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ABSTRACT

Neural networks have become ubiquitous tools for solv-
ing signal and image processing problems, and they
often outperform standard approaches. Nevertheless,
training the layers of a neural network is a challeng-
ing task in many applications. The prevalent training
procedure consists of minimizing highly non-convex ob-
jectives based on data sets of huge dimension. In this
context, current methodologies are not guaranteed to
produce global solutions. We present an alternative ap-
proach which foregoes the optimization framework and
adopts a variational inequality formalism. The associ-
ated algorithm guarantees convergence of the iterates to
a true solution of the variational inequality and it pos-
sesses an efficient block-iterative structure. A numerical
application is presented.

Index Terms— Block-iterative algorithm, MRI, neu-
ral networks, transfer learning, variational inequality.

1. INTRODUCTION

Deep learning techniques have become very successful
in solving a great variety of tasks in data science; see for
instance [1,2,16,17,19,25,26]. Deep neural networks
rely on highly parametrized nonlinear systems. Stan-
dard methods for learning the vector of parameters 6 of
a neural network Ty are mainly based on stochastic al-
gorithms such as the stochastic gradient descent (SGD)
or Adam methods [18,26], and they are implemented in
toolboxes such as PyTorch or TensorFlow. In this context,
the standard approach to learn the parameter vector 6
is to minimize a training loss. Specifically, given a finite
training data set consisting of ground truth input/output
pairs (xx, Yk )1<k<k, @ discrepancy measure is computed
between the ground truth outputs (yx)i<k<x and the
outputs (Tezr)i<k<k of the neural network driven by
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inputs (zx)1<k<x . Thus, if we denote by © the parame-
ter space, the objective of these methods is to

K
mireliergize ]; ((Toxk, yr). €))

One of the main weaknesses of such an approach is that
it typically leads to a nonconvex optimization problem,
for which existing algorithms seldom offer strong guar-
antees of optimality for the delivered output parameters.
In other words, the solution methods do not guarantee
true solutions but only local ones that may be hard to
interpret in terms of the original objectives in (1).

The contribution of this work is to introduce an alter-
native training approach which is not based on an opti-
mization approach but, rather, seeks the parameter vec-
tor 6 as the solution of equilibrium problems defined by
variational inequalities (see [11] for background). Non-
linear analysis tools for neural network modeling have
been employed in [3,7,9,10,15,20,21,23,24]. Here, we
show that training a layer of a feedforward neural net-
work can be modeled as a variational inequality prob-
lem and solved efficiently via iterative techniques such
as the deterministic block-iterative forward-backward al-
gorithm of [8]. This algorithm displays two attractive
features. First, it guarantees convergence of the iter-
ates to a true equilibrium, and not to a local solution
as in the minimization setting. Second, it lends itself to
a batch implementation, which is indispensable to deal
with large data sets. The strategy of foregoing standard
optimization in favor of more general forms of equilibria
in the form of variational inequalities was first adopted
in [13] in a quite different context, namely signal recov-
ery in the presence of nonlinear observations.

The paper is organized as follows. Section 2 de-
scribes our new training method, the design of a mini-
batch algorithm to solve the associated variational in-
equality, and convergence properties of this algorithm.
In Section 3, we apply the proposed approach to a trans-
fer learning problem in which the last layer of neural net-
work is optimized to denoise magnetic resonance (MR)
images. Some conclusions are drawn in Section 4.



2. PROPOSED VARIATIONAL INEQUALITY MODEL

2.1. Variational inequality model for a single layer

We first consider a single layer, modeled by an operator
Ty acting between an input Euclidean space H and out-
put Euclidean space G, and parametrized by a vector 6
which is constrained to lie in a closed convex subset C
of a Euclidean space ©. More specifically,

Ty: H—G:x— R(Wzx +), (2)

where W: H — G is a linear weight operator, b € G a
bias vector, and R: G — G a known activation operator.
The objective is to learn W and b from a training data
set (k, yk)1<k<ix € (H x G)¥. Our model assumes that
the parametrization 6 — (W, b) is linear. Further, we set

(Vke{l,....K}) Lg:©—=G:0— Waxr+0b. (3)

Thus, the ideal problem is to

find 6 € C such that
(Vk e{l,...,K}) Toxp =y, (4)

that is, to

find 6 € C such that
(Vk € {1,....K}) R(Lif) = yp. (5)

In practice, this ideal formulation has no solution and
one must introduce a meaningful relaxation of it. This is
usually done via optimization formulations such as (1),
which leads to the pitfalls discussed in Section 1.

The approach we propose to construct a relaxation of
(5) starts with the observation made in [9] that most ac-
tivation operators are firmly nonexpansive in the sense
that, for every (21,22) € G2, (21 — 22 | Rz1 — Rz2) >
||Rz; — Rzs||?. As shown in [12], (5) can be relaxed
into the variational inequality problem

find 6 € C such that

(V9 € C) <19—9

K
> wiLj (R(L6) — yk)> >0 (6)
k=1

where, for every k € {1,...,K}, L;: G — © is the ad-
joint of L, and wy, € ]0,1[, and Zfil w; = 1. This relax-
ation is exact in the sense that, if (5) has solutions, they
are the same as those of (6). We assume that (6) has
solutions, which is true under mild conditions [12].

2.2. Block-iterative forward-backward splitting

We solve the variational inequality problem (6) by
adapting a block-iterative forward-backward algorithm

proposed in [8]. This algorithm splits the computations
associated with the different linear operators (Ly)1<k<k
using a block-iterative approach. At iteration n € N,
a subset K,, of {1,...,K} is selected and, for every
k € K,, a forward step in the direction of the vector
L;(R(Lybn) — yi) is performed. The forward steps are
then averaged and projected onto the constraint set C.

Algorithm 1 Take v e }072/ maxi k<K HLk||2[> 90 = ('—)’
and (Vy0)1<k<ic € OF. Iterate
forn=0,1,...
select o #K,, c {1,..., K}
for every k € K,
L 19k,n+1 = 911 - ’YL;; (R(Lken) — yk)
forevery k € {1,..., K} \ K, (7)
| kg1 = Vrn

K
0n+1 = Projo <Z wkﬁka) .

k=1

We then derive the following result from [8].

Proposition 2 Suppose that, for some P € N, every in-
dex k € {1,...,K} is selected at least once within any
P consecutive iterations, i.e., (Vn € N) ]1::—01 Kptr =
{1,...,K}. Then the sequence (0, )nen generated by Al-
gorithm 1 converges to a solution to (6).

2.3. Proposed deterministic batch algorithm

In a neural network context, batch approaches are neces-
sary for training purposes. Towards this goal, we modify
Algorithm 1 into a batch-based deterministic forward-
backward scheme to solve (6).

Let us form a partition (K;)i1<;<s of {1,..., K} and
assume that, at each iteration n € N, only one batch
index j, € {1,...,J} is selected. Then, to avoid keep-
ing in memory all values of (Jx »)1<k<k, Algorithm 1 is
rewritten below (Algorithm 3) so that only J variables
are kept in memory. Given j, € {1,...,J}, 0;, ., € ©
denotes the stored variable associated with subset K;,, .

Algorithm 3 Take v € 0,2/ maxi<r<k || Li|?[, 6o € O,
and (0;0)1<j<s € ©7. Iterate
forn=0,1,...
select j, € {1,...,J}
O ns1 = Z Wik (6'” — Ly (R(Libr) — yk))

forje {1,....J} ~ {4n}

[ Ojnt1 =i
Oni1 =0, —0; ni1+0;

L Ont1 = Proje Oni1.

®



The sequence (6, )nren in (3) converges to a solution
to (6) under the mild COIldlthl‘l that there exist P € N
such that (Vn € N) U,C k) ={1,...,J} [12].

2.4. The case of general feedforward neural net-
works

Let Ho,...,Hr be Euclidean spaces. A feedforward
neural network Ty : Ho — H,, consists of a composition
of M layers

To=Trp, 0 0T, )

where the operators (Ti,0,, )i<m<m are as in Sec-
tion 2.1: 0,, € O,, is a vector linearly parametrizing
a weight operator W,,: H,,—1 — H,, and a bias vec-
tor by, € Hm, and Ry,,: H,y — Hy, is a firmly non-
expansive activation operator. For convenience, we
gather the learnable parameters of the network in a
vector @ = (0,,)1<m<n- Given a training sequence
(kY )1<k<ie € (Ho x Har)¥, the approach proposed
in Section 2 is used to train the last layer of the neural
network. For this layer the input sequence is defined by
(V/{ S {1, ceey K}) Tp = TIW*L(’M71 0---0 Tl,Gl'rk- Two
learning scenarios are of special interest:

* Greedy training [5]. Layers are added one after
the other to form a deep neural network.

* Transfer learning [4, 6, 14,22]. The goal is to re-
train the last layer of a trained neural network to
allow it to be applied to a different data set or a
different task.

3. TRANSFER LEARNING: FINE-TUNING LAST
LAYER OF A DENOISING NEURAL NETWORK

We apply the proposed variational inequality model to a
transfer learning problem for building a denoising neural
network. Transfer learning [4, 6, 14, 22] is often used in
practice to tailor a neural network that has been trained
on a particular data set, for a different type of data and
improve its performance [22].

3.1. General setting for denoising neural networks

We consider a denoising neural network Ty: H — H
with M layers, defined as in (9). Ty~ has been pretrained
as a denoiser, such that

K/
* € Argmin Z£ Tguk,vk) (10)
0cO =1

where each (uy,vi,) € H? is a pair of noisy/ground truth
images, and ¢: ‘H x H — R a loss function. The objective
is to retrain only the last layer of Ty~ in order to use it on

a different type of images. For instance, if the network
has been trained on natural images, it can be fine-tuned
to denoise medical images obtained by modalities such
as MR or computed tomography.

3.2. Simulation setting

In our experiments, Tg- is a DnCNN with M = 20 layers
of the form of (9), where Hy = RV*N 2, = ... =
Hig = ROWXNXN and Hog = RV*N. The layers of
the networks are as follows. For the first layer, W, rep-
resents a convolutional layer with 1 input, 64 outputs,
and a kernel of size 3 x 3. For every m € {2,...,19},
W, represents a multi-input multi-output convolutional
layer with 64 inputs, 64 outputs, and a kernel of size
3 x 3. Finally, W5 represents a convolutional layer with
64 inputs, 1 output and a kernel of size 3 x 3. We use
LeakyReLU activation functions with negative slope pa-
rameter 10~2. As shown in [9], this operator is firmly
nonexpansive. In addition, we take b; = - - - = by = 0.

The network Ty~ is trained on the 50,000 ImageNet
test data set converted to grayscale images and nor-
malized between 0 and 1. The ground truth images
(vk)1<k<k correspond to patches of size 50 x 50 selected
randomly during training. For every k € {1,..., K'}, the
degraded images are obtained as ux = vy + obg, where
o = 0.02 and b, € R59%50 j5 a realization of a random
standard white Gaussian noise.

We propose to fine-tune the network Ty« to denoise
MR images. We thus focus on the training of the last
layer T 4,,- We choose Wo to be a convolutional layer
with 64 inputs, 1 output, and kernels w of size 7 x 7.
In addition, Ry is a LeakyReLU activation function with
negative slope parameter 103, In this context, (3) as-
sumes the form

Lk' R64><1><7><7 N RNXN

(1D
where 7;, € RO4*NXN is the output of the 19th layer.

Three training strategies for T g,, are considered:
the standard SGD and the Adam algorithm for minimiz-
ing an ¢! loss, as well as the approach proposed in Sec-
tion 2 with C' = Ogy = RO4XIXTXT,

For the three methods, the training set consists of the
first 300 images of the fastMRI train data set, and we
test the resulting networks on the next 300 images of the
same data set. The dimension of the images in this data
set is 320 x 320. We train the networks on patches, by
splitting the images into 16 patches of size 80 x 80. The
patches are randomly shuffled every time the algorithm
has seen all the patches of the data set. Moreover, we
split the training set into batches containing 10 patches
located at the same position in 10 images of the train
set. Batches are normalized between 0 and 1, and cor-
rupted with an additive white Gaussian noise with stan-

DWW T kW,
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Fig. 1: Convergence profiles showing the normalized aver-
aged ¢! (top) and ¢> (bottom) errors (in log scales) with re-
spect to epochs, for the ¢* +SGD method (blue), the ¢! +Adam
method (green), and the proposed approach (red). Continuous
lines show best step-size (i.e., learning rate) for each method.
Dashed and dotted lines show inaccurate choice of step-size.

Table 1: Average SSIM (and standard deviation) obtained for
the first 300 images of the fastMRI training set, and the next
300 images of the same set.

SSIM
method Training set Test set
proposed | 0.6647 (+0.0721) 0.6630 (+0.0597)
0 +SGD 0.6641 (+£0.0770)  0.6627 (+0.0629)
' +Adam | 0.6598 (+£0.0703)  0.6239 (+0.0346)

dard deviation 0.07. One epoch is completed when the
algorithm has seen all the batches at the same location
(i.e., 30 batches generated as explained above). All al-
gorithms are run over 1000 epochs.

The learning rate in SGD and Adam has been tuned
manually to achieve best performance. In Algorithm 3,
each wy is set to 1/K and v = 1.9/ maxi<r<k | Li %
where each || L|| is computed via power iteration.

3.3. Simulation results

Since the proposed method is not devised as a minimiza-
tion method, we assess the behavior of the three learn-
ing procedure during training by monitoring the ¢? er-
rors Zszl 720,600 . T — y|b for p € {1,2} with respect
to the epochs e € {1,...,1000}. We observe that, for
any choice of the step-size value v (even not determined
optimally), our method reaches a lower ¢! error more

Fig. 2: Denoising results on the test set corresponding to
slice 399 of the fastMRI training set. First row: ground truth
(left) and corresponding noisy observation (right) with PSNR
= 23.09 dB. Second row: output of the DnCNN trained with
the proposed procedure (left), with PNSR = 29.31 dB, and the
corresponding error map, in log-scale (right).

quickly than SGD and Adam, for any choice of the learn-
ing rate. For the ¢? error, any choice of step-size will
lead to faster convergence than Adam. For this example,
an accurate choice of learning rate for SGD leads to a
performance which is similar to that of the proposed ap-
proach. However, choosing an inaccurate learning rate
results in extremely slow convergence (to a local solu-
tion) or diverging behavior for SGD, while our method
converges to a true solution of (6) for any choice of step-
size as long as it satisfies the conditions given in Algo-
rithm 3.

The SSIM values for the 300 training images and the
300 test images are shown in Table 1. We observe that
our approach yields slightly better results for both data
sets. One image slice of the test data set is displayed in
Fig. 2 to show the good visual quality of the proposed
transfer learning approach.

4. CONCLUSION

A new framework has been proposed to train neural
network layers based on a variational inequality model.
The effectiveness of this approach has been illustrated
through simulations on a transfer learning problem.
In future work, we plan to explore further algorithmic
developments and consider various applications of the
proposed technique to other training problems.
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