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Abstract

Faced with massive data, subsampling is a commonly used technique to improve
computational efficiency, and using nonuniform subsampling probabilities is an effective
approach to improve estimation efficiency. For computational efficiency, subsampling
is often implemented with replacement or through Poisson subsampling. However, no
rigorous investigation has been performed to study the difference between the two sub-
sampling procedures such as their estimation efficiency and computational convenience.
This paper performs a comparative study on these two different sampling procedures.
In the context of maximizing a general target function, we first derive asymptotic
distributions for estimators obtained from the two sampling procedures. The results
show that the Poisson subsampling may have a higher estimation efficiency. Based
on the asymptotic distributions for both subsampling with replacement and Poisson
subsampling, we derive optimal subsampling probabilities that minimize the variance
functions of the subsampling estimators. These subsampling probabilities further re-
veal the similarities and differences between subsampling with replacement and Poisson
subsampling. The theoretical characterizations and comparisons on the two subsam-
pling procedures provide guidance to select a more appropriate subsampling approach
in practice. Furthermore, practically implementable algorithms are proposed based
on the optimal structural results, which are evaluated through both theoretical and
empirical analyses.
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1 Introduction

With fast development of technology, data collecting is becoming easier and easier, and
the volumes of available data sets are increasing exponentially. To extract useful information
from these massive data, a major challenge lies with the thirst for computing resources.
Subsampling is a commonly used technique to reduce computational burden, and it has been
an important topic in computer science and statistics with a long standing of literature, such
as Drineas et al. (2006a,b,c), Mahoney & Drineas (2009), Drineas et al. (2011), Mahoney
(2011), Clarkson & Woodruff (2013), Kleiner et al. (2014), McWilliams et al. (2014), Yang
et al. (2016).

To improve the estimation efficiency!, nonuniform subsampling probabilities are often
used so that more informative data points are sampled with higher probabilities. A popular
choice is the leverage-based subsampling in which the subsampling distribution is the nor-
malized statistical leverage scores of the design matrix (Drineas et al. 2012, Ma et al. 2015).
Yang et al. (2015) showed that if statistical leverage scores are very nonuniform, then using
their normalized square roots as the subsampling distribution yields better approximation.
For logistic regression, Wang et al. (2018) derived an optimal subsampling distribution that
minimizes the asymptotic variance of the subsampling estimator, and Wang (2019) further
developed a more efficient estimation approach based on the selected subsample. Ting &
Brochu (2018) investigated optimal subsampling with influence functions. Wang et al. (2019)
proposed a method called information-based optimal subdata selection which selects data
points deterministically for linear regression. The subsampling approach has a close connec-
tion to the technique of coreset approximation (Campbell & Broderick 2018, 2019), which
also use a subset of the data with associated weights instead of the full data to reduce calcu-
lations. The coreset approximation is often used in Bayes analysis and the problem is often
to better approximate the objective function in a functional space, while this paper focuses
on approximating the full data estimator.

For computational efficiency, subsampling is often implemented with replacement or
through Poisson subsampling. Subsampling with replacement needs to use all subsampling
probabilities simultaneously to generate random numbers from a multinomial distribution.
The resultant subsample observations are independent and identically distributed (i.i.d.)

conditional on the full data, but their unconditional distributions are not independent. Pois-

!The estimation efficiency is different from that discussed in Chapter 8 of van der Vaart (1998), which
focuses on achieving the asymptotic lower bound of regular estimators. Here we focus on taking a sub-
sample that better approximates the full data estimator, and we consider it with computational efficiency

simultaneously.



son subsampling considers each data point and determines if it should be included in the
subsample by generating a random number from the uniform distribution. If the subsam-
pling probabilities in Poisson subsample are all equal, then the subsampling procedure is
also called the Bernoulli subsampling (Sdrndal et al. 2003). For Poisson subsampling, the
resultant subsample observations do not have identical conditional distributions, but their
unconditional distributions can be independent.

Although subsampling with replacement and Poisson subsampling are commonly used in
practice, no rigorous investigation has been performed to compare them, especially in the
context of optimal subsampling. When they perform similarly and when one is preferable to
the other? This paper studies this topic, and has the following major contributions. 1) In the
context when an estimator is obtained by maximizing a target function, we first derive condi-
tional and unconditional asymptotic distributions for estimators from both subsampling with
replacement and Poisson subsampling. These asymptotic distributions accurately character-
ize the subsampling approximation errors, and we derive general structure results of optimal
subsampling probabilities to minimize these errors for the two subsampling procedures. 2)
We systematically compare subsampling with replacement and Poisson subsampling, both
theoretically and empirically. We identify conditions when the asymptotic distributions for
subsampling with replacement and for Poisson subsampling are the same, and when they are
different. We also discuss the similarity and difference for the two subsampling procedures in
terms of the structural results of optimal subsampling probabilities. 3) Based on the optimal
subsampling probabilities, we propose practical algorithms and evaluate their performance
through both theoretical analysis and numerical experiments.

It is worth mentioning that our investigation views subsampling as a computational tool
and investigates it within a statistical framework. For computer scientists, subsampling is a
commonly used randomized device to speed up computing by using a subsample estimator
to approximate the full data estimator (e.g., McWilliams et al. 2014, Woodruff et al. 2014),
while for statisticians resampling is widely adopted in exchangeable bootstrap schemes to
build confidence regions (e.g., Shao & Tu 1995, Politis et al. 1999). This paper lies in
the middle of these two communities. We derive asymptotic distributions of subsampling
estimators in a similar fashion to existing literature on bootstrap. However, our purpose is
not to establish the bootstrap consistency. Instead, we utilize the asymptotic distributions to
develop better subsampling probabilities so that the subsample estimator better approximate
the full data estimator. In addition, we focus on data dependent subsampling probabilities
for which existing investigations and techniques on bootstrap do not apply because they
require data independent and exchangeable sampling weights (Praestgaard & Wellner 1993,
Cheng & Huang 2010).



The rest of the paper is organized as follows. We present the model setup and asymptotic
distributions in Section 2. In Section 3, we derive optimal subsampling probabilities and
propose practical algorithms. We will also obtain theoretical properties for the practical
algorithms. In Section 4, we perform numerical experiments demonstrating the performance
of the proposed methods. Proofs of our theoretical results are provided in the appendix.

Here are some notation conventions to be used in the paper. We use * to indicate subsam-
ple quantities; use " to indicate full data estimator; useto indicate subsample estimator; use
r and p to indicate subsampling with replacement and Poisson subsampling, respectively;
use m and m to denote the gradient and Hessian matrix of a function m with respect to the
parameter 6; use op(1) or Op(1) to denote a sequence that converges to zero in probability
or is bounded in probability, respectively; use ~~» to denote convergence in distribution; use
|v|| to denote the Euclidean norm of a vector v; and use || A|| to denote the Frobenius norm

of a matrix A.

2 Problem setup and asymptotic distributions

Suppose that a set of training data D, = {Z;}; consists of independent observations
from the distribution that generates Z. To estimate some parameter € R? about the data

distribution, we want to calculate én, the maximizer of
M,(6) = LS mz.0)
n = - mi 4, .
i

Here the dimension of Z; does not have to be the same as 0, e.g., in softmax regression.
Usually, there is no closed-form solution to én, and an iterative algorithm is required to find
the solution numerically. For massive data, iterative calculations on the full data of size
n are often too expensive, so subsampling is adopted to produce a subsampling estimator
0 to approximate 6,,. Nonuniform subsampling probabilities are often used to improve the
estimation efficiency.

Let m = {m,;}", be a subsampling distribution such that m,; > 0 and > .  m,; = 1.
For Poisson subsampling, we further assume that m,; < s,', where s, is the expected
subsample size. As stated early, we use * to indicate quantities with randomness due to

* *

T

n,1s = "'n sy

subsampling. For instance, let Z7, ..., Z; denote the resampled sample and let
be the corresponding resampled subsampling probabilities.
We present the general subsampling estimators HNS”, r based on subsampling with replace-

ment and ésm p based on Poisson subsampling, comparatively, in the following Algorithm 1.



Algorithm 1 Subsampling with replacement vs Poisson subsampling
Sampling with replacement Poisson Sampling:

e Calculate 7w = {m,;}7, based on D,; e For each i = 1,...,n, calculate an indi-

_ vidual m,; such that m,; < s;! based
e generate s, independent random num-

. . R . on Z;
bers from multinomial distribution with
7w to determine a subsample D) = e generate u; ~ U(0,1);
{2125, 23,1 . . .
o if u; < s,m,;, include Z; in the subsam-
e record {7} |, 7o, ...,y } in the sub- ple and record m, ;;
sample;

e obtain the subsample estimator
e obtain the subsample estimator

Sn Hsn p = arg maxz ns* (2)
Hsn,R = argmaxz . (1) ; nn,i

Remark 1. In Algorithm 1, we see that subsampling with replacement requires to access the
whole sampling distribution « = {m,;}",, i.e., all m,;’s, because they are the parameters
in the multinomial distribution from which random numbers are generated. On the other
hand, Poisson subsampling only needs to access one 7, ; in each sampling consideration. This
makes the Poisson subsampling more convenient to implement, especially when the available
memory cannot hold all 7, ;’s or in distributed computing platforms. For subsampling with
replacement, the subsample size is equal to s,, and there may be replicates in the subsample.
Here m,; is the probability that observation Z; is selected when only one data point is
selected, and the probability to include Z; in the subsample of size s, is 1 — (1 — m,;)*",
which is smaller than s, 7, ;. For Poisson subsampling, the subsample size s is random with
E(s}) = sp; there is no replicates in the subsample; and s,,m, ; is the probability of including

Z; in the subsample of expected size s,,.

Remark 2. Another way of implementing Poisson subsampling is to remove the condition

1 and replace Tn; With min(s,m,;,1). The expected subsample size from this

of mp; < s,
approach would be difficult to determine as 7, ;’s are often calculated on the go as scanning
through the full data. We only know that the expected subsample size would be smaller than

Sn. In this paper, we focus on the Poisson subsampling procedure described in Algorithm 1.

We now derive asymptotic properties of ést in (1) and ésmp in (2), respectively, to
compare their estimation efficiency theoretically. We need some regularity assumptions listed

below.



Assumption 1. The parameter 6 belongs to a compact set.

Assumption 2. The function m(Z,0) is a concave function of @ with a unique and finite
mazimum, and it satisfies that E{m?*(Z,0)} < oo for any 6.

Assumption 3. The matriz —E{in(Z,8)} is positive-definite, E{rn} (Z,0)} < oo, and
m(Z,80) is Lipschitz continuous in 6 so that there exists a function (z) with E{y*(Z)} < oo
and for every 6y and Oy, |1y (2, 01) — My (2,02)] < P(2)]|61 — 6|, k,l=1,2,...,d.

Assumption 4. The matriz A(0) = E{mn(Z,0)m™(Z,0)} is positive-definite, and for 0 in
the neighborhood of 6,,, L3 i Z;, 0)||* = Op(1).

Assumption 5. The sampling distribution 7 satisfies that max;—1__n(nm,;)~' = Op(1).

Assumptions 1 and 2 are very mild, and they assure that the target function has a
finite and unique maximum. Assumptions 3 and 4 impose some constraints on the Hessian
matrix and gradient of m(Z, 8); Assumption 3 is used to prove the consistency of subsample
estimators and Assumption 4 is used to establish the asymptotic normality of subsample
estimators. Assumption 5 essentially requires that the minimum subsampling probability
is at the same order of % in probability. Here, m,; can be random as it is allowed to
depend on the data, so the notation Op(1) is used. This assumption is required so that the
objective function based on a subsample would not be dominated by data points with very
small m,;’s. Very small 7,;’s may not matter when characterizing the worst-case bound,
e.g., Drineas et al. (2012), but they do impact the statistical properties of subsampling
algorithms. Due to this, Ma et al. (2015) proposed the “shrinkage” leverage scores to prevent
the statistical performance of algorithmic leveraging algorithm from being deteriorated by
very small leverage scores.

Let 8y = argmaxgE{m(Z,0)} be the true parameter that generates the data. The

following proposition is a known result (see, e.g., Chapter 5 of van der Vaart 1998).

Proposition 1. Under Assumptions 1 and 3, if A(0) is positive-definite (the first part of
Assumption 4), then
V(0, — 6o) ~ N{0,V(6)},

where V(0) = M~(0)A(8)M~(0) and M(0) = E{m(8, Z)}.

To assess the distributional properties of subsample estimators, we need to derive the
distribution asymptotically, i.e., to assume that s, — oo and n — oo. We assume that
S, < m, because a primary goal of subsampling is to reduce the subsample size, but we do

not require s, = o(n).



We define some notations for convergence in conditional distribution and probability
before presenting our results. Let A, 5, be a vector function of a subsample of size s,, from
the full data D,, e.g., a subsample estimator. We say that A, ;, converges in conditional
probability given D,, in probability and write it as A, 5, = opip, (1), if P(||An, || > 0|Dy) =
op(1) for any § > 0; this can be equivalently stated as for any § > 0 and € > 0, as s, — 00

and n — o0,
IP’{IP’(HAn,SnH > 6D, < e} 1.

We say that A, is bounded in conditional probability given D, in probability and write
it as A, 5, = Opip, (1), if for any € > 0 there exists a 0 < K. < oo such that as s, — oo and

n — 00,
IP){]P’(HAH,SHH > K |D,) < e} — 1.

We say that A, s, (of dimension d) converges in conditional distribution to a continuous
D’!L .

random vector U given D, in probability and denote this as A, ;, 2 U, if P(A,,, <

z|D,) —P(U < x) = op(1) for every & € RY; this can also be stated as that for any € > 0

and every « € R?, as s, — 0o and n — oo,
P{)P(Ams” < z|D,) — P(U < w)‘ < e} Sl
Proposition 2. The following results hold for conditional convergence.
(a) If Ay s, = opp, (1) then A, 5, = op(1), and vice versa.

(b) If A s, = Opip, (1) then A, ,, = Op(1), and vice versa.

|Dn

(c) If N5, ~ U then A, 4, ~ U, and vice versa.

The following Theorems 1 and 2 present conditional asymptotic distributions of ésm R in

(1) and ésn’ p in (2), respectively, when approximating the full data estimator 0,.

Theorem 1. Under Assumptions 1-5, as s, — 00 and n — oo, the estimator ést in (1)

satisfies that
Dy

VordVar(0,)} (0,0 — 6,) ~ N0, 1), (3)

where N(0, I,) is a multivariate Gaussian distribution with mean 0 and variance I (the

identity matriz of dimension d), V,, p(8) = M;'(8)A, r(0)M; (),

n n

N,(0) = %Zm(zi,a), and Ay p(6) %Z (Zi, ) (Z:,6) (@)

T 7
i=1 n,



Theorem 2. Under Assumptions 1-5, as s,, — oo and n — oo, the estimator ésmp in (2)
satisfies that,
|Dn

Van{Var(0.)} 2(0s.p —6,) ~ N(0.I). (5)
where V,, p(8) = M (0)A, p(0)M1(0), M,(8) is the same as in (4), and

n n

n

A p(0) = Avr(0) = =5 > 1n(Z:, 0y (Z,6). (6)

i=1
Remark 3. The asymptotic distributions in (3) and (5) mean that given a full data set for
any 0 > 0, the probability that Hést — énH > § is accurately approximated by P(||Ug|| >
§) where U ~ N{0,V, z(6,)}, and the probability that ||@,, p — 0,| > 0 is accurately
approximated by P(||Up|| > &) where Up ~ N{0,V,, p(6,)}. Thus, a smaller variance means
a smaller probability of excess error at the same error bound, or a smaller error bound for

the same excess probability.

Remark 4. Both ést and ésn’p have Gaussian asymptotic distributions, but they have
different asymptotic variances V,,, R(én) and V,,, p(én), respectively. Under Assumption 4, the
second term on the right-hand-side of (6) goes to zero in probability if s,/n — 0, and it
converges to a positive-definite matrix in probability if s,/n — ¢ > 0. Thus, the difference
Vo, R(én) - Vi, p(én) — 0 in probability if s,/n — 0, and it converges to a positive-definite
matrix in probability if s, /n converges to a positive constant. This means that subsampling
with replacement and Poisson subsampling have the same asymptotic estimation efficiency
only if the subsampling ratio s,,/n goes to zero; otherwise, Poisson subsampling has a higher
estimation efficiency. Thus, to obtain more accurate estimates in practice, Poisson subsam-

pling is recommended unless the subsampling ratio s, /n is very small.

Remark 5. If the sampling distribution 7r is constructed so that A, r(6) — A(@) in proba-
bility uniformly in a neighborhood of 8y, then V,, z(8,) and (1 —¢)~'V,, p(8,) both converge
in probability to V' (6y), the scaled asymptotic variance of 6. This means both subsample
estimators have the bootstrap consistency in this scenario. A class of sampling distributions
satisfies this situation if = does not dependent on the data, such as the class of exchange-
able bootstrap weights which includes the uniform sampling distribution (see Praestgaard &
Wellner 1993, Cheng & Huang 2010). However if v depends on the data, then A, r(6) may
not converge to A(6) 2, and in this case the subsample estimators do not have the bootstrap

consistency. The goal of this paper is different from the line of research about bootstrap

2This is still possible in some special cases such as the local case control subsampling for logistic regression
(Fithian & Hastie 2014, Wang 2019).



that focuses on constructing conference region nor approximating complicated distributions
(see Bickel et al. 1997, Politis et al. 1999), so bootstrap inconsistency is not a concern. Nev-
ertheless, if multiple subsamples are taken, then the average of the subsample estimates is
recommended and the variance can be estimated from these subsample estimates using the
approach proposed in Wang & Ma (2021).

Dn
2 can be replaced by ~» because

Although the convergence in conditional distribution
of Proposition 2 (c¢), Theorems 1 and 2 are about approximating the full data estimator
and they are conditional results in nature. In the following, we derive the unconditional
asymptotic distribution when the true parameter is of interest to further compare the two

subsampling approaches.

Theorem 1°. Under Assumptions 1-5, if A, r(6y) converges to a positive-definite matriz

A+ (80) as s, — 00 and n — oo, then the estimator O, r in (1) satisfies that

Von(0s, g — 6p) ~ N{0, V¢ (60)},
where V¥ (8) = M~ (0)AL(0)M~1(0), AY(0) = A.(0) + cA(8), and ¢ = lim *=.

Theorem 2’. Under Assumptions 1-5, if A, r(6y) converges to a positive-definite matriz

A (80) as s, — oo and n — oo, then the estimator 6, p in (2) satisfies that

V5u(8s,.p — 80) ~ N{0, VF'(60)},
where VY (0) = M~1(8)A-(0)M~1().

Remark 6. In Theorems 1’ and 2’, the unconditional asymptotic distributions of ésm r and
8., p for estimating the true parameter are also Gaussian with (scaled) variances V¥ (6,) and
VY (6y), respectively. From the two theorems, we see that V¥ (68) = VF (6,) +cV (6), where
V(8y) is the scaled asymptotic variance for the full data estimator in Propositio 1. Here,
VY (6y) can be interpreted as the variation due to subsampling and ¢V (8y) can be interpreted
as the variation due to the randomness of the full data. It is interesting to note that the
asymptotic variance components due to the two sources are additive for the subsampling with

replacement estimator 6, g, while ¢V (8y) does not contribute to the asymptotic variance of

the Poisson subsampling estimator 6, p.

3 Optimal subsampling probabilities

~ ~

From the results in Theorems 1 and 2, the asymptotic variances V,, g(0,,) and V,, p(6,,)

depend on 7 = {m,,;}I*,. To improve the estimation efficiency, we want to choose optimal 7

9



~ ~

to minimize V,, z(6,) or V,, p(0,). Specifically, we consider the L-optimality criterion (Sec-
tion 10.5 of Atkinson et al. 2007). The L-optimality minimizes the trace of the asymptotic
variance matrix for some linear transformation, say L, of the parameter estimator. For our
case, this is to minimize tr{LV, z(0,)L"} or tr{LV, p(6,)LT} for some matrix L, because
LVn’R(én)LT and Lanp(én)LT are the asymptotic variances of Lést and Lésm R, respec-
tively. If we take L = I, then the resulting criterion is also called the A-optimality; this
is to minimize the average of the variances for all parameter components by minimizing
the trace of the variance matrix, i.e., minimizing tr{V, z(6,)} or tr{V, p(6,)}. If we take
L = M,(6,), then the resultant criterion is to minimize tr{A, z(6,)} or tr{A, p(6,)}. This
has a computational advantage compared with other choices, so we focus more on this choice
in this paper. The following Theorems 3 and 4 present the optimal subsampling probabilities

for subsampling with replacement and Poisson subsampling, respectively.
Theorem 3. For the subsampling with replacement estimator in (1), the L-optimal subsam-
pling probabilities with L = M,(6,)) that minimize tr{A, r(6,)} are
opt HTTL(Zz,Gn)H
Wn,Rz - n . N )
> i1 Im(Z;, 0,)l
Theorem 4. For the Poisson subsampling estimator in (2), the L-optimal subsampling prob-
abilities with L = Mn(én) that minimize tr{Amp(én)} are
7_l_opt o Hm(ZHen)” NH
n,Pi — n . A ?
Zj:l{Hm(Zj’ 0.) N H}

where a A'b = min(a,b),

i=1,..,n. (7)

i=1,..,n, (8)

E?:_f Hm(27 en)H(i) (9)
Sp — g 7
17(Z,0,)|l 1y < ... < |[1(Z,0,)|/(m) are the order statistics of || (Zy, 0|, .., [|17(Zn, 8,) ]I,
and g 1s an integer such that
(7,0, (n 1 (Z,0,) || 1
ngg ' )Hg 9 _ and Hnmg(+1 .)H< o) 7
Yot I Z,00)]|@)  Sn— 9 ST m(Z,6,) | sn—9t1

H =

(10)

in which we define ||m(Z, én)||(n+1) = 0.

Remark 7. For a general choice of L, we can obtain optimal subsampling probabilities by
replacing ||/(Z;, 0,)|| with || (Z;,6,)||L = ||LM;'(6,)m(Z;,0,)||. However, these quan-
tities require O(nd?) time to compute when M 1(8,) and r(Z;,0,) are available, where
n is the full data sample size and d is dimension of 6,,. On the other hand, it only takes
O(nd) time to compute all ||ri(Z;, 8,,)|’s. Thus the choice of L = M,,(,) has a significant

computational advantage.

10



Remark 8. In Theorems 3 and 4, ng’]tﬁ in (7) and Wff},i in (8) have both similarities and

differences. Assuming that ||[rn(Z;, 0,,)|| > 0 for all i, then 0 < WZE)];Z- < 1 while 0 < wflf’;i <

Si. This means that the inclusion of any data point through optimal subsampling with

n

replacement is random, while the inclusion of data points with "5, = - is deterministic
) n

through optimal Poisson subsampling. The order statistics constraint in (10) indicates that if
(Zi, 00| > 5325, 1in(Z;,6,)]], then w7, and w7, are

different. This means that if the subsampling ratio 2* is larger or if the tail of the distribution

there are data points such that 2=

of || (Z, 8,,)|| is heavier, then optimal probabilities for Poisson subsampling and subsampling
with replacement are more likely to be different. If s, ||m(Z, én)H(n) <> [ Z:, 0,)),
then ﬂzf’lgi and Wflfjltgi are identical. This condition is true with probability approaching one
under some conditions, e.g., when s, logn = o(n) and the distribution of ||/(Z,8,,)|| has a
sub-Gaussian tail because in this case *= || (Z, én)H(n) =op(1) and + 31 |Ii(Z;, 0,)| goes

to a positive constant in probability.

Remark 9. In Theorem 4, H is the threshold so that all wflp;i are no larger than si, and it
satisfies that | ’

115(Z, )l n-g) < H < [[1i2(Z, 0:) | (n-g41). (11)
Here ¢ is the number of cases that WZf’;-,i = i, i.e., the number of data points that will be

included in the subsample for sure.

Now we discuss an example to illustrate the optimal structural results. Additional ex-

amples are available in Section A.2 of the Appendix.

Example 1 (Binary response models). Consider a binary classification model such that
]P)(yz: 1) :p(mue)v i = 17"'7”7

where y; € {0,1} is the binary class label, x; is the covariate, and 6 is the unknown pa-
rameter. To estimate 0 using the maximum likelihood estimator (MLE), let Z; = (x;,v;)

and

m(Z;,0) = yilog{p(x;, )} + (1 — y;) log{1 — p(;,0)}.

Direct calculations yield that

. A Yi —Di - . A lyi — il =
m(Z;,0,) = ———p;, and ||m(Z;,60,)| = —=———|pil, (12

( ) pi(1 — i) Irint | pi(1 — i) I2:] )
where p; = p(x;, én), and p; = p(x;, én) is the gradient of p(x;, @) evaluated at 0,,. We can
obtain optimal sampling probabilities by inserting the expression in (12) into Theorems 3
and 4.

11



To obtain the general L-optimal subsampling probabilities with any L, the Hessian matrix

m(Z;,0) of m(Z;,0) is

. A Yi —Di = Yi I—w Yeoor
m(Z;,0) = ————p; — {T + —A}pipi ) (13)
pi(1 — pi) 7 (1 —p;)?

where p; = P, én) is the Hessian matrix of p(x;, @) evaluated at 6,,. Thus, we obtain the

general L-optimal sampling probabilities by using
. A ’yi_ﬁi| r—1/0 \A

m(Zi, 0| = ——— LM, " (6,)p:ll, 14

[712(Zi, 60| pi(l_pi)H (0)pi (14)

to replace ||/ (Z;, 8,)|| in Theorems 3 and 4, for any L, where

n

A . Yi —Di = Yi L=y 2 oo
M, (8,) = ——Di — {— + —A}pipi . (15)
) 1 pi(1—pi) ; ;o (1 —pi)?

1N Yi—Pi
? n Lei=1 pi(1—p;)

M,(6,) in (14) can be replaced by

Under some regularity conditions p; is a small term in (15), and therefore

n

18, = —%Z{]Z—+(f_—py>}pp (16)
Thus, there is no need to calculate the Hessian matrix p;.

From (12) or (14), the optimal subsampling probabilities are proportional to |y; — p;|.
Thus if y; = 1, data points with smaller values of p; are sampled with higher probabilities;
if y; = 0, data points with larger values of p; are sampled with higher probabilities. The
optimal subsampling probabilities give higher preference to data points that are closer to
the class boundary. This increases the classification accuracy because if these data points
can be classified correctly, then other data points are easier to classify.

Specifically for Logistic regression in which
ew?e

in0) = ———+,
p(x:, 0) (1t o10)

we have p; = Pi(1 — p;)x; and pi = pi(1 — pi)(1 — 2p;)x;x]. Thus, for this case

liv(Zi, 6|1 = |y — illlzill,  and (A7)
‘ . X . ' . 1 e _ R
i Zi, 0a)ll1. = lys = BilllLM (Bn)a |, with Ma(0,) = == il = pi)zsaf. (18)

n <
=1

If the expression in (17), or the expression in (18) with L = I, is used in Theorems 3, the

structural results for optimal probabilities of subsampling with replacement are identical to

12



those in Wang et al. (2018). If (16) is used, then the expression of M%(8,) is M%(0,) =
—L 3" (yi — pi)*xz], which has the same limit as M,(6,) in (18).

From Theorem 4 we see that if there are data points such that *»[y; — psl||;]| >
%Z?:1 ly; — Djl|lx;||, then optimal probabilities for Poisson subsampling are different from

that for subsampling with replacement.

3.1 Practical algorithms

The optimal subsampling probabilities depend on the full data estimator én, so the
structural results in the previous section do not translate into useful algorithms directly.
We need a pilot estimator to approximate the optimal subsampling probabilities in order to
obtain practically implementable algorithms. This can be done by taking a pilot subsample of
size sg through a subsampling distribution that does not depend on 6,,.. For simplicity, we use
the uniform subsampling distribution 7™ = {7, ; = % ? ., and present the approximated
optimal subsampling with replacement procedure in Algorithm 2.

Compared with the exact Wflp]tﬁ, the approximated ﬁzp;% in (20) are subject to additional

disturbance due to the randomness of ég;‘ R, the maximizer of (19). From Theorem 1, the

~

subsampling probabilities are in the denominators of A, z(6,,). Thus the additional distur-
bance may be amplified for data points with Wfl?}tﬁ being close to zero, and this may inflate
the asymptotic variance of the subsample estimator. To protect the estimator from these
data points, we adopt the idea of defensive importance sampling (Hesterberg 1995, Owen &
Zhou 2000) and mix the approximated optimal subsampling distribution with the uniform

subsampling distribution. Specifically, we use 7°°;, . instead of ﬁo?;i in (20) to perform the

n,Rai n
subsampling. The same idea was also adopted in Ma et al. (2015).

opt n
n,RaiSi=1>

optimal subsampling distribution if « is close to 0 while it is close to the uniform subsampling

In Re = {7 « controls the proportion of mixture, and 7g,; is close to the

distribution if a is close to 1. If a > 0, then nar"; ., are bounded away from zero, which add

to robustness of the subsampling estimator.

13



Algorithm 2 Practical algorithm based on optimal subsampling with replacement

e Pilot subsampling: use sampling with replacement with 7" to obtain {Z*, ..., Z0*};

obtain ég{f r through maximizing

. ~m(Z",0)
My (0) = —t (19)
i=1 50
e Approxzimated optimal subsampling:
calculate the whole subsampling distribution 7 ga; = {7y pa; }1oy, where a € (0,1),
m(Z;, 6 1
wit = e Tt g g = (R ek )
Zj:l (25, 050 ol n’
use Tga to take a subsample {Z7, ..., Z; }, and record the corresponding probabilities
{T ot s s Trtas I
e [istimation: obtain égm r through maximizing
> m(Z;,0)
My, (6 —t 21
Ra( ) Zz: nSnﬂ_zp&zz ( )
Algorithm 3 Practical algorithm based on optimal Poisson subsampling
e Pilot subsampling: use Poisson sampling with 7w to obtain {Z*, ..., Zgg};
obtain ég: p through maximizing
] ~m(Z})",0)
Mp(6)=> — (22)
i=1 0
calculate
: : o iz, 6% p) | A HY
H™ = |[i(Z)*,0% p)ll =, and T =" o . (23)
i=1 0
e Approxzimated optimal subsampling: For each i of t =1, ..., n,
calculate
~opt ||m(ZZ705 P)H A HO* ~opt opt 1
nI,)Pz - nfpo* ’ and 7Tnf)Pon - (1 - Oé) inz + CYE; (24)
generate u; ~ U(0,1);
if u; < 5,7 py;, include Z; in the subsample and record 7.7y,
e [istimation: obtain 0?717 p through maximizing
Vo) = 130z (25)
T (s AL

14



For the optimal Poisson subsampling probability wfl{’};i, we also need to use the pilot
subsample to approximate H and ¥ = 25" {||m(Z;, 6,)|| A H} in order to determine the
inclusion probability based on each data point itself, as described in Algorithm 3. From
(11), H is between the (n — g)-th and the (n — g+ 1)-th order statistics of {||7n(Z;, 8|},
and g is between 0 and s, so we can roughly approximate H with || (Z*, Og:P)H%, the
upper #2-th sample quantile of {|m(Z}*, OSS‘P)H}Z 1» where b > 1 is a tuning parameter.
Since ¢ is typically closer to 0 and farther from s,, taking b = 1 underestimates H and
the resulting subsampling probabilities lean towards the uniform subsampling probability (if
H < ||m(Z, én)H(l), then 7,7, would be all equal to 1). When subsampling from massive
data, s, is often much smaller than n and the number of cases for || (Z;, 0,)| to be larger
than H is small. For this scenario, one may simply ignore H and use oo to replace H.
This simple option in general overestimates H, but it may perform reasonably well for small
subsampling ratios. For ¥, it can be approximated by ¥%* defined in (23).

When we use ¥* and H to replace ¥ and H in (24), it is possible that some ﬁfflgi in
(24) are larger than Sin and thus snﬁfj’;i are larger than one. Thus, we use one as a threshold

in the denominator of (25).

Remark 10. In Algorithm 2, 0 o r and 0 ' g can be combined to obtain an aggregated

estimator,
Or = (SOMIO{‘ + (9]\7[1*%)_1 X (SOMO* OO*R + M x 0 R)>

where MY* is the Hessian matrix of M%(8) in (19) evaluated at %, and M, is the Hessian
matrix of M}(0) in (21) evaluated at éng. Similarly, in Algorithm 3, 00* p and 95 p can

be combined to obtain an aggregated estimator,

Op = (SSM%‘ + san*g)fl X (SSMO* HO*P + s, M} x 0? P

where MY is the Hessian matrix of M$*(8) in (22) evaluated at 6°* ,, and M} is the Hessian
matrix of M}(0) in (25) evaluated at éo‘ Here, Oy is obtained as a linear combination
of 6% and 02 .. and @p is obtained as a linear combination of 8% , and 62 , in a way
similar to the aggregation step in the divide-and-conquer method (Lin & Xie 2011, Schifano

et al. 2016). This further improves the estimation efficiency.

3.2 Theoretical analysis of practical algorithms

We obtain the following distributional results in Theorems 5 and 6 for Algorithms 2 and

3, respectively.
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Theorem 5. For é?n,R obtained from Algorithm 2, under Assumptions 1-4, as Sg, Sn, and

n get large, the following result holds. Given D,, and OO*R i probability,

\/Q{VnofR(én)}_l/g(éng ~0,) —N(0,1,),
in conditional distribution, where VanR(OAn) = Mgl(é JA% (é M Y (é ),

~

R . ] ~ . T ) R R
AC (0 ) 1 Z m<2270n>m (Zuen>7 and 7Topt (en) _ (1 _ Oé) Zp]gd(e ) Oél.

"2 opt N n,Rot
n i=1 ﬂ-n,Rai<0n> n

Theorem 6. For é?mP obtained from Algorithm 3, under Assumptions 1-4, as Sg, Sn, and
n get large, if so = o(n), o, = $,/(bn) — 0 € [0,1), and the distribution of Z is continuous,
the following result hold. If o = 0, then given D,, and the pilot estimates in probability,

Vol Viep(0,)} V(02 p — 6.) = N(0,1),

~ . ~

in conditional distribution, where V.®p(0,) = M, ' (0,)A% p(0,)M,;1(6,),

n

{1 — 5,7 (0,)}1(Z;,0,)m™(Z:,6,)

n,Pai

A%,P(é ) ng Z opt (é ) (26)

i=1 7Tn,Pon'

and 7%, (6,) = (1 — a)ﬂZf}tpi(én) +at. If o > 0, then sz;,l(én) in (26) is replaced by

n,Pai
Wopt‘ — Hm(Zlvén)U/\HQn
m P {ll(Z5,00) A Hep }
fori=1,...,n
Remark 11. Denote Aj’%’t(én) and Afi’;(én) as A, R(én) and A, p(én) with optimal subsam-
pling probabilities that produce the minimum trace values, respectively. In Theorems 5 and
6, A%(6,) and Ay »(6,) are different from A%*(8,) and Aff;,(én), respectively. However, it

can be shown that

where H,, is the o,-th upper sample quantile of ||[i(Z:,0,)|’s

tr{AoRpt(én)}

1—
Thus, if « is small enough, tr{A“( o)} and tr{A%"(0,)} can be arbitrarily close, and
tr{AmP( )} and tr{Apr}D( »)} can be arbitrarily close.

tr{ A5 (6,)}

l1—a

tr{AD"(0,)} < tr{A%(0,)} < , and tr{AOpt( n)} < tr{Ay p(6,)} <

Remark 12. If the pilot subsample size is much smaller than the approximated optimal
subsample size, i.e., so = o(s,), then the aggragated estimator 0z and Op have the same

asymptotic distributions as those for 0~§‘m r and égn p, respectively.

4 Numerical experiments

In this section, we use numerical examples to compare the optimal subsampling probabil-
ities under the two sampling procedures considered in this paper. We will also use numerical

experiments to evaluate the performance of the practical algorithms proposed in Section 3.1.
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4.1 Comparisons of optimal subsampling probabilities

In this section, we use numerical examples to compare the optimal probabilities for
subsampling with replacement presented in Theorem 3 with the optimal Poisson subsampling

probabilities presented in Theorem 4.

Example 2 (Linear regression). Consider solving the OLS for a linear regression model
i = 0+ xl0; +¢;, i =1,...n, with n = 10°, 6y = 1, 8, being a 50 dimensional vector
of ones, and ¢; being i.i.d. N(0,1). For the expected subsample sizes, we consider s, =
2% 1033 x 103,5 x 103,10%,2 x 10%, and 5 x 10%, so that the subsampling ratios are s, /n =
0.02,0.03,0.05,0.1,0.2, and 0.5. In this example, we use the L-optimality criterion with
L = (XTX)Y2 so that the optimal subsampling probabilities are closely related to the
statistical leverage scores. Specially, Wfflt%i o |&;|v/h; and WZ?;% o< (|&]v/hi) A H for the two
subsampling procedures, respectively. To generate x;’s, we used normal distribution N(0, X)
and multivariate ¢ distributions ¢, (0,3) with degrees of freedom v = 5,4, 3,2, and 1, where
3 is a matrix with the (i, j)-th element being 0.5/07%) and I() being the indicator function.
For this sequence of covariate distributions, the statistical leverage scores become more and
more nonuniform.

Table 1 gives the values of g in the expression of the optimal Poisson subsampling proba-
bilities in Theorem 4 for different combinations of the subsampling ratio s, /n and covariate
distribution. Note that g is the number of cases that || (Z;, 0,)| o |é:|v/R: are truncated
by H. Thus, 71‘2173;%1- and 7'[‘?:);32- are more different for larger values of ¢, and they are identical
if g = 0. It is clear that g increases as s,/n increases, indicating that mo'y, and 757y, are
more different as the subsampling ratio s, /n gets larger. We also see that as the tail of the
covariate distribution get heavier, g gets larger. This tells us that the difference between
sz’;.i and 71'2}7);71» is more significant if the statistical leverage scores are more nonuniform, as

a heavier-tailed covariate distribution leads to more nonuniform leverage scores.
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Table 1: The values of g in the optimal Poisson subsampling probabilities for OLS with
different expected subsample sizes s,, and different distributions of «;’s. The full data sample

size is n = 10°.

Distribution of x;’s

Sp/n Normal ts ty t3 to ty
0.02 0 0 0 0 16 120
0.03 0 0 0 7 39 203
0.05 0 0 1 28 113 342
0.1 0 23 58 154 492 756
0.2 15 584 762 1216 2242 1734

0.5 14364 16569 17191 17954 19038 15481

Figure 1 presents histograms and scatter plots of optimal probabilities for the two sub-

. . s t t
sampling procedures to show more details on the distributions of 7 7.’s and 7, p,’s when

x;’s are from the t; distribution. In each sub-figure, the left panel is the histogram for 7°,’

n,Pi S
and the right panel is the scatter plot of WZ?};Z-’S against 7" .’s. We multiply all probabilities

by n for better presentations. Note that this does not change the shapes of the figures. We
only create the histogram for ﬂfffgi’s, because the distribution of ﬂﬁ?ﬁi’s does not depend on
s, and remains the same for all values of s,. In addition, since ¢ = 0 for the case with
sn/n = 0.02, the histogram in Figure 1(a) is the same to the histogram for WZ?% and we can
compare it with other histograms to see the difference between the distributions of Wfi’;ﬁ’s
and WZ?;,L-’S. From Figure 1 (a)-(f), we see that as s, /n increases the optimal probabilities
for Poisson sampling and sampling with replacement are more different, because more larger

opt »
T, p;’s are truncated to 1/s.
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Figure 1: Histograms and scatter plots of optimal probabilities for subsampling with replace-
ment and Poisson subsampling for different subsampling ratio s, /n. Here x;’s are from the

t5 distribution.

Figure 2 presents histograms and scatter plots of optimal probabilities sz}tﬂ.’s and nglgi’s

for different distributions of @;’s when s, /n = 0.1. In each sub-figure, the upper and lower

plots in the left panel are the histograms for Wfff%’s and 7" ', respectively, and the right

b

panel is the scatter plot of Wflf’;i’s against ﬂfff%i s. Again, we multiply all probabilities by

n for better presentations. We see that for a fixed subsampling ratio s, /n, sz}{i’s and

t : . .
mon,’s become more different as the leverage scores become more nonuniform (the tail of the

. . . . . t
covariate distribution becomes heavier), because more large values of 7 "p.’s are truncated.
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Figure 2: Histograms and scatter plots of optimal probabilities for subsampling with replace-
ment and Poisson subsampling for different covariate distributions. Here the subsampling

ratio s,/n = 0.1.

4.2 Comparison of estimation efficiency of the practical algorithms

We compare the estimation efficiency for the two subsampling procedures using both

synthetic and real data sets.

Example 3 (Logistic regression). Form model P(y; = 1|a;) = et/ 01 /(1 4 fotalon),
i =1,...,n, we generate synthetic data sets by setting n = 10°, 8y = 0.5, and 6; to be a 9
dimensional vector of 0.5. We consider the following three cases to generate x;. In Cases 1
and 3, the responses y; are balanced, while in Case 2 about 98% of the data points are with

y; = L.

Case 1: Normal. Generate x; from a multivariate normal distribution, N(0, 3), where the
(i, 7)-th element of 3 is 32;; = 0.5/079) and I() is the indicator function. This distribution

is symmetric with light tails.

20



Case 2: LogNormal. Generate v; from N(0, ¥) as defined in Case 1 and then set x; = e,
where the exponentiation is element-wise. This distribution is asymmetric and positively
skewed.

Case 3: T5. We generate x; from a multivariate ¢ distribution with three degrees of freedom
t3(0,X) with X defined in Case 1. This distribution is symmetric with heavy tails.

We also consider two real data sets: the covtype data from the LIBSVM data website
(https://www.csie.ntu.edu.tw/"cjlin/libsvm/) and the SUSY data (Baldi et al. 2014).
Both data sets are also available from the UCI data repository (Dheeru & Karra Taniskidou
2017). We present them as Cases 4 and 5 below.

Case 4: Covtype Data. It has n = 581,012 observations with about 48.76% of the re-
sponses are y; = 1. We use the ten quantitative covariate variables as x;’s.

Case 5: SUSY Data. It has n = 5,000, 000 observations with about 54.24% of the responses
are y; = 1. We use the 18 kinematic features to classify whether new SUSY particles

are produced.

To implement Algorithms 2 and 3, we set @ = 0.1, and choose sy = 0.01n and different
values for s,, so that the sampling ratio (sg + s,)/n = 0.02, 0.05, 0.1, 0.2, and 0.5. Two dif-
s and H” = oo. We aggregate

ferent options of H% are considered: H™ = || (2, 6% 1)
the pilot estimator with the approximated optimal subsampling estimator using the proce-
dure described in Remark 10. For comparison, we also implement the uniform subsampling
method with expected subsample sizes sg+ s,,. Newton’s method is used for optimization on
all subsamples. We repeat the simulation for 7" = 1000 times to calculate the empirical mean
squared error (MSE), defined as MSE=1 S, 10® — 8,]1%, where %) is the subsampling
estimate at the t-th repetition and 6, is the full data estimate.

Figure 3 plots the empirical MSE (natural logarithm is taken for better presentation)
against the subsampling ratio (so + s,)/n. When the subsampling ratio (s + s,)/n is close
to zero, subsampling with replacement and Poisson subsampling have similar performance
for both approximated optimal subsampling and uniform subsampling. However, when (so+
sn)/n gets larger, Poisson subsampling outperforms subsampling with replacement, and the
improvement from subsampling with replacement to Poisson subsampling is more significant
for approximated optimal subsampling than for uniform subsampling. For both subsampling
with replacement and Poisson subsampling, approximated optimal subsampling methods
outperform the uniform subsampling method. Their performances are closer for smaller
(s0+5,)/n because the proportions of uniform subsamples are higher for smaller (so+s,)/n.

For Poisson subsampling, the results for the two choices of H%, H% = oo and H"* =
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Figure 3: Log empirical MSEs (y-axis) against subsampling ratio (so + s,)/n (x-axis) for lo-
gistic regression. Here, “optR” means optimal subsampling with replacement; “uniR” means
uniform subsampling with replacement; “optP.,” means approximated optimal Poisson sub-
sampling with H% = oo; “optP;—5" means approximated optimal Poisson subsampling with
HO = [l (29, 6% 1)

% and“uniP” means uniform Poisson subsampling.
n

Example 4 (Linear regression). We consider a linear model y; = y+x} 0, +¢;,7 = 1,...,n,
with n = 10°, 6y = 1, 8, being a 50 dimensional vector of ones, and &; being i.i.d. N(0,1).
We use the same distributions in Cases 1-3 to generate x; and refer them as Cases 1’-3". We
also consider a gas sensor data Fonollosa et al. (2015) from the UCI data repository (Dheeru
& Karra Taniskidou 2017). We present it as Case 6 below.

Case 6: Gas Sensor Data. After cleaning, the data contain n = 4,188,261 readings on
15 sensors. We use log of readings from the last sensor as responses and log of other

readings as covariates.

To implement Algorithms 2 and 3, we use the same setup for a, s, s, and H%*, as used
in logistic regression. Specifically, = 0.1, s = 0.01n and different values for s, so that
(so + 8n)/n = 0.02, 0.05, 0.1, 0.2, and 0.5. We also consider both H* = (2%, 0% 1)

and H% = oo, and aggregate the pilot estimator with the approximated optimal subsampling

Sn

5n
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estimator using the procedure described in Remark 10. We repeat the simulation for 7" =
1000 times to calculate the empirical MSE.

Figure 4 gives results for empirical MSE from least-squares in linear regression model.
The overall pattern in Figure 4 is similar to that in Figure 3. We see that subsampling
with replacement and Poisson subsampling have similar performance if the subsampling ra-
tio (sg + sn)/n is close to zero, while Poisson subsampling outperforms subsampling with
replacement as (so + s,)/n gets larger. This trend is true for both approximated opti-
mal subsampling and uniform subsampling, and we observe that the advantage of Poisson
subsmapling over subsampling with replacement is more significant for approximated opti-
mal subsampling. Furthermore, for linear regression, the advantage of Poisson subsampling
compared with subsampling with replacement is more significant. For example, in Case
4’, the synthetic data sets with a;’s from the ¢3 distribution, the uniform Poisson subsam-
pling can even outperform the approximated optimal subsampling with replacement when
(so+sn)/n = 0.5. We also observe that approximated optimal subsampling methods outper-
form the uniform subsampling methods, and the gap between their performance in terms of
estimation efficiency is larger for larger (so+ s,)/n. This is because the proportions of more
informative observations in the subsample are higher for larger (so+ s,)/n. Another pattern
is that when the approximated optimal subsampling probabilities are more nonuniform, their
advantage over uniform subsampling is more significant. For example, from the gas sensor
data set, approximated optimal subsampling methods have significantly higher estimation
efficiency than the uniform subsampling methods even when sy = s, = 1000. For Poisson

sn - are

subsampling, the performance with H%* = oo and that with H%* = ||m<Z?*,0~2;7P) :n

similar for small (sg + s,,)/n, but the choice with H>* = ||m(Z*, ég;’P)

advantage for larger (so + s,,)/n.

i starts to show its

5 Conclusion and Discussion

In this paper, we derived optimal subsampling probabilities in the context of maximizing
an additive target function for both subsampling with replacement and Poisson subsampling.
Theoretical and empirical results show that the two different subsampling procedure have
similar performance when the subsampling ratio is small. However, when subsampling ratio
does not converge to zero, Poisson subsampling has a higher estimation efficiency. One prob-
lem warrants for further investigation is how to choose the tuning parameter b in Algorithm 3
so that the approximated optimal subsampling probabilities produce an estimator with an
asymptotic variance-covariance matrix that is near optimal even when the subsampling ratio

does not converge to zero.
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Figure 4: Log Empirical MSEs (y-axis) against subsampling ratio (so + s,)/n (x-axis) for
linear regression. Here, “optR” means optimal subsampling with replacement; “uniR” means
uniform subsampling with replacement; “optP.,” means approximated optimal Poisson sub-
sampling with H% = co; “optPy—5” means approximated optimal Poisson subsampling with
H = |2, 6% p)

s 5 and“uniP” means uniform Poisson subsampling.
n
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Appendix

A.1 Proofs

In this section, we prove all the theoretical results in the paper.

A.1.1 Proof of Proposition 2

Proof. For Proposition 2 (a) since P(||A,, s, || > §|D,,) is a nonnegative and bounded random
variable, from Theorem 1.3.6 of Serfling (1980), P(||A,.s,|| > 0|D,) = op(1) if and only if
E{P(||Ass,|| > 0|D,)} — 0. Note that

E{P(||Ans, || > 0[Dn)} = BE{([[An s, [ > 0)[Dn}] = E{I([[Ans, || > 0)} = P([| Ans,[| > 0).

Thus E{P(||A,s,|| > §|D,)} — 0 if and only if P(||A,.,,|| > 6) — 0, which is true if and
only if A, 5, = op(1).

Now we prove Proposition 2 (b). Note that A, ., = Opp,(1) means that for any € > 0
and any 0 > 0, there exist a finite K, > 0 and a finite N5 > 0 such that P{P(||A,.,|| >
KD,) > e} < ¢ for all s, > N5 and n > N5. Thus if A, 5, = Opp,(1), then for any
e > 0 and 0 = ¢, there exist a finite Ky5. > 0 and a finite Nysc 05 > 0 such that for all

Sp > Noseose and 1> Nose0.5e
Therefore,

P(||Ans, || > Kose) = E{P(| A, [l > Kosc D)}
E[P([|Ans, ]l > Kose Do) H{P(| Ap s, | > Kose|Dn) > 0.5¢}] + 0.5¢
< E[H{P(|Ans, || > Kosc|Dn) > 0.5¢}] + 0.5¢

P{P(||A, .. || > Kosc|Dy) > 0.5¢} + 0.5¢

IN

IN

IN
™

Y

meaning that A, ;. = Op(1).
On the other hand, if A, 5, = Op(1), then for any € > 0 and § > 0, there exist a finite
K. and a finite Nj, such that P(||A,, s, || > Ks.) < de for all s, > N and n > Ns.. Thus

P{P(HAn,an > Kﬁe‘pn) > 6} < 6_1E{]P(“An,sn” > K&’Dn)} = 5_1P(”An,sn” > K&) <9,
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which means that A, ,, = Opip, (1).

Now we prove Proposition 2 (c). Because P(A, , < x|D,) is bounded, P(A,;,
xz|D,) —P(U < x) = op(1) if and only if E{P(A, s, < |D,)} —P(U < x) = P(A, 5,
x) —P(U < x)=o0(1). Thus A, ;, % U if and only if A, 5, ~ U.

O IA A

A.1.2 Proof for Theorem 1

Recall that

n

S|

For the sampling with replacement estimator in (2), let
M (0) = Ly L0

*
Sn i1 nﬂ-n,i

To prove Theorem 1, we first establish Lemma 1 and Lemma 2 in the following.

Lemma 1. Under Assumptions 3 and 5, if ||0,, r — 0| = op(1), then conditional on D,,

where

1 Z im{Z:, 0, + N0, p — 6,)}

*
0 Sn = N, ;

dA.

In Lemma 1, the notation op(1) means convergence to 0 in probability. Here the proba-
bility is conditional probability. From Xiong & Li (2008), Cheng & Huang (2010), a sequence
converges to 0 in conditional probability is equivalent to the fact that it converges to 0 in
unconditional probability. Thus we use op(1) to indicate convergence to 0 either in uncon-

ditional or conditional probability.

Proof. Firstly, note that

1 (27
E . K3
(sn Z nm, ;

D,

V(giw(&-")p

*
Sn = NI,

n

> VA(Z) = Op(s, ).

n

77777

)
)-:3

|

(V)
3
i
3%
2N

VAN
1

jaV]
LM
VR
3
3 p—
N——
[VA)
S —
4



Thus,

1 »(Z7)
Sn = NT

For every k,l =1,2,...,d, from Lipschitz continuity, for A € (0,1), we have
1 N {25, 0, + M0, r — 0,)} 1 > (21, 6,)

* *
Sn <= nm, ; Sn <= nm, ;

- ~ 1 S (Z))
=A 03 - en — — = 1 5
10c. =00l S 32 T2 = on)
and for any fixed 0, we have

} 2||0 -0’5
—kaz ZZ,O i,l(Ziﬁ) Z¢2 p(1).

=1

In addition, according to (A.2),

1 o mk l(Z 70n> 1 = . 2
E — . Dn = - Zza Hn )

v NTnq n

Thus, by Chebyshev’s inequality, we have

1 on mk l(Z-*, én) 1 - . A
— AL L S S A — 7,0,
S Z mr;;,i n ;mk’l( )

=1

= Opip, (5,"%) = opip, (1).

Combining (A.1) and (A.3), we have

IR ;
By, ki — - ka,l(z )
i=1

U1 & i {72 6, + \O, n—6, 1 .
< / _2 : mk,l{ i + *( n. >} - — mk,l(zia 971) dA
0 |Sn i3 MV =t

1 Szn mk,l{Zika én + )\(ésn,R - én)} 1 Szn Mk’l(Z;, én)

o *
Sn i=1 nﬂ-n,i

3/01[

1 mkl
— E _— — — E mkl
Sn £ nm,

27

1 1 ¢ ;
< max ( ) —  13(Zi,0,) = Op(s,').
S b
i=1

(A1)

(A.2)

(A.3)



Lemma 2. Under Assumptions 4-5, given D, in probability,

Dy

VEr{Anr(0,)} 2N (6,) ~ N(0,1), (A4)
i conditional distribution.

Proof. Note that

S 1 <2, 6, 1 &
VEE (6,) = Ly MELE) _ 1 §n, (A.5)

Given D,,m1, ..., Ms, are i.i.d, with

1 1 A
< = n(Z;,0,)m*(Z;,0,) = 1 A.
- zirll,a}(,:n (nﬁni> N3 m(Zi, 0n)1 (Z;,0,) = Op(1), (A7)

where the inequality in (A.7) is in the Loewner ordering, i.e., A; < A, means A; — Ay is a
negative semi-definite matrix.
Meanwhile, for every ¢ > 0 and some § € (0, 2],

Sn

1 1
_ZE{”T’%H ] ||”71H > 51/2 |D }— 1+5/2 ZE{HTh ’2+5](||"7 H > 51/2 |D }

1 246 Hm Z,,,O )|
= WX;E(\|"i\| D) < 5/2 i 2 Z s

1 149 1 n R
e ( ) s 2 Im(Z, 8|7 = Op(s,"").
| nsn €° 4

This shows that Lindeberg’s condition is satisfied in probability. From (A.5), (A.6) and
(A.7), by the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der Vaart
(1998)), conditionally on D, (A.4) follows. O

Proof of Theorem 1. Based on Lemma 1 and Lemma 2, now we are ready to prove Theorem

1. By direct calculation, we have that for any 6,
E (M, (0)|D.) = M,(6).

By Chebyshev’s inequality, for any € > 0,

V{M; (0)|D,} - ZZ, 0)

g2 525 n?
=1

P {| M (6) — M,(8)| > £|D,} <
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1 1\ 1¢
< ‘max < | ) EEmZ(Zi,O)—Op (s,1).
Thus, for every 6,
M; (8) — My (6) = opip, (1), (A.8)

Note that under Assumptions 1, 2, the parameter space is compact and 0, is the unique
global maximum of the continuous concave function M, (€). Thus from Theorem 5.9 and its

remark of van der Vaart (1998), conditionally on D,,,
165, = 6ull = 0pip, (1) = 0p(1). (A.9)

The consistency ensures that ésm R is close to 6, as long as s, is large. By Taylor expansion,

0= M; (65, r) = M, (0,) + Bs, (0., r — 6,), (A.10)
where
B, — R m{z;,énJrAiést -6,)} N
0 Sn nm, ;
From (A.10) and Lemma 1,
0= M (6, 8) = M (0,) + {M,(,) + op(1)}(8,,.r — 6,), (A.11)

which shows that

~ ~

0., 1 — 0, = —{M,(8,) +op(1)} "M (8,)
=- é—n{Mn(én) +0p(1)} A r(0,) 125 { An (6,)} VM2 (6,). (A.12)

By Lemma 2 and Slutsky’s theorem, we obtain that, given full data D,, in probability,

Vol Var(02)} (05,0 — 6,) = N(0,1) (A.13)
in conditional distribution, and this finishes the proof. m

A.1.3 Proof for Theorem 2

Let v; = 1 if the i-th data point is selected in the subsample and v; = 0 otherwise. The
estimator in (2) is the same as the maximizer of

*
Sn

M (6) %Z m(ZF,0) _ lz I/Z-m(Zi,H).

*
Sp T n SpTni

i=1 nUmi i=1
Here, we use s, to replace s in (2) for convenience, and the resulting estimator is identical
to Osn’ P-

To prove Theorem 2, we first establish the following Lemmas 3 and 4.
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Lemma 3. If Assumptions 4-5 hold, then, given D,,,

|Dn

Vou{Aap(6,)}2Mp(6,) ~ N(0,T),

i conditional distribution, where

~

A 1 - Snﬂ-nz (Zz On)mT(Zu en)
- Z -

n P 0
Tni

Proof. Write

: 2 170 -
VET(6,) = z VN2 00) S
. n TL’L i=1

By direct calculation and according to the definition of én,

E <an Dn) \EZ Z“e Lo,

and

\Y (Z np;|D
i=1

1 < V(D) Z;, 0,)1n (Z;,6,)

i=1

< ( max
v NTp,

) Zm T(Z:,0,) = Op(1).

Next, we check Lindeberg’s condition in conditional distribution. Note that for p € (0, 2]

=1
_ Ly 5z bl ,
- ; 24p 1HP/2__2+p n
Z Hm Zz,H
gp — n2+psp/2 1+p

and any € > 0,
< —ZE (Imril>*#| D
1 1+p
: max( ) p/z Z [(Z:. 0,)|1*7 = Op(s5,7/%) = 0p(1).

S E el > )|} < —ZE{HnP P 1(meil > 2)|Pu }
|2+p
4 Ny

According to the Lindeberg-Feller Central Limit Theorem (van der Vaart 1998, cf.), given
Dy,

Vol p(0,)} 20 (8,) — N0, 1),

in conditional distribution. OJ
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Lemma 4. Under Assumptions 3 and 5, for any us, = op(1), conditional on D,,

_Z”z Sm*“ ——Zm = op(1).

=1

Proof. First, note that

n

%Z vit)(Z;) = Oppp, (1), (A.14)

i—1 SnTni

by Chebyshev’s inequality and the fact that

IE(%EZLQﬁM ) Ly SnL“D’ %}:uw&>:EH¢Qm}+0pax

— 7Tnz

N3 i—1
1 <~ vith(Z)) - V*(Z;)V(vi|Dy) V(Z)E(W])
v (E Z SnTni D") T n2 Z 52 2 - n2 Z 2.2

n nz S n,i

= L) LSz e = 0y,

SnTni Sph £
=1 ’ 1=

Thus, for every k,l = 1,2, ...,d, from Assumption 3, we have

SnTn.i n
i=1 n'ing i—1

n

1< Vimkl<Ziaén+us ) 1i1/imkl(zi,én) s, || = vi0(Z:)
3"l s ) 15 uiulZed)]  Jel
n SnTni

Snﬂ-n,i

which shows that

1 = z Zuén s 1 = [ Z270
Ly vih(Ze O ) Ui Zi8) ) (A.15)
n- SnTn,i n Snﬂ_nl
i=1 ) i=1
According to (A.2), for every k1 =1,2,...,d
1 = vt (Z;, 0,,) 1 .. X
o il S CC AL | ) R Zi,6,),
(RS rln, ) - [ 0
1 - z Zz én 1 " 1— SnTn,i /ﬁlQ Zl7én 1 u m2 Zwén
y (Lt Y 1§ 0 )idiZeb) L it 2.0)
n i—1 Snﬂ-n,i Spn i—1 7Tn,1 SpM i=1 7Tn,1
< max ! LG:mQ (Z:,0,) = Op(s,; 1)
i \nmpi /) san = kA T PA%n
Thus, Chebyshev’s inequality tells us that
v;m Zz,O
—Z e Zm Zi,6,) = Opip, (s,'/%) = op(1). (A.16)

=1
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Therefore, combining (A.15) and (A.16), we have

1 Z viti( Zi, 0n + us,) 1 N (2, 6,) = op(1).

SnTni n 4

Proof of Theorem 2. Denote

vp(u) = s, M} (8, +u/\/sn) — $uM}(0,,).

Under Assumption 2, , /sn(ésm P —én) is the unique maximizer of yp(u) as ésn’ p is the unique

maximizer of M}(u). By Taylor’s expansion,
L 1 )
vp(u) = /spu' M5(0,) + §uTM1’S(0n +U/\/Sn)u

where 4 lies between 0 and w. From Lemma 3 \/QM *(An) is stochastically bounded in
conditional probability given D,. From Lemma 4, conditional on D,,, M3 (8, + 4/ V5n) —
M,(6,) = op(1) and M,(8,,) converges to a positive-definite matrix.

Thus from the Basic Corollary in page 2 of Hjort & Pollard (2011), the maximizer of

snyp(u), \/S_n(ésn’p — én), satisfies that

V(05,0 — 0n) = M (8,)V/5,Mp(6,) + op(1), (A.17)

which implies that
Vi Var(6.)} %80 — 6.) = N0, 1), (A.18)
in conditional distribution, given D,, in probability. This finishes the proof. n

A.1.4 Proof of Theorem 1’
Proof of Theorem 1°. Letting S, r = \/ﬁ(ésmg — én) and Y, = \/ﬁ(én — 0,), we have
\/E(ésn,R - 00) == Sn,R + Yn

According to Theorem 1, we know that under Assumptions 1-5 the characteristic function

of S, r given D,, satisfies that
E(e"' 5| D,) = e 0 VnrOnt fopp (1) = e 0 en®t 4 op(1), (A.19)

where 1 is the imaginary unit. For every k,l = 1,2, ..., d, from Lipschitz continuity, we have

kaz __kalZwOO <H9 —HOH_Zw )
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Thus, applying the law of large numbers, we know that M, (8,,) = M, (8,)+op(1) =

Op(l).
Next we prove that A, z(6,) = Ax(8;) + op(1). We have

1A 7(6,) — A r(60)]]
"1 Zi, 0,)m " (Z;,0,) — 1 Zs, 00)in T (Z;, 6,)

< max ( ! ) S 22,600 (22, 6,) — (2, 6,07 (2.,00)|

) ZHmeO N(Zi,00) — m(Z;, 00)in" (Z;, 60)

4+ max
Ny i

n

i NTy i "

Using Taylor’s expansion, we obtain
1(Z;,0,) = 11(Z;, 00) + Bpi(0, — 6),
where B, ; = fol m{Z;, 0 + )\(én — 0p) }d\ satisfies that
1
| Bri = 112(Zi, 00)|| < d/ U(Z:)|16n — OolldN = 0.5d4(Z:)[|0, — 6o

due to the Lipschitz continuity in Assumption 3. This shows that

11i0(Zi, 6) — 11(Z3, 60) || < 0.5d¢(Z:) |6 — 6ol|* + [l1i2(Zi, 60) 1|8 — 60)]]-

1An,7(62) = A, (80)l]

NTn i

M (6,)+

= () S {2,801+ Dl 2 80) 1} 21 64) — o 2 B0

SmaX< : )[ownén—eon?{ Zum 7,.6,)|(Z Zum (2:.00) |02 >}

+ 16, 6ol {% S (2 B2 B0 + 5 (2 B0) 1 2 eo>||} ] .

From Holder’s inequality

3
1

—lem Zi,0.)|10(2 { lem Z:,6, |I4} {12 (Zi)g} = Op(1).
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Similarly, we can show that %Z?:l lm(Z;, 00)||v(Zy), %Z?:l Hm(Z,,OAn)HHm(ZZ, 0y)||, and
%Z?:l | (Z;, 00)||||(Z;, 6p)|| are all Op(1). Therefore, |, r(0r) —An.r(60)| = op(1), and
thus (A.19) implies that

B (et 508 |D,) = e 05N O0)A00)I1 160}t (1),

where the op(1) is bounded.
Note that Y, = , /%\/ﬁ(én — 6y). Using Proposition 1, we have

E(eﬁtTYn) N 6—0.5tTcM*1(oo)A(eo)Mfl(oo)t.

Since Y,, is D,, measurable, we have
‘E {eﬁtT(ynJrsn,R) _ eﬁtTyne—omTM*l(eg)Aﬂ(eo)Mfl(oo)t})

= ’E [E {eﬁtT(Yn+Sn,R) _ itV o056 M (60) Ax (60) M ! (60)

e

_ ‘IE [eﬁtTYn {IE (eﬁtsn,R|Dn) _ 670.5tTM_1(OO)AW(OO)M_I(Oo)t}])

)

S E {’]E (eﬁtTSn’R’Dn> . 6_0‘5tTM_1(BO)Aﬂ‘(GO)M_l(Oo)t
= o(1),

where the last step is from the dominated convergence theorem. Therefore,

E{eﬁtT(Yn+Sn,R)} _ ]E(eﬁtTYn)efO.StTM—l(GO)AW(GO)M—l(BO)t + 0(1> s E{e—o.StTvg(eo)t}'

Hence, we obtain that

VEa{Vi (60)} (85,1 — 80) ~ N(0, 1,).

A.1.5 Proof of Theorem 2’

Proof of Theorem 2°. The technique of proving Theorem 2’ is similar to that of proving

~ ~ ~

Theorem 1. Denoting S, p = 1/5,(0s,,p — 6,), we write \/5,(0,, p —0y) = S, p+Y,. From

Theorem 2, we know that under Assumptions 1-5,

E(eﬁthn,p}Dn) _ 6—0.5tTVn7p(0An)t + opip, = e—o.stTVn,p(én)t +op(1).

In the proof of Theorem 1’, we have proved that M(6,,) = M(6,) + op(1) and A, z(6,) =

A, 4+ op(1). Using a similar approach, we can show that

Sn A

22N (24, 0,)1m Y (Z;,0,) = eA(0y) + op(1).
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Therefore,
E(eﬁtTSn’P|Dn) — 6—0.5tTM*1(00){A7r(90)—CA(00)}M*1(00)1" _|_ OP(l)

Now we use the same technique used in the proof of Theorem 1°. Since Y,, is D,, measurable,

we have

‘E {eﬁtT(YnJrsn,P) _ eﬁtTYn6—0.5tTM—1(00){Aﬂ(00)—cA(00)}M—1(00)t}

_ ‘E [eﬁtTYn {E (eﬁtSn7p|Dn) - 6—0.5tTM*1(90){/\7\-(00)—(2/\(90)}]\"4*1(Bo)t}i| ‘

<E {)]E <6ﬁthn,p|Dn> 05T M 1(80){Ax (80)—cA(60) 1T~ (60)t

}—>O,

where the last step is from the dominated convergence theorem. Hence,

Y

E{eﬁtT(Yn+Sn7p)} _ E(eﬁtTYn>670.5tTM*1(90){A,T(00)ch(90)}M*1(eo)t + 0(1) N E{e—O.StTVIQ(OO)t}

and this finishes the proof. O

A.1.6 Proof of Theorem 3

Proof of Theorem 3. For the result in (7),

n n 2
tr{ Ay (6, Z l7(Z:, 6] Zl,e 1 Z MZ l71(Zs, 6a)|1* zz,e %{an(zi,én)ll} :
i=1

Here, the last step is from the Cauchy-Schwarz inequality and the equality holds if and only
if 70,5 o< || Z;, 0,)])-

)1/

]

A.1.7 Proof of Theorem 4

Proof. Note that

r{A,p(6,)) = tr {ni 3 U= STt (Zs 60)ri" (Z:,00) }

7Tni
[Z lln(Z:, 0,)1 snzum Z.6, uz].

Thus, minimizing tr{A, p(8,)} is equal to minimizing 3" InZ0)l® - For § = 1,...,n,

Tn,i

let t; = ||i(Z;,80,)| and let t(:) denote the order statistics of Im(Z:,6,)], ie., tay =

35



| (Z, én)H(l) The optimization problem of minimizing tr{A, p(6,)} subject to the con-
straints on ,; can be presented as minimizing
n tQ-
Ty, o, oy ) = 3 —0, (A.20)

i=1 7Tn,i
" 1
subject to » m;=1 and 0<m,; < —i=12..n
i=1 n

Defining slack variables w?, w3, ...,w?, to use Lagrangian multiplier method, we can construct

n tQi n n 1
H (T ooy Ty Ty iy ey oy W1y ooy W) = Z 7r(_) + 7 (Zﬁm - 1) + Z/u (Wn,i —i—w? — s_) .
n, i=1 n

i=1 i=1

By taking the derivatives, the Karush-Kuhn-Tucker (KKT) conditions (Nocedal & Wright
1999) are

OH t7,
A= Y =0, i=1,2,..n. (A.21)
OH &
o Z?Tn,z‘ —1=0, (A.22)
i=1
OH 1
= Tpi +WF = ~ i=1,2,...,n. (A.23)
OH
T = 2u;w; = 0, 1=1,2,...,n. (A.24)
;> 0, i=1,2,..,n. (A.25)
From (A.21), we have
im0 i1 (A.26)
n, m, s Ly ey T .
Combining it with (A.23), we have
t 1
G 4 w2== i=1,2 .,n (A.27)

VT + 223 Sn
According to (A.24), at least one of y; and w; must be 0. From (A.26) and (A.27),

t; 1
if £ < ﬁ, pw=0and m,; = @ —; (A.28)
s VT sy
t; 1
if ) > g wi =0 and m,; = \/% = —. (A.29)
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Thus, letting g be the number of cases that ¢ > g, from (A.22) and the fact that ¢ is

non-decreasing in i,

n n—g
t) Sty g
1= ng = === , A.30
RS A A0
which shows that
PR
VT = — > to (A.31)
i=1
Combining(A.28), (A.29), and (A.31),
t 7 n .
#_gg), fori=1,2,....n—g; (A.32)
o =4 S0 2int b
' 1
—, fori=n—g+1,.. n. (A.33)
Sn
From (A.31),
"t
H— 2iite) _ ﬁ, (A.34)
Sn — 9 Sn

Thus, from (A.28) and (A.29), we know t;) < H for i = 1,2,....,n — g, and ty > H, for
i1=n—g+1,...,n. Therefore

n

> (toyAH) = Zt(l—{— Z H=s,H (A.35)

=1 i=n—g+1

Thus, from (A.32), fori=1,2,....n — g,

t(i) t(i) NH
o A.36
T H T St M) 430
from (A.33), fori=n—g+1,...,n
H tiy NH
Tni = —== = =2 (A.37)

snfl 320 (tay N H)
For the result under the A-optimality, define ¢ = || M, 1(0,)m(Z, HAn)H(z) and the proof

is the same as the used for the L-optimality. O]

A.1.8 Proof of Theorem 5

The proof of Theorem 5 relies on Lemmas 5 and 6 below.
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Lemma 5. Under Assumption 3, if Héng —0,,|| = 0p(1), then conditional on D, and ONS:’R,

90

B0 — M,(6,) = op(1), (A.38)
where
N vy o {206, \02 - 6,) )
Bot= [ =% m— dA.
0 Sn i=1 Ny, Rai

Proof. For every k,l =1,2,....d, from Lipschitz continuity, we have

1 & {25, 00 + A02 p —0.)} 1 SN (27, 6,)
o Z ~ Opt . Z ~ opt*

i=1 NT, Roi Sn i=1 nmw

N (2 N02, 5 — 60

1 ;
S S_ Z : ~ optx*

i=1 nﬂ-n ,Ra

n,Rai

<N Ol Z U2 _ 62— 6,104(1) = op(1). (A.39)

According to (A.2), we have

1 &N gy( 27, 6,)
E (3— 2

~ 1
0x -
D,, 950,R> = Z Mi(Zi, 0r),

=1 n,Rai =1
Sn .. A no .9 N n
v 1 i (27, 0,) L 1 .1 (Zi, 0n) < 1 2 6 O]
o ~ opt* nyYsg,R | = opt — mkl( (3] n)_ P(Sn )
s P o S n2moP as,n ’
noi= n,Rai noi=1 n,Rai nti—

Thus, by Chebyshev’s inequality, similar to (A.3), we have

1 Z Z
— —_— — — m
~opt*
Sn i=1 n’/Tn Rai

= opip, g0 (1). (A.40)

so,R

Combining (A.39) and (A.40), we have

x| < [
L%

1
S—Z;}T F (70

n,Rai

1S m{Zr, 0, + M6 4

n - én 1 = . A
. Z n7~r0pt* = )} - E ;m(zh on)

i= n,Rai

{75,600+ A0% 5 —0,)} 1 SN in(Zr,6,)
~0th£(<. __Z

~ optx*
Sp “—~ nmP
=1

n,Rai

] d\ = Op(l),
which finishes the proof. O
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Lemma 6. If Assumption 4 hold, then given D,, and ONS(T,R in probability,
Von{AR(00 7)) 2 M5, (6,) — N(0, 1), (A.41)

i conditional distribution, where

o 1 <22, 6,) o 1 A0 (Z;, 0,)m (ZZ,H)
MRa(en) = ns E : ~ Optk ) and A (920 R n? Z ~ opt
noiq n,Roi n,Rai

Proof. Note that

o 1 < m(Z7,6,) 0
V5 Mpo (0,) = \/S—Z n%OPJt%* = Z OR (A.42)
noi—1 n,Rai

- 90+ 90+
' R R . .
Given D, and 60" 5, 1, ..., ms,"" are i.i.d, with

E(n, %% Dy, OSJR Z 1y ( and (A.43)
ég*, N 0% m(Zz*a én>m (Zz*7 én) N0
V(m 0 R‘Dm OSOvR) -k { n2(7~T0P]t: -)2 Dy, 0207R <A'44>
1 = 1i(Z;, 0, (Z:,0,) . o,
= E Z ~ Opt* = AR(OSO,R)‘ <A45>
i=1 n,Rai

Meanwhile, for every ¢ > 0 and some § € (0, 2],

1 & 0% rj2 0% n 1/2 H0%
=S B P > %) D, 65
=1

1 Sn ég* ég* ~
s B I > e[, 8 )
T

1 - s R 2445 0%
1+6/2 26 ZE (an B | ‘DTL,OSOR

Z ||m Z;,0,)||*
6/2n2+555 FOPLE Y149

n Rai

<

| /\

| A\

Z l2(Zi, 6,)|**° = Op(s,7%) = op(1).

= 572
n/ al+izon

where the second last equality is from Assumption 4. This show that Lindeberg’s condition
is satisfied in probability. From (A.42), (A.43) and (A.45), by the Lindeberg-Feller central
limit theorem (Proposition 2.27 of van der Vaart (1998)), conditional on D, ég; R, We obtain
(A.41). O
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Proof of Theorem 5. By direct calculation, we have
E{M,(0)[D., 6% 1} = 1,(6),

. o~ 1 m*Z;,0) 1 < m?*(Z;,0) _
V{MRQ(G)‘D,L,HS(LR}g 3 i < Snnz o~ On(s, ).
=1

2
SnTl i=1 n,Rai i

By Chebyshev’s inequality, for each 6, we have
Mo (0) = Mo(0) = 0pyp, go- (1)

Under Assumptions 1 and 2, the parameter space is compact and 0, is the unique global
maximum of the continuous concave function M, (@). Thus from Theorem 5.9 and its remark
of van der Vaart (1998), conditionally on D,, and ég;‘ R

162 & — 6all = 0p(1).

By Taylor expansion

~

S S 6o -
0 = MEQ(O??,L’R) - MEa(en) + BsrjO’R (9?n,R - 97‘&)7
SO
g . 60r N1 .
02— 00 = —(BLY") Mia(61)

1 é?g’ -1 o/ FOx o 1 B0% _ . ~
== (Ba") AREE W) VAL ) (60

Therefore, from Lemma 5 and Lemma 6, conditional on D, égg R, by Slutsky’s theorem

VE NG00 R)} V20 (0,)(62, 5 — 6,) = N(0,1), (A.46)

in conditional distribution.

Next, we check the distance bewtween A;g(ég; =) and A%(8,).

1AG(6% ) — A%(62)]]

1 3 m(Zi, 0,)m"(Z;,6,) 1 3 1(Z;,0,)m" (Z:,0,)
1

0
n? (1 - Q)WOR?(ONS(T,R) + Of% n? i=1 (1 - O‘)Tr?%lzt(én) +a
1

=1
] — . 1
< = |m(Z;,0,)| e - ;
n’ Zl (1—a)m (0% p) +at  (1—a)mR"(6,) +at

i (00 5) — T3 (On)

1 — . .
< gz [ Z;, 0,) |17
=1
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1SN I Z:, 0% )| — I Z:, 6,) |
<= m(zi,en)Q{ — ’
o i S w25, 0% B
S (25,05 )l = (25, 6,) | }
Zj:l |m(Z;, n)||2j:1 ”m(ZmOS;, )|

1 . . R
5D (2, 0| (Avi + Asi) (A.47)

i=1

+ [li(Z:, 0,)

Under Assumption 3, for any j =1,2,...,n

[1in(Z3, 01l = (2, 0% )| < in(Z5, 6,) — 1a(Z5, 62 1)

d d
< J > {ri(Z;,6,) — (25, 0% )2 <> ‘mk(Zj»en) ik (Z;, 00 r)

k=1 k=1

M=

d
< \m{(zj,ékxen—o;):ﬂ)]<He—HSORHZHmk(Zj,fk)Hzue — 0% slln(Z).
k=1

(A.48)

i

1

~

where 11, (Z;, 8,,) is the kth element of 11(Z;, 8,), 7 (Z;, 6,) is the kth column of 7 (Z;, 8,,),

and all & are between 8, and 6% . Thus,

0, —6 h(Z;
L 10— oz o
Zj:l | (Z;, 050 9l
and
m(Z;,0,)||(0, — 0%

g I BN~ 85 5 12 0

> 1 (Zs, 001 25y (25, 65 R

From (A.2) and Assumption 3
1 n d d
—Zh2 ) <d— ZZumk =d—> > > (2. &)
J 1 k=1 Jj=1 k=1 I=1
n d d .

<d- 222(2771,” W) + 20%(2;))6%  — enH?) — 0p(1) (A.51)

1 k=1 1=1

which also implies that " h(Z;) = Op(1). Thus,

~ . A Op(16n — 6% &ll)
D i Zi 8,)]| A < s ZH (Z:,0,)|°h(Z))
i=1
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< 0p(10. 2l {3 X Iz 001 {%if;h%zz-)}%? (A52)

and
Zn: 172(Zi, 00)[| Aai = Op (116, — 6% 1)~ Z I Z:, 6)|1° (A.53)
Combining (A.47), (A.52), and (A.53), we obtain that for large sg, s, and n,
1AG(627 1) — A(6,)[| = 16, — 67 £l Op(1) = 0p(1).
Thus, Slutsky’s theorem and (A.46) indicate that given D,, and ég;‘ R @8 50, S, and n — 00

s VoL (0,)Y 20 ,—6,) —N(0,I),
n,R sn,R

in conditional distribution. O

A.1.9 Proof of Theorem 6
The proof of Theorem 6 relies on Lemmas 7, 8 and 9.

Lemma 7. Under Assumptions 4, conditional on D,, and ég;:R, then

VA p(6% )} /2 M,(6,) — N(O, 1),
in conditional distribution, where

a (0% Sn . {1 - ( Zplgaz) N 1}m( 9 )mT(Zi7én)
An,P(ego,P) = ﬁ Z ~opt .

i=1 (Snﬂ-n,Ptxi) Al

Proof. For the sake of readability, in the sequel, we redefine v; as v; = I(u; < s, i) and
let

. N i v; SnT}’l(Zi, én) n é?*
Ve, (0,) =) = =) " (A.54)
=1

= (50T pai) A1}

From direct calculation and the definition of én, we have

~ Sn n . o
50,P> = \/?; Zm(Z’u on) — 0,
=1

ny

E(v/5 M (60)

and

éo* . S_n a V(VZ|DH’0~2:P) ) (Zlvé ) . T(Ziaén)
m so,P) 52 . {( opt )/\1}2

SnT n,Pai
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~

{1 = (su7"pas) A Liia(Zi, 0)1" (23, 0,,)

_°on nPaz

n2 i=1 (S’flﬁ-:)zp]goz1> A ]'
< — T(Z:,6,) = 0p(1).
< — Zm ) = Op(1)

Next, we check Lindeberg’s condition. For any ¢ > 0 and p € (0, 2],

o6 60
L {Z [l NI ([l [ > €)

i=1

Dnvé(s);,P}

1< g0+ g0 -
< 2 LB { ) > 9]0, 62}
=1

O+ 1+p/2 . A
<53 (I o[, 0%, ) = M i 000 )
< Z o ~
T e ") o () ALY
14+p/2 n . A \I24
sn PZ, 0P 1 s
: ernte i=1 (spa/n)ite alteers,p/? n ; [12(Z;,0,) |77 = Op(s,~""7).

Thus, from the Lindeberg-Feller Central Limit Theorem (cf. van der Vaart 1998), Lemma 7
follows. O

Lemma 8. Under Assumption 3, for any us, = op(1), conditional on D,, and ONS(’)"P,

1 170 Sn
_Z” prt )*“ ——Zm — op(1).

n Pai

Proof. First, using an approach similar to the one used to prove (A.14), we can show that

: N0
given D,, and 6 p,

n

Ly o) (459

i=1 (Sn nPocz) A1

For every k,1 = 1,2, ...,d, from Lipschitz continuity, we have

1 = Vimkl<Zué +us) 1Zn:yzmkl(zz7én)
'y R DI L

n i=1 (Snﬁzplgon) N 1 n (Sn Zp]gaz) A 1

Zyzw( )Huan 0P<1)- <A56)

1 (Sn Zp]t:’oaz) A 1

For each k,l = 1,2, ...,d, direct calculations show that

1 g V’Lmkl(Zzyén) A 0% . 1 " . ~
E{ﬁ;( opt )/\1 Dn?eso,P - EkaJ(Z 0

SnT. n,Pai

1 vym Z'uén * , i An _
V{—Z—j;;ﬁ ) Dn,egop} <— Z o < > h¥(Z) = Op(s,?).

n i=1 (Sn nPaz) N1




According to Chebyshev’s inequality, we obtain

vii(Z;, 0,) _
—Z T A —EZm (Z:,60,) = Op(s,™ /). (A57)
nPaz i=1

Therefore, combining (A.56) and (A.57), we have

Vz Zz,e +U’Sn 1 . ~
. Z opt ) - Zm(zuen) = Op(l).

nTl

n,Pai i1
O
Lemma 9. Under Assumptions 3 and 4,
1) if 0, = sn/(bn) — 0 € (0,1), then H* — H,, = op(1);
2) U — W, =op(1), where
I -
== {Im(Z. 6, A H,,}; (A.58)
i=1

3) if sp/(bn) — 0 =0, then ¥ — U = op(1).

Proof. Note that H% is the [s} — sjs,/b/n]-th order statistics of ||m(ZZO*,02§P)H, i
1,...,85. For any p > 0, let ﬁp be the [n(1 — p)|-th order statistics of ||m(ZZ,02§P)||,
i=1,..,n. Let 1/8.) = 1if [|i(Z, 62 p)ll(s) is included in [Jr(Z7*, 6% p)], ..., Hm(ZS*,OS;"P)H

and y?i) = 0 otherwize. For any o, > o,

P(H™ < H,,) = ]P’( W_ZM Vi = [sh = spsn/b/n] ) (A.59)
=1
Note that
L lim 1y +op(l) and 0= Sijn/b/n] - otop(l).  (AGO)
Thus,
P(H™ < H,,) — 0. (A.61)
Similarly, we obtain that for any o_ < p,
P(H*™ < H, ) — 1. (A.62)
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Note that H,, is between the [n(1 — o4)] — si-th and the [n(1 — o, )]-th order statistics of
I(Z;, 6% p)|’s that are not included in [[rin(Z", 0% p)l|, .., [lm(Z2%, 6% ). The joint dis-
tribution of these [|7i(Z;, 6% p)||’s are exchangeable, and sf/n — 0 in probability. Therefore,
both the [n(1 — 1) — sj-th and the [n(1 — p)]-th order statistics of these ||m(Z;, ég;)P) |’s
converge to the p -quantile of the distribution of ||r(Z;, 8y)|| in probability (Chanda 1971),
where 8y = arg maxg E{m(Z,0)}. As aresult, H o, converge in probability to the g;-quantile
of the distribution of ||7n(Z, 8y)||, say (,y. Similarly, H, converge in probability to the o_-
quantile of the distribution of ||7(Z, 8y)||, say (,—. Thus, (A.61) and (A.62) together imply

that for any € > 0,
P(C,, —e< H™ < (, +¢)— 1. (A.63)

Since the distribution of Z is continuous and so is that of || (Z, 6y)||, we can choose o, and

o— close enough to g such that (,_ — ¢, < e and (, — (,, < ¢, which implies that
P(¢, —2e < H”™ < (, +2¢) = 1, (A.64)

for any e. Thus, H* = ¢, 4+ op(1). Since ||ii(Zy,0,)|, ..., |[12(Z,, 0,)| are exchangeable,
H, = (,+op(1), where H, is the [n(1 — p,)]-th order statistics of ||in(Z;,8,)|,i = 1,...,n.
Therefore, H** — H,, = op(1).

Now we prove 2) of Lemma 9. If p = 0 and |[7(Z, 8)| is bounded, then

(s*—s*sn/b/n] X % A0 " " %
’ OZ: ||m(ZO 7020,P>H(i) 4 o — 50 — 505n/b/n]

* *
So So

\IIO* = HO*

i=1

0 (9%, 8% )|
— 1 7780, 1

and similarly,

1 . .
W, = - Z [772(Zs, 0,) || + op(1).

i=1

Thus the proof reduce to prove that

% |m(Z2* éojp)H 1 <& .
ST TP 2N i Zi, 0,)] + o (1
S* n o Hm( ) )H OP( )7

i=1 0 =

which can be proved by Taylor’s expansion and Markov’s inequality. To prove other cases,
let vY = 1 if the i-th observation is included in the pilot subsample and v = 0 otherwise;

then ¥ can be written as

* 1 < . N0 *
o = e > vl Zi, 0% )| A H™ Y.

=1
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Define

n

* 1 - . N0 * 1 . A
U, = 5 2 (2, O P A He y and W = =5 S {Ii(Zi,6,)l) A Hy, )
i=1

0 =1
If o > 0, then
v - | = Z (22, 6% p)I| A H* — lin(Z, 0% p)| A H,
=1
‘HO*—%'Z VOIS i Z;, 0% p)|| > H* ANH,, ¢ < |H™ — H, | = op(1)
50 1y Yso,P onl — VP :

If o = 0 and ||7(Z,0)| is unbounded, then H** A H, — oo in probability. Under
Assumptions 3 and 4, it can be shown that & > | 10| (Z;, 02;13)||2 Opip,(1). Thus,
0

zlz

* * 1 - . " * . N E *
00— 0 | <= S B2, 0% o) 11 (22, 0% )| = Y A H,, )
0 j=1

HO* - . N0x * H n . . )0
— > {2 6% )| = H o+ =22 S {2, 6% )| 2 H, |
0 =1 0 =1

1 1 1 ] — -
< — Nn(Z;, 0% )I? = op(1). A.65
< {HO* Tttt H@n}sa Z (i, 6% p)I* = 0p(1) (A.65)

Furthermore, we can show that

* * 1 = . N0* . N
Uo7, — Vgl < gZV?{Hm(ZmOSO,P)H — |lrie(Z;, 6n)1}

0 00*
< HS—PH Z v h(Z;) = op(1)

0 i=1

and
Wy — W, | = op(1),

where the last two op(1) are obtained by mean and variance calculations under the condi-

tional distribution of v{’s. Thus, we have that
| — W, | = op(1). (A.66)

With 2) of Lemma 9 proved, in order to prove 3), we only need to show that ¥, — ¥, =
op(1) if s,/(bn) — o = 0. This is true because if ||m(Z,0)|| is bounded, then

L~ 4 A
[Woo = Wo, | < — > \Hm(Zi, 0:)| = Il (Z:, 6.)| A H,
=1
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< 0 )i 2,0,y = on(1);

otherwise,

L=l 4 PR,
[Woo = W, | < — > (Hm(Zz-,Gn)H — [l(Z;, 6,)|| A H,
=1

N P g
< 5 2 I B [n(Ze )] > H )

1
nH,,

IN

Z ||m(Zi7 én)||2 = OP(l).

=1

Proof of Theorem 6. For Algorithm 3, M} (6) can be written as

N 1<~ vm Z;, 0
MPa(0> = _Z ~0}:<>t )

n i=1 (Snﬂ-n,Pm’) A1 ‘
Denote
/Yégg’PP(u) = San*Da(én + U/v Sn) — San*Da(én)'

Under Assumption 2, ,/sn(éjn » — 6,) is the unique maximizer of 0. . p(u). By Taylor’s
) S0>
expansion,

UTM;’a(én +4/\/5n)u
2

’Vég;’PP(u) = Vsnu Mp,(0,) +

where 4 lies between 0 and w. From Lemma 7, @M}Sa(én) is stochastically bounded in

conditional probability given D, and ég; p; from Lemma 8, conditional on D, and ég(’f Ps

M3, (0, + w/\/Sn) — M,(6,) = op(1) and M,(6,) converges to a positive-definite ma-
trix. Thus, from the Basic Corollary in page 2 of Hjort & Pollard (2011), the minimizer

~ ~

of spy(u), \/5,(02 p — 0,), satisfies that

V(02 p = 02) = M (0,)y/5,Mp(6,,) + op(1), (A.67)
which implies that
Von G p(62 p)} V2 ,(0,)(62, p — 6,) — N(O, I), (A.68)

in conditional distribution given D,, and ég: p-
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Next, we will check the distance between Aj P(ég’;’ p) and Ay »(0,). Let A%gn(én) have

the same expression as Aj »(0,,) in (26) except that ngzgz(én) in the denominator is replaced

li(Zi, 6.)|| A H,,

. - 1
T i(On) = (1 — a)mlp(0,) + a—  with 727, =

n,Pai , Wn’pz - n : ~ .
n > imalllin(Z;, 0,)| A Hy, }
We have that
~ . n n(Z; én 9 . 9
A (8% ) — A3, @) < 223 [ Ze Ol (2.6,
n i=1 {Sn Ty Paz(eso,P)} A1 {Snﬂ-n Paz( )} Al
S - 1 1
= 5 > I Z, 0)I* | ——5—=
n2 ZZ_; {8” nplgaz(eggP)} A 1 {Snﬂ_n Pon( n)} A 1

Sn, a . N 2 {SN~szgaz(eg;P)} N 1- {Sn nPon( n)} A 1
) m Zia en "
2 (7 00 {5075 pai (0.} A U [{ 5071 p0i (0 n)}M]‘

1 . . 2 ~0 N0 N
< @Z 171 Zi, 0)|1° |7 (O p) — T (61) (A.69)
=1

If o > 0, then from

n ﬁZ?zgi(égg,P) - ﬂ-rgz?Pi(en)
lrin(Zs, 05 ) AH™ |1 Z, 0,)|| A Hy,
WO 1

Oon
lrin(Zi, 05 p)I| A H — |13, 6,) || A H,
w0

IN

\IJO*

\IIQTL
+ {Ihi(Z, 6.1 AHQH}\—

0%

liin(Z:, 6% )1l = Ii(Z 81| o — i —
= 0 | 0 gn}+{||m(zza9 )||AHgn}\I,0*—\DQ’

we have that
A7 p (éSJP) — A%, (6,)]

<—lem Zi,0,) | |750(00r p) — 72y (6n)

S —Syor az\pm« Z ||m Z“e )

On =1
’HO* 9"’ 2 ‘ Oon Qn‘ Z 0 3 _
WZIIm Zu@ )| ZII,TZHW i 0|l op(1),

(7,000l = i Z:, 6,) |

by (A.52) and Lemma 9.
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If o =0, then,

ﬁzplgz(eggP> - 7Tn P'L(é )

n
\nm 25,0% p)| A HY = lin(Zi,60,) | A H,, “u,,
\Ifo* + ||m(Z'L70 || qlo*
\Hm (2 6%0) - (2 6| w0, |
7" 2 Ol =g
lrin(Z, 0%.)] n
7o K2, 6,)]) > Hy, } + \Pg*]{Hm (Z:,00)|| > H,, }
lrin(Z:, 6l : : : :
g {2 6%) |>H°} {||m 2,000l = 1}

From (A.52) and Lemma 9, we know that

1 e R 1< A

- Zl [ Zi, 00)|*Ags = 0p(1) and 2; 171(Zs, 6,)12As = op(1). (A.71)
Note that

=3 Wi, 0,2 i 22, 6% )] i Zis 0)1| = H,, }
=1

s{%izn;nm(zi,én)n‘*}{ Zum 2062 ) ||4} PR Hgn}r
= op(1),

because

—ZI{Hm Zi,0,)| > H,,} = op(1) lem (Z:,0,)|* = Op(1),

=1
1< . .
and " [i(Z:, 0% p)I|" = Op(1).
=1
Thus,

LS i, 6,)] 5 = 0p(1). (A72)

If ||m(Z,0)] is bounded, then

@“Zu (26,21 (2., 6,)] = 1, } < "=l 7 6, = o)

n
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otherwise

H,, <~ . A : A 1 & A
23 i Ze, B PL{ (20, 0 > Hy, f < —— 3 (23,6, = 01 (D).

n -

Thus we know that

1N
o Z [712(Zs, 0,)|* Asi = op(1). (A.73)
i=1

Similarly, we can obtain that
LS g 1<
EZ;Hm(ZwOn)HQA?i =op(1) and E;Hm(ziaBUHQASi — op(1). (A74)

Combining (A.69), (A.70), (A.71), (A.72), (A.73), and (A.74), we know that
1A% p(825 p) = Ay, (80)]] = 0p(1).

To finish the proof for the case of ¢ = 0, we only need to show that ||A%, (6,) —A‘f_—i(én) | =
op(1). Let Woo = 137" {|12(Z;,0,,)||}. We notice that

~

Trpi(0n) — T, i (6)

_ |tz 00 A Hy, = (2,001

n

- v, —W¥
n(Z;,0, —on ~
in(Ze 6l gy o,
< J{ Zi,0,)| > H } Z:,0,)|| e — =l
< PGP 2 8] 2 Hy } + (22,0, S
[ P | P 2
<, m, l(Zi, 6,) | v, U, 0i + Aig (A.75)
With this result, it can be shown that
1 i | (Z; 0 )I?Ag; = 0p(1) and 1 i | (Z; 0 A = op(1)
n - iy Un 7 n - i, On i ,

which indicates that |A%, (8,) — A%(6,)] = op(1).

From Slutsky’s theorem, we know that given D,, and ég; ps @S Sg, Sp, and n go to infinity,

\/S—N{Vn%P(én)}_l/Q(é?n,P - én) — N (07 I) )

in conditional distribution. O
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Proof of Remark 11. Since AOpt(é ) has the minimum trace among all choices of sampling

probabilities, if a # 0 then tr{A%"(8,)} < tr{A%(8,)}. On the other hand,

n

.y 1 I71(Z;, 6,,) |1 Hm
tr{A%(0,)} = — Z Ropt n2 Z Ropt

n’ i=1 (1—04) —i—a e
{ZHm (Z:,6,) ||} tropt{Am;( n}

and this finishes the proof for A%(6,) from subsampling with replacement. For A »(6,)

from Poisson subsampling, the proof is similar.

[]

A.2 Additional examples on optimal structural results

Example 5 (Least-squares). Consider least-squares estimator

0 _argman{y’L w’LJ )}27

where y; is the response, x; is the covariate, and g(«;, 0) is a smooth function. The least-

squares estimator of € can be presented in our framework by letting Z; = (x;, y;) and defining
m(Z;,0) = —0.5{y; — g(x;,0)}>.
From direct calculation, we have

m(Z;,0,) =é;g(x;,0,), and m(Z;,0,)=_¢Ej(x,0,) — j(x, én)gT<wia én% (A.76)

where &, = y; — g(wl,é ) g(:nz,é ) and g'(wl,én) are the gradient and Hessian matrix of
g(x;, ), respectively, evaluated at 6,.. Note that L S G, 0 ) is a small term, so there

is no need to calculate the Hessian matrix §(x;, On), and M, (8,,) can be replaced by

=—— Zg (;,0,)9" (x:,0,). (A.7T)

From (A.76) and (A.77), we obtain optimal sampling probabilities by using

lie(Zi, 6a)| = [Eilll (i, Ba)ll,  or [ (Z:,0,)]12 = nléi|

L{M;(0,)} " g(:,0,) |,
(A.78)

to replace ||/ (Z;, 0,)]|| in Theorems 3 and 4 for different subsampling procedures.
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Specifically for ordinary least-squares (OLS) in linear regression, g(a;, 0) = 70, §(x;, 0,) =

x;, and §(x;, 0,) = 0. Therefore, the expression in (A.78) is simplified to
I Zi, 0.l = |l llaill,  or  [[7in(Zs, 6,) ]| = ml&il [ (X XT) i), (A.79)

where X = (x4, ...,z,)".

With [[r(Z;,0,)|| = |&]||l#;| inserted into (7), the sampling probabilities reduce to
gradient-based sampling probabilities (Zhu 2016). Furthermore, if we take L = {—nl/,(6,,)}/? =
(XTX)Y2in (A.79), the optimal probabilities for subsampling with replacement satisfy that

WZI,D;% X |él| V hi7 i = 17 ey 1, (ASO)

where h;’s are statistical leverage scores of x;’s, i.e., diagonal elements of X (XTX) !XT,
This clearly shows the connection between leverage scores and the L optimality.

Form (A.80) and Theorem 4, optimal probabilities for Poisson subsampling and subsam-
pling with replacement differ if there are data points such that 2= |¢;[v/h; > %Z?Zl |&;]/Tj-
This is more likely to happen if |&;|’s or y/h;’s are more nonuniform. Yang et al. (2015)
showed that if statistical leverage scores are very nonuniform, then using the square roots of
statistical leverage scores to construct subsampling probabilities yields better approximation
than using the original leverage scores. An intuitive explanation for their conclusion is that
taking score roots on leverage scores has some shrinkage effect on the resulting probabilities
toward the uniform subsampling probability. Our results echos their conclusion, and further
indicates that for optimal Poisson subsampling it may be necessary to perform truncation

for high leverage scores.

Example 6 (Generalized linear models). Let y; be the response and ; be the corresponding
covariate. A generalized linear model (GLM) assumes that the conditional mean of the

response ¥; given the covariate x;, E(y;|x;), satisfies

H{E(yile:)} = x| B,

where ¢ is the link function, =} 3 is the linear predictor, and 3 is the regression coefficient.
For most of the commonly used GLMs, it is assumed that the distribution of the response

y; given the covariate x; belongs to the exponential family, namely,

yib(xB) — C(%TB)]
5 ,

where a, b and ¢ are known scalar functions, and ¢ is the dispersion parameter. In the

flyilzs; B, ¢) = a(yi, ¢) exp

framework of GLM. If the link function g is selected such that b is the identity function, i.e.,
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b(xfB) = =3, then the link function is called the canonical link. With a canonical link
function, g{E(y;|z;)} = (2l B3) where ¢’ is the derivative function of c.

Let Z; = (x;,y;). If both the regression coefficient 8 and the dispersion parameter ¢ are
of interest, then let 8 = (3T, »)™. The MLE of 8 corresponds to

If B is the only parameter of interest, then 8 = 3, and the MLE of 8 corresponds to

+ log{a(y;, ®)}.

m(Z;,0) = yib(z{ B) — c(x] B).
For this case, direct calculations give us that
m(Z;,0) = {yil (x; B) — ¢ (x; B)}x; and 1(Z;,0) = {yb"(x] B) — " (z; B)}zix;, (A81)

where b’ and 0" are the first and second derivative functions of b, and and ¢” is the second
derivative function of ¢. Thus, optimal sampling probabilities under the L-optimality can be
obtained by using the expressions in (A.81) for Theorems 3 and 4. If the canonical link is

used, then the expressions in (A.81) simplify to
m(Z;,0) = {y; — ¢ (x]B)}x; and m(7Z;,0) = —'(z; B)x;x; .

The following list gives the forms of m(Z;,0), m(Z;,0), and m(Z;,0) for commonly used
GLMs with the canonical links.

e Normal distribution, y;|x; ~ N(u;, 0?).

— Canonical link: g(p;) = p; = =i 3.
— Parameter 6 = (37, 02)T:

x m(Z;,0) = ~(i—z{B)? _ log(202),

202

. i . X'™X o
x m(Z;,0,) = % Y | and M,(6,) = 7;012 ,
ES—0O n
552 0 5%
where X = (@1, ...,x,)%, & = yi — I3 and 62 = Ly e

— Parameter @ = 3" when o2 is not of interest:
x m(Z;,0) = —(yi — ! B)*.
« 1(Z;,0,) and M, (6, are the same to case of OLS in Example 5.

e Binomial distribution, y;|x; ~ BIN(k;, p;). The problem is often converted to model

the ratio y = y;/k;.
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— Canonical link: g(p;) = log({%-) = x} 8.
— Parameter 0 = 3:
« m(Z:,0) = ki{y;x] B — log(1+ ™ P)}.
* m(Zz‘, én) = ki(@/f _ﬁi>wi7 and Mn(én) = —% ?:1 k’iﬁz‘(l —131;)33@'33?7
where p; = e B /(1 + e* B).
If k; =1 for all 4, the results reduce to the case of logistic regression in Example 1.

e Poisson distribution, y;|x; ~ POI(u;).

— Canonical link: g(u;) = log(p;) = =X 3.
— Parameter 0 = 3:
« m(Z;,0) =yl B — e P,

x m(Zi,0,) = (y; — €% P)a;, and M,,(0,) = -2 30 e* Pa,x]

e Gamma distribution, y;|x; ~ GAM(v, ;), with density function

VY YYi

c) = I.j_l e .
f(yl) F(I/) v yz € I yz > 07 (A82)

where v is the shape parameter and j; is the mean parameter.?

— Canonical link: g(u;) = ;—1 =z!3.
— Parameter 8 = (81, v)T:

« m(Z;,0) = vya! B+ viog(—a{B) + vlogv + (v — 1) log(y;) — log{I'(v)}.

* m(ZZa On) = ~ A(y w;F,B o |
yzszﬁ + log(—«"ﬂ?ﬁ) +log(?) + 1 4 log(y:) — p((,;/))
. ~ —z 741_ L :I:lmT 0
and M, (0,) = | " 2 oy 1 _ IO A" (@) | where I"(7) and
0 P )

['(7) are the first and second derivative of I'(v) evaluated at p.
— Parameter 0 = 3:
« m(Z;,0) =y B+ log(—z] B).
* (7, én) = (yZ + L)wi, and Mn(én) = —% > ﬁwzw?

T
z; B

3 A Gamma distribution is also often parameterized in terms of the shape and rate parameters or the shape
and scale parameters. With our notations here, the shape and rate parameters are v and v/u;, respectively,

and the shape and scale parameters are v and u; /v, respectively.
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If v = 1in (A.82), then the Gamma distribution reduces to an exponential, and thus the
results reduce to the case of exponential regression. For inverse Gamma distribution,
one can use the reciprocal transformation, i.e., 1/y;, to convert the problem to Gamma

distribution.
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