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Abstract

A projection-based learning method developed previously based on proper orthogonal decomposition (POD), together with the
quantum element method (QEM), is investigated for a 2D multi-element quantum nanostructure, where an element denotes a
generic subdomain of a group of nanostructures. Unlike many other projection-based models, the basis functions for the POD
approach are trained via solution data of the electron wave functions in the selected quantum state derived from direct numerical
simulation of the Shcrodinger equation for the nanostructure. This learning process minimizes the least square error with a small
set of basis functions to reduce computational effort. Based on the QEM, the nanostructures are first partitioned into smaller
generic elements (i.e., building blocks), and each of the element is projected onto the POD space and stored in a database. For a
large nanostructure, several generic elements can then be selected and glued together to perform simulation of the selected large
nanostructure with the interface continuity imposed by the discontinuous Galerkin method. It has been shown that the QEM offers a
reduction in numerical degrees of freedom (DoF) by 3 to 4 orders of magnitude for the trained quantum states with a high accuracy.
For some untrained quantum states above the trained states, a reasonably accurate prediction can be achieved with higher DoF.
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1. Introduction

Quantum nanostructures have many scientific and engineer-
ing applications in material sciences, medicine, electronics,
photonics, etc. [1-8]. Analysis of such structures often rely on
direct numerical simulations (DNSs) of the schrodinger equa-
tion which are computationally intensive when high accuracy
and resolution are needed. This work continues the investiga-
tion on an effective quantum simulation methodology for elec-
tron wave functions (WFs) in multi-dimensional nanostructures
[9]. This methodology employs proper orthogonal decomposi-
tion (POD) [10, 11] in which the schrédinger equation is pro-
jected onto a functional space represented by a finite set of ba-
sis functions (POD modes). Implemented with a learning al-
gorithm trained via WF data, this approach is able to signif-
icantly reduce the degrees of freedom (DoF). One disadvan-
tage of this approach however, is that it requires DNS WF data
to generate/train the POD modes, which for large-scale multi-
dimensional structures might be prohibitive.

To improve the training efficiency, this work implements the
quantum element method (QEM), developed previously [12]
for 1D quantum structures, in the POD simulation methodol-
ogy for multi-dimensional nanostructures. The QEM combines
domain decomposition with the POD training, allowing for the
creation of modular generic elements which can be trained and
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stored in a database for the design and simulation of large
nanostructures.

2. Background of Quantum Element Method

The electron WF is described by the Schrodinger equation,

h2
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where i is the electron WF, £ is the reduced plank constant, m*
is the electron effective mass, U is the potential energy of the
system and E is the QS energy.

POD generates a set of modes n(7), from the WF solution
data generated via DNS of the Schrodinger equation. Each
POD mode is created by maximizing its mean square inner
product with the data,
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Using calculus of variation, the maximization process can be
reformulated to a Fredholm equation of the second kind,
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where ® is the tensor operator and A is the POD eigenvalue
of the data. After generating the POD modes, the WF can be
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formed via a linear combination of these POD Modes,
M
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where M is the number of modes selected and a; are weighting
coeflicients. To determine a;, a set of equations can be found
by projecting the Schrodinger equation onto each POD mode,

h2
[y vumaa s [ nouewna
Q m Q (5)
h2
- [0y s = E [ nwinac
s m Q

Using the QEM for a multi-element domain, elements are
glued together with the interior penalty discontinuous Galerkin
(DG) method [13, 14] to ensure interface continuity. The pth
element projected along the ith mode described by (5) therefore
becomes
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where M, and M, are the number of modes in the pth and gth
elements [12]. Additionally, the entries of the interior kinetic
energy matrix for the pth element is found to be
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the entries of the potential energy matrix are
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the entries of the diagonal boundary kinetic energy matrix are
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and the entries of the off diagonal boundary kinetic energy ma-
trix are expressed as
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In the above equations, u is the penalty parameter defined as
1 = N,/dr where dr is the local mesh size at the interface and
N, is the non-unit penalty number.

3. Materials and Structures

The QEM (namely the multi-element quantum POD ap-
proach) is applied to the test nanostructure seen in Fig. 1(a)
composed of 4 elements with imposed homogeneous Dirichlet
and Newman boundary conditions. The quantum dots (QDs)
are composed of the GaAs/InAs heterostructure where the ef-
fective mass in GaAs mg, , = 0.067mg and in InAs mj , =
0.023mg and the band offset AE = 0.544¢V. The POD modes
for these elements are trained by collecting WF data after sub-
jecting two 9-element training structures shown in Fig 1(b) with
single component electric fields. In addition to an unbiased
sample, two groups of orthogonal electric fields in x and y di-
rections are applied to the training structures where 5 fields are
applied in each direction.The magnitudes of these electric fields
vary evenly between -35kv/cm and +35kv/cm. In each case, the
WFs of the first 6 QSs were collected and used to train the POD
modes for each element. This is accomplished via the method
of snapshots [15-17] for (3) to generate the POD modes that
are then used to evaluate the coefficients in (7)-(10).

4. Results and Discussions

The test nanostructure given in Fig. 1(a) is used for the
demonstration of the multidimensional QEM. The structure is
subjected to an electric field with x and y components, E =
25% — 159. After the training using two 9-element structures, as
stated in Sec. 3 where only the first 6 QS WFs are collected, the
QEM is used to predict the WFs for the first 8 QSs. These re-
sults are then compared to those of the DNS of the Schrédinger
equation to verify the POD simulation model. The DNS control
uses a grid size of 0.2nm in both x and y directions, thus result-
ing in 90601 DoF. In the POD simulation, N, = 2 is selected
for the penalty number in (9) and (10).

The profile and contour plots given in Figs. 2 and 3, respec-
tively, reveal that the POD QEM agrees with the DNS quite well
with 8 modes per element for the trained 6 QSs. It is interesting
to observe in Fig. 2 that only 2 and 4 modes for each element
in the QEM are needed in QSs 1 and 2, respectively, to offer a
good accuracy compared to the DNS results; however, 8 modes
are needed to reach a good accuracy for QSs 4 and 6.

To observe the influence of the POD modes on the QEM ac-
curacy, the LS error is illustrated in Fig. 4 as a function of the
number of modes per element. For the QEM to reach an LS
error near or below 2%, 2, 4, 8, 8, 8 and 8 modes are needed
in QSs 1-6, respectively. With an error near 2%, the POD and
DNS WF profiles are nearly indistinguishable, as shown in Fig.
2. The maximum LS error for all the trained states is near 1.2%
beyond 13 modes per element. In general, the POD model is
more effective for the lower QSs. For the untrained states, the
LS error is slightly larger. In the 7th QS, 4.9%, 4.3% and 3.8%
are observed when 13, 19 and 22 modes are included in each
element. However, for the 8th state, an LS error near 3.4% or
below 3%, can be reached when using 10 or 16 modes, respec-
tively.

The comparison of the eigenenergy in each QS between the
POD and DNS is included in Tab. 1. The deviation of the POD
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Fig. 1. (a) A 4-element structure for demonstration of QEM and (b) two 9-element structures for WF data collection.
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Fig. 2. WF Profile plots of QSs 1, 2, 4 and 6. First and second rows indicate cross-section along horizontal and vertical lines,

respectively, indicated from contour plots seen in Fig. 3.
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Fig. 3. Contour plot of WFs of QSs 1, 2, 4 and 6. First row are
WFs calculated via POD while WFs in the second row are from
DNS.
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eigenenergy from that of the DNS is less than 0.68% in QSs 1-
7, where QS 7 is not trained. For the other untrained state, QS
8, the error of the POD eigenenergy is still as small as 0.83%.
It should be noted that QSs 3 and 4 are nearly degenerate with
a small energy difference of 2.35meV and 2.32meV from DNS
and the POD QEM respectively.

It is worthwhile to mention that the training of POD modes
was carried out separately in 2 orthogonal directions, and yet
the QEM is able to predict the WFs and eigenenergies with a
high accuracy using an electric field that combines these 2 or-
thogonal fields. In addition, even though WF data for States 7
and 8 were not collected for the training of POD modes, the
QEM is still able to offer the WF solution and eigenenergy in
these 2 states with a good accuracy.

Tab. 1. Percentage Error of Eigenenergy in Each State

QS POD Energy (eV) DSN Energy (eV) (%) Difference
1 0.29888 0.29701 0.62631
2 0.30360 0.30229 0.43295
3 0.34313 0.34119 0.56768
4 0.34545 0.34354 0.55297
5 0.35336 0.35097 0.67970
6 0.38199 0.37969 0.60448
7 0.38521 0.38263 0.67287
8 0.39698 0.39371 0.82581

5. Conclusion

The QEM has been investigated for a 2D multi-element
QD structure. It has been illustrated that the QEM is able to
provide an accurate prediction of both the WF and eigenenergy
in each of the trained QSs with 2 to 8 modes per element.
In general, a similar accuracy can be reached with a smaller
number of modes in the lower QSs. The investigation has
demonstrated a reduction of 3 to 4 orders of magnitude in the
required numerical DoF for the trained QSs, compared to the
DNS. For the untrained QSs in the test QD structure, the QEM
offers a good prediction with more modes. Moreover, POD
training with single components of orthogonal electric fields is
sufficient to develop a POD simulation approach for an electric
field constructed using these 2 orthogonal components.
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