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due to challenges in developing the asymptotic properties of the estimator under
semiparametric models with censored data. This paper tackles optimal subsampling
algorithms to fast approximate the maximum likelihood estimator for parametric
accelerate failure time (AFT) models with massive survival data. We derive the
asymptotic distributions of the subsampling estimator and the optimal sampling
probabilities that minimize the asymptotic mean squared error of the estimator. A
feasible two-step algorithm is proposed where the optimal sampling probabilities in
the second step are estimated based on a pilot sample in the first step. The asymptotic
properties of the two-step estimator are established. The performance of the estima-
tor is validated in a simulation study. A real data analysis illustrates the usefulness
of the methods.
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1 | INTRODUCTION

Massive survival data, which are increasingly available with the rapid advancement of surveillance and storage technologies, call
for novel methodologies for fitting regression models for them. The key challenge is that the data can be so big that they exceed the
memory of even super computers, rendering traditional computational methods in fitting them infeasible. General strategies to

234 online updating approaches >,

address the challenge can be grouped into three categories ': divide and conquer approaches
and subsampling approaches’-8. Specifically for big survival data, the divide-and-conquer strategy has been developed for the
Cox model* and for frailty models with multivariate failure times®. The online updating strategy has been applied to testing
the proportional hazards assumption'© and fitting the Cox model'!. Fewer works, nevertheless, have been available using the
subsampling strategy..

The subsampling strategy is a straightforward and efficient approach to approximate the full data inferences by inferences
based on a subsample where observations are appropriately weighted. Subsampling probabilities (SSPs) are constructed with
certain statistical leverage score or variate of the data. SSPs of non-informative subsampling schemes are based on covariates
instead of responses’-%. In contrase, more recent works use informative SSPs, which depend on both responses and covariates.

The optimal SSPs are oftentimes dependent on the maximum likelihood estimator (MLE). Wang et al. '?, for example, proposed
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an optimal subsampling algorithm for logistic regression based on the A-optimality which minimizes the trace of the variance
matrix of the resultant estimator. This method has been extended to many statistical models such as generalized linear model '3
and quantile regression model 4. For survival analysis, the asymptotic properties of subsample estimators under semiparametric
models with censored data are difficult to access and they may no provide useful guidance to define optimal sampling probabil-
ities. One exception is Zuo et al. ' for the additive hazard model, where the sampling probabilities were derived in an ad hoc
way.

The accelerate failure time (AFT) model is one of the most popular models for survival data, such as generalized Gamma AFT
model '. No existing work has investigated the optimal subsampling algorithms for AFT models with massive data. Understand-
ing the challenging issues from a semiparametric model, we consider a less ambitious problem and develop optimal subsampling
algorithms for parametric AFT models. The parametric setting facilitates the derivation of the optimal SSPs. We establish the
optimal SSPs based on the A-optimality and the L-optimality, which depend on the full data MLE. As the full data MLE is not
available due to the computational barrier imposed by the large size of the data, we propose a two-step procedure where the opti-
mal SSPs is estimated by a pilot subsample first and then the subsampling estimator based on a subsample selected by the optimal
SSPs is obtained. The asymptotic normality of the two-step estimator are derived, and the asymptotic variance is estimated by
the method of moments. The method is validated through extensive simulation studies and illustrated by a real data example.
Our implementation in R is publicly available in GitHub repo: https://github.com/Y Enthalpy/osmac-parametric-aft-models.

The rest of the paper is organized as follows. A general subsampling procedure with given SSPs is presented and the asymptotic
properties of the resulting estimator are established for parametric AFT models in Section 2. The optimal SSPs are derived
under two criteria motivated from experiment design in Section 3. As the optimal SSPs depend on unknown full-data MLE,
a feasible two-step algorithm is proposed in Section 4, with the asymptotic properties of the resulting estimator established
and an estimator of the asymptotic variance derived. The performance of the estimator is assessed in a simulation study in
Section 5. The method is applied to analyzing the survival time of lymphoma patients in the Surveillance, Epidemiology, and
End Results (SEER) program in Section 6. Section 7 concludes with a discussion. Proofs of the theoretical results are relegated
to the Supplementary Material.

2 | SUBSAMPLING FOR PARAMETRIC AFT MODELING

For subjecti, i = 1,2,...,n, lett;, ¢;, and X, be the log-transformed failure time, the log-transformed censoring time, and a p X 1
covariate vector, respectively. Given X;, assume that ¢; is independent of ¢;. A general form of Parametric AFT models is

1, =X B +o¢c, i=1,2,...n, (1)

where B is a p X 1 vector of regression coefficients, o is the scale parameter, and €;’s are independent and identically distributed
(i.i.d.) random variables with probability density function f.(x), cumulative distribution function F,(x), survival function
S.(x) = 1 — F.(x) and hazard function h.(x) = f.(x)/ Sei(x), x € R. Due to right censoring, the observed data are i.i.d.
copies of (y;, ;,X;), where y; = min(t;,¢c;), 6; = I(t; < c;), and I(-) is the indicator function. Denote the full data matrix as
Fo=A{y.6.x,i=1,..n}.

The target of inferences is the parameters of parametric AFT models @ = (o, 7). The MLE is the maximizer of the log-
likelihood function,

10) = Y 1,(0),
i=1

where

1;0) = (1 = 6;)log{5;(0)} + 6, log{ f:(6)}.
S,(0) = S {e;(0)}, f;(0) = f.{e;(0)}/c, and e;(0) = (y; — xiTﬁ)/a. In the sequel, we denote the gradient and Hessian matrix
of 1,(0) as [,(0) and [,(0), respectively. We use ||B|| for the Frobenius norm of a matrix or vector B.

For massive data with large n, the subsampling strategy makes inferences about the MLE éMLE = [6’MLE, ﬁI\ILE]T based on
an appropriately formed subsample of a much smaller size. Suppose that the SSPs are given as # = (7, 7, ..., 7,,) for all
observations. We first draw a subsample of size r with replacement denoted by { yj.‘, 5;“, x;‘, ﬂ'[*, i=1,.., r}, where y;“, 5;‘, x,’.“, and
n; are the responses, censoring indicators, covariates, and subsampling probabilities of the subsample, respectively. We obtain
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the subsample estimator 6, by maximizing the following target function

L 12(0)

NOED I

i=1 "i
where
1(0) = (1 = 57) log{ 5} (0)} + 5 log{ £ (©)},
S¥0) =S e’ ()}, f7(0) = f.Ae(0)} /o, and €} (0) = (y} — ﬂTX;‘)/a. In particular, the maximization can be approached by a
block coordinate decent method, where B is treated as one block and ¢ as the other.
The following assumptions are needed to derive the asymptotic properties of ér.

Assumption 1. The true value 6, of @ is an interior point of the compact parameter space ® in which ||f|| < B < o0 and 0 <
A < o for some positive constants A and B.

Assumption 2. As n — oo,

=

h 2 L@+ = 0p(1),
@) n ;gg{Zﬂ, [l >||} p(1)

i=1

YA ||'l;-<9>||2} = 0,1),
i=1
(iii) n~'sup {Z } = 0p(1),

oco | i
4
= 0p(1),

—

(i) n? sup
0cO

0%%(6)
00007

(iv) n-lji‘ﬁxéMw)
i=1

where 1'5’”(0) is the kth component of (0), k=1,2,..,p+ 1. Specifically, conditions (i) and (ii) hold when z; = 1/n.

Assumption 3. The maximum likelihood estimator @, is unique and M,, = n™" . I/(@,,,) goes to a negative definite matrix

asn — 0.
Assumption 4. There exists some & > 0 such that

1w 1 (4
m Z TE ‘li(eMLE)

2+¢
: =0,(1).
i=1 77[

Assumption 1 assures that the regression coefficients are finite and the scale ¢ is bounded away from zero. Assumption 2 puts
moment conditions on the derivatives of the log-likelihood function to ensure the consistency and asymptotic normality of the
estimator based on the subsample. Assumption 3 imposes a condition on the Hessian matrix. Assumption 4 is required by the
Lindeberg—Feller central limit theorem.

The theorem below establishes the consistency and asymptotic normality of ér.

Theorem 1. If Assumptions 1-4 hold, as r - o0, n — o0, r/n — 0, given F, in probability,
PTG, - 6
in distribution, where I', = M.'V, M"! = O, (1), and

we) = N(0,1)

V _ L ‘ ii(eMLE)Z;r(eMLE)
"2 p2 '
i=1 i
The simplest subsampling method is to use the uniform SSPs where £ = {n~! }i_, but it is far from optimal. Thus, we will
consider a more efficient subsampling procedure which intend to “minimize" the asymptotic variance-covariance matrix I, /r
mentioned in Theorem 1.
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3 | OPTIMAL SUBSAMPLING PROBABILITIES

In this section, we consider the idea of A-optimality from optimal design of experiment which seeks to minimize the trace of
the asymptotic variance-covariance matrix I',/r. From Theorem 1, this is the same as minimizing the asymptotic MSE of the
resultant estimator .. The following theorem gives the specific expression of the A-optimal SSP.

Theorem 2. Given F,, the optimal SSP denoted as #™SE(9, ) = {#™SE(@,, )}" | which minimizes tr(I,) satisfies

A M ll eMLE
"™SE@,, ) = IM, O i=1,2,...,n,
T IV Gl
where
A T ' A

s oA A 9 A ei eMLE)

MG B = 2 I e+, 2O 1 @) + 6, 2

MLE fole(0y)} felei(0y0)}

and f;(x) is the first derivative of f.(x).

Since multiplying a p dimensional vector by a p X p matrix takes O(p®) time, the time complexity for calculating z™SE(9

is O(np?). In order to save the computing time, we also consider the L-optimality criterion from optimal design of experiment '”.
Specfically for our problem, consider minimizing tr(V,) = tr(l"nMi) where I, /r is the asymptotic variance-covariance matrix
of 0,. Note that given F,,

MLE)

r?M, 6, - 6,,.) - N(.V,)
in distribution, which indicates that minimizing tr(V,) is minimizing the asymptotic MSE of Mnér. The following theorem
presents the SSP for this criterion.

Theorem 3. The optimal SSP denoted as z™V°(8,,,,) = {z™¥°(,,,,)}"_, which minimizes tr(V,) is
T[;nvc(éM[_E) = n”ll(eMLE)” 5
Zle “[l(eMLE)”

A 2 , .

A A GMLE
I +<e(9m>+ M) l(1—5i>h6{ei<eMLE)}+5[M
f{ (GMLE)} f&‘{ei(GMLE)}

i=1,2,...,n,

where

6,00l = =

GMLE

The time complexity for deriving n;“VC(OAMLE) is O(np) because calculating the norm of a p dimentional vector takes O(p) time.
This shows that calculating £™V¢(8,, ) is faster than calculating z™SE(9
The sensitivity of the optimal SSP in response to ei(éMLE) is interesting. For parametric models without censoring, obser-
vations with residuals of large magnitude have large optimal SSPs in existing investigations '3!4. This is not true for censored
observations. Nevertheless, it does not contradict the fact that optimal SSPs prefer data points that are harder to predict. Since the
influences of ei(éMLE) on ﬁ;“MSE and n;“vc are complicated as seen in Theorems 2 and 3, respectively, we use a specific example
of Weibull parametric AFT model, and plot ||/,(,,,)|| and ||M;1i (6, against e,(8,,, ) in Figure 1 for a fixed covariate X,.
Here M,, and 6,

MLE

MLE)'

were calculated from a simulated full data set where the covariates followed a multivariate normal distribu-
tion with mean zero and covariance matrix X;; = 0.5'%#). Figure 1 shows that ||/, (0,,,)|l and M /(8,,,»)|l both approach zero
as e; (GMLE) approaches —oo for censored observatlons This indicates that z;"" and n'mMSE are smaller with a larger negative
e; (HMLE) We can explain this result based on the definition of censoring. A censored observatlon means ¢; < t;, and a negative
e,(0,,.) means ¢; < 7,. Thus, for a censored observation, a larger magnitude of a negative e,(0,,,) does not mean a larger pre-
diction error, |¢, — 7,|. On the other hand, a positive e,(8,,,) means ¢, > 1, and thus a larger magnitude of a positive e,(8,, )
means a larger prediction error, |¢; — 7,|. For uncensored observations, clearly a large absolute ei(éMLE) means hard to predict,
thus both 7"V¢ and 7/™SE are large when ¢;(8,,,) is far away from zero. However, the minimum SSP may not be achieved at
zero e,(0,,,.), which is different from the results in existing investigations '*'#. The reason is these investigations considered esti-
mating regression coefficient f only, while our SSPs are optimal when both the scale parameter ¢ and regression coefficients
are of interest.

mVc
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FIGURE 1 The influence of ¢,(d,,,,.) on ||/,(8,,,,)I| (left panel) and |[M'/,(,,,)|| (right panel) when x; is fixed for Weibull AFT
model.

4 | ATWO-STEP PROCEDURE

Note that the SSPs in Theorem 2 and 3 depend on GAMLE, so they are not feasible in practice. Therefore, we will propose a workable,
two-step procedure in this section. In the first step, we approximate #™V¢(,,,) and z™SE(@, ) based on a pilot estimator 6°
which is obtained from a small, pilot subsample of size r\. In the second step, a subsample of size r is drawn according to
the SSPs derived in the first step and, in combination with the pilot subsample, is used to obtain the subsampling estimator as
presented in Section 2 with combined subsample of size r + r,. In practice, the subsample size is typically restricted by the
computing resources we have. We recommend choosing as many observations as allowed by the capacity of the computing
facility in order to extract maximum amount of information.

Note that the approximate optimal SSPs, denoted by 7r°P‘(é(r)), are derived from a random pilot estimator which may cause
additional disturbance. For those data points whose exact optimal SSPs denoted by z°'(8,,.) are more closer to zero, this
additional disturbance may be amplified. In Theorem 1, the matrix V, is dominated by these SSPs and thus the asymptotic
variance of the subsample estimator will be inflated by these data points. To protect the subsample estimator, we adopt the idea
of defensive sampling'® and mix the approximated n'(’Pt(é(r)) with the uniform SSP denoted by 7Y™ That is, we use adjusted
optimal SSPs Jrf;pl(é?) = {ﬂzfn(é?)}l',’zl instead of 7°P'(6°) to do subsampling, where

PO =1 -rP @) +%, 0<a<l, i=12..n
n
In the simulation study and the real data analysis, we set & = 0.2.

The asymptotic properties of the estimator ér obtained from the two-step procedure based on n'gpt(éf) are summarized by the
following theorem.

Theorem 4. If Assumptions 1-4 hold and the estimate é(r) from the first step exists, then, as r — oo, n = o0, ry) = o0, r/n — 0,
ro/r — 0, conditional on F, and é‘r),
r2@eny12@, - 6,,,) > N0,I)
in distribution, where I,"" = M-'V,"M! = 0,(1) and
Vopt — i “ ii(éMLE)i,T(éMLE) )
tomE e

Note that when r = o(n), we can directly use " to discuss the statistical inference on the true parameter 0,'*. Based
on Theorem 4, we construct an estimator of the variance and covariance matrix of ér, called Iv‘n,. Consider l',’i(é,), f”-(ér)
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and ﬂ;)ft"(éf) as the gradient, Hessian matrix of /,(8,) and the adjusted optimal SSP for the ith observation of the second-step
subsample in the two-step procedure, respectively. Also, i,o’i(é,) and 'l',o’i(é,) are the gradient and Hessian matrix of /,(8,) for the
ith observation of the pilot subsample in the two-step procedure, respectively. We can calculate f‘n, by the following formula,

r,=M!V, M 2

nr’

r ro
M,, = I..6) ).
nr n(ro +r) (l=1 ﬂ:opl( 0) ; rn,z( r))

v P IR [ R
vV, - w2 Y0 @) i, (@)
”2(r0 +r) ; {ﬂoyt,(éo)}z ; " [ o ]

nr

where

In the above formulas, M,,, and \7,,, are obtained by method of moment. If we replace 6, by 8, .., then I\V/Inr and Vn, are unbiased
estimators of M, and V,,, respectively. The variance of (6,), is the i diagonal component of fn,. We can obtain the estimated
MSE of 6, by calculating tr(I",.).

S | SIMULATION STUDY FOR WEIBULL AFT MODEL

The performance of the estimator from the two-step procedure was assessed in a simulation study based on the Weibull AFT
model. In the Weibull AFT model, the error terms are i.i.d standard Gumbel variables with probability density function f,(x) =
exp {x —exp(x)}, x € R. We generated data from model (1) with seven covariates and an intercept, where the coefficients were
all set to be 0.01. The distribution of the covariates had two levels, multivariate normal and multivariate ¢ with 5 degrees of
freedom, denoted by “Normal” and “T5”, both had mean zero and covariance matrix X; ;= 0.51G#)_The true scale parameter in
(1) was settobe o € {1.0,2.0} (i.e. the true Weibull shape parameter was set in {0.5, 1.0} ). The censoring distribution was set
to be Weibull with the same shape parameters as that of the survival time and the scale parameter was tuned to achieve censoring
rates ¢, € {0.25,0.50,0.75}. For each of the 12 configurations, a large dataset of size n = 100,000 was generated. For each
configuration, the pilot sample size was r, = 1000 and the subsample size considered were r € {1000, 2000, 3000,4000}. In
each setting, we compared the empirical MSE of é from s = 1000 replicates of the subsampling process from the given dataset

MSE = 57! Z 169 = 6,11, 3)
i=1
where é(ri) is the estimate from the i subsample. Note that for each replicate, the pilot subsample is different. We report the
results for ¢ = 1, in the sequel; the results for ¢ = 2.0, which are similar, are summarized in the supplement material.

Figure 2 shows the MSEs of ér based on the uniform, mMse, and mVc SSPs. As expected, in all 6 data configurations,
x™V¢(0°) and #™MSE(@) give smaller MSE than uniform SSP. In particular, in the case of censoring rate 0.25, T5 covariates,
and r = 4000, the MSE of n:mMSE(éf) is less than a quarter of that from the uniform SSP. This is a striking reduction; four times
of the sample size would be needed for the uniform SSP to achieve this. Covariates with a heavier-tail T5 distribution are likely
to yield subsamples with higher variance under #V¢(6°) and #™SE(6°), which leads to slightly smaller MSE in comparison to
those from normally distributed covariates. As the censoring rate increases, the MSEs of all methods increase as less information
is available. In all configurations, the MSE decreases as the subsample size r increases.

The accuracy of the variance estimator (2) is assessed by comparing its average over the 1000 subsamples with the empirical
variance. Because the biases are virtually zero, the comparison of the variances can be done with the MSE, which simplifies
the comparison over all the parameters to a comparison of the normed version of the MSE in Equation (3). Figure 3 shows the
results of the comparison with nmvc(ég). The estimated and empirical MSEs are close in all 6 settings. As there is little bias, this
close agreement indicates that the variance formula estimates the true variance well. Consequently, when the variance estimate
is used construct 95% confidence intervals for the true MLE, the empirical coverage rate matches closely the nominal level (not
shown). The result for the other optimal SSP #™5E(§°) is similar and thus omitted.

Finally, we assess the computational efficiency of the proposed methods. We recorded the computing times for the two-step
procedure and the uniform subsampling method implemented in R for the ‘Normal’ data set with scale parameter o = 1.0.
The computing was carried out on a laptop running Window 10 with an Intel 17-8650U processor and 16 GB memory. Table 1
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FIGURE 2 MSE for different second step subsample size r and different censoring rate with the first being fixed at r, = 1000
for different distributions when ¢ = 1.0.

summarizes the results based on 1000 replicates. We scaled the computing times using the time for the uniform subsampling
method when r = 1000 and censoring rate ¢, = 0.25 as the unit 1. The mVc method used much less time than the mMSE method
as expected. Both the mVc and the mMSE methods used more CPU times than the uniform subsampling method because the
latter does not need the extra step of calculating the SSPs.

To further investigate the computational gain of the subsampling approach for massive data volume, we collected computing
time of the two-step procedure and the uniform subsampling from an implementation in R for the ‘Normal’ covariate case with
o = 1.0 and ¢, = 0.25. We set r = 2000 and r, = 1000 along with dimension increasing to d = 50 and all coefficients were
set to be 0.01 and the full sample sizes was designed as n € {5 X 10°,107,2 x 107} so that the data took 1/8, 1/4, and 1/2 of
the physical memory (RAM), respectively. Note that it was infeasible to get the full data MLE even when n = 5 x 10° since R
makes multiple copies of the data internally. Table 2 summarizes the results in seconds. We set the computing time of uniform
subsampling method when n = 5 x 10° as the unit 1. As expected, the computing time using ”ch(g(r)) is less than that using
ﬂmMSE(éB) and both optimal subsampling methods are more computing-intensive than the uniform subsampling method.

6 | SURVIVAL OF LYMPHOMA BASED ON WEIBULL AFT MODEL

We applied the two-step procedure to AFT modeling of the survival time of lymphoma patients in the SEER program. This
data set contained 159,149 patients diagnosed with lymphoma from 1973 to 2012. The censoring rate was 58.3%. Available risk
factors included age, nonwhite race indicator (1 = nonwhite), male indicator (1 = male), and the diagnostic year. Interactions
between age with gender and age with nonwhite indicator were included also. All the covariates were standardized so that the
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FIGURE 3 Estimated and empirical MSEs with frmvc(é?). The first step subsample size is fixed at r, = 1000 and the second
step subsample size r and censoring rate is changing when ¢ = 1.0.

TABLE 1 CPU time for ‘Normal’ data sets when ¢ = 1.0 with r, = 1000 and different second subsample sizes and censoring

rates (c,) over 1000 experiments.

. ¢, 25% ¢,: 50% c,: 715%
mVc mMSE uni mVc mMSE uni mVce mMSE uni
1000 1.99 5.78 1.00 2.49 7.50 1.19 2.69 7.92 1.36
2000 2.64 7.94 1.34 2.90 8.90 1.48 3.26 9.97 1.93
3000 2.82 9.66 1.81 3.22 9.96 2.04 3.79 11.82 2.47
4000 3.35 11.27 2.45 4.06 11.84 2.76 4.46 12.75 3.25

TABLE 2 CPU time for the selected ‘Normal’ data set with r, = 1000, r = 2000 for different sample sizes when the dimension
of covariates is 50.

Full sample size: n

Method
5% 10° 107 2 x 107
mVc 21.71 55.71 116.12
mMSE 70.94 180.24 300.24
uniform 1.00 1.53 1.82
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FIGURE 4 Empirical MSE:s for different SSPs when fixing pilot sample size r, = 500 and 4 different second step subsample
sizes r over 1000 replicates.

TABLE 3 Estimates (EST) and their empirical standard errors (ESE) and average estimated standard errors (ASE) from different
subsampling approaches for r = 4000 and r,=500 over 1000 experiments and Bootstrap standard errors (BSE) for the full data.

mVc mMse uniform Full

EST ESE ASE EST ESE ASE EST ESE ASE EST BSE

Scale 1.756  0.027 0.023 1.755 0.031 0.025 1.756  0.031  0.027 1.757  0.005
Intercept 5.056 0.069 0.061 5.056 0.067 0.060 5.055 0.068 0.063 5.054 0.011
Age -1.115 0.067 0.067 -1.114 0.063 0.063 -1.114 0.075 0.074 -1.116 0.012
Year 0.501 0.037 0.036 0.502 0.040 0.040 0.503 0.041 0.041 0.501  0.007
Male 0.691 0.096 0.092 0.691 0.096 0.090 0.692 0.104 0.101 0.694 0.017
Nonwhite -0.564 0.114 0.113 -0.563 0.098 0.097 -0.564 0.129 0.127 -0.564 0.022

AgexNonwhite 0.333  0.120 0.119 0.332  0.100 0.099 0.331 0.141 0.143 0.333  0.023
AgexMale -0.463 0.093 0.096 -0462 0.092 0.093 -0463 0.114 0.113 -0462 0.019

norm of covariates does not affect the calculation of SSPs. We set initial pilot subsample size to be r, = 500, and the subsample
size r € {1000, 2000, 3000, 4000} for three kinds of SSPs (uniform, mMSE, and mVc).

Figure 4 shows the empirical MSEs from 1000 subsamples of size r, + r with fixed r, = 500 . The MSEs based on all SSPs
are going to 0 as r increasing which indicates the consistency of the subsampling method for the real data. The optimal SSPs
aMSE(@°) and x™V<(8°) always yield the smaller MSE than the uniform SSPs which shows the efficiency of our method. In
particular, the optimal SSP n'MSE(é?) always has the smallest MSE which meets the theoretical result.

Table 3 summarizes the average estimates obtained by different SSPs and their corresponding empirical and estimated SEs
over 1000 replicates with r, = 500 and r = 4000. The full data MLE and the standard errors from nonparametric bootstrap of
1000 replicates are included as they are the target of the subsampling methods. All three subsampling methods produced reliable
estimates, but the two optimal SSPs methods yield smaller standard errors than the uniform SSP, especially for Nonwhite and
the two interactions. The empirical standard errors based on optimal subsampling approaches are small which indicates that
using a smaller subsample instead of the full data is sufficient in practice if computational resources are limited. For all three
methods, the estimated standard errors are close to the empirical ones, confirming that the subsampling method is suitable for
inference. The results suggest that patients who were elder, female, nonwhite, and diagnosed earlier had shorter survival times.
The slope of age was steeper for white patients than nonwhite patients and for male patients than female patients.
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TABLE 4 Overall computing time obtained by different SSPs for different subsample sizes with r, = 500 over 1000 experiments.

r : 1000 r : 2000 r : 3000
mVc 3.52 5.15 6.69
mMSE 16.02 29.95 32.38
uni 1.00 2.08 2.62

Table 4 shows the total computing time of 1000 replicates with r, = 500 and different r. Again, we scaled the computing
times so that the time for the uniform subsampling method with » = 1000 is unit one. The computing time for the mVc method
is much shorter than that for the mMSE method. The benefit of the mMSE method relative to the mVc method is to be judged
by considering jointly the computing time here and the gain in standard errors in Table 3.

7 | DISCUSSION

The subsampling method for big survival data modeling is challenging due to censoring. Unlike the divide-and-conquer or
the online updating methods, which process the whole data, the subsampling method attempts to approximate the whole-
data-inference by one or multiple appropriately chosen subsamples. The ultimately essential component of the method is the
determination of the optimal SSPs. Parametric AFT models provide insights about the impact of censoring on optimal SSPs,
which has not been investigated in existing works '>. Two optimal SSPs based on A-optimality and L-optimality from optimal
design of experiment were proposed under parametric AFT models. For uncensored observations, the impact of ei(GAMLE)’s on
the subsampling probabilities are similar to the results in the existing literature that larger absolute ¢;(8,,.)’s result in larger
subsampling probabilities. For censored observations, however, positive ei(éMLE)’s with larger magnitude lead to higher sub-
sampling probabilities while negative e,-(éMLE)’s with larger magnitude lead to smaller probabilities. As shown in the simulation
study and real data analysis, our method is computationally feasible for big survival data with good approximation to the results
based on the full data for the Weibull AFT model. In principle, the subsampling procedure applies to other censoring cases,
such as interval censoring '>?° and left censoring?'. The framework could be made more flexible, for example, by finite mixture
construction for parametric distributions, by allowing nonlinear smooth covariate effects, or by adding random effects 2.

The likelihood based development of the optimal SSPs does not work well for more advanced survival models. For semipara-
metric Cox relative risk or additive models, the contribution of an observation to the partial likelihood involves information not
only from this observation but also from other observations at risk. For semiparametric AFT models, the estimating equations
in rank-based or least squares inferences also need information from all observations to compute the contribution from each
observation. They are the same challenge as faced by the additive hazard model 7. New theories and methodologies are needed
to address the challenge.

Data Availability Statement

The lymphoma survival data were obtained from the SEER program website (https://seer.cancer.gov/data/access).
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