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Abstract—With the proliferation of distributed energy re-
sources (DERs) in the distribution grid, it is a challenge to
effectively control a large number of DERs resilient to the
communication and security disruptions, as well as to provide
the online grid services, such as voltage regulation and virtual
power plant (VPP) dispatch. To this end, a hybrid feedback-based
optimization algorithm along with deep learning forecasting
technique is proposed to specifically address the cyber-related is-
sues. The online decentralized feedback-based DER optimization
control requires timely, accurate voltage measurement from the
grid. However, in practice such information may not be received
by the control center or even be corrupted. Therefore, the long
short-term memory (LSTM) deep learning algorithm is employed
to forecast delayed/missed/attacked messages with high accuracy.
The IEEE 37-node feeder with high penetration of PV systems is
used to validate the efficiency of the proposed hybrid algorithm.
The results show that 1) the LSTM-forecasted lost voltage
can effectively improve the performance of the DER control
algorithm in the practical cyber-physical architecture; and 2)
the LSTM forecasting strategy outperforms other strategies of
using previous message and skipping dual parameter update.

Index Terms—cyber-resilient algorithm, distributed energy
resources (DERs), DER control, LSTM, Deep learning.

I. INTRODUCTION

The distribution grid is undergoing 1) proliferation of dis-
tributed energy resources (DERs) including utility-level DERs
and behind-the-meter (BTM) DERs, 2) more and faster data
streaming from sensor networks, 3) underpinning data-driven
methods, and 4) local energy market design. This creates the
open research question that how does the future development
of the synchronized sampling data and data analytics tech-
nology may contribute to the grid visibility, and reliable and
resilient operation of the integrated grid. Especially, geograph-
ically dispersed DERs can be coordinated at scale with two
basic core functions: a) DER production scheduling, dispatch
of active and reactive power to address stochastic and dynamic
challenges; b) DER ancillary services provision, including
frequency and voltage regulation [1]. However, coordinating
a large number of DERs heavily depend on access to reliable
and secure data, sensing, communications and computing at
multiple operational timescales spanning milliseconds to hours
[2]. Therefore, as a typical cyber-physical system, the develop-
ment of the DER management systems (DERMS) and scalable
cyber-resilient DER monitoring and control algorithms for the
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Fig. 1. Cyber-resilient DER Control Architecture of Hybrid Feedback-based
Optimization and Deep Learning Algorithm

distribution grid with proliferation of heterogenous grid-edge
resources still remains unsolved.

The existing research work related to the DER coordination
are focusing on 1) DERMS platform [3], [4], 2) optimal
voltage regulation of virtual power plant (VPP) [5], [6], and
communications architectures for DER coordination [2], [7],
[8]. However, very little attention has been paid to perhaps
development of scalable cyber-physical DER control algo-
rithms resilient to asynchronous data flow resulting from real
communication networks. Therefore, the novel cyber-resilient
DER control algorithms are in a critical need to address
communication and security issues.

To fill in this gap, this study further proposes a hybrid
feedback-based optimization and deep learning algorithm for
DER control at the grid edge with incentive for utilizing more
sampling grid data and underpinning data-driven methods;
and providing the guideline to the DERMS deployment. This
work is based on the existing optimal regulation of virtual
power plant (VPP) algorithm [5] and cyber-physical DER
control algorithm [9]. The challenge of development of cyber-
resilient DER control algorithms is the way to handle delayed



or lost voltage measurements. To this end, the long short-
term memory (LSTM) deep learning algorithm is employed to
forecast delayed/missed messages with high accuracy, which
is a main contribution of this paper.

II. PROBLEM RECAP OF DER CONTROL

A DER penetrated distribution feeder with N + 1 nodes,
N U{0},N := {1,..,N} is considered. The feeder head
is denoted as Node 0. Let define the /N-dimensional phasor
voltage vector as v := [V;, ..., Vy]T € CN. Py and Qg denote
the active and reactive powers at the feeder, and P} ,, and Q) ,,
are the load at the nth node. Let G := {1,...,G} C N be a
set of nodes equipped with DERs, and P; and (); are the DER
powers at Node i € G. For each PV system with the capacity
Si, Vi = {(Pi,Qi) : 0 < P, < P/, P + Q7 < §7} C R?
denotes the feasible range of P;, ();, and P be the avail-
able power. The injection power at nodes N is denoted as
Sinj = [S1,...,9n] € CV, where S; = —P,; — jQ,; for
S Q\N, and S; = P, — P; + 7(Q; — Ql,i) for i € G.
Denoting v, as the equilibrium point of the nominal-voltage
vector, the “LinDisFlow” approach is employed to achieve
the approximate linear power flow equations, where |v| and
Py, Qq are the functions of real and reactive injection power:

|V| ~ Apin_j + qun_j + C, (1)
[Py, Qo]" ~ Mpinj + Ndinj + 0;

where pinj = R{Sin;}, dinj = S{sin;}. And suitable
linearization methods for the AC power-flow equations can be
employed to achieve the model parameters A € RV*N B ¢
RN M € R2*N N € R2*N ¢ € RV, 0 € R? [5].

Each DER dispatch happens in a discrete-time fashion. For
each time instant ¢4,k € N, Let functions f;*(-) capture
different objectives from different DER owners and the utility,
and P(ikset be the setpoint at the feader head. Denote M :=
{1,..., M} C N as a set of nodes where vlotage measurements
are available and the voltage regulation within [V |/maz]
is required at each node. Then, the DER dispatch problem is
formulated into a time-varying optimization problem with the
operational objectives and constraints at ¢, as below:

t
fpin > P Q1)
i€eg
st. P,Q; € ytk (2(1)
ng (Pia Q ) ngset < Etk (2b) (2)

- (Pék (Ba Q?) ngset) < Etk (20)
ymin _ | Vi|(Py, Qy) < 0,Yn € M(2d)
[ViI(P: Qi) = V™ <0, € M(2)

Lagrangian multipliers A\** and (?* are associated with the
setpoints tracking constraints (2b)-(2c). And the dual variables
At = [y 8T and ptr o= [ul . pl] T are associ-
ated with the voltage regulation constraints(2d) - (2e). Then,
the DER contorl algorithm is reformulated to the lagrangian
equation with d := {v, pu, A, (}, as below,

[’tk(paq7d = fok<P7,7Q7,)
1€G

+ D (VT = V(P Q)

nem
+ i ([Vik |(Piy Qi) = VM%) 3)
+/\[Ptk(PZ7Q) Pékeet_Etk]
+<[P(§kset Ok(P“Ql) 7Etk]
+ 25T (P2,Q3) ~ S|d|3, Vi € G, Vn € M

2 g z'7 2 29 ? , VI

where p := [Py, ..., Pc]T, q := [Q1,...,Qc]7, the tracking
error E* > 0, and v and ¢ be regularization coefficients.

III. HYBRID OPTIMIZATION AND DEEP LEARNING
ALGORITHM FOR CYBER-RESILIENT DER CONTROL

To solve the DER control problem described in (3) con-
sidering data loss and network issues, a new cyber-resilient
algorithm is proposed in this section.

A. Distributed DER Control

The distributed architecture will improve the reliability of
the DERs control at scale. The hierarchical and distributed
control framework proposed in [5], [10] consists of three main
steps, shown in Fig. 1: Step 1 collecting voltage magnitude
measurements from each node n € M and measurement of
Pg’“ from the head to the control center (e.g., the DERMS
software); Step 2 updating dual parameter set d++1 =
[yt bkt Xt ¢tr+1] as follows and then broadcasting
it to each DER controller/node:

e = proje, {7 +a(V = [V —et) |,

it = proje. {utt + (U -V" — i)},

Akt = pTOjRJr {/\ f Oé(Ptk Pékset B — eAtk)} )

¢ = proje, {¢ + a(Plt, — B — B = ')}
@

Step 3 calculating and updating new Pf’““,Qt"+1 at each
DER agent as follow, after receiving Pt‘ Qt‘ locally and
d?*+1 remotely from control center:
[P.t"‘+1 , Q:’““} = proyyt,c {[Pt"

tk]T
- av[PhQi]["’ k(pa q, )|ﬁ:k’@:k7d"k+1 },
(5)

In the cyber-physical system, Step 1 and Step 2 is imple-
mented in the control center located in the feeder head, and
Step 3 is conducted in the individual DER control agent.

B. Sensitivity Analysis of Delayed Messages

As illustrated in Fig. 1, there are two main data streams for
the hierarchical DER control algorithm. The upstream collects
the nodal voltage measurement and the downstream sends
updated dual variables to DER controllers. In our previous
research work in [9], we developed two strategies to deal
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Fig. 2. Tracking Error-based Sensitivity analysis

with delayed messages in both uplink and downlink. The first
strategy is to use previous measurement of a delayed/missed
message to continue the DER control procedure, and the
another strategy is to skip the updating of dual parameters or
new dispatched power for corresponding delayed messages.
Along with these two strategies, we validated the impact of
individual communication uplink/downlink situation on the
control algorithm performance, based on the metric of the
feeder head’s power setpoint tracking error. The sensitivity
analysis results show that more voltage measurement delayed
in the uplink will degrade the algorithm performance more
dramatically for both strategies, compared to delayed downlink
dual variables. Fig.2 shows such sensitivity observation of
using previous message with different message loss rates.

C. LSTM Network

The above sensitivity analysis results indicate that it is criti-
cally needed to develop a more intelligent and effective method
to deal with the delayed/lost voltage magnitude measurement
massages. Currently. data-driven methods have obtained a
great success in anomaly detection and missed features and
data estimation [11]. In addition, considering time series nature
of collected voltage magnitude measurements, the state of
art long-short term memory (LSTM) network is proposed to
effectively estimate the delayed/lost data. The LSTM is an
extended and advanced version of traditional recurrent neural
networks (RNNs) [12].

The LSTM network depicted in Fig. 3, contains cell states,
input gate, output gate, and forget gate. The cell state c(t) is
the key concept of the LSTM model and it keeps important
parts of historical data. The input gate decides to select parts
of the input which is relevant to the current state of the system
and allows them to pass through the gate. This procedure is
implemented by considering the previous output h;_; and the
current input x; together, as below:

iy = o(Wilhe—1,2¢] + bs), (6)

where i, o, W; and b; are output of input gate, sigmoid func-
tion, weight matrix and bias vector of input gate, respectively.
The output of sigmoid function is in the range of (0,1). The
value close to 1 means that the input is more relevant to the
current cell state, while the value close to O means there is a
few coherency between input and current cell state. Then, to
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Fig. 3. LSTM Network Structure

filter the desired part of input, the tanh layer is used to create
a vector of new candidate valug:s, ', which will be used to
create the new cell state. The C; can be found as follow:

Cy = tanh(We.[hy_1, 2] + be), )

where W and bc are weight matrix and bias vector of input
layer. The forget gate decides what part of the previous state
should be forgotten. The procedure is similar to the input gate:

e =Wy [he—1, 2] + by), 3

where W; and by are weight matrix and bias vector of the
forget layer. The forget gate is equipped with a sigmoid
function to choose parts of previous step that remain in the
cell state. Combining new data came from the input layer and
remained data from the previous cell state, the new cell state
can be calculated as below:

Cy = fi % Cy_y + it % Ct. )

The output gate decides what should be reported as output.
This output is based on the new cell state, as shown:

or = o(Wolhi—1, 4] + bo),
h: = oy * tanh C;.

This LSTM network will be used to forecast the delayed or
missed voltage measurement messages in the uplink.

D. Hybrid Cyber-resilient DER Control Algorithm

The key concept of the hybrid cyber-resilient DER control
algorithm is to employ the deep learning forecast technique
to resilient the cyber issues, such as delayed message, lost
message, as well as attacked message. Thus, the proposed
algorithm will integrate the LSTM-based delayed message
forecast model into the original optimization-based DER
control framework. This LSTM forecast model consists of
four components: Data collector and validator, Historical
data, LSTM network training, and Online voltage forecast,
shown in Fig.1. At each iteration, the Data collector and
validator module collects the voltage measurements and
validates if the measurement arrives within the threshhold.
All received messages are stored into the Historical data
block for the training purpose. An optimization technique
and a back-propagation through the time are employed for
the LSTM network training, and this offline LSTM network
can be trained in a periodic way to have updated and more
accurate network parameters, which are passed to the Online
voltage forecast module periodically. Once the Online voltage
forecast module is informed that there is a message delayed,

(10)



it conducts the forecast the delayed message in real-time to
ensure the DER control algorithm running properly.
We define a deadline or delay threshold, namely d* > 0 in

Algorithm 1 Hybrid Optimization and Deep Learning Algo-
rithm for Cyber-resilient DER Control

1: procedure DERMS(v, €, o)

2: initialization: t; = 1,d*, V™" V™ n c M

3 repeat

4 update Et*

5 wait R

6: receive the setpoint: Péfget

7 receive measurements: |‘A/,fk [, ﬁé"‘,

8 until timer > d* or all measurements received
9: if |V,!*| received within d* then

10: update d’*+! by (4)

11 else R
12: call LSTM forecast model to estimate |V*|
13: wait N

14: receive estimated |V,'*| to update d++

15: end if

16: broadcast d**+1 to all DERs at grid edge
17: tp, =t +1

18: end procedure

19: procedure LOCAL DER AGENT ¢

C e - th
20: initialization: ¢, = 1, V;*
21: repeat

. Pt At
22: receive P;*, Q"
23: wait
24 until receive di++!

25:  update P{**, Q" by (5)

26 dispatch P**' Q'+ to the DER device
27: tr = t&—‘r 1

28:  send |V,'*| to the DERMS

29: end procedure

30: procedure LOCAL NON-DER GRID EDGE n

31: initialization: t; = 1

32: while do

33: send |V'*| to the DERMS
34: tp =1t +1

35: end while

36: end procedure

37: procedure LSTM ESTIMATOR(V,, “ ™", .., V," ")

38: normalize input voltage vector to per unit value

39; predict using historical voltages: [Vntk_LE", ey Vntk_l]
40: de-normalize predicted voltage value

41: report predicted voltage value: |V*|

42: end procedure

milliseconds, for the uplink message. In a normal operating
condition, the Data collector and validator module collects
and validates nodal voltages and the DER control module
generates dual variables to update DERs’ setpoints, shown
in Fig. 1). If any local voltage measurement |V,!*| does not
arrive at the DERMS within time d*, the LNStTM forecast
model is to predict the delayed voltage V,, © by using

. 5 tk—ien 5 tk—1 .
previous voltages V,, " ", ..., V,, of Node n to continue

computing the dual parameters A+, ubt+", where len is the
length of historical data at Node n, that work as the input of
the LSTM forecast model. The resulting hybrid DER control

algorithm is described in detail in Algorithm 1.

IV. VALIDATION AND RESULTS

To validate the proposed hybrid algorithm, we consider a
modified single phase IEEE 37-node test feeder and please
refer to [9] for the detailed configuration data, and the topology
is shown in Fig. 5. The generation profile data is generated
based on the real solar radiation data of Sacramento, CA
on August 15, 2012 from the NREL Measurement and In-
strumentation Data Center (MIDC) with a granularity of 1
second after processing and capacity of 50kW, shown in Fig.
4(a) too. Other parameters are set as V™" = (.95, V™ =
1.05,v = 1073,¢ = 1074, E'* = 0.001,and the step size
o = 0.1. And the PV system optimization objective (3) is
set as f{*(P, Qi) = cp(Pyh; — P/*)* + ¢g(Q)%, where
cp = 3,¢q = 1,9 € G. We consider the setpoints ngset
from 12:00 to 14:00, consists of 5-minute economic dispatch
commands, 1-minute automatic generator control setpoints,
ramp signals and constant commands of 65 minutes, depicted
in red line, shown in Fig. 4(b).

The LSTM network is implemented by using the Keras
library. To generate the training data set of voltage values,
the randomly generated P, setpoint curves are used to run
the algorithm in the ideal cyber network. The look-back time
window size is set to 10 to train the LSTM model for each
node and the root mean square error (RMSE) is adopted as
the loss function to optimize trained model.

To validate the performance of the proposed hybrid optimiza-
tion and deep learning cyber-resilient DER control algorithm,
we conduct the comparison with other two commonly-used
strategies for the delayed messages: 1) using previous voltage
measurement to update dual parameters, and 2) skipping the
update of the corresponding dual parameters. The delay model
described in [9] is applied to generate delays in the uplink.
Setting d* = 6.675 ms will lead to 1% of messages being
delayed. To better show the impact of delayed messages on
the performance of DER control algorithm, the communication
delay model has been applied only from 12:30 to 13:30.
We implemented IEEE-37 test case in OpenDSS and the
cyber-physical DER control along with two above-mentioned
strategies in Matlab and the LSTM based voltage forecast
model in Python with a granularity of 1 second.

Testing the trained LSTM model approves the high accuracy
of LSTM in predicting missed voltage values. The RMSE for
predicting missed voltages for our test case is 0.00065 kV.
The tracking and voltage regulation performance is shown in
Fig. 4. From Fig. 4(b) and (f), we have this observation: the
strategy of using previous message for delayed measurements
can not be successful in keeping setpoint tracking and voltage
regulation convergence. Even after removing asynchrony of
communication, the algorithm is not able to track the setpoint.
The performance of the skipping strategy, shown in Fig.
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4(c) and (g), indicates that the skipping strategy outperforms
the strategy of using previous message, although the total
performance of this strategy is not acceptable in practice. Fig.
4(d) and (h) shows that the LSTM forecast strategy can track
nget with the RMSE value of 3.685 kW and regulate nodal
voltages properly, and it obviously has the best and acceptable
performance among three strategies with 1% delay rate.

V. CONCLUSION

In this paper, we developed a hybrid feedback-based opti-
mization and deep Learning algorithm for cyber-resilient DER
control to enhance the resiliency of the DERMS system to
all kinds of cyber issues, such as the delayed/lost voltage
measurements. The well-trained LSTM forecast model can
estimate the delayed voltage data with high accuracy. The
experiment result shows that the proposed algorithm obviously
outperforms both using previous message and skipping strate-
gies for the delayed messages.
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