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Sufficient dimension reduction (SDR) embodies a family of methods that
aim for reduction of dimensionality without loss of information in a regres-
sion setting. In this article, we propose a new method for nonparametric
function-on-function SDR, where both the response and the predictor are a
function. We first develop the notions of functional central mean subspace
and functional central subspace, which form the population targets of our
functional SDR. We then introduce an average Fréchet derivative estimator,
which extends the gradient of the regression function to the operator level
and enables us to develop estimators for our functional dimension reduction
spaces. We show the resulting functional SDR estimators are unbiased and
exhaustive, and more importantly, without imposing any distributional as-
sumptions such as the linearity or the constant variance conditions that are
commonly imposed by all existing functional SDR methods. We establish the
uniform convergence of the estimators for the functional dimension reduction
spaces, while allowing both the number of Karhunen—-Log¢ve expansions and
the intrinsic dimension to diverge with the sample size. We demonstrate the
efficacy of the proposed methods through both simulations and two real data
examples.

1. Introduction. Sufficient dimension reduction (SDR) embodies a family of methods
in regressions that seek a low-dimensional representation of the high-dimensional data while
minimizing the loss of regression information. Since the pioneering work of sliced inverse
regression (Li (1991)), SDR has enjoyed a rapid development in the past three decades, and
has been widely used in a variety of applications, including biology, finance, medical science,
among others. In its full generality, SDR aims at the entire conditional distribution of Y| X,
where Y is a response variable and X a p-dimensional predictor vector, and (X, Y') has a joint
distribution. It seeks a lower-dimensional representation R(X) such that Y 1L X | R(X). In
plenty of applications, the regression interest focuses on the conditional mean E(Y|X) only.
In that case, Cook and Li (2002) developed the notion of sufficient mean dimension reduction,
by seeking R(X) such that Y L E(Y|X) | R(X), or equivalently, E(Y|X) = E{Y|R(X)}. The
reduction R(X) usually takes the form of linear combinations of X, that is, R(X) = "X,
where § is a p x ¢ matrix with g < p. Sufficient reduction or sufficient mean reduction then
pursues the minimum subspace spanned by B, which uniquely exists under very mild con-
ditions (Yin, Li and Cook (2008)). Such a space is called the central subspace or the central
mean subspace, and its dimension ¢ is called the intrinsic dimension. There have been a large
body of methods proposed for SDR, usually in a nonparametric fashion. Depending on their
estimation strategies, broadly speaking, those methods can be grouped into two categories.
One category utilizes the first and second moments of inverse regression X|Y, which under
certain distributional assumptions, contain useful information about R(X); see, for exam-
ple, Cook and Weisberg (1991), Li (1991), Li, Zha and Chiaromonte (2005), Li and Wang
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(2007), among others. The other category utilizes the gradient of the forward regression mean
E(Y|X); see, for example, Hardle (1989), Xia (2007), Xia et al. (2002), Yin and Li (2011),
Fukumizu and Leng (2014), among others. See Li (2018a) for a comprehensive review of
SDR.

In this article, we target the problem of sufficient reduction and sufficient mean reduction
when both the response and the predictor are a function. Function-on-function regression is
receiving increasing attention in recent years, and is being widely used in applications such
as environmental science, neuroimaging analysis, and e-commerce (Kim et al. (2018), Luo
and Qi (2017), Miiller and Yao (2008), Reimherr, Sriperumbudur and Taoufik (2018), Sun
et al. (2018), Luo and Qi (2019)). We aim to relax the parametric or semiparametric model
assumptions, and propose a new method of nonparametric function-on-function SDR. We
first develop the notions of functional central mean subspace and functional central subspace,
which are the population targets of our functional SDR inquiries. Motivated by the fact that
the gradient of the regression mean function E(Y|X) lies in the central mean or central sub-
space (Xia et al. (2002), Xia (2007)), we extend the idea to the functional setting, and show
that the Riesz representation of the Fréchet derivative of the regression functional is located
in the functional central mean or central subspace. We then propose the corresponding func-
tional dimension reduction estimators based on the average Fréchet derivative, and show that
the resulting estimators are both unbiased and exhaustive. Moreover, our proposal leads nat-
urally to a procedure for predicting any functional of the response after dimension reduction.
Theoretically, we establish the uniform convergence for the estimated bases of the dimension
reduction spaces, while allowing both the number of Karhunen—-Loéve expansions and the
intrinsic dimension to diverge with the sample size.

Our proposal is closely related to but also clearly different from a number of lines of
research on sufficient dimension reduction and functional regression. We next review the
relevant literature and discuss the connections and differences with our proposal.

First, our proposal extends the gradient-based dimension reduction methods such as Hardle
(1989), Xia (2007), Xia et al. (2002), Yin and Li (2011), Fukumizu and Leng (2014) from
the random variable setting to the random function setting. However, such an extension is
far beyond routine, and our new solution is utterly different, in both computation and the-
ory, from the existing ones. On the computation side, most existing gradient-based methods
approximated the high-dimensional gradients using iterative least squares, and the resulting
computation can be intensive (Xia (2007), Xia et al. (2002), Yin and Li (2011)). To address
this issue, we establish the interchangeability between the Fréchet derivative and the repro-
ducing kernel Hilbert space (RKHS), which in effect provides a closed form of the Fréchet
derivative. Consequently, our algorithm requires only spectral decompositions of linear oper-
ators and no iterative optimization, and hence is computationally much simpler. On the theory
side, in the random variable setting, the variable dimension p and the intrinsic dimension ¢
after dimension reduction are usually treated as fixed. Only recently, Lin et al. (2017) and
Lin, Zhao and Liu (2019) established the consistency of sliced inverse regression with a di-
verging intrinsic dimension g. By contrast, in the random function setting, both the response
and the predictor are random elements in a potentially infinite-dimensional Hilbert space. We
need to handle a diverging number of Karhunen—-Loeve (KL) expansions from the random
functions, and this portion of asymptotic analysis requires a more complex treatment than in
the classical setting. Besides, we allow the intrinsic dimension ¢ to diverge with the sample
size.

Second, our work is also related to a family of proposals that extended the inverse
regression-based SDR methods to the functional setting. The first generalization was in-
troduced by Ferré and Yao (2003, 2005), in which they extended the predictor space from
an Euclidean space to a Hilbert space, then proposed a functional slice inverse regression
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method. Hsing and Ren (2009), Jiang, Yu and Wang (2014), Wang, Lin and Zhang (2013),
Wang et al. (2015), Yao, Lei and Wu (2015) further extended and developed a series of inverse
regression-based estimators in the functional setting. All these methods involved a scalar re-
sponse Y and a functional predictor X, targeted sufficient reduction of the full conditional
distribution Y| X, and were based on some moments of the inverse regression X|Y. Our pro-
posal on one hand extends SDR to the setting where not only the predictor but also the
response is a function. More importantly, our method is built on the derivative of the for-
ward regression, instead of the inverse regression. A critical implication of this difference
is that, our functional SDR estimators achieve the unbiasedness and exhaustiveness without
imposing distributional assumptions such as the linearity condition or the constant variance
condition that are commonly imposed by all existing inverse moments-based functional SDR
methods. As pointed out by Ma and Zhu (2012, 2013) under the random variable setting,
those distributional assumptions can be restrictive, and our proposal is the first unbiased and
exhaustive solution that relaxes those conditions under the random function setting.

More recently, Li and Song (2017) proposed a nonlinear SDR method for functional data.
Our proposal is similar, in that we both target SDR for functional data, and both methods
are built on some linear operators. However, the two also differ considerably in terms of
methodology and theory. On the methodology side, Li and Song (2017) focused on nonlin-
ear reduction, rather than linear reduction. Although nonlinear reduction is more flexible in
the sense that its reduced predictors do not have to be linear, the linear framework of our
proposal is still pivotally important. Linear SDR is usually easier to interpret, and is better
connected with other modeling techniques, since it preserves the original coordinates of the
predictors; see Li ((2018a), Chapter 14) for more comparison between linear and nonlinear
SDR. Moreover, our estimator can not be directly induced by that of Li and Song (2017).
On the theory side, Li and Song (2017) required the constant variance assumption to show
their generalized sliced average variance estimator is unbiased, which can be restrictive. By
contrast, our estimator does not impose such a condition. Furthermore, our asymptotic anal-
ysis requires a different set of tools from that of Li and Song (2017). Specifically, we employ
the leading KL coefficients to approximate the sample covariance operators to accelerate the
computation, which was not considered in Li and Song (2017). As a result, we need to take
into account this extra layer of approximation when proving the consistency. More impor-
tantly, Li and Song (2017) treated the intrinsic dimension g as fixed, while we allow g to
diverge, which leads to a completely different regime of asymptotics.

In summary, our proposal is profoundly different from the existing sufficient dimension re-
duction methods. The extension from random variables to random functions, and the change
from inverse regression to forward regression-based estimation are both far from straight-
forward. It leads to a new set of methodological and theoretical results, and makes a useful
addition to the toolbox of dimension reduction and functional data analysis.

The rest of the article is organized as follows. Section 2 introduces the functional central
mean and central subspaces. Section 3 develops the average Fréchet derivative estimator for
functional SDR, and establishes the population properties including the unbiasedness and
exhaustiveness. Section 4 develops the estimation procedure, both at the operator level and
under a coordinate system. Section 5 derives the asymptotic properties. Section 6 presents
the simulations and two real data examples. Section 7 concludes the paper with a discussion.
The Supplementary Material (Lee and Li (2022)) collects additional results and proofs.

2. Functional dimension reduction subspaces. In this section, we first formally de-
fine the functional central mean and central subspaces, which are the population targets of
functional SDR. We then introduce a series of linear operators useful for SDR estimation.
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2.1. Functional central mean subspace and central subspace. Let (2, F, P) be a prob-
ability space. Let X : Q@ — Qx, Y : Q — Qy be the Qx-valued and Qy-valued random ele-
ments, where Qy and Qy are Hilbert spaces of functions on an interval 7 C R, and their inner
products are (-, -)qy and (-, -)q,. Let Px = P o X~!and Py = P o Y~! be the distributions
of X and Y. We first seek sufficient reduction for the mean of the conditional distribution
Y|X.

DEFINITION 1. Suppose S is a linear, closed subspace of Qyx, and Ps: Qx — S is the
projection onto S. If, for all ¢ € Qy,

ey E((y,Y)ay | X)=E(({, Y)ay | PsX),

we call S a functional mean dimension reduction subspace. Let T denote the collection of
all S satisfying (1). If Sg(y|x) =N {S:S € T}isin T, we call Sg(y|x) the functional central
mean subspace.

We next seek sufficient reduction for the entire conditional distribution Y| X. The idea fol-
lows that of Xia (2007), Yin and Li (2011), in that one can extend the estimation of central
mean subspace to that of central subspace through a class of functions that characterize the
conditional distribution ¥ | X. More specifically, note that the collection of conditional means
{E{g(Y)|X}: g € Hy} characterize the full information of Y | X, as long as the class of func-
tions Hy is sufficiently rich. This implies, if there is a functional dimensional reduction space
for the conditional mean E{g(Y)|X} for all g € Hy, then it is also a functional dimension
reduction space for Y | X. We formalize this idea below.

DEFINITION 2. Let Hy be a dense subset of L,(Py) modulo constants. Suppose S is a
linear, closed subspace of Qx, and Ps: Qx — S is the projection onto S. If, for all g € Hy,

2 E{g(¥) | X} =E{g(Y)| PsX},

we call § a functional dimension reduction subspace. Let 7 denote the collection of all S
satisfying (2). If Sy;x =N{S:S € T} isin T, we call Sy|x the functional central subspace.

Here we say Hy is dense in Ly(Py) modulo constants if, for any g € Lo(Py), there
exists a sequence {gk}keN of Hy, such that E{gk(X) — g(X)}2 — 0, as k — oo, where
N ={0,1,2,...} denotes the collection of natural numbers. We also note that, if Hy is a
dense subset of L,(Py), Hy is characteristic (Fukumizu, Bach and Jordan (2009)). There-
fore, (2) is equivalent to Y Il X | PsX. This justifies why (2) can characterize the conditional
distribution Y | X. It also shows that Sy|x is independent of the selection of Hy.

In both definitions of Sg(y|x) and Sy|x, we are seeking the smallest subspace in 7 that
satisfies (1) or (2), so to achieve maximal dimension reduction. Toward that goal, we take the
intersection of all subspaces in 7, and assume such an intersection still belongs to 7. This
actually holds under some mild conditions, as we show next. We introduce the concept of
M-set in an Hilbert space.

DEFINITION 3. Let Q1 and 2, denote two generic Hilbert spaces, and M a subset of
the product space 21 x 2. If, for any two pairs of points (w;, ®2), (w’l", a)ﬁ) € M, there
exist a sequence of pairs of points {(w{, a)é)}jj.:1 € Q1 x p, with (a){, a)é) = (a)l,. wy) anq
(@], w)) = (@}, %), such that, (a) (0], ®)) € M, for j=2,...,J —1,and (b) ] = ]

or wé“ :wé,forj =1,...,J —1,then we call M an M-setin 2] x 2,.
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Yin, Li and Cook (2008) introduced the notion of M-set for the random variable set-
ting, and Definition 3 extends it to the random function setting. The conditions in Defini-
tion 3 require that any two points in an M-set can be connected via a “stairway”, and that
only the corner points need to belong to the M-set. These are fairly mild conditions; see,
for example, any convex and open subset of 2| x ; is an M-set. Let supp(X) denote
the support of X. For linear and closed subspaces 81 and S; of Qx, and g a member in
(Psins, [ © f € supp(X)}, denote Q(S1, S2) ={(Ps, £ Ps, f. Psins,f) : f € supp(X)}, and
Q(S51,82,8) ={(Ps, f, Ps,f) : (Ps, f, Ps, f, 8) € Q(S1,S52)}. Let T be the collection of all
subspaces satisfying (1) or (2). The next theorem justifies the existence of Sg(y|x) and Sy|x.

THEOREM 1. Suppose, for any S| and Sy in T, Q2(S1, Sz, g) is an M-set in S| X Sy, for
all g € {Psns, f : f € supp(X)}.

(a) If the subspaces in T satisfy (1), then there exists a unique intersection, Sg(y|x) = N{S :
S €T} C Qx, satisfying that Sgy|x) is in T, and Spy|x) S S, forall S € T

(b) If the subspaces in T satisfy (2), then there exists a unique intersection, Sy|x = N{S :
S e T} C Qx, satisfying that Sy|x is in T, and Sy\x €S, forall S € T.

We also note that, the sufficient predictors in Definitions 1 and 2 are linear mappings on
Qx. Consider full reduction as an example, and let S = Span{¢; € Qx :i =1...,¢}. Then

YUX [ (X, d1)ay, - (X, Pq)y-

For this reason, our functional SDR is linear dimension reduction. By contrast, Li and Song
(2017) studied nonlinear dimension reduction, by relaxing the linear constraint and allowing
the sufficient predictors to be nonlinear mappings, in that,

YJ-LX | fl(X)’ R fq(X)’

where fi,..., f; are elements of the RKHS Hy. This key difference leads to two sets of
utterly different methodology and theory for our proposal and for Li and Song (2017), as
detailed in Sections 1 and 7.

We next give some concrete examples of Sg(y|x) and Sy x. For a positive definite ker-
nel function «7(-,-) : R x R — R, let Q7 denote the RKHS induced by «7, which can
be constructed by Q7 = Span{k7(-,¢) : t € R}, where Span is the closure of the space
spanned by the set of functions. Next, consider the Brownian motion kernel, «7(¢1, 12) =
min(fy, ), and let («, B;) denote the jth pair of eigenvalue and eigenfunction of «7, with
aj=1/{(j— 0.5)71}2, and B;(t) =sin{(j —0.5)mt}, j € N (see, e.g., Amini and Wainwright
(2012)). We then construct the predictor function X (¢) and the error function €(#) using the
leading pairs of eigenvalues and eigenfunctions, where

J K
X)) = Z ajJajBi(t), €)= Z bi/o Br(t),  for some integer values J, K,
k=1

j=1

E(aj))=EMb)=0,j=1,....,J,k=1,...,K, and (a1,...,ay)" and (b, ...,bg)" are
independent. By this construction, both €(f) and X (¢) are elements in Q7. Besides, for
any ¢ € Qr, E{(¢,e(t))q, = Zle JakE ) f, br(t))or = 0. Moreover, because there
are one-to-one correspondences between X (¢) and (ap,...,a T, and between €(r) and
(b1, ...,bg)T, we have €(t) 1L X (¢). Following this construction, we consider the following
examples.
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EXAMPLE 1. Suppose there exist ¢1, ¢o € Q7, such that X (¢) and Y (¢) satisfy that
Y (1) =mi((¢1, X)q,)sin(0.571) + ma((¢2, X)q, ) sin(1.571) + oe(r),

where m(-) and m(-) are mappings from R to R, o is a positive constant, and (¢, ¥)q, =
[{do(t)/dt dy(t)/dt}dt, for any ¢, ¢ € Q7. Then Y is an Q7-valued random element, and

SEey|x) = Span{d1, ¢2}.

EXAMPLE 2. Suppose there exist ¢1, ¢2, ¢3 € Q, such that X (¢) and Y (¢) satisfy that

Y(t) =mi((¢1, X)) sin(0.57t) + ma((¢2, X)o,) sin(1.571) + m3((¢3, X)q,) €(2),

where m () to m3(-) are mappings from R to R, and (¢, ¥')q, = [{d¢(¢)/dt dy(t)/dt}dt,
for any ¢, ¥ € Q7. Then Y is an Qr-valued random element, and Sy|x = Span{¢1, ¢, ¢3}.

Finally, we note that it is straightforward to show Sg(y|x) € Sy|x. This echos the classical
result in the random variable setting. In Example 2, Sg(y|x) is a proper subset of Sy|x.

2.2. Functional regression operator. By Definitions 1 and 2, the subspaces of interest are
defined via the conditional expectation E((y, Y)q, |X) or E{g(Y)|X}, that is, the regression
functionals that link the predictor function X and the response function Y. In order to char-
acterize such a regression relationship, we introduce the functional regression operator as an
extension of regression coefficient to both functional and nonlinear settings.

We first define the nested kernel and the associated RKHS. A positive definite kernel «x :
Qx x Qx — R can be constructed via the inner product (-, -)q,, if there exists a mapping
o R3 — R, such that

(3)  kx(d1,902) =p((d1, d1) oy, (D1, P2)ay, (2, 2)ax), forany @1, o € Qx.

Because kx is uniquely characterized by Qy, it is called a nested kernel. Examples of nested
kernels include the radial basis function kernel kx (¢1, ¢2) = exp(—y ||¢1 — @2 ||§2X), the poly-
nomial kernel kx (¢1, ¢2) = (14 (@1, p2) o5 )”, among others. Then given kx, a nested RKHS
Hx can be induced by this kernel. Similarly, a positive definite kernel ky : Qy x Qy — R,
and a nested RKHS Hy can be constructed via the inner product (-, -)q, .

We next introduce some background and notation. Let H, H' be two generic Hilbert
spaces, and A a linear mapping from H to H'. Define the norm of A as ||A| = sup{||Af |3 :
feH, I fllg =1}, where || - |% and || - |3y are the norms of H and H’, respectively. An
operator is said to be bounded, if its norm is finite. A linear operator A : H — H’ is said
to be Hilbert-Schmidt, if Y, .n |Af k ||%_L, < oo for an orthonormal basis { f¥}xen of . De-
fine the Hilbert-Schmidt norm of A as [|A|lus = O ke ||Afk||%{,)1/2. Let B(H,H') be the
collection of all linear bounded operators from H to H’, and B,(H,H’) the collection of
all Hilbert-Schmidt operators from # to '. Note that B(H, H') is a Banach space endowed
with the operator norm || - ||, and By (#, H') is a Hilbert space with its inner product defined as
(A1, A)us = Y ken(A1 f5, Az f¥)ay, for any Ay, Az € Bo(H, H'). Because || Al < [|Allns,
it holds that Bo(H,H') € B(H,H') (Weidmann (1980)). We abbreviate B(H) = B(H,H)
and By(H) = By(H, H) whenever appropriate. Furthermore, let ker(A), ran(A), ran(A), A*
denote the null space, the range, the closure of the range, and the adjoint of an operator A,
respectively.

We now develop a series of linear operators. We begin with a regularity condition. It en-
sures the square-integrability of the sample path of Y and that of every function in Hx and
Hy. The first part is a standard moment condition; see, for example, Yao, Lei and Wu (2015).
The second part holds for all bounded kernels. To avoid digression, we defer a detailed dis-
cussion of this condition, along with all other conditions in this article, to Section S1 of the
Supplementary Material (Lee and Li (2022)).
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ASSUMPTION 1. Suppose E||Y||%2Y <00, E{kx(X, X)} < 00, and E{xy(Y,Y)} < oo.
In addition, Hx and Hy are dense in L(Px) and Ly (Py) modulo constants, respectively.

Let my denote the mean element of Hy, such that (f,mx)y, = E(f, kx(-, X))ny, =
E{f(X)} for any f € Hx. Similarly, let uy and my denote the mean elements of Qy and
‘Hy, respectively. We next define a number of covariance operators:

Axy Qv = Hx, (fiAxy¥)uy = E{(fiexC, X) —mx)y (¥, Y —uy)e, b
Ayy:Qy — Qy, (¥, Ayy¥)g, = E{(Y',Y — uy)q, (W, Y —ur)a, ),

Exx Hx = Hx, (1 EZxx Sy, = ENf ex (o X) —mx)y (fiexC X) —mx)y, ),
Exy :Hy = Hx, (f. Sxvguy = E{{fikx (. X) —mx)y (8 kv (. Y) —my)y, |,
Tyy : Hy = Hy, (g, Eyyg);.[y =E{{g’. kv (. Y) — my)HY<g, ky(-,Y) — mY>HY},

for any ¥, ¥' € Qy, f, f' € Hx, and g, g’ € Hy. Note that yx = X%, . The next lemma
justifies the existence of the mean elements and covariance operators we define above.

LEMMA 1. Suppose Assumption 1 holds. Then there exist the mean elements my, Ly,
and my, and the covariance operators Axy, Ayy, Xxx, XXy, ZYY-

Next, we define two functional regression operators,
MEyY|X) = E;L(XAXY» my|x = EI(XEXY»

where 2; x :ran(Xyxx) — ran(Xx x) is the Moore—Penrose inverse of X x x. That is, for any
f eran(Xxyx), there exist g € ker(Xxx) and h e ran(Xxx) such that f = Xxx (g + &), and
the Moore—Penrose inverse E;X maps f € Y¥xx to h eran(Xxx) (Li (2018b)). Because
they resemble the notion of classical regression coefficients, we refer mgy|x) and my|x as
the functional regression operators. We next introduce another regularity condition to ensure
such definitions. See Section S1 of the Supplementary Material (Lee and Li (2022)) for more
discussion on this condition.

ASSUMPTION 2. Suppose ker(Xxx) = {0}, ran(Axy) C ran(Xxx), and ran(Xyxy) C
ran(X x x). In addition, MEyY|X) € By(Q2y, Hx), and my|x € By(Hy, Hx).

Assumption 2 ensures that the mappings of Axy and Xxy are both in that of X xx, which
in turns ensures that the two operators m g(y|x) and my|x are well defined. Moreover, it also
ensures that the Moore—Penrose inverse E;( x is well defined.

The next proposition shows that the regression functionals E((y, Y)q, | X) and E{(g,
ky (-, Y))3, | X} can be induced by the regression operators mgy|x) and my|x. Its proof is
similar to Li and Song ((2017), Proposition 1) and is omitted.

PROPOSITION 1.  Suppose Assumptions 1 and 2 hold. Then for any { € Qy and g € Hy,
there exist constants cy, and cg, such that

E((y,Y —uy)ay | X) =meyix)¥ +cy, and
E{(g.ky (. Y) —myly, | X} =my|xg +cq.
3. Average Fréchet derivative estimators. In this section, we first establish the con-
nection between the Fréchet derivative of the regression functional and the functional central

mean or central subspace. Built on this connection, we introduce the average Fréchet deriva-
tive estimators, and develop their population-level properties.
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3.1. Fréchet derivative of regression functionals. We first derive a key property for our
proposal: the Riesz representation of the Fréchet derivative of the regression functional is
located within the dimension reduction spaces of interest. Let My () = E((y,Y)q, | X =)
for any ¥ € Qy, and M,(-) = E{g(Y) | X = -} for any g € Hy, both of which are mappings
from Qy — R. Let 0, My (x,-) and 9, Mg (x,-) denote the Fréchet derivative of My and
M,, respectively, at any x € Qx. If A:H — R is a bounded linear mapping, then, by Riesz
representation theorem, there exists a unique g € H, such that Af = (g, f)y forall f € H.
In other words, g is the Riesz representation of A in H (Conway (2010)).

THEOREM 2. If My and Mg are Fréchet differentiable for any ¥ € Qy and g € Hy,
then:

(a) for any Y € Qy, the Riesz representation of 0y My (x, -) is in Sg(y|x);
(b) for any g € Hy, the Riesz representation of 0y M, (x, ) is in Sy x.

Its proof is given in Section S4 of the Supplementary Material (Lee and Li (2022)). The-
orem 2 shares the same spirit as the gradient-based SDR methods such as Xia et al. (2002),
Yin and Li (2011), but is stated in a more general setting. It shows that the Riesz represen-
tations of the Fréchet derivatives dy My (x, -) and dx M, (x, -) are elements of the functional
dimension reduction spaces. Next, we show that such representations have closed forms.

We introduce an additional assumption, which is mild and is satisfied for many standard
kernels xx, with the p function in (3) properly chosen, for example, the radial basis kernel
and the polynomial kernel. In Section S1 of the Supplementary Material (Lee and Li (2022)),
we further give the sufficient condition under which this assumption holds, and the explicit
form of the derivative of xy for two commonly used kernels, the radial basis kernel and the
polynomial kernel.

ASSUMPTION 3. «x(-, ) is continuously differentiable.

We next establish the interchangeability between the Fréchet derivative and the reproduc-
ing kernel Hilbert space for the general case. Its proof is given in Section S4 of the Supple-
mentary Material (Lee and Li (2022)).

PROPOSITION 2. Suppose Assumption 3 holds. Then, for any f € Hx such that f(x) =
(f,kx(x,)) ey, x € Qx, the Fréchet derivative of f(x) at x, 0y f(x,:) : Qx — R, u —
Ox f(x,u), is equal to Ox f (x, u) = (f, dxicx (x, u))7qy -

Steinwart and Christmann (2008) established the differentiability of RKHS in the random
variable setting. Proposition 2 extends their result to the functional setting. See also Fukumizu
and Leng (2014) for a simpler version of this result in the random variable setting. Note that
the regression functionals My, (-) and M, (-) are members in Hx, and thus by Proposition 2,
their Fréchet derivatives dy My (x, -) and d;y M, (x, -) can be calculated using the derivative of
kx. By Proposition 1, this further implies that, via the mappings of the regression operators,
we can explicitly compute 9y My (x,-) and 9, M, (x,-), as well as their Riesz representa-
tions. The next theorem summarizes the above statement. Hereafter, we write 0.« (x, 1) as
{oxk(x)} ou, and 0,k (x) : 2x — Hx is a member in B(Qyx, Hx).

THEOREM 3. Suppose Assumptions 1 to 3 hold. Then, for any x € Qx,

(@) Tan[{dckx ()} 'mEryix)] S SEv)x); (b) Tan[{dckx(x)} my|x] € Syx-
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Theorem 3 shows that ran[{dxkx (x)}*m gy x)] and ran[{d,kx (x)}*my|x] are subspaces
of the functional central mean and functional central subspaces, respectively, which pro-
vides the essential foundation for our functional SDR estimation. In particular, this result
does not require any distributional or structural assumptions, such as the linearity condi-
tion or the constant variance condition, that are required in all existing inverse moment-
based functional SDR methods (Ferré and Yao (2003), Hsing and Ren (2009), Jiang, Yu
and Wang (2014), Wang, Lin and Zhang (2013), Yao, Lei and Wu (2015)). To gain fur-
ther insight about Theorem 3, we observe that {0,k x(x)}*my|x has an intuitive explana-
tion that can be linked to the classical linear regression coefficient. Consider a linear kernel
kx = (¢, ¢ ), for any ¢, ¢’ € Qx. Suppose Qy = R”, Qy =R, Y and X are centered
and satisfy that E(Y | X = x) = (8, x) = 7x with 8 € R”. Then for any x’ € R?, we have
({oxkx ()Y mEy x), x') = (BTx, {dxkx(x)}ox’), whichis equal to (BTx, (x")Tx), = BTx".
This implies that {9k x (X)}*mEy|x) = B.

3.2. Average Fréchet derivative. Built on Theorem 3, let B = {dxkx(x)}*mEgy|x) or
{0xkx (x)}*my|x. Because ran(B) = ran(BB*), we can define two mappings that map X
in Qx to the random operators Fg(y|x)(X) and Fy x(X) in B(Q2x), respectively, via

Fewyix)(x) = {axKX(x)}*mE(YlX)mE(ﬂX) {dercx ()},

Fyx (x) = {0ukcx ()} 'my xmy y {0ckcx (0)}.

Note that the adjoints of mgy|x) and my|x are defined on ran(Xxyx) instead of Hx.
Nonetheless, because m g(y|x) and my,x are both bounded, their domains can be extended to
ran(Xxx), which, by Assumption 2, is equal to Hx. Next, we establish the existence of the
expectations of Fg(y|x)(X) and Fy x(X). We first need a condition on the moments of the
Fréchet derivative of «x. In Section S1 of the Supplementary Material (Lee and Li (2022)),
we give further results based on which we can show this moment condition holds. We also
derive the explicit bounds of E|d,xx (X )||* for the radial basis kernel and the polynomial
kernel.

ASSUMPTION 4.  E |3,k x(X)||* < o0.

The next proposition establishes the existence of the expectations of Fg(y|x)(X) and
Fy|x (X). Its proof immediately follows by the representation theorem, and is omitted.

PROPOSITION 3. Suppose Assumptions 1 to 4 hold. Then the mean elements of
Fex)(X) and Fy\x(X) in B(Q2x), denoted by E{Fg|x)} and E(Fy|x), respectively,
uniquely exist via the following relations: for any ¢, ¢’ € Qx,

(6. E{FE10)}¢ )y = E[(®. {FE 1) (X)}')g, ]
(. E(Fy1x)¢')q, = E[(¢. {Frix(X)}d')q, ]

The two operators, E{Fg|x)} and E(Fy|x), share the same spirit as the average deriva-
tive estimator of Hardle (1989) in the classical random variable SDR setting, and are gen-
eralized to the functional setting. For this reason, we refer E{Fg(y|x)} and E(Fy|x) as the
average Fréchet derivatives (AFD).

In SDR for random variables, we say a basis matrix is an unbiased estimator for the central
subspace if the spanning space of this basis matrix is located within the central subspace. In
addition, we say the basis matrix is exhaustive if the spanning space recovers the entire central
subspace (Li and Wang (2007)). The same definitions apply to the central mean subspace. We
now extend these concepts to the functional setting.
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DEFINITION 4. Let S be a subspace of Qy.

(a) We say S is unbiased for Sgy|x) if S € Sg(y|x), and exhaustive for Sg(y|x) if § =

SEY|X);
(b) We say S is unbiased for Sy|x if S C Sy)|x, and exhaustive for Sy|x if S = Sy|x.

Next, we show that E{FEy|x)} and E(Fy|x) are unbiased and exhaustive estimators for
SE(y|x) and Sy|x, respectively. We add another condition, and discuss it in detail in Section
S1 of the Supplementary Material (Lee and Li (2022)).

ASSUMPTION 5. The supports, supp(Psyy y, X) and supp(Psy y X), are convex.

THEOREM 4. Suppose Assumptions 1 to 4 hold. Then:

(a) Unbiasedness: tan[ E{Fg|x)}] € Se(y|x), and tan[ E(Fy|x)] € Sy|x.
(b) Exhaustiveness: Tan[ E{Fg(y|x)}] = SE(v|x), and tan[ E{Fy|x }] = Sy|x, if Assumption 5
further holds.

Theorem 4 suggests that we can use the space spanned by E{Fgy|x)} or E(Fy|x) to esti-
mate the functional central mean subspace or the functional central subspace. In other words,
we can use the leading eigenfunctions of these operators to estimate the bases of Sg(y|x)
and Sy x. The next corollary summarizes this observation, which provides the estimators for
our functional SDR spaces at the population level. To ensure that we can compute the two
functional spaces in Theorem 4, Tan[ E (Fg(y|x))] and ran[ E(Fy x)], at the sample level, we
let the rank of E{Fg(y|x)} and E{Fy|x} equal g, while we allow g to diverge.

COROLLARY 1. Suppose the conditions in Theorem 4 hold.

@ Ifol, ..., ¢; are the solutions to the sequential optimization problem
max[(@, E{FEyx)}d)q, : ¢ € 2]
subject to ||pllay =1,(p, ¢i)g, == (8. d4lq, =0.
then SE(y|X) = Span{¢>i, ey d)(/]}
) Ifgi, ..., ¢(’1 are the solutions to the sequential optimization problem
max[(¢, E(Fy|x)¢)q, : ¢ € Q2x]
subject to |pllay = 1.(¢. ¢ilg, == (b, d4)g, =0,

then Sy|x = Span{@}, ..., ¢, }.

4. Sample estimation. In this section, we develop the functional SDR estimation proce-
dure, first at the operator level, then under a coordinate system. We also develop a postreduc-
tion prediction method based on the proposed dimension reduction framework.

4.1. Estimation at the operator level. Let {(X, Y’C)T}Z:l denote i.i.d. samples of
(X,Y)". We estimate the mean elements puy, my and my of Qy, Hx and Hy by Ay =
E,(Y), mx = Ep{kx (-, X)}, and my = E,{ky (-, Y)}, respectively, where E,(-) is the mean
operator such that £, (w) = n! pIy— o for the samples (0!, ..., »"). We estimate the three
key covariance operators by

Axy = E[{kx (-, X) —ix} ® (Y — ay)],
Sxy = Ea[{x(, X) —riix} ® [y (-, ¥) — iy }],
Sxx = Ea[{xx (-, X) —ix} ® {kx (-, X) —inx}],
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where ® represents the tensor prgduct. Besides, we estimate Ayy and Xyy by f\yy =
E {(Y — iy) @ (Y — ay)}, and Zyy = Epl{ky (-, Y) — iy} ® {ky (-, Y) — rity}], respec-
tively. For any v, ' € Qy, we have (Y, Ayyy')q, = cov,{{¥, V)q,, (¥, Y)q,}, and the
rest of the sample covariance operators have similar properties, where cov, (-, -) denotes the
sample covariance between the designated quantities.

In the next section, we show that these sample covariance operators can be represented as
functions of Gram kernel matrices, which often have fast decaying eigenvalues and can be
well approximated by the spectral decomposition associated with only the leading eigenval-
ues (Lee and Huang (2007)). This suggests that using a reduced set of bases of RKHS can
improve the estimation efficiency both statistically and computationally. We adopt this idea in
our functional SDR estimation. Let {(A%, ) }ren, {(@*, f%)}ren, and {(b¥, gX)}ren denote
the pairs of eigenvalues and eigenfunctions of Ayy, Xxx, and Xyy, such that

Y=Zkk(lﬁk®1ﬁk), EXX=Zak(fk®fk)» Eyy=zbk(gk®gk)-

keN keN keN
Let {6%, ¥, d*}ien, denote the Karhunen—Loeve coefficients satisfying that,

r= 055 e X) —mx =3 K k(L Y) —my =) dNeh
keN keN keN
Thatis, 0 = (Y —puy, ¥*)ay. ¢ = (kx (. X) —mx, f*)p, and d* = (ky (. Y) —my, )y,
By definition, the covariance operators Axy, Xxx, and Xxy can be written as

Axy =Y cov(ck, 0% (fF @ v"), Txy =y cov(c",d")(f* ®g"),

k,£eN k,£eN

)
EXX—ZVar )(f* & ).

Similarly, at the sample level, let {(Ak w )}keN {(a f")}keN and {(bk k)}keN denote the
pairs of eigenvalues and elgenfunctlons of Ayy, ) xx and Eyy Let {9 ok dk Heen denote
the estimated KL coefficients, 6% = (Y — iy, w Yy, C &K= (kx(-, X)—my, f )24, and dk =
(ky (-, Y) — my, gk )2y - To estimate the covariance operators in (4), we then truncate and
focus on the leading d terms, and obtain the estimators via

d d
Afy= ) covy(@.09(/ @97, gy = ) covu(@.d)(f* ®§").
k,e=1 k,e=1
)
2%—2%%)W®f)
k=1
where var, (w) = cov, (w, w).
Correspondingly, we estimate the functional regression operators m E(y| x) and my|x by

~d &d 144 &d
(6) myix = (Bxx +el)” Ay, my|x—(2xx+d) Xxys

respectively, where € is a ridge parameter, and / : Hx — Hx is the identify mapping. Then,
by Corollary 1, we solve the optimization problem

(7) max[(¢, E{F/(X)}¢)q, : ¢ € Qx],

where Ij"d(x)Az ﬁg(Y|¥)(x) = {axKX(x)}*n%‘,g(le)(n%E(Y‘X))*{axKX(x)} when estimating
Seyrix),and F9(x) = Fy y (x) = {(pex ()05, (015 ) *{cx (x)} when estimating Sy |x .
That is, we estimate Sg(y|x) or Sy|x by Span{¢y : k=1, ..., g}, where ¢ is the eigenfunc-

tion corresponding to the kth largest eigenvalue of E {F9(X)}in (7). Lastly, we estimate the
sufficient predictors (¢r, X)qy by (dr, X)ay, fork=1,...,4.
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4.2. Estimation under a coordinate system. In practice, a function can only be ob-
served at a finite set of points. For simplicity, we focus on the balanced setting where all
the subjects are observed under a common set of time points, and the observed data are
{[Xk(t), YO : t=0, ...t k=1,..., n}. Meanwhile, our method can be straightfor-
wardly extended to the unbalanced setting with only minor modifications. We next develop
an estimation procedure under a chosen coordinate system given the observed data.

We first introduce the notion of coordinate representation here, and give more details in
Section S2.1 of the Supplementary Material (Lee and Li (2022)). Let | f |z € R™ denote the
coordinate of f in a generic Hilbert space H with respect to its bases . Moreover, let 5| A |5
denote the coordinate of a linear operator A : H — H’ with respect to B and B, where H' is
another Hilbert space spanned by B’. For convenience, we write | f |z as | ], and 5| A3 as
LA] when there is no confusion.

We divide our coordinate-level estimation procedure into four major steps.

In Step 1, we first construct the RKHS, Qx and Qy, which are Hilbert spaces of functions
on an interval T C R. We begin with a positive definite kernel function, k7 : R x R — R.
There are many choices, for example, the Brownian motion kernel, or the radial basis kernel.
Suppose Qx = Qy is the linear span of a sequence of functional basis {«7 (-, ;) }{_ ;.

Next, we derive the coordinate representation of the observed data Xk() and Y*(@).
Let X¥(t) = {X*(r1), ..., X*(t,)}7, and Y*(2) = {Y*(11), ..., Y*(t,,)}7, for the kth subject,
k=1,...,n, and (KT)?TM=1 = k7 (ts, t,) be the m x m Gram matrix of 7" with the spectral
decomposition, K7 = Ur Dt U}. It is then straightforward to obtain that

Br() = D7 PUF[cr (. 11)s ..k Cot)]|

is an orthonormal basis of Qx and Qy. Therefore, we can write X¥(t) and Yk(‘lf) as Xk ()=

Ur Dl/2 LXkJBT, and Y*(1) = UTDI/2 LYkJBT, which further leads to the their coordinate
representations,
(8) | x|z, =D PUlxt(r), Y], =Dy PUiyko.

Note that if K7 is not of a full rank, we simply use its leading nonzero eigenvalues and
corresponding eigenfunctions to construct Br.

In Step 2, we first construct the nested RKHS, Hx and Hy, which are Hilbert spaces
of functions on X and Y, respectively. We choose positive definite nested kernels ky and
ky, using, for example, the radial basis function kernel, or the Laplacian kernel. We then
follow the coordinates derived in (8), and estimate the inner products by (X%, X%)q x =
LX* )%, X 5. and (YK, Y g, = |YX|L |Y¢)5,. Let Hyx and Hy be the linear span of
{kx (-, X5 — Epkx (-, X)}i—; and {xy (-, Y5 — E iy (-, Y)}i_,, respectively.

Next, we construct the orthonormal bases of Hy and Hy, following a similar way as
in Step 1. That is, let (Kx)} ,_; = kx(X*, X*) and (Ky)} ,_; = ky(Y*,Y") be the n x n
Gram matrix of X and Y, respectively, and Gy = 0, KxQ, and Gy = Q,KyQ, be
their centered version, with Q, = I,, — n1 llln and 1, being the n-dimensional vector of
ones. We then perform the spectral decomposition, Gx = Ux Dy U)T( +U ng)((U g)T, and
Gy = UyDyU; + U(Y)D?,(UQ)T, where UXDXU)T( and UyDyU; correspond to the first d
eigenvalues, and Ug D?((Ug)T and UI(,) D?,(UIQ)T correspond to the last n — d eigenvalues.
Therefore, we construct the orthonormal basis of Hx and Hy, respectively, via

©) Cx() =Dy PUR[iex (- X1) =, iex (- X7) = ],
Cy() =D, ULy (. YY) =iy, .ok (Y — iy ]

In Step 3, we derive the coordinate representation of the truncated sample covariance op-
erators in (5), given the constructed Q2x, Qy, Hyx and Hy, and their orthonormal bases.
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Algorithm 1 Functional sufficient dimension reduction estimation

1: Choose the kernel k7, construct Qx = Qy = Span{kr (-, )}, and their orthonormal
basis Bz, and compute the coordinates | X | By and [Y k] By following (8).

2: Choose the nested kernels «kx and «xy, construct Hyx, Hy, and their orthonormal bases
following (9).

3: Compute the coordinates ¢, L[A\‘)ifngy, Cx Lf)ffyjcy, and ¢, Lf)glijcx following (10).

4: Compute the coordinates g, I_ﬁ dix )15, following (11), compute the sample average
Eq{5; Lﬁd(X)JBT}, obtain its eigenfunctions L(]BIJ, ey ngqj, and estimate Sg(y|x) or

Sy|x by Span{¢1, ..., H,}, where ¢; = |¢; |T(Br()},i=1,....q.

Specifically, we perform the spectral decomposition on E, (LY k— oy By LYk — ly] BT]T),
and denote its first d eigenvalues and eigenfunctions as {():k , Llﬁkj BT)}le. Let By = {lﬁk :
k=1, ...,d}. We then compute the leading sample KL coefficients by, fork=1,...,d,{ =
1,...,n,

=7 [ [ = {Cx(X) — i),
a5t = el {Cy (YY) — EnCy(Y)),

where ey is the d-dimensional vector with its kth position being one and the rest being zero.
Stack the sample KL coefficients gkt ekt and dk-t vertically, and form the n-dimensional
vectors OF = (9%1 ... gkm)T, Ck = (k1 eemyT ) and Dk = (c?k*l,...,c?k’”)T, for
k=1,...,d. Next stack @k, Ck and DF horizontally, and form the n x d matrices O =
(@1,...,(:)‘1), C = (él,...,é‘d) and D = (ﬁl,...,ﬁd). Then we obtain the coordinate
representation of the truncated sample covariance operators in (5) as

x| A%y g, =n7'CTO, x| E%vle, =n~'CTD,
(10) . At A

Cx LZ?’(XJCX =n"ICTC.

In Step 4, we derive the coordinate representation of Fd (X)in (7) as
Br LFI(X) 5,

o Lowex O] {[Z) + €)™ [ A%y JLA%y ) L) + €la) ™ [0kx (00
_ for SE(Y|X),
[8ex O | T{[ B ) + ela) ' 154y )15y T ES k) + ela) ™' dvix (X))
for SY|X,

where |0ykx(X)] is the coordinate of the Fréchet derivative, which we derive explicitly for
the radial basis kernel and the polynomial kernel in Section S2.2 of the Supplementary Mate-
rial (Lee and Li (2022)). We take the value of € to be 10~% x [ Dx]; 1. Finally, we compute the
sample average E, {5, |_ﬁ 4(%)| By}, perform its spectral decomposition, and obtain the eigen-
functions |_dA>1J, e, |_¢A)qj associated with the leading g eigenvalues. We estimate Sg(y|x) or
Sy|x by Span{i, ..., ¢}, where ¢ = [§ 1T (Br()}i=1,....q.

We summarize the above estimation procedure in Algorithm 1.

Our estimation method requires specifying kernel functions for k7, xx, and xy. We study
the effect of kernel choices in Section S3 of the Supplementary Material (Lee and Li (2022)).
In general, we have found that the estimated sufficient predictors are not overly sensitive to
the choices of kernel functions.
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In addition, we need to determine the number of leading KL coefficients d, and the intrin-
sic dimension g of the functional central subspace or central mean subspace. We adopt the
commonly used strategy in principal component analysis (PCA) to select d and ¢, such that
a certain proportion of total variation has been accounted for. Specifically, let tr(-) and A (-)
denote the trace and the kth largest eigenvalue of a designated symmetric matrix, and py and
pq denote some prespecified proportion, say, 90% or 95%. We then determine d and g by

d/ A
d:min{d/eN: S hlEd) S S ) ]
tr([Xxx]) tr(|Syy))
(12) q Ad
(Y M ELF0 ) |
= N: = .
K mm{q T wE Iy

4.3. Postreduction prediction. In function-on-function regression, in addition to finding
the reduced-dimensional representation, it is of equal interest to predict the response func-
tion Y, or any of its functional g(Y) in Hy, given the predictor function X. Our proposed
dimension reduction framework leads naturally to a procedure for such prediction tasks.

Let qS,-, i=1,...,q, denote the estimates from Step 5 of Algorithm 1. Then, for any x €
Qy, its projections onto Span{¢3k ck=1,...,q}is x4 = Z?:l(l_xJTl_&-JqAﬁi), where |x, | =
{LxJTLé)]J, ceey LxJTLqASqJ}T. Therefore, for any x, x’ € Qx, we can define a new kernel /c?(
for the reduced predictors x, via

€5 ') = (g X g X (5 x0h) = (s L . Lng L ) L)),

where p is from (3). Based on «, we calculate the Gram matrix K5 = [k (X, XZ)]Z,zzr
Suppose we aim to estimate the conditional mean of g(Y) given X = x, that is, E{g(Y) |
X = x}, for a given g in Hy. We first compute the coordinates of g with respect to Cy by

Lgley =Dy PUT{g(YY), ..., g(¥")}T. We then estimate E{g(Y) | x} by

E{g)|x} =[{(D)) " (U) Uy DY 1gley]TCh (),

where DY, and U} are from the spectral decomposition 0, K% Q, = UL D% (U)T corre-
sponding to the leading d eigenvalues, and C;’((-) is the basis with respect to the new kernel
k%, thatis, CL(-) = Dy P(UH T (¢, X1 = Enkcd (-, X), .o, kb X — B (-, X0TT.
A special case that is of particular interest is to predict ¥ given X. Consider the mapping,
:Qy = R, y— g°(y) = LylBs;.s. that is, the sth coordinate of y, foreach s =1, ..., m.
Therefore we estimate E{|Y]g, s | x} by E{|Y]5,.s | x} = {(DLHV2WUHTI(LY! JBT 5
o LY r.5)TITCY (x), and estimate E{Y (7) | x} by

E{Y () |x}=E[LY |5, {BrO} | x] = {E(LY )5, | )} {Br®)}.
where E(LY 1, | x) = [E{LY 01X} ooy ELLY 1gpm | X7

5. Asymptotic properties. In this section, we establish the consistency and convergence
rate of our functional SDR estimator for the functional central subspace Sy|x. The result for
the functional central mean subspace Sg(y|x) can be obtained in a similar fashion, and is thus

omitted. We first show the convergence of the truncated sample covariance operators EA)% x
and flf(y in (5). We next show the convergence of the sample functional regression operator
n%‘{}l x 1n (6). We then establish the convergence of the sample average Fréchet derivative of the
regression function, E, {f? {,1 | x(X)}, which leads to the uniform convergence of our functional
SDR estimator for Sy|x. We assume the trajectory of the random functions {X (¢), Y ()7 is
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fully observed on ¢ € T, and briefly comment on the setting when {X (¢), Y (¢)}" is partially
observed toward the end. We also derive the consistency and convergence rate of the estimator
based on the un-truncated sample covariance operators in Section S2.3 of the Supplementary
Material (Lee and Li (2022)). Unless otherwise stated, all proofs are relegated to Section S4
of the Supplementary Material (Lee and Li (2022)).

We begin with some supporting lemmas. The first lemma is about the perturbation of self-
adjoint operators. Given d € N, let A; > --- > Az41 denote the top d + 1 eigenvalues of a
self-adjoint operator X, and v (%) denote the minimum distance between these eigenvalues,
vg(T) =min{Ak — Ak 1k =1,... d}.

LEMMA 2. Let T and % be self-adjoint operators in B(H), and A1 > hy > --- and
Al > Ap > - be their sequences of eigenvalues, respectively. If vg(X) > 2| — X||, then
maxg—1, g4 A — M| <4 ') 12 - 2.

.....

The next lemma provides the convergence rates of the relevant sample operators.

LEMMA 3. Suppose Assumption 1 holds. Then the orders of magnitude of the terms,
lix —mxllay, iy —myllay, |En{cx(, X) —mx} @ {kx(, X) —mx} — Zxx| s
|E fcy (-, Y) —my} @ {ky (-, Y) —my} — Zyy | gs
|En{cx(, X) —mx} @ {ky (-, Y) —my} — Zxy|ys,

are Op(n=1/?).
Next, we establish the convergence of the truncated sample covariance operators )y 3"( x and

ﬁfﬂ, in (5). Since our interest is on Sy|x, not Sg(y|x), we do not discuss the property of f\?(Y
here. We introduce two intermediate operators, Ef( x and Ef(y, which are defined as

d d
E§X=Zvar(ck)(fk®fk), ESJ(Y= Z cov(ck,dz)(fk@)gz).
k=1 k=1

Note that we allow d to grow with the sample size, but denote it as d instead of d,, to simplify
the notation. Moreover, for three positive sequences {a,}, {b,} and {c,}, denote a, < b, if
a, = o(by,), a, < b, if a, = O(b,), and a, A b, = b,, or a, V b, = a,, if b, < a,. Denote
an < by if both a, < b, and b, < a,. Similarly, denote a, A b, A ¢, = (ay A by) A ¢, and
a, Vb,V c,=(a, Vb,V cy.

LEMMA 4.  Suppose Assumption 1 holds, and & = d*n= V2 (Txx) Avg(Syy)) < 1.
Then || 2% x — E¢xllns = Op(§), and | 2%y — ¢y llus = Op(©).

Next, we establish the convergence of the sample functional regression operator n%‘f,l x- We
require two additional smoothness assumptions. We discuss the two assumptions in detail in
Section S1 of the Supplementary Material (Lee and Li (2022)).

ASSUMPTION 6. There exist ; > 0 and m® € By(Hy, Hx), such that my|x = Zglxmo.

ASSUMPTION 7. Let aX and b* denote the kth eigenvalues of Xxy and Xyy, respec-
tively. There exists 8 > 0, such that } ;- ;1 a* <d=P2 and D ok>d+l bk <d=P.



FUNCTIONAL SUFFICIENT DIMENSION REDUCTION 919

THEOREM 5.  Suppose Assumptions 1,2, 6,7 hold, and that € < 1. Then,
nd ~1 _
”mY\X_mY|XHHS:0P{€ (Evd /32)4_6/31}‘

Next, we present a lemma regarding the convergence of linear operators in the form of
B*B. We then establish the convergence of the sample average Fréchet derivative estimator.

LEMMA S. Let {B,},>1 and B be random elements in B(H, K). Suppose || B, — B|lus =
Op(an). Then | By B, — B*B|lus = Op(an).

THEOREM 6. Suppose Assumptions 1 to 7 hold, and that € < 1. Then,
|En{ Y x OO} = E(Fy1x0)[ys = Op{e™ (6 vd ™) + €1},

We are now ready to establish the uniform convergence of the estimated bases {¢A>1 ey qAﬁq}
for Sy|x. The proof follows Lemma 2 and Theorem 6, and is omitted.

THEOREM 7. Let {(A,?, qb,?)}Z:l denote the eigenvalues and eigenfunctions of E(Fy|x),
with )‘(1) > > AO > 0. Suppose the same conditions in Theorem 6 hold. Then,

(max |6 = 8, = Orlvg {EFYIOHeT (E va™) + ],

.....

We make some remarks about Theorems 5 to 7. First, we note that Li and Song (2017)
also studied the convergence of the functional regression operator. Our Theorem 5 further
extends their result to the setting where the sample covariance operators are based on the
truncated bases. In addition, Li and Song (2017) obtained the consistency of their nonlinear
basis functions, whereas our Theorem 7 studied the linear basis functions ¢y, which involves
a different asymptotic analysis.

Second, and more importantly, in all our theorems, we allow the intrinsic dimension ¢ to
diverge, while Li and Song (2017) only considered the setting of a fixed g. This difference has
profound implications, and makes our asymptotic analysis far from a straightforward exten-
sion of Li and Song (2017). Actually, Theorem 7 suggests that g affects the convergence rate
of the basis estimates through v, { E(Fy|x)}, that is, the minimal gap between the eigenvalues
of E(Fy|x). To gain further insight, we note that, by definition, the squared Hilbert-Schmidt
norm of E(Fy|x) is

> (¢ EFrigelg, = Y (Ellr. {Frix(X)}ge)g, ).
k,t=1 k=1

where {¢¢}72, are a set of orthonormal bases in Qx. Following the proof of Theorem 6,
the right-hand side of the above equation is bounded. This implies that E(Fyx) is Hilbert-
Schmidt, which further indicates that its eigenvalues decay to zero. Therefore, Theorem 7
suggests that we need to restrict this decaying rate. We also comment that, Lin, Zhao and Liu
(2019) has recently shown that the convergence rate of sliced inverse regression (SIR) relies
on the smallest eigenvalue of the SIR matrix. Although we consider a very different problem
than Lin, Zhao and Liu (2019), both works have suggested that the eigen-structure of the key
quantity of interest, the SIR matrix in their work, and the average Fréchet derivative in ours,
plays an important role in the consistency of the estimated basis.

Third, we examine more closely the convergence rate in Theorem 7. For a given d, we
denote the rate of the regularization parameter € in (6) as €(d), and the resulting convergence
rate in Theorem 7 as ¢ (d). We study the rate of the €(d) under which the best convergence
rate ¢ (d) is achieved. We have the following result.
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COROLLARY 2. Suppose the same conditions in Theorem 7 hold. Then

e(d) = (g_— vd—ﬁz)l/(1+ﬁl)’ c(d) = V(I_I(EFY\X)(S vd—ﬁz)ﬁl/(l‘ﬁ‘ﬁl)‘

Its proof is by direct calculation and is omitted. To better understand the rates in Corollary
2, suppose d = n?, {vg(Zxx) A vg(Zyy)} = n=?, and v {E(Fy|x)} =n"¢, for some con-
stants a, b, ¢ > 0. The value of a reflects the growing rate of the number of KL expansions,
b restricts the decaying rate of the eigenvalues of Xxx and Xyy, and ¢ controls the decaying
rate of the eigenvalues of E(Fy|x). Combined with Corollary 2, we have €(a, b, B1, o) =
n="@b.B1B) fand ¢ (a, b, B1, Ba) = n~P1r@bBrbIte where r(a, b, B1, B2) = {(1/2 — 2a —
b) A (aB2)}/(1+ B1). This further implies that, when (2 + B2)a + b = 1/2, we obtain the best
rates,

e(b, B1, Bo) = n—ﬂz(l/2—b)/{(1+/31)(2+ﬂ2)}’ c(b, Bi, Bo) = p—B182(1/2=b) {(1+B1) 2+p2)} e

There is a clear interpretation regarding how these best rates are affected by f1, B, as defined
in Assumptions 6 and 7, and also the value of b. Specifically, 81 controls the smoothness of
the functional regression operator, and a larger value of 81 encourages a smoother relation
between X and Y, which leads to a larger penalty from ¢, and a faster convergence rate of ¢.
Meanwhile, B, regulates the behavior of the tail eigenvalues of Y xx and Xyy, and a larger
B> encourages a faster decaying of those tail eigenvalues, which leads to a smaller penalty
from €, and a faster rate of ¢. The quantity b restricts the decaying rate of the gaps from the
leading eigenvalues of £ xx and Xyy, and a smaller b implies a slower decaying rate, which
means a smaller € is required to stabilize the inversion of Egl( x> and a faster rate of ¢.

Finally, we have so far studied the asymptotics under the setting when the random func-
tions are fully observed. We remark that all the results can be extended to the setting when
the random function are only partially observed. In this case, the sample mean and covari-
ance operators in Lemma 3 are to have a slower convergence rate than n~!/2. Suppose the
rate is n~ /210 with § between [0,1/2), and the denser the observed time points are for
the functions, the closer § is to 0. The specific value of § depends on the actual sampling
schedule of how functional data are collected; see Wang, Chiou and Muller (2016) for more
details. Based on the rate of n~!/2%% we can extend the results in Theorems 5 to 7 to the
setting of partially observed functions. We skip the details, since this extension is relatively
straightforward.

6. Numerical studies. In this section, we first carry out simulations to examine the em-
pirical performance of our proposed functional SDR estimators. We then illustrate our method
with two real data examples, the classical Canadian weather dataset, and a more recent bike
sharing dataset. We report the additional simulation results that compare our method with Li
and Song (2017), and study the effect of diverging intrinsic dimensionality in Section S3 of
the Supplementary Material (Lee and Li (2022)).

6.1. Simulations. We consider two sets of simulation models: in the first set, the response
function is associated with the predictor function via the conditional mean only, and in the
second set, with not only the conditional mean but also with the conditional variance. Let
aj =1/{(j — 0.5)7}? and Bj(t) = sin{(j — 0.5)7t} denote the jth eigenvalue and eigen-
function of the Brownian motion kernel, for j =1, ..., 100. We independently sample the
predictor function X (¢) and the error function &(¢) from > }(l)] aj/ojBjt), where a;’s are
i.i.d. standard normal variables. Let ¢1(¢) = B4(¢), and ¢ (¢) = Bs(¢). We then generate the
response function Y (¢) as

I-1: Y (1) = Bi(t) x (X (@), ¢1(1))q, + Bo(t) x (X (1), p2(1))q, + (1)
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1-2: Y(#) = Bi(t) x sin{(X (1), ¢1(1))q, } + B2(t) x sin{(X (1), p2(t))q , } + &(1);
I-1: Y() =B1(t) x (X (@), d1(2)) oy + (X (), p2(1))qy x (1);
11-2: Y(t) = Bi(t) x sin{(X (1), qbl(t))QX} + sin{(X (2), ¢2(t))QX} x e(t).

By construction, for models I-1 and 1I-2, Sg(y|x) = Sy|x = Span{¢(¢), $2(t)}, while for
models II-1 and II-2, Sg(y|x) = Span{¢(t)} and Sy|x = Span{¢(¢), ¢2(¢)}. We then take
the same 50 equally spaced points {1, ..., fxs0} between [0, 1] as the observed time points,
for all k =1, ..., n. We consider different values of the sample size n = {100, 250, 500}. In
our implementation of the functional SDR, we use a Brownian motion kernel for «7, and a
radial basis kernel for kx and «xy.

We first evaluate the accuracy of recovering Sg(y|x) and Sy|x. Toward that end, we gen-
erate n i.i.d. pairs of random functions {X (¢), Y (#)} for each model, then divide them into a
training set and a testing set, each with n/2 observations. We then apply our methods to the
training data to estimate the basis functions for the functional dimension reduction subspaces.
We next compute the top g sufficient predictors using the testing data. We first use the true
value of ¢, then examine the estimation of ¢ using (12) later. To evaluate how effective the
estimated sufficient predictors approximate the true ones, we compute the trace of the average
squared multivariate correlation coefficient matrix (MCC, Ferré and Yao (2005)),

MCC(Z. 2) = (¢~ te[{cova(Z, 2)} " *{cova(Z, 2))
X {covn(Z, Z)}f1 {covn(i, Z)Hcovu(Z, Z)}fl/z])l/z,

where Z = (1, X)ay. - ... (#1. X)a,) T and Z = ((¢1, X)qy. - ... (¢1, X)q,)T are the true
and estimated sufficient predictors, respectively. The value of MCC is between O and 1, with
1 indicating a perfect recovery. Besides, it is calculated based on the testing samples, and
hence avoids the overfitting issue. Figure 1 reports the box plots of this criterion for the
four models based on 80 data replications, for both the functional central mean subspace
(fCMS) and the functional central subspace (fCS) estimation. It is seen that, for models I-1
and I-2, both estimators perform well, since the conditional mean contains all the relevant
regression information. For models II-1 and II-2, the functional central subspace estimator
performs consistently better than the functional central mean subspace estimator, because the
conditional variance contains additional relevant regression information that the functional
central mean subspace misses. Moreover, the performance improves as the sample size n
increases, which agrees with our asymptotic theory.

Next, we evaluate the performance of selecting the intrinsic dimension g using (12). We
choose the top g eigenfunctions that account for 90% total variation in the estimated av-
erage Fréchet derivative. For models I-1 and I-2, both Sg(y|x) and Sy|x have the intrinsic
dimension ¢ = 2. For models II-1 and II-2, Sg(y|x) has the intrinsic dimension g = 1, and
Sy|x has the intrinsic dimension ¢ = 2. Table 1 reports the estimated g averaged over 80
data replications. It is seen that, the estimated ¢ is slightly larger than the true intrinsic di-
mension, especially for models II-1 and II-2. This is acceptable from a dimension reduction
perspective, as a slightly larger estimated g implies that the method recovers some additional
redundant information, while a smaller estimated ¢ means the method misses some impor-
tant information. Moreover, the estimation of ¢ becomes more accurate as the sample size n
increases.

Finally, we study the performance of postreduction prediction. We compare our method
with three state-of-the-art parametric function-on-function regression methods: the functional
linear regression (LIN, Yao, Miiller and Wang (2005)), the functional linear regression by
signal compression (LQ, Luo and Qi (2017)), and the functional additive regression (ADD,
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FIG. 1. Box plots of the average squared multivariate correlation coefficients between the true and estimated
sufficient predictors, for the functional central mean subspace estimator (fCMS), and the functional central sub-
space estimator (fCS), and the four models, respectively. Each panel consists of 3 boxes for three sample sizes
n =100, 250, 500.

Miiller and Yao (2008)). Both LIN and ADD are implemented in the R package PACE, and
LQ is implemented in the R package FRegSigCom. Since the competing methods were
designed to predict the mean function of the response function, it is more meaningful to
focus our comparison on the conditional mean models I-1 and I-2. To evaluate the predictive
performance, we fit the model using the training samples, then obtain the predicted response
function ¥ (x,t)= E {Y (¢) | x} using the testing samples. We then compute the mean squared
prediction error (MSPE),

MSPE = Z i{Yk(ts) — V(X5 1)1/ (),

k=1s=1

TABLE 1
The estimated intrinsic dimension q

Model fCMS fCS
n 100 250 500 100 250 500

I-1 mean 3.00 248 201 399 301 214
sd. 032 050 011 0.11 0.11 035
I-2 mean 3.58 3.00 258 4.03 392 3.02

sd. 050 023 050 0.16 027 0.16

1I-1 mean 4.00 386 327 408 394 3.01
sd. 0.00 035 045 027 024 0.11

1I-2 mean 4.00 395 339 441 401 3.88
sd. 0.00 022 049 050 0.11 033
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TABLE 2
The mean squared prediction error for the prediction methods based on the functional central mean subspace
(fCMS), the functional central subspace (fCS), the functional linear regression (LIN), the functional linear
regression by signal compression (LQ), and the functional additive regression (ADD)

Model fCMS fCS LIN LQ ADD
I-1 mean 0.715 0.695 2.584 0.540 2.618
s.d. 0.159 0.121 0.151 0.042 0.147
I-2 mean 0.610 0.603 1.396 0.666 1.411
s.d. 0.063 0.058 0.081 0.057 0.088

where (X LyWhT o (X, Y™)T are the testing samples. Table 2 reports the results based
on 80 data replications. It is seen that, LQ has the best predictive performance for model
I-1, while our prediction method based on the functional central subspace Sy |x is the second
best. This is not surprising though, since their method was specifically designed for a linear
function-on-function regression model. Meanwhile, our method based on Sy|x performs the
best for model I-2, where there is a clear nonlinear association between the predictor and
response functions.

6.2. Canadian weather data. We first illustrate our methods with the classical Canadian
weather data, which is often used as a benchmark for function-on-function regression anal-
ysis (Ramsay and Silverman (2005)). The dataset consists of the average daily temperature
and logarithm of the daily precipitation over 35 years, from 1960 to 1994, for 35 different
locations in Canada. The data is available from the R package £da. Figure 2(a)—(b) show the
observed time series for the daily temperature and precipitation in the logarithmic scale. The
analysis goal is to study the association between the temperature and precipitation, and to use
the temperature to predict the precipitation.

We apply the proposed functional SDR methods to this data. For Sg(y|x), the top 3 suf-
ficient predictors explain 45.1%, 33.6% 15.2% of total variation, respectively, and 93.9%
accumulatively. For Sy|x, the top 3 sufficient predictors explain 48.5%, 37.3%, 9.2% of to-
tal variation, respectively, and 94.9% accumulatively. Figure 2(c)—(d) show these estimated
bases, which look similar for Sg(y|x) and Sy|x in this example. From the plots, it is seen that
the first basis function ¢; (1) weighs more at the beginning and toward the end of the year,
while the second basis function ¢»(t) weighs more in the middle of the year.

Next, we apply the postreduction prediction method to estimate the conditional mean of
the precipitation function in logarithm given the top 3 estimated bases from the temperature
function. Figure 3(a) shows the scatterplot of the first sample KL coefficient of the logarith-
mic daily precipitation, as well as its estimated regression function, that is, the conditional
mean, versus the first and second estimated sufficient predictors. We also interpolate the re-
gression surface for a clearer visualization. From the plot, we see that the sample KL coeffi-
cient is well approximated by its regression function. We also observe an increasing trend of
the conditional mean as the sufficient predictors increase.

Finally, we perform an out-of-sample prediction analysis. That is, we randomly draw 30
out of 35 observations as the training samples, and use the rest as the testing samples. We
record the mean squared prediction error based on the testing data, and compare the five
methods studied in Section 6.1. We repeat this process 100 times. Table 3 reports the results
averaged over such 100 replications. It is seen that our method based on the functional central
subspace achieves the best prediction accuracy.
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FIG. 2. Canadian weather data.

6.3. Bike sharing data. We next illustrate our methods with a more recent business ap-
plication, the bike sharing data (Fanaee-T and Gama (2014)). The dataset consists of the
hourly counts of total rental bikes for both casual and registered users, and weather re-
lated information, such as the hourly temperature, precipitation, wind speed, and humid-
ity. The observations were recorded from the Capital Bike Share system in Washington,
DC every day from January 1, 2011 to December 31, 2012. The data is available from
https://archive.ics.uci.edu/ml/datasets/Bike+Sharing+Dataset. One of the analysis goals is to
understand how the bike rentals are affected by the temperature on Saturdays. Therefore, we
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FI1G. 3. The first sample KL coefficient of the response function (black dots) and its regression function (colored
mesh) versus the first two sufficient predictors.
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TABLE 3
The mean squared prediction error for the prediction methods based on the functional central mean subspace
(fCMS), the functional central subspace (fCS), the functional linear regression (LIN), the functional linear
regression by signal compression (LQ), and the functional additive regression (ADD)

Dataset fCMS fCS LIN LQ ADD
Canadian weather mean 0.0865 0.0861 0.1134 0.1230 0.1192
s.d. 0.0301 0.0300 0.0401 0.0589 0.0492
Bike sharing mean 0.1357 0.1361 0.1995 0.1775 0.1458
s.d. 0.0421 0.0415 0.0732 0.0630 0.0545

treat the hourly bike rentals as the response function and the hourly temperature as the predic-
tor function. After removing 3 weeks of observations with many missing values, we obtain
102 weeks of pairs of curves, which are shown in Figure 4(a)—(b).

We apply the proposed functional SDR methods to this data. For the functional central
mean subspace Sg(y|x), the top 3 sufficient predictors explain 62.8%, 18.4% 14.6% of total
variation, respectively, and 95.9% accumulatively. For the functional central subspace Sy |x,
the top 3 sufficient predictors explain 69.3%, 16.2%, 10.9% of total variation, respectively,
and 96.4%Aaccumu1atively. Figure 4(c)—(d) show these estimated bases. It is seen that, the
first basis ¢ () suggests that the temperature between 10 am and midnight has more impact
on the bike rentals than the rest of the day, while the second and third bases suggest that
early morning tends to affect more on the bike rentals. Moreover, we observe that, although
the estimated bases of the Sg(y|x) and Sy|x are not numerically identical, they capture very
similar patterns. This suggests that the leading estimated bases are most likely related to the
change of the conditional mean of the hourly rental counts. Also, we see that the second and
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FIG. 4. Bike sharing data for 102 Saturdays.
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third estimated bases from the two estimations roughly span the same space, with the second
estimated basis for Sg(y|x) corresponding to the sign-flipped third estimated basis for Sy|x,
and the third estimated basis for Sg(y|x) corresponding to the second estimated basis for
Sy|x. This order switching between the estimated bases is likely due to the closeness of the
second and third largest eigenvalues.

Next, we apply the postreduction prediction method to estimate the conditional mean of
the bike rental function given the top 3 estimated bases from the temperature function. Fig-
ure 3(b) shows the scatterplot of the first sample KL coefficient of the hourly rental, and
its estimated regression function, versus the first and second estimated sufficient predictors.
We again interpolate the regression surface. We see that the estimated regression function
well approximates the estimated KL coefficient. Besides, as the first two sufficient predictors
increase, the conditional mean of the first KL. of the bike rental decreases.

Finally, we perform the out-of-sample prediction analysis, by randomly drawing 90 ob-
servations out of 102 as the training samples, and then using the rest as the testing samples.
Table 3 reports the results averaged over 100 replications. For this example, our method based
on the functional central mean subspace achieves the best prediction accuracy.

7. Discussion. In this section, we reiterate and further clarify some key differences be-
tween our proposal and the existing gradient-based SDR and functional SDR solutions.
We first compare to the gradient-based SDR methods for the random variable case.

(a) The gradient-based linear SDR methods such as Hérdle and Stoker (1989), Xia (2007),
Xiaetal. (2002), Yin and Li (2011) targeted the central mean or central subspaces that are
finite-dimensional subspaces of R”. In comparison, our functional central mean and cen-
tral subspaces are defined as the projections of Hilbert space-valued random predictors,
which themselves can be Hilbert space-valued and infinite-dimensional.

(b) A major step in the gradient-based methods is to estimate the gradient itself. Never-
theless, this step has imposed great challenges under the functional setting. Hérdle and
Stoker (1989) estimated the gradient of the density function; however, the density func-
tion does not always exist for random functions. Alternatively, Xia (2007), Xia et al.
(2002), Yin and Li (2011) estimated the gradient of the regression functions, which re-
quires to solve a high-dimensional local linear regression. Extending the local linear re-
gression to the functional setting is feasible, but is analytically complicated. In contrast,
we build our estimator on the Fréchet derivative of the regression functionals, which has
a closed form. To achieve this, we rely on a key property of RKHS, in which we establish
the interchangeability between the nested kernel function and the Fréchet derivative; see
Proposition 2. This simplification in estimating the Fréchet derivative is useful in both
estimation at the population and sample levels, as well as in deriving the consistency
results.

(c) We have developed a number of useful properties regarding the Fréchet differentiability
of the nested RKHS. For instance, we derive the conditions under which the nested ker-
nel function is continuously Fréchet differentiable in Proposition S1. To show that the
Fréchet derivative of the regression functionals have tractable forms, we illustrate with
some popular kernel functions and derive their Fréchet derivatives in Proposition S2 at
the population level, and in Proposition S5 at the coordinate level. Moreover, in Lemma
S3 we derive a property on the interchangeability of partial Fréchet differentiability on
the nested RKHS, which allows us to compute the moments of the Fréchet derivative; see
Proposition S4. These results are sufficiently general to be applied to problems beyond
the SDR framework, and are useful for functional data analysis involving the Fréchet
derivative.
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(d) We remark that, a possible alternative for our functional SDR is to discretize the response

(a)

function as Y (1), ..., Y (¢,) for the observed time points #1, ..., t,,,, then perform dimen-
sion reduction by treating Y as an m-dimensional random vector (Hsing (1999), Li, Wen
and Zhu (2008)). This solution does not require to specify a working RKHS. However, a
major advantage of our approach is that we are able to borrow information across the en-
tire function to compute the KL coefficients, then to recover the entire function using only
a few leading coefficients. This approach greatly alleviates the curse of dimensionality,
as the working space is of the same dimension as the number of extracted KL coefficients
d, rather than the number of observed time points m, and m is usually much larger than
d. This is also reflected in our asymptotic convergence rates, which depend on d, not m.

We next compare to the functional SDR methods, particularly, Li and Song (2017).

Although Li and Song (2017) has shown the existence of the nonlinear functional sub-
space, our Theorem 1 on the existence of the functional central mean and central sub-
spaces can not be directly inferred by their result. To establish the existence, we introduce
the concept of M-set in the functional space, a result that is not available in their work.

(b) A major difference between our work and Li and Song (2017) is that, their estimator was

(©

based on the inverse regression of X | ¥, whereas our estimator is built on the forward
regression of Y | X. The inverse regression approach has been taken by many other func-
tional SDR estimators, for example, Hsing and Ren (2009), Jiang, Yu and Wang (2014),
Wang, Lin and Zhang (2013), Wang et al. (2015), Yao, Lei and Wu (2015). Such a differ-
ence leads to completely different estimation approaches, theoretical analyses, as well as
required conditions. For instance, the generalized sliced average variance estimator of Li
and Song (2017) and all other inverse regression based functional SDR methods required
some version of the linearity or constant variance conditions to establish the unbiasedness
or exhaustiveness. In contrast, our method achieves the unbiasedness and exhaustiveness
without imposing such distributional assumptions.

Another major difference is that Li and Song (2017) targeted nonlinear SDR, whereas we
aim at linear SDR, as we have clarified after Theorem 1. Each has its own strength and
limitation; see Li ((2018a), Chapter 14) for more comparison. However, simply using a
linear kernel in Li and Song (2017) would not produce the same result as our method,
due to different approaches of inverse and forward regressions the two methods adopt.

(d) Compared to the estimator of Li and Song (2017) that was solely built on the functional

(e)

regression operator, our estimator requires both the functional regression operator, and
another key element, the Fréchet derivative. Consequently, we have developed a different
set of tools regarding the Fréchet differentiability of the nested RKHS, None of those
results are available in Li and Song (2017).

A key novelty of our asymptotic analysis is that we allow the number of sufficient pre-
dictors to diverge with the sample size. Li and Song ((2017), Corollary 3) has shown the
pointwise consistency, but assumed a fixed number of sufficient predictors. In compari-
son, in Theorem 7, we have established the uniform consistency with a diverging number
of sufficient predictors, which is considerably more challenging than Li and Song (2017).
We require additional technical tools such as Lemma 2 to deal with the perturbation of
the sample linear operators. Moreover, our asymptotic framework needs to deal with the
consistency of the Fréchet derivative estimation; for example, in the proof of Theorem 6,
we derive the rate of convergence for the Fréchet derivative, based on which we are able
to establish the consistency of our average Fréchet derivative estimator.

In summary, our proposal is far from an incremental extension of the existing SDR meth-

ods. We believe it is important and useful for both fields of sufficient dimension reduction
and functional data analysis in general.
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