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Abstract

For large scale data, subsampling methods are often used to approxi-
mate the full-data parameter estimates. An ideal subsampling method
picks a small proportion of informative observations from the full
data and produces an accurate approximate to the full-data estimate
using much less computing power. Existing studies on subsampling
methods focus on independent responses. This paper discusses sub-
sampling methods for longitudinal data where observations within a
block are correlated, and develops optimal subsampling methods to
approximate the full-data maximum likelihood estimators of the model
parameters. We first establish the conditional asymptotic distribution
of the subsample estimator with general subsampling probabilities,
and then derive the optimal subsampling method that minimizes
the asymptotic mean square error of the subsample estimator. To
evaluate the finite sample performance of the proposed method, we
provide results based on numerical experiments with simulated data.

Keywords: Large data; Fisher scoring; Optimal subsampling

1 Introduction

In the big data era, huge amounts of data are being generated every day.
While this greatly extends the possibility of getting more information, it makes
certain standard statistical tools unfeasible because of the much more complex
computation due to high data volume.
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To reduce the computational burden, one possible solution is to perform
the calculations on a smaller subset of the full data. This sacrifices a certain
amount of information in exchange for easier computation. To extract the
maximum amount of information from the full data, subsampling designs are
developed so that more informative data points have higher chance of being
selected. In the context of linear regression, statistical leverage scores and
their variants are widely used in identifying influential rows in the covariate
matrix (Drineas et al, 2006, 2010; Yang et al, 2015). This approach is called
algorithmic leveraging (Ma et al, 2015) and it has been shown to perform well
with limited computing power (Avron et al, 2010; Meng et al, 2020). Besides
these, Ma et al (2015) provided an analysis of this method from a statisti-
cal perspective. However, the algorithmic leveraging approach does not use
the information from the responses when assigning subsampling probabilities
and this sampling scheme is referred to as non-informative subsampling. Zhu
(2018) proposed agradient-based subsampling method where the subsampling
probabilities depend on the responses as well as the covariates. Wang et al
(2019) developed an information-based optimal subdataselection method that
has high estimation efficiency. Li and Meng (2021) provided a review of these
subsampling methods and evaluated their performance using real data. Meng
et al (2020) developed the “LowCon” subsampling method to handle the cases
when the models are misspecified. For logistic regression, Fithian and Hastie
(2014) proposed the local case-control (LCC) subsampling method for imbal-
anced data. Using the A-optimality criterion in design of experiments, Wang
et al (2018) proposed an optimal subsampling method that minimizes the
asymptotic mean squared error of the subsampling estimator. The optimal
subsampling method based on the A-optimality criterion has been extended
to include multi-class logistic regression model (Yao and Wang, 2019), gener-
alized linear models (Ai et al, 2021b), quantile regressions (Ai et al, 2021a;
Wang and Ma, 2021) and quasi-likelihood models Yu et al (2021). The afore-
mentioned subsampling methods are all related to independent data. In this
paper, we focus on longitudinal data where observations within each block are
assumed to be correlated.

In longitudinal data analysis, multivariate linear models with dependent
covariance structures within the response vector are commonly used (Chapter
4 of Diggle et al, 2013). We consider the case of longitudinal data under a
balanced design, i.e. the number of measurements for each subject are the
same. The corresponding multivariate linear model has the following form:

y1:X1ﬁ+€zy for i:l,...,m, (1)

where m denotes the total number of subjects; n is the number of measure-
ments on each subject; y; = (¥i.1,...,¥:in)" is the n x 1 response vector for the
i-th subject; X; = (%41, . .., X;,4) is the nxd design matrix with X;,; being the
nx 1 vectors; 3 is the d x 1 unknown parameter vector; and €; ~ N (0, V) is the
n X 1 unobserved normal random error with V being its variance-covariance
matrix whose structure depends on unknown covariance parameter & € RY.
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In this paper, we assume that X;’s are nonrandom and €;’s are independent.
Since most models include an intercept term, we assume that x;; = 1. We
denote the full data matrix as D,, = (X,Y), where X = (X{,X},,..., XY,
Y = (V5 Vheo o Vi)'

In the model specified in (1), an explicit parametric model for V is often
assumed. This represents the belief we may have about possible associations
among observations within each subject, usually from subject expert knowl-
edge or past experience. When such a model is not available, using (1) requires
us to estimate n(n + 1)/2 covariance parameters, which can be complicated,
especially when n is large. One alternative is to use the random effects model
(Laird and Ware, 1982). The idea is to model the correlations among obser-
vations within each subject parsimoniously by introducing random effects. To
connect to model (1), the random effect model decomposes the overall aggre-
gated variation of g; into two parts: the random effect and the pure error, e.g.,
error that may be caused by the measurement mechanism. In this paper, we
assume that a parametric model for V is given and we focus on the compound
symmetric correlation structure, i.e., the variance-covariance matrix of ;, V,
has the form:

V() = 02 (1= p)L+pJ), € = (02, p)', (2)
where —1/(n — 1) < p < 1, Iis the n x n identity matrix, and J is the n x n
matrix with each element being equal to unity. The inverse of the matrix V

has the form: .
vl= I— p J) . 3
ﬁu—m( T+ (n—1)p )

This correlation structure is the default option for many software packages and
it is widely used in many scientific fields such as social sciences and medical
studies (Zhao et al, 2019; Pusponegoro et al, 2017; Hong and Shyr, 2007;
Kaplan et al, 2004).

The rest of the paper is organized as follows. In section 2, we describe
the Fisher scoring method that is used to obtain parameter estimates in
longitudinal models. In section 3, we first provide the general subsampling
algorithm in longitudinal models. We then discuss several methods for specify-
ing the subsampling probabilities when selecting subsamples. We also provide
a two-step subsampling method for practical implementation. In section 4,
we compare the empirical performance of all the subsampling procedures and
discuss the implications of the numerical results. Section 5 summarizes the
paper. Technical proofs for the theoretical results are given in the appendix.

2 Fisher scoring in longitudinal models

To facilitate the presentation, we use 0 to denote the full vector of unknown
parameters, i.e., @ = (8',¢') = (8,02, p)’. To estimate the unknown parame-
ters, the maximum likelihood estimator (MLE) obtained through maximizing
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the log-likelihood function is

o=(3,¢&)= arg max Mo (8, €), (4)
where .
Mon(8,6) = - > p(Xe v 8,6), (5)
=1
and

) _ 1 1 (yi = XiB)'V (v — XiB)
p(Xi,yi; B,€) =log W et (V) €xXp ( B) )]

There is no general closed form solution to equation (4), so an iterative
method is required to solve it numerically. In this paper, we resort to the
Fisher scoring method (Jennrich and Schluchter, 1986) to obtain the MLEs.

To facilitate the presentation, we first introduce some notations. Let
p(X;,yi; B,€) and p(X;,yi; B,&) be the gradient vector and Hessian matrix
of p(X;,yi; B,€), respectively, i.e.,

i Yis ? o 82 iy Yis )
DX, yi: 8,6 = XY PE) p(Xiii .€).

90 and  P(Xi,yi; B,§) = 9090"

Appendix A gives the explicit expressions for p(X;,y:;; B,€) and
P(Xi,yi; B,€). We use pg(Xi,yi; B,€) and pe(Xi,yi; B,€) to denote the
sub-vectors of p(X;,yi; B,€&) corresponding to 8 and &, respectively. Simi-
larly, we define pg(X;,yi; B,€) and Pe(Xi,yi; B,€) as the upper-left and
lower-right sub-matrices corresponding to 8 and &, respectively.

The Fisher scoring method obtains the MLEs by iterating the following
two steps until (B*FY ¢*+DY converges:

—1 m
k+1) <Z XI 1X ) Z X;(v(k))—l
i=1
(k4+1) _ #(k k)\—1 (k)
M) = ¢® 4 (TG,

where V(*) is V evaluated at (,B(k)/,f(k)/)',

IR
G = = pe(Xiyi BV, €W,
i=1
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and Z®*) is the sub Fisher information matrix for & evaluated at the k-th step.
Here, the sub Fisher information matrix Z is defined as

I= —% Z]E{ﬁg(xi,}ﬁ'; B,€)}
i=1

where the expectation is taken with respect to the distribution of y;. Each
component of Z has the following explicit expression

4 0V_ _,0V
Lypw = <V a—guV agU),foru,v—l,Z,
where
PAANAY ov. oV
=(1=pI+p) and — = —— =0T -1).
96~ 907 (1-pI+pJ an 96 ~ 9y o ( )

The aforementioned Fisher scoring method requires iterative calculations.
If it is applied to the full data, the computing time for each iteration is
O(m(nd?+n2d)). Thus, the whole time for the Fisher scoring algorithm to con-
verge is O(Cm(nd? + n2d)), where ( is the number of iterations. With a large
number of subjects m, this algorithm becomes computationally expensive, and
a subsampling algorithm helps reduce the computational cost.

3 Subsampling algorithms for longitudinal
models

We first describe a general subsampling procedure. Let n; > 0 be the subsam-
pling probability for the i-th subject if one data point is taken from the full
data D,,. Assume that Y ;" n; = 1, so that {n;}!", is a sampling distribu-
tion. Take a random subsample of size r with replacement from the full data
according to {n;}7, and denote the subsampled data as {X,yF,n}7_,. For

example, if m = 10, » = 2, and the selected data points are {Xy,y1} and
{X7,y7}, then ni = and 03 = 77.

The subsample estimators 6 = (,BI,EI)’ are obtained by maximizing the
following target function:

1 = p(X*, v
Mi(ﬂ7£)=%zp( Z’z;;’ B8]
=1 ?

The maximization can be implemented by the Fisher scoring method described

(k+1 k+1)r
in section 2, where we iterate the following two steps until (ﬁ * )/,5( 1) )
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converges:

1 i=1

(k+1) (i X*I V(k)) 1X?> T X*/ )) yl
ﬁ(k+1) ék) (I*(k)) 1G*(k)

where V(#) is V evaluated at (B(k) ,é(k) Y,

. w ox. k) z(k)

and Z(*) is the approximated sub-matrix of the Fisher information matrix for
& evaluated at the k-th step based on the subsample. The (u,v)-th element of
M) s

- 1 - AL OVEN L 1
k) VT T (V)T ) ST —1,2
2rm " (( ) 0, (V) & ) =’ o= S

with

AVAQ)
&1

V)
=1 -p"NI+p™J and VT _ b2 (J

96, -I).

The subsampling probabilities play an important role in selecting informative

subsamples, and are crucial for the subsample estimator (BI,E/)' to better
approximate the full data estimator. In the following, we discuss different
approaches of assigning subsampling probabilities.

1. Uniform subsampling method: The subsampling probabilities 7;’s
are equal, i.e., ni™ = 1/m for all the subjects. This is the simplest approach
to specifying the sampling distribution.

2. Leverage-based subsampling method: Set niev =
Vir(Hy)/ Yo y/tr(Hy;), where H;; = X;(X'X)X] is the diagonal sub-
matrix of the hat matrix X(X’X)~1X’ corresponding to X;. This method
uses the information from the covariates matrix X when assigning the
subsampling probabilities.

3. Gradient-based subsampling method: This method is a two-step
procedure, where we first use the uniform subsampling method to select
a subsample of size 7y and obtain pilot estimates B, and &, for 8 and &,
respectively. With the pilot estimates, we calculate the gradient vector for
the i-th subject as

Py = p(Xi,yi; Bo:&o)-
The subsampling probabilities in the second step are assigned as n;
121/ >, 1P| for i = 1,...,m. When calculating the subsample estima-

gradlent

tor (B/,EI)’ , we combine the subsamples from both steps. Besides using
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the information from the covariates, this method also includes information
from the responses.

The leverage-based and gradient-based subsampling probabilities described
above reduce to the widely used subsampling probabilities in least square
problems with independent univariate responses Drineas et al (2006, 2010,
2012); Yang et al (2015), if n = 1 in model (1) of section 1.

In addition to the aforementioned methods, motivated by the idea of opti-
mal subsampling using the A-optimality criterion introduced in Wang et al
(2018), we also derive the optimal subsampling probabilities. This method
assigns subsampling probabilities that minimize the asymptomatic mean
squared error of (,B/7 E/)’ in approximating (B/, é/)'.

Before providing the optimal subsampling probabilities, we first give the
asymptotic distribution of the subsample estimator (B/,é/)’ under a general
subsampling distribution {n;},. We need the following assumptions on the
full data and the general subsampling probabilities 7;’s.

Assumption 1 m™ 2> n7tx; [|* = Op(1), for 1 < j < d.
Assumption 2 m 2 >y 17;1||ei\|4 = Op(1), where e; = y; — X;8.

Assumption 3 There exists § > 0 such that m~(2+%) S n{lf‘s\x§7jei|2+5 =
Op(1), for 1 < j <d.

Assumption 4 There exists § > 0 such that m~ (39 > 77;176Hei||4+26 =
Op(1).

Assumption 5 Mm(,@,é) approaches a positive-definite matrix in probability as
m — 0.

Remark 1: If the design matrix X; in equation (1) does not include an inter-
cept term, we will need an additional assumption that m=! > 1" (mn;)~! =

0,(1).

Theorem 1 Under Assumptions 1-5, as m — oo and r — oo, conditionally on the
full data D, the subsample estimator (B/, EI)' satisfies that,

»1/2 @:f) £, N(0,1), (6)

L .
where — means converges in law,
-1

2 = (Mm(B,8) " Ze (Mim(B,8) ",

=1
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m

1 1. .

2C - er Zl Epzp'u
1=

and p; = p(X;,¥i; /Baé)

Theorem 1 indicates that the conditional asymptotic mean squared error
(AMSE) of (B/,él)’, given the full data, is equal to tr(X). Since X depends
on the subsampling distribution {n;},, we want to find the subsampling
probability distribution that minimizes the AMSE tr(X). This corresponds
to the A-optimality criterion in the optimal design of experiments. We call
the subsampling probabilities obtained from using this criterion the optimal
subsampling probabilities.

Theorem 2 The optimal subsampling probabilities that minimize the AMSE tr(X)
are

opt _ ||M Z||

R v 1||M G.om,

, fori=1,...,m. (7)

In addition to minimizing the conditional AMSE of the full parameter
vector 8 = (B/,él)’ , we also consider a more general setting. Suppose we
are interested in approximating a linear transformation, say T, of the full
data MLE 8, i.c., T@. Since equation (6) implies that the conditional asymp-
tomatic variance-covariance matrix of @ is X, so the conditional asymptomatic
variance-covariance matrix of T8 is TET’, indicating that the conditional
AMSE of T8 given the full data is tr(TXT’). To minimize tr(TET’), we need
to adjust our optimal subsampling probabilities in equation (7). This alterna-
tive criterion corresponds to the L-optimality in optimal design of experiments.
We call the subsampling probabilities obtained from using this criterion the
L-optimal subsampling probabilities, and their expressions are presented in
the following Theorem.

Theorem 3 The L-optimal subsampling probabilities that minimize the AMSE
tr(TET’) are

iLOpt _ "|L|TM - A) f” , fori=1,...,m. (8)
L[|V (B, &) |

The L-optimal subsampling probabilities are particularly useful when our
primary interests involve only part of (B/,él)’ . For example, if € is the only
parameter of interest, we can use the above L-optimal subsampling prob-
abilities by setting T = (cg+1,Cq+2)’, where ¢; is the i-th canonical basis
vector.

Note that 7y®" and 7;
MLE, so they are not directly available. In practice, we can approximate 7,

LoPt i equations (7) and (8) depend on the full data
opt
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and nLOpt by 77" and 75P" using a pilot sample as given in equations (9) and
(10).
M 9 iy Yis ) .
ﬁ?pt _ || /30 £0)p(Xi,yi5 Bo 50)” Cfori=1,...m, (9)
Zj:l H m (/60750) (X VERAL ,30a€0)||
TM ) i Yis ) .
ﬁiLopt _ H 50 50) ( vi; Bo EO)H fori=1,...m, (10)
j:1 HTMm ﬂoﬂfo) ( YR AR /BOaEO)

where 3, and &, are estimates based on the pilot sample.

The approximated subsampling probabilities ﬁfpt and 77} are subject
to additional disturbance, which may inflate the asymptotic variance of the
resulting estimator especially for small 77" or nLOpt (they are in the denomi-
nator of 3.). To handle this, we propose a more practical approach and mix
the approximated optimal subsampling probabilities with the uniform subsam-
pling probability to protect the estimator from these data points. Specifically,
use

opt

1 1
ﬁopZt (1 ) ~opt ; ﬁLoZpt (1 ) ~Lopt (11)
where o € (0,1).

Remark 2: For subsampling the probabilities given in equation (11) to satisfy
Assumption 1-4, we only need the condition given in equation (12) below. The
proofs are in Appendix E.

10— 0,(1), for j=1,...,d. (12)

1 m
For some 6 > 0, - Z 1.5

=1

We summarize the practical implementation in a two-step procedure
below.

4. Optimal subsampling methods: In Step 1, use the uniform subsam-
pling method to select a pilot subsample of size rg and use it to obtain
pilot estimates B, and &,. Use equation (11) to get the approximated opti-
mal subsampling distribution {705 }1™, or {ﬁgolpt m |, respectively. In Step
2, sample with replacement to obtaln another subsample of size r using

{7 ~°p m. or {ﬁ{;olpt m . obtained in Step 1. The subsample estimators

(6 ,E )" are calculated using the combined subsamples from both steps.

4 Simulation Results and Analysis

In this section, we use simulated data to evaluate and compare the performance
of different subsampling methods. We set the total number of subjects to
be m = 5000, the number of measurements for each subject to be n = 4.
We generated data from model (1) by setting the true value of 8 to be a
5 x 1 vector such that 8 = (50, 75,100, 125,150)". The random error vectors
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g;’s were generated from a multivariate normal distribution with mean 0 and
variance-covariance matrix V = o2 ((1 — p)I4 + pJ4) with 02 = 2 and p = 0.6.

To evaluate the effect of the covariates on the subsampling methods, we
considered four different distributions when generating X;’s. Let Qy = I; ® 2,
where ® is the Kronecker product and €2 is a square matrix with €, , =
2 x 0.67(4#%) for u,v = 1,...,4. The following distributions of vec(X;)’s were
used to generate X;’s.

1. Multivariate Normal: N (0, Q).

2. Mixture Normal: 1/2N(0, Q) + 1/2N(0, 4€2).

3. T3: A multivariate ¢ distribution with degrees of freedom 3, T3(0, ).
4. T2: A multivariate ¢ distribution with degrees of freedom 2, T2(0, ).

To evaluate the performance of different subsampling methods, we first calcu-
Al Al
lated the full data MLE, denoted as (8 , & )’. For each subsampling procedure,

we calculated the empirical MSEs of (B/,él)’ from 500 repetitions of the
simulation using

2

9

N OPTOINEPPY

1 500
MSE = o5 |8y - 8.8)

where (B(S)/,E(S)/)’ is the subsample estimate in the s-th repetition. For the
gradient-based subsampling and the optimal subsampling methods, we set the
first step sample size rg = 80, and set the second step subsample sizes to
r = 50,100, 200,400, 600, and 800. For fair comparisons, the subsample size
for uniform and leverage subsampling methods were set to be rg + 7.

Figure 1 presents the MSEs of (B/, é/)’ from different subsampling methods.
The MSEs from the optimal subsampling method are the smallest among all
the subsampling methods. This agrees with the theoretical result which shows
that the optimal subsampling method minimizes the AMSE of (B/, él)’ .
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Fig. 1: MSEs of (,B/, E'/)’ for different second step subsample sizes r, with the
first step subsample size being fixed at ro = 80.

In addition to the results shown in Figure 1 where the MSEs are for the
entire parameter vector 8 = (8',£')’, we also calculated the MSEs for 8 and
€ separately. The three columns in Figure 2 are for the MSEs of 8, 3, and
é’ , respectively. For a fair comparison, we use the same scale for their y-axes.
To make the difference in B8 more clear, we have also created Figure 3 that
contains MSEs for 3 only.

It is seen that the MSEs of 6 are dominated by the contribution from
the covariance parameter estimator €. Thus, a method that performs well
in approximating & usually has an overall better performance. Also, there
appears to be a trade-off between the MSEs of 8 and the MSEs of E‘ ; subsam-
pling methods yielding smaller MSEs of 8 (leverage-based and gradient-based
methods) tend to have larger MSEs of £.
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Fig. 2: Decomposition of MSEs of 8 = (8 ,£)".
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Fig. 3: MSEs of 3 for different second step subsample sizes r, with the first
step subsample size being fixed at 1y = 80.

The trade-off between the MSEs of 3 and the MSEs of é can help us choose
which subsampling method to use in practice. For example, if the primary
interest is to approximate 3 as precisely as possible and E is not of interest,
then the widely used leverage-based subsampling method or the gradient-based
subsampling method are appropriate. However, they are not recommended if
better approximation of é is of interest.

Also, from Theorem 3, we see that ‘the gradient subsampling method min-
imizes the AMSE of T with T = M,,(83,£). To verify this, we have also
calculated the MSEs of M,, (ﬂ ,5)0 in Figure 4. It is seen that the gradient
method has the smallest MSEs for all the four cases.
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Fig. 4: MSEs of M,,,0 with ry = 80 and different r.

5 Discussion

In this paper, we discussed several subsampling algorithms in longitudinal
models with a balanced design. In order to get a better subsample estimators
of the vector of the model parameters, we proposed the optimal subsampling
probabilities and provided a two-step procedure for practical implementation.
Furthermore, we conducted numerical experiments to compare the perfor-
mances of different subsampling methods, which confirmed the theoretical
result that the optimal subsampling method should yield a better approxi-
mation to the full data MLE. We also discussed how to adjust the optimal
subsampling probabilities if the primary interest of is a linear transformation
of the entire parameter vector.

In this paper, we have assumed a balanced design. However, because of the
covariance structure we imposed on the error terms, our subsampling algo-
rithms can be easily extended to the scenario with an unbalanced design or
missing values. For the compound symmetric correlation structure, as we can
see from (2), the correlations between any two observations on the same sub-
ject are the same. With this property, although unbalanced designs or missing
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values will lead to different correlation matrices V;’s for different subjects,
the difference depends on i only through n;. Specifically, for a subject with n;
observations, the covariance is

VZ(E) =0’ ((1 - p)L, +pan)7 £= (U2ap)l'

In this case, to calculate the optimal subsampling probabilities and perform
the Fisher scoring algorithm, we can simply replace V and n by V; and n; in
the corresponding equations.

The above extensions to unbalanced designs and the situation with missing
values rely on the special correlation structure we have assumed. In general,
extensions to more complex designs require more assumptions. For example,
if we assume the covariance structure for the error terms to be auto-regressive
of order one (AR(1)), we will need to assume that the observation times for
each subject are discrete and equally-spaced time points. For more compli-
cated designs, for example, when different subjects have different measurement
times, the model we have specified in (1) may not be appropriate. Since these
designs are also common in practice, future research to extend the optimal
subsampling method to account for more complex designs is important.
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Appendix A Expressions of p and p

X (I—m-]) (y:i—XiB)

02(1—p§
. (yi—XiB) (I- 72337 ) (yi—XiB)
p(XlaYlv 1376) = ( 2;1((17,1;);) - #
(Yifxiﬂ)'(%J*Q (yi—XiB) n(n—1)p
37 (1—p) T 3T=p) A+ (n—1p)

From the above, we have

||pz|—<H ( ;41+<n 1)pJ) e

=5y (1= pp
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265(1 — p) 457
2(pn— 2 .
(e; (%J - I) ei) n(n—1)p (eg
1641 — p)t 1

-1\
n“(n—1)%p
TA =0+ (n—- l)ﬁ)2> |

1+p*(n—1) ,
T+ m-Dp?d ~ I) e')

PP+ (n—1)p)

+

|~

Hence, ||p;|| is bounded above and below such that

ng (T- 29 e

pi | Z =~ ~ 5
o 71— 5)
and
HX’- (1770‘ AJ)ev ’ (e< (Ifiﬁ AJ)e»)Q
Il < =o)L AR et
il = i1 7) 551 )
14p%(n—1) 2 1/2
n? (e; ((1+€n—1)p)2'] - I) ei) n%(n—1)%p /
+ + .
15 4541 — )t A1=p2(1+ (n—1)p)2
(A1)
82})1; 32]% 821)1
o805 DEJsT DEOp
I")(Xivyi; ﬁag) = ngﬂ' 3‘511. 80’2%p )
azpi 62pi %
b 0popB’  0Opdo2  Op?
where
oy, X (T ) Xi o2, - X (1- 55,9) (v — XoB)
opop’ o?(1—p) " 0Bdo? ot(1—p) ’
1+(n—1)p?
o%p, X (MJ - I) (vi — XiB)
0BOp a2(1—p)? ’
9%p, _ (yi — XiB) (I - Wp,l),y]) (yi — Xi8) L
do* (1 —p) 204"
n—1) 02
op, = XiB) (=T~ 1) (vi — XiB)
d20p 204(1 — p)? ’

2

n—2 2— n
o?p,  (vi—XiB) (1~ [owttr — motety — oot | 9) 06— XaB)

9p? o?(1—p)°
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n(n — 1)(1+ (n = 1)p?)
21— (T + (n—D)p)?

Appendix B Proof of Theorem 1

We first introduce additional notations that will be used later:

m

n(B.6) = =S B(Xeyi £.6)

i=1

M*ﬁ£ Zp 7Yz7ﬁ£), M*IBS Zp 7}’1765)

We begin by estabhshmg a lemma that will be used in the proof of Theorem 1.
Recall that D,,, denotes the full data.

Lemma 1

Ay
>

M:(B7é) - Mm( ) ) = Op\Dm (T = Op|Dm(1) .

Proof By direct calculation, we have
E[M;(B,€) | Dm] = Mm(B,8).

Let M, g (B, €) be the (j1,jo)-th entry of the matrix M, (B, &), MJ”2 (B,€) be
the (j1,j2)-th entry of the matrix My, (,3 E) and V be V evaluated at &.
For 1 < j1,j2 <d,

2
" —1
V(Mijl’h Zm ( X J1 ‘ 1,J2 M%’h)
’L
m —1 2
_ 1 Z (=i, j2) 1 (Mjhjz)?
rm2 . 772 r m

where the last equality is from Assumption 1.
FOI‘lSjl §d7.]2:d+17

V(M2 (B,€) | Dm) = Zm( B - M2 (8,6
(2

N 2
X\7r—1 OV x7r—1
( 1]1V 60'2V ei)

m2 i
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where the last equality is from Assumptions 1 and 2, and by using the Cauchy-
Schwarz inequality.
For 1< ji <d, jo=d+2,

2
m -1 8V
*j1J2 _ JlV V 11.J2 (3 £
V(M2(B,8) | D) = = > s (— _Mm (ﬂuﬁ))
T mm
=1
1 oo—10v -1, \?
1« ( inV 5V el) 1 gz 8y )
= rm? M (M (B, ‘E))
1

= 0p(r™ 1),
where the last equality is from Assumptions 1 and 2, and by using the Cauchy-
Schwarz inequality. Since My (8, £) is symmetric, its (j1,j2)-th entry when d + 1 <
j1 <d+2,1<jy <dis also Op(r—1).
Ford+1<ji,j0 <d+2,

V(N2 (B,€) | Din)

m 2¢/(D;. D D)V! D, D D ?
1 ( e;( Jj2 g1 — ) ei_tr( Jj1j2 — ) Mgl,jz(B £)>

T pt i 2mmn;
. . 2
r—1
_ 1 " i 7282(Dj2Dj1 —D)V7e; —tr (Dlejz B D) . 1 (Mjhb)Q
i - v 2mmn; r m
=

i=1
-1
:OP(T )’
here D;, = V! D;, = V! D=V 2 d the last
where D, = V1 52—, P, 76, 0e,,—; and the las

equality is from Assumptlon 2
Then, by Markov’s inequality, for any € > 0

M (B, &) — M (B, &) = Opip,, (/%) = 0y, (1).
O

Now, we prove Theorem 1. By direct calculation, we have for any (8’,¢')’,

E [M:(ﬁ,é) | DWJ = Mm(ﬁaé) .
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Also, we have

P(|MT(137£) - Mm(/BvE” > € | Dm) < w

2
1) 1 & p*(Xi,yi, B, 1\
-1 WZW_<mZp(xi,yi,ﬂ,s)>
i=1

i =

iB)'V ' (yi—XiB) ) 2
2

(yi
Zp Xi,¥i, B, E 1 ( e
rm262

i rm?e i

2
eiJrXi ﬁ,ﬂ 'V ei+Xi ﬂfﬁ

1 m
= rm2e zz:; i
101 &t 1 IC(leit+Xi(B-B)VT(ei+Xi(B—B))
A=Y ( ; )
=1 =1
- N 2
1 & (et X(B- BVl + Xu(B - ) )

2.2
m2e 4n;
i=1 i

)

where

n 1 n—1
C= 510g27r02 + §log[(1 +(n—1)p)] + log (1 —p).

From Assumption 1 and the fact that x; ; = 1, we have
1 i iallt
> —— =
mei=
As discussed in Remark 1, if the model does not include an intercept term, we

need to assume that
1 1
— =0,(1).
2 = OV

2

Y = 0,1, (B2)

i=1

Also,

1o C((ei+ Xi(B=B)YV e+ Xi(B - 9)))

m2e2 P 7
1/ 1 RCejVile, 1 =20V IX;(B-B)
== (mz D D "
1 & C(B - BYXIVIX,(B - B)
o 2 m =0,

K2
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From Assumption 1 and 2, we have

i X/V1X;
Z C(B - B (B-B)

1 K CeVle;
L3t o, v
(2

=0p(1).

(B3)
Using Assumption 1 and 2 and by using the Cauchy-Schwarz inequality, we
have

1
m j—

m

2
i=1

So,

1§ 20eVIXBB) ). (B4)

2
m ;
i=1 i

Combing (B3) and (B4), we have

12 C (e + Xa(B = B)V e+ Xi(B - B)))
2.2 P

=0p(1). (B5)

m-e

ui

Similarly,

N ~ 2
1 (e +Xi(B-p) Ve + Xi(B-8))

m2e2 4 4n;

“ 2
L1 O (@ve) 1 A (evTXiB-p)
wa(wzm +o3) m

=1

m ((B—B)X[VIX(B - 5)) 1 <~ 4e/V X, (B — B)e/V e,
; s

1
1 (4B = B)XVIXi(B - B)elV !X (B - B
+WZ( ) (ni e (B - B)
=1
m 3 _BVX/'V-IX.(R _ IvV—1p.
N # Zw B)X;V izw B)eiV ez>: Op().

(B - ByXvXi(B - )
i

= 0p(1).
(B6)

1 m
e
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Using Assumption 1 and 2 and by using the Cauchy-Schwarz inequality, we
have

Ly exu le: 1 ||XUH Hezl4 ! ||XU||
2 Z mZZ Z = 0p(1).
i=1 i=1

So,

1 4 (egvilxz‘(é - 5))2
m? i
(B7

=0p(1). (B7)
i=1
Then, using (B6), ) and Cauchy-Schwarz inequality, we have

1 <~ 4e/V1X,(B - B)e/ Ve,

K3

4B - B)XVIX,(B - B)e]V ' Xi(B- B
Z ) (m) ( )

Lo (B-pyxivax(B-p)
miz:: i ﬁz

— Ni
= OP(1)7
(B9)
1 <= 4(B—B)XIVIX,(B—BleVie
m? ; Un
(6~ Byx;v1xi(8- ) (B10)

1 & 1meV1)2
T’Tz:: i rrTz::

= 0p(1),
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Combing (B6), (B7), (B8), (B9) and (B10), we have

o (e +Xa(B - B)Y V(e + Xi(B - ﬂ)))2

2.2
m2e 4n;
i=1 i

= 0p(1). (B11)

So, combing (B2), (B5), and (B11) the above, we have

P (M7 (B, &) = Min(B,€)| = €| D) = Opjp,,, (r™") = 0, (1) -

Therefore, M (3,€) — M,,(8,€) — 0 in conditional probability given

D,. Note that the parameter space is compact and (B/,é/)’ is the unique
global maximum of the continuous function ¢(3,&). Thus, from Theorem 5.9
and corresponding remark in van der Vaart (1998), conditionally on D,, in

probability, .
e

£—

t(

The consistency ensures that (8 75/)’ is close to (B/,él)’ provided r is large.
Applying Taylor expansion on M(3,&) at (83,&), we have

= Op\Dm(l)-

m w

0= NI} (B,€) = M(B,€) + NI (B, ) ([i fD +R.

Letting M (,8 €) be the j-th component of M*(3, £), we have:
031 (3.8 =3 3.6 + M8, (|7 2] )+

A

I ()

A

ga
-£

T 1 Y (X;,y5,,0 +uw(d - 0)) B-B
> / / o 9606’ UCMU([E 3

i= K2

6= (ﬂ N3 )l’ 6 = (B/vé/)lv and

- « A2 pl 9%

P (x;,yi,B,€) _ [aﬂapg' aﬂag']

, ” X .
0000 9E55 DEDE
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For 1 <j<d,
doa o L~ X5 Vi yr —xiB)
M ¥) _ 7
2 (B.€) T; -
For j =d+1,
e Ly o [V (vi = xB) (v —xiB) — V(&) V1 5%
B E - In*
r i=1 ni
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. 9 . . B} 9 . B}
Ay = ﬁAz =App, Bip= %31 = By,
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a0tp TV ao2ap TV 902 2)
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Note, given the structure of the covariance matrix V as compound sym-
metrlc A A1, A2, A11, A12, A21, A22, and B Bl, BQ, Bll» Blg, B21, B22
are all finite.

Then, for 1 < j <d,

k] A r i 2p7 57
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pm>

For any matrix Q whose components are finite,

1 1 T */ *
1 XHQx; -
P //ZQ*’Jvdudv
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X*/Qx

B (HQWZ n; Dm)

1
where the last equality is from Assumption 1. We then have
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X*’Qe
2mra ZE [ n; }

1 m
— ) XiQe; = 1),
277104zl iQei (>
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where the last equality is from Assumptions 1 and 2 and by using the Cauchy-
Schwarz inequality. Also,
Dm.)

1 .1 r ’
1 * et
P H/ / —Z@vdudv
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where the last equality is from Assumption 2, and we have
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In this case, we similarly have

R = H// 8080' Ududv

= Oyp,,. (10 = 811%) = 0pip,, (1)
Thus, ~
23] - ne.s) B8 o).
§-¢
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oL e[ (i) —xiB) V)V 2]
T m 2n; ’
[V (i X B —xB) V) 8Y]
2n;
we have

M: (3, €) ZTZ.

Given the full data D,,, 71,..., T, are 1.1.d Wlth

X,V (y; — XiB)
1 m tr| vt (yifxiﬁ)(yifxi,é)lfv v-le

<

_ 22l | — .
i=1 tr[\771((yi*XiB)(Yiinﬁ)/*v)v %]
2

By Assumptions 1 and 2, we have
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= 0,(r™?) = 0,(1),

where 1{-} is the indicator function, and the second last equality is from
Assumptions 3, 4 and equation (Al).

This shows that Lindeberg’s condition is satisfied in probability. Based on
the above result, by the Lindeberg-Feller central limit theorem, conditionally
on D,,,

1/2 V(7 | D)} 71/2 Z i = N(0, I(d+2)><(d+2)) .

i=1

=AM (B, €) =
Previously, we had
B-pB] PO B SRTPPO
272 - [m6.0) M8 + o,
Multiplying both sides by Y2 and using lemma 1 we have,
2 [@:ﬂ =32 [ NGB8 MR8 +o,(1)
-3 1/2Mm (B.&M(B, é)
2 (NGB — M (BL€)) MI(BL&) +0,(1)
—271/21\/1;3(3,E)Ei/QEZl/QMT-(&E) +op(1)

Since
SN (B, &) BY2 (n N ) =,
applying Slutsky’s Theorem and we have

(30 o,

Then, using the A-optimality, to minimize the MSE of ((,8 3 ) (B/ é/)) is
equivalent to minimizing the trace of 3, so that,

() = tr (M, (8,828, (,8)) = ~or (N, (B,&)S9'NNB.8))

where
X'Vl -X18) X/ VT ym —XmB)
my/n1 mA/NMm
g = | eV Xm0 X VTR ] e[ (XA m —XmB) - V)v-1 oY
2m/n1 2m/Mm
u[V (31 -X1A) 31 -X18) -V V1] a[V T (v —XmB) (ym —Xm B) — V)V 1 BV ]

2m/M1 2my/Mm
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1 P

and

NGBS = - [NHB &) B L NN )]

Appendix C Proof of Theorem 2

rm?2
(M BEPEN B.E)) 1 S ING(B.&p
rm? i rm? i
1N N IMGH(B, €)pil)?
‘rmé”’m 0

2
> —; (ZHMm : pz||> ,

where the last step is from the Cauchy-Schwarz inequality. Equality holds if
and only if n; oc [[M;,'(8, &)pil|-

Appendix D Proof of Theorem 3

tr(TST) = tr (TN, (B, &) 2N (B, é)T')
tr (S0, L TN (B,)pid{ M, (B, )T

rm?2
B - 2 (B, )P M, (B, §)T
a er Z ( 7 )
1 | TM,,}(B, &)pl|>
T rm?2 Z i

A

_ Z Z ITM,,! ﬂ é)lbill2
m2
] 2
i=1

where the last step is from the Cauchy-Schwarz inequality. Equality holds if
and only if n; oc [ TM,! (8, £)pill-
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Appendix E Proof of Remark 2

To show the subsampling probabilities ﬁg}’; in (11) satisfy Assumption 1 under

condition given in equation (12), plugging n g " in we have,
for 1 < j <d,

m m

”Xm” 1 HX17J||4
mzz _mfZ anwn Op(1).

=1 naz m

To show the subsampling probabilities 775" * in (11) satisfy Assumption 2 under
condition given in equation (12), plugglng nlm in we have

o= lel* 1 el 11 & s
mQZ o <) == eil
i=1 na,i =1 m i—1
1 m
X X Bt < —— (X X )
LS X0+ e - XiBl m; 1Xi8 — Xl + [l

To show the subsampling probabilities 7% in (11) satisfy Assumption 4
under condition given in equation (12), plugging ﬁgﬁt in we have,
for some ¢ > 0,

m 4426 4426
Z [l el Z [l el _ m’ Z le; ‘4+25
~gpzt 146 — m2 1+5 a1+6
- a1+5 Z X +ei — XiB||*+2
5

m° 1 N 4426

< LS (1% - XA + ]
=1

= Op(l)‘

Using the above and equation (12), we can also show

xjel®™ 1 SN xjellr md

i, _ 245
me Z ~opt )i+ S m2 Z ()40~ Qo Z|x”ez|
m

i=1

< aw Z il *+20 — Z lle:f|*+0

= 0,(1).
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This shows that the subsampling probabilities ﬁgpf in (11) also satisfies
Assumption 3 under the condition given in equation (12).
Using similar procedures as above, we can show the subsampling probabil-
ities ﬁgf’ipt in (11) satisfy Assumption 1-4 under condition given in equation
(12).
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