β + log(−xT

i β).

∗ ṁ(Zi, θ̂n) =
(
yi +

1

xT
i β̂

)
xi, and M̈n(θ̂n) = − 1

n

∑n
i=1

1

(xT
i β̂)

2
xix

T
i .

3A Gamma distribution is also often parameterized in terms of the shape and rate parameters or the shape
and scale parameters. With our notations here, the shape and rate parameters are ν and ν/µi, respectively,
and the shape and scale parameters are ν and µi/ν, respectively.
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If ν = 1 in (A.82), then the Gamma distribution reduces to an exponential, and thus the
results reduce to the case of exponential regression. For inverse Gamma distribution,
one can use the reciprocal transformation, i.e., 1/yi, to convert the problem to Gamma
distribution.
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