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Abstract

With the growing availability of large-scale biomedical data, it is often time-consuming
or infeasible to directly perform traditional statistical analysis with relatively limited
computing resources at hand. We propose a fast subsampling method to effectively
approximate the full data maximum partial likelihood estimator in Cox’s model, which
largely reduces the computational burden when analyzing massive survival data. We
establish consistency and asymptotic normality of a general subsample-based estima-
tor. The optimal subsampling probabilities with explicit expressions are determined
via minimizing the trace of the asymptotic variance-covariance matrix for a linearly
transformed parameter estimator. We propose a two-step subsampling algorithm for
practical implementation, which has a significant reduction in computing time com-
pared to the full data method. The asymptotic properties of the resulting two-step
subsample-based estimator is also established. Extensive numerical experiments and
a real-world example are provided to assess our subsampling strategy. Supplemental
materials for this article are available online.
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1 Introduction

With the development of science and technology, the amounts of available data are rapidly
increasing in recent years. A major bottleneck to analyze huge datasets is that the data
volume exceeds the capacity of available computational resources. It is not always possible
to meet the demands for computational speed and storage memory if we directly perform
traditional analysis for large datasets with a single computer at hand. To cope with big
data, there are many statistical methods in the literature dealing with the heavy calculation
and storage burden. Basically, we could classify these methods into three categories. (i)
divide-and-conquer approach (Zhao et al., 2016; Battey et al., 2018; Shi et al., 2018; Jordan
et al., 2019; Volgushev et al., 2019; Chen et al., 2022; Fan et al., 2021). (ii) online updating
approach (Schifano et al., 2016; Luo and Song, 2020; Lin et al., 2020; Luo et al., 2022;
Wang et al., 2022b). (iii) subsampling-based approach. The subsampling is an emerging
field for big data. Many papers have been published during recent years. For example,
Wang et al. (2018) and Wang (2019) studied the optimal subsampling for massive logistic
regression. Wang et al. (2019) presented an information-based subdata selection approach
for linear regression with big datasets. Zhang et al. (2020) studied an effective sketching
method for massive datasets via A-optimal subsampling. Yao and Wang (2019), Han et al.
(2020) and Yao et al. (2021) proposed several subsampling methods for large-scale multiclass
logistic regression. Yu et al. (2022) considered optimal Poisson subsampling for maximum
quasi-likelihood estimator with massive data. Zhang et al. (2021) proposed a response-free
optimal sampling procedure for generalized linear models under measurement constraints.
Wang and Ma (2021) studied the optimal subsampling for quantile regression in big data.
Liu et al. (2021) proposed an optimal subsampling method for the functional linear model via
L-optimality criterion. Zhang and Wang (2021) and Zuo et al. (2021b) considered optimal
distributed subsampling methods for big data in the context of linear and logistic models,
respectively. Ai et al. (2021) studied the optimal subsampling method for generalized linear
models under the A-optimality criterion. Wang and Zhang (2022) proposed an optimal
subsampling procedure for multiplicative regression with massive data. For more related

results on massive data analysis, we refer to several review papers by Wang et al. (2016),



Lee and Ng (2020), Yao and Wang (2021), Chen et al. (2021b), Li and Meng (2021) and Yu
et al. (2023).

The aforementioned investigations focused on developing statistical methods for large
datasets with uncensored observations. In recent years, huge biomedical datasets become
increasingly common, and they are often subject to censoring (Kleinbaum and Klein, 2005).
There have been several recent papers on statistical analysis of massive censored survival
data. For example, Xue et al. (2019) and Wu et al. (2021) studied the online updating
approach for streams of survival data. Keret and Gorfine (2020) presented an optimal Cox
regression subsampling procedure with rare events. Tarkhan and Simon (2020) and Xu
et al. (2020) used the stochastic gradient descent algorithms to analyse large-scale survival
datasets with Cox’s model and the accelerated failure time models, respectively. Li et al.
(2020) proposed a batch screening iterative Lasso method for large-scale and ultrahigh-
dimensional Cox model. Zuo et al. (2021a) proposed a sampling-based method for massive
survival data with additive hazards model. Wang et al. (2021) studied an efficient divide-and-
conquer algorithm to fit high-dimensional Cox regression for massive datasets. Yang et al.
(2022) studied the optimal subsampling algorithms for parametric accelerate failure time
models with massive survival data. In spite of the aforementioned papers, existing research
on massive survival data is relatively limited, and it is meaningful to further investigate the
statistical theories in the area of large-scale survival analysis.

It is worthy mentioning that subsampling is an emerging area of research, which has
attracted great attentions in both statistics and computer science (Ma et al., 2015; Bai
et al., 2021). Subsampling methods focus on selecting a small proportion of the full data
as a surrogate to perform statistical computations. A key to success of subsampling is
to design nonuniform sampling probabilities so that those influential or informative data
points are sampled with high probabilities. Although significant progress has been made
towards developing optimal subsampling theory for uncensored observations, to the best
of our knowledge, the research on optimal subsampling for large-scale survival data lags
behind. In consideration of the important role of Cox’s model in the field of survival analysis
(Cox, 1972; Fleming and Harrington, 1991), it is desirable to develop effective subsampling

methods in the context of Cox’s model for massive survival data. This paper aims to close this



gap by developing a subsample-based estimator to fast and effectively approximate the full
data maximum partial likelihood estimator. Our aim is to design an efficient subsampling
and estimation strategy to better balance the trade-off between computational efficiency
and statistical efficiency. Here are some key differences between our proposed subsampling
approach and some recently developed approaches on Cox’s model with large-scale data: (i)
Keret and Gorfine (2020) proposed a subsampling-based estimation for Cox’s model with
rare events by including all observed failures, while our optimal subsampling method is
developed for Cox’s model under the regular setting that observed failure times are not rare
compared with the observed censoring times. (ii) Tarkhan and Simon (2020) presented a
stochastic gradient descent (SGD) procedure for Cox’s model. This method primarily intends
to resolve the problems that the whole dataset cannot be easily loaded in memory; the main
aim is to deal with the out-of-memory issue rather than speeding up the calculation. (iii)
Li et al. (2020) and Wang et al. (2021) studied the variable selection problem for ultrahigh-
dimensional Cox’s model, which is different from the focus of our paper on dealing with very
large sample sizes.

The main contributions of our proposed subsampling method include three aspects: First,
the computation of our subsample-based estimator is much faster than that of the full data
estimator calculated by the standard R function coxph. Therefore, it effectively reduces the
computational burden when analysing massive survival data with Cox’s model. Second, we
provide an explicit expression for the optimal subsampling distribution, which has much bet-
ter performance than the uniform subsampling distribution in terms of statistical efficiency.
Third, we establish consistency and asymptotic normality of the proposed subsample estima-
tor, which is useful for performing statistical inference (e.g. constructing confidence intervals
and testing hypotheses).

The remainder of this paper is organized as follows. In Section 2, we review the setup and
notations for Cox’s model. A general subsample-based estimator is proposed to approximate
the full data maximum partial likelihood estimator. In Section 3, we establish consistency
and asymptotic normality of a general subsample-based estimator. The optimal subsampling
probabilities are explicitly specified in the context of L-optimality criterion. In Section 4,

we give a two-step subsampling algorithm together with the asymptotic properties of the



resulting estimator. In Section 5, extensive simulations together with an application are
conducted to verify the validity of the proposed subsampling procedure. Some concluding

remarks are presented in Section 6. Technical proofs are given in the supplement.

2 Model and Subsample-Based Estimation

In many biomedical applications, the outcome of interest is measured as a “time-to-event”,
such as death and onset of cancer. The time to occurrence of an event is referred to as
a failure time (Kalbfleisch and Prentice, 2002), and its typical characteristic is subject to
possible right censoring. For ¢ = 1,---  n, let T; be the failure time, C; be the censoring
time, and X; be the p-dimensional vector of time-independent covariates (e.g., treatment
indicator, blood pressure, age, and gender). We assume that 7; and C; are conditionally
independent given X;. The observed failure time is Y; = min(7}, C;), and the failure indicator
is A, = I(T; < C;), where I(+) is the indicator function. For convenience, we denote the
full data of independent and identically distributed observations from the population as
D, = {(X;,A;,Y;),i = 1,--- ,n}. The Cox’s proportional hazard regression model (Cox,
1972) is commonly used to describe the relationship between covariates of an individual and
the risk of experiencing an event. This model assumes that the conditional hazard rate

function of T; given X; is
A(t[X;) = Ao(t) exp(B'X), (1)

where Ao(t) is an unknown baseline hazard function, 8 = (fy,--- ,3,)’ is a p-dimensional
vector of regression parameters, and its true value belongs to a compact set © C RP. To
estimate 3, Cox (1975) proposed a novel partial likelihood method. The negative log-partial

likelihood function is

é(ﬂ):_%i[

where N;(t) = I(A; = 1,Y; < t) is a counting process and 7 is a prespecified positive

constant. One advantage of Cox’s partial likelihood method is that the criterion function

given in (2) does not involve the nonparametric baseline hazard function Ag(¢), and the



resulting estimator of 3 is asymptotically equivalent to the parameter estimator obtained
by maximizing the full likelihood function (Cox, 1975).

For convenience, we introduce the following notations to ease the presentation:

®(t,B8) = Z[ (V; > t)X%* exp(@'X,), k=0,1 and 2,

=1

where the notation u®* means u®° = 1, u®! = u and u®? = uu’ for a vector u. Throughout
this paper, [|A]l = (32, <, a5;)"/? for a matrix A = (ay).
The gradient of ¢(8) is

B) =3 [ X -X(t.)an(
I [T .
== Z/O {X; — X(t, B)}M;(t, B), (3)

where M;(t,3) = N;(t) — fot I(Y; > u) exp(8'X;)\o(u)du, and

SW(t, B)
B

X(.8) = G, g

The Hessian matrix of ¢(3) is given by

I [[82we  fshwsn T
n;/o [S(m(t,ﬁ) {5(0)(15,5)} ]le(t)- (5)

According to Cox (1975), the full data maximum partial likelihood (MPL) estimator Byp,

is the solution to E(ﬂ) = 0, and the asymptotic properties of BMPL have been investigated by
Andersen and Gill (1982). There is no closed-form to ,QNIPL, and it is numerically calculated

by Newton’s method through iteratively applying

B = B — (LB} B ™), (6)

For small datasets with hundreds of observations or even fewer, the iterative algorithm given
in (6) is able to converge in a reasonable time. For moderate datasets, it is common to use the
gold standard coxph function in the R package of Therneau (2021), where a smart updating
procedure is adopted to speed up the computation (Simon et al., 2011). The computational

efficiency of coxph will be presented in the simulation section.
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It is desirable to develop an effective and computationally stable method when handling
massive survival datasets with Cox’s model. Recently, Keret and Gorfine (2020) introduced a
novel subsampling procedure for Cox regression with rare events, while our aim is to propose
a subsampling procedure for large-scale Cox model under non-rare-events setting. To be
specific, we assign subsampling probabilities {m;}!; to the full data D,,, where > "  m =1
and m; > 0 for ¢ = 1,--- ,n. Draw a random subsample of size r with replacement based
on {m;}"; from the full data D,, where r is typically much smaller than n. Let D} =
{(XF, ALY ) -, be a selected subsample with size r from the full data D,,, where X},
A7, Y and 7} are the covariate, the failure indicator, the observed failure times, and the

subsampling probability, respectively, in the subsample. We propose a weighted pseudo log
partial likelihood using the subsample D;:

B) = —% ; njrf /O {ﬁ'X;‘ — log [r‘l Zﬁ;_ll(y}* > t) eXP(B,X;)] } dN;(t), (7)

j=1
where N (t) = I(A; = 1,Y < t). The inverse probability weighting in (7) is to ensure

the consistency of the resulting subsample estimator towards BMPL, which will be carefully

investigated in Section 3. The corresponding weighted subsample score function is

0 =~ Y [ (X XN ©)

I~ 1 [Tor o .
B _;izl mrf/o {X; = X*(¢,8)YdM;(t, B),

where M7 (t, B) = N (t) — [} I(Y;}* > u) exp(8'X})No(u)du, and

50)
X (1.6) = S o) )
with
)(t, B) —i Z i* Y > )X exp(B'X}), k=0,1and 2. (10)

nr uw

i=1 i
The subsample-based estimator B is the solution to é*(ﬁ) = 0, which is computationally
easier to solved by Newton’s method due to the smaller subsample size. Here B can be viewed
as a subsample approximation to the full data ﬁMPL. A natural question is how to select
the subsample so that ,C:] and BMPL are close. We will derive the asymptotic distribution of

B— BMPL and then find the probabilities that minimize a function of the asymptotic variance.
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3 Asymptotic Properties and Subsampling Strategy

In this section, we establish the asymptotic properties of a general subsample-based estimator
B obtained via solving ¢*(3) = 0, where ¢*(3) is given in (8). A strategy on how to
specify optimal subsampling probabilities for our method is presented. We need the following
assumptions for theoretical derivation. Throughout this paper we allow 7;’s to depend on

the data, so they may be random.

Assumption 1 The baseline hazard satisfies that [ Ao(t)dt < oo, and P(T; > 7) > 0.

®2
Assumption 2 The quantity %E?:l fOT [gg;gg; — {gg;;gg;} }dNi(t) converges in prob-

ability to a positive definite matriz for all B € ©, where © is a compact set containing the

true value of 3.
Assumption 3 The time-independent covariates X;’s are bounded.
Assumption 4 The subsampling probabilities satisfy max;<i<,(nm;)~' = Op(1).

Assumptions 1 and 2 are two classical regularity conditions for Cox’s model (Andersen
and Gill, 1982); Assumption 3 is a bounded condition, which was commonly imposed in
the literature about Cox’s model, e.g., Huang et al. (2013) and Fang et al. (2017). This
assumption is reasonable in most practical applications, because for biomedical survival
data the covariates of an individual are often treatment indicator, blood pressure, age, and
gender, etc. These biomedical related features are usually bounded (Keret and Gorfine,
2020). Assumption 4 is required to protect the weighted subsample pseudo-score function
given in (8) from being dominated by those data points with extremely small subsampling
probabilities. i.e., Assumption 4 requires that the minimum subsampling probability is at
the same order of 1/n in probability. This assumption was also imposed by Wang et al.
(2022a).

We establish the consistency and asymptotic normality of the subsample-based estimator
B conditional on the full data D, in the following. This result plays an important role in
performing statistical inference. In addition, the asymptotic distribution is a key foundation

to design optimal subsampling probabilities for our method. Throughout this paper, the
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notation b = Opp, (1) denotes that b is bounded in conditional probability, i.e., for any

€ > 0, there exists a finite b, > 0 such that P{P(|b| > b|D,,) < ¢} — 1.

Theorem 1 Under assumptions 1-4, if r = o(n) asn — 0o and r — oo, then the subsample-
based estimator B is consistent to Byp, with a convergence rate Op|pn(r*1/2). In addition,

conditional on D,, in probability, we have
X128 - Bur) — N(0,1), (11)

where —% denotes convergence in distribution, ¥ = WT'W~1 with

IR 7SO, Buee) SO(t, Bupr) .
Vol / o _{ } ANI(1). (12

t? BMPL) S(O) <t7 BMPL)
and
1 <& 1[/ _ . ©2
TP IRl K¢ < <IN W) PVATH: PRI (13)
i=1 "
Remark 1 The convergence rate indicates that |3 — By | = Opip, (r~'/?). Since a random

sequence that converges to zero in conditional probability also converges to zero in uncondi-
tional probability (Xiong and Li, 2008), we know that |8 — Bur.| = opp, (1) = op(1) as
r — oo. Therefore, the subsample-based estimator B 18 close to BMPL as long as r s large
enough. It is reasonable to use B as a surrogate for BMPL in order to reduce computational

burden when handling large-scale Cox’s model in practice.

Remark 2 The asymptotic normality in condition distribution indicates that the distribution
of the error term B—BMPL conditional on D,, can be approximated by that of a normal random
variable, say Z, with conditional distribution N(0,X). This means that for any € > 0, the
probability P(||B — Bur.| = €|Dy) is accurately approzimated by P(|Z|| > €|D,). Hence, a
smaller variance ensures a smaller excess error bound. This sheds light on how to design

optimal subsampling probabilities for our proposed sampling method.

For practical application of the proposed sampling strategy, we need to specify the
subsampling distribution 7« = {m;}"_,;. A simple choice is the uniform subsampling with

{m =n~'}"_,. However, this is not optimal, because it does not distinguish the importances
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among different data points. It is desirable to design nonuniform subsampling probabilities
such that more informative data points are more likely to be selected into a subsample (Wang
et al., 2018; Wang and Ma, 2021). In view of Remark 2, we propose to determine nonuniform
subsampling probabilities by minimizing the asymptotic variance-covariance matrix 3 given
in (11). However, the meaning of “minimizing” a matrix needs to be carefully defined. Here
we adopt the idea from design of experiments (Kiefer, 1959), and determine the optimal sub-
sampling probabilities by minimizing a convex function of 3. We follow the idea of Wang

et al. (2018) and focus on minimizing tr(WXW¥)=tr(I'), where

r(T) = tr(%i% [/OT{Xi—X(t,BMpL)}dMi(t,BMPL)}@)

1 K1 2

rn? 4~
=1

/0 {Xz - X{(t, BMPL)} dM;(t, Burs)

As a matter of fact, this optimality criterion of minimizing tr(T") is a version of L-
optimality criterion (Atkinson et al., 2007), because tr(I") is trace of the asymptotic variance-
covariance matrix of ¥/3, which is a linearly transformed subsample estimator. The following
theorem provides an explicit expression for the optimal subsampling distribution wkoPt =

{ﬂ_Lopt n

7 1=

, in the context of L-optimality criterion.

Theorem 2 If the subsampling probabilities are chosen as

ot _ I Jo {Xi — X(t, Buer,) }AMi (£, Buew, )| i—1. o, (14)

Z?:l H foT{Xj - X(t, BMPL)}de (t, BMPL)H ’

then tr(I') attains its minimum.

Remark 3 The numerator of 7rlLOpt has a term X(t,BMPL), which contains all individuals
of the full data D,,. This is different from existing results on parametric models without
censoring, for which numerators of optimal subsampling probabilities involve only individ-
ual observations’ information (except the dependency of the full data estimator). Practical
adjustments are required to implement the optimal subsampling probabilities to tackle the
additional computational challenge due to censored survival data with Cozx’s model. We will

discuss this in Section /.
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Remark 4 With the A-optimality criterion (Wang et al., 2018), we can derive the corre-
sponding optimal subsampling probabilities that minimize tr(X). They are

Aopt _ H\Il_l foT{Xi - X(t_, BMPIJ)}dMi(t? BMPI:)H
Z Z;L=1 [t [ {X; = X(t, Burr) M (L, B )| 7

i=1,--m, (15)

where W is given in (12). Due to the term ¥ in (15), the computational burden of "
Lopt

1s much heavier than that of w Therefore, we focus on 7TZ.L°pt in the presentation of
our subsampling procedure. We provide numerical comparisons between the A-optimality

criterion and the L-optimality criterion in Section 5.1.

Loptyn
i i=1

We provide more insights on the optimal subsampling probabilities {m from two
aspects: First, the numerator [/ {X; — X (t, Bups) }AM;(t, Buer) is actually the ith sample’s
score given in (3), which is also referred to as the residual (Therneau et al., 1990). The
subsampling probabilities in Keret and Gorfine (2020) for censored individuals also share
a similar spirit, but the subsampling probabilities for observed events are one in Keret
and Gorfine (2020)’s approach. Second, since the failure times are observed for uncensored
observations, they contain more information than censored observations. The optimal sub-
sampling probabilities give higher preferences to uncensored observations compared with

censored observations. This will be demonstrated numerically in Section 5.1.

4 Practical Implementation

4.1 Two-Step Subsampling Algorithm

In this section, we discuss some issues on practical implementation and provide strategies to
resolve them.

First, the optimal subsampling probabilities {7TZL

°P1n  contain the full data estimator
BMPL. We take a pilot subsample from D,, by uniform subsampling with replacement, say
Dy = {(XP*,A¥, Y ?™),i=1,--- 1o}, obtain a pilot estimator By using Dy, and use By to
replace the BMPL in (14) for practical implementation.

Second, the resultant probabilities still involve a term X(t, BO) after replacing L:]MPL with

Bo. This term involves the full data D,, so it requires heavy computation burden. To tackle
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this problem, we recommend replacing X (¢, By) with X% (¢, By), where
> 1Y) = ) X5 exp(B'XY)
ST IV S ) exp(AXT)
This is a reasonable choice because it can be shown that X% (t, 8) = X(¢,3) + op(1), for
any t € [0,7] and 3 € © (see Eq. (S.6) in the Appendix).
Third, the term dM;(t, Byp.) involves the unknown baseline hazard function Ao(t). We

X"(t,8) = (16)

propose a subsample Breslow-type estimator for Ay(t) = f(f Ao(s)ds using Dy as follows:

A UNIF o - A?*I()/zo* S t)

i=1
Taking into account previous discussions, the approximated optimal subsampling probabili-

ties are

PP I foT{Xi - X" (t, BO)}dMi<t7 BO)H
b X GG = X0t Bo) FdM; (. Bo) |
where dM;(t, Bo) = dN;(t) — 1(Y; > t) exp(ByX;)dATN (¢, Bo).
Fourth, we see from (18) that m;™" is proportional to || [;{X; — XO*(t, Bo) YdM;(t, Bo)|,

i=1,--,m, (18)

which could be small for some data points. Since 7;*"’s are obtained by inserting the pilot
,5’0, they are not the real optimal probabilities. The variation of Bo may be significantly
amplified by data points with much smaller values of 7;”” than other data points, because
the sampling probabilities appear in the denominator of the asymptotic variance as shown

P are selected into

in (13). From another angle, if some data points with much smaller 7;”
a subsample, the weighted subsample pseudo-score function (8) may be dominated by these
data points and thus the variance of the resulting estimator is inflated by them. Following
the idea of defensive importance sampling (Hesterberg, 1995; Owen and Zhou, 2000), we
mix the approximated optimal subsampling distribution with the uniform subsampling dis-
tribution. Specifically, we use 75" = (1 — 0)m;"® + §/n instead of 7" in (18) for practical
implementation, where 6 € (0,1) controls the proportion of mixture. A main advantage

P

of this approach is that nzj; " is lower-bounded by 4§, so it ensures robustness of the sub-

sampling estimator. The same idea was also adopted by other subsampling methods in the

literature, such as Ma et al. (2015); Yu et al. (2022); Wang et al. (2022a). We use 6 = 0.1
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in the numerical simulations and real-world application in Section 5, and this choice works
well.

We present a practical two-step subsampling method for Cox’s model in Algorithm 1.

Algorithm 1 Two-Step Subsampling Procedure

e Step 1. Take a pilot subsample of size ro D = {(X{*, AY, Y?*)}2, using uniform
subsampling with replacement from the full data D,,. Here ry is typically much smaller than

r. Compute a pilot estimator ﬁo by solving
) 1 X _
((B) = == > AF{XY - X" (v, B)} =0,
"o
where X% (¢, 3) is given in (16). Calculate

1
T = (1= O)m™ 26, =1, (19)

i

where 7;""’s are given in (18) and 0 is often a small number. e.g., 6 = 0.1.

e Step 2. Draw r data points with replacement from the full data D,, using the subsam-
pling probabilities {75 "} | given in (19). Let D} = {(X}, Af, Y*, 577"}, be the selected
subsample. Obtain the two-step subsample-based estimator B by solving

. 1 1 _
5. (B) = == > —m AJ{X; = X5, (V7. 8)} =0, (20)

r i1 nws;

where Xgo (t,3) has the same expression as X*(¢,3) given in (9) except that 7} is replaced

with 72PP*.

Note that we do not recommend combining Dy, and D together for Step 2 of Algorithm 1.
If we are able to handle the calculation on the combined data from D; and Dj, then it is
more efficient to increase the second step subsample size to ro + r. That is to say, the pilot
subsample Dy does not come into the estimation step for B Therefore, we do not need to
allocate two subsample sizes ry and » when implementing our method. Some discussion and
guidance on the selection of rg are provided in Section 5.1.

We established the asymptotic normality of the estimator B from the practical Algo-

rithm 1 in the following theorem.
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Theorem 3 Under assumptions 1-3, if r = o(n), then as ro — oo, r — 00 and n — oo,
conditional on D,, and Bg, the two-step estimator B wn Algorithm 1 is consistent to BMPL with

—-1/2

convergence rate r . Furthermore, the approrimation error has an asymptotically normal

distribution, that is
228 = Byr) — N(0,1), (21)

where ¥ = UITW! with ¥ defined in (12),

1 «— 1 } St A 5 17
i=1 Tsi 0
and
Lopt Lopt 0 ;
Ts; :(1_5)7Ti +Ea i=1--,n <23)

Remark 5 Note that the full data estimator ﬁMPL converges to the true parameter at a
rate of n='/2, so the full data estimator BMPL in (21) can be replaced by the true parameter
since r = o(n). Thus the asymptotic result in Theorem 3 can be used for inference on the
true parameter. Since the subsampling rate is often very small when dealing with large-scale

datasets, it is reasonable to apply the asymptotic normality in practice.

The following proposition gives the unconditional convergence rate and asymptotic nor-
mality of the two-step subsample estimator towards the true parameter, which are very useful

when we perform inference with respect to the true parameter.

Proposition 1 Under assumptions 1-3, if r = o(n), then as ro — oo, r — oo and n —
00, the two-step estimator ,[;' in Algorithm 1 is consistent to the true parameter (3g with

1/2

convergence rate r—'/*. i.e., we have HB — Boll = Op(r='/%). Moreover, B is asymptotically

normal, that is
SV2(B — By) 5 N(0,1),

where 32 is given in Theorem 3.
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In view of Proposition 1 and Remark 5, we need to provide an estimate for the variance-
covariance matrix of ,é when conducting statistical inference for the true parameter. A
simple method is to replace ,éMPL with é in the asymptotic variance-covariance matrix 3.
However, this requires the calculation on the full data D,,. To reduce computational cost, we

propose to estimate the variance-covariance matrix of ,[;' using the subsample D} only with

) v

=0T (24)

where

v v 2
1 & A SO [soeng))”
rn it SO (Y:*, 5) SO (Y, [;) ’

- . "X - X0 AT (1 B)]
_rznzizl{ﬂgfp*}z [/0{ i (75)} i(a,@)} )

S BV, B) = (rn) L mEP TV > Y X PR exp(B'X3) for k= 0,1,2, X% (¢, 3) is
defined in (16), and dM(t,3) = dN;(t) — (Y > t)exp(B'X})dAT™™ (¢, 3). We will assess
the performance of formula (24) by numerical simulations.

Lastly, the cumulative hazard function Ay(t) plays an important role for predicting the
survival probability of an individual in many biomedical applications. It has an expression of
S(tX) = P(T > t|X) = exp{—exp(3'X)Ao(t)} with Cox’s model. The Breslow estimator

Ao(t, B) is the maximum likelihood estimator of Ao(t) where

Ni(s)
Z] 1 Y > s)exp(B'X;)

Z NI(Y; <) (25)
Z] 1Y) > Y)) exp(B'X; )

Based on the subsample estimator ﬁ, it is easy to obtain a Breslow type estimator Ao(t, é)
by replacing 8 with B in (25), i.e., an estimated cumulative hazard function is based on
the entire dataset but with a subsampling-based estimator of 3. As pointed out by an
reviewer, the computation burden of this Breslow estimator is not heavy if the observed
failure times are sorted in an increasing order, because it has an explicit expression and no
optimization process is required. The Breslow type estimator has a computation complexity
O(nlog(n))+O(n), where O(nlog(n)) is due to the sorting of the full data and O(n) is from

the summation.
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5 Numerical Studies

5.1 Simulation

In this section, we conduct simulations to evaluate the performance of our proposed sub-
sampling method. We generate failure times 7;’s from Cox’s model with a baseline hazard
function A\o(t) = 0.5t and the true parameter By = (—1,—0.5,0,0.5,1)" with p = 5. We
consider four settings for the covariate X; = (X;1, -+, Xi5)".
Case 1 : components of X; are independent uniform random variables over (—1,1).
Case 11: X; follows 0.5N(—1,Y) + 0.5N(1,Y), where Y;; = 0.5V ie., X; follows a mix-
ture of two multivariate normal distributions.
Case III: components of X; are independent exponential random variables with probability
density function f(z) = 2e>*I(xz > 0).
Case 1V: X, follows a multivariate ¢ distribution with degree of freedom 10, mean zero and
covariance matrix Y where 15, = 0.5V 7%,

The censoring times C;’s are independently generated from a uniform distribution over
(0, co) with ¢y being chosen so that the censoring rate (CR) is about 20% and 60%, respec-
tively. Results were calculated based on 1000 replications of the simulation. We set the full
data sample size to n = 10°, and consider the subsample sizes of r = 400, 600, 800, and 1000,
respectively.

We evaluate the proposed method using the empirical mean squared error (MSE), defined

as

1000

® _ 3 2
MSE(3 1000ZHB — B, (26)

where 3® is the estimate from the bth subsample with § = 0.1.

We studied the effect of the pilot subsample size 1y first. Table 1 presents the MSEs
of subsampling-based estimator by varying the pilot subsample size ry = 300, 400 and 500.
We see that the influence of ry on B is not significant if we choose a reasonably large pilot
subsample. Hence, we suggest to use ro= 300 for settings similar to the simulation setup.
Users may adopt a larger pilot subsample if the dimension of the problem is higher or if the

censoring rate is higher.
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Table 1: The MSE of subsampling-based estimator with different pilot subsample size 7.

CR=20% CR=60%
o r =400 r =600 r =800 r=1000 r=400 r =600 r =800 r=1000
Case 1 300 0.0320  0.0215  0.0159 0.0130 0.0590  0.0392  0.0279 0.0229
400 0.0321  0.0211  0.0163 0.0123 0.0586  0.0385  0.0279 0.0220
500 0.0322  0.0203  0.0161 0.0124 0.0673  0.0365  0.0279 0.0219
Case II 300 0.0340  0.0214  0.0165 0.0127 0.0592  0.0374  0.0284 0.0221
400 0.0332  0.0219  0.0164 0.0128 0.0599  0.0381  0.0299 0.0227
500 0.0338  0.0222  0.0167 0.0125 0.0593  0.0381  0.0281 0.0224
Case III 300 0.0418  0.0272  0.0206 0.0164 0.0804  0.0510  0.0379 0.0294
400 0.0401  0.0262  0.0191 0.0155 0.0800  0.0515  0.0367 0.0310
500 0.0392  0.0257  0.0187 0.0149 0.0769  0.0500  0.0359 0.0290
Case IV 300 0.0167  0.0108  0.0083 0.0065 0.0226  0.0157  0.0108 0.0086
400 0.0152  0.0102  0.0080 0.0060 0.0241  0.0150  0.0112 0.0088
500 0.0151  0.0100  0.0075 0.0060 0.0224  0.0144  0.0107 0.0084

Next we investigated how the MSEs behave as a function of §. From the expression

of wi® = {x{7P}" | given in (19), we know the sampling distribution 75"

P

is close to the

optimal subsampling distribution when ¢ is small, while it is close to the uniform subsampling

distribution if § is close to 1. In Table 2, we present the MSEs of the subsampling estimator

for different values of 4: 0, 0.1, 0.3, and 0.5. It is seen that 6 = 0.1 produce the best result

most frequently among. Hence, we recommend 6 = 0.1 when implementing our method in

practical applications with similar settings.
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Table 2: The MSE of subsampling-based estimator with different mixing rate 9.

CR=20% CR=60%
r 0=0 06=01 06=03 06=05 0=0 0=01 06=03 06=05

Case 1 400 0.0326 0.0320 0.0322 0.0346 0.0596 0.0590 0.0613 0.0670
600 0.0216 0.0215 0.0223  0.0230 0.0393 0.0392 0.0408 0.0443
800 0.0163 0.0159 0.0166 0.0176 0.0290 0.0279  0.0290 0.0317
1000 0.0131 0.0130 0.0132 0.0141 0.0222 0.0229 0.0243 0.0263

Case II 400 0.0347 0.0340 0.0357 0.0376 0.0594 0.0592 0.0623 0.0691
600 0.0219 0.0214 0.0225 0.0242 0.0372 0.0374 0.0394 0.0432
800 0.0164 0.0165 0.0170 0.0180 0.0284 0.0284 0.0302 0.0335
1000 0.0127 0.0127 0.0134 0.0141 0.0222 0.0221 0.0231  0.0248
Case III 400 0.0418 0.0418 0.0437 0.0463 0.0924 0.0804 0.0837 0.0891
600 0.0272 0.0272  0.0281  0.0300 0.0535 0.0510 0.0537  0.0582
800 0.0209 0.0206 0.0211  0.0223 0.0359 0.0379 0.0404 0.0431
1000 0.0164 0.0164 0.0169 0.0177 0.0295 0.0294 0.0306 0.0336

Case IV 400 0.0174 0.0167 0.0166 0.0178 0.0241 0.0226  0.0232  0.0256
600 0.0106 0.0108 0.0106 0.0112 0.0154 0.0157 0.0157 0.0169
800 0.0082 0.0083 0.0083  0.0084 0.0111 0.0108 0.0113 0.0128
1000 0.0065 0.0065 0.0065 0.0067 0.0091 0.0086  0.0089  0.0097

We considered the proposed subsampling method with approximated optimal subsam-
pling probabilities in Algorithm 1 with 6 = 0.1 (“Lopt estimator”), and the uniform sub-
sampling method (“UNIF estimator”). We calculated the empirical biases (Bias), the mean
estimated standard errors (SE) calculated using (24), the empirical standard errors (ESE),
and the empirical 95% coverage probability (CP) towards the true parameter 3. The pilot
sample size is ro = 300.

We present the estimation results about f; in Tables 3 and 4, indicating that both
Lopt and UNIF estimators are asymptotically unbiased. The SE and ESE are similar and
the coverage probabilities are close to the nominal level, which support the asymptotic

normality of the proposed estimator and demonstrate that the subsample-based variance-
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Table 3: Simulation results of the subsample estimator Bl with CR = 20%*.

Lopt UNIF
r Bias ESE SE CP Bias ESE SE CPp
Case 1 400 -0.0021 0.0860 0.0901 0.960 -0.0069 0.1121 0.1148 0.947
600 0.0008 0.0717 0.0728 0.947 -0.0033 0.0896 0.0933 0.961
800 -0.0015 0.0603 0.0629 0.958 -0.0041 0.0787 0.0810 0.963
1000 0.0021  0.0551 0.0559 0.948 -0.0039 0.0672 0.0722 0.961
Case I~ 400 -0.0008 0.0836 0.0844 0.946 -0.0156  0.1032 0.1039 0.952
600 -0.0016  0.0662 0.0681 0.949 -0.0159 0.0857 0.0847 0.950
800 -0.0037 0.0594 0.0588 0.949 -0.0149 0.0769 0.0731 0.935
1000 -0.0020 0.0538 0.0523 0.944 -0.0090 0.0672 0.0649 0.939
Case III 400 -0.0025 0.1047 0.0997 0.937 -0.0109 0.1341 0.1297 0.943
600 -0.0002  0.0827 0.0808 0.936 -0.0029 0.1132 0.1048 0.944
800 -0.0029 0.0704 0.0696 0.938 -0.0037  0.0969 0.0906 0.939
1000 -0.0015 0.0615 0.0621 0.952 0.0008 0.0872 0.0808 0.938
Case IV~ 400 0.0011  0.0602 0.0625 0.953 -0.0093 0.0763 0.0758 0.942
600 -0.0010  0.0496 0.0505 0.958 -0.0072  0.0600 0.0616 0.955
800 0.0015 0.0421 0.0433 0.953 -0.0057  0.0505 0.0531 0.950
1000 -0.0003 0.0369 0.0386 0.966 -0.0058 0.0461 0.0473 0.953
1 The (Bias, SE) of full data MPL estimator 3 is Case I: (Bias, SE) = (0.0001, 0.0021), Case II: (Bias, SE)

= (-0.0036, 0.0020), Case III: (Bias, SE) = (0.0004, 0.0027), Case IV: (Bias, SE) = (-0.0001, 0.0014).
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Table 4: Simulation results of the subsample estimator Bl with CR = 60%*.

Lopt UNIF
T Bias ESE SE Cp Bias ESE SE Cp
Case 1 400 0.0074 0.1119 0.1219 0.971 -0.0094 0.1509 0.1717 0.965
600 0.0066 0.0926 0.0984 0.966 -0.0142 0.1221 0.1404 0.979

800 0.0036  0.0769 0.0849 0.967 -0.0057 0.1089 0.1216 0.968
1000 0.0056 0.0708 0.0758 0.962 0.0001  0.0927 0.1083 0.979

Case II 400 -0.0086 0.1032 0.1012 0.947 -0.0242  0.1398 0.1409 0.952
600 -0.0033 0.0783 0.0813 0.961 -0.0141 0.1164 0.1139 0.945
800 -0.0046 0.0728 0.0699 0.937 -0.0053 0.0979 0.0984 0.948

1000 -0.0007 0.0623 0.0622 0.950 -0.0088 0.0869 0.0878 0.945

Case III 400 -0.0033 0.1562 0.1647 0.959 -0.0282  0.2186 0.2190 0.949
600 -0.0004 0.1244 0.1322 0.963 -0.0199 0.1845 0.1777 0.942
800 -0.0015 0.1113 0.1141 0.962 -0.0075 0.1497 0.1533 0.948

1000 0.0027 0.0972 0.1015 0.958 -0.0085 0.1358 0.1364 0.954
Case IV~ 400 0.0037 0.0685 0.0672 0.939 -0.0122  0.0997 0.0975 0.952
600 -0.0002 0.0585 0.0540 0.922 -0.0026 0.0784 0.0774 0.944
800 0.0022 0.0469 0.0465 0.948 -0.0061 0.0701 0.0663 0.936
1000 0.0018 0.0422 0.0414 0.944 -0.0047 0.0599 0.0588 0.945

I The (Bias, SE) of full data MPL estimator j3; is Case I: (Bias, SE) = (0.0026, 0.0029), Case II: (Bias, SE)

= (-0.0013, 0.0028), Case III: (Bias, SE) = (0.0012, 0.0042), Case IV: (Bias, SE) = (0.0021, 0.0019).
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covariance matrix estimator in (24) is accurate. Both subsample estimators get better as
the sampling size r increases. In addition, the Bias and ESE of the Lopt estimator are much
smaller than those of UNIF estimator with the same subsample size r. This agrees with the
conclusion in Theorem 3. Results for other regression coefficients are similar and thus are
omitted. Furthermore, we report the Bias and SE of the full data MPL estimator towards
the true parameter in the footnotes of Tables 3 and 4.

We calculated the five-number summary statistics of 75™"’s for the censored and uncen-
sored observations separately to demonstrate the impact of censoring on optimal subsampling
probabilities numerically. Table 5 reports the results, including the Minimum, Lower-hinge
(the first quartile), Median, Upper-hinge (the third quartile), and the Maximum. Uncensored
observations have larger subsampling probabilities than censored observations in general, i.e.,
uncensored observations are more likely to be selected into a subsample by our subsampling
method.

Furthermore, we assessed the computational efficiency of our optimal subsampling method.
For comparison, we also considered the UNIF, full data estimator and SGD estimator
(Tarkhan and Simon, 2020), where the full data estimator was calculated with the R function
coxph and the SGD estimator was obtained by the R function bigSurvSGD (using default
settings). The computations were carried out using R (R Core Team, 2021) on a desktop
computer with 64GB memory. We restricted the calculations to access one CPU core and
recorded the average CPU time from 100 repetitions. Table 6 reports the results for Case
I, where the subsample size is r = 1000. The computational speed of the Lopt estimator is
much faster than that of the full data estimator with coxph. The computational burden of
the full data method gets heavier as the increase of full data sample size. In other words,
subsampling is desirable in Cox’s regression because it reduce the computational cost signif-
icantly. The UNIF estimator is faster to compute than the Lopt estimator, because it does
not need the step of calculating the sampling probabilities, but it has a lower estimation
efficiency as we have seen in previous results. Note that the SGD estimator is slower than
the full data estimator in terms of computation speed. We point out that the main aim
of the SGD estimator was to deal with large datasets where coxph cannot be used (due to

out-of-memory issues) rather than speeding up the calculations. In Table 7, we present more
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Table 5: The five-number summary statistics for 5> (x10)%.

Minimum Lower-hinge Median Upper-hinge Maximum

CR=20% Casel  m3?P 0.1000 0.1894 0.4307 1.0141 28.3688
TSy 0.1194 0.5507 0.8835 1.2732 21.5598

Case IT  m3PP 0.1000 0.1621 0.3547 0.8058 28.1762

TS 0.1182 0.5451 0.8588 1.3208 40.5288

Case IIT 3PP 0.1000 0.1698 0.3853 0.8781 58.9218

TS 0.1240 0.5132 0.8090 1.2228 93.0236

Case IV 3PP 0.1000 0.1854 0.4018 0.8461 33.6698

TS 0.1430 0.5188 0.7948 1.2636 57.4029

CR=60% Casel 3%’ 0.1000 0.1759 0.4512 0.9822 21.7717
Ly 0.1475 0.7905 1.2350 1.7154 24.5950

Case II  m3PP 0.1000 0.1801 0.3659 0.7793 27.9329

TS 0.1163 0.8631 1.3230 1.9279 43.5112

Case 111 m3?P 0.1000 0.1607 0.3527 0.7858 54.5352

oo 0.1181 0.8581 1.2927 1.8870 61.6812

Case IV 3PP 0.1000 0.1259 0.2200 0.4839 54.4077

TSy 0.1724 0.8910 1.4241 2.1763 167.3048

I w5y and 75hP denote the mixed approximated optimal subsampling probabilities for censored and uncen-

U

sored samples, respectively; 6 = 0.1.
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comparisons between Lopt and UNIF methods when the CPU computation times are similar.
It is seen that the Lopt and UNIF may have similar estimation efficiency using similar CPU
times. However, the UNIF uses larger sample sizes and thus larger memory. The optimal
subsampling method achieves the same estimation efficiency with less computing resources

in these scenarios.

Table 6: The CPU time for Case I with 7 = 1000 (in seconds)T.

n
Methods 10 5x 105 107

CR = 20% UNIF 0.17  0.25 0.34
Lopt 0.39 1.22 2.28
full data 6.75  45.71 100.65
SGD 94.19 603.81 1294.70

CR = 60% UNIF 0.10 0.17 0.27
Lopt 0.32 1.17 2.33
full data 6.16  45.87 99.54
SGD 99.50 530.84 1112.85

T “full data”: calculated with R function coxph; “SGD”: calculated

with R function bigSurvSGD.

Finally, we compared the two subsampling probabilities derived from the L-optimality
criterion (Lopt) and A-optimality criterion (Aopt), respectively. By Remark 4, the optimal
subsampling probabilities under the A-optimality criterion are obtained by minimizing tr(3),
where ¥ is given in (11). Using a similar deduction as that of (18), we can obtain the

approximated optimal subsampling probabilities under the A-optimality criterion:

nope O TG — X0 (1, Bo) }AML(t, Bo) | .
o = — — - - — i=1,---,n, (27)
D 10 [7{XG — XO(t, Bo) }dM; (¢, Bo) |

where

0 _ irZOAO* SO*@)(Y;O*,BO) B SO*(U(YZ‘O*aBO) ©2
oS [ SUOM By | SHO0 B [ |

=1
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Table 7: Comparisons of CPU times between Lopt and UNIF (in seconds).

CR=20% CR=60%
CPU r MSE CPU r MSE
Casel  Lopt 0.4304 1000 0.01215 0.3834 1100 0.02047
UNIF 0.4823 1700 0.01113 0.3631 2100 0.01930
Case I Lopt 0.3670 800 0.01515 0.4591 1400 0.01602
UNIF 0.3415 1400 0.01519 0.4568 2300 0.01757
Case III Lopt 0.3842 850 0.01667 0.4972 1400 0.02158
UNIF 0.4465 1500 0.01675 0.5259 2300 0.02424
Case IV Lopt 0.4749 1100 0.00575 0.4097 1100 0.00819
UNIF 0.5260 1650 0.00565 0.3726 2000 0.00882

1 “CPU” denotes average CPU time from 100 repetitions; the full data size is n = 10°.

and S*®(YV* By) = (ro) T 00, IV > V)X exp(B)X ) for k = 0,1,2. The corre-

sponding mixed subsampling probabilities with A-optimality criterion are

)
Wéom:(l—é)wfom+—, 1=1,--,n.

In Figures 1 and 2, we report the empirical MSEs of subsample estimators with Lopt, Aopt
and UNIF methods, where 6 = 0.1. The results indicates that Lopt and Aopt have similar
performance. In addition, the UNIF has the largest MSE compared with Lopt and Aopt
methods. It is clear that the speed of Aopt is slower than Lopt, because there is an additional
term W% involved in (27). As a summary, we recommend using the Lopt for our subsampling

method in practical applications.
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Figure 1: The MSEs for different subsampling methods with CR= 20%.
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Figure 2: The MSEs for different subsampling methods with CR= 60%.

5.2 Application

In this section, we apply the proposed subsampling method to a real-world data example
about the USA airline, where the dataset is publicly available from DVN (2008). We are

interested in analysing those arrival delayed airlines, where there were totally 57,729,435

26



arrival delayed commercial flights within the USA from October 1987 to April 2008. For
the ith airline, the failure time 7; is defined as the delayed time from scheduled arrival
time to actual arrival time (in minutes). Among those 57,729,435 arrival delayed flights,
33,142,872 subjects experienced an actual arrival within 15 minutes (the delayed arrival
time is less than 15 minutes). The censoring rate is about 42.6%. For analysis, the risk
factors X; = (X;1, Xi2)" in Cox’s model are departure status (departure on time or ahead of
schedule = 0 and departure delayed = 1) and distance (continuous, in thousands of miles),

respectively.

Table 8: Estimation results for the airline arrival delay data with one subsample.

Lopt UNIF

6] Est SE CI Est SE CI
r=400 -1.0009 0.1303 (-1.2562, -0.7456) -1.2038 0.1353 (-1.4691, -0.9385)

Ba -0.3188 0.1194 (-0.5527, -0.0848) -0.2471 0.1296  (-0.5009, 0.0069)
r=0600 [ -1.0633 0.1036 (-1.2663, -0.8602) -1.0865 0.1298 (-1.3409, -0.8322)

Ba -0.2341 0.0869 (-0.4045, -0.0637) -0.3207 0.1195 (-0.5549, -0.0865)
r=2800 [ -1.1121  0.0826 (-1.2741, -0.9502) -1.0575 0.1001 (-1.2536, -0.8613)

Ba -0.3418 0.0689 (-0.4769, -0.2067) -0.2674 0.1031 (-0.4694, -0.0654)
r=1000 /f -1.1099 0.0745 (-1.2559, -0.9638) -1.1147 0.0857 (-1.2826, -0.9468)

Ba -0.2498 0.0598 (-0.3669, -0.1326) -0.2505 0.0882 (-0.4233, -0.0777)

For comparison, we calculated the full data estimator BMPL = (—1.1301,—-0.2396)" with

coxph, and the corresponding SEs are 0.00035 and 0.00034, respectively. Hence, departure
status and distance have negative effects on the hazard rate of airline’s arrival. That is to
say, it is expected that a departure delayed airline with long distance would owns a longer
arrival delay. In addition, we calculated the Lopt estimator with 6 = 0.1 and the UNIF
estimator. We present the results on the subsampling-based estimator (Est), the SE and
the 95% confidence interval (CI) based on one subsample in Table 8. Both Lopt and UNIF

estimators are close to qupL, especially when the subsample size is large (e.g. 7 = 1000). The
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SE of the Lopt estimator is much smaller than that of the UNIF estimator, which supports
the theoretical conclusion in Theorem 2. To further validate the usefulness of our method, we
report the Bias, SE and ESE of the subsample-based estimates based on 1000 subsamples in
Table 9, where the Bias denotes the average bias of the subsampling estimator with respect
to the full-data MPL estimator. Both subsample-based estimates are unbiased, and the SE
is close to ESE indicating that the estimated variance-covariance matrix in (24) works well.
The results in Table 9 again demonstrate that the Lopt estimator is more efficient than the
UNIF estimator. Finally, the full data MPL estimator with coxph needs 265.58 seconds,
where the computer is the same as that used in the simulation. For r = 1000, the Lopt only
requires 9.03 seconds to output the subsample estimators and their SEs (UNIF needs 1.08
seconds). i.e., the Lopt method has a much faster computation efficiency than the coxph

when we face with large-scale survival dataset in practice.

Table 9: The Bias and (ESE, SE) for subsample estimates in real data.

15} Lopt UNIF
r=400 0.0030 (0.1228, 0.1289) -0.0059 (0.1351, 0.1466)
Ba 0.0022 (0.1033, 0.1094) -0.0035 (0.1346, 0.1419)
r=0600 0.0003 (0.1017, 0.1016)  -0.0055 (0.1129, 0.1087)
Bo -0.0018 (0.0833, 0.0804) -0.0019 (0.1103, 0.1061)
( )
( )
( )
( )

r=3800 f 0.0019 (0.0827, 0.0854) -0.0026 (0.0982, 0.0932
B2 -0.0002 (0.0680, 0.0692) -0.0008 (0.0938, 0.0912
r =1000 f 0.0002 (0.0799, 0.0781) -0.0009 (0.0859, 0.0886
B2 -0.0027 (0.0616, 0.0657) -0.0030 (0.0849, 0.0859

6 Concluding Remarks

In this paper, we have studied the statistical properties of a general subsampling algorithm
for Cox’s model with massive survival data. We provided the optimal subsampling proba-

bilities, and established asymptotic properties of the two-step subsample-based parameter
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estimator conditional on the full data. Extensive simulations and a real data example have
been used to validate the practical usefulness of our method. Note that the proposed ap-
proach is appropriate when the outcome of interest is common and the dataset includes
enough observed events, i.e., our subsample method is suitable for the regular time-to-event
data. Faced with massive survival datasets with rare events, Keret and Gorfine (2020) pro-
posed a novel and interesting subsampling procedure to deal with computational challenges
in massive data Cox regression. Their procedure is based on counting process type score
function, while we derive the asymptotic distribution of subsample-based estimator from the
martingale-type subsample score function. Keret and Gorfine (2020) avoided the need of
estimating the cumulative baseline hazard function for the optimal subsampling probabili-
ties, which was in contrast to our approach. In addition, our proposed subsample estimator
approximates the maximizer of the full data partial likelihood, and the approximation error
is not significantly affected by the correctness of the Cox model. In other words, if the
proportional hazards assumption is violated, the subsample estimator is still close to the full
data estimator, but the full data estimator may not be the best estimator any more.

There are four important topics for further research. First, it is desirable to investigate
how the proportional hazards assumption can be adequately checked based on subsamples.
Second, the numerator of 7" only involves the ith subject and the pilot subsample, which
sheds light on the feasibility of distributed or parallel algorithms when calculating the opti-
mal sampling probabilities. For example, by splitting the full data into multiple blocks, it is
possible to calculate the terms || 7 {X; — X% (t, Bo) }dM;(t, Bo)|| with distributed computing
environments. In this case, the computational speed of optimal subsampling method would
be significantly improved. Third, in many practical applications, observed data are often
corrupted by outliers (Meng et al., 2021). Therefore, it is interesting to study the optimal
subsampling method for Cox’s model with the presence of outliers. Forth, the tuning param-
eter 0 perform well with a value of 0.1 in our numerical results, but there is not theoretically
justification to show that this value will work in all scenarios. How to select ¢ attentively

requires further investigations.
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Supplementary Materials

Supplement The supplementary PDF file contains proofs of all the theoretical results in
this paper.

R codes The zip file contains the R codes used to perform the subsampling methods de-

scribed in the article, where the readme file describes details about the codes.

Acknowledgement

The authors would like to thank the Editor, the Associate Editor and two reviewers for
their constructive and insightful comments that greatly improved the manuscript. We also
thank Aliasghar Tarkhan for providing some helpful comments on the usage of R package
“bigSurvSGD”. The work of Wang was supported by National Science Foundation (NSF),
USA grant CCF-2105571. The work of Sun was supported in part by the National Natural
Science Foundation of China (Grant No. 12171463).

Conflict of Interest

The authors declare that there are no conflicts of interest.

References

(2008). Data Expo 2009: Airline on time data.

Ai, M., Yu, J., Zhang, H., and Wang, H. (2021). Optimal subsampling algorithms for big
data regressions. Statistica Sinica 31, 749-772.

Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A
large sample study. The Annals of Statistics 10, 4, 1100-1120.

Atkinson, A., Donev, A., and Tobias, R. (2007). Optimum Ezperimental Designs, with SAS.

Oxford: Oxford University Press.

30



Bai, Y., Li, C., Lin, Z., Wu, Y., Miao, Y., Liu, Y., and Xu, Y. (2021). Efficient data loader
for fast sampling-based gnn training on large graphs. IEEE Transactions on Parallel and

Distributed Systems 10, 2541-2556.

Battey, H., Fan, J., Liu, H., Lu, J., and Zhu, Z. (2018). Distributed testing and estimation
under sparse high dimensional models. The Annals of Statistics 46, 3, 1352—1382.

Chen, X., Cheng, J. Q., and Xie, M. (2021b). Divide-and-conquer methods for big data
analysis. arXiw:2102.10771v1 .

Chen, X., Liu, W., and Zhang, Y. (2022). First-order newton-type estimator for distributed

estimation and inference. Journal of the American Statistical Association 117, 1858-1874.

Cox, D. R. (1972). Regression models and life-tables (with discussions). Journal of the Royal
Statistical Society, Series B 34, 187-220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62, 2, 269-276.

Fan, J., Guo, Y. and Wang, K. (2021). Communication-efficient accurate
statistical estimation. Journal of the American Statistical Association, DOI:

10.1080/01621459.2021.1969238 .

Fang, E. X., Ning, Y., and Liu, H. (2017). Testing and confidence intervals for high di-
mensional proportional hazards models. Journal of the Royal Statistical Society: Series B

(Statistical Methodology) 79, 5, 1415-1437.

Fleming, T. and Harrington, D. (1991). Counting Processes and Survival Analysis. New
York: John Wiley and Sons.

Han, L., Tan, K. M., Yang, T., and Zhang, T. (2020). Local uncertainty sampling for
large-scale multiclass logistic regression. The Annals of Statistics 48, 1770-1788.

Hesterberg, T. (1995). Weighted average importance sampling and defensive mixture distri-

butions. Technometrics 37, 185—194.

Huang, J., Sun, T., Ying, Z., Yu, Y., and Zhang, C.-H. (2013). Oracle inequalities for the
lasso in the cox model. The Annals of Statistics 41, 3, 1142-1165.

31



Jordan, M. L., Lee, J. D., and Yang, Y. (2019). Communication-efficient distributed statistical
inference. Journal of the American Statistical Association 114, 526, 668-681.

Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data.

New Jersey: Wiley-Interscience.

Keret, N. and Gorfine, M. (2020). Optimal cox regression subsampling procedure with rare
events. arXiw:2012.02122v1 .

Kiefer, J. (1959). Optimum experimental designs. Journal of the Royal Statistical Society,
Series B 21, 272-319.

Kleinbaum, D. G. and Klein, M. (2005). Survival Analysis: A Self-Learning Text. New York:

Springer Science+Business Media, Inc.

Lee, S. and Ng, S. (2020). An econometric perspective on algorithmic subsampling. Annual

Review of Economics 12, 45-80.

Li, R., Chang, C., Justesen, J. M., Tanigawa, Y., Qiang, J., Hastie, T., Rivas, M. A., and
Tibshirani, R. (2020). Fast lasso method for large-scale and ultrahigh-dimensional cox

model with applications to uk biobank. Biostatistics DOI: 10.1093/biostatistics/kxaa038.

Li, T. and Meng, C. (2021). Modern subsampling methods for large-scale least squares
regression. International Journal of Cyber-Physical Systems 2, 1-28.

Lin, L., Li, W., and Lu, J. (2020). Unified rules of renewable weighted sums for various
online updating estimations. arXivw:2008.08824v1 .

Liu, H., You, J., and Cao, J. (2021). Functional L-optimality subsampling for massive data.
arXw:2104.03446v1 .

Luo, L. and Song, P. X. (2020). Renewable estimation and incremental inference in gen-
eralized linear models with streaming data sets. Journal of The Royal Statistical Society

Series B 82, 69-97.

32



Luo, L., Zhou, L., and Song, P. X.-K. (2022). Real-time regression analysis of streaming
clustered data with possible abnormal data batches. Journal of the American Statistical

Association DOI:10.1080/01621459.2022.2026778.

Ma, P., Mahoney, M. W., and Yu, B. (2015). A statistical perspective on algorithmic
leveraging. Journal of Machine Learning Research 16, 861-911.

Meng, C., Xie, R., Mandal, A., Zhang, X., Zhong, W., and Ma, P. (2021). Lowcon: A design
based subsampling approach in a misspecified linear model. Journal of Computational and

Graphical Statistics 30, 694-708.

Owen, A. and Zhou, Y. (2000). Safe and effective importance sampling. Journal of the
American Statistical Association 95, 135-143.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-

dation for Statistical Computing, Vienna, Austria.

Schifano, E. D.;, Wu, J., Wang, C., Yan, J., and Chen, M.-H. (2016). Online updating of
statistical inference in the big data setting. Technometrics 58, 393—-403.

Shi, C., Lu, W., and Song, R. (2018). A massive data framework for m-estimators with
cubic-rate. Journal of the American Statistical Association 113, 524, 1698-1709.

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization paths for
cox’s proportional hazards model via coordinate descent. Journal of Statistical Software

39, 1-13.

Tarkhan, A. and Simon, N. (2020). Bigsurvsgd: Big survival data analysis via stochastic
gradient descent. arXiw:2003.00116v1 .

Therneau, T. M. (2021). A Package for Survival Analysis in R. R package version 3.2-13.

Therneau, T. M., Grambsch, P. M., and Fleming, T. R. (1990). Martingale-based residuals
for survival models. Biometrika 77, 147-160.

Volgushev, S., Chao, S.-K., and Cheng, G. (2019). Distributed inference for quantile regres-
sion processes. The Annals of Statistics 47, 3, 1634-1662.

33



Wang, C., Chen, M.-H., Schifano, E., Wu, J., and Yan, J. (2016). Statistical methods and
computing for big data. Statistics and Its Interface 9, 399-414.

Wang, H. (2019). More efficient estimation for logistic regression with optimal subsamples.

Journal of Machine Learning Research 20, 1-59.

Wang, H. and Ma, Y. (2021). Optimal subsampling for quantile regression in big data.
Biometrika 108, 99-112.

Wang, H., Yang, M., and Stufken, J. (2019). Information-based optimal subdata selection
for big data linear regression. Journal of the American Statistical Association 114, 525,

393-405.

Wang, H., Zhu, R., and Ma, P. (2018). Optimal subsampling for large sample logistic
regression. Journal of the American Statistical Association 113, 522, 829-844.

Wang, J., Zou, J., and Wang, H. (2022a). Sampling with replacement vs poisson sampling:
a comparative study in optimal subsampling. IFEFE Transactions on Information Theory

68, 6605-6630.

Wang, K., Wang, H., and Li, S. (2022b). Renewable quantile regression for streaming
datasets. Knowledge-Based Systems DOI: 10.1016/j.knosys.2021.107675.

Wang, T. and Zhang, H. (2022). Optimal subsampling for multiplicative regression with
massive data. Statistica Neerlandica 76, 418—-449.

Wang, Y., Hong, C., Palmer, N., Di, Q., Schwartz, J., Kohane, 1., and Cai, T. (2021). A

fast divide-and-conquer sparse cox regression. Biostatistics 22, 381-401.

Wu, J., Chen, M. H., Schifano, E. D., and Yan, J. (2021). Online updating of survival
analysis. Journal of Computational and Graphical Statistics 30, 1209-1223.

Xiong, S. and Li, G. (2008). Some results on the convergence of conditional distributions.

Statistics and Probability Letters 78, 3249-3253.

Xu, J., Ying, Z., and Zhao, N. (2020). Scalable estimation and inference with large-scale or
online survival data. arXiv preprint arXiv:2001.01434 .

34



Xue, Y., Wang, H., Yan, J., and Schifano, E. D. (2019). An online updating approach for
testing the proportional hazards assumption with streams of survival data. Biometrics

76, 1, 171-182.

Yang, Z., Wang, H., and Yan, J. (2022). Optimal subsampling for parametric accelerated

failure time models with massive survival data. Statistics in Medicine 41, 5421-5431.

Yao, Y. and Wang, H. (2019). Optimal subsampling for softmax regression. Statistical Papers
60, 585-599.

Yao, Y. and Wang, H. (2021). A review on optimal subsampling methods for massive

datasets. Journal of Data Science 19, 151-172.

Yao, Y., Zou, J., and Wang, H. (2021). Optimal poisson subsampling for softmax regression.

Journal of Systems Science and Complexity , accepted.

Yu, J., Ai, M., and Ye, Z. (2023). A review on design inspired subsampling for big data.
Statistical Papers 1-44.

Yu, J., Wang, H., Ai, M., and Zhang, H. (2022). Optimal distributed subsampling for max-
imum quasi-likelihood estimators with massive data. Journal of the American Statistical

Association 117, 265-76.

Zhang, A., Zhang, H., and Yin, G. (2020). Adaptive iterative hessian sketch via a-optimal
subsampling. Statistics and Computing 30, 1075-1090.

Zhang, H. and Wang, H. (2021). Distributed subdata selection for big data via sampling-
based approach. Computational Statistics & Data Analysis 153, 107072.

Zhang, T., Ning, Y., and Ruppert, D. (2021). Optimal sampling for generalized linear models
under measurement constraints. Journal of Computational and Graphical Statistics 30,

106-114.

Zhao, T., Cheng, G., and Liu, H. (2016). A partially linear framework for massive heteroge-
neous data. The Annals of Statistics 44, 4, 1400-1437.

35



Zuo, L., Zhang, H., Wang, H., and Liu, L. (2021a). Sampling-based estimation for massive
survival data with additive hazards model. Statistics in Medicine 40, 441-450.

Zuo, L., Zhang, H., Wang, H., and Sun, L. (2021b). Optimal subsample selection for massive
logistic regression with distributed data. Computational Statistics 36, 2535-2562.

36



Supplementary Materials for
Approximating Partial Likelihood Estimators via Optimal
Subsampling

Haixiang Zhang, Lulu Zuo, HaiYing Wang and Liuquan Sun

A Proofs

In this section, we give the proof details of Theorems 1-3 and Proposition 1. For these goals,

we first need the following lemmas.

Lemma S.1 (Xu et al., 2009) Suppose that as n — oo,

sup |hn(t) — h(t)] =0,  sup |gn(t) — g(t)| = 0,
te[0,7] te[0,7]

where h is continuous on [0,7], gn(-) and g(-) are left-continuous on [0, 7], with their total

variations bounded by a constant that is independent of n. Then, n — oo,

¢ ¢
sup / hn(u)dgn(u)—/ h(u)dg(u)| — 0,
telo,7] |J0 0
and
¢ ¢
sup / hn(u)dgn(u)—/ hp(u)dg(u)| — 0.
telo,7] |J0 0

Lemma S.2 Suppose the assumptions 1-4 hold, then as n — oo and r — 0o, conditional on

D,., for any B € © we have

U*(B) = {(B) + Opip, (r'/?), (S.1)

and

*(B) = U*(B) + oppp, (r /%), (S2)

1



where © is a compact set containing the true value of B, £(8) and £*(B) are given in (3) and
(8), respectively. Moreover,

Z / (Xt~ X(t, 8)}dM; (¢, B)
with dM?(t, B) = dN;(t) — I(Y;* > t)exp(B' X)) o(t)dt, i =1,--- |r

Proof. For i =1,--- ,r, denote

GB) = X(t.8)}AM; (1. 8).

Conditional on D, (f(3), - C*(ﬁ are independent and identically distributed random

vectors, it is straightforward to derive that
* 1 - T Y
B{G@BD) = =1 > | (X=Xt 8)}dMi(, B)
i=1
= (P

Note that U*(8) = r~' YI_, (7(8), then E{U*(8)|D,} = E{(;(8)|D,} = {(8).
Let U7(8) be the jth component of U*(3) for j =1,--- ,p, then we have

Var{Ui(B)|D,} = o [ / {Xi; — X;(t, B) Y M;(t, ﬁ)r

[Z / (X, — X, (t.8)}dMi(, m]

< Y| [ - X
< fg%b{n;}ﬁz /O{Xi—X(t,ﬁ)}dMi(t,ﬁ) 2
= Op(r ).

Here the last equality is from the assumption 4, together with
2

,B)}M;(t, B)|| = Op(1),

which can be deduced by the boundedness of X;’s in D,,, together with the assumptions
1 and 3. The Markov’s inequality implies that U%(8) — 0;(B) = Opyp, (r~/?). Therefore,
U*(8) = (B) + Opip, (r~1/?), i.e., the conclusion given in (S.1) is established.
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For the sake of proving (S.2), we rewrite the expression of £*(3) as

0(8) =~ 30 = [ X - X(0.8) + X (0. 8) - X (1. ))AM (1.

U+ -3 [ {X(8) — X )M (1.). 53)

B)
Recall that X*(¢, B) = S*I(t, B)/S*O (¢, B), where S*V (¢, B) = (nr)L Y i (Y >
)X exp(B'X:) and S*O(t,B) = (nr) 'S0, m (Y > t)exp(B'X}). Conditional on

i=1"1

D,, (X5, Y, f)’s are independent and identically distributed variables. For a subsample

D = {Z:}_, with Z = (X}, ALY, 7}), we define a subsample empirical measure given

the full data D,

Pyp, = %Z Ozr,
i=1

where 0 is a measure that assigns mass 1 at Z and 0 elsewhere. For a measurable function

f : D, — R, we denote
1o \
Prp,f = - Z J(Z7).
i=1
Using the conditional empirical measure P, p,, we can rewrite the S *F)(t, B) as
S*B(t, B) = Pop, {(nm*) (V" > )X*** exp(3X*)}, k=0,1,2.

In order to use the technique of empirical process (van der Vaart and Wellner, 1996), we

denote Pp, as taking expectation conditional on the full data D,,. e.g.
Pp, f(Z°) = E{f(Z")|Ds} = ) _mf(Z). (S4)
i=1
From (S.4), we have the following expressions:

Pp {(nn*) " I(Y* > 1)X**exp(BX")} = E {%I(Y* > )X * exp(8'X")

pn}
1 . Rk /
= =) I(Y; = )X exp(B'X))
n
=1

= W, ).



By Kosorok (2008) and the assumptions 3 and 4, we know {(nm) ' (Y > ¢)X®* exp(3'X) :
t€[0,7],8 € ©}and {(nm)"'N(t) : t € [0, 7]} are Donsker, where k = 0, 1 and 2. Therefore,

conditional on D,, we have
|5*®) (¢, B) — S® (¢, B)|| 5 0 uniformly towards ¢. (S.5)

Because S (¢, 3) is bounded away from zero (Andersen and Gill, 1982), then conditional

on D,

sup
te[0,7]

P,ip, {(nm*) "1 (Y* > )X* exp(8'X*)} B Pop, {(nm*) 1 I(Y* > t)X* exp(3'X*) }H
Prip, {(nm*) LI (Y* > t) exp(8'X*)} Pp, {(nm*)= ' 1(Y* > t) exp(8'X*)}

i.e., as r — o0,
1X*(t, B) — X(t, B)] L 0 uniformly towards ¢. (S.6)
Combining (S.3) and (S.6), as 7 — oo some calculations lead to
11 [ .
R” = — — X*(t,B8) — X(t dM;(t
B = X [ K@ - X

=:%ET@@—X@@MM@—AE?@@—X@@MM@,

R:(B) R3(8)

where Ni(t) = =30, 1*N*() and Af(t) = =31 1 7 fo (Y > w)exp(B8'X)Ao(u)du.

Note that N7(¢) and AZ(t) are two nondecreasing processes, due to (S.6) we have

RO = | [0 - X0
s/NMWﬁ X (t, B)[dN: (1)
— N:ror(),
and
R~ | [ s - Xempano)|

s/WMtﬂ X (t, B)|ldA (1)

= A(7)op(1).



Therefore,

R(B) = {N:(7) = Al(r)}op(1)

In view of the martingale property E{M(7)} = 0, conditional on D,, we observe the

following two facts:

and

1 — 1 11 ’
D :—Ej—M? - = —§ M
”} n2r,1m +(7) r{nil Z<T)}

< max{ ! }iiMf(T) +op(r )

T 1<i<n | nm; ) rn 4
1=

= OP(T‘_l),

where the last equality is due to the assumptions 1, 3 and 4. By the Markov’s inequality, we

have
LS LA (r) = Oppp () 57)
rn :lﬁz‘ i\T) = YPDn T
Therefore, we know that
R*(B) = Opip, (r*)op(1) = opp, (r~'/?). (S.8)

Combining (S.3) and (S.8), we get /*(8) = U*(8) + opip, (r~/?). This ends the proof.

Lemma S.3 If the assumptions 1-4 hold, as n — oo and r — oo, conditional on D,,, we

have

é*(BMPJ = OP|Dn (7"_1/2)7 (89)



and

F*(Bup) = ¥ + 0p(1), (S.10)

where W is given in (12), and

~ A 2
P = L3 8 [ SO0 Bur) (5005 | (1)
T om0 Bun) | SO L) || '

Proof. In view of (S.1) and (S.2), we know £*(Bups) = £(Bups) + Oppp, (r~/?). From Cox
(1975), the full data maximum partial likelihood estimator By satisfying Z(BMPL) =0,
hence the conclusion given in (S.9) holds.

Based on the subsample D} = {(X}, A7, Y,*, 7f)}i_,, we introduce an auxiliary term
Z / (X' — X(t, B)}AN* (1, B), (S.12)

where N (t) = I(Af = 1,Y; <t), and X(t, B) is given in (4). Some calculations lead to the

following expression:

o i . ; Y* /BMPL) _ S(l)(y;'*aBMPL) ®2
/BMPL - nr Zz:; (Y IBMPL) {S(O)(K*’BMPL)} . (8.13)

Conditional on D,,, it is straightforward to deduce that

~ 2
—Z A, n,ﬁMpL>_ SO ) |
O(Y;, Bur) | SOV, Burer)

E{V*(Bur)|Da}

v.

For any 1 < ji, 72 < p, denote V;jz (BMPL) and ¥; ;, as any components of V*(BMPL) and
W, respectively. Then we have

[ o2 A . ®2 72
S]('lj)'g(}/;MBMPL) . S(l)(mw@MPL) 1\112
O(Y;, Buirr.) O(Y;, Buirr)

e 1 A
Var{V; ;,(Bur.)|Dn} = rn2 Z s
i=1 "°

o Ly SO fun) _ [ SOV B -
a =1 i S(O)(Y;7BMPL) S(O)<n7/éMPL)




2 A ®2
~ @)(y: 1) (v
< max{ 1 }iZAi SPYi Burs) ] STV, Burs)
I<isn (nm; ) rn 4= SO(Y;, Burr) SO (Y;, Buer)
= Opp, (r™").

Here the last equality is from the assumption 4, along with

2
n

~ ®2
5(2 Y;, MPL S(l) }/z'a MPL
_Z B )_{ (i, 8 )} = Oppp, (1),
=1

S(O) Yz; ﬂMPL) S(O) (Y;7 /BMPL)

which is derived from the boundedness of X;’s in D,,, the assumption 3 and S (Y}, BMPL) is

bounded away from zero. By the Markov’s inequality, we get

V*(Byre) = ¥ + Oppp, (r71/?). (S.14)

Conditional on D,,, some calculations lead to

IR ok A A*
17 (Burs) = V¥ (Bum)|l < @Z

WY, Bue) SOV, Burs
Y* IBI\/IPL) S(O) (Y*7 B

. 2
1 iA: SO0 B | [ SV
rn ‘= ¥ §%(0) (}Q*,BMPL) 5(0)

_ {%Z if}opu)

=

1 T
< o { = for()
I<i<n | N7
= op(1), (S.15)

which is due to (S.5) and the assumption 4. Thus, we have

HE*(BMPL) - V*(BMPL>H = OP(l)- (S.16)

By the triangle inequality, it is easy to derive that

17 (Buier) = ® || < 1 (Buiwn) = V7 (Buwn) | + [V (Buwn) — €|
= OP(1)>
where the last equality is owing to (S.14) and (S.16). This ends the proof.
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Proof of Theorem 1. First we establish the asymptotic normality of subsample-based
estimator B towards BMPL given D,,. As n — oo and r — o0, it follows from (S.1) and (S.2)
that ¢*(8) — /(8) — 0 in probability conditional on D,. Because the parameter space ©
is compact, the full data estimator Byp, is an unique solution to E(,@) = 0 (Andersen and
Gill, 1982). From Theorem 5.9 and its remark of van der Vaart (1998), conditional on D,

in probability, as n — oo and r — 0o, we can obtain the following conclusion:

”B - BMPLH = 0P|Dn(1)- (S.17)

i.e., for any € > 0, we have lim,_, P(HB — BMPLH > ¢|D,,) = 0. According to Xiong and Li
(2008), a random sequence converges to zero in conditional probability also indicates that
it converges to zero in unconditional probability. For notational simplicity, throughout the
proofs we will use op(1) instead of opyp,(1). In other word, we have 18 — Buew|| = op(1).

By the Taylor expansion, as » — oo we can derive that

0% (2 * (A af* AMPL ~ A
0=15(8) = £5(Bure) + %(B — Bur) + R; (S.18)

where é}k(ﬁ) is the partial derivative of £*(3) with respect to f3;, and

. Ll 9205 B 3 — Bure =
R; = (ﬁ—ﬁMpL)//o /0 i1Bun. T uv(B — B )}Ududv(ﬁ—BMpL).

oBop’
Due to the assumptions 3-4, some direct calculations lead to the following conclusion:
0%05(B) K <~ A
sup < —
Beo || 0803 nr < m
1 K¢
< —_— — *
- Pﬁlﬁg{nﬂj} TZIAZ
= Opp,(1),

where K is a positive constant. Therefore, R; = Op‘pn(HB — Bur||?). Based on (S.10), we
know 7*(Byp) = ¥ + Opip, (r~/2) = Oppp, (1). In view of (S.9) and (S.18), we get

IB - BMPL = _{z*<BMPL)}71{é*(BMPL> + OP|Dn(HB - BMPLH2)}
= Opip, (r™'7%) + opip, (18 = Bursll)

= Op|pn(7”_1/2). (819)



Subsequently, we need to prove the asymptotic normality of 3 towards BMPL given D,,.

Recall that

U* /BMPL Z / {X* t /BMPL)}dM* t /BMPL 251,7

where
= / (X¢ — Xt Bupe) JAM ( Bups). i =1, 1.
Given D,,, &, --- , & are independent and identically distributed random variables with
B(ID,) Z [0 - Xt B bt B
= {(Burr) = 0,
and

Var(€:|D,) = E (;2 [/O {X - X(t,BMpL)} dMi*(t,BMPL)] 2

— n21T2 Z% {/OT {XZ — X(t,BMPL)} dMi(t’BMpL)] ®2.
i=1 "

For every € > 0, we have
E (Z IE1PI(1E] > ) | D
=1
1 . * (13
< - B(EIPIDn)
=1
1 1 1
= {ﬁzﬁ
=1 ?
1 1 ]
Elrgfgz{n%rf} {EZ

=1

)

0 {XZ - X(ta ﬁkﬁPL)}dMi<t7 BMPL)

/T{Xi - X(t, BMPL)}dMi(ta BMPL)

0

IN

3}
=op(l), asr — oo.

Here the last equality is from the assumption 4, and

3

>}dMi(t7BMPL) = Op‘pn(l),




which is due to the boundedness of X;’s in D,, and the assumptions 1 and 3. Therefore, the
Lindeberg-Feller conditions are satisfied in probability. By the Lindeberg-Feller central limit
theorem (Proposition 2.27 of van der Vaart (1998)), as » — oo and conditional on D,,, we

get
T 2U0% (Byer) —= N(0, 1), (S.20)
where

1 &1 2

r=—-3 - [ /0 ' {X —X(t, BMPL)} dM;(t, BMPL)] = Opip, (™). (S.21)

Conditional on D,,, it follows from Theorem 2.7 of van der Vaart (1998), together with
(S.2) and (S.20) that as r — oo,

F_1/2é*<IBAMPL) = F_1/2U*(13MPL) + OP(l)

~%5 N(0,1). (S.22)

Based on (S.10) and (S.19), we can deduce the following conclusion:
B = Bur = —{C (Bur)} " (Burs) + Opip, (7). (5.23)
It follows from the assumption 2 and (S.21) that
X =U'TU " =Opp, (r ). (S.24)
By (S.24), it can be deduced that
{F(Bup)} ! = 7 =~ (Bupn) — WHET = 0p(1), (8.25)
From (S.23), (S.24), (S.25) and Lemma S.3, we get

271/2(6 - BMPL) = _271/2{3* (BMPL)}ilé*(BMPL) + OP|Dn (Tﬁl/Q)
= _2_1/2‘]:’_1é*(BMPL) - 2_1/2[{5*(/@1\@”}_1 - ‘Il_l]é*(/éMPL) + OP|Dn<7"_1/2)
= 2w 2020 (B ) + op(1). (S.26)

Furthermore, we observe that
2—1/2\1,—1:[11/2(E—l/QlIJ—IFI/Q)/ — 2—1/2\:[,—1:[11/21-\1/2\1,—12—1/2 L (S27)

10



By (S.22), (5.26), (S.27) and the Slutsky’s theorem, conditional on D,, as n — oo and

T — oo,
S 128 = Byp) —= N(0,1).

That is to say, for any x € R? we have P{Z"Y2(8 — Byp.) < x|D,} — ®(x) in probability,
where ®(x) is the cumulative distribution function of the standard multivariate normal dis-

tribution.

Proof of Theorem 2. Note that

o) = (e S xR B vt )] )

7"',
i=1 °
2

/0 {Xz‘ - X(t, BMPL)} dM;(t, Bups)

2

| %=Xt Bu) 11 B
0 }2
where the last inequality is from the Cauchy-Schwarz inequality, and its equality holds if and
only if m = ¢ [i{X; — X (t, Bupr.) M (t, Bupr)|| for some ¢ > 0. Due to Y20, 7 = 1, we
know ¢ = {30 || Jy{X; — X (t, Buwer,) }AM; (¢, By )|} " Therefore, the optimal subsam-
pling probabilities are

ﬂ_'Lopt _ H foT{Xi - X(t, BMPL)}dMi(ta BMPL)H

l Z;L=1 H foT{Xj - X(t, BMPL)}de<t7 BMPL)H ’
This completes the proof.

v

1 n
i

1=

/0 {Xi - X(t, BMPL)} dM;(t, Bups)

i=1,--.n

Lemma S.4 Under the assumptions 1-3, as n — oo and ro — oo, conditional on D, we
have AJN(t, By) = Ao(t) + Opip, (7“51/2), i.e., for any € > 0, with probability approaching

one, there exists a finite A and r., such that

P

AU (1 Gy — Ao(t)‘ > o 2A,

Dn> <e (S.28)

11



or all ro > re, where AVN¥ (¢, B) is a uniform subsample Breslow-type estimator defined in
0 p

(17).

Proof. For any t € [0,7] and 8 € ©, conditional on D,, we need to prove the following two

expressions:
% Zl (Y% > t) exp(B'X%) = % Zl I(Y; > t)exp(8'X,) + Opyp, (15 '*), (S.29)
and
7’_102:2 nt Z?ﬂAE;{(zo;;)tgxp(ﬁ’X ) Ao(t, B) + O, (517, (S.30)

where Ao (t, B) is the full data Breslow estimator given in (25), and D, = {(X%, A% V,2)}70,
is a uniform subsample from the full data D,,.

Conditional on D,, it is straightforward to clarify that

1 &
E{—Y IV >t)exp(BX)
{z< )exp(BX)

1 n
D,y =— Iy >t 'X.
} PRUEDETCES)
and

1 &
1% =S I(Y»" >t X0
or{ 310 2 gl

nro

— _ZI (Y > t)exp(28'X;) — nir {Z I(Y; > 1) eXP(ﬁ/XvL)}
< m_n Z exp(28'X;)

= Op|p, (7"71%

where the last equality is from the assumption 3. The Markov’s inequality leads to (S.29).
Fori=1,---,ry, we denote

ANV < 1)
WIS (Y, > V) exp(BX,)

'
Conditional on D,,, we have

1 &
E(r_oz

=1

ANI(Y; <)
) ZZ 1(Y; =2 Y;) exp(B'X;)

12



= Ao(t,,@),

and

V&r(%ZU?* ) { Zn Aotﬁ }

1

- 2p {(ng*y — 20" Ro(t. B) + A (¢, B) | D |

_ iE {2 D} - iAaa,m

AI(Y; < 1)
= ron [Z {n= 1370 1(Y; > ) eXp(XQﬂ)P]
= Opip, (15 ")

Here the last equality is due to

NI(Y; <)
Z 1 / 5 — OP(1)7
{n=1370 1(Y; > Yy) exp(X)8)}
which is from the assumption 3. As a result, the Markov’s inequality ensures that (S.30)

holds, i.e., 75t S27%, 1% = Ao(t, B)+O pip, (To /2y In addition, some direct calculations yield

that
A 1 & AP (Y < t)
AUNIF t,,@ — - 7 — _ ?*+ ?*
0 ( ) o E':l: {TO_I Z ](YO* Y;O*) eXp(ﬁ’X?*) n n
— 1 S AO*](YO* < t) 1
= o ZEI i i = 7,0—1 ZT'O— [(Y.O* > Y-O*) exp(,@’X?*)

1
nt Y (Y 2 YY) exp(BX]) } 7“02277

- {Ti Z A?*I(Yio* < t)} Oppp, (7 (ro ) + AO(t B) + OPIDn( )(S 31)

where the last equality is owing to (S.29) and (S.30).
Given D, it can be deduced that

1 &
E ATV <t) ANI(Y; < t),
ESRSUERIENEESS
and
1 & 1 & ?
174 APIY>* <t)|D,p=F AO*IYU*<t—— NI(Y; <t)| D,
ol 3ario <o oy - { LS a0 <0 13- au0n <

13



n

2
1 — 1
=y A <t)— —§ NIY; <t

= OP‘,Dn (T()_l)'

Hence, we get
—ZAO*I (YO <t) = ZAIY<t)+Op|Dn( e
= Opip, (1). (S.32)
It follows from (S.31) and (S.32) that
ASNT (¢, B) = Ro(t, B) + Opyp, (1, 7?). (S.33)
In addition, we investigate the distance between Ao(t, Bo) and Ao(t, ﬁMPL):

|A0(t7 BO) - AO (ta BMPL)'

n

B NI(Y; <) B - AI(Y; <t)
; >oi1 1Y) > V) exp(BX; 2 S 1Y) 2 Y7) exp(Bl Xy)

LS A< n! z 10 2 V) fop(BhX,) — exp(Blun X)) ‘
ni {1300 1(Y; 2 Vi) exp(BpX;) Hin ™! 300, 1(Y) =2 V3) exp(Bip X;) }
| 2”: i n” Zj=1 {/(Yj > Yi)_eXpif'Xj)HXjH A 1o — Bund

FAn 2 1Y) 2 Vi) exp(BpXg) Hin ™! 300 1(Y) = V3) exp(Bip X;) }
= Op(ro_l/z), (S.34)

where ¢ is on the segment between By and BMPL, and the last equality is due to assumption
3 together with ||By — Bure|| = OP|DH<T51/2>.
Based on Andersen and Gill (1982), the convergence rate of full data Breslow estimator

Ao(t, Bure) to Ag(t) is Op(n=2), ie. Ag(t, Buwr) — Ao(t) = Op(n=/2). This together with
(S.33) and (S.34) ensures that

’ASNIF(taBO> —Ao(t)] < ‘AIUJNIF(@BO) - AO(twéO)’ + ’Ao(t7éo) — AO(tMéMPL)‘
+Ao(t, BMPL) — No(t)]
= Opip,(ry ) + OP\Dn(TO Y 4+ Op(n~1/?)

14



= OP|Dn( 71/ )

Therefore, the convergence rate given in (S.28) is established. This ends the proof.

Lemma S.5 Suppose the assumptions 1-3 hold, as r¢ — 0o, r — o0, and n — oo, condi-

tional on D,, and By, we have

U3 (8) = ((B) + Oppp, 5, ?), (S.35)
and

5. (B) = U5 (B) + opip, g, (r ), (S.36)

where %o (B) is given in (20), and

U (8) =~ 3 e [ X0~ X0 )N 1,0

1

with X, wg?™ and M} (t,8) being given in (20), i =1, ,r

Proof. Given D,, and BO, it is direct to deduce the unbiasedness of UEO (B) towards the
score ((B), i.e.,

P{U3 B)D,. o} =~ > [ (X=Xt )} 0.)
i=1
= ((B).
Denote Ugmj (B) as the jth component of UEO (B) with 1 < j < p, then we get
2
Var{Up, ()P0 o} < =Y~ | [0 = Xyt )i ﬁ)]
<

- nr(5

= OP|Dn,B0 (r ™),

/ X, - X(t @)yt 8)|

15



where the last equality is from the assumptions 1 and 3. This together with the Markov’s
inequality can ensure that (S.35) holds.

In addition, some direct calculations lead to the following expressions:

:_1;/0 %{X Xgo(t,ﬁ)}dMZ‘(tﬁ)

nTs,

:_li/T%{x ~ X(t,8) + X(t,8) - X5 (t.8) } M (¢, B)

o N7y,

- Uy ( Z | s (Ram -Xem)f ). s

/

R;(8)
For k£ =0, 1, and 2, we denote
(w0, gy I~ L . ok .
Sgo (108) =22 ampe (V7 2 )X exp(BX). (S.38)

=1

For a subsample D = {Z}_ | with Z = (XI, A5, Y, 75""), we define a subsample

empirical measure conditional on D,, and By,

7’|ﬂ0 Dy — Z 5Z )

and
1 ¢ .
Py, [ =D F(Z]).
i=1
Based on the conditional empirical measure P, 5 5 , we can rewrite S;E)k) (t,B) as
*(k app* % % "
Sﬁi (t.8) = P, 5,0, [{nms™ (YT > )X Ok exp(B'X")],

where k=0, 1 and 2. For convenience, we denote Pg 5~ as taking expectation conditional

on D, and By. e.g.

} Z TP f(Z (S.39)

Ps,0,/(2") = E{J(2")

16



By (S.39), we can deduce the following expressions:

app* * * / * 1 * * *
P, o, {nmi™ 1 (Y™ > )X exp(BX7)] = E[m I(Y*" > )X exp(BX7)

app*
é

[§071>n}

1 n
= — ST 2 )X exp(BX,)
n

= S"(t,B).

Due to Kosorok (2008) and the assumption 3, we get {(nm?**) 1 I(Y* > ) X*®* exp(B'X*) :
t € 10,7],8 € O} and {(nm5™*)"IN(¢) : t € [0,7]} are Donsker, where & =0, 1 and 2.

Therefore, conditional on D,, and ,@0 we have
HS;E)]C) (t,B) — S®(t, 8| L, 0 uniformly towards ¢. (S.40)

Because S(O(t,3) is bounded away from zero (Andersen and Gill, 1982), then conditional
on D, and Bo,

Prmopn{(mrgpp*) (Y* > ) X* exp(3'X*)} B PBO,Dn{(nW?pp*) L(Y* > t)X* exp(B'X*)}
P, 5o, {(nms™ ) TLI(Y* > ) exp(B8/X*)} Pg p A(nmg™") 7L (Y* > t) exp(B'X*)}

0.

sup
te[0,7]

ie., as r — 00,
HX;‘%(t,B) — X(t, 8)|] 4 0 uniformly towards t. (S.41)

Recall that dM;(t, B) = dN;(t) — I(Y;* > t) exp(B'X})Ao(t)dt, some derivations result in

the following expressions:
. Il 1 [T . . .
Ri8) = 03 o | %5, 0.8 - Xt g 1) (3.42)

- /()T{xgo(t,g) X (t, B)}dN5(t) / {X5,(t.8) — X(t, B) dAs(t),

R7;(8) R;, ()

where NJ5(t) = =577 | = N7 (t) and Afg(t) = =570 = lpp fo (Y > u) exp(B8'XF) Ao (u)du.
81

Notice that N*(t) and A%s(t) are two nondecreasing processes, due to (S.41) we have

R = | [ 0,000 - X040

IN

| 1%, 0.8 - X(t. 814500
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= Np(r)or(D).

and
R = | [ 0,00 - X000
< [ 1K, (6.8~ Xt )0
= Ma( Jop(1).
Therefore,

R;(B) = {N}(r) — As(m)}op(1)

T

_ {% 3 %M;m} op(1).

i=1 01

Conditional on D,, and Bo, we get

and

where the last equality is from the assumptions 1 and 3. By the Markov’s inequality, we

know

r

1 1 _
=N = Mi(7) = Opyp, 5, (r7?). (S.43)

T Ty

Conditional on D, and By, due to (S.42) and (S.43) we get

R3(8) = OP(1>OP|Dn,BO (7’71/2) = Op|D,..Bo (Tﬁl/Q)-

This together with (S.37) leads to the conclusion given in (S.36), which completes the proof.

18



Lemma S.6 Under the assumptions 1-3, as rg — 00, r — 00 and n — 0o, conditional on

D,, and Bo; we have

05 (Burs) = Opip, 5, (r™7%), (S.44)

and
05 (Bur) = ¥ + 0p(1), (S.45)

where W is given in (12), and

®2

o Ly & [S07 Bun)  f 5007 B
Bo \PMPL nr 4 ngp* S;E)O)<}/;*>BMPL) Sgio)(y;*>BMPL)

=1

Proof. Conditional on D,, and B, it follows from (S.35) and (S.36) that égo(ﬁMPL) =
Z(BMPL) + OPIDn,,éo (r—l/Q)- Due to E(BMPL) = 0, then we get 620 (BMPL) — OP\Dnﬂo (r‘1/2),

To prove (S.45), we introduce a term as

5 (Bure) :—Ez o | (X = X(0.B)}N; (1.5,

Furthermore, some direct calculations lead to the following expression:

r A a ®2
\'[* 3 _ 1 A* S(Q)(Y;*HBMPL) S(l)(Y;*nBMPL)

N o i ki
i1 Toi S (Y; 7/8MPL) S (Y; 7/8MPL)

Then, we get

~ ~ ®2
Vs 2 2 1 . 5(2) )/;7 MPL S(l) Yz’, MPL
E{VBO<IBMPL)‘IDTL7/BO} = E ZAZ (0)( @ ) - 0 ( [:3 )
=1 S ()/;uﬂMPL) ( )(}/i)/BMPL)

=W,

Let V;O s (BMPL) be any component of Vgo (BMPL) with 1 < ji, j2 < p, we can deduce that

n 3 3 @2 i
1 Z Ai S§f}2(§/i7/3MPL) . {S(l)(yiaﬂMPJ} _E\Il

Var V~ wre) | Fns a 3 3
Vpiuin Burn) I Fos Bo} = Sl | SO Bu) | SOV, Bure)

J1j2
J1j2
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2

N N 2
11 Z A 82008 [ SO0 B |
ro | n s SO, Bur) | SOV, Bue)

where the last equality is due to the assumptions 1-3. Conditional on F, and @0, the

Markov’s inequality implies
V5 (Burr) = ¥ + Opipy 5, ('), (S.46)

In view of (5.40), we can derive that

*(2 % A ~
(A _N\7* (A i - A: Sﬁi) )<YZ ”6MPL) . 5(2)(}/;*7/3MPL)
H‘géo (/BIWPL) VBO (ﬁMPL) H S Z app* *(0) ~ 0 " ~
rn i=1 Tsi S@o (Y;*aBMPL) St )(Y; )/BMPL)

* % A ©2 2
LA S~(1)(Y; , Burr) {S(l)(yi*a Bur.) }®2

1 i Bo
+—) 118 =2 - i
rn i=1 ﬂ-gipp Sﬁ?) (}/7,*7 /BMPL) S(O)(Y;*’ ﬁMPL)

= op(1). (S.47)
Accordingly, it follows from the triangle inequality that

125, (Bue) =2 < 15 (Burs) = Vi, Bue) | + V5, (Bure) — ¥

= op(1),

where the last equality is due to (S.46) and (S.47). Hence, we obtain E;O (Burs) = ¥ +0p(1).
This finishes the proof.

Proof of Theorem 3. By (S.35) and (S.36), we get €go(ﬁ) = *(B) + op(1) as 7o — 00
and r — oo. We observe that the full data estimator ,éMPL is a unique solution to K*(ﬁ) =0,

and the two-step subsample estimator B satisfies E/*@O (B) = 0. Conditional on D,, and 3,, we

20



know from Theorem 5.9 and its remark of van der Vaart (1998) that
HB - BMPLH = OP(l)- (8.48)

By the Taylor’s theorem, we obtain

aégo J(BMPL) o
op’
where é*~ () is the jth component of €*~ (), and

26* ﬁMPL + UU(B BMPL)} o A
Rg ;= (B — Burr) / / 9805 vdudv(B — Buyp).

0= Ego,j(ﬁ) - ggoﬂj(ﬁMPL) - BMPL) + Rﬁo,j’ (8.49)

From the assumptions 1 and 3, we get

2 px r "
- azﬁw(g) < EZ A
p / —_ app*
geo || 0BIB nr <= s
K ™
< = AN
- rég !
- OP|DH(]-)7

where K is a positive constant. Hence, Rg ; = OPleBO(HB — B |?).
By (S.45), the assumption 2 and the continuous mapping theorem (Theorem 2.3 of van der
Vaart (1998)), conditional on D, and By, as r — oo we get
{EEO(BMPL)}_]- - {\I] + OP(l)}_l
= Op(1). (S.50)

Conditional on D, and By, it follows from (S.44), (S.49) and (S.50) that
’é - BMPL = _{Z‘EO (BMPL)}il{éEO (BMPL) + OPIDH,L%(HB — BMPL|’2)} (S51)
= Opip (") + 0ppp, 5, (18 = Buan )
= Oppp, 4,(r""%).

Therefore, 8 — Buypy, = op(1), i.e., 3 is consistent to Bypr, as 7 — 00.
We start to prove the asymptotic normality of the error term B — BMPL conditional on

D,, and BO. Recall that
ﬁl\IPL Z 6*/80
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where

5;[’0 1y o BPP* / {Xi = X{(t 6MPL)}dM*(t BMPL) t=1--r

TL’I"W&

Conditional on D,, and BO, e O e 5;550 are independent and identically distributed random

variables with
e 2 1 . 7 ¥ 2 2
E(fl '@O|,Dna /60) = _E Zz:; /0 {Xz - X(t, /BMPL)}dMi(ta IBMPL)
— O7

and

®2

Dnu BO)

o A 1 T o
Var(&®|D,, By) = E (W(ZMD*}Q l/o {Xz - X(thMPL)} dM; (tJﬁMPL):|

1 1 T _ R . ®2
- n2r2 Z W;fp {/0 {X, - X(t7 /6MPL)} dM,'(t, ﬂMPL):| .

=1

Dna BO)
0 {XZ - X(t, BMPL)}dMi(t? BMPL)
)

where ¢ is a factor controlling the mixture proportion in (19), and the last equality is from the

For every € > 0, we can deduce that
E (Z IE®IPIIE™ | > €)
i=1
1 « 5 -
;ZE(II@‘“H%DR,&O)

= 3 E : 2bp)
{n (m5r")

=1

IN

n )

1 1
< -
— 022 {n 121

=op(l), asr — oo,

o {Xz - X(ta BMPL)}dMi(ta @MPL)

assumptions 1 and 3. Therefore, the Lindeberg-Feller conditions are satisfied in probability.
By the Lindeberg-Feller central limit theorem (Proposition 2.27 of van der Vaart (1998)), as

rog — 00, r — 00, n — 00, conditional on F, and By, we have

T, 205 (Bue) =5 N(0,1), (S.52)

22



where

n ®2

Fﬁo = % Z % {/OT {Xz - X(tJBMPL>} dMi(taﬂAMPL)} = OP|Dn,Bo (T_l)'

i—1 o

In addition, we need to consider the distance between I'5 and I'. More specifically,

r. F_l u T X. — X(t. 3 AM.(t. 3 > 1 1 S.53
Bo _E; ; { i (HBMPL)} z(y/BMPL) nﬂglpp_ Lopt ( )

nws;

where 737" and 75" are given in (19) and (23), respectively. For notational convenience,
we denote
o= | [ 0% = X (e )i, o)
and
o= | [ 06 = Xt B abi(t. )

: : Lopt _
Then, we can rewrite the expressions of 75" and 75" with

a ¢’L 1
it = (1-90)=s + 46—,
1 ( )ijl ¢j n

and

i 1
R R T
j=1¥j

! ! = 1 app Lopt
nmsl? nmg P a naPPrLoPt 75— 75|
>~ )2 Z?:l ¢j 2?21 wj
_ (-9 gin”! Dy — Yin~t > j—19i
52 (L3 o) (n T )

For any t € [0, 7], we observe that

XO*(t: BO) - X(ta BO) + X(ta BO) - X<t7 BMPL)
= X(t, BO) - X(t7 BMPL) + OP\Dn,ﬁO (T_1/2)7 (8'54)

XO* (ta BO) - X(ta BMPL)
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where the last equality is from (S.41). In view of the fact that By — Bup, = Op|p, (ralﬂ),

for any ¢ € [0, 7] we obtain

e s SO SV B
X(t,Bo) — X(t, Burr) = S(O)(t,Bo)_S(O)(t,,éMPL)

- 1 (0) 2 (1) 2\ _ (0 ~ (1) ~
= 5(0) (t, BO)S(O) (t, BMPL) {S (t; IBMPL)S (t, 50) S (t7 BO)S (t, /BMPL)}
1 2 2 -~ ~

= — = {S(O) (t,,BMPL)S(l)(thO) - S(O)(tvﬁo)s(l)(t750)

SO(t, By)SO(t, Burr)

+5O(t, Bo) SV (t, Bo) — SO (¢, Bo) SM(t, Bure)}
_ 1 (1) 1A A 1) ~
a SO)(t, BO)S(O) (, BMPL) {SY(t, &) (Buer. — Bo) S (t, Bo)

_q(0) (t BO)S@) (t,fz)(BMPL - BO)}
= OP\Dn( ) )7

where & and & are on the segment between BMPL and ﬁg, and the last equality is from the

assumption 3. It follows from (S.54), (S.55) and typically ro < r that for any ¢ € [0, 7]

1X% (¢, Bo) — X(t, Burs) | = Opip, 5, (10 /7). (S.56)

Recall that M;i(t, 8o) = Ni(t) — fy I(T; > w) exp(ByX;)dA™ (u, By) and M;(t, Bue..) =
fo (T; > u) exp(B,p, X;)dAo(u), it is straightforward to derive that

M;(t, Bo) = Mi(t, Bups) = exp(Blp, Xi)No(min{t, V;}) — exp(ByX,) AT (minft, Y}, Bo)
= exp(Blp, Xi) No(min{t, i}) — exp(BX;) Ao(mindt, Yi})
+exp(ByX:) Ao (min{t, Yi}) — exp(B,X:) AT (min{t, Yi}, Bo)
= exp(§X)X(Bo — Buer) Ao(min{t, Yi})
— exp(By X)) {AF" (min{t, Y}, Bo) — Ao(min{t,Y:})}
— Oppp, (1, "), (S.57)

where ¢ is between 3, and BMPL, the last equality is due to By — ,BMPL = Opip, (1o 1/2 ), the
assumption 3 and Lemma S.4.

Furthermore, some direct calculations lead to the following expressions:
/ {X; — X" (t, Bo) HM;(t, Bo)
0

24
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X t /BMPL) + X(t /BMPL) XO* (t, BO)}{dMl(t7 BO) - dMi(ta BMPL) + dMi(t7 BMPL)}

t IBMPL)}dM (t 6MPL> + Rl + R2 + R37

|
\ \

where
Ri = [ (X0~ Xt B HANE(t Bu) — Mt B,
Re = [ (X(tfuos) = X0 (6 fo)HAN(t, fo) — ANt Bun),
R = [ (X0t Bu) — X (1 B} )

Combining the boundedness of X;’s in D,,, the assumptions 1-3, (S.56), (S.57) and Lemma
S.1, we can deduce that Ry = op(1) as 7o — oo. In a similar way, we have Ry = 0p(1) and

Rs; =o0p(1). Fori=1,--- ,n, we know
¢i = ;i +op(1), as rog — oo, (S.58)
indicating that conditional on D,, and Bo,
- ;= — ; 1). S.59
D 0= vitop(l) (S.59)

Moreover, both (S.58) and (S.59) lead to

di Vi
EZ% - EZ%
j=1 j=1

1 n
< ¢ _¢i|ﬁzw]’ + i
=1

= OP(l).

1 & 1 &
EZ_:%_EZ%
7=1 7j=1

Therefore, as rg — oo and r — oo, we get the following conclusion:

1 1

app Lopt
nm §i nm &op

Combining the assumptions 1-3, (S.53) and (S.60), conditional on D,, and By we have

I —I= oP‘DnﬂO(r—l). (S.61)
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Based on (S.36), (S.50), (S.51), the Slutsky’s theorem, and Theorem 2.7 of van der Vaart
(1998), we can derive that

T, 205 (Bur) = T57°U% (Bue) + op(1)
—25 N(0,T).
From (S.50) and (S.51),
B — B = —{05, (Buurn)} 05 (Burs) + Opip, 5, (1) (8.62)
Due to the assumption 2 and (S.45), we can derive that
{F(Bura)} ™ = W = O (Burn) — W = 0p(1). (5.63)
In view of (S.62) and (S.63), we have

2_1/2(6 N BMPL) - —2_1/2{%0 (BN[PI)}_IBEO (BMPL) + Opip, 4y (r1/?)
= —2*1/2\11*1é%0 (BMPL) _ 2*1/2{{@*(BMPL>}71 . \Pfl]égo (BMPL) + OP|Dn (7,71/2)
= =2 TPWTT AT 2 (B + op(1). (S.64)

From (S.61), as o — oo and 7 — 00,
—1/2q,—111/2 —1/2g,—111/2v _ 5—1/20,—17 . \p—1%—1/2
(=12 L) 4 r;") =% PoT, vl
=220 IP T IR Y2 4 op(1)

= I -+ 0p(1>.

Conditional on D, and By, the Slutsky’s theorem, together with (S.52) and (S.64) ensures

that as rp — oo and r — o0,
5728 = Bur) < N(0,1).

This ends the proof.

Proof of Proposition 1. Conditional on D,, and 3y, it is direct to derive that

”B - :30” < “:é - BMPLH + ||/éMPL - /GOH
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= Opip, 4y (r ')+ Op(n~'?),

where the equality is due to Eq. (S.51). ie., |8 — Bo| = Opip, g, (r" /). Tt follows from
Proposition 2 of Wang et al. (2022) that

18 = Boll = Op(r~'/2).

Next, we prove the asymptotic normality of é with respect to the true parameter. Note

that
Tl/Q(B - /80) = 7’1/2(5 - BMPL) + r1/2<BMPL - ﬁo)

= Tl/Q(:é - BMPL) +op(1),

where the last equality is due to BMPL — By = op(n~'/?) and the assumption r = o(n).
Hence, conditional on D,, and BO, the asymptotic distribution of B — By is the same as that

of ,é — BMPL. That is to say, conditional on D,, and By we have
=28 - Bo) — N(0,1), (5.65)

where 3 is given in Theorem 3. Based on Proposition 2 of Wang et al. (2022), the asymptotic
normality in (S.65) also holds without conditioning on D,, and Bo. This completes the proof.
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