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ABSTRACT
Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety
of applications. The changes of graph structure can often be attributed to external variables, such as the
diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most
existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-
level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model
for multivariate random functions, where we treat the external variables as conditioning set, and allow the
graph structure to vary with the external variables. Our method is built on two new linear operators, the
conditional precision operator and the conditional partial correlation operator, which extend the precision
matrix and the partial correlation matrix to both the conditional and functional settings. We show that
their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding
estimators. We establish the uniform convergence of the proposed estimators and the consistency of
the estimated graph, while allowing the graph size to grow with the sample size, and accommodating
both completely and partially observed data. We demonstrate the efficacy of the method through both
simulations and a study of brain functional connectivity network.
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1. Introduction

Functional graphical modeling is gaining increasing attention
in the recent years, where the central goal is to investigate the
interdependence among multivariate random functions. Appli-
cations include time course gene expression data in genomics
(Wei and Li 2008), multivariate time series data in finance (Tsay
and Pourahmadi 2017), electrocorticography, and functional
magnetic resonance data in neuroimaging (Zhang et al. 2015),
among many others.

Our motivation is brain functional connectivity analysis
based on functional magnetic resonance imaging (fMRI). Func-
tional MRI measures brain neural activities via blood oxygen-
level-dependent signals. It depicts brain functional connectivity
network, which is shown to alter under different disorders or
during different brain developmental stages. Such alterations
contain crucial insights of both disorder pathology and devel-
opment of the brain (Fox and Greicius 2010). The fMRI data are
often summarized in the form of a location by time matrix for
each individual subject. The rows correspond to a set of brain
regions, and the columns correspond to time points that are usu-
ally 500msec to 2 sec apart and span a fewminutes in total. From
the fMRI scans, a graph is constructed, where nodes represent
brain regions, and links represent interactions and dependen-
cies among the regions (Fornito, Zalesky, and Breakspear 2013).
Numerous statistical methods have been developed to estimate
functional connectivity network. Most of these methods treat
the fMRI data as multivariate random variables with repeated
observations, where each region is represented by a random
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variable and the time-course data are taken as repeated mea-
sures of that variable (e.g., Bullmore and Sporns 2009; Wang
et al. 2016b). There are recent proposals to model the fMRI data
as multivariate functions, where the time-course data of each
region are taken as a function (e.g., Li and Solea 2018). Given
the continuous nature and the short-time interval between
the adjacent sampling points of fMRI, we treat the data as
multivariate functions, and formulate the connectivity network
estimation as a functional graphical modeling problem in this
article.

Nearly, all existing graph estimation methods tackle the
problem by aggregating samples, sometimes according to the
diagnostic groups. However, there is considerable subject-
level heterogeneity, which may contain crucial information
for our understanding of the network, but has been largely
untapped or ignored by existing methods (Fornito, Zalesky,
and Breakspear 2013). Heterogeneity could arise due to a
subject’s phenotype profile; for example, in our study in
Section 7, the brain connectivity network may vary with
an individual’s intelligence score. It could also arise due
to a time variable, for example, the subject’s age, and the
connectivity networkmay varywith age, which leads to dynamic
graphical modeling. In this article, we introduce a conditional
functional graphical model for a set of random functions,
by modeling the external variables such as the phenotype
or age as the conditioning set. Our proposal thus extends
two lines of existing and relevant research: from conditional
and dynamic graphical modeling of random variables to that
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of random functions, and from unconditional functional
graphical modeling to conditional functional graphical
modeling.

The first line of relevant research is the class of graphical
models of random variables. Within this class, there is a rich lit-
erature on unconditional graphical models (Yuan and Lin 2007;
Friedman et al. 2008; Peng et al. 2009, among others). There are
extensions to joint estimation of multiple graphs, which arise
from a small number of groups, typically two or three, according
to an external variable such as the diagnostic status (Danaher,
Wang, and Witten 2011; Chun, Zhang, and Zhao 2015; Lee
and Liu 2015; Zhu and Li 2018). There have also been some
recent proposals of dynamic graphical models (Kolar et al. 2010;
Xu and Hero 2014; Zhang and Cao 2017). However, they only
considered a discrete-time setting, in which the network is esti-
mated only at a small and discrete number of time points. The
most relevant work to ours is Qiu et al. (2016), who also targeted
estimation of the individual graph according to an external vari-
able, for example, age. Although both Qiu et al. (2016) and our
method are designed for graph estimation at the individual level,
the two solutions differ in many ways. Particularly, Qiu et al.
(2016) assumed that the repeated observations of each individ-
ual come from the same Gaussian distribution, whose depen-
dency was required to follow a certain stationary time series
structure. By contrast, we treat the repeated measurements
as realizations from a random function, and do not impose
any structural or relational assumption on the entire function.
More importantly, compared to the random variable setting
in Qiu et al. (2016), our functional setting involves an utterly
different and new set of modeling techniques and theoretical
tools.

The second line of relevant research is the class of uncondi-
tional graphical models of random functions, which appeared
only recently. Qiao, Guo, and James (2019) introduced a func-
tional Gaussian graphical model, by assuming that the ran-
dom functions follow a multivariate Gaussian distribution. Li
and Solea (2018) relaxed the Gaussian assumption, developed
a precision operator that generalizes the concept of precision
matrix to the functional setting, and used it to estimate the
unconditional functional graph. However, their precision oper-
ator is nonrandom, and their graph dimension is fixed. By
contrast, we introduce a conditional precision operator (CPO),
which is a function of the conditioning variable and is thus
random, and we allow the graph dimension to diverge with
the sample size. These differences bring extra challenges in
analyzing the operator-based statistics. Moreover, because the
relation between the CPO and the conditioning variable can be
nonlinear, its estimation requires the construction of a repro-
ducing kernel Hilbert space (RKHS) of the conditioning vari-
able, which leads to a more complex asymptotic analysis than
that of Li and Solea (2018). We also derive a number of con-
centration bounds and uniform convergence for our proposed
estimators, while such results are not available in Li and Solea
(2018).

To address the problem of conditional graphical modeling of
random functions, we introduce two new linear operators: the
CPO, and the conditional partial correlation operator (CPCO),
which extend the precision matrix and the partial correlation
matrix from the random variable setting to both the conditional

and functional settings. We show that, when the conditional
distribution is Gaussian, the conditional graph can be thor-
oughly captured by the nonzero elements of CPO or CPCO.
This property echoes the classic result where a static graph can
be inferred by the precision matrix or the partial correlation
matrix under theGaussian assumption.Wenote that, some early
works, such as Lee, Li, and Zhao (2016a,b), also estimated the
parameters of interest through linear operators. However, we
studied utterly different problems: Lee, Li, and Zhao (2016b)
targeted variable selection in classical regressions, Lee, Li, and
Zhao (2016a) targeted unconditional graph estimation for ran-
dom variables, while we target conditional graph estimation for
random functions. Both the methodology and theory involved
are thus substantially different.

Our proposal makes useful contributions at multiple fronts.
On the method side, it offers a new class of statistical models
to study conditional graph estimation for multivariate func-
tional data, a problem that remains largely unaddressed. We
investigate the parallels between the random variable-based and
random function-based graphs, and between the unconditional
and conditional graphs. On the theory side, our work devel-
ops new tools for operator-based functional data analysis. We
establish the conditional graph estimation consistency, along
with a set of concentration inequalities and error bounds, for
our proposed method. To our knowledge, very little work has
investigated function-on-function dependency at such a level of
complexity that involves estimating the linear operators under a
conditional framework. The tools we develop are general, and
can be applied to other settings in high-dimensional functional
data analysis.On the computation side, under a properly defined
coordinate system, the proposed operators are functions of
the sample covariance operator of dimension n × n, with n
being the sample size. It is relatively easy to calculate, and the
accompanying estimation algorithm can be scaled up to large
graphs.

The rest of the article is organized as follows. We begin with
a formal definition of conditional functional graphical model in
Section 2. We introduce a series of linear operators in Section 3,
develop their estimators in Section 4, and study their asymptotic
properties in Section 5. We report the simulations in Section 6,
and an analysis of an fMRI dataset in Section 7. We relegate
all proofs and some additional results to the supplementary
appendix.

2. Model

In this section, we formally define the conditional functional
graphical model. Let (�X ,FX) be a measurable space. Suppose
�Xi is a Hilbert space ofR-valued functions on an interval T ⊂
R, for i = 1, . . . , p, and�X is the Cartesian product�X1×· · ·×
�Xp . Suppose X = (X1, . . . ,Xp)T is a p-dimensional random
element on �X . Let G = (V, E) be an undirected graph, where
V = {1, . . . , p} represents the set of vertices corresponding to the
p random functions, and E = {(i, j) ∈ V × V, i �= j} represents
the set of undirected edges. A common approach to modeling
an undirected graph is to associate the separation on the graph
with the conditional independence; in other words, nodes i and j
are separated in G if and only if Xi and Xj are independent given
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the rest of X, that is,

(i, j) /∈ E ⇔ Xi⊥⊥Xj | X−(i,j), (1)

where X−(i,j) represents X with its ith and jth components
removed, and ⊥⊥ represents statistical independence. Based on
Equation (1), Qiao, Guo, and James (2019) proposed a func-
tional graphical model, which assumed that X follows a mul-
tivariate Gaussian distribution.

Next, we introduce a conditional functional graphical model
that allows the graph links to varywith the external variables.We
focus on the univariate external variable case, but our method
can be generalized tomultivariate external variables, or external
functions. Let Y be a random element defined on �Y , and FY
be the Borel σ -field generated by the open sets in �Y . Let PY :
FY → R and PX|Y(·|·) : FX × �Y → R be the distribution of
Y and conditional distribution of X | Y , respectively. We next
give our formal definition.

Definition 1. Suppose a random graph Ey for each y ∈ �Y is
defined via the mapping �Y → 2V×V, y �→ Ey, where 2V×V is
the power set of V×V.We sayX follows a conditional functional
graphical model with respect to Ey if and only if, for y ∈ �Y ,

(i, j) /∈ Ey ⇔ Xi⊥⊥Xj | [X−(i,j),Y = y]. (2)

We note that Li, Chun, and Zhao (2012) introduced the
notion of conditional graphical model. However, our notion of
conditional functional graphicalmodel is considerably different,
in that our model extends theirs not only from the setting
of random variables to random functions, but also from the
setting of static graphs to random graphs. Specifically, letting
X = (X1, . . . ,Xp)T and Y = (Y1, . . . ,Yq)T denote two random
vectors, Li, Chun, and Zhao (2012) considered the model,

(i, j) /∈ E0 ⇔ Xi⊥⊥Xj | [X−(i,j),Y = y]

for all y ∈ R
q. In this model, E0 ⊆ 2V×V is a fixed graph, and

does not change with the value of Y . In comparison, our model
in Equation (2) allows X to be a p-variate random function, and
the graph Ey to vary with Y .

3. Linear Operators

In this section, we first introduce a series of linear operators,
based onwhichwe then formally define theCPOand theCPCO.
Finally, we study the relation between these two operators and
the conditional functional graph.

We adopt the following notation throughout this article. For
two generic Hilbert spaces �,�′, let B(�,�′) and B2(�,�′)
denote the class of all bounded and Hilbert–Schmidt opera-
tors from � to �′, respectively. We abbreviate B(�,�) and
B2(�,�) as B(�) and B2(�) whenever they are appropri-
ate. Moreover, let ‖ · ‖ and ‖ · ‖HS be the operator norm
in B(�) and Hilbert-Schmidt norm in B2(�). Moreover, let
ker(A), range(A), range(A) denote the null space, the range, and
the closure of the range of an operator A, respectively.

3.1. Conditional Covariance and Correlation Operators

We first define three covariance operators, VYY , VXiXj , and
VYXij . We then define the conditional covariance operator
V

y
XiXj

, and the conditional correlation operator Cy
XiXj

, which is
the building block of CPO and CPCO.

Let κY : �Y × �Y → R be a positive-definite kernel, HY
be its corresponding RKHS, and L2(PY) be the collection of all
square-integrable functions ofY underPY . The next assumption
ensures the square-integrability of Xi under PX|Y , and that HY
is a subset of L2(PY).

Assumption 1. There exist M0 > 0 and MY > 0 such that
sup{E(‖Xi‖2�Xi

| y) : y ∈ �Y} ≤ M0, for i = 1, . . . , p, and
κy(Y ,Y) ≤ MY .

We comment that, we choose RKHS as the modeling space,
so that the relation ofX on Y can be very flexible, and the kernel
matrix of Y is of dimension n × n, an attractive feature when
the dimension of Y is large compared with n. In addition, a
good number of asymptotic tools for RKHS operators have been
developed (see, Bach 2009; Lee, Li, and Zhao 2016a). That being
said, our theoretical development can also be easily extended to
the spaces beyond RKHS. In fact, our population development
only requires that HY is a proper subset of L2(PY), which can
be ensured by the square-integrable condition, var [h(Y)] =
M‖h‖HY for anM > 0 and every h ∈ HY .

Let ⊗ denote the tensor product; then κy(·,Y) ⊗ κy(·,Y),
Xi⊗Xj and κy(·,Y)⊗Xi⊗Xj are random elements inB2(HY),
B2(�Xj ,�Xi), and B2[B2(�Xj ,�Xi),HY ], respectively. Their
expectations uniquely define the covariance operators,

VYY = E
[
κy(·,Y)⊗ κy(·,Y)

]
, via

〈h1,VYYh2〉 = E [h1(Y)h2(Y)] ,
VXiXj = E(Xi ⊗ Xj), via

〈f ,VXiXjg〉 = E
(〈f ,Xi〉 〈g,Xj〉

)
, (3)

VYXij = E
[
κy(·,Y)⊗ Xi ⊗ Xj

]
, via

〈h,VYXij(f ⊗ g)〉 = E[〈Xi, f 〉 〈Xj, g〉 h(Y)],
for all f ∈ �Xi , g ∈ �Xj , and h, h1, h2 ∈ HY . The next
proposition justifies the existence ofVYY ,VXiXj , andVYXij .

Proposition 1. If Assumption 1 holds, then there exist linear
operators VYY , VXiXj , and VYXij satisfying the relations in
Equation (3).

We next introduce a regression operator,MXij|Y through the
relation, MXij|Y = V

†
YYVYXij , where † is the Moore–Penrose

inverse. We first need an assumption on the ranges ofVYY and
VYXij , andHY is sufficiently rich in L2(PY).

Assumption 2. For every (i, j) ∈ V × V, range(VYXij) ⊆
range(VYY). Moreover,HY is dense in L2(PY).

By Assumption 2, for any h ∈ range(VYY), there exists
a unique h′ ∈ range(VYY) such that h = VYYh′. There-
fore, the inverse V

†
YY is defined as V

†
YY : range(VYY) →

range(VYY), h �→ h′, which implies that MXij|Y is well-
defined. The range condition that range(VYXij) ⊆ range(VYY)
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is satisfied generally. For instance, it holds when the rank of
B2(�Xj ,�Xi) is finite, which is reasonable, because in practice
�Xi can often be approximated by the spanning space of a few
leading eigenfunctions ofVXiXi .

The next proposition shows thatMXij|Y maps every (f , g) ∈
�Xi × �Xj to E(〈f ,Xi〉 〈g,Xj〉 | y), that is, the conditional
expectation, and thus this operator can be viewed as a regression
operator.

Proposition 2. If Assumptions 1 and 2 hold, then for all y ∈ �Y
and (f , g) ∈ �Xi × �Xj , we have [MXij|Y(f ⊗ g)] ◦ (y) =
E(〈f ,Xi〉 〈g,Xj〉 | y).

Now we are ready to define the conditional covariance oper-
ator, whose existence is justified by Proposition 2 and Riesz
representation theorem.

Definition 2. For each y ∈ �Y , the bilinear form, �Xi ×�Xj →
R, (f , g) �→ MXij|Y(f ⊗ g) ◦ (y), uniquely defines an operator
V

y
XiXj

∈ B(�Xj ,�Xi), via 〈f ,Vy
XiXj

g〉�Xi
= E(〈f ,Xi〉 〈g,Xj〉 |

y) for all (f , g) ∈ �Xi × �Xj . We call Vy
XiXj

the conditional
covariance operator.

Note that the mapping �Y → B(�Xj ,�Xi), y �→ V
y
XiXj

defines a random operator. If the conditional expectations
E(〈f ,Xi〉 | y) = 0, then V

y
XiXi

induces the conditional covari-
ance cov(〈f ,Xi〉, 〈g,Xj〉 | y). When Xi and Xj are random
vectors, Fukumizu, Bach, and Jordan (2009) introduced the
homoscedastic conditional covariance operator, which induces
E[cov(〈f ,Xi〉, 〈g,Xj〉 | Y)]. Our conditional covariance operator
is different from that of Fukumizu, Bach, and Jordan (2009),
as it extends the classical conditional covariance to the func-
tional setting, and it deals directly with cov(〈f ,Xi〉, 〈g,Xj〉 | y),
instead of its expectation. We write the joint operator Vy

XX :
�X → �X as the block matrix of operators whose (i, j)th
element is Vy

XiXj
, 1 ≤ i, j ≤ p, or more explicitly, Vy

XXf =(∑p
j=1VX1Xj fj, . . . ,

∑p
j=1VXpXj fj

)T
, for any f = (f1, . . . , fp)T ∈

�X .
Given the conditional covariance operator V

y
XiXj

, we next
define the conditional correlation operator, Cy

XiXj
: �Xj → �Xi ,

for each y ∈ �Y via,

V
y
XiXj

= (V
y
XiXi

)1/2C
y
XiXj

(V
y
XjXj

)1/2, with ‖Cy
XiXj
‖ ≤ 1. (4)

Its existence and uniqueness are ensured by Baker (1973). Sim-
ilar to the construction of Vy

XX , we write the joint operator
C
y
XX : �X → �X as the block matrix of operators whose

(i, j)th element is Cy
XiXj

, 1 ≤ i, j ≤ p. Let Dy
X denote the block

diagonal matrix [Dy
X]i,i = V

y
XiXi

, for i ∈ V. We then have
V

y
XX = [Dy

X]1/2Cy
XX[Dy

X]1/2.
Next, we impose the distributional assumption on X | y.

Assumption 3. Suppose X | y follows the conditional functional
graphical model as defined via (2), and the conditional distri-
bution of X = (X1, . . . ,Xp)T given Y = y follows a centered
Gaussian distribution.

The zero-mean condition is imposed to simplify both
methodological and theoretical development, and can be
relaxed with somemodifications. Moreover, we require the con-
ditional distribution X | y to follow a Gaussian distribution.
It is possible to relax this Gaussian assumption, by extending
the notion of functional additive conditional independence (Li
and Solea 2018), or the copula graphical model (Liu et al. 2012).
However, we feel that the Gaussian case itself is worthy of a full
investigation, andwe leave the non-Gaussian extension as future
research.

Assumption 3, together with Definition 2, imply that, for
f = (f1, . . . , fp)T ∈ �X , E

(
exp

∑p
i=1 ι〈fi,Xi〉�Xi

| y
)
=

exp
(
−1/2 ∑p

i,j=1〈fi,Vy
XiXj

fj〉�Xi

)
, where ι = √−1.

3.2. Conditional Precision and Partial Correlation
Operators

We next formally define the operators CPO and CPCO, then
establish their relations with the conditional functional graph.
We introduce two assumptions, which ensure that C

y
XiXj

is
Hilbert-Schmidt and C

y
XX is invertible. We present some intu-

itions here, but relegate the detailed technical discussion to
Section S.3 in the appendix.

Assumption 4. For each y ∈ �Y and i ∈ V, let {(λy,ai , ηy,ai )}a∈N
denote the collection of eigenvalue and eigenfunction pairs of
V

y
XiXi

. Let Ny
i = {a ∈ N : λ

y,a
i > 0}. There exists c1 > 0 such

that,

max
i,j∈V,i�=j

∑
a∈Ny

i ,b∈Ny
j

cov2(〈ηy,ai ,Xi〉, 〈ηy,bj ,Xj〉 | y)
var2(〈ηy,ai ,Xi〉 | y) var2(〈ηy,bj ,Xj〉 | y)

≡ max
i,j∈V,i�=j

∑
a∈Ny

i ,b∈Ny
j

(ρ
y,a,b
i,j )2 ≤ c1. (5)

Assumption 5. For each y ∈ �Y , ker(V
y
XX) = 0.

Assumption 4 characterizes the level of smoothness for the
underlying distributions of the random functions. Assump-
tion 5 is to prevent the existence of a constant function consist-
ing of linear combination of nonconstant functions. It can be
viewed as the generalization of the nonexistence of collinearity
in linear models, or the empty concavity space in general-
ized liner models (Hastie and Tibshirani 1990). Assumption 4
ensures that Cy

XiXj
is Hilbert-Schmidt, and thus compact. Mean-

while, Assumptions 4 and 5 together ensure that Cy
XX is lower-

bounded by a strictly positive constant. This implies that Cy
XX is

invertible, and that Py =
[
C
y
XX

]−1
is bounded, which justifies

the following definition.

Definition 3. Define the CPO as the inverse of the joint condi-
tional correlation operator, Py =

[
C
y
XX

]−1 ∈ B(�X), for any
y ∈ �Y .

The operatorPy generalizes the precisionmatrix to the func-
tional and conditional settings. We should clarify that, unlike
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the standard definition where the precision matrix is defined
as the inverse of the covariance matrix (Cai, Liu, and Luo
2011), our CPO is defined as the inverse of the conditional
correlation operator. This is to avoid taking inversion on the
covariance operator, which is usually not invertible because of
its compactness. Next, we develop an operator that generalizes
the partial correlation matrix to the functional and conditional
setting. Similar to the definition for Vy

XX , we define V
y
XAXB

for
any subsetsA, B ⊆ V. Therefore, for any subsetsA ⊆ V\{i, j},We
define an intermediate operator,Vy

XiXj|XA
: �Xj → �Xi through

the relation,Vy
XiXj|XA

= V
y
XiXj
−Vy

XiXA

[
V

y
XAXA

]†
V

y
XAXj

, for any
(i, j) ∈ V× V. We then have the following result if A = −(i, j).

Proposition 3. There uniquely exists
R

y
XiXj|X−(i,j)

∈ B(�Xj ,�Xi) which satisfies that

V
y
XiXj|X−(i,j)

=
[
V

y
XiXi|X−(i,j)

]1/2
R

y
XiXj|X−(i,j)

[
V

y
XjXj|X−(i,j)

]1/2
,

and ‖Ry
XiXj|X−(i,j)

‖ ≤ 1.

Its proof is similar to that of (Lee, Li, and Zhao 2016a, theo.
1) and is thus omitted. It justifies the definition of the following
operator.

Definition 4. We call the operator Ry
XiXj|X−(i,j)

in Proposition 3
the CPCO between Xi and Xj given X−(i,j) and Y .

3.3. RelationWith Conditional Functional Graph

We first show that the conditional covariance operator can be
constructed by the functions of conditional covariances between
the Karhunen-Loève coefficients and the associated eigenfunc-
tions. This simple form provides a convenient way to esti-
mate the conditional covariance operator later. Let {(λai , ηai )}a∈N
denote the collection of eigenvalue and eigenvector pairs of
VXiXi , with λ1i ≥ λ2i ≥ · · · ≥ 0. Then Xi can almost surely
be represented as Xi = ∑

a∈N αa
i η

a
i , where αa

i = 〈Xi, ηai 〉,
for all a ∈ N. This expression is known as the Karhunen-Loève
(K-L) expansion (Bosq 2000).

Proposition 4. Suppose the same conditions in Proposition 2
hold. Then we have

V
y
XiXj

=
∑
a,b∈N

E(αa
i α

b
j | y)(ηai ⊗ ηbj ), for each y ∈ �Y ,

where (αa
i , η

a
i ) and (αb

j , η
b
j ) are from the Karhunen-Loève

expansion.

We next show that CPO and CPCO fully characterize the
conditional functional independence, and are thus crucial for
our estimation of conditional functional graph.

Theorem 1. If Assumptions 1–5 hold, then we have, for any
y ∈ �Y ,

Xi⊥⊥Xj | [X−(i,j),Y = y] ⇔ [Py]i,j = 0,

where [Py]i,j denotes the (i, j)th element ofPy.

Under the Gaussian distribution, the equivalence between
the conditional independence and the zero element of a non-
random precision matrix is well known in the classical random
variables setting. By contrast, Theorem 1 extends to the setting
of random functions and also allows the precision operator to
vary with Y .

Theorem 2. If Assumptions 1–3 hold, then we have, for any y ∈
�Y ,

Xi⊥⊥Xj | [X−(i,j),Y = y] ⇔ R
y
XiXj|X−(i,j)

= 0.

Theorems 1 and 2 suggest that one can estimate the condi-
tional functional graph Ey in Equation (2) through the proposed
operators, CPO or CPCO. In the following, we primarily focus
on the graph estimation based on CPO, and investigate the
corresponding asymptotics. The results based on CPCO can be
derived in a parallel fashion, which we only briefly discuss in
Section S.4 in the Appendix.

4. Estimation

In this section, we first derive the sample estimate of CPO and
the conditional graph at the operator level. We then construct
empirical bases and develop coordinate representations for the
functions observed at a finite set of time points. Using these
coordinate representations, we are able to compute our esti-
mated linear operators. Last, we provide a step-by-step sum-
mary of our proposed estimation procedure.

4.1. Operator-Level Estimation

We first derive the sample Karhunen-Loève expansion. We
then sequentially develop the estimators of Vy

XX , C
y
XX , P

y, and
finally Ey.

Let (Y1, . . . ,Yn) denote iid samples of Y , and (X1, . . . ,Xn)
denote iid samples of X, with Xk = (Xk

1, . . . ,Xk
p)

T, for k =
1, . . . , n. Let En denote the sample mean operator; that is, for a
sample (ω1, . . . ,ωn) from�,En(ω) = ∑n

k=1 ωk/n.We estimate
the covariance operators,VXiXi ,VYXij , andVYY , by

V̂XiXi = En(Xi ⊗ Xi),

V̂YXij = En
[
κY(·,Y)⊗ Xi ⊗ Xj

]
,

V̂YY = En[κY(·,Y)⊗ κY(·,Y)],
for any (i, j) ∈ V × V. For i ∈ V, let {(λ̂ai , η̂ai )}a∈N denote the
collection of eigenvalue and eigenfunction pairs of V̂XiXi . Then,
we have Xk

i =
∑

a∈N α̂
k,a
i η̂ai , where α̂

k,a
i = 〈Xk

i , η̂
a
i 〉 is the ath

coefficient from the K-L expansion of Xk
i for the kth subject.

Furthermore, we use the leading d terms to approximate Xk
i ; in

other words, we have, Xk
i ≈

∑d
a=1 α̂

k,a
i η̂ai , for all k = 1, . . . , n,

and i ∈ V.
By its definition, we estimate the regression operator

MXij|Y by

M̂Xij|Y(εY) = (V̂YY + εYI)−1V̂YXij , (6)

where εY > 0 is a prespecified ridge parameter, and it imposes
a level of smoothness on the regression structure. Next, by



262 K.-Y. LEE ET AL.

Propositions 2 and 4, given y, d, i, j, we estimate the conditional
covariance operatorVy

XiXj
by

V̂
y
XiXj

(d, εY) =
d∑

a,b=1

{
[M̂Xij|Y(εY)](η̂ai ⊗ η̂bj ) ◦ (y)(η̂ai ⊗ η̂bj )

}
,

(7)
where η̂ai and η̂bj are from the sample Karhunen-Loève expan-
sion. Let V̂

y
XX(d, εY) denote the block matrix of operators

V̂
y
XX(d, εY) = {V̂y

XiXj
(d, εY)}i,j∈V. Similarly, we can define

V̂
y
XAXB

(d, εY), for any A, B ⊆ V.
Therefore, by Equation (4), we estimate the conditional cor-

relation operator Cy
XiXj

by

Ĉ
y
XiXj

(d, εY , ε1) =
[
V̂

y
XiXi

(d, εY)+ ε1I
]−1/2

V̂
y
XiXj

(d, εY)
[
V̂

y
XjXj

(d, εY)+ ε1I
]−1/2

, (8)

for i �= j, i, j ∈ V, and Ĉ
y
XiXi

= I, for i ∈ V, which
is the identity mapping from �Xi to �Xi , and ε1 is a ridge
regularization parameter imposed on the inverses of V̂y

XiXi
and

V̂
y
XjXj

. Let Ĉy
XX(d, εY , ε1) denote the block matrix of operators

Ĉ
y
XX(d, εY , ε1) = [Ĉy

XiXj
(d, εY , ε1)]i,j∈V. The next result shows

that the norm of Ĉy
XiXj

(d, εY , ε1) is bounded by one, which
resembles the property of the correlation in the classical setting.

Proposition 5. If κY(y1, y2) ≥ 0 for any y1, y2 ∈ �Y , then
‖[Ĉy

XX(d, εY , ε1)]i,j‖ ≤ 1, for any (i, j) ∈ V× V.

Finally, we estimate the conditional precision matrix opera-
torPy by

P̂y(d, εY , ε1, ε2) =
[
Ĉ
y
XX(d, εY , ε1)+ ε2I

]−1
, (9)

where ε2 > 0 is another ridge parameter.Using P̂y(d, εY , ε1, ε2),
for each y ∈ �Y , we estimate the graph Ey by

ÊyCPO(d, εY , ε1, ε2, ρCPO) (10)

= {
(i, j) ∈ V× V : ‖[P̂y(d, εY , ε1, ε2)]i,j‖HS > ρCPO, i �= j

}
,

where ρCPO > 0 is a thresholding parameter. That is, we
can obtain an estimator of the conditional graph by hard
thresholding. For notational simplicity, hereafter we abbre-
viate M̂Xij|Y(εY), V̂

y
XiXj

(d, εY), V̂
y
XX(d, εY), Ĉ

y
XiXj

(d, εY , ε1),
Ĉ
y
XX(d, εY , ε1), P̂y(d, εY , ε1, ε2), and ÊyCPO(d, εY , ε1, ε2, ρCPO),

by M̂Xij|Y , V̂
y
XiXj

, V̂y
XX , Ĉ

y
XiXj

, Ĉy
XX , P̂

y, and ÊyCPO, respectively.

4.2. Empirical Bases and Coordinate Representation

We next introduce a set of empirical bases and the correspond-
ing coordinate representations. We adopt the following nota-
tion. Let � be a Hilbert space of functions of T, spanned by a
set of bases B = {b1, . . . , bm}. For any ω ∈ �, let �ω�B =
(�ω�B,1, . . . , �ω�B,m)T denote its coordinate with respect to
B. Then ω can be represented as

∑m
i=1�ω�B,ibi = BT�ω�B .

Let KB = [〈bs, bt〉�]ms,t=1 denote the Gram kernel matrix,

which implies that, for any (ω1,ω2) ∈ �, the inner product
〈ω1,ω2〉� = �ω1�TBKB�ω2�B . Throughout the article, we use
the symbol �·� exclusively for a chosen coordinate system. Let
� and �′ be two Hilbert spaces spanned by B = {b1, . . . , bm}
and B′ = {b′1, . . . , b′m′ }, respectively. Let A : � → �′ be a
linear operator. Then the coordinate representation of A with
respect to B and B′ is {�Ab1�B′ , . . . , �Abm�B′ } ≡ B′ �A�B .
For a third Hilbert space �′′ with bases B′′, and another linear
operator A′ : �′ → �′′, it is easy to see that B′′ �A′A�B =
(B′′ �A′�B′)(B′ �A�B). For simplicity, we use �A� instead of
B′ �A�B when there is no confusion.

Note that the random function Xk
i can only be observed

at a finite set of points. To enable computation, we need to
approximate the random functions using the partially observed
data. We adopt the construction used in Li and Solea (2018),
which assumes the sample path of Xk lies on an RKHS of the
time variable T with a finite basis. Specifically, suppose Xk

i is
observed on a finite set of time points Tk = {Tk1, . . . ,Tknk},
k = 1, . . . n. Let T = (T11, . . . ,T1,n1 , . . . ,Tn1, . . . ,Tnnn)

T =
(T1, . . . , TN)T, which pools together all the unique time points
across all subjects, and N is the length of T . Letting κT :
T × T → R be a positive-definite kernel, then �Xi can be
constructed through �N = span{κT(·, T1), . . . , κT(·, TN)} =
span{B0

t (·) : t = 1, . . . ,N}, for i ∈ V. Let KT = [κT(Ts, Tt)]Ns,t=1
be the N × N Gram matrix of κT , and its eigen-decomposition,
KT = U1

TD
1
T(U1

T)T+U0
TD

0
T(U0

T)T, whereU1
TD

1
T(U1

T)T is associ-
ated with them leading eigenvalues, andU0

TD
0
T(U0

T)T associated
with the last N − m eigenvalues. Here we require m ≤ N.
Therefore, we can construct an orthonormal basis of �N via

B(·) = [B1(·), . . . ,Bm(·)]T = (D1
T)−1/2(U1

T)TB0(·), (11)

whereB0(·) = [B0
1(·), . . . ,B0

N(·)]T. Then Xk
i can be represented

as Xk
i (·) = ∑m

t=1�Xk
i �B,t Bt(·) = BT(·)�Xk

i �B . Note that
for the kth individual, the function is observed at nk time
points, which implies that Xk

i (Tk) ≡
[
Xk
i (Tk1), . . . ,Xk

i (Tknk)
]T

= (Bk)T�Xk
i �B , where Bk is the m × nk matrix

[B(Tk1), . . . ,B(Tknk)]. Therefore, for a given ridge parameter
εT , the coordinate �Xk

i �B can be estimated by

�Xk
i � =

[
Bk(Bk)T + εTIm

]−1
Bk[Xk

i (Tk)]. (12)

We next derive the coordinate representations of V̂XiXi ,
V̂YXij , V̂YY , which then lead to the coordinates of V̂y

XX , Ĉ
y
XX ,

and P̂y. Recall κY : �Y × �Y → R is the kernel used
to build the RKHS of Y . Let KY = [κY(Ys,Yt)]ns,t=1 be
the corresponding n × n Gram matrix of κY , and HY =
span{κY(·,Y1), . . . , κY(·,Yn)} ≡ span{BY(·)}.

Proposition 6. For (f , g) ∈ �N×�N , �V̂XiXi� = En(�Xi��Xi�T),
�V̂YY� = n−1KY , and �V̂YXij(f ⊗ g)� = n−1

[
(�f �T�X1

i � �g�T
�X1

j �), . . . , (�f �T�Xn
i � �g�T�Xn

j �)
]T.

Moreover, for each i ∈ V, let {(λ̂ai , �η̂ai �)}ma=1 denote the
collection of eigenvalue and eigenvector pairs of �V̂XiXi�; that
is �V̂XiXi� �η̂ai � = λ̂ai �η̂ai �. Then for each i ∈ V, k = 1, . . . , n,



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 263

the sample Karhunen-Loève expansion of Xk
i is of the form,

Xk
i =

d∑
a=1

α̂a
i η̂

a
i =

d∑
a=1
〈Xk

i , η̂
a
i 〉η̂ai =

d∑
a=1
�Xk

i �T�η̂ai �η̂ai . (13)

Proposition 7. Let B∗i = {η̂1i , . . . , η̂di }, for each i ∈ V. For y ∈
�Y , the coordinate representation of V̂y

XiXj
with respect to B∗i

and B∗j is

B∗i �V̂
y
XiXj
�B∗j =

[
(aai )

Tc(y) abj
]d
a,b=1 , (14)

where c(y) = diag[�(y)] with �(y) = (KY + εYIn)−1BY(y), and
aai = (α̂

1,a
i , . . . , α̂n,a

i )T. Moreover, if B∗ is the collection {B∗i :
i ∈ V}, then,

B∗�V̂y
XX�B∗ =

[
B∗i �V̂

y
XiXj
�B∗j

]p
i,j=1 ,[

B∗�Ĉy
XX�B∗

]
i,j
=

{
A
−1/2
i B∗i �V̂

y
XiXj
�B∗j A

−1/2
j when i �= j,

Id when i = j,
(15)

B∗�P̂y�B∗ =
(
B∗�Ĉy

XX�B∗ + ε2Ip×d
)−1

,

where Ai =B∗i �V̂
y
XiXi
�B∗i + ε1Id, and Id is the d × d identity

matrix.

Finally, we compute the squared Hilbert–Schmidt norm of
[P̂y]i,j as

‖[P̂y]i,j‖2HS =
d∑

a=1
〈[P̂y]i,jη̂aj , [P̂y]i,jη̂aj 〉

=
d∑

a=1
�ηaj �TB∗j B∗j �[P̂y]j,i�B∗i B∗i �[P̂y]i,j�B∗j �ηaj �B∗j

= ‖B∗i �[P̂y]i,j�B∗j ‖2F = ‖[B∗�P̂y�B∗ ]i,j‖2F,
for (i, j) ∈ V× V with i �= j, and ‖ · ‖F is the Frobenius norm.

4.3. Algorithm

We now summarize our conditional functional graph estima-
tion algorithm based on CPO. The algorithm based on CPCO
is similar and is thus omitted. Let λi(A) be the ith largest
eigenvalues of an a× amatrix A, for i = 1, . . . , a.

1. Choose the kernel function κT . Some commonly used
kernel functions include the Brownian motion function
κT(s, t) = min(s, t), or the radial basis function (RBF)
κT(s, t) = exp[−γT(s − t)2], (s, t) ∈ R

2. For RBF, the
bandwidth γT is determined by (

∑
s<t |Ts − Tt|)2γT =

N2(N − 1)2/4.
2. Compute the N × N Gram matrix KT of κT , and let

U1
TD

1
T(U1

T) be its eigen-decomposition associated with
its m leading eigenvalues. Then use (11) to construct
the reduced basis B(·), and the matrix Bk. We suggest
choosing m by min{m′ : ∑m′

i=1 λi(KT)/
∑N

i=1 λi(KT) ≥
0.99}, in the sense that the cumulative percentage of total
variation of KT explained exceeds 99%.

3. Calculate the coordinate �Xi
k�, i = 1, . . . , p, k =

1, . . . , n, using (12) with a given εT . We choose εT =
N−1/5λ1(KT) (see, for example Lee, Li, and Zhao
2016a).

4. Perform eigen-decomposition of �V̂XiXi�, for i ∈ V, and
obtain the ath eigenvector �η̂ai �, and the ath K-L coeffi-
cient α̂k,a

i using (13), a = 1, . . . , d. Stack α̂
1,a
i , . . . , α̂n,a

i to
form aai , a = 1, . . . , d, i = 1, . . . , p. We choose d accord-
ing to min{d′ : ∑d′

j=1 λj(�V̂XiXi�)/
∑m

j=1 λj(�V̂XiXi�) ≥
0.99}.

5. Choose the kernel function κY , and compute the corre-
sponding n× n Gram matrix KY . Compute the coordi-
nate B∗i �V̂

y
XiXj
�B∗j using (14), with the ridge parameter

εY = n−1/5λ1(KY).
6. Compute the representation of P̂y using (15), for a

given y ∈ �Y and the ridge parameters ε1 =
n−1/5 max{λ1(�V̂y

XiXi
�) : i ∈ V}, and ε2 =

n−1/5λ1(�P̂y�).
7. Estimate the conditional functional graph for a given

y ∈ �Y by Êy(ρCPO) = {(i, j) ∈ V × V :
‖[B∗�P̂y�B∗ ]i,j‖F > ρCPO, i �= j}, with a given threshold
ρCPO. We determine ρCPO by minimizing the following
generalized cross-validation (GCV) criterion over a set
of grid points,

GCVy(ρ) =
p∑

i=1
GCVy

i (ρ), with

GCVy
i (ρ) =

‖B∗i �V̂
y
XiXi|XN

y
i (ρ)

�B∗i ‖2F/n
[1− DFi(ρ)/n]2

,

where V̂y
XiXi|XN

y
i (ρ)

is the sample estimate ofVy
XiXi|XN

y
i (ρ)

,

and its coordinate representation is derived in Section
S.4 of the appendix, and DFi(ρ) = d2 card [Ni(ρ)], with
card(·) being the cardinality and Ny

i (ρ) = {j ∈ V :
(i, j) ∈ Êy(ρ)} the neighborhood of the ith node in
Êy(ρ).

Our graph estimation algorithm involves multiple tuning
parameters, and their choices are given in the above algorithm.
We further study their effects in Section S.6 of the appendix. In
general, we have found that the estimated graph is not overly
sensitive to the tuning parameters as long as they are within a
reasonable range.

We also remark that, the above algorithm assumes the zero-
mean condition. In practice, if this does not hold, we can eas-
ily modify the algorithm. Specifically, from the coordinates of
the estimated conditional covariance operator, we can estimate
E(αa

i | y) by (aai )Tc(y) 1n, where 1n is the n-dimensional vector
with all ones. By redefining the conditional covariance operator
asVy

XiXj
= ∑

a,b∈N
[
E(αa

i α
b
j | y)−E(αa

i | y)E(αb
j | y)

]
(ηai ⊗ηbj ),

we can estimate the coordinates of V̂y
XiXj

by B∗i �V̂
y
XiXj
�′B∗j =[

(aai )Tc′(y) abj
]d
a,b=1, where c

′(y) = diag
[
�(y)

]− �(y) �(y)T. We

then replace B∗i �V̂
y
XiXj
�B∗j in Step 5 of the algorithm, and all

subsequent procedures, by B∗i �V̂
y
XiXj
�′B∗j .
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5. Asymptotic Theory

We begin with some useful concentration inequalities and uni-
form convergence for several relevant operators. We next estab-
lish the uniform convergence of the CPO, and the consistency
of the estimated graph. For simplicity, we first assume that the
trajectory of the random functions X(t) = [X1(t), . . . ,Xp(t)]T
is fully observed for all t ∈ T. We then discuss the setting when
Xi is only partially observed in Section 5.3. We also remark that,
all our theoretical results allow the dimension of the graph to
diverge with the sample size.

5.1. Concentration Inequalities and Uniform Convergence

We first derive the concentration bound and uniform conver-
gence rate for the sample estimators V̂XiXj , V̂YXij , and V̂YY . For
two positive sequences {an} and {bn}, write an ≺ bn if an =
o(bn), an � bn if an = O(bn), and an � bn if an � bn and
bn � an; moreover, let an∨ bn = bn if an � bn. Similarly, if cn is
a third positive sequence, thenwe let an∨bn∨cn = (an∨bn)∨cn.
Theorem 3. If Assumptions 1 and 3 hold, then there exist pos-
itive constants C1 to C6, such that, (i) P

(‖V̂XiXj −VXiXj‖HS >

t
) ≤ C1 exp[−C2n(t ∧ t2)]; (ii) P

(‖V̂YXij − VYXij‖HS >

t
) ≤ C3 exp[−C4n(t ∧ t2)]; (iii) P

(‖V̂YY − VYY‖HS >

t
) ≤ C5 exp(−C6nt2), for any t ≥ 0 and any (i, j) ∈ V ×
V. Moreover, if log p/n → 0, then (iv) maxi,j∈V ‖V̂XiXj −
VXiXj‖HS = OP[(log p/n)1/2]; (v)maxi,j∈V ‖V̂YXij−VYXij‖HS =
OP[(log p/n)1/2]; (vi) ‖V̂YY − VYY‖HS = OP(n−1/2),
as n→∞.

For any (i, j) ∈ V × V and y ∈ �, let Vy
XiXj

(d) be the
truncated version of Vy

XiXj
: Vy

XiXj
(d) = ∑d

a,b=1 E(αa
i α

b
j |

y)(ηai ⊗ ηbj ). Next, we establish the uniform convergence rate
for ‖V̂y

XiXj
−V

y
XiXj

(d)‖HS.We define the exponent of a compact

and self-adjoint operator as Aβ = ∑
a∈N λ

β
a (ηa ⊗ ηa), for any

β > 0, where {(λa, ηa)}a∈N is the collection of eigenvalue and
eigenfunction pairs of A. We need another assumption.

Assumption 6. For any (i, j) ∈ V×V, there exist β ∈ (0, 1), c2 >

0, and M0
ij ∈ B[B2(�j,�i),HY ] such that MXij|Y = V

β
YYM

0
ij

with ‖M0
ij‖ ≤ c2.

This assumption regulates the complexity of (Xi,Xj)T given
Y . To see this, note that, as β increases, the regression relation
from (Xi,Xj)T on Y are more concentrated on those eigen-
functions corresponding to larger eigenvalues ofVYY . Also, we
define κd ≡ min

{|λai − λbi | : 1 ≤ a < b ≤ d + 1, i ∈ V
}
as the

minimal isolation distance among all d+ 1 leading eigenvalues
ofVXiXi , for all i ∈ V. Note that we allow d to grow with n.

Theorem 4. If Assumptions 1–3 and 6 hold, εY ≺ 1, and
(log p/n) ≺ κ2

d , then maxi,j∈V ‖V̂y
XiXj

− V
y
XiXj

(d)‖HS =
OP

[
d2ε−1Y κ−1d (log p/n)1/2 + d2ε−1Y n−1/2 + d2εβ

Y

]
.

Next, we establish the uniform convergence of the estimated
conditional correlation operator Ĉy

XX . We need an assumption
on the tail behavior of random functions.

Assumption 7. There exists γy > 0 such that
maxi∈V

{∑∞
a=d+1 E[(αa

i )
2 | y]} � d−γy , for any y ∈ �Y .

Assumption 7 is on the decaying rate of the tail eigenvalues
ofVy

XiXi
, which, in a sense, characterizes the smoothness of the

distribution of Xi given Y .

Theorem 5. If Assumptions 1–4, 6, and 7 hold, εY , ε1 ≺ 1, and
d2ε−1Y κ−1d (log p/n)1/2 +d2ε−1Y n−1/2 + d2εβ

Y ≺ 1, then, for any
y ∈ �Y ,

max
i,j∈V ‖[Ĉ

y
XX]i,j − [Cy

XX]i,j‖HS = Op(δy),

where δy = ε
−3/2
1 [d2ε−1Y κ−1d (log p/n)1/2+d2ε−1Y n−1/2+d2εβ

Y+
d−γy ] + ε

1/2
1 .

To better understand Theorem 5, suppose d = O(na1/2),
εY = O(n−a2), ε1 = O(n−2a3), and kd = O(n−a4), for
a1, . . . , a4 > 0. Then we have

max
i,j∈V‖[Ĉ

y
XX]i,j − [Cy

XX]i,j‖HS

= Op[(log p/n1−π )1/2 + n−
1
2 a1γy+3a3 + n−a2β+a1+3a3

+ n−
1
2+a1+a2+3a3 + n−a3 ],

where π = 2(a1 + a2 + a4) + 6a3 < 1. This implies that
the graph dimension p can diverge with the sample size n at an
exponential rate. In comparison, in the classical randomvariable
setting, the uniform convergence rate of the sample covariance
is (log p/n)1/2 (Bickel and Levina 2008). Theorem 5 thus can be
viewed as an extension to both the functional and conditional
settings where the parameter of interest Cy

XX is a random RKHS
operator.

5.2. Uniform Convergence of CPO andGraph Consistency

We next derive the convergence of the estimated CPO, P̂y. We
need an assumption to regulate the relation between Xi and Xj
when conditioning on X−(i,j) and Y .

Assumption 8. There exists c3 > 0 such that,
maxi,j∈V,i�=j ‖Cy

XiXj|X−(i,j)
‖HS ≤ c3, where C

y
XiXj|X−(i,j)

=
C
y
XiXj

− C
y
XiX−(i,j)

[Cy
X−(i,j)X−(i,j)

]−1Cy
X−(i,j)Xj

, for any y ∈ �Y .

The following proposition provides a condition under which
Assumption 8 is satisfied. Its proof is similar to Proposition S2
and is omitted.

Proposition 8. Suppose Assumptions 1, 3–5 hold. Then,
for any y ∈ �Y , there exists c3 > 0 such that,
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maxi,j∈V,i�=j ‖Cy
XiXj|X−(i,j)

‖HS ≤ c3, if there exists c4 > 0 satisfying
that

max
i,j∈V,i�=j

∑
a∈Ñy

i ,b∈Ñy
j

cor2(〈ψ̃y,a
i ,Xi〉, 〈ψ̃y,b

j ,Xj〉 | X−(i,j), y) ≤ c4,

(16)

where ψ̃
y,a
i = ψ

y,a
i /(μ

y,a
i )1/2, and {(μy,a

i ,ψy,a
i )}a∈N are the pairs

of eigenvalue and eigenfunction of Vy
XiXi|X−(i,j)

, and Ñ
y
i = {a ∈

N : μy,a
i > 0}, for any i ∈ V and y ∈ �Y .

Both conditions (5) and (16) introduce certain levels of
smoothness on the conditional distribution ofX givenY . Never-
theless, they target different subjects: Equation (5) is about the
relation between Xi and Xj given Y , which is required for the
consistency ofCy

XiXj
, whereas Equation (16) is about the relation

between Xi and Xj given X−(i,j) and Y , which is required for the
consistency of [Py]i,j.
Theorem 6. If Assumptions 1–8 hold, εY , ε1 ≺ 1, and
d2ε−1Y κ−1d (log p/n)1/2 + d2ε−1Y n−1/2 +d2εβ

Y ≺ 1, then for any
y ∈ �Y ,

max
i,j∈V,i�=j ‖[P̂

y]i,j − [Py]i,j‖HS = Op(ε
−1
2 pδy + ε2).

Moreover, if ρCPO = min{‖[Py]i,j‖HS : (i, j) ∈ V × V, i �=
j, [Py]i,j �= 0}/2, and ρCPO  (ε−12 pδy + ε2), then,

P[ÊyCPO = Ey] → 1, as n→∞.

Wemake a few remarks. First, Li and Solea (2018) established
the consistency of their precision operator, as well as the uncon-
ditional graph estimation consistency. Note that their operator
is nonrandom, and their results were derived with the graph
size p fixed. By contrast, Theorem 6 establishes the uniform
convergence of the operator [P̂y]i,j, which is random, and the
graph estimation consistency is obtained with a diverging p. For
instance, if ε2 = O(n−π ′/2) with π ′ > 0, then Theorem 6
says that the uniform convergence rate of the estimated CPO
depends on p(log p/n1−π−π ′)1/2. This implies that we allow p
to grow at the polynomial rate of n.

Second, a careful inspection of our proof reveals that, the
convergence rate of the empirical CPO depends on the differ-
ence ‖Ĉy

XX − C
y
XX‖HS, whose order, by Theorem 5, can be no

faster than p(log p/n1−π )1/2. We note that, under the classi-
cal random variable setting, the convergence rate of the hard
thresholding sample covariance matrix in terms of Frobenius
norm is [pc0(p) log p/n]1/2, where the term c0(p) imposes a
sparsity structure on the covariance matrix and satisfies that∑p

j=1 1[cov(Xi,Xj) �= 0] ≤ c0(p), for i = 1, . . . , p, with
1(·) being the indicator function (Bickel and Levina 2008, theo.
2). We feel our rate of p(log p/n1−π )1/2 is reasonable and is
comparable to the classical result. We also note that there is a
difference between p and p1/2 in our rate and the rate of (Bickel
and Levina 2008, theo. 2). This difference ismainly due to differ-
ent sparsity settings imposed by our method and by Bickel and
Levina (2008). Note that we do not impose any sparsity structure

on the conditional correlation operator C
y
XX . This means we

need to estimate all the off-diagonal elements of Cy
XX , whose

cardinality grows in the order of p2. In comparison, Bickel and
Levina (2008) imposed a sparsity structure on the covariance
matrix and the cardinality of nonzero covariances grows only in
the order of pc0(p). Moreover, we are dealing with a more com-
plicated setting of random functions and random operators. On
the other hand, we show in Section S.5 in the appendix that, if we
introduce additional sparsity and regularization, we can further
improve the rates in Lemma S8 in the appendix and Theorem 6,
so that p can grow at an exponential rate of n. Actually, we have
developed a theoretical platform that is not only limited to the
present setting. The concept of using vanishing CPO to identify
the conditional independence between random functions in a
conditional graph can have divarication beyond the scenarios
studied in this article; for example, when there are additional
sparsity or bendable structures.

Finally, in our theory development, we have imposed a series
of technical conditions, which are commonly imposed in the
literature, and are usually easy to satisfy.

5.3. Consistency for Partially Observed Random Functions

We next derive the consistency under the scenario when the
random functions are only partially observed. Partially observed
functions are collected via a dense or a non-dense measure-
ment schedule; see Wang, Chiou, and Muller (2016a) for more
discussion on measurement schedule. To avoid digressing from
the main context, in this article, we do not go after any specific
measurement schedule or regularity setting on the partially
observed random function. For partially observed functions
X(t), suppose X̃(t) = [X̃1(t), . . . , X̃p(t)]T is the estimate of X(t)
using the empirical bases developed in Section 4.2. We then
estimate the series of the operators and the graph by

ṼXiXi = En(X̃i ⊗ X̃i), ṼYXij = En[κY(·,Y)⊗ X̃i ⊗ X̃j],

Ṽ
y
XiXj

=
d∑

a,b=1

{
[M̃Xij|Y(η̃ai ⊗ η̃bj )] ◦ (y)

}
(η̃ai ⊗ η̃bj ),

C̃
y
XiXj

= (Ṽ
y
XiXi

+ ε1I)−1/2 Ṽ
y
XiXj

(V
y
XjXj

+ ε1I)−1/2

for i �= j, and I for i = j,

P̃y = (C̃
y
XX + ε2I)−1,

Ẽy(ρ) = {(i, j) ∈ V× V : ‖[P̃y]i,j‖HS > ρ, i �= j},

where M̃Xij|Y = (V̂YY + εYI)−1ṼYXij , η̃ai is the eigenfunction
of ṼXiXi , and C̃

y
XX is the block matrix of operators with (i, j)th

element being C̃y
XiXj

.
Theorems 5 and 6 show that the convergence of the estimated

CCO and CPO depends on the uniform convergence of the
sample covariance operators in Theorem 3. In particular, it
relies on the convergence rates of maxi,j∈V ‖V̂XiXj − VXiXj‖HS

and maxi,j∈V ‖V̂YXij − VYXij‖HS. When the random functions
are completely observed, both rates, by Theorem 3, are equal
to (log p/n)1/2. When the random functions are only partially
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observed, we let the convergence rates of maxi,j∈V ‖ṼXiXi −
VXiXi‖HS and maxi,j∈V ‖ṼYXij − VYXij‖HS to be slower than
(log p/n)1/2. More specifically, as specified in Equation (17), we
introduce a quantity a that reflects howdense the time points are
observed in the random functions. The denser the time points
are, the closer a is to zero. Correspondingly, the next theorem
extends Theorem 6 to partially observed functions. Its proof is
similar to that of Theorem 6, and is thus omitted.

Theorem 7. If Assumptions 1–8 hold, εY , ε1 ≺ 1, and
there exists a ∈ [0, 1) such that d2ε−1Y κ−1d log p/n(1−a)/2 +
d2ε−1Y n−1/2 + d2εβ

Y ≺ 1, [ε−12 pδay + ε2] ≺ ρCPO with δay =
ε
−3/2
1 {d2ε−1Y κ−1d log p/n(1−a)/2+d2ε−1Y n−1/2+d2εβ

Y +d−γy}+
ε
1/2
1 , and

max
i,j∈V ‖ṼXiXj −VXiXj‖HS = OP[log p/n(1−a)/2],

max
i,j∈V ‖ṼYXij −VYXij‖HS = OP[log p/n(1−a)/2]. (17)

Then, max{‖[P̃y]i,j − [Py]i,j‖HS : (i, j) ∈ V × V, i �= j} =
Op[ε−12 pδay + ε2], and P[Ẽy(ρCPO) = Ey] → 1, for any y ∈ �Y ,
as n→∞.

The first condition of Equation (17) is satisfied if the tail of
‖ṼXiXj − VXiXj‖HS behaves as a sub-Exponential distribution.
That is, when there exist c′, c′′ > 0 and a ∈ [0, 1), such that
P(‖ṼXiXj − VXiXj‖HS > t) ≤ c′ exp(−c′′2n(1−a)/2t), for any
t ≥ 0. A similar condition also holds for the second condition
of Equation (17). Recall in Theorem 3, we have shown that, for
completely observed functions, ‖V̂XiXj − VXiXj‖HS > t and
‖V̂YXij−VYXij‖HS > t behave as a sub-Gaussian distribution for
a small t. As such, Equation (17) ismore appropriate for partially
observed functions.

6. Simulations

Next, we study the finite-sample performance of our method
through simulations. Specifically, we consider three graph struc-
tures of E: a hub, a tree, and a random graph, as shown in Table
1. We consider p = 10 nodes with the sample size n = 100 first,
and consider larger graphs later. Given the graph structure E and
the conditional variable y, we generateXj(t) and its parent nodes
based on the following model:

Xj(t) | y =
∑
i∈Pj

[√yνij(1−√y)1−νij
]× Xi(t)+ cj × εj(t),

where X(t) | y = [X1(t) | y, . . . ,Xp(t) | y]T is constructed
sequentially via the given graph, Pj is the set of the parent nodes
of j, and cj is the scale parameter as specified in Table 1. We
generate the error function, εi(t) as

∑J
u=1 ξuκT(t, tu), where

ξ1, . . . , ξJ are iid standard normal variables, t1, . . . , tJ are equally
spaced points between [0, 1] with J = 50, and κT is a RBF
or a Brownian motion covariance function. We then generate
the conditioning variable, Y1, . . . ,Yn, as iid Uniform(0, 1). We
generate each Xk

i , k = 1, . . . , n, i = 1, . . . , p, with nk = 50 time
points. In this model, there are two types of edge patterns: when
νij = 1, the strength of edges grows with y, and when νij = 0,
the strength of edges decays with y. The tuning parameters are
determined by the rules suggested in Section 4.3. In Section S.6
of the appendix, we discuss in detail the effect of the tuning
parameters, and show that our method is relatively robust to a
range of tuning parameters.

We compare our method with three alternative solutions,
all of which are variants of graphical Lasso (Friedman
et al. 2008, gLASSO). The first solution, which we refer
as “Average,” is similar to Kolar et al. (2010). It first
estimates the conditional covariance matrix by �̂

y
XX =∑n

k=1 κy(y,Yk)
{∑50

j=1 Xk(Tj)[Xk(Tj)]T/50
}

/
∑n

k=1 κy(y,Yk),

Table 1. Simulation setup: the edges under three graph structures.

Hub

i j cj νij

1 1
6 0.25

1 2 0.25 0
3 1
4 0
5 1

6 7 0.25 0
8 1
9 0
10 1

Tree

i j cj νij

1 1
1 2 0.25 0

3 1
2 4 0.25 0

5 1
3 6 0.25 0

7 1
4 8 0.25 0

9 1
5 10 0.25 0

Random

i j cj νij

1 1
2 0.25
3 0.25

1 7 0.25 1
9 1

2 4 0.25 0
6 0

3 5 0.25 1
7 0

5 8 0.25 1
10 1

6 9 0.25 0
7 8 0.25 0
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where Xk(Tj) = [Xk
1(Tj), . . . ,Xk

p(Tj)]T, j = 1, . . . , 50,
k = 1, . . . , n. It then estimates the conditional precision
matrix �̂y by applying gLASSO to �̂

y
XX . The second

solution, which we refer as “Majority,” is similar to a
procedure in Qiao, Guo, and James (2019). It first estimates
the covariance matrix at each time point by �̂

y
XX(Tj) =∑n

k=1 κy(y,Yk)
{
Xk(Tj)[Xk(Tj)]T

}
/
∑n

k=1 κy(y,Yk). It then
estimates the conditional precision matrix at each time point,
by applying gLASSO to �̂

y
XX(Tj). It selects those edges that are

detected by themajority of the estimates among all the estimated
graphs. The third solution, referred as “Unconditional,” is
similar to the naive procedure in Qiu et al. (2016), which,
without using the information of Y , estimates the covariance
matrix by �̂k

XX =
∑50

j=1 Xk(Tj)[Xk(Tj)]T/50. It then estimates
the conditional precision matrix by applying gLASSO to
�̂k

XX . For the penalty parameter in gLASSO, we adopt the
empirical rule suggested by Rothman et al. (2008), and set it to
(log p/n)1/2. We use the RBF kernel for both κT and κY in all
simulations.

We evaluate the accuracy of the estimated graph using the
area under ROC curve (AUC). We first compute the false posi-
tive (FP) and true positive (TP) as,

TPy,ρ =

∑
1≤i<j≤p

1
[
(i, j) ∈ E0, (i, j) ∈ Êy(ρ)

]
∑

1≤i<j≤p
1

[
(i, j) ∈ E0

] ,

FPy,ρ =

∑
1≤i<j≤p

1
[
(i, j) /∈ E0, (i, j) ∈ Êy(ρ)

]
∑

1≤i<j≤p
1

[
(i, j) /∈ E0

] ,

for a given ρ and y ∈ �Y , and E0 is the true graph. We then
compute the pairs of (TPy,ρ , FPy,ρ) over a set of values of ρ,
which we set to be the sorted norms of empirical CPO.

Figure 1 reports the AUC for the estimated graph with
respect to the external variable Y , under three graph structures,
and by the four methods. It is seen that the methods “Major-
ity” and “Unconditional” perform consistently the worst, while
“Average” and our proposed CPOmethods perform similarly in
this example.

We next extend our simulations to larger graphs, where we
set the graph size p = {30, 50, 100}, with the sample size n = 30
and nk = 30 time points, k = 1, . . . , n. We then generate
the graph in a similar way as before. Specifically, for the hub
structure, we generate p/5 independent hubs, and within each
hub, two edges have their strength growing with y, and two
edges decaying with y. For the tree structure, we expand the
tree until the graph reaches the designated size, and in each
subsequent layer of the tree, one edge has growing strength
and the other has decaying strength with y. For the random
structure, we select the edges randomly following a Bernoulli
distributionwith probability 1/(p−1), and also randomly select
half of the selected edges to have growing strength and the other
half to have decaying strength. Due to the poor performance
of “Majority” and “Unconditional” in the previous simulation
setting, we only compare our CPO method with “Average” in
the large-graph setting. Figure 2 reports the AUC. It is seen that
our CPO method clearly outperforms the “Average” method in
some settings, and is comparable in other settings. In particular,
for a large graph with p = 100, the improvements of CPO over
“Average” in both the hub and random structures are substantial.

7. Application

In this section, we illustrate our conditional functional graph
estimationmethod with a brain functional connectivity analysis
example. We analyze a dataset from the Human Connectome
Project (HCP), which consists of resting-state fMRI scans of
549 individuals. Each fMRI scan has been processed and sum-
marized as a spatial temporal matrix, with rows corresponding
to 268 brain regions-of-interest, and columns corresponding to
1200 time points (Greene et al. 2018). Additionally, each subject
is collected with a score of the Penn ProgressiveMatrices, which
is a nonverbal group test typically used in educational settings
and is generally taken as a surrogate of fluid intelligence. It is
of scientific interest to unravel the connectivity patterns of the
brain regions conditioning on the intelligence measure.

We apply our conditional functional graphical modeling
approach for the whole brain of 268×268 connectivity network.
Applying the hard thresholding approach would yield a sparse

Figure 1. Area under the ROC curve for the estimated graph with respect to the external variable Y , under three graph structures, and by the four methods. From left to
right: CPO, Average, Unconditional, Majority. The graph size p = 10.
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Figure 2. Area under the ROC curve for the estimated graph with respect to the external variable Y , under three graph structures, and by the two methods. From left to
right: CPO, Average. The graph size p = {30, 50, 100}.

Figure 3. Medial frontal network, with significant edges. Different colors of nodes indicate the ROIs in different lobes: prefrontal, motor, parietal, temporal, limbic and
cerebellum. Red lines indicate inter-lobe edges and cyan ones for inner-lobe edges.
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Figure 4. Medial frontal network changes, with respect to the intelligence score at 7, 11, 15, 19, 23. Blue color represents the small H-S norm value of CPO, green the
medium norm value, and red the high H-S norm value.
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estimate of the conditional graph at each value of Y = y. To
identify edges that vary along with the conditional variable Y ,
we further employ a permutation test approach. Specifically, we
permute the observations of Y five hundred times. For each
permuted sample, we compute theHilbert-Schmidt (H-S) norm
of the sample CPO for each edge.We then compute the variance
of the H-S norms based on 500 permutations. We treat those
edges whose corresponding variances above 95% percentile as
significant, since in this context a nonzero variance implies that
the CPO varies with the conditional variable. In addition, those
268 brain regions have been partitioned into eight functional
modules: medial frontal, frontoparietal, default mode, motor,
visual, limbic, basal ganglia, and cerebellum (Finn et al. 2015).
We count the number of significant edges from the permutation
test within each functional module, then use the Fisher’s exact
test to determine if a module is significantly enriched.

We have found that themedial frontal module is significantly
enriched with numerous significant edges that vary along with
the intelligence score. Figure 3 shows the identified significant
edges. This finding agrees with the literature, as this module has
been reported to contribute to high-level cognitive functions
such as emotional responses (Smith et al. 2018) and learning
(Zanto andGazzaley 2013).Moreover, thismodule was found to
have more impact on fluid intelligence compared to other mod-
ules (Finn et al. 2015). We have also observed more cross-lobe
and inter-hemisphere interactions, which suggests the impor-
tance of these edges in cognitive functions. This again complies
with the existing literature in neuroscience that the altered inter-
hemispheric interactions of prefrontal lobe is closely related to
higher level cognitive traits such as the Internet gaming disorder
(Wang et al. 2015). Figure 4 reports the changes of the identified
significant edges for the medial frontal module at five different
values of the intelligence score. We see from the plot that both
increasing and decreasing patterns exist for the strength of the
significantly varying edges.

As an independent validation, we replicate the analysis using
another resting-state fMRI data of 828 individuals in HCP. We
report the changes of the identified significant edges for the
medial frontal module from the new dataset in Figure S6 of
the appendix. We again find that the medial frontal module
is enriched. Hearne, Mattingley, and Cocchi (2016) identified
positive correlations between functional connectivity and intel-
ligence in general. Song et al. (2008) reported that most of the
brain regions whose connectivity patterns are negatively corre-
lated with the intelligence are around medial frontal gyrus, or
part of motor regions, which are part of medial frontal module.
Combined with our findings, it suggests that the medial frontal
modulemay play a unique role in intelligence compared to other
brain modules.
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