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Abstract
The progressive ratio task (e.g., Wolf et al., Schizophrenia Bulletin, 40(6):1328–1337, 2014) is often used to assess
motivational deficits of individuals with mental health conditions, yet the number of studies investigating its underlying
mechanisms is limited. In this paper, we present a hierarchical Bayesian model for the cognitive structure of the progressive
ratio task. This model may be used to investigate the underlying mechanisms of human behavior in progressive ratio tasks,
which can identify the factors contributing to participants’ performance. A simulation study shows satisfactory parameter
recovery results for this model. We apply the model to a progressive ratio data set involving people with schizophrenia,
first-degree relatives of people with schizophrenia, and people without schizophrenia. Our analysis reveals that people with
schizophrenia are more affected by elapsed time than people without schizophrenia, tending to lose motivation to exert
effort as they spend more time and effort in the task, regardless of the effort-reward ratio. The first-degree relatives show
intermediate effects of time and effort-reward optimization between people with and without schizophrenia, which indicates
that first-degree relatives might share some deficits with people with schizophrenia, only not as severe.

Keywords Bayesian hierarchical modeling · Individual differences · Computational psychiatry · Schizophrenia ·
Progressive ratio task · Motivation

Introduction

Originally proposed by Hodos (1961) as a ratio schedule of
reinforcement for animal subjects, the progressive ratio task
(PRT) was introduced as a measurement test in psychiatry
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(e.g., Wolf et al., 2014), psycho-pharmacology (Chelonis
et al., 2011) and clinical therapy development (Roane,
2008). Some studies use the PRT to evaluate the efficacy
of rewards (Roane, 2008), which helps researchers in
designing therapeutic interventions. Other studies use the
PRT to evaluate participants’ motivation, and seek to
investigate the relation between motivation and certain
traits of interest, such as autism (Tiger et al., 2010) or
schizophrenia (Wolf et al., 2014).

The PRT asks people to make successive simple choice
responses to earn rewards. A PRT schedule features a
sequence of consecutive sets of trials where, in each set, the
participants need to exert more effort than in the previous set
to earn the same amount of reward. The task is terminated
when the participants passively cease responding or actively
quit the experiment. Such termination indicates that they are
unwilling to exert the effort required of the current set for
the reward.

The majority of PRT studies use the “breakpoint” statis-
tic as an index of reward efficacy or motivation. The break-
point is assumed to reflect the maximum amount of effort
a participant exerted for the reward. Statistically, the break-
point is a function of the effort/reward ratio of the last set
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completed, which has the highest effort/reward ratio of all
finished sets due to the nature of PRT schedules, and the
effort/reward ratio of the first set that is not completed,
which is the set immediately following the last one com-
pleted. As a common practice in PRT studies, researchers
compare the reward efficacy or motivation across groups by
comparing their breakpoints (e.g., Wolf et al. 2014; Strauss
et al. 2016).

However, the breakpoint statistic is not flawless as a mea-
surement index. Because it is based on a single effort/reward
ratio at the final set, it ignores information from previ-
ous sets in the experiment that could be meaningful, such
as the earlier effort/reward ratios and RTs (Killeen et al.,
2009; Bradshaw & Killeen, 2012). Relevantly, the break-
point is sensitive to manipulations unrelated to its target trait
(reward efficacy or motivation), such as response require-
ments (Aberman et al., 1998; Bradshaw & Killeen, 2012)
and the size of increments in the sequence of effort/reward
ratios (Covarrubias & Aparicio, 2008; Bradshaw & Killeen,
2012).

To overcome the shortcomings of the breakpoint statistic,
it is reasonable to build a quantitative model that takes into
account a participant’s entire history of responses in the
PRT and that also incorporates covariates that are known
to influence motivation. A quantitative model can make
more efficient use of data by including any covariates and
participant responses available from the experiment. As the
model reveals the effects of covariates, it may also reveal
potential underlying mechanisms of participant behavior in
PRT studies.

In this study, we built a hierarchical Bayesian model to
quantify performance under the PRT test. Because the PRT
test has multiple versions, we based the model on a design
from Wolf et al. (2014); later we will discuss the possibility
of extending the model to other tasks. Because Wolf et al.
used a relatively complex PRT schedule, and most other
schedules are comparatively simpler, such an extension may
only require a corresponding simplification of the model.

We first describe the PRT schedule proposed by Wolf
et al. (2014) and the hierarchical Bayesian model inspired
by it. We then use a parameter recovery study to evaluate
whether the model can successfully recover data-generating
mechanisms. Then we apply the model to Wolf et al.’s
(2014) data. Finally we discuss the model’s potential
application to other PRT schedules and possible directions
of future research.

Hierarchical BayesianModel for PRT Design

We use a geometric regression structure to construct a
hierarchical Bayesian model that describes the probabilities

that participants terminate their participation in a PRT as
a function of available covariates, and assess its feasibility
for application. Before presenting the model, we describe
in detail the PRT schedule of Wolf et al. (2014) and the
covariates from their study.

Wolf et al. (2014): Computer-Based PRT Schedule
for HumanMotivation

Wolf et al. (2014) introduced a computer-based PRT sched-
ule for human motivation assessment. The schedule features
3 reward levels (50, 25, 10 cents), where each reward level
contains 7 progressive ratio sets (see Table 1). Each set con-
tains a fixed number of two-choice response trials where
participants are asked to select the larger of two numbers
presented on a computer monitor. Participants can quit at
any time with a keypress and, if they decide to quit, they
skip all sets in their current reward level and start the first
set in the next reward level. As an example, if participants
quit at Set 5, they skip Sets 6 and 7, which have the same
reward level (50), and start Set 8, which has the next reward
level (25). When participants complete the required num-
ber of trials in a set correctly, they get the corresponding
reward, otherwise they cannot get the reward no matter how
many trials they have completed. Incorrect responses are not
counted toward the number of trials completed.

At the start of each set, participants see an initialization
screen showing the reward level, effort level (set size), the
overall reward they have earned so far, and an explicit
message indicating the keypress necessary to quit (see
Fig. 1, upper screen). After the set begins, participants see
trial screens containing the two stimulus numbers, effort
level of the set, and their current progress (see Fig. 1, lower
screen).

The set sizes are shown in Table 1. From the three reward
levels, we can obtain three breakpoints values — 1 from
each reward level. The breakpoint in each reward level is
computed as the mean between the log (base 10) of trial-
per-cent (tpc) value from the last set completed and the
next set immediately following it in the same reward level.
For example, if a participant quits somewhere in Set 2,
the breakpoint should be the mean of log(tpc) of the last
completed set (Set 1) and Set 2, calculated as −0.77 =
(log10(6/50) + log10(12/50))/2. As a special case, if the
participant quits at the first set in the reward level, there is
no last completed set in the same level, thus the breakpoint
is taken as log(tpc) of that first set. Similarly, if a participant
completes all 7 sets in a reward level, there is no incomplete
set, and the breakpoint will be log(tpc) of the last set in the
reward level (noted as row “completed” in Table 1) Wolf
et al. (2014) used the mean of the 3 breakpoints from the 3
reward levels as an index of motivation.
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Table 1 Summary of the PRT test structure from Wolf et al. (2014)

Set Reward Set size Breakpoint Set Reward Set size Breakpoint Set Reward Set size Breakpoint

1 50 6 − 0.92 8 25 3 − 0.92 15 10 1 − 1.00

2 50 12 − 0.77 9 25 6 − 0.77 16 10 2 − 0.85

3 50 26 − 0.45 10 25 13 − 0.45 17 10 5 − 0.50

4 50 45 − 0.16 11 25 23 − 0.16 18 10 9 − 0.17

5 50 100 0.13 12 25 50 0.13 19 10 20 0.13

6 50 167 0.41 13 25 83 0.41 20 10 33 0.41

7 50 500 0.76 14 25 250 0.76 21 10 100 0.76

Completed 1.00 completed 1.00 completed 1.00

The sets are labeled according to the order in which they are shown in the task. The “reward” is the cents awarded to the participants should
they finish the corresponding set. The “set size” is the number of two-choice trials they need to perform correctly to obtain the reward for the
corresponding set. The “breakpoint” is the breakpoint value reached in the reward level should the participant quit during the corresponding set.
As a breakpoint computation example, if participants complete Sets 1–7, they finish all sets in the 50-cent reward level, thus their breakpoint for
the 50-cent level is “completed” 1.00; if they complete Sets 8–10, they are considered to quit at Set 11, thus his/her breakpoint for the 25-cent
level is -0.16; if they don’t complete any set in the 10-cent level, they are considered to quit at Set 15 with a breakpoint of -1.00; overall, the mean
breakpoint in this case is −0.05 = (1.00 − 0.16 − 1.00)/3

Covariates and Hierarchical BayesianModel

Based on the characteristics of the PRT schedule from
Wolf et al. (2014), we constructed a hierarchical Bayesian
model for the decision to quit throughout the course of the
PRT schedule. Because Wolf et al.’s study also measured
response times (RTs), we also separately modeled the two-
choice RTs.

Hierarchical Bayesian Model

Because Wolf et al. (2014) developed the PRT to investigate
participants from multiple comparable groups (e.g., partic-
ipants with and without schizophrenia), we built a model
suitable for C groups where group c contains Ic participants.
We use c to be the group identifier (c = 1, 2, . . . , C) and i

to be the participant identifier (i = 1, 2, . . . , Ic). To study
a participant’s decision to quit, we distinguished between
whether this participant quits at the start of a set (Fig. 1,
upper screen) or during the two-choice trials (Fig. 1, lower
screen) — the two times at which they can press a key to
quit.

If participants fail to complete a set of a certain reward
level, they will not reach the remaining sets in the same
level, thus every participant can reach a different number
of sets. Suppose Participant i in condition c reaches Nic

sets. Let Xic,n denote a 0–1 indicator of the participant’s
decision of whether to quit at the start of the nth set reached
(n = 1, 2, . . . , Nic), and let Yic,n denote a 0–1 indicator of
whether the participant quits within the nth set. If Xic,n = 1
then the participant chose not to initialize the set and quit
at the start-of-set screen (Fig. 1, upper screen). If Xic,n =

0 and Yic,n = 1 then the participant chose to start the
set but quit somewhere within the set. If Xic,n = 0 and
Yic,n = 0 then the participant managed to complete the set
and obtain the corresponding reward. Denote the probability
of quitting at the set’s initialization screen by pic,n, and the
probability of quitting within the set by qic,n, so, assuming
independence,

P(Xic,n = 1) = pic,n,

P (Xic,n = 0, Yic,n = 1) = (1 − pic,n)qic,n, and
P(Xic,n = 0, Yic,n = 0) = (1 − pic,n)(1 − qic,n).

(1)

We selected the model covariates making use of the
information recorded in Wolf et al.’s (2014) PRT schedule.
In their experiment, participants are informed of the reward
level in each set and effort required in each set. The two-
choice RTs were are also recorded for each trial. In our
model, we considered reward value, effort level (set size),
and overall elapsed time in the experiment as covariates.

Denote the reward level as Vic,n for the nth set from
Participant i in group c. Because reward has only 3 discrete
levels (50, 25, 10), we cannot infer the functional form of the
reward effect from the data. Thus we use dummy variables
V̂ 10

ic,n, V̂ 01
ic,n ∈ {0, 1} to code reward levels:

V̂ 10
ic,n =

{
1, if Vic,n = 25,

0, otherwise,
and

V̂ 01
ic,n =

{
1, if Vic,n = 10,

0, otherwise.

So the dummy variable combinations are (0, 0), (1, 0), and
(0, 1) for reward levels 50, 25, and 10, respectively. We use
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Fig. 1 Sample screens adapted from Wolf et al. (2014) experiment.
The upper screen is shown at the start of each set. The lower screen
shows a two-choice trial within a set

Mic,n to denote the current set size. Suppose the participant
encounters Jic,n two-choice trials in set n, then we denote
the participant’s RT for the j th response as tic,n,j (j ≤
Jic,n). Participants also spends a period of initialization time
Sic,n at the start screen (Fig. 1, upper screen) before they
make the decision to begin/skip the set. Therefore, for each
set, we consider the elapsed time to be Tic,n, where

Tic,n =
{

Sic,1, if n = 1,

Sic,n + ∑n−1
k=1(Sic,k + ∑Jic,k

j=1 tic,k,j ), otherwise.

Because people’s subjective perception of duration is
likely discounted and concave with respect to objective time
(Zauberman et al., 2009), we use its (natural) log discounted
value T̂ic,n as a covariate in the model. Similarly, we use the
(natural) log of Mic,n as a covariate in the model, denoted
as M̂ic,n:

T̂ic,n = ln(Tic,n), and M̂ic,n = ln(Mic,n).

To characterize the probabilities pic,n and qic,n, we use a
geometric regression structure where

pic,n = 1
1+exp(−Z

p
ic,n)

, with

Z
p
ic,n = βic + μ10

ic V̂ 10
ic,n + μ01

ic V̂ 01
ic,n

+η
p
icM̂ic,n + η10

c V̂ 10
ic,nM̂ic,n + η01

c V̂ 01
ic,nM̂ic,n

+γ
p
icT̂ic,n + γ 10

c V̂ 10
ic,nT̂ic,n + γ 01

c V̂ 01
ic,nT̂ic,n

+ψcM̂ic,nT̂ic,n,

(2)

and

qic,n = 1
1+exp(−Z

q
ic,n)

, with

Z
q
ic,n = βic + η

q
icM̂ic,n + γ

q
icT̂ic,n + ψcM̂ic,nT̂ic,n.

(3)

The model structure is shown in Fig. 2.
The model for pic,n includes individual-level parameters:

the intercept βic, the main effects of reward values μ10
ic and

μ01
ic , the main effect of effort η

p
ic, and the main effect of

elapsed time γ
p
ic . It also includes group-level parameters for

pairwise interactions γ 10
c , γ 01

c , η10
c , η01

c and ψc. Because of
the limited data (a maximum of 21 sets for each participant),
we do not allow the interaction effects to vary at the
individual level to avoid potential identifiability problems.

The model for qic,n includes the individual-level inter-
cept βic, the main effect of effort η

q
ic, the main effect of

time γ
q
ic, and a group-level interaction between effort and

time ψc. The effects of reward level are excluded because
model comparison results suggest that reward level con-
tributes little in estimating qic,n (see the Appendix for the
model comparison procedure and results).

Because the PRT schedule allows participants to quit
whenever they want, some participants have a very small
sample size Nic, which results in identifiability problems
and a large estimation bias if individual-level parameters
are estimated in isolation. A hierarchical Bayesian model
structure permits us to estimate individual-level parameters
in these cases using group-level information embedded
in the model’s hyperparameters (Busemeyer & Diederich,
2010). To characterize the relation of individual-level
parameters to the group, let r ∈ {p, q} and s ∈ {10, 01}, we
model the individual-level parameters as

βic ∼ N(βc, σβ,c), μs
ic ∼ N(μs

c, σμs,c), and
ηr

ic ∼ N(ηr
c, σηr ,c), γ r

ic ∼ N(γ r
c , σγ r ,c).

Thus, each individual-level parameter is drawn from a nor-
mal distribution characterized by group-level parameters.
Parameters μc, μs

c, ηr
c , γ r

c are the group-level means, and
σμ,c, σμs,c, σηr ,c, and σγ r ,c are the group-level standard
deviations. Due to the small sample size of PRT data, we
reduce the number of parameters to be estimated by assign-
ing constant values to the standard deviation parameters to
avoid identifiability problems.
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Fig. 2 The graphical structure
of the hierarchical Bayesian
model. Circles denote
continuous quantities and
rectangles denote discrete
quantities. Observed variables
are shaded, while parameters to
be estimated are not. Arrows
indicate dependence, and each
plate signals repetition over
trials, individuals, and
experimental conditions

Similarly, the group-level parameters are modeled as

βc ∼ N(β, σβ), μs
c ∼ N(μs, σμs ),

ψc ∼ N(ψ, σψ), and
ηr

c ∼ N(ηr, σηr ), γ r
c ∼ N(γ r, σγ r ),

ηs
c ∼ N(ηs, σηs ), γ s

c ∼ N(γ s, σγ s ).

We also assign constant values to the standard deviation param-
eters in this level. The hyperparameters are modeled as

β ∼ N(0, σβ,0), μs ∼ N(0, σμs,0),

ψ ∼ N(0, σψ,0), and
ηr ∼ N(0, σηr ,0), γ r ∼ N(0, σγ r ,0),

ηs ∼ N(0, σηs,0), γ s ∼ N(0, σγ s ,0),

where the standard deviations are also fixed in model esti-
mation.

Overall, given the entirety of model parameters θ , the
likelihood of the model can be written as

L(θ |X, Y ) =
∏

i,c,Nic

P (Xic,n, Yic,n|pic,n, qic,n)

=
∏

i,c,Nic

[pic,n]I (Xic,n=1)[(1−pic,n) qic,n]I (Xic,n=0,Yic,n=1)

[(1 − pic,n) (1 − qic,n)]I (Xic,n=0,Yic,n=0),

where I (S) is the indicator function that equals 1 when
statement S is true and 0 otherwise.

RT Model

The hierarchical Bayesian model includes as covariates the
quantities Tic,n that were constructed using the individual
RTs tic,n,j . Thus, the decisions to quit are modeled condi-
tional on (functions of) the RTs. In this section we present
a model for the RTs themselves. While decisions to quit
and RTs could be modeled jointly, we decided to build two
separate models, mostly because the data provided to us
did not include the exact values of the stimuli presented
on each trial and the accuracy of each response. In light of
such limitations, the results from the response time anal-
ysis are intended to be used for preliminary, exploratory
purposes only.

We model the RTs using a racing diffusion model (Logan
et al., 2014) based on the Wald distribution (Burbeck
& Luce, 1982). We selected the racing diffusion model
because it can be easily modified to the PRT and it does
not require information about the above-mentioned vari-
ables that are missing from the data set. In the number
comparison task used in the PRT, a participant can choose
which of two numbers is bigger. The racing diffusion model
proposes that evidence toward each possible response is
sampled from the display and stored in two neural mod-
ules called accumulators, one dedicated to each response.
In this study, the two accumulators correspond to the left
and right choices. The growth of evidence on each accumu-
lator is described by a Wiener diffusion process with drift.
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Fig. 3 The race between two accumulators corresponding to two
choices (left and right stimuli in this study). The time for the first
accumulator (in this case black) to reach its decision boundary is
considered the RT

Each accumulator has a single absorbing boundary called
the decision boundary; when the evidence level reaches the
decision boundary the process ends. The boundary is the
amount of evidence required for the response represented
by the accumulator. The two accumulators race against
each other, and the first accumulator to reach its bound-
ary determines the response and the RT (see Fig. 3). The
time for each accumulator to reach its boundary follows
an inverse Gaussian (Wald) distribution. The final decision
time therefore is the finishing time of the fastest accumula-
tor, which follows the distribution of a minimum statistic of
two inverse Gaussian random variables.

The finishing time distribution for each accumulator has
3 parameters: the drift rate b, the decision boundary a, and
the drift coefficient σ . Because the data set provided to us
does not contain information about the correct responses for
each trial, we do not distinguish between the choices and use
the same drift rate for both the left and right accumulators1.
A larger drift rate b corresponds to faster information
accumulation from the display. When participants have a
larger decision boundary a, they need more information
to reach a decision and hence are more cautious in their
responses. We do not include a left/right response bias in
our model, because the correct choice (a larger number) is
equally likely to be on the left or the right in this task, and
empirical data from the PRT (Wolf et al., 2014) does not
show a left-right choice bias.

Let Participant i in Group c have a drift rate parameter
given by bic > 0 and a decision boundary aic > 0. The

1When the stimuli information is available, it is more reasonable for
the correct stimuli to have a larger corresponding drift rate than the
incorrect one.

corresponding finishing time distribution for each accumu-
lator has density

f(t |aic, bic, σic)= aic

σic

√
2πt3

exp{− (aic − bict)
2

2σ 2
ict

}, t > 0,

where σic, an unidentifiable parameter, is equal to 1. The
density function of each RT tic,n,j is then

2f (t |aic, bic, σic)(1 − F(t |aic, bic, σic)). (4)

To complete the specification, we model the individual-level
parameters aic and bic as gamma random variables

aic ∼ 	(1, ac), and bic ∼ 	(1, bc). (5)

The group-level parameters ac and bc, which are the scales
of the Gamma distributions, have gamma hyperpriors

ac ∼ 	(1, a), bc ∼ 	(1, b),

a ∼ 	(1, 1), and b ∼ 	(1, 1).

Given the entirety of the RT model parameters τ , the
likelihood of the model is

L(τ |t) =
∏

i,c,Nic,Jic,n

2f (tic,n,j |aic, bic, σic)

(1 − F(tic,n,j |aic, bic, σic)).

Parameter Recovery Studies

We performed a simulation study to assess if it is possible,
given an adequate amount of synthetic data generated from
the breakpoint model with the parameters set at plausible
values, to recover such values and reveal genuine differ-
ences across participant groups.

The PRT data set consists of the binary dependent
variables Xic,n, Yic,n characterizing the decision to quit,
where each participant has mostly “0”s and at maximum 3
“1”s: they can quit at most 3 times, one opportunity for each
reward level. The “1”s are more likely to be in Xic,n than
Yic,n because participants have a greater tendency to quit at
the start of each set rather than within.

We simulated 3 artificial groups of participants with 30
participants in each group – 90 participants overall. The
simulated groups corresponds to people with schizophrenia,
first-degree relatives and people without schizophrenia in
the empirical data. The parameter values used to generate
the data for each simulated participant were set equal to the
posterior means of the corresponding parameters estimated
from initial fits of the entire hierarchical Bayesian model
to the data from (Wolf et al., 2014) (see Application).
We followed the exact PRT schedule of Wolf et al.
(2014), where each simulated participant went through
the experiment as described in Section 2.1. This schedule
ensured that the set size Mic,n and the reward Vic,n were
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Fig. 4 Algorithm 1 for simulation

fixed in each set according to the schedule (Table 1). For
the number of sets Nic and number of two-choice responses
Jic,n, we generated related covariates following Algorithm 1
(see Fig. 4). First we obtained each initialization time
Sic,n by randomly sampling from the pool of empirical
initialization times. If the simulated participant quit within
the nth set after starting the set, we randomly sampled
the number of two-choice responses Jic,n as an integer
between 0 and Mic,n. If the participant chose not to quit,
we assumed Jic,n to be Mic,n. Finally, for RTs tic,n,j we
randomly sampled from the RT distribution in Eq. (4), again
using the estimated posterior means as parameter values.
The procedure is shown in Fig. 5.

After obtaining the simulated data, we fit the model using
Stan, via the R package Rstan (Stan-Development-Team,
2018), which uses the Hamiltonian Monte Carlo method
with no-U-turn sampling (Neal, 2011) to obtain posterior
samples. The standard deviation parameters were set equal
to 3, except the standard deviations associated with the mean
parameters β· and μ··, which were set equal to 5.

We obtained two chains of length 15,000, including a
burn-in period of 5000 samples. The traceplots and the
Gelman-Rubin statistic R̂ (R̂ < 1.05 for all chains) (Gelman
& Rubin, 1992; Brooks & Gelman, 1998) indicated satisfac-
tory convergence. Figure 6 shows the true data-generating
parameters and summaries of their estimated posterior dis-
tributions. For most parameters, the true data-generating
values are close to the posterior medians. Overall, the param-
eter recovery results are satisfactory, suggesting that the
model is identifiable and can be applied to empirical data.

Application: Amotivation in People
with Schizophrenia

We fit the hierarchical Bayesian model to Wolf et al.’s
(2014) data to gain some insight about quitting in the
PRT. We start by introducing the data set and discussing
some possible mechanisms underlying participant behavior.
We then apply the hierarchical Bayesian model to data

and evaluate the model’s fit. Finally, we discuss possible
implications of the results.

Wolf et al. (2014): Data and Results

Wolf et al. (2014) used the PRT to study amotivation
in people with schizophrenia. Amotivation is one of the
common negative symptoms in psychotic disorders and may
contribute to poor response to treatment (Strauss et al.,
2016). Therefore, a better understanding of the mechanism
of amotivation might highlight strategies through which to
improve interventions for individuals with schizophrenia.

The data set from Wolf et al. (2014) includes 41 par-
ticipants with schizophrenia and 37 participants without
schizophrenia2. These participants did not differ in demo-
graphic variables except for those of socioeconomic status
and education. Data from Wolf (2015) includes 40 first-
degree relatives of individuals with schizophrenia. Within
this set there are 264 occurrences where participants quit
at the start of a set and 21 occurrences where participants
quit inside an already initiated set. The common practice
in applications of the PRT is to use the breakpoint as an
index of motivation: a larger breakpoint corresponds to
higher motivation. Wolf et al. conducted a t-test between
participants with or without schizophrenia that revealed
significantly lower mean breakpoint in participants with
schizophrenia (p < .05).

Figure 7 shows the group-wise and participant-wise
breakpoints from Wolf et al. (2014). The breakpoint his-
tograms for people without schizophrenia are skewed, and
those for first-degree relatives and people with schizophre-
nia show a potential bimodality, calling into question
the validity of the assumptions underlying the parametric
t-test3. In the participant-wise line plots, we improved vis-
ibility by jittering the breakpoints by adding N(0, 0.02)

2A few participants are excluded in this analysis because of code
errors.
3The group difference remains significant using a non-parameteric
t-test.
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Fig. 5 A flow chart showing the procedure to sample simulated data

noise. We also divided each group by positive breakpoints
(red solid lines) and negative breakpoints (blue dashed
lines) for clarity. Participants without schizophrenia appear
to have more consistent breakpoint values across different
reward levels. Multiple first-degree relatives and individuals
with schizophrenia show steep breakpoint changes across
reward levels that indicate larger within-person variability.
Due to the complexity of the data and the potential under-
lying mechanisms shown in Fig. 7, we concluded that it
is appropriate to fit the hierarchical Bayesian model in an
attempt to extract information from these more complicated
features of the data.

Application andModel Fit

To investigate the behavioral mechanism in Wolf et al.
(2014), we applied the hierarchical Bayesian model to their
data. We used the same constant standard deviations as
in the parameter recovery study. We obtained two chains
of parameter values sampled from their posteriors using

Stan, each consisting of 5000 burn-in samples and a total
of 30000 iterations. The traceplots and Gelman-Rubin
statistics R̂ (R̂ <1.05 for all chains) (Gelman & Rubin,
1992; Brooks & Gelman, 1998) suggested that the chains
reached satisfactory convergence (Fig. 8).

For model evaluation, we first checked whether the
estimated posterior predictive distributions of the frequency
indicators were consistent with the data. We then checked
if the estimated posterior predictive distributions of the
breakpoints were consistent with the observed breakpoints.

For the hierarchical Bayesian model, denoting the entirety
of the posterior parameters drawn on the kth iteration by
θk
ic, we computed the probabilities of quitting pk

ic,n and qk
ic,n

according to Eq. (1), then sampled the corresponding Xk
ic,n

and Y k
ic,n from Eqs. (2) and (3). Figure 9 shows the observed

values of Xic,n and Yic,n for a selected number of partic-
ipants (i =2, 5, 8, 21, 31, 49, 92, and 98) together with
their estimated posterior predictive distributions based on
the sampled values Xk

ic,n, Y k
ic,n, k = 1, 2, . . . , K4. Here

we thinned the chains by retaining every 20th iteration to
reduce autocorrelation and processing time, thus K = 3000.
The figure reveals the posterior predictive distributions to be
relatively consistent with the data, and our model can accom-
modate the different response patterns from participants.

To evaluate whether the draws of the posterior parameters
can be used to successfully recover the breakpoints, we
sampled breakpoints using the procedure described by
Algorithm 2 (see Fig. 8). We also thinned the chains by
taking every 20th interaction to reduce autocorrelation
and computation time, which resulted in a total of 3000
posterior breakpoint values. Figure 10 displays the observed
breakpoints from Wolf et al. (2014) and the posterior
predictive distribution of the breakpoints. The majority
of true breakpoints fall in the 95% credible intervals5.
The successful recovery of breakpoint values indicates the
model’s good fit to data.

Results

In this section, we present the modeling results and their
implications for the quitting mechanisms for people with-
out schizophrenia, first-degree relatives and people with
schizophrenia.

We first evaluated whether any single factor among effort,
reward, and elapsed time can account for the response dif-
ferences between different groups of participants. Because
of the presence of interaction terms in Eq. (2), we evaluated

4See the supplemental materials for full contrasts from all the partici-
pants.
5All credible intervals reported are equal-tailed intervals. The highest-
posterior density intervals yield similar results and lead to the same
conclusions.



Comput Brain Behav

Fig. 6 Box-and-whisker plots of the estimated posterior distributions
of the model parameters in the parameter recovery study together with
the true data-generating values (red dots). The blue bars are the 95%
credible sets and the blue dots are the posterior medians. The red

vertical lines separate 3 artificial groups. The orange box-and-whisker
plots at the left of the displays summarize the prior distributions for
the model parameters

the effect of each factor at selected values of the other fac-
tors. We compared the group differences by comparing the
estimated posterior predictive distribution of the group-level
parameters. Figure 11 displays the box plots of priors and

posteriors for each group-level parameter. Because partic-
ipants quit less frequently within a set, we do not discuss
the group-level differences regarding Eq. (3), and focus on
Eq. (2).
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Fig. 7 Plots of the group-wise and participant-wise breakpoints
from Wolf et al. (2014). The upper figures are histograms show-
ing the distributions of breakpoints of each group. The lower figures
show participant-wise breakpoints where breakpoint values of each

participant are connected. Orange solid lines correspond to partici-
pant with an average breakpoint larger than 0, and purple dashed lines
correspond to participants with an average breakpoint smaller than 0

For the effect of reward level, we investigated if people
with schizophrenia tend to have a discounted perception of
reward relative to people without schizophrenia, resulting
in a larger probability to quit at the same reward level. We

examined the differences between the estimated posterior
probabilities of quitting between people with and without
schizophrenia computed from Eq. (2) at a fixed effort level
of 50 trials and a fixed elapsed time of 200 s. We selected

Fig. 8 Algorithm 2
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Fig. 9 Estimated posterior predictive distributions of the quitting indi-
cators for selected participants. The bars show the proportion of “1”s
among the posterior predictive draws. The number on top of each bar is
the corresponding empirical value of either Xic,n (gray) or Yic,n (blue)

from Wolf et al. (2014). The empty columns correspond to sets that the
participants never reached because they quit at earlier sets in the same
reward level of the task

Fig. 10 Estimated posterior predictive distributions for the breakpoints together with the observed breakpoints computed from Wolf et al.’s (2014)
data set for each participant. Estimated posterior predictive distributions from people without schizophrenia, first-degree relatives, and people with
schizophrenia are colored gray, blue, and red, respectively. The observed breakpoints are colored black. The bars are the 95% credible intervals
based on 5000 simulated breakpoints, and the points on each bar with the same color are the medians
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Fig. 11 Box-and-whisker plots of the estimated posterior distributions
of all group-level hierarchical Bayesian model parameters. The blue
box plots correspond to the model priors, and the gray box plots

represent people without schizophrenia (“con”), first-degree relatives
(“rel”), and people with schizophrenia (“sch”)

200 s because people with and without schizophrenia are
almost equally likely to quit after marginalizing over reward
level at this point. The estimated posterior probabilities that
the group with schizophrenia is more likely to quit than the
group without schizophrenia are 0.415, 0.700, and 0.427 for
the reward levels of 50, 25, and 10 cents, respectively. This
provides evidence against the possibility that reward level
can explain the group differences alone, as there is no strong
evidence that one group has a higher probability of quitting
than the other.

Similarly, for the effect of effort level, we examined the
differences between groups with and without schizophrenia
at a fixed reward level of 50 cents and a fixed elapsed
time of 200 s. The estimated posterior probabilities that the
group with schizophrenia is more likely to quit than the
group without schizophrenia are 0.566, 0.415, and 0.349
for the effort level of 12, 50, and 100 trials, respectively.
For the effect of elapsed time, we examined the differences

at a fixed reward level of 50 cents and a fixed effort level
of 50 trials. The estimated posterior probabilities that the
group with schizophrenia is more likely to quit than the
group without schizophrenia are 0.160, 0.415, and 0.633
for the elapsed times of 50, 200, and 800 s, respectively.
These results show that the group differences cannot be
explained by any single covariate among reward, effort and
elapsed time, and they result from the joint effects of these
covariates.

We display the interactions between reward, effort, and
elapsed time in Figs. 12, 13, 14, 15, and 16. In these fig-
ures, we varied each covariate of interest across a range
of values, holding the other covariates constant. For each set
of covariate values, we obtained estimates of the posterior
distributions of the group-wise probabilities of quitting,
computed from Eq. (2). We display the posterior distribu-
tions of the group-wise probabilities of quitting with box
plots, coloring people without schizophrenia, first-degree
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Fig. 12 Box-and-whisker plots
of the estimated posterior
distributions of the group-level
probabilities of quitting across a
number of elapsed times and
effort values, holding reward
level at 50 cents. Labels “con”,
“rel”, and “sch” stand for people
without schizophrenia (gray),
first-degree relatives (blue) and
people with schizophrenia (red).
Each column block divided by
green lines corresponds to
elapsed time which is labeled at
the top, and each row block
corresponds to the set size which
is labeled on the right side

relatives and people with schizophrenia in gray, blue and
red, respectively. Because the PRT allows each participant
to quit once in each reward level, in these figures, nar-
row box plots near the probability 0 indicate that most
participants may choose to proceed at their corresponding
covariate values; wider box plots indicate that most par-
ticipants may choose to quit around their corresponding
covariate values; and narrow box plots near the probability 1
indicate that most participants may have quit the task before
reaching their corresponding covariate values.

In Figs. 12, 13, and 14, we held the reward levels to
be 50, 25 and 10 cents respectively, and varied elapsed
time and effort. These figures show that the estimated
posterior distributions of the probabilities of quitting for
people without schizophrenia (gray box plots) are more
affected by the set size and less affected by elapsed time,
and that they are more likely to quit when the effort demand
is high regardless of elapsed time. In Figs. 12, 13, and 14,
the wider gray box plots appear around the effort levels of
100–167 trials, 50–83 trials, and 20–33 trials respectively,
which correspond to the same reward-effort ratios of 2
to 3.3 trials per cent. This pattern indicates that people
without schizophrenia are more likely to consider quitting
at a concentrated range of reward-effort ratio regardless of
elapsed time.

In comparison, people with schizophrenia (red box plots)
may base their decisions more on elapsed time. In Fig. 12,
the wider red box plots appear at the effort level of 500
trials and the elapsed time of 87 s, which indicates that
participants in this group are most likely to consider quitting
only when the effort has reached a high level. However, at
the elapsed time of 1459 s, the wider red box plots appear
around the effort levels of 45–100 trials, which is a large
reduction from the previous 500 trials. Similarly, in Fig. 13,
the wider red box plots appear around 83–250 trials at the
elapsed time of 30 s, but move up to 13 trials at the elapsed
time of 1459 s. In Fig. 14, the wider red box plots appear
at 100 trials at the elapsed time of 87 s, but move up to 2–
5 trials at the elapsed time of 1459 s. These results indicate
that people with schizophrenia may be willing to exert large
efforts at the start of the experiment, but they might consider
quitting at much lower effort levels later into the experiment
when the elapsed time is long. This may suggest that the
motivation of people with schizophrenia decreases faster as
time elapses, and some individuals may quit after a certain
period of time regardless of the effort level.

The group of first-degree relatives (blue box plots)
is affected by both the set size and elapsed time, and
appears to share the quitting mechanisms of both the groups
with and without schizophrenia. Similar to the group with
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Fig. 13 Box-and-whisker plots
of the estimated posterior
distributions of the group-level
probabilities of quitting across a
number of elapsed times and
effort values, holding reward
level at 25 cents. Labels “con”,
“rel”, and “sch” stand for people
without schizophrenia (gray),
first-degree relatives (blue) and
people with schizophrenia (red).
Each column block divided by
green lines corresponds to
elapsed time which is labeled at
the top, and each row block
corresponds to the set size which
is labeled on the right side

Fig. 14 Box-and-whisker plots
of the estimated posterior
distributions of the group-level
probabilities of quitting across a
number of elapsed times and
effort values, holding reward
level at 10 cents. Labels “con”,
“rel”, and “sch” stand for people
without schizophrenia (gray),
first-degree relatives (blue) and
people with schizophrenia (red).
Each column block divided by
green lines corresponds to
elapsed time which is labeled at
the top, and each row block
corresponds to the set size which
is labeled on the right side
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Fig. 15 Box-and-whisker plots
of the estimated posterior
distributions of the group-level
probabilities of quitting across a
number of elapsed times and
reward values, holding the set
size at 50. Labels “con”, “rel”,
and “sch” stand for people
without schizophrenia (gray),
first-degree relatives (blue) and
people with schizophrenia (red).
Each column block divided by
green lines corresponds to
elapsed time which is labeled at
the top, and each row block
corresponds to the reward value
which is labeled on the right side

Fig. 16 Box-and-whisker plots
of the estimated posterior
distributions of the group-level
probabilities of quitting across a
number of effort values and
reward values, holding the
elapsed time at 200s. Labels
“con”, “rel”, and “sch” stand for
people without schizophrenia
(gray), first-degree relatives
(blue) and people with
schizophrenia (red). Each
column block divided by green
lines corresponds to the set size
which is labeled at the top, and
each row block corresponds to
the reward value which is
labeled on the right side
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schizophrenia, the decision to quit of first-degree relatives
is largely affected by elapsed time, with the wider blue box
plots appearing around the larger effort levels at the elapsed
time of 30 s in Figs. 12, 13, and 14, but moving to smaller
effort levels at the elapsed time of 1459 s. However, similar
to the group without schizophrenia, the decision to quit of
first-degree relatives is more dependent on the effort-reward
ratio at the same level of elapsed time. For example, the
wider blue box plots appear around the effort-reward ratio
of 3.33 trials per cent at the elapsed time of 87 s in all
three figures, and appear around the effort-reward ratio of
0.5 trials per cent at the elapsed time of 1459 s in all three
figures. This effect of the effort-reward ratio is not found in
people with schizophrenia.

Figure 15 shows the estimated posterior distributions of
the probabilities of quitting when we held the set size at 50
and varied elapsed time and reward values. Figure 16 shows
the estimated posterior distributions of the probabilities of
quitting when we held the elapsed time at 200s and varied
effort values and reward values. These figures do not show

evidence for a general lack of motivation in people with
schizophrenia because their probabilities of quitting are not
necessarily higher than those for other groups. Neither do
these plots show definite effects of reward values. The
inconsistent effects of reward level may be due to the
participants adjusting their response strategy as they gain
increasing understanding of the task after going through
more sets.

To examine individual differences, we display all box-
and-whisker plots of the estimated posterior distributions
of the individual-level parameters for participants with
schizophrenia in Fig. 17. Results for other participants
are shown in the supplemental materials. Figure 17 shows
that it is possible to identify participants with divergent
response patterns. For example, Participant 82 has a larger
η

q
ic than most of the other participants. This participant may

be more likely to quit in the middle of a set when the
effort is large, compared to other participants in this group.
To explore this hypothesis, we computed the estimated
posterior probabilities of quitting in the middle of a set from

Fig. 17 The box-and-whisker plots of the participants with schizophrenia
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Fig. 18 Estimated posterior predictive densities (black lines) of the RTs together with estimates of the corresponding densities based on the
observed RTs (red lines) from Wolf et al. (2014)

Eq. (3) for the group with schizophrenia and Participant
82 in the group in particular. For the event that Participant
82 quits in the middle of a set more than the average of
the group, the estimated posterior probabilities are all more
that 0.99 for effort levels of 100, 167, and 500 trials, when
the reward is fixed at 50 cents and elapsed time is fixed at
500 s. Participant 82 may have a different response strategy
from the other participants: enter a set first, and quit the
set when the set is perceived to require too much effort
for the given amount of reward. Proceeding, in this way,
it may be possible to inspect the individual differences
in parameter values to identify participants who are using
specific strategies.

RTModeling and Results

In data from Wolf et al. (2014, 2015), people without
schizophrenia have an RT mean of 1.15 s (sd 0.51), first-
degree relatives have an RT mean of 1.17 s (sd 0.48), and
people with schizophrenia have an RT mean of 1.41 s (sd
0.60). To fit the RT model, we eliminated trials with RTs

less than 100ms and greater than 4000ms.6. We obtained
2 chains for each parameter using Stan, each consisting of
1000 burn-in samples and 5000 total iterations. Traceplots
and the R̂ statistic (R̂ <1.05) indicated good convergence.

For the RT model, using the posterior parameters ak
ic

and bk
ic, we generated T k

ic via the distribution in Eq. (4).
Figure 18 shows the estimated density functions of the observed
RTs tic,n,j for Participants 17–24 together with their esti-
mated posterior predictive densities. The model-based esti-
mated posterior predictive densities, albeit less concen-
trated, have similar peaks and overall shapes as those of the
kernel density estimates, indicating reasonable model fit.

From the estimated posterior distributions of the group-
level parameters ac and bc, we noted several interesting
results. For the decision boundary ac, the estimated poste-
rior probability that the group without schizophrenia has a

6A more desirable approach is to construct a mixture model including
the short and long RTs as sub/supra cognitive components (Kim et al.,
2017). Because the data lacked detailed two-choice trial information,
we were compelled to use this simpler approach.
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higher decision boundary than the group with schizophre-
nia is 0.488. Thus people with schizophrenia have much
the same average decision boundary as people without
schizophrenia. For the drift rate bc, the estimated posterior
probability that drift rate for the group without schizophre-
nia is higher than that of the group with schizophrenia is
0.734. Similarly, the group of first-degree relatives also has
a higher group-level drift rate than that of the group with
schizophrenia with an estimated posterior probability of
0.612. First-degree relatives have a lower drift rate bc than
people without schizophrenia with an estimated posterior
probability of 0.640. These results may indicate that peo-
ple with schizophrenia are slower to accumulate information
from stimuli, resulting in a smaller drift rate and longer RTs.
First-degree relatives are also slower than people without
schizophrenia.

Discussion and Conclusions

In this study, we constructed a hierarchical Bayesian model
for PRT data that provides reasonable parameter recovery
results and good fit to a PRT data set from Wolf et al. (2014).
When fit to empirical data, the model is able to reveal
differences in the ways that experimental covariates influ-
ence participants’ decisions during PRT experiments. Better
understanding of these differences could be helpful in ana-
lyzing PRT studies and related psychological practices.
Here we discuss the potential implications of our modeling
results and their associations with past studies in the litera-
ture, the possibility of extending the hierarchical Bayesian
model to other PRT schedules and their corresponding data
sets, and possible future work to improve the Bayesian
model.

Discussion

Our results may offer some insights about how motivation
might be affected among individuals with schizophrenia,
and they could be helpful to improve the efficacy of treatment
provided to these individuals. The performance of indi-
viduals with schizophrenia appear to be more affected by
elapsed time, as they are more likely to quit after spend-
ing more time and effort in the task and are less affected
by reward and effort levels, while the decision of peo-
ple without schizophrenia are more affected by reward and
effort levels. This phenomenon could be influenced by mul-
tiple factors. One possible factor might be defective time
perception in people with schizophrenia. Multiple studies
have suggested that people with schizophrenia are prone to
overestimation of time duration (e.g., Bonnot et al., 2011;
Ortu no et al., 2011; Ciullo et al., 2016), and this over-
estimation might result in a faster diminishing motivation

and contribute to their unwillingness to keep exerting effort
after some time into the experiment. Another possible mech-
anism is that people with schizophrenia may suffer from
impaired proactive cognitive control (Lesh et al., 2013;
Ryman et al. 2018), which harms their abilities to manage
their actions based on the reward-effort ratio and elapsed
time. Proactive control is used to maintain goal-relevant
information and keep actions goal-oriented (Ryman et al.
2018). With effective proactive control, people without
schizophrenia are able to maintain a schedule that balances
their effort with the average reward per time unit, whereby
they exert effort when the average reward is high and quit
when it is low (Otto & Daw, 2019; Guitart-Masip et al.,
2011). In comparison, people with schizophrenia may rely
more on reactive control due to impairments in proactive
control (Mann et al., 2013). Reactive control is more tran-
sient and stimulus-driven (Braver, 2012), thus people with
schizophrenia may be less able to respond based on a goal
sustained across a task. They may tend to quit when they
have exerted the amount of effort that they are willing to
contribute, regardless of whether it maximized the reward or
not. As a result, people with schizophrenia are more likely
to quit within a concentrated time period corresponding to
the amount of effort that they are motivated to exert.

Set size affects the performance of people with schizophre-
nia less than that of people in other groups. This suggests
that individuals with schizophrenia might have impairments
in the perception of effort and personal cost, and might be
unable to optimize the gain based on the effort-reward ratio
from the PRT as efficiently as other groups. This finding
is consistent with findings that suggested that the lack of
motivation could be related to dysfunctional integration of
effort and reward in people with schizophrenia, whereby
they might suffer from abnormal estimations of effort and
have difficulties in maintaining an effort-reward balance
(e.g., Hartmann et al., 2015; Gold et al., 2013; Fervaha et al.,
2013; Barch et al., 2014).

The effect of reward value does not show consistent
differences across groups. Breitborde et al. (2019) sug-
gested that the level of extrinsic motivation in people with
schizophrenia is statistically no different than that in those
without schizophrenia, so the lack of consistent effects of
reward value may be expected. However, due to the small
number of reward values, further investigation is needed to
reach more reliable conclusions.

The first-degree relatives show intermediate effects of
elapsed time, effort and reward, which may align with find-
ings by Snitz et al. (2006) that cognitive deficits are also
present in first-degree relatives of people with schizophre-
nia, but not as severe. The larger influence of elapsed time
is shared by the first-degree relatives and the individu-
als with schizophrenia, indicating that they may share a
potential endophenotype for schizophrenia — a heritable



Comput Brain Behav

factor that may be more clearly associated with specific,
underlying genetic/biological factors than the broader diag-
nostic phenotype (Kendler & Neale, 2010). This endophe-
notype may concern defective time perception or impaired
proactive control to maintain a consistent goal across the
experiment. Presence of the larger influence of elapsed time
in first-degree relatives also indicates that the deficits shown
in people with schizophrenia are unlikely a result of antipsy-
chotic medication, as first-degree relatives do not receive
such medication.

Possible extension to other PRT studies

To apply the model to other PRT schedules used for human
studies, we discuss three differences between these PRT
schedules and that of Wolf et al. (2014) and the role of
possible covariates on people’s decision processes.

The first possible difference between other published
PRT schedules and that of Wolf et al. (2014) is the number
of breakpoints generated. While Wolf et al. (2014) used
3 strings of increasing sets with different reward values
that generates 3 breakpoints, most other studies only have
one reward value over all sets of trials, generating only
one breakpoint per participant. For example, Chelonis et al.
(2011) used a string of 30 sets of trials where Set n

required 1 + 10n responses to earn a nickle; Goldstone
et al. (2016) used 20 sets of trials where Set n required
10 × 2n−1 responses to earn a sweet. Because there is only
one reward value, removing the covariate Vic,n from the
Bayesian model in Eq. (2) results in the reduced model

Zic,n = μic + ηicM̂ic,n + γicT̂ic,n + ψcM̂ic,nT̂ic,n.

We note also that if the reward levels in a PRT can be
regarded as continuous, then the dummy variables V̂ 10

ic,n,

V̂ 01
ic,n ∈ {0, 1} in Eq. (2) can be replaced with a continuous

variable Vic,n. This approach can be applied to a data set
with a larger sequence of reward levels, where a pattern of
reward effect can be found. For example, if the reward effect
is linear, the model can be specified as

Zic,n = μic + μ′
icVic,n

+ηicM̂ic,n + η′
cVic,nM̂ic,n

+γicT̂ic,n + γ ′
cVic,nT̂ic,n

+ψcM̂ic,nT̂ic,n.

The second possible difference in task designs is the
type of responses to be made. Wolf et al. (2014) used
a two-choice task that requires a relatively high level of
attention, while many other studies requires much simpler
responses. Chelonis et al. (2011) asked participants to press
a lever until the number of lever presses reaches a required
threshold. Goldstone et al. (2016) asked participants to
simply click a mouse. Bismark et al. (2018) instructed
participants to rotate a joystick in a specific direction.

Because our hierarchical Bayesian model did not take into
account the nature of the responses but only their RTs,
these differences should not affect the applicability of the
model.

The third difference is the way the PRT ends. In Wolf
et al. (2014), the task terminates when participants have
actively quit in the last reward level or have finished all trials
in the last level. Other task designs terminate the experiment
after a certain amount of time. For example, Chelonis et al.
(2011) terminated the task when it has lasted for 10 min.
This kind of task ending would not require any changes
to the model we present here. It would be interesting to
investigate this kind of task in our framework because
passively ceasing should differ from actively quitting in a
cognitive sense.

Many studies do not measure or record the RT covariates
tic,n thus have no exact elapsed time for each set. When
the experiment run time is available, it may be reasonable
to approximate the elapsed time Tic,n by the number of
responses made before the set divided by the number of
responses made in the full span of the experiment times the
experiment run time.

In summary, with some slight modifications, the hier-
archical Bayesian model is likely to be extensible to the
majority of PRT data sets.

Future directions

There are a number of directions in which this work can
be extended. The first regards the extension to other data
sets. The data examined in this study did not balance
socioeconomic status and education, and we could extend
our analyses to cases with balanced socioeconomic status
and education to eliminate these potential confounds. The
two-choice trials used in the paradigm from Wolf et al.
(2014) do not induce response strategies and bias, and
we might consider extending the task to induce response
bias to investigate the response patterns of people with
schizophrenia in this scenario. Because motivation can
affect performance in other cognitive tests (Fervaha et al.,
2014), we could use the PRT in a cognitive battery with
other tests, and assess how PRT parameters link with other
cognitive functions, as well as individual characteristics
such as IQ and symptoms.

The second direction is to further refine the model.
Although our hierarchical Bayesian model could explain
some features of participant behavior in PRT studies, its
geometric regression structure is relatively arbitrary. The
model offers limited theoretical implications of the par-
ticipants’ cognitive processes, and therefore it is rather
difficult to draw conclusions about differences in informa-
tion processing mechanisms across the three groups in the
experiment we examined.
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One obvious refinement of the model involves the RT
data tic,n and initialization times Sic,n. For now we simply
use these measurements to obtain the elapsed time covariate
Tic,n in the model, and fit a model to them separately, but
they are derived from meaningful underlying structures that
contribute to participants’ performance. If more detailed
trial-by-trial information is available in future studies, the
RT model can be improved with a more sophisticated
structure such as the diffusion decision model (Ratcliff
& McKoon, 2008) and the linear ballistic accumulation
model (Brown & Heathcote, 2008). The initialization time
Sic,n contains behavior-related information because some
participants may spend more time at the start screen to
rest. We may build a theoretically motivated mechanism for
Sic,n in the model to explain behavior at the beginning of
sets. For example, Bradshaw and Killeen (2012) proposed
that the initialization time reflects a pause after exerting
previous efforts, thus its length should be proportional to
the length of the previous session. Denoting the pause at the
start of session j as Sp,j , they suggested the deterministic
relationship

Sp,j = S0 + kTT OT,j−1, j > 1,

where S0 is the initial pause and TT OT,j−1 is the total time
spent on the previous session j−1. Such a relationship could
be incorporated into our model structure.

A third possible direction is to incorporate an effort-
discounting structure from existing effort-discounting mod-
els (e.g., Klein-Flügge et al., 2015) into our hierarchical
Bayesian model. Effort discounting structures are used to
model the phenomenon where individuals experience a
subjective discount of reward values when required effort
increases (Botvinick et al., 2009), which might fit the pat-
terns of reward-effort integration shown in PRT. However,
we may need to collect responses from more reward levels
to allow the use and evaluation of a discounting structure.
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Appendix: Model comparison

We conducted model comparisons to justify the choice to
leave out effects of the reward level Vic,n in Eq. (3) for
the probability to quit within initialized sets, and to justify
having individual levels in the intercept and main effect
parameters.

We compared the model stated in Eqs. (2) and 3, and the
following model which contains effects of the reward level,

pic,n = 1

1 + exp(−Z
p
ic,n)

,

Z
p
ic,n = μic + μ10

ic V̂ 10
ic,n + μ01

ic V̂ 01
ic,n

+η
p
icM̂ic,n + η10

c V̂ 10
ic,nM̂ic,n + η01

c V̂ 01
ic,nM̂ic,n

+γ
p
ic t̂ic,n + γ 10

c V̂ 10
ic,nt̂ic,n + γ 01

c V̂ 01
ic,nt̂ic,n

+ψcM̂ic,nt̂ic,n,

(6)

and

qic,n = 1

1 + exp(−Z
q
ic,n)

,

Z
q
ic,n = μic + μ10

ic V̂ 10
ic,n + μ01

ic V̂ 01
ic,n

+η
q
icM̂ic,n + η10

c V̂ 10
ic,nM̂ic,n + η01

c V̂ 01
ic,nM̂ic,n

+γ
q
ict̂ic,n + γ 10

c V̂ 10
ic,nt̂ic,n + γ 01

c V̂ 01
ic,nt̂ic,n

+ψcM̂ic,nt̂ic,n,

(7)

We compared their model fit by way of the deviance
information criterion (DIC), using both Spiegelhalter
et al.’s (2002) and Gelman et al.’s (2013) methods to
compute the effective number of parameters. A smaller DIC
indicates relatively better fit.

We obtained a chain for each model containing 5000
burn-in samples and 30000 total iterations. To avoid
autocorrelations, we thinned the chain by keeping every 6th
iteration, resulting in 6000 samples from the posteriors to
compute the model comparison statistics. The hierarchical
Bayesian model from Eqs. (2) and 3 has a DIC of 615.28
according to Spiegelhalter et al.’s (2002) method, and
797.06 according to Gelman et al.’s (2013) method. The
alternative model from Eqs. (6) and 7 has a DIC of 619.24
according to Spiegelhalter et al.’s (2002) method, and
838.61 according to Gelman et al.’s (2013) method. The log
Bayes factor of the hierarchical Bayesian model (Eqs. (2)
and (3)) over the alternative model is 19.76, according to
the generalized harmonic mean estimator method (Gronau
et al., 2017). Both DIC and the Bayes factor indicate a
better fit of the hierarchical Bayesian model, which justifies
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Table 2 Model comparison
statistics Statistic Full −μic −μ10

ic −μ01
ic −η

p
ic −γ

p
i c

DIC (Spiegelhalter) 615.28 628.56 663.37 665.85 760.6 728.74

DIC (Gelman) 797.06 834.17 815.22 850.78 1013.2 948.62

log Bayes factor – 29.39 32.41 59.44 103.44 64.86

The “log Bayes factor” row are log Bayes factor of the full model over corresponding models in the column

leaving out the reward level effects for the probability to quit
within a set.

To justify the inclusion of individual-level parameters in
Eq. (2), we compared the hierarchical Bayesian model from
Eqs. (2) and 3 (denoted as “full”) and truncated models exclud-
ing each one of the individual-level parameters. We generated
5000 burn-in samples and 30000 total iterations for each
model, and kept every 6th iteration to compute the model
statistics. Table 2 shows the DICs and log Bayes factors: all
model comparison statistics favor the full model.
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