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Abstract

With the growing availability of large-scale biomedical data, it is often time-consuming

or infeasible to directly perform traditional statistical analysis with relatively limited

computing resources at hand. We propose a fast subsampling method to effectively

approximate the full data maximum partial likelihood estimator in Cox’s model, which

largely reduces the computational burden when analyzing massive survival data. We

establish consistency and asymptotic normality of a general subsample-based estima-

tor. The optimal subsampling probabilities with explicit expressions are determined

via minimizing the trace of the asymptotic variance-covariance matrix for a linearly

transformed parameter estimator. We propose a two-step subsampling algorithm for

practical implementation, which has a significant reduction in computing time com-

pared to the full data method. The asymptotic properties of the resulting two-step

subsample-based estimator is also established. Extensive numerical experiments and

a real-world example are provided to assess our subsampling strategy. Supplemental

materials for this article are available online.
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1 Introduction

With the development of science and technology, the amounts of available data are rapidly

increasing in recent years. A major bottleneck to analyze huge datasets is that the data

volume exceeds the capacity of available computational resources. It is not always possible

to meet the demands for computational speed and storage memory if we directly perform

traditional analysis for large datasets with a single computer at hand. To cope with big

data, there are many statistical methods in the literature dealing with the heavy calculation

and storage burden. Basically, we could classify these methods into three categories. (i)

divide-and-conquer approach (Zhao et al., 2016; Battey et al., 2018; Shi et al., 2018; Jordan

et al., 2019; Volgushev et al., 2019; Chen et al., 2022; Fan et al., 2021). (ii) online updating

approach (Schifano et al., 2016; Luo and Song, 2020; Lin et al., 2020; Luo et al., 2022;

Wang et al., 2022b). (iii) subsampling-based approach. The subsampling is an emerging

field for big data. Many papers have been published during recent years. For example,

Wang et al. (2018) and Wang (2019) studied the optimal subsampling for massive logistic

regression. Wang et al. (2019) presented an information-based subdata selection approach

for linear regression with big datasets. Zhang et al. (2020) studied an effective sketching

method for massive datasets via A-optimal subsampling. Yao and Wang (2019), Han et al.

(2020) and Yao et al. (2021) proposed several subsampling methods for large-scale multiclass

logistic regression. Yu et al. (2022) considered optimal Poisson subsampling for maximum

quasi-likelihood estimator with massive data. Zhang et al. (2021) proposed a response-free

optimal sampling procedure for generalized linear models under measurement constraints.

Wang and Ma (2021) studied the optimal subsampling for quantile regression in big data.

Liu et al. (2021) proposed an optimal subsampling method for the functional linear model via

L-optimality criterion. Zhang and Wang (2021) and Zuo et al. (2021b) considered optimal

distributed subsampling methods for big data in the context of linear and logistic models,

respectively. Ai et al. (2021) studied the optimal subsampling method for generalized linear

models under the A-optimality criterion. Wang and Zhang (2022) proposed an optimal

subsampling procedure for multiplicative regression with massive data. For more related

results on massive data analysis, we refer to several review papers by Wang et al. (2016),
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Lee and Ng (2020), Yao and Wang (2021), Chen et al. (2021b), Li and Meng (2021) and Yu

et al. (2023).

The aforementioned investigations focused on developing statistical methods for large

datasets with uncensored observations. In recent years, huge biomedical datasets become

increasingly common, and they are often subject to censoring (Kleinbaum and Klein, 2005).

There have been several recent papers on statistical analysis of massive censored survival

data. For example, Xue et al. (2019) and Wu et al. (2021) studied the online updating

approach for streams of survival data. Keret and Gorfine (2020) presented an optimal Cox

regression subsampling procedure with rare events. Tarkhan and Simon (2020) and Xu

et al. (2020) used the stochastic gradient descent algorithms to analyse large-scale survival

datasets with Cox’s model and the accelerated failure time models, respectively. Li et al.

(2020) proposed a batch screening iterative Lasso method for large-scale and ultrahigh-

dimensional Cox model. Zuo et al. (2021a) proposed a sampling-based method for massive

survival data with additive hazards model. Wang et al. (2021) studied an efficient divide-and-

conquer algorithm to fit high-dimensional Cox regression for massive datasets. Yang et al.

(2022) studied the optimal subsampling algorithms for parametric accelerate failure time

models with massive survival data. In spite of the aforementioned papers, existing research

on massive survival data is relatively limited, and it is meaningful to further investigate the

statistical theories in the area of large-scale survival analysis.

It is worthy mentioning that subsampling is an emerging area of research, which has

attracted great attentions in both statistics and computer science (Ma et al., 2015; Bai

et al., 2021). Subsampling methods focus on selecting a small proportion of the full data

as a surrogate to perform statistical computations. A key to success of subsampling is

to design nonuniform sampling probabilities so that those influential or informative data

points are sampled with high probabilities. Although significant progress has been made

towards developing optimal subsampling theory for uncensored observations, to the best

of our knowledge, the research on optimal subsampling for large-scale survival data lags

behind. In consideration of the important role of Cox’s model in the field of survival analysis

(Cox, 1972; Fleming and Harrington, 1991), it is desirable to develop effective subsampling

methods in the context of Cox’s model for massive survival data. This paper aims to close this
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gap by developing a subsample-based estimator to fast and effectively approximate the full

data maximum partial likelihood estimator. Our aim is to design an efficient subsampling

and estimation strategy to better balance the trade-off between computational efficiency

and statistical efficiency. Here are some key differences between our proposed subsampling

approach and some recently developed approaches on Cox’s model with large-scale data: (i)

Keret and Gorfine (2020) proposed a subsampling-based estimation for Cox’s model with

rare events by including all observed failures, while our optimal subsampling method is

developed for Cox’s model under the regular setting that observed failure times are not rare

compared with the observed censoring times. (ii) Tarkhan and Simon (2020) presented a

stochastic gradient descent (SGD) procedure for Cox’s model. This method primarily intends

to resolve the problems that the whole dataset cannot be easily loaded in memory; the main

aim is to deal with the out-of-memory issue rather than speeding up the calculation. (iii)

Li et al. (2020) and Wang et al. (2021) studied the variable selection problem for ultrahigh-

dimensional Cox’s model, which is different from the focus of our paper on dealing with very

large sample sizes.

The main contributions of our proposed subsampling method include three aspects: First,

the computation of our subsample-based estimator is much faster than that of the full data

estimator calculated by the standard R function coxph. Therefore, it effectively reduces the

computational burden when analysing massive survival data with Cox’s model. Second, we

provide an explicit expression for the optimal subsampling distribution, which has much bet-

ter performance than the uniform subsampling distribution in terms of statistical efficiency.

Third, we establish consistency and asymptotic normality of the proposed subsample estima-

tor, which is useful for performing statistical inference (e.g. constructing confidence intervals

and testing hypotheses).

The remainder of this paper is organized as follows. In Section 2, we review the setup and

notations for Cox’s model. A general subsample-based estimator is proposed to approximate

the full data maximum partial likelihood estimator. In Section 3, we establish consistency

and asymptotic normality of a general subsample-based estimator. The optimal subsampling

probabilities are explicitly specified in the context of L-optimality criterion. In Section 4,

we give a two-step subsampling algorithm together with the asymptotic properties of the
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resulting estimator. In Section 5, extensive simulations together with an application are

conducted to verify the validity of the proposed subsampling procedure. Some concluding

remarks are presented in Section 6. Technical proofs are given in the supplement.

2 Model and Subsample-Based Estimation

In many biomedical applications, the outcome of interest is measured as a “time-to-event”,

such as death and onset of cancer. The time to occurrence of an event is referred to as

a failure time (Kalbfleisch and Prentice, 2002), and its typical characteristic is subject to

possible right censoring. For i = 1, · · · , n, let Ti be the failure time, Ci be the censoring

time, and Xi be the p-dimensional vector of time-independent covariates (e.g., treatment

indicator, blood pressure, age, and gender). We assume that Ti and Ci are conditionally

independent givenXi. The observed failure time is Yi = min(Ti, Ci), and the failure indicator

is ∆i = I(Ti ≤ Ci), where I(·) is the indicator function. For convenience, we denote the

full data of independent and identically distributed observations from the population as

Dn = {(Xi,∆i, Yi), i = 1, · · · , n}. The Cox’s proportional hazard regression model (Cox,

1972) is commonly used to describe the relationship between covariates of an individual and

the risk of experiencing an event. This model assumes that the conditional hazard rate

function of Ti given Xi is

λ(t|Xi) = λ0(t) exp(β
′Xi), (1)

where λ0(t) is an unknown baseline hazard function, β = (β1, · · · , βp)
′ is a p-dimensional

vector of regression parameters, and its true value belongs to a compact set Θ ⊂ Rp. To

estimate β, Cox (1975) proposed a novel partial likelihood method. The negative log-partial

likelihood function is

ℓ(β) = − 1

n

n∑
i=1

∫ τ

0

[
β′Xi − log

{
n∑

j=1

I(Yj ≥ t) exp(β′Xj)

}]
dNi(t), (2)

where Ni(t) = I(∆i = 1, Yi ≤ t) is a counting process and τ is a prespecified positive

constant. One advantage of Cox’s partial likelihood method is that the criterion function

given in (2) does not involve the nonparametric baseline hazard function λ0(t), and the
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resulting estimator of β is asymptotically equivalent to the parameter estimator obtained

by maximizing the full likelihood function (Cox, 1975).

For convenience, we introduce the following notations to ease the presentation:

S(k)(t,β) =
1

n

n∑
i=1

I(Yi ≥ t)X⊗k
i exp(β′Xi), k = 0, 1 and 2,

where the notation u⊗k means u⊗0 = 1, u⊗1 = u and u⊗2 = uu′ for a vector u. Throughout

this paper, ∥A∥ = (
∑

1≤i,j≤p a
2
ij)

1/2 for a matrix A = (aij).

The gradient of ℓ(β) is

ℓ̇(β) = − 1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t,β)}dNi(t)

= − 1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t,β)}dMi(t,β), (3)

where Mi(t,β) = Ni(t)−
∫ t

0
I(Yi ≥ u) exp(β′Xi)λ0(u)du, and

X̄(t,β) =
S(1)(t,β)

S(0)(t,β)
. (4)

The Hessian matrix of ℓ(β) is given by

ℓ̈(β) =
1

n

n∑
i=1

∫ τ

0

[
S(2)(t,β)

S(0)(t,β)
−
{
S(1)(t,β)

S(0)(t,β)

}⊗2
]
dNi(t). (5)

According to Cox (1975), the full data maximum partial likelihood (MPL) estimator β̂MPL

is the solution to ℓ̇(β) = 0, and the asymptotic properties of β̂MPL have been investigated by

Andersen and Gill (1982). There is no closed-form to β̂MPL, and it is numerically calculated

by Newton’s method through iteratively applying

β(m+1) = β(m) − {ℓ̈(β(m))}−1ℓ̇(β(m)). (6)

For small datasets with hundreds of observations or even fewer, the iterative algorithm given

in (6) is able to converge in a reasonable time. For moderate datasets, it is common to use the

gold standard coxph function in the R package of Therneau (2021), where a smart updating

procedure is adopted to speed up the computation (Simon et al., 2011). The computational

efficiency of coxph will be presented in the simulation section.
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It is desirable to develop an effective and computationally stable method when handling

massive survival datasets with Cox’s model. Recently, Keret and Gorfine (2020) introduced a

novel subsampling procedure for Cox regression with rare events, while our aim is to propose

a subsampling procedure for large-scale Cox model under non-rare-events setting. To be

specific, we assign subsampling probabilities {πi}ni=1 to the full data Dn, where
∑n

i=1 πi = 1

and πi > 0 for i = 1, · · · , n. Draw a random subsample of size r with replacement based

on {πi}ni=1 from the full data Dn, where r is typically much smaller than n. Let D∗
r =

{(X∗
i ,∆

∗
i , Y

∗
i , π

∗
i )}ri=1 be a selected subsample with size r from the full data Dn, where X∗

i ,

∆∗
i , Y

∗
i , and π∗

i are the covariate, the failure indicator, the observed failure times, and the

subsampling probability, respectively, in the subsample. We propose a weighted pseudo log

partial likelihood using the subsample D∗
r :

ℓ∗(β) = −1

r

r∑
i=1

1

nπ∗
i

∫ τ

0

{
β′X∗

i − log

[
r−1

r∑
j=1

π∗−1
j I(Y ∗

j ≥ t) exp(β′X∗
j)

]}
dN∗

i (t), (7)

where N∗
i (t) = I(∆∗

i = 1, Y ∗
i ≤ t). The inverse probability weighting in (7) is to ensure

the consistency of the resulting subsample estimator towards β̂MPL, which will be carefully

investigated in Section 3. The corresponding weighted subsample score function is

ℓ̇∗(β) = −1

r

r∑
i=1

1

nπ∗
i

∫ τ

0

{X∗
i − X̄∗(t,β)}dN∗

i (t) (8)

= −1

r

r∑
i=1

1

nπ∗
i

∫ τ

0

{X∗
i − X̄∗(t,β)}dM∗

i (t,β),

where M∗
i (t,β) = N∗

i (t)−
∫ t

0
I(Y ∗

i ≥ u) exp(β′X∗
i )λ0(u)du, and

X̄∗(t,β) =
S∗(1)(t,β)

S∗(0)(t,β)
(9)

with

S∗(k)(t,β) =
1

nr

r∑
i=1

1

π∗
i

I(Y ∗
i ≥ t)(X∗

i )
⊗k exp(β′X∗

i ), k = 0, 1 and 2. (10)

The subsample-based estimator β̃ is the solution to ℓ̇∗(β) = 0, which is computationally

easier to solved by Newton’s method due to the smaller subsample size. Here β̃ can be viewed

as a subsample approximation to the full data β̂MPL. A natural question is how to select

the subsample so that β̃ and β̂MPL are close. We will derive the asymptotic distribution of

β̃−β̂MPL and then find the probabilities that minimize a function of the asymptotic variance.
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3 Asymptotic Properties and Subsampling Strategy

In this section, we establish the asymptotic properties of a general subsample-based estimator

β̃ obtained via solving ℓ̇∗(β̃) = 0, where ℓ̇∗(β) is given in (8). A strategy on how to

specify optimal subsampling probabilities for our method is presented. We need the following

assumptions for theoretical derivation. Throughout this paper we allow πi’s to depend on

the data, so they may be random.

Assumption 1 The baseline hazard satisfies that
∫ τ

0
λ0(t)dt < ∞, and P (Ti ≥ τ) > 0.

Assumption 2 The quantity 1
n

∑n
i=1

∫ τ

0

[
S(2)(t,β)

S(0)(t,β)
−

{
S(1)(t,β)

S(0)(t,β)

}⊗2 ]
dNi(t) converges in prob-

ability to a positive definite matrix for all β ∈ Θ, where Θ is a compact set containing the

true value of β.

Assumption 3 The time-independent covariates Xi’s are bounded.

Assumption 4 The subsampling probabilities satisfy max1≤i≤n(nπi)
−1 = OP (1).

Assumptions 1 and 2 are two classical regularity conditions for Cox’s model (Andersen

and Gill, 1982); Assumption 3 is a bounded condition, which was commonly imposed in

the literature about Cox’s model, e.g., Huang et al. (2013) and Fang et al. (2017). This

assumption is reasonable in most practical applications, because for biomedical survival

data the covariates of an individual are often treatment indicator, blood pressure, age, and

gender, etc. These biomedical related features are usually bounded (Keret and Gorfine,

2020). Assumption 4 is required to protect the weighted subsample pseudo-score function

given in (8) from being dominated by those data points with extremely small subsampling

probabilities. i.e., Assumption 4 requires that the minimum subsampling probability is at

the same order of 1/n in probability. This assumption was also imposed by Wang et al.

(2022a).

We establish the consistency and asymptotic normality of the subsample-based estimator

β̃ conditional on the full data Dn in the following. This result plays an important role in

performing statistical inference. In addition, the asymptotic distribution is a key foundation

to design optimal subsampling probabilities for our method. Throughout this paper, the
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notation b = OP |Dn(1) denotes that b is bounded in conditional probability, i.e., for any

ϵ > 0, there exists a finite bϵ > 0 such that P{P (|b| ≥ bϵ|Dn) < ϵ} → 1.

Theorem 1 Under assumptions 1-4, if r = o(n) as n → ∞ and r → ∞, then the subsample-

based estimator β̃ is consistent to β̂MPL with a convergence rate OP |Dn(r
−1/2). In addition,

conditional on Dn in probability, we have

Σ−1/2(β̃ − β̂MPL)
d−→ N(0, I), (11)

where
d−→ denotes convergence in distribution, Σ = Ψ−1ΓΨ−1 with

Ψ =
1

n

n∑
i=1

∫ τ

0

S(2)(t, β̂MPL)

S(0)(t, β̂MPL)
−

{
S(1)(t, β̂MPL)

S(0)(t, β̂MPL)

}⊗2
 dNi(t), (12)

and

Γ =
1

n2r

n∑
i=1

1

πi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2

. (13)

Remark 1 The convergence rate indicates that ∥β̃−β̂MPL∥ = OP |Dn(r
−1/2). Since a random

sequence that converges to zero in conditional probability also converges to zero in uncondi-

tional probability (Xiong and Li, 2008), we know that ∥β̃ − β̂MPL∥ = oP |Dn(1) = oP (1) as

r → ∞. Therefore, the subsample-based estimator β̃ is close to β̂MPL as long as r is large

enough. It is reasonable to use β̃ as a surrogate for β̂MPL in order to reduce computational

burden when handling large-scale Cox’s model in practice.

Remark 2 The asymptotic normality in condition distribution indicates that the distribution

of the error term β̃−β̂MPL conditional on Dn can be approximated by that of a normal random

variable, say Z, with conditional distribution N(0,Σ). This means that for any ϵ > 0, the

probability P (∥β̃ − β̂MPL∥ ≥ ϵ|Dn) is accurately approximated by P (∥Z∥ ≥ ϵ|Dn). Hence, a

smaller variance ensures a smaller excess error bound. This sheds light on how to design

optimal subsampling probabilities for our proposed sampling method.

For practical application of the proposed sampling strategy, we need to specify the

subsampling distribution π = {πi}ni=1. A simple choice is the uniform subsampling with

{πi = n−1}ni=1. However, this is not optimal, because it does not distinguish the importances
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among different data points. It is desirable to design nonuniform subsampling probabilities

such that more informative data points are more likely to be selected into a subsample (Wang

et al., 2018; Wang and Ma, 2021). In view of Remark 2, we propose to determine nonuniform

subsampling probabilities by minimizing the asymptotic variance-covariance matrix Σ given

in (11). However, the meaning of “minimizing” a matrix needs to be carefully defined. Here

we adopt the idea from design of experiments (Kiefer, 1959), and determine the optimal sub-

sampling probabilities by minimizing a convex function of Σ. We follow the idea of Wang

et al. (2018) and focus on minimizing tr(ΨΣΨ)=tr(Γ), where

tr(Γ) = tr

(
1

n2r

n∑
i=1

1

πi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2)
=

1

rn2

n∑
i=1

1

πi

∥∥∥∥∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

∥∥∥∥2

.

As a matter of fact, this optimality criterion of minimizing tr(Γ) is a version of L-

optimality criterion (Atkinson et al., 2007), because tr(Γ) is trace of the asymptotic variance-

covariance matrix ofΨβ̃, which is a linearly transformed subsample estimator. The following

theorem provides an explicit expression for the optimal subsampling distribution πLopt =

{πLopt
i }ni=1 in the context of L-optimality criterion.

Theorem 2 If the subsampling probabilities are chosen as

πLopt
i =

∥
∫ τ

0
{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)∥∑n

j=1 ∥
∫ τ

0
{Xj − X̄(t, β̂MPL)}dMj(t, β̂MPL)∥

, i = 1, · · · , n, (14)

then tr(Γ) attains its minimum.

Remark 3 The numerator of πLopt
i has a term X̄(t, β̂MPL), which contains all individuals

of the full data Dn. This is different from existing results on parametric models without

censoring, for which numerators of optimal subsampling probabilities involve only individ-

ual observations’ information (except the dependency of the full data estimator). Practical

adjustments are required to implement the optimal subsampling probabilities to tackle the

additional computational challenge due to censored survival data with Cox’s model. We will

discuss this in Section 4.
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Remark 4 With the A-optimality criterion (Wang et al., 2018), we can derive the corre-

sponding optimal subsampling probabilities that minimize tr(Σ). They are

πAopt
i =

∥Ψ−1
∫ τ

0
{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)∥∑n

j=1 ∥Ψ−1
∫ τ

0
{Xj − X̄(t, β̂MPL)}dMj(t, β̂MPL)∥

, i = 1, · · · , n, (15)

where Ψ is given in (12). Due to the term Ψ in (15), the computational burden of πAopt
i

is much heavier than that of πLopt
i . Therefore, we focus on πLopt

i in the presentation of

our subsampling procedure. We provide numerical comparisons between the A-optimality

criterion and the L-optimality criterion in Section 5.1.

We provide more insights on the optimal subsampling probabilities {πLopt
i }ni=1 from two

aspects: First, the numerator
∫ τ

0
{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL) is actually the ith sample’s

score given in (3), which is also referred to as the residual (Therneau et al., 1990). The

subsampling probabilities in Keret and Gorfine (2020) for censored individuals also share

a similar spirit, but the subsampling probabilities for observed events are one in Keret

and Gorfine (2020)’s approach. Second, since the failure times are observed for uncensored

observations, they contain more information than censored observations. The optimal sub-

sampling probabilities give higher preferences to uncensored observations compared with

censored observations. This will be demonstrated numerically in Section 5.1.

4 Practical Implementation

4.1 Two-Step Subsampling Algorithm

In this section, we discuss some issues on practical implementation and provide strategies to

resolve them.

First, the optimal subsampling probabilities {πLopt
i }ni=1 contain the full data estimator

β̂MPL. We take a pilot subsample from Dn by uniform subsampling with replacement, say

D∗
r0

= {(X0∗
i ,∆0∗

i , Y 0∗
i ), i = 1, · · · , r0}, obtain a pilot estimator β̃0 using D∗

r0
, and use β̃0 to

replace the β̂MPL in (14) for practical implementation.

Second, the resultant probabilities still involve a term X̄(t, β̃0) after replacing β̂MPL with

β̃0. This term involves the full data Dn so it requires heavy computation burden. To tackle

11



this problem, we recommend replacing X̄(t, β̃0) with X̄0∗(t, β̃0), where

X̄0∗(t,β) =

∑r0
j=1 I(Y

0∗
j ≥ t)X0∗

j exp(β′X0∗
j )∑r0

j=1 I(Y
0∗
j ≥ t) exp(β′X0∗

j )
. (16)

This is a reasonable choice because it can be shown that X̄0∗(t,β) = X̄(t,β) + oP (1), for

any t ∈ [0, τ ] and β ∈ Θ (see Eq. (S.6) in the Appendix).

Third, the term dMi(t, β̂MPL) involves the unknown baseline hazard function λ0(t). We

propose a subsample Breslow-type estimator for Λ0(t) =
∫ t

0
λ0(s)ds using D∗

r0
as follows:

Λ̂UNIF

0 (t,β) =

r0∑
i=1

{
∆0∗

i I(Y 0∗
i ≤ t)∑r0

j=1 I(Y
0∗
j ≥ Y 0∗

i ) exp(β′X0∗
j )

}
. (17)

Taking into account previous discussions, the approximated optimal subsampling probabili-

ties are

πapp
i =

∥
∫ τ

0
{Xi − X̄0∗(t, β̃0)}dM̂i(t, β̃0)∥∑n

j=1 ∥
∫ τ

0
{Xj − X̄0∗(t, β̃0)}dM̂j(t, β̃0)∥

, i = 1, · · · , n, (18)

where dM̂i(t, β̃0) = dNi(t)− I(Yi ≥ t) exp(β̃′
0Xi)dΛ̂

UNIF
0 (t, β̃0).

Fourth, we see from (18) that πapp
i is proportional to ∥

∫ τ

0
{Xi − X̄0∗(t, β̃0)}dM̂i(t, β̃0)∥,

which could be small for some data points. Since πapp
i ’s are obtained by inserting the pilot

β̃0, they are not the real optimal probabilities. The variation of β̃0 may be significantly

amplified by data points with much smaller values of πapp
i than other data points, because

the sampling probabilities appear in the denominator of the asymptotic variance as shown

in (13). From another angle, if some data points with much smaller πapp
i are selected into

a subsample, the weighted subsample pseudo-score function (8) may be dominated by these

data points and thus the variance of the resulting estimator is inflated by them. Following

the idea of defensive importance sampling (Hesterberg, 1995; Owen and Zhou, 2000), we

mix the approximated optimal subsampling distribution with the uniform subsampling dis-

tribution. Specifically, we use πapp
δi = (1− δ)πapp

i + δ/n instead of πapp
i in (18) for practical

implementation, where δ ∈ (0, 1) controls the proportion of mixture. A main advantage

of this approach is that nπapp
δi is lower-bounded by δ, so it ensures robustness of the sub-

sampling estimator. The same idea was also adopted by other subsampling methods in the

literature, such as Ma et al. (2015); Yu et al. (2022); Wang et al. (2022a). We use δ = 0.1
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in the numerical simulations and real-world application in Section 5, and this choice works

well.

We present a practical two-step subsampling method for Cox’s model in Algorithm 1.

Algorithm 1 Two-Step Subsampling Procedure

• Step 1. Take a pilot subsample of size r0 D∗
r0

= {(X0∗
i ,∆0∗

i , Y 0∗
i )}r0i=1 using uniform

subsampling with replacement from the full data Dn. Here r0 is typically much smaller than

r. Compute a pilot estimator β̃0 by solving

ℓ̇0∗(β) = − 1

r0

r0∑
i=1

∆0∗
i {X0∗

i − X̄0∗(Y 0∗
i ,β)} = 0,

where X̄0∗(t,β) is given in (16). Calculate

πapp
δi = (1− δ)πapp

i +
1

n
δ, , i = 1, ..., n, (19)

where πapp
i ’s are given in (18) and δ is often a small number. e.g., δ = 0.1.

• Step 2. Draw r data points with replacement from the full data Dn using the subsam-

pling probabilities {πapp
δi }ni=1 given in (19). Let D∗

r = {(X∗
i ,∆

∗
i , Y

∗
i , π

app∗
δi }ri=1 be the selected

subsample. Obtain the two-step subsample-based estimator β̆ by solving

ℓ̇∗
β̃0
(β) = −1

r

r∑
i=1

1

nπapp∗
δi

∆∗
i {X∗

i − X̄∗
β̃0
(Y ∗

i ,β)} = 0, (20)

where X̄∗
β̃0
(t,β) has the same expression as X̄∗(t,β) given in (9) except that π∗

i is replaced

with πapp∗
δi .

Note that we do not recommend combining D∗
r0
and D∗

r together for Step 2 of Algorithm 1.

If we are able to handle the calculation on the combined data from D∗
r0

and D∗
r , then it is

more efficient to increase the second step subsample size to r0 + r. That is to say, the pilot

subsample D∗
r0

does not come into the estimation step for β̆. Therefore, we do not need to

allocate two subsample sizes r0 and r when implementing our method. Some discussion and

guidance on the selection of r0 are provided in Section 5.1.

We established the asymptotic normality of the estimator β̆ from the practical Algo-

rithm 1 in the following theorem.

13



Theorem 3 Under assumptions 1-3, if r = o(n), then as r0 → ∞, r → ∞ and n → ∞,

conditional on Dn and β̃0, the two-step estimator β̆ in Algorithm 1 is consistent to β̂MPL with

convergence rate r−1/2. Furthermore, the approximation error has an asymptotically normal

distribution, that is

Σ−1/2(β̆ − β̂MPL)
d−→ N(0, I), (21)

where Σ = Ψ−1ΓΨ−1 with Ψ defined in (12),

Γ =
1

n2r

n∑
i=1

1

πLopt
δi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2

, (22)

and

πLopt
δi = (1− δ)πLopt

i +
δ

n
, i = 1, · · · , n. (23)

Remark 5 Note that the full data estimator β̂MPL converges to the true parameter at a

rate of n−1/2, so the full data estimator β̂MPL in (21) can be replaced by the true parameter

since r = o(n). Thus the asymptotic result in Theorem 3 can be used for inference on the

true parameter. Since the subsampling rate is often very small when dealing with large-scale

datasets, it is reasonable to apply the asymptotic normality in practice.

The following proposition gives the unconditional convergence rate and asymptotic nor-

mality of the two-step subsample estimator towards the true parameter, which are very useful

when we perform inference with respect to the true parameter.

Proposition 1 Under assumptions 1-3, if r = o(n), then as r0 → ∞, r → ∞ and n →

∞, the two-step estimator β̆ in Algorithm 1 is consistent to the true parameter β0 with

convergence rate r−1/2. i.e., we have ∥β̆ − β0∥ = OP (r
−1/2). Moreover, β̆ is asymptotically

normal, that is

Σ−1/2(β̆ − β0)
d−→ N(0, I),

where Σ is given in Theorem 3.
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In view of Proposition 1 and Remark 5, we need to provide an estimate for the variance-

covariance matrix of β̆ when conducting statistical inference for the true parameter. A

simple method is to replace β̂MPL with β̆ in the asymptotic variance-covariance matrix Σ.

However, this requires the calculation on the full data Dn. To reduce computational cost, we

propose to estimate the variance-covariance matrix of β̆ using the subsample D∗
r only with

Σ̆ = Ψ̆−1Γ̆Ψ̆−1, (24)

where

Ψ̆ =
1

rn

r∑
i=1

∆∗
i

πapp∗
δi

S∗(2)(Y ∗
i , β̆)

S∗(0)(Y ∗
i , β̆)

−

{
S∗(1)(Y ∗

i , β̆)

S∗(0)(Y ∗
i , β̆)

}⊗2
 ,

Γ̆ =
1

r2n2

r∑
i=1

1

{πapp∗
δi }2

[∫ τ

0

{X∗
i − X̄0∗(t, β̆)}dM̂∗

i (t, β̆)

]⊗2

,

S∗(k)(Y ∗
i , β̆) = (rn)−1∑r

j=1 π
app∗
δj

−1
I(Y ∗

j ≥ Y ∗
i )X

∗⊗k
j exp(β̆′X∗

j) for k = 0, 1, 2, X̄0∗(t, β̆) is

defined in (16), and dM̂∗
i (t, β̆) = dN∗

i (t) − I(Y ∗
i ≥ t) exp(β̆′X∗

i )dΛ̂
UNIF
0 (t, β̆). We will assess

the performance of formula (24) by numerical simulations.

Lastly, the cumulative hazard function Λ0(t) plays an important role for predicting the

survival probability of an individual in many biomedical applications. It has an expression of

S(t|X) = P (T > t|X) = exp{− exp(β′X)Λ0(t)} with Cox’s model. The Breslow estimator

Λ̂0(t,β) is the maximum likelihood estimator of Λ0(t), where

Λ̂0(t,β) =
n∑

i=1

∫ t

0

dNi(s)∑n
j=1 I(Yj ≥ s) exp(β′Xj)

=
n∑

i=1

∆iI(Yi ≤ t)∑n
j=1 I(Yj ≥ Yi) exp(β′Xj)

. (25)

Based on the subsample estimator β̆, it is easy to obtain a Breslow type estimator Λ̂0(t, β̆)

by replacing β with β̆ in (25), i.e., an estimated cumulative hazard function is based on

the entire dataset but with a subsampling-based estimator of β. As pointed out by an

reviewer, the computation burden of this Breslow estimator is not heavy if the observed

failure times are sorted in an increasing order, because it has an explicit expression and no

optimization process is required. The Breslow type estimator has a computation complexity

O(n log(n))+O(n), where O(n log(n)) is due to the sorting of the full data and O(n) is from

the summation.
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5 Numerical Studies

5.1 Simulation

In this section, we conduct simulations to evaluate the performance of our proposed sub-

sampling method. We generate failure times Ti’s from Cox’s model with a baseline hazard

function λ0(t) = 0.5t and the true parameter β0 = (−1,−0.5, 0, 0.5, 1)′ with p = 5. We

consider four settings for the covariate Xi = (Xi1, · · · , Xi5)
′.

Case I : components of Xi are independent uniform random variables over (−1, 1).

Case II: Xi follows 0.5N(−1,Υ) + 0.5N(1,Υ), where Υjk = 0.5|j−k|, i.e., Xi follows a mix-

ture of two multivariate normal distributions.

Case III: components of Xi are independent exponential random variables with probability

density function f(x) = 2e−2xI(x > 0).

Case IV: Xi follows a multivariate t distribution with degree of freedom 10, mean zero and

covariance matrix Υ where Υjk = 0.5|j−k|.

The censoring times Ci’s are independently generated from a uniform distribution over

(0, c0) with c0 being chosen so that the censoring rate (CR) is about 20% and 60%, respec-

tively. Results were calculated based on 1000 replications of the simulation. We set the full

data sample size to n = 106, and consider the subsample sizes of r = 400, 600, 800, and 1000,

respectively.

We evaluate the proposed method using the empirical mean squared error (MSE), defined

as

MSE(β̆) =
1

1000

1000∑
b=1

∥β̆(b) − β̂MPL∥2, (26)

where β̆(b) is the estimate from the bth subsample with δ = 0.1.

We studied the effect of the pilot subsample size r0 first. Table 1 presents the MSEs

of subsampling-based estimator by varying the pilot subsample size r0 = 300, 400 and 500.

We see that the influence of r0 on β̆ is not significant if we choose a reasonably large pilot

subsample. Hence, we suggest to use r0= 300 for settings similar to the simulation setup.

Users may adopt a larger pilot subsample if the dimension of the problem is higher or if the

censoring rate is higher.
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Table 1: The MSE of subsampling-based estimator with different pilot subsample size r0.

CR=20% CR=60%

r0 r = 400 r = 600 r = 800 r = 1000 r = 400 r = 600 r = 800 r = 1000

Case I 300 0.0320 0.0215 0.0159 0.0130 0.0590 0.0392 0.0279 0.0229

400 0.0321 0.0211 0.0163 0.0123 0.0586 0.0385 0.0279 0.0220

500 0.0322 0.0203 0.0161 0.0124 0.0573 0.0365 0.0279 0.0219

Case II 300 0.0340 0.0214 0.0165 0.0127 0.0592 0.0374 0.0284 0.0221

400 0.0332 0.0219 0.0164 0.0128 0.0599 0.0381 0.0299 0.0227

500 0.0338 0.0222 0.0167 0.0125 0.0593 0.0381 0.0281 0.0224

Case III 300 0.0418 0.0272 0.0206 0.0164 0.0804 0.0510 0.0379 0.0294

400 0.0401 0.0262 0.0191 0.0155 0.0800 0.0515 0.0367 0.0310

500 0.0392 0.0257 0.0187 0.0149 0.0769 0.0500 0.0359 0.0290

Case IV 300 0.0167 0.0108 0.0083 0.0065 0.0226 0.0157 0.0108 0.0086

400 0.0152 0.0102 0.0080 0.0060 0.0241 0.0150 0.0112 0.0088

500 0.0151 0.0100 0.0075 0.0060 0.0224 0.0144 0.0107 0.0084

Next we investigated how the MSEs behave as a function of δ. From the expression

of πapp
δ = {πapp

δi }ni=1 given in (19), we know the sampling distribution πapp
δ is close to the

optimal subsampling distribution when δ is small, while it is close to the uniform subsampling

distribution if δ is close to 1. In Table 2, we present the MSEs of the subsampling estimator

for different values of δ: 0, 0.1, 0.3, and 0.5. It is seen that δ = 0.1 produce the best result

most frequently among. Hence, we recommend δ = 0.1 when implementing our method in

practical applications with similar settings.
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Table 2: The MSE of subsampling-based estimator with different mixing rate δ.

CR=20% CR=60%

r δ = 0 δ = 0.1 δ = 0.3 δ = 0.5 δ = 0 δ = 0.1 δ = 0.3 δ = 0.5

Case I 400 0.0326 0.0320 0.0322 0.0346 0.0596 0.0590 0.0613 0.0670

600 0.0216 0.0215 0.0223 0.0230 0.0393 0.0392 0.0408 0.0443

800 0.0163 0.0159 0.0166 0.0176 0.0290 0.0279 0.0290 0.0317

1000 0.0131 0.0130 0.0132 0.0141 0.0222 0.0229 0.0243 0.0263

Case II 400 0.0347 0.0340 0.0357 0.0376 0.0594 0.0592 0.0623 0.0691

600 0.0219 0.0214 0.0225 0.0242 0.0372 0.0374 0.0394 0.0432

800 0.0164 0.0165 0.0170 0.0180 0.0284 0.0284 0.0302 0.0335

1000 0.0127 0.0127 0.0134 0.0141 0.0222 0.0221 0.0231 0.0248

Case III 400 0.0418 0.0418 0.0437 0.0463 0.0924 0.0804 0.0837 0.0891

600 0.0272 0.0272 0.0281 0.0300 0.0535 0.0510 0.0537 0.0582

800 0.0209 0.0206 0.0211 0.0223 0.0359 0.0379 0.0404 0.0431

1000 0.0164 0.0164 0.0169 0.0177 0.0295 0.0294 0.0306 0.0336

Case IV 400 0.0174 0.0167 0.0166 0.0178 0.0241 0.0226 0.0232 0.0256

600 0.0106 0.0108 0.0106 0.0112 0.0154 0.0157 0.0157 0.0169

800 0.0082 0.0083 0.0083 0.0084 0.0111 0.0108 0.0113 0.0128

1000 0.0065 0.0065 0.0065 0.0067 0.0091 0.0086 0.0089 0.0097

We considered the proposed subsampling method with approximated optimal subsam-

pling probabilities in Algorithm 1 with δ = 0.1 (“Lopt estimator”), and the uniform sub-

sampling method (“UNIF estimator”). We calculated the empirical biases (Bias), the mean

estimated standard errors (SE) calculated using (24), the empirical standard errors (ESE),

and the empirical 95% coverage probability (CP) towards the true parameter β. The pilot

sample size is r0 = 300.

We present the estimation results about β1 in Tables 3 and 4, indicating that both

Lopt and UNIF estimators are asymptotically unbiased. The SE and ESE are similar and

the coverage probabilities are close to the nominal level, which support the asymptotic

normality of the proposed estimator and demonstrate that the subsample-based variance-
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Table 3: Simulation results of the subsample estimator β̆1 with CR = 20%‡.

Lopt UNIF

r Bias ESE SE CP Bias ESE SE CP

Case I 400 -0.0021 0.0860 0.0901 0.960 -0.0069 0.1121 0.1148 0.947

600 0.0008 0.0717 0.0728 0.947 -0.0033 0.0896 0.0933 0.961

800 -0.0015 0.0603 0.0629 0.958 -0.0041 0.0787 0.0810 0.963

1000 0.0021 0.0551 0.0559 0.948 -0.0039 0.0672 0.0722 0.961

Case II 400 -0.0008 0.0836 0.0844 0.946 -0.0156 0.1032 0.1039 0.952

600 -0.0016 0.0662 0.0681 0.949 -0.0159 0.0857 0.0847 0.950

800 -0.0037 0.0594 0.0588 0.949 -0.0149 0.0769 0.0731 0.935

1000 -0.0020 0.0538 0.0523 0.944 -0.0090 0.0672 0.0649 0.939

Case III 400 -0.0025 0.1047 0.0997 0.937 -0.0109 0.1341 0.1297 0.943

600 -0.0002 0.0827 0.0808 0.936 -0.0029 0.1132 0.1048 0.944

800 -0.0029 0.0704 0.0696 0.938 -0.0037 0.0969 0.0906 0.939

1000 -0.0015 0.0615 0.0621 0.952 0.0008 0.0872 0.0808 0.938

Case IV 400 0.0011 0.0602 0.0625 0.953 -0.0093 0.0763 0.0758 0.942

600 -0.0010 0.0496 0.0505 0.958 -0.0072 0.0600 0.0616 0.955

800 0.0015 0.0421 0.0433 0.953 -0.0057 0.0505 0.0531 0.950

1000 -0.0003 0.0369 0.0386 0.966 -0.0058 0.0461 0.0473 0.953

‡ The (Bias, SE) of full data MPL estimator β̂1 is Case I: (Bias, SE) = (0.0001, 0.0021), Case II: (Bias, SE)

= (-0.0036, 0.0020), Case III: (Bias, SE) = (0.0004, 0.0027), Case IV: (Bias, SE) = (-0.0001, 0.0014).
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Table 4: Simulation results of the subsample estimator β̆1 with CR = 60%‡.

Lopt UNIF

r Bias ESE SE CP Bias ESE SE CP

Case I 400 0.0074 0.1119 0.1219 0.971 -0.0094 0.1509 0.1717 0.965

600 0.0066 0.0926 0.0984 0.966 -0.0142 0.1221 0.1404 0.979

800 0.0036 0.0769 0.0849 0.967 -0.0057 0.1089 0.1216 0.968

1000 0.0056 0.0708 0.0758 0.962 0.0001 0.0927 0.1083 0.979

Case II 400 -0.0086 0.1032 0.1012 0.947 -0.0242 0.1398 0.1409 0.952

600 -0.0033 0.0783 0.0813 0.961 -0.0141 0.1164 0.1139 0.945

800 -0.0046 0.0728 0.0699 0.937 -0.0053 0.0979 0.0984 0.948

1000 -0.0007 0.0623 0.0622 0.950 -0.0088 0.0869 0.0878 0.945

Case III 400 -0.0033 0.1562 0.1647 0.959 -0.0282 0.2186 0.2190 0.949

600 -0.0004 0.1244 0.1322 0.963 -0.0199 0.1845 0.1777 0.942

800 -0.0015 0.1113 0.1141 0.962 -0.0075 0.1497 0.1533 0.948

1000 0.0027 0.0972 0.1015 0.958 -0.0085 0.1358 0.1364 0.954

Case IV 400 0.0037 0.0685 0.0672 0.939 -0.0122 0.0997 0.0975 0.952

600 -0.0002 0.0585 0.0540 0.922 -0.0026 0.0784 0.0774 0.944

800 0.0022 0.0469 0.0465 0.948 -0.0061 0.0701 0.0663 0.936

1000 0.0018 0.0422 0.0414 0.944 -0.0047 0.0599 0.0588 0.945

‡ The (Bias, SE) of full data MPL estimator β̂1 is Case I: (Bias, SE) = (0.0026, 0.0029), Case II: (Bias, SE)

= (-0.0013, 0.0028), Case III: (Bias, SE) = (0.0012, 0.0042), Case IV: (Bias, SE) = (0.0021, 0.0019).
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covariance matrix estimator in (24) is accurate. Both subsample estimators get better as

the sampling size r increases. In addition, the Bias and ESE of the Lopt estimator are much

smaller than those of UNIF estimator with the same subsample size r. This agrees with the

conclusion in Theorem 3. Results for other regression coefficients are similar and thus are

omitted. Furthermore, we report the Bias and SE of the full data MPL estimator towards

the true parameter in the footnotes of Tables 3 and 4.

We calculated the five-number summary statistics of πapp
δ ’s for the censored and uncen-

sored observations separately to demonstrate the impact of censoring on optimal subsampling

probabilities numerically. Table 5 reports the results, including the Minimum, Lower-hinge

(the first quartile), Median, Upper-hinge (the third quartile), and the Maximum. Uncensored

observations have larger subsampling probabilities than censored observations in general, i.e.,

uncensored observations are more likely to be selected into a subsample by our subsampling

method.

Furthermore, we assessed the computational efficiency of our optimal subsampling method.

For comparison, we also considered the UNIF, full data estimator and SGD estimator

(Tarkhan and Simon, 2020), where the full data estimator was calculated with the R function

coxph and the SGD estimator was obtained by the R function bigSurvSGD (using default

settings). The computations were carried out using R (R Core Team, 2021) on a desktop

computer with 64GB memory. We restricted the calculations to access one CPU core and

recorded the average CPU time from 100 repetitions. Table 6 reports the results for Case

I, where the subsample size is r = 1000. The computational speed of the Lopt estimator is

much faster than that of the full data estimator with coxph. The computational burden of

the full data method gets heavier as the increase of full data sample size. In other words,

subsampling is desirable in Cox’s regression because it reduce the computational cost signif-

icantly. The UNIF estimator is faster to compute than the Lopt estimator, because it does

not need the step of calculating the sampling probabilities, but it has a lower estimation

efficiency as we have seen in previous results. Note that the SGD estimator is slower than

the full data estimator in terms of computation speed. We point out that the main aim

of the SGD estimator was to deal with large datasets where coxph cannot be used (due to

out-of-memory issues) rather than speeding up the calculations. In Table 7, we present more
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Table 5: The five-number summary statistics for πapp
δ (×106)‡.

Minimum Lower-hinge Median Upper-hinge Maximum

CR=20% Case I πapp
δ,c 0.1000 0.1894 0.4307 1.0141 28.3688

πapp
δ,u 0.1194 0.5507 0.8835 1.2732 21.5598

Case II πapp
δ,c 0.1000 0.1621 0.3547 0.8058 28.1762

πapp
δ,u 0.1182 0.5451 0.8588 1.3208 40.5288

Case III πapp
δ,c 0.1000 0.1698 0.3853 0.8781 58.9218

πapp
δ,u 0.1240 0.5132 0.8090 1.2228 93.0236

Case IV πapp
δ,c 0.1000 0.1854 0.4018 0.8461 33.6698

πapp
δ,u 0.1430 0.5188 0.7948 1.2636 57.4029

CR=60% Case I πapp
δ,c 0.1000 0.1759 0.4512 0.9822 21.7717

πapp
δ,u 0.1475 0.7905 1.2350 1.7154 24.5950

Case II πapp
δ,c 0.1000 0.1801 0.3659 0.7793 27.9329

πapp
δ,u 0.1163 0.8631 1.3230 1.9279 43.5112

Case III πapp
δ,c 0.1000 0.1607 0.3527 0.7858 54.5352

πapp
δ,u 0.1181 0.8581 1.2927 1.8870 61.6812

Case IV πapp
δ,c 0.1000 0.1259 0.2200 0.4839 54.4077

πapp
δ,u 0.1724 0.8910 1.4241 2.1763 167.3048

‡ πapp
δ,c and πapp

δ,u denote the mixed approximated optimal subsampling probabilities for censored and uncen-

sored samples, respectively; δ = 0.1.
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comparisons between Lopt and UNIF methods when the CPU computation times are similar.

It is seen that the Lopt and UNIF may have similar estimation efficiency using similar CPU

times. However, the UNIF uses larger sample sizes and thus larger memory. The optimal

subsampling method achieves the same estimation efficiency with less computing resources

in these scenarios.

Table 6: The CPU time for Case I with r = 1000 (in seconds)†.

n

Methods 106 5× 106 107

CR = 20% UNIF 0.17 0.25 0.34

Lopt 0.39 1.22 2.28

full data 6.75 45.71 100.65

SGD 94.19 603.81 1294.70

CR = 60% UNIF 0.10 0.17 0.27

Lopt 0.32 1.17 2.33

full data 6.16 45.87 99.54

SGD 99.50 530.84 1112.85

† “full data”: calculated with R function coxph; “SGD”: calculated

with R function bigSurvSGD.

Finally, we compared the two subsampling probabilities derived from the L-optimality

criterion (Lopt) and A-optimality criterion (Aopt), respectively. By Remark 4, the optimal

subsampling probabilities under the A-optimality criterion are obtained by minimizing tr(Σ),

where Σ is given in (11). Using a similar deduction as that of (18), we can obtain the

approximated optimal subsampling probabilities under the A-optimality criterion:

πAopt
i =

∥Ψ0∗−1
∫ τ

0
{Xi − X̄0∗(t, β̃0)}dM̂i(t, β̃0)∥∑n

j=1 ∥Ψ0∗−1
∫ τ

0
{Xj − X̄0∗(t, β̃0)}dM̂j(t, β̃0)∥

, i = 1, · · · , n, (27)

where

Ψ0∗ =
1

r0

r0∑
i=1

∆0∗
i

S0∗(2)(Y 0∗
i , β̃0)

S0∗(0)(Y 0∗
i , β̃0)

−

{
S0∗(1)(Y 0∗

i , β̃0)

S0∗(0)(Y 0∗
i , β̃0)

}⊗2
 ,
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Table 7: Comparisons of CPU times between Lopt and UNIF (in seconds)†.

CR=20% CR=60%

CPU r MSE CPU r MSE

Case I Lopt 0.4304 1000 0.01215 0.3834 1100 0.02047

UNIF 0.4823 1700 0.01113 0.3631 2100 0.01930

Case II Lopt 0.3670 800 0.01515 0.4591 1400 0.01602

UNIF 0.3415 1400 0.01519 0.4568 2300 0.01757

Case III Lopt 0.3842 850 0.01667 0.4972 1400 0.02158

UNIF 0.4465 1500 0.01675 0.5259 2300 0.02424

Case IV Lopt 0.4749 1100 0.00575 0.4097 1100 0.00819

UNIF 0.5260 1650 0.00565 0.3726 2000 0.00882

† “CPU” denotes average CPU time from 100 repetitions; the full data size is n = 106.

and S0∗(k)(Y 0∗
i , β̃0) = (r0)

−1∑r0
j=1 I(Y

0∗
j ≥ Y 0∗

i )X0∗⊗k
j exp(β̃′

0X
0∗
j ) for k = 0, 1, 2. The corre-

sponding mixed subsampling probabilities with A-optimality criterion are

πAopt
δi = (1− δ)πAopt

i +
δ

n
, i = 1, · · · , n.

In Figures 1 and 2, we report the empirical MSEs of subsample estimators with Lopt, Aopt

and UNIF methods, where δ = 0.1. The results indicates that Lopt and Aopt have similar

performance. In addition, the UNIF has the largest MSE compared with Lopt and Aopt

methods. It is clear that the speed of Aopt is slower than Lopt, because there is an additional

termΨ0∗ involved in (27). As a summary, we recommend using the Lopt for our subsampling

method in practical applications.
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Figure 1: The MSEs for different subsampling methods with CR= 20%.
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Figure 2: The MSEs for different subsampling methods with CR= 60%.

5.2 Application

In this section, we apply the proposed subsampling method to a real-world data example

about the USA airline, where the dataset is publicly available from DVN (2008). We are

interested in analysing those arrival delayed airlines, where there were totally 57,729,435
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arrival delayed commercial flights within the USA from October 1987 to April 2008. For

the ith airline, the failure time Ti is defined as the delayed time from scheduled arrival

time to actual arrival time (in minutes). Among those 57,729,435 arrival delayed flights,

33,142,872 subjects experienced an actual arrival within 15 minutes (the delayed arrival

time is less than 15 minutes). The censoring rate is about 42.6%. For analysis, the risk

factors Xi = (Xi1, Xi2)
′ in Cox’s model are departure status (departure on time or ahead of

schedule = 0 and departure delayed = 1) and distance (continuous, in thousands of miles),

respectively.

Table 8: Estimation results for the airline arrival delay data with one subsample.

Lopt UNIF

β Est SE CI Est SE CI

r = 400 β1 -1.0009 0.1303 (-1.2562, -0.7456) -1.2038 0.1353 (-1.4691, -0.9385)

β2 -0.3188 0.1194 (-0.5527, -0.0848) -0.2471 0.1296 (-0.5009, 0.0069)

r = 600 β1 -1.0633 0.1036 (-1.2663, -0.8602) -1.0865 0.1298 (-1.3409, -0.8322)

β2 -0.2341 0.0869 (-0.4045, -0.0637) -0.3207 0.1195 (-0.5549, -0.0865)

r = 800 β1 -1.1121 0.0826 (-1.2741, -0.9502) -1.0575 0.1001 (-1.2536, -0.8613)

β2 -0.3418 0.0689 (-0.4769, -0.2067) -0.2674 0.1031 (-0.4694, -0.0654)

r = 1000 β1 -1.1099 0.0745 (-1.2559, -0.9638) -1.1147 0.0857 (-1.2826, -0.9468)

β2 -0.2498 0.0598 (-0.3669, -0.1326) -0.2505 0.0882 (-0.4233, -0.0777)

For comparison, we calculated the full data estimator β̂MPL = (−1.1301,−0.2396)′ with

coxph, and the corresponding SEs are 0.00035 and 0.00034, respectively. Hence, departure

status and distance have negative effects on the hazard rate of airline’s arrival. That is to

say, it is expected that a departure delayed airline with long distance would owns a longer

arrival delay. In addition, we calculated the Lopt estimator with δ = 0.1 and the UNIF

estimator. We present the results on the subsampling-based estimator (Est), the SE and

the 95% confidence interval (CI) based on one subsample in Table 8. Both Lopt and UNIF

estimators are close to β̂MPL, especially when the subsample size is large (e.g. r = 1000). The
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SE of the Lopt estimator is much smaller than that of the UNIF estimator, which supports

the theoretical conclusion in Theorem 2. To further validate the usefulness of our method, we

report the Bias, SE and ESE of the subsample-based estimates based on 1000 subsamples in

Table 9, where the Bias denotes the average bias of the subsampling estimator with respect

to the full-data MPL estimator. Both subsample-based estimates are unbiased, and the SE

is close to ESE indicating that the estimated variance-covariance matrix in (24) works well.

The results in Table 9 again demonstrate that the Lopt estimator is more efficient than the

UNIF estimator. Finally, the full data MPL estimator with coxph needs 265.58 seconds,

where the computer is the same as that used in the simulation. For r = 1000, the Lopt only

requires 9.03 seconds to output the subsample estimators and their SEs (UNIF needs 1.08

seconds). i.e., the Lopt method has a much faster computation efficiency than the coxph

when we face with large-scale survival dataset in practice.

Table 9: The Bias and (ESE, SE) for subsample estimates in real data.

β Lopt UNIF

r = 400 β1 0.0030 (0.1228, 0.1289) -0.0059 (0.1351, 0.1466)

β2 0.0022 (0.1033, 0.1094) -0.0035 (0.1346, 0.1419)

r = 600 β1 0.0003 (0.1017, 0.1016) -0.0055 (0.1129, 0.1087)

β2 -0.0018 (0.0833, 0.0804) -0.0019 (0.1103, 0.1061)

r = 800 β1 0.0019 (0.0827, 0.0854) -0.0026 (0.0982, 0.0932)

β2 -0.0002 (0.0680, 0.0692) -0.0008 (0.0938, 0.0912)

r = 1000 β1 0.0002 (0.0799, 0.0781) -0.0009 (0.0859, 0.0886)

β2 -0.0027 (0.0616, 0.0657) -0.0030 (0.0849, 0.0859)

6 Concluding Remarks

In this paper, we have studied the statistical properties of a general subsampling algorithm

for Cox’s model with massive survival data. We provided the optimal subsampling proba-

bilities, and established asymptotic properties of the two-step subsample-based parameter
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estimator conditional on the full data. Extensive simulations and a real data example have

been used to validate the practical usefulness of our method. Note that the proposed ap-

proach is appropriate when the outcome of interest is common and the dataset includes

enough observed events, i.e., our subsample method is suitable for the regular time-to-event

data. Faced with massive survival datasets with rare events, Keret and Gorfine (2020) pro-

posed a novel and interesting subsampling procedure to deal with computational challenges

in massive data Cox regression. Their procedure is based on counting process type score

function, while we derive the asymptotic distribution of subsample-based estimator from the

martingale-type subsample score function. Keret and Gorfine (2020) avoided the need of

estimating the cumulative baseline hazard function for the optimal subsampling probabili-

ties, which was in contrast to our approach. In addition, our proposed subsample estimator

approximates the maximizer of the full data partial likelihood, and the approximation error

is not significantly affected by the correctness of the Cox model. In other words, if the

proportional hazards assumption is violated, the subsample estimator is still close to the full

data estimator, but the full data estimator may not be the best estimator any more.

There are four important topics for further research. First, it is desirable to investigate

how the proportional hazards assumption can be adequately checked based on subsamples.

Second, the numerator of πapp
i only involves the ith subject and the pilot subsample, which

sheds light on the feasibility of distributed or parallel algorithms when calculating the opti-

mal sampling probabilities. For example, by splitting the full data into multiple blocks, it is

possible to calculate the terms ∥
∫ τ

0
{Xi− X̄0∗(t, β̃0)}dM̂i(t, β̃0)∥ with distributed computing

environments. In this case, the computational speed of optimal subsampling method would

be significantly improved. Third, in many practical applications, observed data are often

corrupted by outliers (Meng et al., 2021). Therefore, it is interesting to study the optimal

subsampling method for Cox’s model with the presence of outliers. Forth, the tuning param-

eter δ perform well with a value of 0.1 in our numerical results, but there is not theoretically

justification to show that this value will work in all scenarios. How to select δ attentively

requires further investigations.
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Supplementary Materials

Supplement The supplementary PDF file contains proofs of all the theoretical results in

this paper.

R codes The zip file contains the R codes used to perform the subsampling methods de-

scribed in the article, where the readme file describes details about the codes.
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A Proofs

In this section, we give the proof details of Theorems 1-3 and Proposition 1. For these goals,

we first need the following lemmas.

Lemma S.1 (Xu et al., 2009) Suppose that as n→ ∞,

sup
t∈[0,τ ]

|hn(t)− h(t)| → 0, sup
t∈[0,τ ]

|gn(t)− g(t)| → 0,

where h is continuous on [0, τ ], gn(·) and g(·) are left-continuous on [0, τ ], with their total

variations bounded by a constant that is independent of n. Then, n→ ∞,

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

hn(u)dgn(u)−
∫ t

0

h(u)dg(u)

∣∣∣∣→ 0,

and

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

hn(u)dgn(u)−
∫ t

0

hn(u)dg(u)

∣∣∣∣→ 0.

Lemma S.2 Suppose the assumptions 1-4 hold, then as n→ ∞ and r → ∞, conditional on

Dn, for any β ∈ Θ we have

U∗(β) = ℓ̇(β) +OP |Dn(r
−1/2), (S.1)

and

ℓ̇∗(β) = U∗(β) + oP |Dn(r
−1/2), (S.2)
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where Θ is a compact set containing the true value of β, ℓ̇(β) and ℓ̇∗(β) are given in (3) and

(8), respectively. Moreover,

U∗(β) = − 1

nr

r∑
i=1

1

π∗
i

∫ τ

0

{X∗
i − X̄(t,β)}dM∗

i (t,β)

with dM∗
i (t,β) = dN∗

i (t)− I(Y ∗
i ≥ t) exp(β′X∗

i )λ0(t)dt, i = 1, · · · , r.

Proof. For i = 1, · · · , r, denote

ζ∗i (β) = − 1

nπ∗
i

∫ τ

0

{X∗
i − X̄(t,β)}dM∗

i (t,β).

Conditional on Dn, ζ
∗
1 (β), · · · , ζ∗r (β) are independent and identically distributed random

vectors, it is straightforward to derive that

E{ζ∗1 (β)|Dn} = − 1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t,β)}dMi(t,β)

= ℓ̇(β).

Note that U∗(β) = r−1
∑r

i=1 ζ
∗
i (β), then E{U∗(β)|Dn} = E{ζ∗1 (β)|Dn} = ℓ̇(β).

Let U∗
j(β) be the jth component of U∗(β) for j = 1, · · · , p, then we have

V ar{U∗
j(β)|Dn} =

1

n2r

n∑
i=1

1

πi

[∫ τ

0

{Xij − X̄j(t,β)}dMi(t,β)

]2

− 1

n2r

[
n∑

i=1

∫ τ

0

{Xij − X̄j(t,β)}dMi(t,β)

]2

≤ 1

n2r

n∑
i=1

1

πi

∥∥∥∥∫ τ

0

{Xi − X̄(t,β)}dMi(t,β)

∥∥∥∥2
≤ max

1≤i≤n

{
1

nπi

}
1

nr

n∑
i=1

∥∥∥∥∫ τ

0

{Xi − X̄(t,β)}dMi(t,β)

∥∥∥∥2
= OP (r

−1).

Here the last equality is from the assumption 4, together with

1

n

n∑
i=1

∥∥∥∥∫ τ

0

{Xi − X̄(t,β)}dMi(t,β)

∥∥∥∥2 = OP (1),

which can be deduced by the boundedness of Xi’s in Dn, together with the assumptions

1 and 3. The Markov’s inequality implies that U∗
j(β) − ℓ̇j(β) = OP |Dn(r

−1/2). Therefore,

U∗(β) = ℓ̇(β) +OP |Dn(r
−1/2), i.e., the conclusion given in (S.1) is established.
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For the sake of proving (S.2), we rewrite the expression of ℓ̇∗(β) as

ℓ̇∗(β) = − 1

rn

r∑
i=1

1

π∗
i

∫ τ

0

{X∗
i − X̄(t,β) + X̄(t,β)− X̄∗(t,β)}dM∗

i (t,β)

= U∗(β) +
1

rn

r∑
i=1

1

π∗
i

∫ τ

0

{X̄∗(t,β)− X̄(t,β)}dM∗
i (t,β)︸ ︷︷ ︸

R∗(β)

. (S.3)

Recall that X̄∗(t,β) = S∗(1)(t,β)/S∗(0)(t,β), where S∗(1)(t,β) = (nr)−1
∑r

i=1 π
∗−1
i I(Y ∗

i ≥

t)X∗
i exp(β

′X∗
i ) and S∗(0)(t,β) = (nr)−1

∑r
i=1 π

∗−1
i I(Y ∗

i ≥ t) exp(β′X∗
i ). Conditional on

Dn, (X
∗
i , Y

∗
i , π

∗
i )’s are independent and identically distributed variables. For a subsample

D∗
r = {Z∗

i }ri=1 with Z∗
i = (X∗

i ,∆
∗
i , Y

∗
i , π

∗
i ), we define a subsample empirical measure given

the full data Dn,

Pr|Dn =
1

r

r∑
i=1

δZ∗
i
,

where δZ is a measure that assigns mass 1 at Z and 0 elsewhere. For a measurable function

f : Dn 7→ R, we denote

Pr|Dnf =
1

r

r∑
i=1

f(Z∗
i ).

Using the conditional empirical measure Pr|Dn , we can rewrite the S∗(k)(t,β) as

S∗(k)(t,β) = Pr|Dn{(nπ∗)−1I(Y ∗ ≥ t)X∗⊗k exp(β′X∗)}, k = 0, 1, 2.

In order to use the technique of empirical process (van der Vaart and Wellner, 1996), we

denote PDn as taking expectation conditional on the full data Dn. e.g.

PDnf(Z
∗) = E {f(Z∗) Dn} =

n∑
i=1

πif(Zi). (S.4)

From (S.4), we have the following expressions:

PDn{(nπ∗)−1I(Y ∗ ≥ t)X∗⊗k exp(β′X∗)} = E

[
1

nπ∗ I(Y
∗ ≥ t)X∗⊗k exp(β′X∗) Dn

]
=

1

n

n∑
i=1

I(Yi ≥ t)X⊗k
i exp(β′Xi)

= S(k)(t,β).
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By Kosorok (2008) and the assumptions 3 and 4, we know {(nπ)−1I(Y ≥ t)X⊗k exp(β′X) :

t ∈ [0, τ ],β ∈ Θ} and {(nπ)−1N(t) : t ∈ [0, τ ]} are Donsker, where k = 0, 1 and 2. Therefore,

conditional on Dn we have

∥S∗(k)(t,β)− S(k)(t,β)∥ P−→ 0 uniformly towards t. (S.5)

Because S(0)(t,β) is bounded away from zero (Andersen and Gill, 1982), then conditional

on Dn,

sup
t∈[0,τ ]

∥∥∥∥Pr|Dn{(nπ∗)−1I(Y ∗ ≥ t)X∗ exp(β′X∗)}
Pr|Dn{(nπ∗)−1I(Y ∗ ≥ t) exp(β′X∗)}

− PDn{(nπ∗)−1I(Y ∗ ≥ t)X∗ exp(β′X∗)}
PDn{(nπ∗)−1I(Y ∗ ≥ t) exp(β′X∗)}

∥∥∥∥ P−→ 0.

i.e., as r → ∞,

∥X̄∗(t,β)− X̄(t,β)∥ P−→ 0 uniformly towards t. (S.6)

Combining (S.3) and (S.6), as r → ∞ some calculations lead to

R∗(β) =
1

rn

r∑
i=1

1

π∗
i

∫ τ

0

{X̄∗(t,β)− X̄(t,β)}dM∗
i (t)

=

∫ τ

0

{X̄∗(t,β)− X̄(t,β)}dN̄∗
r (t)︸ ︷︷ ︸

R∗
1(β)

−
∫ τ

0

{X̄∗(t,β)− X̄(t,β)}dΛ̄∗
r(t)︸ ︷︷ ︸

R∗
2(β)

,

where N̄∗
r (t) = 1

rn

∑r
i=1

1
π∗
i
N∗

i (t) and Λ̄∗
r(t) = 1

rn

∑r
i=1

1
π∗
i

∫ t

0
I(Y ∗

i ≥ u) exp(β′X∗
i )λ0(u)du.

Note that N̄∗
r (t) and Λ̄∗

r(t) are two nondecreasing processes, due to (S.6) we have

∥R∗
1(β)∥ =

∥∥∥∥∫ τ

0

{X̄∗(t,β)− X̄(t,β)}dN̄∗
r (t)

∥∥∥∥
≤

∫ τ

0

∥X̄∗(t,β)− X̄(t,β)∥dN̄∗
r (t)

= N̄∗
r (τ)oP (1),

and

∥R∗
2(β)∥ =

∥∥∥∥∫ τ

0

{X̄∗(t,β)− X̄(t,β)}dΛ̄∗
r(t)

∥∥∥∥
≤

∫ τ

0

∥X̄∗(t,β)− X̄(t,β)∥dΛ̄∗
r(t)

= Λ̄∗
r(τ)oP (1).
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Therefore,

R∗(β) = {N̄∗
r (τ)− Λ̄∗

r(τ)}oP (1)

=

{
1

rn

r∑
i=1

1

π∗
i

M∗
i (τ)

}
oP (1).

In view of the martingale property E{M(τ)} = 0, conditional on Dn we observe the

following two facts:

E

{
1

rn

r∑
i=1

1

π∗
i

M∗
i (τ) Dn

}
=

1

n

n∑
i=1

Mi(τ) = oP (1),

and

V ar

{
1

rn

r∑
i=1

1

π∗
i

M∗
i (τ) Dn

}
=

1

n2r

n∑
i=1

1

πi
M2

i (τ)−
1

r

{
1

n

n∑
i=1

Mi(τ)

}2

≤ max
1≤i≤n

{
1

nπi

}
1

rn

n∑
i=1

M2
i (τ) + oP (r

−1)

= OP (r
−1),

where the last equality is due to the assumptions 1, 3 and 4. By the Markov’s inequality, we

have

1

rn

r∑
i=1

1

π∗
i

M∗
i (τ) = OP |Dn(r

−1/2). (S.7)

Therefore, we know that

R∗(β) = OP |Dn(r
−1/2)oP (1) = oP |Dn(r

−1/2). (S.8)

Combining (S.3) and (S.8), we get ℓ̇∗(β) = U∗(β) + oP |Dn(r
−1/2). This ends the proof.

Lemma S.3 If the assumptions 1-4 hold, as n → ∞ and r → ∞, conditional on Dn, we

have

ℓ̇∗(β̂MPL) = OP |Dn(r
−1/2), (S.9)
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and

ℓ̈∗(β̂MPL) = Ψ+ oP (1), (S.10)

where Ψ is given in (12), and

ℓ̈∗(β̂MPL) =
1

nr

r∑
i=1

∆∗
i

π∗
i

S∗(2)(Y ∗
i , β̂MPL)

S∗(0)(Y ∗
i , β̂MPL)

−

{
S∗(1)(Y ∗

i , β̂MPL)

S∗(0)(Y ∗
i , β̂MPL)

}⊗2
 . (S.11)

Proof. In view of (S.1) and (S.2), we know ℓ̇∗(β̂MPL) = ℓ̇(β̂MPL) + OP |Dn(r
−1/2). From Cox

(1975), the full data maximum partial likelihood estimator β̂MPL satisfying ℓ̇(β̂MPL) = 0,

hence the conclusion given in (S.9) holds.

Based on the subsample D∗
r = {(X∗

i ,∆
∗
i , Y

∗
i , π

∗
i )}ri=1, we introduce an auxiliary term

V∗(β) = − 1

nr

r∑
i=1

1

π∗
i

∫ τ

0

{X∗
i − X̄(t,β)}dN∗

i (t,β), (S.12)

where N∗
i (t) = I(∆∗

i = 1, Y ∗
i ≤ t), and X̄(t,β) is given in (4). Some calculations lead to the

following expression:

V̇∗(β̂MPL) =
1

nr

r∑
i=1

∆∗
i

π∗
i

S(2)(Y ∗
i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

−

{
S(1)(Y ∗

i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

}⊗2
 . (S.13)

Conditional on Dn, it is straightforward to deduce that

E{V̇∗(β̂MPL)|Dn} =
1

n

n∑
i=1

∆i

S(2)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2


= Ψ.

For any 1 ≤ j1, j2 ≤ p, denote V̇∗
j1j2

(β̂MPL) and Ψj1j2 as any components of V̇∗(β̂MPL) and

Ψ, respectively. Then we have

V ar{V̇∗
j1j2

(β̂MPL)|Dn} =
1

rn2

n∑
i=1

∆i

πi

S(2)
j1j2

(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2

j1j2

2

− 1

r
Ψ2

j1j2

≤ 1

rn2

n∑
i=1

∆i

πi

∥∥∥∥∥∥S
(2)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2
∥∥∥∥∥∥
2
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≤ max
1≤i≤n

{
1

nπi

}
1

rn

n∑
i=1

∆i

∥∥∥∥∥∥S
(2)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2
∥∥∥∥∥∥
2

= OP |Dn(r
−1).

Here the last equality is from the assumption 4, along with

1

n

n∑
i=1

∆i

∥∥∥∥∥∥S
(2)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2
∥∥∥∥∥∥
2

= OP |Dn(1),

which is derived from the boundedness of Xi’s in Dn, the assumption 3 and S(0)(Yi, β̂MPL) is

bounded away from zero. By the Markov’s inequality, we get

V̇∗(β̂MPL) = Ψ+OP |Dn(r
−1/2). (S.14)

Conditional on Dn, some calculations lead to

∥ℓ̈∗(β̂MPL)− V̇∗(β̂MPL)∥ ≤ 1

rn

r∑
i=1

∆∗
i

π∗
i

∥∥∥∥∥S∗(2)(Y ∗
i , β̂MPL)

S∗(0)(Y ∗
i , β̂MPL)

− S(2)(Y ∗
i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

∥∥∥∥∥
+

1

rn

r∑
i=1

∆∗
i

π∗
i

∥∥∥∥∥∥
{
S∗(1)(Y ∗

i , β̂MPL)

S∗(0)(Y ∗
i , β̂MPL)

}⊗2

−

{
S(1)(Y ∗

i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

}⊗2
∥∥∥∥∥∥

=

{
1

rn

r∑
i=1

∆∗
i

π∗
i

}
oP (1)

≤ max
1≤i≤n

{
1

nπi

}
oP (1)

= oP (1), (S.15)

which is due to (S.5) and the assumption 4. Thus, we have

∥ℓ̈∗(β̂MPL)− V̇∗(β̂MPL)∥ = oP (1). (S.16)

By the triangle inequality, it is easy to derive that

∥ℓ̈∗(β̂MPL)−Ψ∥ ≤ ∥ℓ̈∗(β̂MPL)− V̇∗(β̂MPL)∥+ ∥V̇∗(β̂MPL)−Ψ∥

= oP (1),

where the last equality is owing to (S.14) and (S.16). This ends the proof.
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Proof of Theorem 1. First we establish the asymptotic normality of subsample-based

estimator β̃ towards β̂MPL given Dn. As n→ ∞ and r → ∞, it follows from (S.1) and (S.2)

that ℓ̇∗(β) − ℓ̇(β) → 0 in probability conditional on Dn. Because the parameter space Θ

is compact, the full data estimator β̂MPL is an unique solution to ℓ̇(β) = 0 (Andersen and

Gill, 1982). From Theorem 5.9 and its remark of van der Vaart (1998), conditional on Dn

in probability, as n→ ∞ and r → ∞, we can obtain the following conclusion:

∥β̃ − β̂MPL∥ = oP |Dn(1). (S.17)

i.e., for any ϵ > 0, we have limr→∞ P (∥β̃ − β̂MPL∥ > ϵ|Dn) = 0. According to Xiong and Li

(2008), a random sequence converges to zero in conditional probability also indicates that

it converges to zero in unconditional probability. For notational simplicity, throughout the

proofs we will use oP (1) instead of oP |Dn(1). In other word, we have ∥β̃ − β̂MPL∥ = oP (1).

By the Taylor expansion, as r → ∞ we can derive that

0 = ℓ̇∗j(β̃) = ℓ̇∗j(β̂MPL) +
∂ℓ̇∗j(β̂MPL)

∂β′ (β̃ − β̂MPL) +Rj, (S.18)

where ℓ̇∗j(β) is the partial derivative of ℓ∗(β) with respect to βj, and

Rj = (β̃ − β̂MPL)
′
∫ 1

0

∫ 1

0

∂2ℓ̇∗j{β̂MPL + uv(β̃ − β̂MPL)}
∂β∂β′ vdudv(β̃ − β̂MPL).

Due to the assumptions 3-4, some direct calculations lead to the following conclusion:

sup
β∈Θ

∥∥∥∥∥∂2ℓ̇∗j(β)∂β∂β′

∥∥∥∥∥ ≤ K

nr

r∑
i=1

∆∗
i

π∗
i

≤ max
1≤i≤r

{
1

nπ∗
i

}
K

r

r∑
i=1

∆∗
i

= OP |Dn(1),

where K is a positive constant. Therefore, Rj = OP |Dn(∥β̃ − β̂MPL∥2). Based on (S.10), we

know ℓ̈∗(β̂MPL) = Ψ+OP |Dn(r
−1/2) = OP |Dn(1). In view of (S.9) and (S.18), we get

β̃ − β̂MPL = −{ℓ̈∗(β̂MPL)}−1{ℓ̇∗(β̂MPL) +OP |Dn(∥β̃ − β̂MPL∥2)}

= OP |Dn(r
−1/2) + oP |Dn(∥β̃ − β̂MPL∥)

= OP |Dn(r
−1/2). (S.19)
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Subsequently, we need to prove the asymptotic normality of β̃ towards β̂MPL given Dn.

Recall that

U∗(β̂MPL) = − 1

nr

r∑
i=1

1

π∗
i

∫ τ

0

{X∗
i − X̄(t, β̂MPL)}dM∗

i (t, β̂MPL) =
r∑

i=1

ξ∗i ,

where

ξ∗i = − 1

nrπ∗
i

∫ τ

0

{X∗
i − X̄(t, β̂MPL)}dM∗

i (t, β̂MPL), i = 1, · · · , r.

Given Dn, ξ
∗
1 , · · · , ξ∗r are independent and identically distributed random variables with

E(ξ∗i |Dn) = − 1

nr

n∑
i=1

∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

= ℓ̇(β̂MPL) = 0,

and

V ar(ξ∗i |Dn) = E

(
1

n2r2π∗2
i

[∫ τ

0

{
X∗

i − X̄(t, β̂MPL)
}
dM∗

i (t, β̂MPL)

]⊗2

Dn

)

=
1

n2r2

n∑
i=1

1

πi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2

.

For every ϵ > 0, we have

E

(
r∑

i=1

∥ξ∗i ∥2I(∥ξ∗i ∥ > ϵ) Dn

)

≤ 1

ϵ

r∑
i=1

E(∥ξ∗i ∥3|Dn)

=
1

r2ϵ

{
1

n3

n∑
i=1

1

π2
i

∥∥∥∥∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

∥∥∥∥3
}

≤ 1

r2ϵ
max
1≤i≤n

{
1

n2π2
i

}{
1

n

n∑
i=1

∥∥∥∥∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

∥∥∥∥3
}

= oP (1), as r → ∞.

Here the last equality is from the assumption 4, and

1

n

n∑
i=1

∥∥∥∥∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

∥∥∥∥3 = OP |Dn(1),
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which is due to the boundedness of Xi’s in Dn and the assumptions 1 and 3. Therefore, the

Lindeberg-Feller conditions are satisfied in probability. By the Lindeberg-Feller central limit

theorem (Proposition 2.27 of van der Vaart (1998)), as r → ∞ and conditional on Dn, we

get

Γ−1/2U∗(β̂MPL)
d−→ N (0, I), (S.20)

where

Γ =
1

n2r

n∑
i=1

1

πi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2

= OP |Dn(r
−1). (S.21)

Conditional on Dn, it follows from Theorem 2.7 of van der Vaart (1998), together with

(S.2) and (S.20) that as r → ∞,

Γ−1/2ℓ̇∗(β̂MPL) = Γ−1/2U∗(β̂MPL) + oP (1)

d−→ N (0, I). (S.22)

Based on (S.10) and (S.19), we can deduce the following conclusion:

β̃ − β̂MPL = −{ℓ̈∗(β̂MPL)}−1ℓ̇∗(β̂MPL) +OP |Dn(r
−1). (S.23)

It follows from the assumption 2 and (S.21) that

Σ = Ψ−1ΓΨ−1 = OP |Dn(r
−1). (S.24)

By (S.24), it can be deduced that

{ℓ̈∗(β̂MPL)}−1 −Ψ−1 = −Ψ−1{ℓ̈∗(β̂MPL)−Ψ}Ψ−1 = oP (1). (S.25)

From (S.23), (S.24), (S.25) and Lemma S.3, we get

Σ−1/2(β̃ − β̂MPL) = −Σ−1/2{ℓ̈∗(β̂MPL)}−1ℓ̇∗(β̂MPL) +OP |Dn(r
−1/2)

= −Σ−1/2Ψ−1ℓ̇∗(β̂MPL)−Σ−1/2[{ℓ̈∗(β̂MPL)}−1 −Ψ−1]ℓ̇∗(β̂MPL) +OP |Dn(r
−1/2)

= −Σ−1/2Ψ−1Γ1/2Γ−1/2ℓ̇∗(β̂MPL) + oP (1). (S.26)

Furthermore, we observe that

Σ−1/2Ψ−1Γ1/2(Σ−1/2Ψ−1Γ1/2)′ = Σ−1/2Ψ−1Γ1/2Γ1/2Ψ−1Σ−1/2 = I. (S.27)
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By (S.22), (S.26), (S.27) and the Slutsky’s theorem, conditional on Dn, as n → ∞ and

r → ∞,

Σ−1/2(β̃ − β̂MPL)
d−→ N (0, I).

That is to say, for any x ∈ Rp we have P{Σ−1/2(β̃ − β̂MPL) ≤ x|Dn} → Φ(x) in probability,

where Φ(x) is the cumulative distribution function of the standard multivariate normal dis-

tribution.

Proof of Theorem 2. Note that

tr(Γ) = tr

(
1

n2r

n∑
i=1

1

πi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2)
=

1

rn2

n∑
i=1

1

πi

∥∥∥∥∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

∥∥∥∥2
=

1

rn2

n∑
i=1

πi

n∑
i=1

1

πi

∥∥∥∥∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

∥∥∥∥2

≥ 1

rn2

{
n∑

i=1

∥∥∥∥∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

∥∥∥∥
}2

,

where the last inequality is from the Cauchy-Schwarz inequality, and its equality holds if and

only if πi = ς∥
∫ τ

0
{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)∥ for some ς > 0. Due to

∑n
i=1 πi = 1, we

know ς = {
∑n

j=1 ∥
∫ τ

0
{Xj − X̄(t, β̂MPL)}dMj(t, β̂MPL)∥}−1. Therefore, the optimal subsam-

pling probabilities are

πLopt
i =

∥
∫ τ

0
{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)∥∑n

j=1 ∥
∫ τ

0
{Xj − X̄(t, β̂MPL)}dMj(t, β̂MPL)∥

, i = 1, · · · , n.

This completes the proof.

Lemma S.4 Under the assumptions 1-3, as n → ∞ and r0 → ∞, conditional on Dn we

have Λ̂UNIF
0 (t, β̃0) = Λ0(t) + OP |Dn(r

−1/2
0 ), i.e., for any ϵ > 0, with probability approaching

one, there exists a finite ∆ϵ and rϵ, such that

P
(∣∣∣Λ̂UNIF

0 (t, β̃0)− Λ0(t)
∣∣∣ ≥ r

−1/2
0 ∆ϵ Dn

)
< ϵ, (S.28)
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for all r0 ≥ rϵ, where Λ̂UNIF
0 (t,β) is a uniform subsample Breslow-type estimator defined in

(17).

Proof. For any t ∈ [0, τ ] and β ∈ Θ, conditional on Dn we need to prove the following two

expressions:

1

r0

r0∑
i=1

I(Y 0∗
i ≥ t) exp(β′X0∗

i ) =
1

n

n∑
i=1

I(Yi ≥ t) exp(β′Xi) +OP |Dn(r
−1/2
0 ), (S.29)

and

1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t)

n−1
∑n

j=1 I(Yj ≥ Y 0∗
i ) exp(β′Xj)

= Λ̂0(t,β) +OP |Dn(r
−1/2
0 ), (S.30)

where Λ̂0(t,β) is the full data Breslow estimator given in (25), andD∗
r0
= {(X0∗

i ,∆
0∗
i , Y

0∗
i )}r0i=1

is a uniform subsample from the full data Dn.

Conditional on Dn, it is straightforward to clarify that

E

{
1

r0

r0∑
i=1

I(Y 0∗
i ≥ t) exp(β′X0∗

i ) Dn

}
=

1

n

n∑
i=1

I(Yi ≥ t) exp(β′Xi),

and

V ar

{
1

r0

r0∑
i=1

I(Y 0∗
i ≥ t) exp(β′X0∗

i ) Dn

}

=
1

nr0

n∑
i=1

I(Yi ≥ t) exp(2β′Xi)−
1

n2r

{
n∑

i=1

I(Yi ≥ t) exp(β′Xi)

}2

≤ 1

r0n

n∑
i=1

exp(2β′Xi)

= OP |Dn(r
−1),

where the last equality is from the assumption 3. The Markov’s inequality leads to (S.29).

For i = 1, · · · , r0, we denote

η0∗i =
∆0∗

i I(Y
0∗
i ≤ t)

n−1
∑n

j=1 I(Yj ≥ Y 0∗
i ) exp(β′Xj)

.

Conditional on Dn, we have

E

(
1

r0

r0∑
i=1

η0∗i Dn

)
=

n∑
i=1

∆iI(Yi ≤ t)∑n
j=1 I(Yj ≥ Yi) exp(β′Xj)

12



= Λ̂0(t,β),

and

V ar

(
1

r0

r0∑
i=1

η0∗i Dn

)
= E

{
1

r0

r0∑
i=1

η0∗i − Λ̂0(t,β) Dn

}2

=
1

r0
E
{
(η0∗i )2 − 2η0∗i Λ̂0(t,β) + Λ̂2

0(t,β) Dn

}
=

1

r0
E
{
(η0∗i )2 Dn

}
− 1

r0
Λ̂2

0(t,β)

≤ 1

r0n

[
n∑

i=1

∆iI(Yi ≤ t)

{n−1
∑n

j=1 I(Yj ≥ Yi) exp(X′
jβ)}2

]
= OP |Dn(r

−1
0 ).

Here the last equality is due to

1

n

n∑
i=1

∆iI(Yi ≤ t)

{n−1
∑n

j=1 I(Yj ≥ Yi) exp(X′
jβ)}2

= OP (1),

which is from the assumption 3. As a result, the Markov’s inequality ensures that (S.30)

holds, i.e., r−1
0

∑r0
i=1 η

0∗
i = Λ̂0(t,β)+OP |Dn(r

−1/2
0 ). In addition, some direct calculations yield

that

Λ̂UNIF

0 (t,β) =
1

r0

r0∑
i=1

{
∆0∗

i I(Y
0∗
i ≤ t)

r−1
0

∑r0
j=1 I(Y

0∗
j ≥ Y 0∗

i ) exp(β′X0∗
j )

− η0∗i + η0∗i

}

=
1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t)

{
1

r−1
0

∑r0
j=1 I(Y

0∗
j ≥ Y 0∗

i ) exp(β′X0∗
j )

− 1

n−1
∑n

j=1 I(Yj ≥ Y 0∗
i ) exp(β′Xj)

}
+

1

r0

r0∑
i=1

η0∗i

=

{
1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t)

}
OP |Dn(r

−1/2
0 ) + Λ̂0(t,β) +OP |Dn(r

−1/2
0 ),(S.31)

where the last equality is owing to (S.29) and (S.30).

Given Dn, it can be deduced that

E

{
1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t) Dn

}
=

1

n

n∑
i=1

∆iI(Yi ≤ t),

and

V ar

{
1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t) Dn

}
= E

{
1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t)− 1

n

n∑
i=1

∆iI(Yi ≤ t) Dn

}2

13



=
1

r0

 1
n

n∑
i=1

∆iI(Yi ≤ t)−

{
1

n

n∑
i=1

∆iI(Yi ≤ t)

}2


= OP |Dn(r
−1
0 ).

Hence, we get

1

r0

r0∑
i=1

∆0∗
i I(Y

0∗
i ≤ t) =

1

n

n∑
i=1

∆iI(Yi ≤ t) +OP |Dn(r
−1/2
0 )

= OP |Dn(1). (S.32)

It follows from (S.31) and (S.32) that

Λ̂UNIF

0 (t,β) = Λ̂0(t,β) +OP |Dn(r
−1/2
0 ). (S.33)

In addition, we investigate the distance between Λ̂0(t, β̃0) and Λ̂0(t, β̂MPL):

|Λ̂0(t, β̃0)− Λ̂0(t, β̂MPL)|

=

∣∣∣∣∣
n∑

i=1

∆iI(Yi ≤ t)∑n
j=1 I(Yj ≥ Yi) exp(β̃′

0Xj)
−

n∑
i=1

∆iI(Yi ≤ t)∑n
j=1 I(Yj ≥ Yi) exp(β̂′

MPLXj)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

∆iI(Yi ≤ t)
n−1

∑n
j=1 I(Yj ≥ Yi){exp(β̃′

0Xj)− exp(β̂′
MPLXj)}

{n−1
∑n

j=1 I(Yj ≥ Yi) exp(β̃′
0Xj)}{n−1

∑n
j=1 I(Yj ≥ Yi) exp(β̂′

MPLXj)}

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

n−1
∑n

j=1 I(Yj ≥ Yi) exp(ξ
′Xj)∥Xj∥

{n−1
∑n

j=1 I(Yj ≥ Yi) exp(β̃′
0Xj)}{n−1

∑n
j=1 I(Yj ≥ Yi) exp(β̂′

MPLXj)}

∣∣∣∣∣ ∥β̃0 − β̂MPL∥

= OP (r
−1/2
0 ), (S.34)

where ξ is on the segment between β̃0 and β̂MPL, and the last equality is due to assumption

3 together with ∥β̃0 − β̂MPL∥ = OP |Dn(r
−1/2
0 ).

Based on Andersen and Gill (1982), the convergence rate of full data Breslow estimator

Λ̂0(t, β̂MPL) to Λ0(t) is OP (n
−1/2), i.e. Λ̂0(t, β̂MPL) − Λ0(t) = OP (n

−1/2). This together with

(S.33) and (S.34) ensures that

|Λ̂UNIF

0 (t, β̃0)− Λ0(t)| ≤ |Λ̂UNIF

0 (t, β̃0)− Λ̂0(t, β̃0)|+ |Λ̂0(t, β̃0)− Λ̂0(t, β̂MPL)|

+|Λ̂0(t, β̂MPL)− Λ0(t)|

= OP |Dn(r
−1/2
0 ) +OP |Dn(r

−1/2
0 ) +OP (n

−1/2)

14



= OP |Dn(r
−1/2
0 ).

Therefore, the convergence rate given in (S.28) is established. This ends the proof.

Lemma S.5 Suppose the assumptions 1-3 hold, as r0 → ∞, r → ∞, and n → ∞, condi-

tional on Dn and β̃0, we have

U∗
β̃0
(β) = ℓ̇(β) +OP |Dn,β̃0

(r−1/2), (S.35)

and

ℓ̇∗
β̃0
(β) = U∗

β̃0
(β) + oP |Dn,β̃0

(r−1/2), (S.36)

where ℓ̇∗
β̃0
(β) is given in (20), and

U∗
β̃0
(β) = − 1

nr

r∑
i=1

1

πapp∗
δi

∫ τ

0

{X∗
i − X̄(t,β)}dM∗

i (t,β)

with X∗
i , π

app∗
δi and M∗

i (t,β) being given in (20), i = 1, · · · , r.

Proof. Given Dn and β̃0, it is direct to deduce the unbiasedness of U∗
β̃0
(β) towards the

score ℓ̇(β), i.e.,

E{U∗
β̃0
(β)|Dn, β̃0} = − 1

n

n∑
i=1

∫ τ

0

{Xi − X̄(t,β)}dMi(t,β)

= ℓ̇(β).

Denote U∗
β̃0,j

(β) as the jth component of U∗
β̃0
(β) with 1 ≤ j ≤ p, then we get

V ar{U∗
β̃0,j

(β)|Dn, β̃0} ≤ 1

n2r

n∑
i=1

1

πapp
δi

[∫ τ

0

{Xij − X̄j(t,β)}dMi(t,β)

]2
≤ 1

nrδ

n∑
i=1

∥∥∥∥∫ τ

0

{Xi − X̄(t,β)}dMi(t,β)

∥∥∥∥2
= OP |Dn,β̃0

(r−1),
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where the last equality is from the assumptions 1 and 3. This together with the Markov’s

inequality can ensure that (S.35) holds.

In addition, some direct calculations lead to the following expressions:

ℓ̇∗
β̃0
(β) = −1

r

r∑
i=1

∫ τ

0

1

nπapp∗
δi

{
X∗

i − X̄∗
β̃0
(t,β)

}
dN∗

i (t)

= −1

r

r∑
i=1

∫ τ

0

1

nπapp∗
δi

{
X∗

i − X̄∗
β̃0
(t,β)

}
dM∗

i (t,β)

= −1

r

r∑
i=1

∫ τ

0

1

nπapp∗
δi

{
X∗

i − X̄(t,β) + X̄(t,β)− X̄∗
β̃0
(t,β)

}
dM∗

i (t,β)

= U∗
β̃0
(β) +

1

r

r∑
i=1

∫ τ

0

1

nπapp∗
δi

{
X̄∗

β̃0
(t,β)− X̄(t,β)

}
dM∗

i (t,β)︸ ︷︷ ︸
R∗

δ(β)

. (S.37)

For k =0, 1, and 2, we denote

S
∗(k)
β̃0

(t,β) =
1

r

r∑
i=1

1

nπapp∗
δi

I(Y ∗
i ≥ t)X∗⊗k

i exp(β′X∗
i ). (S.38)

For a subsample D∗
r = {Z∗

i }ri=1 with Z∗
i = (X∗

i ,∆
∗
i , Y

∗
i , π

app∗
δi ), we define a subsample

empirical measure conditional on Dn and β̃0,

Pr|β̃0,Dn
=

1

r

r∑
i=1

δZ∗
i
,

and

Pr|β̃0,Dn
f =

1

r

r∑
i=1

f(Z∗
i ).

Based on the conditional empirical measure Pr|β̃0,Dn
, we can rewrite S

∗(k)
β̃0

(t,β) as

S
∗(k)
β̃0

(t,β) = Pr|β̃0,Dn
[{nπapp∗

δ }−1I(Y ∗ ≥ t)X∗⊗k exp(β′X∗)],

where k = 0, 1 and 2. For convenience, we denote Pβ̃0,Dn
as taking expectation conditional

on Dn and β̃0. e.g.

Pβ̃0,Dn
f(Z∗) = E

{
f(Z∗) β̃0,Dn

}
=

n∑
i=1

πapp
δi f(Zi). (S.39)
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By (S.39), we can deduce the following expressions:

Pβ̃0,Dn
[{nπapp∗

δ }−1I(Y ∗ ≥ t)X∗⊗k exp(β′X∗)] = E

[
1

nπapp∗
δ

I(Y ∗ ≥ t)X∗⊗k exp(β′X∗) β̃0,Dn

]
=

1

n

n∑
i=1

I(Yi ≥ t)X⊗k
i exp(β′Xi)

= S(k)(t,β).

Due to Kosorok (2008) and the assumption 3, we get {(nπapp∗
δ )−1I(Y ∗ ≥ t)X∗⊗k exp(β′X∗) :

t ∈ [0, τ ],β ∈ Θ} and {(nπapp∗
δ )−1N(t) : t ∈ [0, τ ]} are Donsker, where k =0, 1 and 2.

Therefore, conditional on Dn and β̃0 we have

∥S∗(k)
β̃0

(t,β)− S(k)(t,β)∥ P−→ 0 uniformly towards t. (S.40)

Because S(0)(t,β) is bounded away from zero (Andersen and Gill, 1982), then conditional

on Dn and β̃0,

sup
t∈[0,τ ]

∥∥∥∥∥Pr|β̃0,Dn
{(nπapp∗

δ )−1I(Y ∗ ≥ t)X∗ exp(β′X∗)}
Pr|β̃0,Dn

{(nπapp∗
δ )−1I(Y ∗ ≥ t) exp(β′X∗)}

−
Pβ̃0,Dn

{(nπapp∗
δ )−1I(Y ∗ ≥ t)X∗ exp(β′X∗)}

Pβ̃0,Dn
{(nπapp∗

δ )−1I(Y ∗ ≥ t) exp(β′X∗)}

∥∥∥∥∥ P−→ 0.

i.e., as r → ∞,

∥X̄∗
β̃0
(t,β)− X̄(t,β)∥ P−→ 0 uniformly towards t. (S.41)

Recall that dM∗
i (t,β) = dN∗

i (t)− I(Y ∗
i ≥ t) exp(β′X∗

i )λ0(t)dt, some derivations result in

the following expressions:

R∗
δ(β) =

1

rn

r∑
i=1

1

πapp∗
δi

∫ τ

0

{X̄∗
β̃0
(t,β)− X̄(t,β)}dM∗

i (t,β) (S.42)

=

∫ τ

0

{X̄∗
β̃0
(t,β)− X̄(t,β)}dN̄∗

rδ(t)︸ ︷︷ ︸
R∗

1δ(β)

−
∫ τ

0

{X̄∗
β̃0
(t,β)− X̄(t,β)}dΛ̄∗

rδ(t)︸ ︷︷ ︸
R∗

2δ(β)

,

where N̄∗
rδ(t) =

1
rn

∑r
i=1

1
πapp∗
δi

N∗
i (t) and Λ̄∗

rδ(t) =
1
rn

∑r
i=1

1
πapp∗
δi

∫ t

0
I(Y ∗

i ≥ u) exp(β′X∗
i )λ0(u)du.

Notice that N̄∗
rδ(t) and Λ̄∗

rδ(t) are two nondecreasing processes, due to (S.41) we have

∥R∗
1δ(β)∥ =

∥∥∥∥∫ τ

0

{X̄∗
β̃0
(t,β)− X̄(t,β)}dN̄∗

rδ(t)

∥∥∥∥
≤

∫ τ

0

∥X̄∗
β̃0
(t,β)− X̄(t,β)∥dN̄∗

rδ(t)
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= N̄∗
rδ(τ)oP (1),

and

∥R∗
2δ(β)∥ =

∥∥∥∥∫ τ

0

{X̄∗
β̃0
(t,β)− X̄(t,β)}dΛ̄∗

rδ(t)

∥∥∥∥
≤

∫ τ

0

∥X̄∗
β̃0
(t,β)− X̄(t,β)∥dΛ̄∗

rδ(t)

= Λ̄∗
rδ(τ)oP (1).

Therefore,

R∗
δ(β) = {N̄∗

rδ(τ)− Λ̄∗
rδ(τ)}oP (1)

=

{
1

rn

r∑
i=1

1

πapp∗
δi

M∗
i (τ)

}
oP (1).

Conditional on Dn and β̃0, we get

E

{
1

r

r∑
i=1

1

nπapp∗
δi

M∗
i (τ) Dn, β̃0

}
=

1

n

n∑
i=1

Mi(τ) = oP (1),

and

V ar

{
1

r

r∑
i=1

1

nπapp∗
δi

M∗
i (τ) Dn, β̃0

}
=

1

n2r

n∑
i=1

1

πapp
δi

M2
i (τ)−

1

r

{
1

n

n∑
i=1

Mi(τ)

}2

≤ 1

rnδ

n∑
i=1

M2
i (τ) + oP (r

−1)

= OP (r
−1),

where the last equality is from the assumptions 1 and 3. By the Markov’s inequality, we

know

1

r

r∑
i=1

1

nπapp∗
δi

M∗
i (τ) = OP |Dn,β̃0

(r−1/2). (S.43)

Conditional on Dn and β̃0, due to (S.42) and (S.43) we get

R∗
δ(β) = oP (1)OP |Dn,β̃0

(r−1/2) = oP |Dn,β̃0
(r−1/2).

This together with (S.37) leads to the conclusion given in (S.36), which completes the proof.
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Lemma S.6 Under the assumptions 1-3, as r0 → ∞, r → ∞ and n → ∞, conditional on

Dn and β̃0, we have

ℓ̇∗
β̃0
(β̂MPL) = OP |Dn,β̃0

(r−1/2), (S.44)

and

ℓ̈∗
β̃0
(β̂MPL) = Ψ+ oP (1), (S.45)

where Ψ is given in (12), and

ℓ̈∗
β̃0
(β̂MPL) =

1

nr

r∑
i=1

∆∗
i

πapp∗
δi

S∗(2)
β̃0

(Y ∗
i , β̂MPL)

S
∗(0)
β̃0

(Y ∗
i , β̂MPL)

−

S
∗(1)
β̃0

(Y ∗
i , β̂MPL)

S
∗(0)
β̃0

(Y ∗
i , β̂MPL)


⊗2 .

Proof. Conditional on Dn and β̃0, it follows from (S.35) and (S.36) that ℓ̇∗
β̃0
(β̂MPL) =

ℓ̇(β̂MPL) +OP |Dn,β̃0
(r−1/2). Due to ℓ̇(β̂MPL) = 0, then we get ℓ̇∗

β̃0
(β̂MPL) = OP |Dn,β̃0

(r−1/2).

To prove (S.45), we introduce a term as

V∗
β̃0
(β̂MPL) = − 1

nr

r∑
i=1

1

πapp∗
δi

∫ τ

0

{X∗
i − X̄(t,β)}dN∗

i (t,β).

Furthermore, some direct calculations lead to the following expression:

V̇∗
β̃0
(β̂MPL) =

1

nr

r∑
i=1

∆∗
i

πapp∗
δi

S(2)(Y ∗
i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

−

{
S(1)(Y ∗

i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

}⊗2
 .

Then, we get

E{V̇∗
β̃0
(β̂MPL)|Dn, β̃0} =

1

n

n∑
i=1

∆i

S(2)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2


= Ψ.

Let V̇∗
β̃0,j1j2

(β̂MPL) be any component of V̇∗
β̃0
(β̂MPL) with 1 ≤ j1, j2 ≤ p, we can deduce that

V ar{V̇∗
β̃0,j1j2

(β̂MPL)|Fn, β̃0} =
1

rn2

n∑
i=1

∆i

πapp
δi

S(2)
j1j2

(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2

j1j2

2

− 1

r
Ψj1j2
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≤ 1

rδ

 1
n

n∑
i=1

∆i

∥∥∥∥∥∥S
(2)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)
−

{
S(1)(Yi, β̂MPL)

S(0)(Yi, β̂MPL)

}⊗2
∥∥∥∥∥∥
2

= OP |Dn,β̃0
(r−1),

where the last equality is due to the assumptions 1-3. Conditional on Fn and β̃0, the

Markov’s inequality implies

V̇∗
β̃0
(β̂MPL) = Ψ+OP |Dn,β̃0

(r1/2). (S.46)

In view of (S.40), we can derive that

∥ℓ̈∗
β̃0
(β̂MPL)− V̇∗

β̃0
(β̂MPL)∥ ≤ 1

rn

r∑
i=1

∆∗
i

πapp∗
δi

∥∥∥∥∥∥
S
∗(2)
β̃0

(Y ∗
i , β̂MPL)

S
∗(0)
β̃0

(Y ∗
i , β̂MPL)

− S(2)(Y ∗
i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

∥∥∥∥∥∥
+

1

rn

r∑
i=1

∆∗
i

πapp∗
δi

∥∥∥∥∥∥
S

∗(1)
β̃0

(Y ∗
i , β̂MPL)

S
∗(0)
β̃0

(Y ∗
i , β̂MPL)


⊗2

−

{
S(1)(Y ∗

i , β̂MPL)

S(0)(Y ∗
i , β̂MPL)

}⊗2
∥∥∥∥∥∥

=

{
1

nr

r∑
i=1

∆∗
i

πapp∗
δi

}
oP (1)

≤

{
1

rδ

r∑
i=1

∆∗
i

}
oP (1)

= oP (1). (S.47)

Accordingly, it follows from the triangle inequality that

∥ℓ̈∗
β̃0
(β̂MPL)−Ψ∥ ≤ ∥ℓ̈∗

β̃0
(β̂MPL)− V̇∗

β̃0
(β̂MPL)∥+ ∥V̇∗

β̃0
(β̂MPL)−Ψ∥

= oP (1),

where the last equality is due to (S.46) and (S.47). Hence, we obtain ℓ̈∗
β̃0
(β̂MPL) = Ψ+oP (1).

This finishes the proof.

Proof of Theorem 3. By (S.35) and (S.36), we get ℓ̇∗
β̃0
(β) = ℓ̇∗(β) + oP (1) as r0 → ∞

and r → ∞. We observe that the full data estimator β̂MPL is a unique solution to ℓ̇∗(β) = 0,

and the two-step subsample estimator β̆ satisfies ℓ̇∗
β̃0
(β̆) = 0. Conditional on Dn and β̃0, we
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know from Theorem 5.9 and its remark of van der Vaart (1998) that

∥β̆ − β̂MPL∥ = oP (1). (S.48)

By the Taylor’s theorem, we obtain

0 = ℓ̇∗
β̃0,j

(β̆) = ℓ̇∗
β̃0,j

(β̂MPL) +
∂ℓ̇∗

β̃0,j
(β̂MPL)

∂β′ (β̆ − β̂MPL) +Rβ̃0,j
, (S.49)

where ℓ̇∗
β̃0,j

(·) is the jth component of ℓ̇∗
β̃0
(·), and

Rβ̃0,j
= (β̆ − β̂MPL)

′
∫ 1

0

∫ 1

0

∂2ℓ̇∗
β̃0,j

{β̂MPL + uv(β̆ − β̂MPL)}
∂β∂β′ vdudv(β̆ − β̂MPL).

From the assumptions 1 and 3, we get

sup
β∈Θ

∥∥∥∥∥∂
2ℓ̇∗

β̃0,j
(β)

∂β∂β′

∥∥∥∥∥ ≤ K

nr

r∑
i=1

∆∗
i

πapp∗
δi

≤ K

rδ

r∑
i=1

∆∗
i

= OP |Dn(1),

where K is a positive constant. Hence, Rβ̃0,j
= OP |Dn,β̃0

(∥β̆ − β̂MPL∥2).

By (S.45), the assumption 2 and the continuous mapping theorem (Theorem 2.3 of van der

Vaart (1998)), conditional on Dn and β̃0, as r → ∞ we get

{ℓ̈∗
β̃0
(β̂MPL)}−1 = {Ψ+ oP (1)}−1

= OP (1). (S.50)

Conditional on Dn and β̃0, it follows from (S.44), (S.49) and (S.50) that

β̆ − β̂MPL = −{ℓ̈∗
β̃0
(β̂MPL)}−1{ℓ̇∗

β̃0
(β̂MPL) +OP |Dn,β̃0

(∥β̆ − β̂MPL∥2)} (S.51)

= OP |Dn,β̃0
(r−1/2) + oP |Dn,β̃0

(∥β̆ − β̂MPL∥)

= OP |Dn,β̃0
(r−1/2).

Therefore, β̆ − β̂MPL = oP (1), i.e., β̆ is consistent to β̂MPL as r → ∞.

We start to prove the asymptotic normality of the error term β̆ − β̂MPL conditional on

Dn and β̃0. Recall that

U∗
β̃0
(β̂MPL) =

r∑
i=1

ξ∗β̃0

i ,
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where

ξ∗β̃0

i = − 1

nrπapp∗
δi

∫ τ

0

{X∗
i − X̄(t, β̂MPL)}dM∗

i (t, β̂MPL), i = 1, · · · , r.

Conditional on Dn and β̃0, ξ
∗β̃0

1 , · · · , ξ∗β̃0
r are independent and identically distributed random

variables with

E(ξ∗β̃0

i |Dn, β̃0) = − 1

nr

n∑
i=1

∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

= 0,

and

V ar(ξ∗β̃0

i |Dn, β̃0) = E

(
1

n2r2{πapp∗
δi }2

[∫ τ

0

{
X∗

i − X̄(t, β̂MPL)
}
dM∗

i (t, β̂MPL)

]⊗2

Dn, β̃0

)

=
1

n2r2

n∑
i=1

1

πapp
δi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2

.

For every ϵ > 0, we can deduce that

E

(
r∑

i=1

∥ξ∗β̃0

i ∥2I(∥ξ∗β̃0

i ∥ > ϵ) Dn, β̃0

)

≤ 1

ϵ

r∑
i=1

E(∥ξ∗β̃0

i ∥3|Dn, β̃0)

=
1

r2ϵ

{
1

n3

n∑
i=1

1

(πapp
δi )2

∥∥∥∥∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

∥∥∥∥3
}

≤ 1

δ2r2ϵ

{
1

n

n∑
i=1

∥∥∥∥∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

∥∥∥∥3
}

= oP (1), as r → ∞,

where δ is a factor controlling the mixture proportion in (19), and the last equality is from the

assumptions 1 and 3. Therefore, the Lindeberg-Feller conditions are satisfied in probability.

By the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der Vaart (1998)), as

r0 → ∞, r → ∞, n→ ∞, conditional on Fn and β̃0, we have

Γ
−1/2

β̃0
U∗

β̃0
(β̂MPL)

d−→ N(0, I), (S.52)
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where

Γβ̃0
=

1

n2r

n∑
i=1

1

πapp
δi

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2

= OP |Dn,β̃0
(r−1).

In addition, we need to consider the distance between Γβ̃0
and Γ. More specifically,

Γβ̃0
− Γ =

1

nr

n∑
i=1

[∫ τ

0

{
Xi − X̄(t, β̂MPL)

}
dMi(t, β̂MPL)

]⊗2
{

1

nπapp
δi

− 1

nπLopt
δi

}
, (S.53)

where πapp
δi and πLopt

δi are given in (19) and (23), respectively. For notational convenience,

we denote

ϕi =

∥∥∥∥∫ τ

0

{Xi − X̄0∗(t, β̃0)}dM̂i(t, β̃0)

∥∥∥∥ ,
and

ψi =

∥∥∥∥∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL)

∥∥∥∥ .
Then, we can rewrite the expressions of πapp

δi and πLopt
δi with

πapp
δi = (1− δ)

ϕi∑n
j=1 ϕj

+ δ
1

n
,

and

πLopt
δi = (1− δ)

ψi∑n
j=1 ψj

+ δ
1

n
,

respectively. Note that∣∣∣∣∣ 1

nπapp
δi

− 1

nπLopt
δi

∣∣∣∣∣ = 1

nπapp
δi πLopt

δi

|πapp
δi − πLopt

δi |

≤ n(1− δ)

δ2

∣∣∣∣∣ ϕi∑n
j=1 ϕj

− ψi∑n
j=1 ψj

∣∣∣∣∣
=

(1− δ)

δ2

∣∣∣∣∣ϕin
−1
∑n

j=1 ψj − ψin
−1
∑n

j=1 ϕj

(n−1
∑n

j=1 ϕj)(n−1
∑n

j=1 ψj)

∣∣∣∣∣ .
For any t ∈ [0, τ ], we observe that

X̄0∗(t, β̃0)− X̄(t, β̂MPL) = X̄0∗(t, β̃0)− X̄(t, β̃0) + X̄(t, β̃0)− X̄(t, β̂MPL)

= X̄(t, β̃0)− X̄(t, β̂MPL) +OP |Dn,β̃0
(r−1/2), (S.54)
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where the last equality is from (S.41). In view of the fact that β̃0 − β̂MPL = OP |Dn(r
−1/2
0 ),

for any t ∈ [0, τ ] we obtain

X̄(t, β̃0)− X̄(t, β̂MPL) =
S(1)(t, β̃0)

S(0)(t, β̃0)
− S(1)(t, β̂MPL)

S(0)(t, β̂MPL)

=
1

S(0)(t, β̃0)S(0)(t, β̂MPL)
{S(0)(t, β̂MPL)S

(1)(t, β̃0)− S(0)(t, β̃0)S
(1)(t, β̂MPL)}

=
1

S(0)(t, β̃0)S(0)(t, β̂MPL)
{S(0)(t, β̂MPL)S

(1)(t, β̃0)− S(0)(t, β̃0)S
(1)(t, β̃0)

+S(0)(t, β̃0)S
(1)(t, β̃0)− S(0)(t, β̃0)S

(1)(t, β̂MPL)}

=
1

S(0)(t, β̃0)S(0)(t, β̂MPL)
{S(1)(t, ξ1)

′(β̂MPL − β̃0)S
(1)(t, β̃0)

−S(0)(t, β̃0)S
(2)(t, ξ2)(β̂MPL − β̃0)}

= OP |Dn(r
−1/2
0 ), (S.55)

where ξ1 and ξ2 are on the segment between β̂MPL and β̃0, and the last equality is from the

assumption 3. It follows from (S.54), (S.55) and typically r0 < r that for any t ∈ [0, τ ]

∥X̄0∗(t, β̃0)− X̄(t, β̂MPL)∥ = OP |Dn,β̃0
(r

−1/2
0 ). (S.56)

Recall that M̂i(t, β̃0) = Ni(t) −
∫ t

0
I(T̃i ≥ u) exp(β̃′

0Xi)dΛ̂
UNIF
0 (u, β̃0) and Mi(t, β̂MPL) =

Ni(t)−
∫ t

0
I(T̃i ≥ u) exp(β̂′

MPLXi)dΛ0(u), it is straightforward to derive that

M̂i(t, β̃0)−Mi(t, β̂MPL) = exp(β̂′
MPLXi)Λ0(min{t, Yi})− exp(β̃′

0Xi)Λ̂
UNIF

0 (min{t, Yi}, β̃0)

= exp(β̂′
MPLXi)Λ0(min{t, Yi})− exp(β̃′

0Xi)Λ0(min{t, Yi})

+ exp(β̃′
0Xi)Λ0(min{t, Yi})− exp(β̃′

0Xi)Λ̂
UNIF

0 (min{t, Yi}, β̃0)

= exp(ξ′Xi)X
′
i(β̃0 − β̂MPL)Λ0(min{t, Yi})

− exp(β̃′
0Xi){Λ̂UNIF

0 (min{t, Yi}, β̃0)− Λ0(min{t, Yi})}

= OP |Dn(r
−1/2
0 ), (S.57)

where ξ is between β̃0 and β̂MPL, the last equality is due to β̃0 − β̂MPL = OP |Dn(r
−1/2
0 ), the

assumption 3 and Lemma S.4.

Furthermore, some direct calculations lead to the following expressions:∫ τ

0

{Xi − X̄0∗(t, β̃0)}dM̂i(t, β̃0)
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=

∫ τ

0

{Xi − X̄(t, β̂MPL) + X̄(t, β̂MPL)− X̄0∗(t, β̃0)}{dM̂i(t, β̃0)− dMi(t, β̂MPL) + dMi(t, β̂MPL)}

=

∫ τ

0

{Xi − X̄(t, β̂MPL)}dMi(t, β̂MPL) +R1 +R2 +R3,

where

R1 =

∫ τ

0

{Xi − X̄(t, β̂MPL)}{dM̂i(t, β̃0)− dMi(t, β̂MPL)},

R2 =

∫ τ

0

{X̄(t, β̂MPL)− X̄0∗(t, β̃0)}{dM̂i(t, β̃0)− dMi(t, β̂MPL)},

R3 =

∫ τ

0

{X̄(t, β̂MPL)− X̄0∗(t, β̃0)}dMi(t, β̂MPL).

Combining the boundedness of Xi’s in Dn, the assumptions 1-3, (S.56), (S.57) and Lemma

S.1, we can deduce that R1 = oP (1) as r0 → ∞. In a similar way, we have R2 = oP (1) and

R3 = oP (1). For i = 1, · · · , n, we know

ϕi = ψi + oP (1), as r0 → ∞, (S.58)

indicating that conditional on Dn and β̃0,

1

n

n∑
i=1

ϕi =
1

n

n∑
i=1

ψi + oP (1). (S.59)

Moreover, both (S.58) and (S.59) lead to∣∣∣∣∣ϕi

n

n∑
j=1

ψj −
ψi

n

n∑
j=1

ϕj

∣∣∣∣∣ ≤ |ϕi − ψi|
1

n

n∑
j=1

ψj + ψi

∣∣∣∣∣ 1n
n∑

j=1

ψj −
1

n

n∑
j=1

ϕj

∣∣∣∣∣
= oP (1).

Therefore, as r0 → ∞ and r → ∞, we get the following conclusion:∣∣∣∣∣ 1

nπapp
δi

− 1

nπLopt
δi

∣∣∣∣∣ = oP (1). (S.60)

Combining the assumptions 1-3, (S.53) and (S.60), conditional on Dn and β̃0 we have

Γβ̃0
− Γ = oP |Dn,β̃0

(r−1). (S.61)
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Based on (S.36), (S.50), (S.51), the Slutsky’s theorem, and Theorem 2.7 of van der Vaart

(1998), we can derive that

Γ
−1/2

β̃0
ℓ̇∗
β̃0
(β̂MPL) = Γ

−1/2

β̃0
U∗

β̃0
(β̂MPL) + oP (1)

d−→ N(0, I).

From (S.50) and (S.51),

β̆ − β̂MPL = −{ℓ̈∗
β̃0
(β̂MPL)}−1ℓ̇∗

β̃0
(β̂MPL) +OP |Dn,β̃0

(r−1). (S.62)

Due to the assumption 2 and (S.45), we can derive that

{ℓ̈∗(β̂MPL)}−1 −Ψ−1 = −Ψ−1{ℓ̈∗(β̂MPL)−Ψ}Ψ−1 = oP (1). (S.63)

In view of (S.62) and (S.63), we have

Σ−1/2(β̆ − β̂MPL) = −Σ−1/2{ℓ̈∗
β̃0
(β̂MPL)}−1ℓ̇∗

β̃0
(β̂MPL) +OP |Dn,β̃0

(r−1/2)

= −Σ−1/2Ψ−1ℓ̇∗
β̃0
(β̂MPL)−Σ−1/2[{ℓ̈∗(β̂MPL)}−1 −Ψ−1]ℓ̇∗

β̃0
(β̂MPL) +OP |Dn(r

−1/2)

= −Σ−1/2Ψ−1Γ
1/2

β̃0
Γ

−1/2

β̃0
ℓ̇∗
β̃0
(β̂MPL) + oP (1). (S.64)

From (S.61), as r0 → ∞ and r → ∞,

(Σ−1/2Ψ−1Γ
1/2

β̃0
)(Σ−1/2Ψ−1Γ

1/2

β̃0
)′ = Σ−1/2Ψ−1Γβ̃0

Ψ−1Σ−1/2

= Σ−1/2Ψ−1ΓΨ−1Σ−1/2 + oP (1)

= I+ oP (1).

Conditional on Dn and β̃0, the Slutsky’s theorem, together with (S.52) and (S.64) ensures

that as r0 → ∞ and r → ∞,

Σ−1/2(β̆ − β̂MPL)
d→ N(0, I).

This ends the proof.

Proof of Proposition 1. Conditional on Dn and β̃0, it is direct to derive that

∥β̆ − β0∥ ≤ ∥β̆ − β̂MPL∥+ ∥β̂MPL − β0∥
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= OP |Dn,β̃0
(r−1/2) +OP (n

−1/2),

where the equality is due to Eq. (S.51). i.e., ∥β̆ − β0∥ = OP |Dn,β̃0
(r−1/2). It follows from

Proposition 2 of Wang et al. (2022) that

∥β̆ − β0∥ = OP (r
−1/2).

Next, we prove the asymptotic normality of β̆ with respect to the true parameter. Note

that

r1/2(β̆ − β0) = r1/2(β̆ − β̂MPL) + r1/2(β̂MPL − β0)

= r1/2(β̆ − β̂MPL) + oP (1),

where the last equality is due to β̂MPL − β0 = oP (n
−1/2) and the assumption r = o(n).

Hence, conditional on Dn and β̃0, the asymptotic distribution of β̆ − β0 is the same as that

of β̆ − β̂MPL. That is to say, conditional on Dn and β̃0 we have

Σ−1/2(β̆ − β0)
d−→ N(0, I), (S.65)

where Σ is given in Theorem 3. Based on Proposition 2 of Wang et al. (2022), the asymptotic

normality in (S.65) also holds without conditioning on Dn and β̃0. This completes the proof.

References

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A

large sample study. The Annals of Statistics 10, 4, 1100–1120.

Cox, D. R. (1975). Partial likelihood. Biometrika 62, 2, 269–276.

Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference.

Springer, New York.

van der Vaart, A. (1998). Asymptotic Statistics. London: Cambridge University Press.

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes.

Springer, New York.

27



Wang, J., Zou, J., and Wang, H. (2022). Sampling with replacement vs poisson sampling:

a comparative study in optimal subsampling. IEEE Transactions on Information Theory

68, 6605–6630.

Xiong, S. and Li, G. (2008). Some results on the convergence of conditional distributions.

Statistics and Probability Letters 78, 3249–3253.

Xu, Q., Paik, M. C., Luo, X., and Tsai, W.-Y. (2009). Reweighting estimators for cox

regression with missing covariates. Journal of the American Statistical Association 104,

1155–1167.

28


	Introduction
	Model and Subsample-Based Estimation
	Asymptotic Properties and Subsampling Strategy
	Practical Implementation
	Two-Step Subsampling Algorithm

	Numerical Studies
	Simulation
	Application

	Concluding Remarks
	Proofs

