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ABSTRACT

A methodology of multi-dimensional physics simulations is inves-
tigated based on a data-driven learning algorithm derived from
proper orthogonal decomposition (POD). The approach utilizes nu-
merical simulation tools to collect solution data for the problems of
interest subjected to parametric variations that may include interior
excitations and/or boundary conditions influenced by exterior en-
vironments. The POD is applied to process the data and to generate
a finite set of basis functions. The problem is then projected from
the physical domain onto a mathematical space constituted by its
basis functions. The effectiveness of the POD methodology thus
depends on the data quality, which relies on the numerical settings
implemented in the data collection (or the training). The simulation
methodology is developed and demonstrated in a dynamic heat
transfer problem for an entire CPU and in a quantum eigenvalue
problem for a quantum-dot structure. Encouraging findings are
observed for the POD simulation methodology in this investigation,
including its extreme efficiency, high accuracy and great adapt-
ability. The models constructed by the POD basis functions are
even capable of predicting the solution of the problem beyond the
conditions implemented in the training with a good accuracy.
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1 INTRODUCTION

A vast amount of mathematical and scientific problems rely on
partial differential equations (PDEs) to offer numerical solutions
and to understand the insight into their system behaviors. PDEs are
also responsible for development and design of many modern tech-
nologies in the fields of automobiles, aeronautics, energy, power,
materials, semiconductors, nanostructures, drugs, etc. Phenomena
described by the PDEs needed in these industries are mainly rel-
evant to the conservation laws or wave propagation. The former
includes, for example, heat flow, fluid dynamics, particle transport,
etc., and the latter includes sounds, electromagnetic waves, elasto-
dynamic waves, quantum eigenvalue problems, etc.

Many commercial tools and open-source simulation platforms,
offering multi-physics simulations using direct numerical simula-
tions (DNSs) based on finite difference, finite element and finite
volume methods, have been developed in the last several decades.
These DNS tools generally offer accurate numerical solutions for
the above-mentioned problems. However, because of a large num-
ber of degrees of freedom (DoF) needed in the DNS methods, these
well-developed simulation tools are usually computationally in-
tensive and demand extensive computational resources, especially
when a fine resolution and/or dynamic information are needed.

To overcome the drawbacks inherited in the DNS methods and to
effectively utilize the DNS resources developed for decades, in this
study we investigate a data-driven learning technique for different
simulation problems to significantly reduce the numerical DoF for
the problems of interest with a desired accuracy. The data-driven
learning algorithm is based on a reduced order modeling technique
derived from the proper orthogonal decomposition (POD)[7, 27]
that has been shown in many areas of research(2, 5, 8, 11, 14, 21,
23, 24, 26, 35] to be effective and accurate if the data collected in
the training process is adequate for the problem of interest.

The POD projects the problem of interest onto a mathematical
space described by a finite set of orthogonal basis functions (here-
after named POD modes). To generate an optimal set of POD modes
in space via the decomposition, solution data from the PDEs for the
problem are needed from DNSs of the structure governed by the
PDEs. The DNSs need to cover a range of parametric variations to
train the POD modes to adopt the effects of various excitations and
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boundary conditions (BCs). This is different from many other or-
thogonal projection-based methods, such as Fourier basis, wavelets,
Legendre polynomials, Bessel functions, etc., whose basis functions
are selected (i.e., assumed) based on the solution characteristics
influenced by excitations, BCs and/or geometries. The POD modes
are generated from the training process (or data collection) and
specifically tailored to the geometry and parametric variations of
the problem. The POD is thus able to substantially minimize the
DoF needed in the simulation of PDEs with a high accuracy. The
approach does not require a priori assumptions on the physical
phenomena, geometry, BCs, etc. Its accuracy is however dependent
on the quality of the collected data (influenced by the training set-
tings), the selected number of modes (i.e., DoF) used in the physics
simulation and the computer precision.

In this work, we investigate the applications of the POD method-
ology to two distinct physics simulation problems, including dy-
namic heat transfer in a CPU and a quantum eigenvalue problem
of a quantum dot (QD) structure. The first application concerns an
accurate and efficient prediction of thermal gradients and hot spots
that are desperately needed for thermal management of semicon-
ductor chips, thermal-aware task scheduling for high performance
computing CPUs and GPUs, thermal-aware design exploration of
chip floorplans, etc.[6, 19, 25, 28, 29, 32, 34, 36, 39]. The second
application demonstrates an effective methodology to solve the
Schrodinger equation for electron wave functions (WFs) in quan-
tum structures. Effective simulations for solutions of the quantum
eigenvalue problems (or the Schrédinger equation) are also de-
sired for a wide range of engineering and scientific areas involv-
ing physical dimensions as small as the electron wavelength or
molecular/nuclear scales. These subjects cover, for example, mate-
rials, physics, electronics, photonics, biology, medicines, chemistry,
etc.[1, 3,4, 9, 10, 12, 16-18, 22, 30, 33, 37, 38, 44—46].

This work demonstrates the initial effort for developing an effec-
tive data-driven methodology for multi-physics simulations. The
POD simulation methodology for dynamic heat transfer problems
is first presented in the next section, followed by the POD quantum
eigenvalue problem described by the a Hamiltonian in a POD space.
The POD methodology is then applied to analyze the dynamic ther-
mal distribution over an entire CPU and predict the WFs in various
quantum states (QSs) in a quantum-dot structure. The former is
excited by dynamic power dissipation initiated by CPU computing.
The latter is influenced by external electric field. The investigation
demonstrates the efficiency, accuracy and adaptability of the POD
methodology for solution prediction of multi-dimensional problems
within and beyond the training conditions.

2 BACKGROUND OF POD FOR PHYSICS
SIMULATIONS

POD generates a set of basis functions from several sets of data

samples collected from the PDE for the problem of interest over the

entire simulation domain. This is done by seeking a POD mode 1 (7)

that maximizes its mean square inner product with the solution

Q(F, 1)[7, 27].

Q(F )n(HdQ 2 n(7)%de, 1
A A
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where Q is the physical domain and the angled brackets () indi-
cate the average of the solution data ensemble collected over many
sets of numerical observations accounting for the parametric varia-
tions. Using the maximization process in (1) to find a POD mode, it
ensures that the component projected onto the mode 5(7) contains
the maximum least squares (LS) information of the system behavior
in the data ensemble. In the space orthogonal to this mode, the
maximization process is performed again to generate the second
mode. Repetition of the maximization process in this fashion leads
to an eigenvalue problem given by the Fredholm equation [7, 27],

[ fedneoin)ithae =z, @

where Q® is the tensor product and A is the POD eigenvalue of the
two-point correlation matrix and represents the mean squared Q
variations captured by its POD mode. The value of A reveals the
importance of the corresponding mode. The data Q in (2) are usually
collected from the DNSs of the PDE for the problem. For discrete
data, (2) involves solving an N, X N, eigenvalue problem, where N,
is the number of grid points in the domain. In a multi-dimensional
problem, this requires an intensive computational effort, especially
for problems with a high resolution. The method of snapshots
[20, 40-42] is thus applied to transform the N, X N, problem to an
N X N eigenvalue problem with a considerably smaller dimension
determined by the number of samples (i.e., snapshots Nj).

Once the POD modes are found, the physical quantity Q(7, t)
can be described by a linear combination of the POD modes,

M
Q1) = ) aj(n; (P, 3)
Jj=1

where M is the selected number of modes representing the solution
(1 £ M £ Ny), aj are weighting coefficients responding to the
parametric variations, and the POD modes are normalized.

Depending on the problem of interest, a set of equations for a;
is derived by projecting its governing PDE onto a functional space
constituted by its POD modes. This imposes a clear physics-based
guideline on the POD modes to comply with the PDE and thus to
offer an accurate and efficient prediction for the simulation prob-
lem. The POD models for the dynamic heat transfer and quantum
eigenvalue problems are formulated below.

2.1 Heat Transfer Equation

For dynamic thermal problems, heat transfer is described by the
heat transfer equation,
dpCT (7, t)
ot
where k is the thermal conductivity, P; the power density, p the den-
sity and C the specific heat. To develop a POD model, the dynamic
heat transfer equation can be projected onto a POD space along
the generated POD modes using the Galerkin projection method.
This gives rise to the weak form of the heat transfer equation,

—V-kVT(# 1) = Py (7 1), 4)

apCT R
/ (=" 4 Vi - kVT)dQ = / nPydQ + / n(kVT) -dS, (5)
Q ot Q S

where S the surface vector on the boundary of the domain Q. After
inserting (3), with Q(7, t) replaced by T (7, t), into (5), a set of M
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ordinary differential equation can be derived from (5) for aj,

ZM da; (1) ZM .
Ci,jT + ) gijaj(t) = Ppod,is fori=1toM, (6)
j=1 Jj=1

where c; j and g; j are elements of the thermal capacitance and
conductance matrices in the POD space and given by

cij = '/Qqumde, and g; j :./ka’?i - Vn;dQ, 7)

and Py,q,; represents the projected power density in Q and heat
flux on the surface along the ith POD mode,

Prodi = /Q 1iPa(F. 1)dQ ~ /5 n(-kVD)-d5. (®)

With a;(t) determined by (6), T(7, t) can be predicted from (3)
as a linear combination of 1;(7), and thus the resolution of the
POD solution is as fine as the DNS. Since the eigenvalue represents
the mean squared temperature variations captured by each POD
mode, the theoretical LS error over the entire domain and all the
snapshots for the M-mode POD model can be estimated from

©)

This error prediction is however only reasonable if good quality of
the collected data is guaranteed with enough computer precision. To
ensure good data quality, it is twofold. Firstly, the solution data need
to be accurate and consistent with the governing PDE. Secondly, the
training needs to cover as much as possible a range of parametric
variations which the simulation will encounter.

2.2 Schroédinger Equation

n a quantum structure, the electron WF ¥(7) is determined by the
Schrédinger equation,

V. [_%V\p(?) +UPY(F) =EY(P), (10)

where 7 is the reduced plank constant, m* the effective mass, U ()
the potential energy and E the total energy of the electron. Similar
to the heat transfer problem, the Schrédinger equation is projected
onto the POD modes using the Galerkin projection method. The
projection leads to the weak form of the Schrédinger equation,

B’ 7 2
/ VI]i-—V‘I’dQ+/ I]iU‘I’dQ—/ ni—V¥.dS ZE/ n;¥dQ.
Q 2m* Q s 2m* Q

(11)
After substituting (3) with Q(7, ¢) replaced by ¥(7) into (11), an
M x M eigenvalue problem for d in the POD space is expressed as,

H,d = Ea, (12)

where H;) is the Hamiltonian in POD eigenspace given as

Hy=Ty+Uy+B,, (13)
with the interior kinetic energy matrix expressed as
n* -
Tuas = [ 0@ - GV, rde (149
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the potential energy matrix expressed as

Upiy = /Q 1A PP, 15)

and finally, the boundary kinetic energy matrix expressed as

—h? -
By,ij = /Uz(?)z—*v‘l’(ﬁ -dS. (16)
S m

For the homogeneous Neumann and Dirichlet BC, the boundary
kinetic energy matrix vanishes.

3 DEMONSTRATION OF POD SIMULATION
METHODOLOGY

3.1 Thermal Simulation of a CPU

The POD simulation methodology is first demonstrated in dynamic
thermal analysis of a quad-core CPU, AMD ATHLON II X4 610e,
whose floorplan is shown in Figure 1 [13]. Units of the quad-core
processor include four 512KB L2 caches, a northbridge in the center
and I/O and DDR3 placed in the periphery. Dynamic DNS in FEniCS
[15], an open computational platform based on the finite-element
method (FEM), is performed to generate thermal data to train the
POD modes for the quad-core processor. The size of the simulation
domain for this processor is 14 mmx12 mmX650 um in the x, y and z
directions. The dynamic power is assumed uniform in each unit and
dissipated only on the top 150 um layer of the chip. All the surfaces
of the chip are assumed adiabatic except the bottom surface where
the convection BC is implemented with a heat transfer coefficient
calculated form the structure dimensions and material properties
with an ambient temperature of 45°C. The total power applied to
the CPU is approximately 50W and the dynamic power density in
each unit in the DNS is averaged over 48,000 CPU cycles (~ 13.7 ps)
at 3.5 GHz with the percentage of the power consumption in each
unit similar to the power map in [13]. The power density over each
average period in each unit is generated randomly. A simulation
over 4.1 ms with a mesh of 128 x 128 X 13 is performed to collect
the training thermal data at a time step over 8,000 clock cycles.

Figure 1: Floorplan of the selected CPU. The dashed lines
indicate the plotting paths for the temperature profiles in the
demonstration. The intercept of 2 lines is at (3.8mm, 9.8mm).

Applying the method of snapshots [20, 40-42] to (2), the eigenval-
ues and POD modes are generated using the training data obtained
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from the 3D dynamic DNS of the CPU chip. With the POD modes,
POD model parameters or coefficients in (6) can then be determined.
The eigenvalue spectrum is shown in Figure 2, where the eigen-
value drops nearly four orders of magnitude from the first to the
third mode and more than 4 orders to the fourth and fifth modes.
This indicates that the first few POD modes are able to capture the
mean squared temperature variations effectively and thus only a
small number of POD modes is needed to predict the temperature
solution with a good accuracy, as indicated by (9).

107 ¢

Eigenvalue

0 5 10 15 20 25
Mode Number

Figure 2: Eigenvalue spectrum for the thermal data.

To verify the validity of the training process, the training error is
estimated by performing the POD simulation of the CPU using the
same dynamic power map in the training. Figure 3 shows that the
LS training error is near 1.32%, 1.2% or 1.1% with 3, 5 or 7 modes,
respectively, in the heating layer. However, the training error in the
entire chip is larger and becomes 3.2%, 3.15%, 3.03% or 2.9% with 3,
5,7 or 8 modes, respectively. This is because the power is dissipated
in the thin heating layer (23% of the chip volume in our study), and
the temperature in most of regions in the thick substrate below
the heating layer is close to the ambient, where the percentage
error tends to be larger. Although the idea error estimated from (9)
continues declining as more modes are included, the training error
becomes nearly invariant beyond 4 modes due to the computer
precision and numerical fluctuation in the higher modes.

To demonstrate the developed POD thermal model for the CPU,
a dynamic power density in each unit is initiated by a different
random sequence from that used in the thermal data collection.
However, the power density percentage distribution over all the
units remains similar. To test the robustness of the model, LS test
errors are estimated over 3 different simulation times including
4.1 ms, 6.2 ms and 10.3 ms even though the training was only carried
out for a period of 4.1 ms. Figure 3 shows that, as the number of
modes increases, the LS test error for the 4.1 ms case is slightly
greater than the LS training error and stays near 3.2% in the entire
chip and 1.25%-1.27% in the heating layer with 5 or more modes.

When testing the POD model for a period of 6.2 ms, beyond
the 4.1 ms training time, the LS error is slightly greater than the
4.1 ms-case LS error below 5 modes in the entire CPU or the heating
layer. With 5 or more modes, the 6.2 ms LS error becomes nearly
identical to the 4.1 ms-case error. This is evidently different from
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the general understanding of the deep/machine learning methods
that usually work well in the interpolation case but fail in the
case of extrapolation. This stems from the fact that, as mentioned
previously, the POD simulation methodology offers a clear guideline
for its solution to follow, based on the physical principle enforced
by the projected governing equation. Thus, the POD model still
works accurately in the untrained range when using more modes.
When it goes far beyond the training time, such as the 10.3 ms case
shown in Figure 3, the LS test error with 5 modes increases from
3.2% (for the 4.1 ms case) to 5% in the entire chip and 1.25% to 2% in
the heating layer. Its LS error continues declining toward the 4.1 ms-
case error as the number of modes increases, and it is as small as
1.63% in the heating layer and 3.1% in the entire chop with 8 modes.
The results suggest that the POD methodology performs reasonably
well in a extrapolation situation with more modes included unless
the situation is very far beyond the training conditions.

I\ ‘ ' I Entire CPU
EESAN =*=10.3 ms = 4.1ms
1018y S —*-6.2ms Training error
3 N ® o
~ N N - - L
S L ol i
< AN -.—o::*"“——*—‘*"‘
= o~ = -
g coTe--l B R
83 e LY SRS Fy v YR ¢
7 10°; ]
<
Q
—
Heating layer
—>—Theoretical error - 4.1ms 1
- 10.3 ms Training error
1 L”% 6.2ms
10

1 2 3 4 5 6 7 8
Number of Modes

Figure 3: LS percentage errors with respect to the ambient.

A comparison of dynamic temperatures at the location of (3.8 mm,
9.8 mm) in the CPU (see Figure 1) derived from the POD thermal
model and FEniCS-FEM is illustrated in Figure 4 for simulation over
a period of 6.2 ms. Temperature distributions along Paths A and B
at 6.2 ms are also shown in Figures 5 and 6, respectively. In general,
more POD modes used in the simulation lead to a better agreement
with FEniCS-FEM. However, it is interesting to observe that the
predicted temperature by 5 modes in Core 1 near the I/O unit is
actually slightly more accurate than that by 7 modes, as shown
in Figure 5. In addition, it is shown in Figure 6 that in Core 4 the
3-mode POD model offers better agreement with FEniCS-FEM than
the 5 modes model. Overall, the maximization process given in (1)
minimizes the LS error over the entire simulation domain and time,
as shown in Figure 3, instead of the local error.

To illustrate the variation of the test error induced by different
random sequences for each unit in the dynamic power map, a close-
up view of the LS error with error bars for the case of 6.2 ms is
displayed in Figure 7. The variation is larger in the entire CPU than
in the heating layer. The variation of the error evaluation shrinks
when more modes are included and becomes as small as 0.055% and
0.037% for the entire CPU and the heating layer, respectively, with
5 or more modes for a confidence level of 95%.
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Figure 4: Dynamic temperature at the intercept of Paths A
and B indicated in Figure 1.
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Figure 5: Temperature distribution along Path A at 6.2 ms.
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Figure 6: Temperature distribution along Path B at 6.2 ms.
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Figure 7: The LS test error with error bars for the 6.2 ms case.

Our investigation reveals that use of a finer resolution in DNS to
improve the quality of the collected data for POD mode generation
leads to more accurate numerical calculations for the gradients of
modes needed in (7) for g; ;. This thus improves the POD accuracy
and leads to a smaller LS error but increases the training time needed
to collect data, to generate POD modes and to evaluate the model
coefficients in (6). We also found that the eigenvalue spectrum
is not influenced by the spatial resolution (once the resolution
is reasonably fine) except for the very high mode number if the
number of snapshots is large enough. This implies that, to reach
a similar accuracy, the DoF needed in the simulation using the
POD model derived from finer-resolution modes is equal to or even
smaller than the model derived from coarser-resolution modes.

3.2 Simulation of a Quantum-Dot Structure

The second demonstration of the POD simulation methodology
involves a 3 X 3 grid of GaAs/InAs QDs displayed in Figure §,
where effective mass in GaAs m* = 0.067m, and InAs m}n As =
0.023m, and the band off AE = 0.544eV with m, as the free electron
mass. To generate the POD modes for the QD structure, WF data
are collected from DNS of the Schrédinger equation using a finite
difference method, subjected to different applied electric fields. The
training data are collected in response to a total of 8 single electric
fields separately from each of the two orthogonal directions in x
and y with each component spaced evenly between —40kV /cm and
+40kV /cm. Namely, there are 8 snapshots of WFs in each direction.
With an additional sample at zero field, a total of 17 snapshots of
WFs are collected. To train POD modes, only the WFs in the first
6 QSs are collected at each electric field and there are 17 X 6 sets
(snapshots) of WFs used in the training. Because of the degenerate
QSs (see Table 1), a very small grid size of 0.1 nm is used along x and
y in simulations for the data collection to offer accurate degenerate
states in DNSs and thus in the POD simulation.

With the 102 sets of WF training data, the method of snapshots
[20, 40-42] is applied to generate the POD modes and eigenvalues.
The eigenvalue spectrum of the WF data is illustrated in Figure 9,
which is significantly different from the spectrum for the thermal
problem shown in Figure 2 because of the distinct characteristics
embedded in the collected data between these 2 problems. Unlike
the thermal problem where the eigenvalue decreases rapidly in
the first few modes, the POD modes in the QD structure contain
behaviors of WFs in all the 6 selected QSs. To maximize the mean
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Figure 8: Simulation domain of 2D QDs.

Table 1: Quantum Eigenenergy and POD Percentage Error
with respect to the Lowest Band Energy

Quantum PODQS  DNSQS POD
State Energy(eV) Energy(eV) Error(%)

1 0.419948 0.419004 0.225081
2 0.433175 0.432143 0.238516
3 0.439549 0.438534 0.231015
4 0.447263 0.446110 0.258153
5 0.452561 0.451459 0.243761
6 0.459061 0.457970 0.238099
7 0.466329 0.465109 0.261987
8 0.471819 0.470642 0.249776
9 0.485228 0.483937 0.266492

square variations of WFs of all the selected states guided by (1), the
eigenvalue remains nearly unchanged for the first six modes.

100 T T T

S,
&

Eigenvalue
3
2

10-15 L

10-20 L L
0 20 40 60 80 100

Mode Number

Figure 9: Eigenvalue spectrum.

The training error of the WFs in the trained 6 QSs is presented
in Figure 10 for each field direction at 20 kV /cm. LS training errors
below 1% in all 6 QSs can be achieved with 10 or 11 modes. In QS 4,
a training error below 0.7% can be reached with 9 modes, and an

Lin Jiang, Martin Veresko, Yu Liu, and Ming-C. Cheng

error below 0.5% can be obtained the QS 2 with 15 or more modes
at either field direction.

Least Square Error (%)

Least Square Error (%)

2 4 6 8 10 12 14 16
Number of Modes

Figure 10: LS training errors in the first 6 QSs with applied
electric field of 20 kV/cm in the (a) x and (b) y directions.

While each set of the collected data for the training was ob-
tained from the DNS at a field in either x or y direction, in the
demonstration an electric field combining the 2 orthogonal com-
ponents, E = (20% - 109) kV /cm, is applied. The LS test errors
of the WFs predicted by the POD approach shown in Figure 11
decrease gradually as more modes are added. In general, the test
error is slightly greater than the training error. The test errors for
all the QSs suddenly drop significantly from 8 to 9 modes. The test
errors for QSs 1-6 stay near 0.7%-1.2% with 10 modes and become
as small as 0.7%-0.9% when 16 modes are included. It is interest-
ing to observe that, even though QSs 7-9 were not included in the
training, the quantum POD model are still able to predict the WFs
in QSs 7-9 with a good accuracy. As shown in Figure 11, the LS test
errors in QSs 7-9 are near 1.5%-2.23% with 9-11 modes and continue
decreasing with more modes. For QSs 7 and 8, the error as small as
1%-1.4% is observed with 15 or more modes.

To observe the error statistics induced by field variation, the LS
test error with error bars in each of the 6 trained QSs is shown in
Figure 12 for fields varying within the training range. In general
for each QS, the error variation is small for the first few modes
and rises when using 7 or 8 modes. The variation however drops
suddenly when the number of modes increases from 8 to 10 modes
and remains near 0.1% to 0.27% beyond 10 modes.

The training in the quantum POD approach involves WF data
from a few selected QSs, and the quantum POD model thus predicts
the WF solutions in all the selected states subjected to a applied
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Figure 12: The LS test error with error bars for the first 6 QSs.

electric field. This is different from the thermal POD methodology
that offers one thermal solution in the CPU structure subjected to a
dynamic power map. The expression of the LS error given in (9) can
therefore be used to approximately estimate the POD numerical
error for the heat transfer problem provided that the data quality
and computer precision are reasonably good. (9) is however not able
to predict the POD numerical error of the WF in each individual
state because the eigenvalue represents the WFs in all selected QSs.
Instead, as shown in 11, (9) reasonably predicts the LS average of
the LS errors over all the trained QSs.
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The comparison of the quantum eigenenergies derived from the
POD methodology and the DNS is included in Table 1, together
with the percentage error of the POD prediction with respect to
the lowest band energy. Apparently, QSs 2-3 and QSs 5-6 are nearly
degenerate with energy difference of 6.39 meV and 6.5 meV, re-
spectively. Using a grid size as small as 0.1 nm in the POD mode
training, the quantum POD methodology accurately predicts these
degenerate states. Moreover, a very accurate prediction of the QS
energy is also achieved even for the untrained 7th - 9th QSs.

The profiles of |¥|? along x and y directions in the first 3 QSs
solved from the quantum POD methodology are shown Figure 13,
compared to the DNS results. The contours of |¥|? in QSs 1-3 are
given in Figure 14, where the plotting paths along the x and y
directions for |¥|? in Figure 13 are indicated. The first POD mode
predicts the mean of the WF data sets used in the training and thus
offers the unbiased and thus symmetric WF in each state, as shown
in Figure 13. The inclusion of more POD modes gradually improves
the accuracy of the POD WF in each state. With 9 or 10 modes, the
POD WF in each of QSs 1-3 nearly overlaps that from the DNS of the
Schrodinger equation for the QD structure. Similarly, the profiles
and contours of |¥|? in QSs 4-6 derived from the quantum POD
methodology are also illustrated in Figures 15 and 16, respectively,
compared to those obtained from the DNS.
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Figure 13: |¥|? in the first 3 QSs of the 2D QDs predicted by
the POD method compared with the DNS of the Schrodinger
equation along x (top row) and y (bottom row) directions. The
paths along x and y are indicated in Figure 14

To further test the robustness of the quantum POD model beyond
the training range of electric fields, Figure 17 illustrates the LS test
error of WFs subjected to an applied field of E= (25% +507), where
WEF data in QSs 7-9 were not included in the training. In general
the LS error is only slightly greater than those shown in Figures 11
when more modes are included. For example, in the trained QSs
1-6, errors near 2.1%-3.5% are observed with 9 modes in Fig. 17. To
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Figure 14: Contours of |¥|? in QSs 1-3 predicted by the POD
method (top row) and DNS (bottom row). The red dashed
lines indicate the plotting paths for Figures 13
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Figure 15: |¥|? in QSs 4-6 of the 2D QDs predicted by the POD
method compared with the DNS of the Schrodinger equation
along x (top row) and y (bottom row) directions. The paths
along x and y are indicated in Figure 16.

reduce the error near or below 1.5% for all 6 selected QSs at such
a high field, 15 or 16 modes are needed. It should also be noted
that, for untrained QSs 7-8, use of 14 modes is able to keep the
LS error near or below 2%; however, for the untrained 9th QS, it
needs 15 or more modes to achieve 3.2%. Although the error is
greater at applied field beyond the training range, the accuracy is
still reasonably good even for the untrained QSs 7 - 9, as shown in
figure 17, and the errors of QSs 1 - 8 still decrease as more modes
are included. This indicates that, in the case of the extrapolation at
electric field beyond the training range, the POD prediction is still
reasonably accurate for the trained and untrained QSs, similar to the
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Figure 16: Contours of |¥|? in QSs 4-6 predicted by the POD
method (top row) and DNS (bottom row). The red dashed
lines indicate the plotting paths for Figures 15.

observation in the thermal prediction for the case of extrapolation
by extending the simulation time beyond the training time.

108 |
&
—
o —=— State: 7
Llj —&— State: 1 —=&— State: 8
) —&— State: 2 —®— State: 9
a 10 F State: 3 ~ = = Average Error
S —&— State: 4 [—8— Theoretical
(?-) —&— State: 5
— State: 6 |
7]
3 )
— A .
ol B i
10 - N N
E = (25X +509)kV/cm ]

2 4 6 8 10 12 14 16
Number of Modes

Figure 17: LS test error of WFs at an electric field whose y
component is beyond the training field. The average LS error
only include the selected (six) QSs.

4 DISCUSSIONS

Many learning algorithms only offer the training to repeat the
system behavior instead of predicting the responses induced by
unpredictable conditions, excitations or disturbances imposed on
the system. These learning methods can be applied only to slowly
varying behaviors with perhaps continuous learning to adapt the
changes in the system behavior induced by the above-mentioned
parametric variations. For scientific or engineering problems gov-
erned by PDEs, alternative learning methods are desired to adapt the
changes effectively induced by the unpredictable parametric varia-
tions without continuous learning. Encouraging findings have been
observed in the demonstrations of the POD simulation methodology
in the dynamic thermal analysis of a CPU chip and in the prediction
of electron WFs in a QD structure. The methodology derived from
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Table 2: Computational Time for Thermal Simulations of
CPU with Different Numbers of Modes
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Table 3: Computational Time for Simulations of QD Structure

No. of POD modes

the POD learning process for physics simulations has shown to be
extremely efficient, very accurate and highly adaptable in response
to the parametric variations near the training conditions.

In addition, most learning methods work well in the interpo-
lation cases but fail to offer reasonable solution in the cases of
extrapolation. Differently from other learning methods, the pro-
jection of the governing equation onto the POD modes imposes
a clear physics-based guideline for the POD model to follow. The
POD is thus able to offer a good prediction in situations far beyond
the training condition if more modes are included. For the heat
transfer problem, this was observed when the POD model trained
for 4.1 ms was tested for a simulation of 10.3 ms, which leads to an
LS error near 3% in the heating layer with 3 modes and 2% with 5
modes. For the QD problem, the POD modes trained for first 6 QS
WFs were able to accurately predict the WFs in the untrained 7th
and 8th QSs at an applied field beyond the training range, where an
LS error of 2% can be reached with 14 modes. For the untrained 9th
QS, when using 15 or more modes, a reasonable error near 3.2% can
be achieved. Moreover, in the QD case, the training was carried out
separately in 2 orthogonal directions, and yet the quantum POD
model is able to accurately predict the WFs and eigenenergies at
an electric field that combines these 2 orthogonal fields.

The demonstration of thermal analysis shows that the LS error
with 5 POD modes is as small as 1.25% or 3.2% in the heating layer or
the entire CPU, respectively. This leads to a 42,600-time reduction
in the DoF and a significant speedup in computing. The DNS is
performed in FEniCS-FEM using an iteration method based on the
generalized minimal residual method [31]. The computing time for
the POD simulations, compared to FEniCS-FEM, is given in Table 2,
where Post1 and Post2 present the post-processes in (3) needed
to calculate temperature for the heating layer and the entire chip,
respectively. The ODEs provide the solutions for a; in (6). If 5 modes
are used to evaluate dynamic temperature in the heating layer of 4
cores, a reduction of more than 17,000 times in computing time is
achieved (including the time needed for the ODE solution and post
processing), compared to FEM simulation, and 2,000 times in the
entire CPU. In realistic applications, temperature is needed only
near the higher temperature areas (i.e., the 4 cores), which offers
an improvement in the computing time over 4 orders of magnitude,
compared to FEniCS-FEM. These are estimated using only one core
in both approaches on Dell T7920 Dual Xeon 5122 CPUs.

The QD simulations for both DNS and POD approaches are
performed in Matlab on an i7-8650U CPU. To reduce simulation

Approach
Computational Time (s) 6 8 10 12 14
Simulation ‘ No. of POD modes EI%ZTZ:E“ 0.0543 | 0.0586 | 0.0609 | 0.0729 | 0.0748
Time (ms) Fﬁﬁﬁs lp t1/ 3P t1/ SP t1/ POD Time (ms) | —505
me (ms, 0S 08§ 08§
. 10.247 | 13.977 | 16.679 | 18.803 | 23.385
ODEs Post2 ODEs Post2 ODEs Post2 Processing
0.07/ 0.15/ 0.27/ DNS Eigenvalue
. 2154.4969
4.1 6.78¢3 | 0.11 L0 | o1 sog | 01 316 Solver time(ms)
0.11/ 0.23/ 0.40/
6.2 1.02e4 | 0.15 Log | 016 | Lo | 016 478
0.18/ 038/ 0.69/ . . 1 .
10.3 Le%ed | 026 | 0| 028 | L] 030 | oo time and memory space in DNS of the Schrédinger equation, the

Krylov-Schur method [43] for sparse eigenvalue problems is ap-
plied. In the POD simulation, the LS error with 10 POD modes
for the first 3 QSs is as small as 0.8%-0.9% and near 1%-1.2% for
QSs 4-6. Because the fine mesh is needed to estimate the accurate
degenerate state energies in the DNSs, the 2D POD QD simulation
with 10 modes offers a reduction in DoF by 4 orders of magnitude.
Compared to the dynamic heat transfer DNS, the sparse eigenvalue
problem in DNS is significantly more efficient. The computing time
for the POD QD simulation with 6 to 14 modes for the first 6 QSs
is included in Table 3. The 10-mode POD simulation for all 6 QS
WFs and eigenenergies plus the post-processing calculation offers
a reduction in computing time by nearly 130 times. Realistically,
when using WFs for further calculations, e.g., electron density, cur-
rent density or kinetic energy, such a fine resolution is usually not
needed, and coarser-resolution WFs can then be calculated in (3) to
minimize the computational time and memory space. For example,
if one uses only 1/3 or 1/2 of the spatial resolution in each direction,
the speedup would be 3 orders of magnitude over the DNS.

5 CONCLUSIONS

This investigation proposes to develop compact but accurate mod-
els by using solution data derived from multi-physics DNS tools for
computationally intensive scientific and engineering problems gov-
erned by PDEs. The data are processed via the POD to generate an
optimal set of basis functions (or POD modes), and the PDE for the
problem is then projected onto a mathematical space represented by
the generated POD modes. This POD simulation methodology have
been applied to 2 distinct physics problems, including 3D dynamic
heat transfer in a CPU and a quantum eigenvalue problem in a 2D
QD structure. The former analyzes the dynamic thermal profile
over the entire CPU chip influenced by random heat excitations
and BCs. The latter predicts the electron waves in a QD structure
subjected to an applied electric field.

It has been demonstrated that the POD methodology offers very
efficient predictions for these two physics simulation problems with
a high accuracy within and beyond the training conditions. Our
investigation also reveals that, in situations far beyond the training
conditions, the POD methodology is still able to offer a reasonably
accurate solution if more POD modes are added. In this work, the
POD methodology offers a reduction in DoF by nearly 4 orders of
magnitude in both problems and leads to a tremendous saving in
computational time. To reach an accurate thermal prediction near
the training condition, a speedup of 2,000 can be achieved for the
entire CPU, compared to the DNS. In practical situations where
only thermal information in the high temperature areas is needed, a
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speedup over 17,000 times can be reached. For the 2D QD problem,
a reduction in computing time over 130 times can be realized. The
POD predictions offer spatial resolutions as fine as the DNSs.

It is worthwhile to point out that a finer resolution can be used
in DNSs to improve the accuracy of the collected data and thus the
quality of the training. Although this increases the computational
effort in the training, use of the POD model with finer-resolution
modes does not increase the DoF in simulation to reach a similar
accuracy, compared to a coarser-resolution model. A practice for
reaching a highly accurate POD model with improved simulation
efficiency can therefore be carried out as follows. After performing
POD simulation with a fine resolution POD modes, the spatial
solution in (3) does not need to be calculated at every grid point.
The prediction of the solution with a coarser spatial resolution or in
some selected local regions may be enough in many applications.
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