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ABSTRACT

We study the market structure for emerging distribution-level en-
ergy markets with high renewable energy penetration. Renewable
generation is known to be uncertain and has a close-to-zero mar-
ginal cost. In this paper, we use solar energy as an example of
such zero-marginal-cost resources for our focused study. We first
show that, under high penetration of solar generation, the clas-
sical real-time market mechanism can either exhibit significant
price-volatility (when each firm is not allowed to vary the supply
quantity), or induce price-fixing (when each firm is allowed to vary
the supply quantity), the latter of which leads to extreme unfair-
ness of surplus division. To overcome these issues, we propose a
new rental-market mechanism that trades the usage-right of solar
panels instead of real-time solar energy. We show that the rental
market produces a stable and unique price (therefore eliminating
price-volatility), maintains positive surplus for both consumers and
firms (therefore eliminating price-fixing), and achieves the same
social welfare as the traditional real-time market. A key insight
is that rental markets turn uncertainty of renewable generation
from a detrimental factor (that leads to price-volatility in real-time
markets) to a beneficial factor (that increases demand elasticity and
contributes to the desirable rental-market outcomes).
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1 INTRODUCTION
1.1 Motivation

As the deployment of renewable generation at the distribution level
continues to rise [9, 38], there are significant interests in developing
a new distribution-level electricity market that allows renewable-
energy producers and electricity consumers to directly trade renew-
able energy [29]. In today’s power systems, renewable generation
at the distribution level has to be either consumed locally, or sold
to the utility according to a combination of net-metering/feed-in-
tariff, connection charges, and/or peak-based demand charges. At
the same time, consumers are charged by the utility via a separate
set of retail prices. These prices and tariffs are often decided by
a consortium of utility, government regulators, and/or consumer
interest groups. However, since their financial interests are often
conflicting with each other, determining the “right" price/charges
has already become a fierce political fight [14, 27]. With the intro-
duction of new distribution-level markets, the renewable producers
and electricity consumers will be able to directly trade energy with
each other [10, 17, 24, 26, 36, 39]. The hope is that, by its “invisible
hand", a well-designed market may be more effective in discovering
the “right” valuation for renewable energy based on the market
condition.

Most studies of distributed-level markets (including the recent
pilot program in [24]) have focused on real-time markets [10, 17, 26,
36, 39], which replicate the real-time markets at the transmission-
level. Real-time markets set prices based on discovering the lowest
“marginal cost” of generation to meet demand. Such prices can
be shown to maximize the total social surplus of the system, and
is thus “efficient” [5]. However, from a market designer’s point
of view, efficiency is usually not the only consideration. In fact,
as we will show shortly, due to the much higher penetration of
zero-marginal-cost renewable generation, real-time markets at the
distribution level tend to produce multiple equilibrium prices, all
of which are efficient. Thus, it is no longer clear why pricing based
on the marginal cost is the most appealing option.

In addition to efficiency, there are a few other equally important
considerations, including: (i) Will the social surplus be fairly dis-
tributed between consumers and producers [19]? (ii) Is the market
outcome unique and predictable [21]? (iii) Is the market price stable
and easy to predict [12]? To the best of our knowledge, there does
not exist a comprehensive study of the distribution-level markets
under these more comprehensive lenses. This motivates our study
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Figure 1: (a) Relatively elastic supply and demand functions
assumed in classical market theory lead to a unique mar-
ket price that maximizes the social surplus. (b) With zero-
marginal-cost supply and highly-inelastic demand, any point
D between A and B maximizes the social surplus.

in this paper, which hopes to provide some preliminary understand-
ings of these important considerations.

1.2 Key results

Throughout the rest of the paper, we will use solar energy as an
example of such zero-marginal-cost resources for our focused study
(while many of the insights could also be extended to other types
of renewable energy). Motivated by the above questions, we first
study the traditional real-time markets, and reveal their deficiencies
when facing the zero marginal cost of solar generation and inelastic
demand. This then motivates us to propose the new rental market
with more desirable features. Table 1 summarizes our key results.

Real-time markets: We focus on the setting where solar gener-
ation can be predicted quite accurately at the beginning of each
time-interval of real-time markets [13, 35], the marginal cost of
solar producers is zero [7] (which reflects that fact that solar gener-
ation incurs high investment cost but low production cost), and the
consumer (if she wishes) can always buy electricity from the utility
at a fixed retail price 4. Prior studies have shown that, due to the
uncertainty and variability of solar generation, the market prices
will fluctuate wildly between 0 and 7, depending on whether the
total solar generation is higher or lower than the total electricity
demand [20, 32]. We advance this line of study by further studying
how such price volatility will incentivize solar producers to with-
hold supply. In particular, when the total supply is higher than the
demand, the solar producers will earn zero revenue since the price
becomes 0. As a result, they will have a strong incentive to with-
hold their supply and raise the price. Indeed, in this paper we show
that, once the solar producers can withhold supply, significantly
different outcomes will arise, which can be quite unpredictable and
unfair (see Table 1).

The role of zero marginal cost and inelastic demand: The underly-
ing reason for the above highly-undesirable outcome is the combi-
nation of (i) zero marginal cost of solar producers, and (ii) inelasic
demand. In classical market design theory, one would expect a
supply curve with an upward slope and a demand curve with a
downward slope (see Fig. 1(a)). As a result, there is only one point
where the demand meets the supply, which maximizes the social
surplus. However, when the marginal cost of the supply is zero and
the demand is fixed, both the supply and demand curves become
highly-inelastic (see Fig. 1(b)). Note that although the intersection
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point A of the supply and demand curves still maximizes the so-
cial surplus, any points between A and B will also do! Further, the
suppliers have every incentive to drive the equilibrum to B, so that
they earn the entire social surplus and drive the consumer surplus
to zero.

Rental markets: In view of the above issues of real-time markets,
we then propose an alternate form of distribution-level markets,
which we refer to as rental markets. In such a rental market, con-
sumers rent a certain amount of solar panels from solar producers
in advance. Then, in real time, the consumer gets to use the elec-
tricity generated from the rented panels at no addition costs. We
then study the strategic behavior of solar producers and the re-
sulting rental price, and show the following desirable results. First,
the rental price is naturally stable (i.e., non-volatile) as it is not
immediately affected by real-time conditions. Second, as long as the
solar generation is variable, the rental demand function becomes
relatively elastic (i.e., having a downward slope as in Fig. 1(a)). Thus,
once the number of producers is larger than a threshold (which is
function of the elasticity of the rental demand function), a unique
outcome arises, which is always equal to the outcome of perfect
competition (i.e, the point C in Fig. 1(a)) [34]. Third, at this unique
market outcome, both the consumer surplus and producer surplus
are not zero. Last but not least, this unique outcome also maximizes
the social welfare.

The role of solar variability: A key insight revealed from our
analysis is how the variability of solar generation will affect the
market outcome under different market rules. Recall that in real-
time markets, since we assume that solar generation can be accu-
rately predicted for the immediately next time-interval, there is
no solar variability within each time-interval of real-time markets.
Instead, this variability manifests as high price-volatility across
time-intervals [20, 32]. In contrast, rental markets operate over a
longer time horizon of many time-intervals. Thus, the variability
directly enters into the strategic consideration of the market partici-
pants. Our results suggest that, while the variability and uncertainty
of solar generation is often considered a detrimental factor for real-
time markets (e.g., it may lead to price-volatility [32]), it becomes a
beneficial factor for rental markets (e.g., it produces demand elastic-
ity and lowers the bar for perfectly-competitive outcome to arise).
Due to this reason, we expect that rental markets may serve as
a more favorable alternative for distribution-level markets under
high renewable penetration.

2 RELATED WORK

There is significant interest in understanding how providers of
uncertain renewable energy should participate in the energy market.
Existing work can be broadly divided into two categories, according
to the assumption on the market price.

The first category assumes that prices are exogenously given,
and studies optimal bidding strategies when market participants are
price-takers (see, e.g., [8, 10, 23]). Specifically, [8] and [23] study how
renewable providers (e.g., wind farms) bid in a day-ahead electricity
market, based on future scenarios of generation and prices; while
[10] further studies how the availability of local generation and
market recourse will impact their bidding strategy. However, this
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Table 1: Features comparison of different markets.

S features Social welfare | Price volatility | Fairness of surplus division | Predictability of outcome
Real-time markets . . . . Unique outcome
(no supply withholding) Maximized High Relatively fair (for most of the time)
Real-time markets Maximized Zero Extremely unfair Multiple Nash equilibria
(with supply-withholding) (consumer surplus is 0) and outcomes
Rental markets Maximized Zero Relatively fair . Unique outcome .
(with modest assumptions)

line of work fails to capture the impact of the market participants’
bidding strategies on the price.

The second category explicitly consider how the market price is
formed from the agents’ bidding. A significant body of related work
assume traditional generators at the transmission level with signifi-
cant production costs [16, 31]. In contrast, renewable generators
(such as solar panels) at the distribution level have nearly-zero mar-
ginal cost. There are only limited studies on the market equilibrium
with zero-marginal-cost generation, for the settings of two pro-
ducers [36], with storage [20], or along with the investment game
[22]. However, these results all assume that the suppliers can only
change the bidding prices but cannot withhold the supply quantity,
which is not realistic when firms have the flexibility to curtail their
generation (especially when the price is not favorable). In contrast,
our work is the first to study the setting where renewable energy
suppliers can vary both price and quantity in their bids, and reveal
the emergence of price-fixing behavior in real-time energy markets.
Further, all of these studies assume a real-time energy market, while
our work is the first to study alternative market designs in the form
of rental markets.

The rental market is also inspired by the structure of other mar-
kets with zero marginal costs, in particular markets for telecom-
munication services [18]. For example, for mobile wireless service
providers, while base stations and backbone networks are very
expensive to build, the cost of providing service for one phone
call or one kilobyte (KB) of data is often negligible. Although dy-
namic pricing based on real-time demand levels was discussed at
various times, what prevails today are often fixed-price monthly
contracts (e.g., unlimited voice and data for 50 dollars per month).
Such a fixed-price contract has been found to reduce the financial
uncertainty to the suppliers, and provide them with the guaranteed
revenue for future network expansion. In addition to these potential
benefits, our study of rental markets further investigates how rental
markets eliminates market manipulation and supply withholding.
Therefore, our study provides new insights why alternative forms
of markets can be more favorable than real-time energy markets.

3 SYSTEM MODEL

We consider a distribution-level power system with one utility,
N consumers, and M firms (i.e., suppliers). We will characterize
different market players, based on which we will introduce the
market mechanisms in Section 4 and Section 5.

The utility not only manages the physical power distribution
grid, but also operates a distribution-level energy market. Further,
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it provides a reliable source of energy external to the distribution-
level market at a fixed retail price 7 (see further discussions on
consumer model below).

Firms own solar panels and sell solar energy to the distribution-
level market. Note that a key attribute of solar generation is that
it incurs high investment cost but low operation cost. Thus, we
assume that the marginal cost of each firm is zero. For simplicity,
we assume that a firm does not receive revenue for any solar energy
that is not sold in the distribution-level market. This assumption
corresponds to the case where utility either does not buy back
electricity from the distribution level or imposes a feed-in tariff of
zero. (See remark below for possible extensions.) Let C; denote the
size (in m?) of firm i’s solar panel. Let C = Z?;I 1 Ci denote the total
size of panels of all firms. Let G(t) denote the energy generated by
unit size of solar panels at time ¢, which is assumed to be a random
variable. We assume that all solar panels have the same efficiency
G(t) (see further discussion at the end of this section). Therefore,
the amount of solar energy available from firm i is C;G(t).

Consumers (e.g., households) consume but do not generate elec-
tricity. We let L, (t) denote the real-time electricity demand of
consumer n at time t, which is a continuous random variable. Let
L(t) denote the total electricity demand of all consumers at time
t,ie., L(t) = Z]r:l:l L, (t). We assume that the real-time demand is
inelastic, i.e., no demand-response, which reflects the practical set-
ting where demand elasticity is low [4]. We assume that consumers
can always buy electricity from the utility at the fixed retail price
7g. On the other hand, consumers would be interested in buying
the solar energy from the distribution-level market if the price is
lower.

The objective of the distribution-level market is to determine
the price and quantity with which firms and consumers can di-
rectly trade solar energy, based on the bids submitted by them. We
are particularly interested in how the equilibirum market price is
formed due to the strategic behaviors of the participants. As we
discussed in the introduction, we will study not only the efficiency
(i.e., whether the social surplus is maximized), but also the questions
of (i) fairness of surplus division between consumers and firms; (ii)
the uniqueness and predictability of the market outcome; and (iii)
price volatility.

Remark: We briefly comment on some of the simplifying assump-
tion made earlier. We assume that firms and consumers are separate,
i.e., one market participant cannot be both a firm and a consumer
at the same time. In reality, a firm may consume energy by herself.
In that case, it is common for the firm to first use the solar energy
for her own demand, and then sell the remaining solar energy to
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the market. Note that such firms can be equivalently viewed as
having a lower generation efficiency G(t). It is possible to extend
our analysis to the setting with varying generation efficiency G(t)
across firms. Indeed, our results for real-time markets will still hold
(since the equilibrium at each time only depends on the exact value
of the random generation at the time, regardless of its distribution),
and readers can refer to Section 5.7 on how the rental market can
work with heterogeneous G(t). It is also possible to generalize some
of our results to the setting where utility offers non-zero feed-in
tariffs, without changing the main conclusions qualitatively. For
example, price volatility and price-fixing in real-time markets will
still hold, with the only difference being that the price will vary
between 7, and the feed-in-tariff (instead of between 7, and 0).

4 REAL-TIME MARKETS

In this section, we will consider real-time distribution-level energy
markets, which operate in a way similar to how renewable suppliers
bid in the existing transmission-level real-time energy markets [25].
We fix a time-instant ¢, and consider an instance of the real-time
market at time ¢. Thus, we will drop the index t when there is
no source of confusion. Let q? = C;G(t) be the actual amount
of renewable electricity generated by firm i at time ¢, which is
determined exogeneously (by solar irradiance). We assume that
each firm knows the value of q? when she submits her bid to the
real-time market, which is reasonable as short-term prediction of
solar generation can be quite accurate [6]. Next, we consider the
four features listed in Table 1 for two types of real-time markets. We
will show that, depending on whether the suppliers can vary the
bidding quantities, the real-time markets can lead to price-volatility
or price-fixing behaviors.

4.1 Price-volatility in a single-price-bid market

We first consider a single-price-bid system where each firm i can
only vary the bidding price p;, while the supply quantity g; is
fixed at q? and cannot be varied. Some earlier studies [22, 36] have
shown that this type of real-time markets with single-price-bids
will produce high price volatility. Here, we report a similar result
but for uniform prices, under a mechanism that is closer to how
the current transmission-level energy markets operate.

Market clearing mechanism: After the market receives the bids of
all firms, i.e., their bidding price p; and actual generation amount
q?, the market stacks all the bids together to compute the supply
curve, i.e., the total available quantity from all bids at or below each
price point p. Then, the market clearing price 7eq is given by the
lowest price such that the total available quantity exceeds the total
demand L(t).

The sold amount s; of each firm i is then determined as follows.
All bids with price lower than 7eq clear their entire quantity q?, ie.,
si = q?. All bids with price higher than 7eq clear zero quantity, i.e.,
si = 0. For those bids with price exactly equal to 7eq, we assume
that the sold/cleared amount is assigned proportionally to q? to
split the left-over demand, i.e.,

q (L(t) = L pj<eq) q(J)')

0
G (- (1)
Z{j:p,-:zreq}q?' '

sj = min
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Under such a market rule, the whole system can be viewed as
a game where each firm chooses her bidding price. The market
outcome can be analyzed by the Nash equilibrium of the firms’
bidding strategies, which is summarized as follows.

PROPOSITION 4.1. Assume ), q? # L(t) forallS c {1,--- ,M}L.
ieS
Then, at each time-instant t, the equilibrium market outcome has

three cases:

Case 1. (Limited Supply) When Zf\il q? < L(t), Nash equilibrium
exists, and the market clearing price must be meq = 4.

Cast 2. (Abundant Supply) When 34 ; q? > L(t) for all j, Nash
equilibrium exists, and at any equilibrium the market clearing price
must be 7eq = 0.

Case 3. (Borderline Supply) Consider the situation where Z?;Il q? >
L(t), Xizj q? < L(t) for some j (let I denote the set of those j’s).
Then Nash equilibrium exists, and at any equilibrium the market
clearing price must be meq = 1y.

(Detailed characterization of these Nash equilibria can be found in
the proof in Appendix A.1.)

Proposition 4.1 indicates that real-time markets with single-price
bids will experience significant price-volatility: as the real-time so-
lar generation fluctuates above or below the demand, the market
price will jump between 0 and 7, (corresponding to point A and
point B of Fig. 1, respectively). Specifically, when the total solar
generation is limited (Case 1), the consumers have to buy electricity
from the utility, which drives the market price to ;. When there is
too much solar generation in the market (Case 2), the demand short-
age leads to fierce competition among firms, and eventually drives
the market price to 0. In Case 3, the firms in 7 have a high market
power. Specifically, without any firm in 7, the system changes from
“excessive supply" to “insufficient supply". Thus, firms in 7 will be
the ones that set the market price to 7 .

Cases 1 and 2 of Proposition 4.1 are similar to results reported in
[1, 36], but the result for Case 3 is different. In [1, 36], there exists
no pure Nash equilibrium for Case 3. The reason for the existence
of Nash equilibrium here is that we assume uniform price for all
firms, while [1, 36] considered differentiated prices.

4.2 Price-fixing in markets allowing
price-quantity bids

In this paper, we advance this line of study of real-time markets
by furthering considering the impact of price-volatility on firms’
strategic behavior. Specifically, whenever the total solar generation
exceeds the demand (Case 2 in Proposition 4.1), firms will receive
zero revenue because the market price is driven to zero. Intuitively,
there will then be a strong incentive for firms to withhold sup-
ply, which will likely lead to very different equilibrium dynamics
compared to Section 4.1.

We note that existing studies in the literature [22, 36] assume
that renewable suppliers cannot vary their bidding quantity, partly
because renewable generation (unlike fossil-fuel generation) is usu-
ally considered uncontrollable. However, there are several reasons

!This assumption holds almost surely, e.g., when all g}’s follows a continuous distri-
bution with a finite probability density function (i.e., with no atoms).
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that we believe it is important to study this possibility of withhold-
ing. First, in practice it is actually quite easy for a solar-energy
supplier to adjust her supply. For example, a firm can shut down
part of her solar panels. Second, even though the utility may build
additional mechanisms to detect such withholding (e.g., by monitor-
ing irradiance and cloud covers), such detection mechanisms would
incur extra costs. Further, if each firm’s solar panel is small (e.g., for
rooftop solar panels of a small house), even a small amount of local
change in cloud conditions can impact its generation amount sig-
nificantly, making fine-grade monitoring based on cloud conditions
difficult. Due to this inherently uncertainty, it would be difficult for
the utility to tell whether the lower supply is due to withholding
or due to lack of solar irradiance. Finally, when a utility penalizes a
withholding firm, it limits the freedom of the bidders, which may
also be undesirable. (Ideally, we want a free market that can lead
to desirable outcomes even without such limitations.) Due to these
reasons, we believe that it is practically important to consider the
possibility of withholding supply.

Supply withholding leads to the following model for a real-time
market with price-quantity bids. Recall that q? = C;G(t) is the real
solar generation available to firm i at time ¢. Now, each firm can
submit a bid that varies both the price p; € [0, 4] and the quantity
qi € [0, q?]. The market clearing mechanism remains the same as
in Section 4.1, except that the supply curve is computed based on
the declared quantity g; instead of q?. The following result shows
that the equilibrium market outcome changes drastically once firms
can submit price-quantity bids.

PROPOSITION 4.2. With price-quantity bids, in additional to the
Nash equilibria characterized in Proposition 4.1, a Nash equilibrium
with meq = g always exists, regardless of the demand or the gener-
ation. Specifically, any bidding strategy that satisfies the following
conditions is a Nash equilibrium with mreq = my:

M M
Y gi =min {L(t), ¥ q?} (firms may withhold supply),
i=1 i=1

and p; = 0 for all i (every firm bids zero price).

@)

In sharp contrast to Proposition 4.1, Proposition 4.2 shows that
real-time markets with price-quantity bids always have a Nash
equilibrium where the market price? is 7g. Such an equilibrium
is highly unfair to the consumers because the consumer surplus
(which corresponds to the difference between the consumer’s cost
of buying from the market and that of directly purchasing electric-
ity from the utility) will always be zero. In the other words, the
entire social surplus is earned by the firms as the producer surplus
(corresponding to Fig. 1(b) where point D is moved to B). As a re-
sult, consumers will be disincentivized to participate in the market.
Compared to Case 2 of Proposition 4.1, a key difference in Proposi-
tion 4.2 is that, when the total solar generation exceeds the supply
(ie, L(t) < Z?ﬁ 1 q?), some firms do understate their generation at
the new Nash equilibrium (2), which then drives the price back up
to ;4. We note that in practice it is also easy for each firm to reach
such an equilibrium strategy. To see this, consider two successive

2Note that under Eq. (2) the total bidding quantity is no greater than the demand.
Thus, even though every firm bids zero price, the market clearing price is set by the
grid price 74 because we define 7req as the lowest price such that the total available
quantity exceeds the supply.
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time-instants such that the solar generation amount does not vary
much. If the market price was zero in the previous time-instant
due to over-supply, each firm can simply withhold her supply at
the next time-instant to be slightly below her sold/cleared-amount
from the previous time-instant.

Another consequence of the above analysis is that there exist
multiple equilibrium market outcomes. In particular, it is not hard to
verify that, in addition to the equilibrium stated in Proposition 4.2,
the outcome predicted in Proposition 4.1 is also a Nash equilibrium
for the setting with price-quantity bids. Note that the equilibrium
stated in Proposition 4.2 is Pareto optimal, i.e., no firms can gain
higher payoff without hurting other firms, and thus may be more
favorable. However, because (2) has multiple solutions, there will
be multiple such Pareto-optimal equilibria too. The existence of
multiple equilibria means that it is difficult to predict the outcome
of the market.

4.2.1  When there exists demand elasticity. Note that our earlier
discussions have assumed that the energy demand L(¢) has no
elasticity, i.e., it does not change with price. This is a reasonable
approximation due to limited demand elasticity in the current grid.
Even if this assumption is relaxed, we expect that our qualitative
conclusions on the real-time energy markets will still be valid. For
example, we can show that even when there is a small amount of
demand elasticity, the problem of price-fixing may still exist. In this
case, the demand function L(t) should be a non-increasing function
of the price x, i.e., L(t, ). As the price 7 decreases from g, We
can define the demand elasticity as the absolute ratio between the
relative change of demand and the relative change of price, i.e.,
i) = T
the price-fixing problem still exists when the demand elasticity and

the number of firms are small.

> 0. The following result shows that

PROPOSITION 4.3. With price-quantity bids, if maX, e[o,x,] 1¢(7) <
minie{l,z,,,,’M} L(?_;rg) then Eq. (2) (after replacing L(t) in Eq. (2)
by L(t, ng)) still corresponds to a Nash equilibrium with meq = m.
L(+lg) is
the fraction of the sold amount of firm i. Its value is likely to be large
when the number of firms is small (in which case the condition in
Proposition 4.3 is easier to hold).

We prove Proposition 4.3 in Appendix A.3. Notice that

5 SOLAR-PANEL RENTAL MARKETS

In view of the issues of price-volatility and pricing-fixing in real-
time markets, we propose an alternative form of distribution mar-
kets that avoid these issues and lead to desirable outcomes in terms
of all four considerations in Table 1. The key ideas of this new mar-
ket are two-fold. First, instead of trading in real-time, this market
trades once over a time-period of length T (e.g., T could correspond
to a month). Second, instead of trading energy, this market trades
the usage right for a certain size of solar panels. Specifically, con-
sumers lease a certain size of solar panels from the firms T time
ahead and can then use all the electricity generated by the rented
solar panels in real-time. Therefore, we refer to this type of markets
as rental markets. Note that if the real-time demand of a consumer
exceeds the generation of her rented panels, she still has to buy the
deficit part from the utility at the grid price 7.
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We will show that rental markets can eliminate both price-
volatility and price-fixing. First, the price in the rental market is
determined once over the time-period of length T. Thus, real-time
price-volatility is eliminated by design. Second and more impor-
tantly, we will show soon that solar variability naturally induces
elasticity of the solar panel demand function in such a rental mar-
ket. Recall that the inelasticity of the demand was one of the main
reasons for price-fixing in real-time markets. In contrast, we will
show that this variability-induced demand elasticity will help the
rental market avoid price-fixing. We note that the work in [2] also
proposed to trade usage rights in an electricity market. However,
[2] focused on studying the existence of a feasible contract without
addressing the price-fixing behavior in such markets.

Readers familiar with transmission-level energy markets will
recognize rental markets as a form of forward markets. Indeed, one
may also use a form of forward energy market similar to the design
of day-ahead markets in current transmission-level energy markets
[3]. A key difference, however, is that, in traditional day-ahead
markets, due to their uncertainty in generation, solar producers has
to bid more conservatively to avoid the penalty of under-generation.
In contrast, firms in rental markets do not need to bid conservatively
because the forward commitment is in the usage rights of panels,
not energy. We will discuss this point further in Section 5.6.

5.1 Panel demand function and its elasticity in
rental markets

We first derive the panel demand function in rental markets, which
corresponds to the size (in m?) of the solar panel that consumer n
wishes to rent at a unit rental price of 7 (in $/m?, normalized to
one time-instant). Recall that the real-time electricity demand of
consumer n is Ly ().

Suppose that the consumer n has rented ¢, unit of solar panels.
Then, the generation at time t is G(t)cp. If L, (t) < G(t)cp, the
consumer does not need to buy any electricity from the utility.
Otherwise, she needs to buy the deficit L, (t) — G(¢)c,, at the price
7g. Thus, when the market price of renting unit-size solar panel for
a unit-time is 7, the time-average expected cost of the consumer n
is given by

T
T
Jn (7, cn) = en + ?9 / E[Ln(t) — G(t)cn]*dt. 3)
0
We take the panel demand function dy(7) of customer n as the
largest c;, that minimizes Ji, (7, ¢p) over cp, ie.,

dn () = sup {c:;|]n(7r, ¢) < Ju(m,cp), forallc, > 0}. (4)

When there are multiple global cost minimizers for J,(r,-),
Eq. (4) chooses dp, () to be the maximum global minimizer. This
will ensure the existence of the Nash equilibrium, especially when
the clearing price is at one of the discontinuity points of panel de-
mand function. We will discuss this point further after we introduce
Theorem 5.2.

For any demand functions we define elasticity as the absolute ra-
tio between the relative change of demand and the relative change

dDdﬁr”) |. Due to this definition, the elas-

ticity is always a non-negative value. We call a demand function

of price, i.e., n(rx) = |ﬁ
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perfectly inelastic when its elasticity is zero. Otherwise, we call it
elastic.

It is easy to see that, if L, (¢) and G(t) were both constant over
t,ie., Ly(t) = L and G(t) = G, then the demand function dj ()
would be equal to é when 7 < g, and 0, otherwise. In other
words, the demand function would still be inelastic. In contrast, the
following result shows that, if the solar generation is sufficiently
random, then the demand function will become elastic. Towards
this end, we introduce the following assumption on the randomness
of solar generation.

ASSUMPTION 1. Suppose that for anyt € [0,T], L,(t) and G(t)
are non-negative continuous random variables with a joint probabil-
ity density function (pdf) féL (x,y) = fCt;|L (x|y) th (y), where
fGt|L (x|y) denotes the conditional pdf of G(t) conditioned on Ly, (t),

andet (y) denotes the marginal pdf of L, (t). We assume that there
is a finite y > 0 such that

©)

Intuitively, Assumption 1 states that the probability distribution
of solar generation should not be too concentrated (e.g., there should
not be any atom in the distribution) and its tail should not be too
heavy. Assumption 1 holds for many common continuous random
distributions, such as Gaussian distribution and any sub-Gaussian
distributions [11] whose tail probability decays at least as fast as
that of Gaussian distribution.

We now define the total demand function D(r) as the sum of all
consumers’ demand functions, i.e., D(r) = ZnNzl dy (). We then
have the following result, which relates the elasticity of D(x) to
the parameter y in Assumption 1.

xzfé‘Ln (x|ly) <y forallx,y, andt.

PROPOSITION 5.1. At any & such that D(x) > 0, the elasticity of
the total demand function D () is bounded by

7
n(m) = oy (6)

9
(Note that since D(m) may be discontinuous, aDD((;)) may be +co.

Nonetheless, Eq. (6) still holds.)

Proposition 5.1 shows that the demand elasticity in rental mar-
kets is bounded from below by a function of y. Note that according
to (5), as y decreases, the distribution of random solar generation
is even less concentrated (i.e., more random). Proposition 5.1 then
shows that the demand elasticity will also be higher. In this sense,
while the variability and uncertainty of solar generation is often
regarded as a detrimental factor for energy systems, in our pro-
posed rental markets it becomes a beneficial factor in contributing
to demand elasticity.

5.2 Mechanism of rental markets

Recall from Section 4.2 that price-fixing in real-time markets arises
when each firm is allowed to vary both her price and quantity. Later
in this section, we wish to show that rental markets can eliminate
such price-fixing under price-quantity bids. However, we also note
that in today’s transmission-level energy markets, a generator can
even bid multiple blocks of price-quantity pairs, which is more
general than a single price-quantity bid. It is conceivable that future
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(a)

(b)

F(m)

F(m1)

(c) (d)

F(m) \— F(m,)
Flme) '_“\ e ‘\

Figure 2: Determination of the market clearing price 7eq in
rental markets, depending on the different ways that the
supply curve intersects the demand curve. The supply curve
F(m) is given by as F() = 2 (i k. p, <x} 9ik- We use nr_; and
7ty to denote the bidding prices of two bids in this figure. Here
we assume that the bids are ordered by the bidding prices,
and thus 7,_; and 7, are the prices of two consecutive bids.

distribution-level markets may also allow such flexibility of multi-
block bids. Further, when a few firms form a coalition, they can
coordinate their single price-quantity bids in a way that effectively
simulates multi-block bids. In this paper, we wish to show that
our positive result on rental markets will hold even for this more
general setting. Hence, below we will introduce the rental market
mechanism directly for multi-block bids, so that we can state a
more general and stronger result. (For real-time markets, we can
also show that our conclusion in Section 4.2 about price-fixing also
holds under multi-block bids.)

We now describe the mechanism of rental markets under multi-
block bids. The key difference from the mechanism in Section 4.2
is that the traded product is solar panel size instead of electrical
energy. Suppose that the firm i makes a multi-block bid containing
K; sub-bids. Denote the price and the quantity (i.e., solar panel
size) of her k-th sub-bid as p; ;. and g; ., respectively. Without loss
of generality, assume that p;1 < pi2 < --- < pik;, ¢ix > 0 for
all k € {1,---,K;}, and Zfil ik < Ci. Firm i’s bid can then be
described by p; = [pi1 piz - pik,] and Gi = [gi1 giz -+ qik;]-
Let p and q denote the collection of p; and g;, respectively, for all i.

The market collects the bids from all firms, as well as the panel de-
mand functions dy, () from all consumers.? The market then stacks
all the sub-bids together to compute the supply curve (similar to
real-time markets in Section 4) for the total available solar-panel size
at each price point. Similarly, the demand function d, () is added
together to form the total demand curve D(r). The market clearing
price is then determined by the intersection of the supply curve
and the demand curve. Algorithm 1 describes the detailed process
to determine the market price 7eq. Denote s; ;. as the cleared/sold

3Note that we assume that the demand functions are truthful, which may be reasonable
when the number of consumers is large and each consumer cannot influence the market
price.
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Algorithm 1: Compute market price 7eq.

1 Sort elements in {p; j : for all i, k} in an ascending order as
m < mp < -+ < xR (note that all ,’s are distinct);

2 Q « 0

3 forr=1:Rdo

4 if D(7;) < Q then

5 Teq < 7r—1; (cases (a) and (b) in Fig. 2)

6 exit;

7 Q<0+ Z{i,k: pir=mn} dik>
8 if D(7;) < Q then
9 Teq < 7r; (cases (c) and (d) in Fig. 2)

10 exit;

11 Jleq <~ 7IR;

Algorithm 2: Decide the sold amount s; .

Q<0
sik <0, for all i, k;

[

)

3 fori=1: Mdo

4 fork=1:K;do

5 if p; o < 7eq then
6 Sik < Giks

7 Q< 0+4qik;

8 Denote those bids with the price 7eq as

qa1,h1’ qaz,hz’ R qah:bh'
9 fori=1:hdo
b (D(7eq) —
10 Sanb; < min {qabbl(h—qu)’ ai,bi} )
Zl:l 9a;,b;

amount of the k-th sub-bid of firm i. In Algorithm 2, we specify the
process of determining the cleared amount. Specifically, for those
sub-bids with prices lower than (or higher than, correspondingly)
Teq, the sold amount is equal to the bidding quantity (or zero, cor-
respondingly). For those sub-bids with price equal to 7zeq, the sold
amount is assigned proportionally to the bidding quantity (similar
to (1)).

Comparing the former real-time market mechanism in Section 4.2
with the rental market mechanism, the main difference is that the
former assumes a fixed demand while the latter assumes a demand
function D () that decreases with the price 7. As a result, in Algo-
rithm 1 there are multiple cases (in Line 4, Line 8 and some other
corner cases) where the market price is calculated. That is because,
when the demand is not fixed, there are multiple ways that the
supply curve and the demand curve intersect as illustrated in Fig. 2.

Remark: The above market mechanism is described for the more
general multi-block bids. It is easy to see that, even if each firm is
only allowed to bid a single price-quantity block, the mechanism
would be exactly the same (we just need to restrict k to be equal to
1 for all firms).



e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

5.3 Outcomes of rental markets

Next, we show that, thanks to the demand elasticity reported in
Proposition 5.1, rental markets will be able to eliminate price-fixing
and produce much more desirable outcomes than real-time markets.

The following Theorem 5.2 shows that, under a condition of
%’C’ i.e., the solar panel size of the largest firm compared to the
total panel size in the market, a Nash equilibrium always exists in
such a rental market with desirable features.

THEOREM 5.2. Consider the rental market allowing multi-block

bids. If%’c‘ < %, then (i) (existence of Nash equilibrium)
there exists at least one Nash equilibrium where each firm i bids a
single price-quantity pair (of quantity C; and price D~1(C))*; (ii)
(features of any Nash equilibrium) at any Nash equilibrium, all
solar panels from all firms are cleared, i.e., Zlkzl Sik = ZkKil qik =

Cj for alli, and the market clearing price must be 7req = D7I(0).

We comment on the highly-desirable features of the market
outcome predicted by Theorem 5.2. Note that D=1 (C) can be viewed
as the price under perfect competition [30]. Theorem 5.2 thus states
that the market clearing price 7eq is always identical to perfect
competition. Further, since all solar panels from all firms are cleared,
there is no price-fixing or supply-withholding. Finally, since one
of the equilibria corresponds to each firm bidding a single price-
quantity pair, the same conclusion will hold if we allow each firm
to always bid a single price-quantity pair only. We provide a proof
sketch in Section 5.4 and a complete proof in Appendix C.
max; C; D1(0)
—C S Ty

The condition <= in Theorem 5.2 can be inter-

preted as follows. Since D™1(C) = Teq,» according to Proposition
5.1, the right-hand-side of the condition is simply a lower bound on
the demand elasticity. Thus, Theorem 5.2 captures precisely the im-
portance of demand elasticity, which is induced by the randomness
of solar generation via Proposition 5.1. Specifically, price-fixing
is eliminated as long as no single firm dominates, i.e., the supply
of each firm is smaller than a corresponding fraction of the total
supply. This fraction is exactly equal to the demand elasticity. Thus,
the more random the solar generation is (i.e., the smaller y is),
the higher the demand elasticity, and the larger each firm can be
without the worry of price-fixing.

Why supremum in Eq. (4) is necessary: Consider the case that D(+)
has a discontinuity at the clearing price eq = D~1(C) predicted by
Theorem 5.2. If consumers do not define the demand function as the
supremum in Eq. (4), we may have D(7eq) < C. Then, there must
exist a firm that cannot clear all her panels at price 7req. This firm
can then undercut the price 7eq to gain more profit, which means
that 7eq = D™1(C) no longer corresponds to a Nash equilibrium as
stated in Theorem 5.2. In contrast, Eq. (4) ensures that D(7eq) > C,
and thus the above situation will not occur.

The outcomes of the rental market for price volatility, fairness,
and uniqueness of outcome follows directly from Theorem 5.2 and
are concluded in Table 1. It remains to show the social welfare
of the rental market. Here, for both real-time and rental markets,
we define the social welfare SW as the total surplus of all firms,

“In fact, only one firm needs to bid at the price D™!(C) and other firms can bid at a
lower price, which still results into a Nash equilibrium.
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consumers and the utility, i.e.,
SW = Util, — Cost, + Revy — Costf + Revy — Costy,

where Util; and Cost, are the consumers’ utility value and cost, re-
spectively, Rev and Cost are firms’ revenue and cost, respectively,
and Revy, and Costy, are utility company’s revenue and cost, respec-
tively, for meeting the consumers’ remaining electricity needs not
met by the distribution-level market. We also need the following
additional assumption.

AssSUMPTION 2. When a consumer’s demand Ly (t) is below the
solar generation G(t)cy, of the rented panels, the surplus generation

G(t)en — Ly (t) will be fed back to the grid.

Assumption 2 is reasonable because, after solar panels are already
traded in the rental market, neither the firm nor the consumer
has the incentive to curtail the surplus generation. (Note that this
assumption is only needed here and is not needed for the earlier
Nash equilibrium result.)

The following Proposition 5.3 shows that both markets attain
the same social welfare. We provide the proof in Section 5.5.

PROPOSITION 5.3. Under Assumption 2, the rental market always
attains the same social welfare as the real-time market.

5.4 Proof sketch of Theorem 5.2

We will focus on the second part of the theorem, i.e., at all Nash
equilibria (NE) all firms will clear all of their capacity and the re-
sulting market price is 7eq = D71(C). (The first part of theorem
for verifying the existence of NE is easier. See Part 1 of Appen-
dix C.5.) To begin with, it is not hard to show that, if at an NE all
firms clear all of their capacity, the resulting market price must
be 7eq = D7I(C) (see Lemma C.12 of the supplemental material).
Thus, next we focus on proving that all firms must clear all of their
capacity. We prove by contradiction. Suppose on the contrary that,
at a Nash equilibrium (p, q), there exists at least one firm i that
does not clear her capacity, i.e., Zkil sik < Ci. We can show that

the corresponding market price must satisfy @ 7eq > D7Y(0), ie,

it must be higher than the market price when all capacity is cleared

(see Part 2, Step 5 of Appendix C.5. We then proceed as follows.
First, among all firms with unsold capacity, we can always find

Kj
. . 2.8 Ci . .
a certain firm j such that 2) ZD]‘(‘;S];( < Fj i.e., the proportion of
eq

firm j’s sold amount to the cleared demand is less than or equal to
the proportion of her panel size to the total panel size. To see why,
consider the simpler case where all firms have uncleared capacity.
Then, the sum of the left-hand-side of 2) over all firms j is less than
or equal to 1, because the cleared capacity cannot be higher than
the cleared demand. However, the corresponding sum of the right-
hand-side equals to 1, which leads to a contradiction. Therefore, at
least one firm j must satisfy 2). For the more general case where
not every firm has uncleared capacity, we can still show (2) by first
eliminating the contribution of those firms that clear their capacity
(see Part 2, Step 1 of Appendix C.5).

Second, we let this firm j deviate to a different bidding strategy.
Below, we will use (-)” to denote the new values (for bidding or
market outcome) after the deviation. Specifically, the new bidding
strategy of firm j is KJ'. =1, p;.,l = 7% < fleq, and q;.,l = Cj, ie,
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firm j bids all of her capacity at a lower price 7* < 7eq. Using
the property that the original bidding strategy is an NE, we can
show that, for some § > 0, as long as 7eq — § < 7" < 7eq, the new
market clearing price must be 7/, = 7*. In other words, the new
undercutting bid of firm j will set the market price (see Part 2, Step
3 of Appendix C.5).

Third, we can show that the new cleared quantity of firm j must
satisfy ® s;.’l - Zfil $jk = D(7*) — D(7eq), i-e, the firm j should
be able to clear more capacity, and the increase should be at least
equal to the increase in the cleared demand. (Firm j may clear more
because it can “rob” other firms’ cleared capacity too.)

However, because (p, q) is a Nash equilibrium, the firm j should
not earn more profit by deviating to the new bidding strategy. We
thus have

K;
* 7 J
TSy < Tleq E ey Sick

Kj K;j
= 1" (s}; - ret Sjk) S (Teq — ") iy Sik
) K;
D(n*) = D(7req) < Teq — 7" ) Zkil Sjk (by ®)
D(”eq) B T D(”eq)
K
oD Aeq | 2plq Sjk
‘ﬂ < | 3| Sk=t R (letting 7 — 7req).
D(”eq) Tleq D(ﬂeq)
N -1
Using @ and % < Dn (YC ) (the condition of this theorem), we
9D (req) Ieq | Ci Omeq | D7L(C .
then have ‘Tﬂeqq) < ?qq & < ‘qu %Y).Applymg @, we
BD(rreq) Ieq Teq. . . ..
thus have ‘ D(rteg) oy | Ty This contradicts the elasticity of

D(-) stated in Proposition 5.1. The second part of the theorem thus
follows.

5.5 Proof of Proposition 5.3 (social welfare
comparison)

Proor. The insensitivity reported in Proposition 5.3 is again due
to the inelasticity of consumers’ real-time demand and the zero
marginal-costs of the firms. First, the consumer’s utility value Util,
is a constant since the real-time energy demand is inelastic. Second,
the firms’ cost Costy is always zero due to zero marginal costs.
Third, the payment of the consumers must equal to the revenue
of the firms plus the revenue of the utility company, i.e., Cost, =
Rer + Revy,. Thus, for both rental and real-time markets, the only
term that may change the social welfare is the utility company’s
cost. However, under Assumption 2 for rental markets, the amount
of electricity that the utility needs to procure from the transmission
level is fixed at [L(t) — G(t)C]™. The same is also true for the real-
time markets in Section 4. Therefore, the total social welfare is
independent of the market outcome, and thus rental markets are as
efficient as real-time markets in terms of social welfare. O

5.6 Comparison with forward energy markets

As we discussed at the beginning of Section 5, instead of using
rental markets, an alternative form of forward markets would be
a forward energy market, similar to the day-ahead market in the
transmission level. In this subsection, we briefly discuss about the
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possible implementation of such a forward energy market at the
distribution level, and compare it with the rental market.

Consider a day-ahead energy market where the market price
Teq and the sold amount s; for each firm i are determined before
actual generation. In real-time, firm i’s actual generation quan-
tity C;G(t) can be smaller or larger than s;. We assume that, when
under-generation occurs, i.e., C;G(t) < s;, firm i must pay a penalty
for the under-generation amount at the grid price 74, Thus, firm
i’s profit is equal to s;7eq — 7gE[s; — C;G(t)]*. Similar to the rental
market, we can show that the firms’ supply function will also pos-
sess elasticity thanks to the uncertainty of generation G(t) (similar
to Proposition 5.1). As a result, we can expect that such a forward
energy market can also avoid price-fixing thanks to the uncertainty
of future generation (similar to Theorem 5.2).

However, in such a forward energy market, firm i usually has
to bid (and clear) a lower amount s; day-ahead, due to the penalty
described above. As a result, part of the generation when C;G(t) >
si, 1.e., when the actual generation is larger than the sold amount,
is wasted in the day-ahead market. This can also be viewed as a
form of withholding supply, and will lead to a lower social welfare
compared to the rental market. We provide numerical results in
Section 6.4 to illustrate this effect.

One may argue that there may be ways to make this residual
amount [C;G(t) — s;]* available to consumers in real-time. For
example, the firms may feed-in this residual amount at zero or low
feed-in prices, which however may be deemed as unfair to the firms.
Alternatively, another real-time energy market could be established
to trade this residual amount of energy. Unfortunately, the latter
approach will not only increase the complexity of the market design
but also re-introduce the price-volatility or price-fixing behaviors
(that we reported earlier for real-time energy markets). In contrast,
as illustrated by Theorem 5.2 and Proposition 5.3, the proposed
rental market sells out all panels, and thus no withholding of supply
occurs at the seller side. Furthermore, there is no need to establish
two markets at different time-scales. Therefore, we argue that the
proposed rental market may be more suitable than the traditional
forward energy market.

5.7 Heterogeneity of generation efficiency

As we discussed in Section 3, we assume that all firms have the
same generation efficiency G(t). We now briefly discuss how het-
erogeneous generation efficiency can be handled in our proposed
rental market by a normalization procedure (see more detailed
discussions in Appendix D). At a high level, the idea is that the
utility can pool the generations of all panels together, and calculate
a common efficiency G(t) equal to the total generation divided
by the sum of declared panel sizes. Then, the utility can calculate
an “effective panel size” C; for each firm based on how her histori-
cal generation contributes to this common pool of the normalized
generation efficiency G(t). Intuitively, if a firm’s contribution to
the common pool is higher (correspondingly, lower), its “effective
panel size” will also be larger (correspondingly, smaller). Then, our
rental markets can operate based on the effective panel size C;
and the common normalized efficiency G(t) only. Note that this
normalization procedure does not introduce any surplus/deficit of
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Figure 3: Real-time single-price-bid market experiences high
price volatility, while real-time price-quantity-bid market
experiences price fixing,.
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Figure 4: Producer surplus, consumer surplus, and social
surplus for different markets under different amount of solar
panels.

solar energy to the market operator, and hence it will not affect the
calculation of social surplus.

This normalization procedure has a number of benefits. First, the
consumer does not need to be concerned about from which firm
she rents the solar panel, because the amount of solar generation
“credited” to her rented panel is based on the common G(¢) that
represents the generation of the whole rental market. Second, this
procedure does allow firms with low generation to be penalized, ei-
ther directly by their lower “effective panel sizes,” or by introducing
additional penalty based on their actual generation. Finally, other
real-time operational issues that may limit actual solar generation,
such as malfunctioning of solar panels or physical constraints (e.g.,
line or voltage limits), can also be accounted for by the effective
panel sizes.

6 SIMULATIONS

In this section, we verify the earlier analytical results by simulating
the outcomes of different markets in Table 1 using real traces of
solar generation and household energy consumption. The solar
generation data are from a PV farm located near Purdue University
(latitude: 40.45°, longitude: 86.85°). The data were taken every five
minutes during the whole year 2006 (provided by NREL[37]). The
load data are from two residential houses, one at Purdue University,
the other in Indianapolis. The data were taken hourly during a
typical meteorological year (provided by EERE[28]). We scale the
generation and load data to simulate different solar energy pene-
tration ratio R, which is defined as the ratio between the total solar
generation and the total load in the system (averaged across the
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Figure 6: Comparison between the forward energy mar-
ket and the rental market in terms of the solar generation
amount that is actually used by consumers under different
penetration ratio R.

whole year). The retail price of electricity at Purdue University is
equal to 75 = 0.1029$/kWh.

6.1 Price volatility and price fixing in real-time
markets

As we discussed in Section 4, real-time markets suffer from either
price-volatility (with single-price-bid (SPB)) or price-fixing (with
price-quantity-bid (PQB)). Indeed, in Fig. 3, for real-time markets
with SPB, the clearing price (the blue curve) fluctuates between 0
and 74 as the demand (the pink curve) goes below or above the solar
generation (the green curve), suggesting severe price volatility. On
the other hand, for real-time markets with PQB, the market clearing
price stays at 7y (the dashed curve), suggesting price-fixing.

6.2 Social welfare and fairness of surplus
division

According to Proposition 5.3, the rental markets are as efficient as
real-time markets in terms of social welfare. We find that this is also
true in terms of social surplus (i.e., the sum of only the consumer
surplus and the producer surplus, excluding utility’s profit). Specifi-
cally, in Fig. 4, we plot the consumer surplus, producer surplus, and
their sum, for different markets with different solar penetration
level R. We can see that the social surplus (over consumers and
firms only) is also almost the same across the three markets (the top
curve). We can thus conclude that the rental market is also quite
efficient in terms of social surplus.

However, Fig. 4 shows drastic difference in terms of how the
social surplus is split between consumers and firms. For real-time
markets with price-quantity bids (RT PQB), the producer surplus
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almost overlaps with the social surplus (the top curve), while the
corresponding consumer surplus equals to zero (the bottom < curve).
In other words, the firms takes all of the social surplus, which is
highly unfair. In contrast, both rental markets (red curves) and real-
time markets with SPB (green curves) have similar and positive
consumer-surplus and producer-surplus. Further, the consumer
surplus increases with the solar penetration level R, suggesting that
consumers gain more benefit as more solar is invested in these two
markets. In contrast, the producer surplus first increases with R
but eventually decreases due to the increased competition as more
solar is available.

6.3 Impact of solar generation uncertainty

One important insight from our analysis (Proposition 5.1 and The-
orem 5.2) is that, in rental markets,, the uncertainty of solar genera-
tion becomes a beneficial factor that contributes to the elasticity of
the demand function and the desirable market outcome. In order to
illustrate this effect, we next turn to a synthetic setting so that we
can vary the level of uncertainty easily. We consider a total time
duration of unit length, i.e., T = 1. The generation G(t) for all t €
[0,1] is equal to a common random variable G that follows a trun-
cated normal distribution Nipuncated (1 0%, G, G), where a larger o
means higher uncertainty of solar generation. We let the load profile
for each consumer be flat, i.e., L,(t) = Ly, for allt € [0, 1]. Thus,
the total load L = fozl Ly, is a constant. In the following numerical

simulation, we let G = 2 and G = 18, H= *G—;G =

mg = 10.

’ In Fig. 5(a), we plot several demand functions D(-) correspond-
ing to different values of 0. Clearly, as o increases, the demand
function becomes more elastic. For example, the demand function
of 0 = 1 (the red curve) is the least elastic one because it is the
flattest curve. Then, in Fig. 5(b) we plot the value of D~1(C)/ gy
at different solar penetration levels R. Recall from Theorem 5.2
that this quantity is an upper bound on max C;/C, i.e., the ratio
between the maximum panel size of any firm i and the total panel
size, so that the desirable outcome predicted by Theorem 5.2 will
occur. Clearly, a larger o (i.e., higher solar uncertainty) makes this
quantity bigger, suggesting each firm can be bigger, without losing
the guarantee of Theorem 5.2.

10, L = 10, and

6.4 Comparison with forward energy market

We now present simulation results in Fig. 6 to illustrate our dis-
cussion in Section 5.6 that the rental market can utilize more solar
generation than the forward energy market. We let both L(t) and
G(t) be uniformly distributed in [0, 20] for all ¢ (and hence the
penetration ratio R is equal to C). For the correlation between gen-
eration and consumption, we consider two cases: D L(t) = G(t),
i.e., fully correlated, and (2) L(¢) and G(t) are independent. Details
of other system setup can be found in Appendix E.

In Fig. 6, we plot the expected amount of solar generation used
by consumers, where the two solid red curves are for the forward
energy market ('»’ for case D and '+’ for case (@) and two dashed
blue curves are for the rental market ('« for case @ and ’X’ for
case (2)). We can see that both red curves are lower than the cor-
responding blue curves when the penetration ratio R is around
1, while their difference becomes smaller when R is away from
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1. This behavior is because the used generation amount for the
forward energy market equals to the minimum among the solar
generation amount, the load amount, and the amount cleared by
the forward energy market. When R is very low or very high (i.e.,
either too much consumption or too much generation), either the
solar generation amount or the load amount becomes the bounding
term. In contrast, when the total generation amount and the total
consumption amount are comparable, the cleared amount becomes
the bounding term, in which case the wasting in forward energy
market becomes more significant.

7 CONCLUSION AND FUTURE WORK

In this paper, we study different forms of markets for distribution-
level energy markets under high penetration of uncertain and zero-
marginal-cost solar generation. While real-time markets exhibit
either price-volatility or price-fixing, our proposed rental markets
eliminate both price-volatility and price-fixing and achieve out-
comes such that the market price is stable and uniquely determined.
Further, the rental-market is as efficient as real-time markets in
terms of social welfare, and maintain positive surplus to both pro-
ducers and consumers. Although we focus on the case of exactly
zero marginal cost in this paper (as in [7]), our conclusion that the
rental market performs better than real-time markets (in terms of
eliminating price-volatility and price-fixing) still holds even when
the marginal cost is close to zero. Finally, our analysis of rental
markets reveals the important contribution of the uncertainty of
solar generation to the desirable market outcomes. Thus, rental
markets could potentially be a highly-desirable alternative to real-
time markets in such settings with high penetration of uncertain
and zero-marginal-cost resources.

There are several interesting directions for future work. First, in
this paper we have focused on the strategic bidding of the firms, but
assumed that the consumers’ demand functions are always truthful.
It would be interesting to study the setting where both sides are
strategic. Second, energy storage has been considered an important
player in energy markets with uncertain renewable. It would be
useful to understand how the addition of storage will change the
market operation and market outcomes. Third, this paper assumes
that the probability distribution of each consumer’s consumption
Ly, () is given. Thus, each consumer can compute her panel demand
to minimize the expected cost Eq. (3). In practice, this distribution
itself may be uncertain due to the long time-horizon of the rental
market (e.g., the consumer may be uncertain whether the next sea-
son is hotter or colder than before). In that case, the consumer may
bid more aggressively or conservatively than minimizing her ex-
pected cost, depending on how she weighs the different possibilities.
Studying the rental market under such an imprecise distribution of
consumption can be an interesting and valuable future direction.
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PROOFS IN SECTION 4

We provide the following two algorithms to describe how real-
time markets compute market price and sold amount according to
bidding and demand. Notice that those algorithms work for both
the single-price-bid market and markets allowing price-quantity
bids.

Algorithm 3: Compute market price 7eq.

1

2

3

4

5

6
7

Sort elements in {p; : forall i} as 71 < 1y < --- < g (note
that all ,’s are distinct);

Q «0;
Teq < Ty
forr=1:Rdo

Q & Q+ Xfi: pi=ny} 95

if L(t) < Q and ny < my then

Tleq < 7r;

break;

Remark: In Eq. (8) of Algorithm 4, bids at the market price eq

split the sold amount in proportion to their generation amount.
Here is an example. After clearing the supply below the price 7req,
the remaining demand is 10, firm 1 has a bid at the price 7eq with
the amount 60, firm 2 has a bid at the price 7eq with the amount

40.

There is no other bid at the price 7eq. Note that in this case
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Algorithm 4: Decide the sold amount s;.
10«0

2 sj « 0, forall i;

3 fori=1:Mdo

4 if p; < 7meq then

5 Si < Qqi;
6 Q0+
7 Denote those bids with the price 7eq as qa;, ga,,*** > qay,-
8 fori=1:hdo
J(L(t) -
. o, < min {qa,( ()-0) q} e
L 2y G

the market price will indeed equal to 7eq according to Algorithm
3. Then, firm 1 sells the amount 6 and the firm 2 sells the amount
4, i.e., they split the remaining demand 10 in proportion to their
bidding amount.

We immediately get the following lemma that reveals useful
properties of those two algorithms.

LEmMmA A1, (a) I]‘Z?ﬁl qi > L(t), then we must have meq =
pj for all j that satisfies

Z qi > L(1),

i pisp;

Z qi < L(1),
it pi<pj

and this kind of j must exists.
(b) If si = 0, then we must have p; > 7eq.
(c) If pi > eq, then s; = 0. If p; < 7req, then s; = g;.
(d) If0 < s; < qj, then we must have p; = meq. Further, if 0 <

si < qi and sj = qj, then we must have pj < p; = 7eq.
(e) When L(t) < ; qi, we have

L(t) = Z qi + Z Si.

it Pi<TTeq it Pi=Tleq

Remark: These results are intuitive. Part (a) states that at 7eq,
supply and demand are close. Part (b) states that if one bid gets
no sell, then this bid must have the price higher than req. Part (c)
states that bidding above 7eq gets no sell, while bidding below 7eq
sells all. Part (d) states that a partly sold bid must have the price
Treq- Part (e) states that when the supply is enough, the total sell
amount equals to the demand.

ProOF. (a) Because Z?;I 1 qi > L(t), the condition stated in Line 6
of Algorithm 3 must be met at some iteration. Thus, we can directly
get the result of this Lemma by Line 5~7 of Algorithm 3.

(b) By Algorithm 4, we know that if p; < 7eq, then s; = p; > 0.

Thus, if s; = 0, then we must have p; > 7eq.
(c) This result is directly derived from Algorithm 4.
(d) Due to Line 5 of Algorithm 4, we get the first statement that

Pi = Teq if 0 < s5; < g;. Next, we prove the second statement.

Because sj = gq;j > 0, we know that p; < 7eq (otherwise s; = 0 from

part (c)). Thus we only need to prove that p; = 7eq is impossible.
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We prove by contradiction. Suppose in contrary that p; = 7eq. Since
0 < s; < pi, from Eq. (8) we know that L(t) - Q > X q4,. Thus,
we must have s; < g; by Eq. (8). This contradicts with s; = g;. Thus,
we conclude that p; # 7eq. As a result, we must have p; < 7eq.
Finally, using the result of the first statement, we can get the result
of the second statement that p; < p; = 7eq.

(e) This result directly follows from Algorithm 4. O

A.1 Proof of Proposition 4.1

We first give the following on the statement about any Nash equi-
librium in the single-price-bid market, where every firm bids all
generation amount, i.e., q; = q? forallie {1,2,---,M}.

LEMMA A.2. Suppose Y cs q? # L(t) forall S € {1,2,---, M}
and Z{\il q? > L(t). At a Nash equilibrium, if meq > 0, then there
must exist one and only one firm j that satisfies 0 < s; < q?, and

si= q? for all other firmsi # j.

Proor. We split the proof by several steps as below.

Step 1: we prove that, for any bidding strategy (not necessarily a
Nash equilibrium), we must have s; > 0 for all p; = 7eq. To see this,
by Line 6 of Algorithm 4, we know that Q must equal to the sum
of the elements in some subset of {q(l), qg, cee q?w}. In other words,
we can write Q = ¥;es, q? # L(t), where Sy consists of the indices
of firms that bid prices less than 7eq. Obviously, we have Sy C
{1,2,---,M}. Because };cs q? # L(t) forall S C {1,2,---,M}, in
Eq. (8) we must have L(t) # Q. Thus, by Eq. (8), we must have
si > 0 for all p; = 7req.

Step 2: we prove that s; > 0 for all i at any Nash equilibrium. We
prove by contradiction. Suppose on the contrary that there exists a
firm i* such that s;+ = 0. Thus, the payoff of the firm i* equals to
si*Teq = 0. Because s;+ = 0, by Lemma A.1(b), we have p;+ > 7eq.
Further, considering the result in step 1, we must have p;+ > 7eq.
By Lemma A.1(a), we have

D, 4> L), ©)
i: P <Tleq

> <L, (10)
i Pi<Tleq

Now, let the firm i* deviate to another bidding strategy with p/, =
Teq- Then, Eq. (9) and Eq. (10) still hold. By Lemma A.1(a), we know
that the new market price will not change, i.e., g = 7eq. By the
result of step 1, we have s/. > 0. Thus, the new payoff of the firm
i* equals to s/, g = /. Teq > 0, which is larger than the previous
payoff of zero. This contradicts the assumption that the original
bidding strategy is a Nash equilibrium. Thus, we have proven that
s; > 0 for all i.

Step 3: we prove that there exists one and only one firm j that
satisfies s; < q(j). at any Nash equilibrium. Because }};cs q? # L(t)
forall S € {1,2,---,M}, Lemma A.1(e) implies that at least one
firm j satisfies 0 < s; < q(}. Now, we prove by contradiction that

no other firms satisfy s; < q(j).. Suppose on the contrary that there

exists another firm k # j such that 0 < s < qz. By Lemma A.1(d),
we have p; = py = 7eq. The payoff of the firm j equals to sjeq. By
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Lemma A.1(a) we have

> <L,

it pi<ileq

By Lemma A.1(e) we have

L(t) = Z q?+ Z Si =

it pi<fleq it Pi=Tleq

(11)

Z q? +Sj+sk.

it pi<Teq

Now, let the firm j deviate to another bidding strategy that p]’. =
Teq — € Where

Teq min{sy, q(} -sj} 12
€= ,
2min{s; + sg, q?.}

and all other firms’ bidding prices do not change, i.e., p; = p;, for all i #
j. (Note that 0 < € < % because min{s, q? —sj} < min{s, q? -
sj}+sj = min{s;j+sg, q(}}.) Then, we must have {i : p; < 7eq—€} =

{i: p] <meq—e€}, {i: pi=rmeq—€} ={i: p] =eq—€ i # j},

2 2

i P} <fleq—€ I pi<Tleq—€

@< D @<L,

it pi<fleq

q =

where the last inequality follows from Eq. (11). By Lemma A.1(a), it
implies that the new market price must satisfy J'[e’q > freq — €. There

exist two possible cases. Case 1: 5, > 7Teq — €. By Lemma A.1(c),

q
we have s]’. = qg.. Case 2: 1l = 7eq — €. We have

0 ’ ’
S el 3 e
i Pi<Tleq—€ i Pi=Tleq—€
— 0 ’
SR S
it pi<fleq—€ it pi=Teq—€

(because only the firm j deviates)
=L(t) (byLemma A.1(e))

> Z q? +5sj + s (by Eq. (11)).
i Pi<Teq

Moving the first two terms of the left-hand side to the right-hand
side, we have

’ 0 0 ’
it pi<fleq it pi<fleq—€ it Pi=Tleq—€
0 0 0
2spesct| ), ai- ), A= ) 4
it pi<ileq it pi<fleq—€ it Pi=Tleq—€
— . 0 0
it pi<tleq it pj STTeq—€
> Sj+ Sk
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In summary, in both cases, we always have s]’. > min{s; + s, q?}.
Thus, the new payoff ﬂéqu’. of the firm j satisfies

: 0
ﬂéqs;- > (eq — €) min{s; +si, q;}
= fleq min{s; + s, q?.} — emin{s; + s, q(}}
Teq Min{s, qg -sj}
2

= Jleq min{s; + s, q?} -
(by Eq. (12))

. 0 : 0
> Teq(min{s; + s, CIj} — min{sg, q; — sj})

= TleqSj-

That means that the firm j gets more payoff after deviating, which
contradicts the assumption that the original bidding strategy is a
Nash equilibrium. Thus, we have proven that there exists one and
only one firm j that satisfies 0 < s; < q(}.

Finally, recall from step 2 that for all firm i must satisfy s; > 0.
Thus, the result of step 3 also implies that s; = q? foralli # j
(where the firm j is the one in step 3 that is the only firm that
satisfies 0 < 5; < q?.). O

Now we are ready to prove Proposition 4.1.

A.1.1  Proof of Case 1.

Proor. When Z?;Il q? < L(t), Line 6 of Algorithm 3 will never
be reached. Thus, the market price must be Teq = 7g. Next, we show
that every firm bids at 74 is a Nash equilibrium. First, when every
firm bids at 7y, because 7eq = 74, we have a; = iand Q = 0in Eq. (8).
Thus, we have s; = q? inEq. (8) since L(¢+)—Q = L(¢) > Z?ﬁl q?. Asa
result, the profit of the firm i equals q?r{g. Since at any circumstance
the market price cannot exceed 74 and the firm i cannot sell more
than q?, the firm i cannot earn more profit than q?ng by choosing
any other bidding strategy. Thus, the situation that every firm bids
at 74 is Nash equilibrium. O

A.1.2 Proof of Case 2.

Proor. First, we prove that the strategy that all firms bid zero
price is a Nash equilibrium. When every firm i bids zero price p; = 0,
because Z?;[I q? 2 Yizj q? > L(¢) for all j, the condition in Line
6 of Algorithm 3 must be met at some time. Thus, we must have
Teq = 0, and the payoff for every firm i equals to q?neq = 0. If one
firm j* bids differently (i.e.,p}* > 0), since Y+ g0 > L(1), we still
have 7, = 0 by Algorithm 3. Because p;.* > 0 = mgq, by Algorithm
4, we have s/, = 0. As a result, the new payoff of the firm j* equals
to JTéqSI-* =0, i.e., the firm j* cannot get more benefits. Thus, we
have proven that the strategy that all firms bid zero price is a Nash
equilibrium.

Then, we prove the second statement of this proposition by
contradiction. Suppose on the contrary that, at a Nash equilibrium,
we have Teq > 0. By Lemma A.2, we have one firm j* such that
0 < sj» < gj+ands; = q? for all other firms i # j*. By Lemma
A.1(d), we know pjx = meq and p; < meq foralli # j*. Thus, by
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Lemma A.1(e), we have

L =| Y a0 |+s> D ab.

i#j* i#j*

This contradicts the assumption that 3 ; q? > L(t) for all j. Thus,
we have proven that at any Nash equilibrium, we must have 7eq =
0. O

A.1.3  Proof of Case 3.

Proor. First, we illustrate that the following bidding strategy is
a Nash equilibrium: one firm j € I bids the price 74, and all other
firms bid the price zero. Since ;4 ; q? < L(t), we have 7eq = 7y
because Line 6 of Algorithm 3 will never be met. By Algorithm 4,
any firm i # jsellsall, ie., s; = q?. Thus, any firm i # j has already
achieved its maximum possible payoff q?ﬁg and none of them has
an incentive to deviate. Consider the firm j. Since all firms except
the firm j bid zero price, the firm j cannot sell more unless bidding
the price zero. Thus, if the firm j bids any positive price less than 7,
its payoff will be lower. If the firm j bids zero price, by Algorithm
3 we know the market price will be zero and thus its payoff will
be zero because Z?;I " q? > L(t). In summary, we conclude that the
firm j cannot get more payoff by deviating. Thus, we have shown

the strategy that p;j = meq, pi| = 0 is a Nash equilibrium.

L

Then, we prove that at an;]Nash equilibrium we must have
Teq = 7y and only one firm in I bids at 75. We split the proof by
several steps as follows.

Step 1: we show that if any firm j € I bids the price p; = 7,
then 7eq = 7y (regardless of other firms’ bids). At the beginning
of this subsection, we have already made the assumption that a
legitimate bid should satisfy p; € [0, 74]. Thus, we have

M
Z q? = Zq? > L(1).
=1

i: pi<my i

Further, if any firm j € 7 bids the price p; = 74, we then have

Z Q< Z ? < L(1) (by the definition of 7).

ir pi<my i#j

By Lemma A.1(a), we know 7eq = 4. Thus, we have proven that if
Pj=ny for some j € 7, then Teq = 7Ty

Based on the result of step 1, to complete the rest of the proof,
we only need to show that, at any Nash equilibrium, there must
exist one firm j € 7 that bids p; = 4. Towards this end, we will
first show that 7req > 0 at any Nash equilibrium in step 2, based on
which we then apply Lemma A.2 in step 3.

Step 2: We prove 7eq > 0 at any Nash equilibrium by contradic-
tion. Suppose on the contrary that 7eq = 0 at a Nash equilibrium.
Consider any firm j € 7. By step 1, we know p; # m4. Note that
since 7eq = 0, the payoff of the firm j equals to 0. Let the firm j
deviate its bidding strategy to p;. = my. By step 1, we know that

the new market price equals to 7¢y = 4. Because ¥;es q? #L(t)
forall S € {1,2,---, M}, by Eq. (8) we must have s} > 0. Thus, the
new payoff of the firm j equals to s]’. ﬁe’q > 0, which is larger than
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the payoff of its previous bidding strategy. This contradicts the as-
sumption that the previous bidding strategy is a Nash equilibrium.
Thus, we have proven that 7eq > 0 at any Nash equilibrium.

Step 3: we prove 7eq = 7y at any Nash equilibrium. We prove by
contradiction. Suppose on the contrary that eq < 7. By the result
of step 2, we must have Teq > 0. By Lemma A.2, there exists one
and only one firm j such that 0 < s; < qg. and s; = q? foralli # j.
Thus, by Lemma A.1(e), we have

L(t) = Zq? +5j,

i#j

which implies that ¥ ; q? < L(t), ie., j € I. By Lemma A.1(d),
we have p;j = 7meq < 7y and p; < pj for all i # j. The payoff of the
firm j thus equals to 7eqsj. Now, let the firm j deviate to another
bidding strategy that p;. = 7mg4. By step 1, we know that the new
market price equals to néq = my. Because p; < pj = fleq < 7y =
ﬂéq for all i # j, by Lemma A.1(e), we have s;. = L(8) = Xizj q(j). =sj.
’
This contradicts the assumption that the previous biddinjg strategy

is a Nash equilibrium. Thus, we have proven that Teq = 74

In summary, we conclude that, at any Nash equilibrium, we must
have 7eq = 74 and only one firm in 7 bids at the price z; while
other firms bid the price below 7. O

Thus, the new payoff of the firm j equals ﬂéqs]’. = 7ys’ > Teqs;.

A.2 Proof of Proposition 4.2

Proor. We first verify that all Nash equilibria in Proposition 4.1
are still Nash equilibria in the price-quantity-bid mechanism. To
that end, we will check whether there exists any firm that can
earn more profit by withholding supply (who may also change
the corresponding bidding price at the same time). For Case 1 of
Proposition 4.1, the price is already at the highest possible price
4. Further, at the Nash equilibrium (where every firm bids at 7,)
every firm has already sold all generation. Thus, withholding supply
and/or changing the bidding price will not increase the payoff of
any firm. Therefore, all firms bidding their full generation at price
g is still a Nash equilibrium. For Case 2 of Proposition 4.1, no firm
is large enough to change the situation from abundant supply to
limited supply because 3 ;4 q? > L(t) for all j, which implies that
the market price will still always be zero and thus the profit of
the firm that withholding supply will still be zero. Therefore, the
Nash equilibrium of Case 2 (every firm bidding at zero price) is
still a Nash equilibrium. For the Nash equilibrium of Case 3 (one
firm j € T bids at 7y, all other firms i # j bid at zero price), first
note that those firms with zero bidding price already achieve their
maximum payoff (selling all generation at 7). Hence, they have no
incentive to withhold supply and/or change the bidding price. It
remains to consider the firm j who bids at 75. We consider three
sub-cases. @ If the firm j bids at another price p;. € (0, m4], then
by Algorithm 3 and Algorithm 4 we know that, after deviation from
74 to p}, the market price becomes ¢y = p}, and the firm j’s sold
amount becomes sJ’. = min{L(t) — Yz, q?, q;.} (where q} € [0, q?]
denotes the new bidding quantity of firm j after deviation which
allows supply withholding). Let sj = L(t) — X4 q? be the sold
amount of firm j before deviation. Thus, the firm j’s payoft after
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the deviation is
e 0 ’ r_ A
sjréq =min 1 L(D) = )" af. ¢} - pj = min{sj.q}} - ]
i#j
SSjﬁeq,

which implies that the firm j cannot increase her payoff after de-
viation if p’ € (0, my]. @ If pi = 0and q} > L(t) = Xizj q,
then n{, = 0 and thus the firm j’ payoff becomes zero, which
also implies that her payoff does not increase. 3 If p;. = 0 and
q;. < L(t)-Xiz; q) = sj. then s]’.ne'q < q}ﬁg < 5j7eq, which implies
that the firm j cannot increase her payoff after deviation. Therefore,
in all possible sub-cases W@ ®) of Case 3, we have shown that
firm j cannot increase her payoff by changing her bidding. We can
then conclude that the original Nash equilibrium of Case 3 is still
a Nash equilibrium when withholding supply is allowed. To sum
up, we have shown that all Nash equilibria in all three cases of
Proposition 4.1 are still Nash equilibria under price-quantity-bids.
We then focus on proving the new Nash equilibrium described
in (2). First, we prove that, if L(¢) > Z?;I " q?, then there must exist
a Pareto-optimal Nash equilibrium with 7eq = 74. Specifically, we
want to show the bidding strategy that ¢; = q?, pi = Teq forall i is
a Pareto-optimal Nash equilibrium with 7eq = 4. Because L(t) >
2?;11 q? = Z?;Il gi, by Algorithm 3, we have 7eq = 4. By Algorithm
4, we have s; = g;. Because q? = gqj, any firm i sells all of its
generation, i.e., s; = q?. Thus, each firm i has already achieved its
maximum possible profit ngq?. In other words, no bidding strategy
can make any firm get more profit. Thus, the bidding strategy
qi = q(l.), Pi = Teq for all i is a Pareto-optimal Nash equilibrium.
Then, we prove that if L(t) < Z?ﬁl q?, then there must exist a
Pareto-optimal Nash equilibrium with 7eq = 7. Specifically, we
will show that any bidding strategy that satisfies the following
conditions is such a Nash equilibrium:
{L(t) =X i

13
pi =0 foralli. (13

Because L(t) < Z?il q?, we can always find such (qo, g1, - - - ) that
satisfies Eq. (13). By Algorithm 3 (especially Line 6), we know that
Teq = g in this situation®. By Algorithm 4, we know s; = p; for all i.
Thus, the profit of any firm j equals p;y. Now, suppose that the
firm j deviates to an arbitrary bidding strategy (q}, p}), while the
bids of the other firms remain the same, i.e., p; = pi, q; = g; for all
i # j. There are three different cases.

Case 1: p} > 0. By Algorithm 4, we know that s; = ¢q] =
qi foralli # j, because all other firms i # j bid lower than
the firm j and ¥,.;q; = Xizjq = L(t) — q; < L(t). Thus,
s]( < L(t) - Xixjqi = qj- As a result, the payoff of the firm j
becomes S}]l'eq < gjmg, which is not greater than the original pay-
off.

SReaders may be surprised why the market price is 74 even though every firm bids
at zero price. Note that by Algorithm 4, the market price is the marginal cost for
one additional unit of demand. With the bids in Eq. (13), the demand is equal to the
total bidding quantity. Thus, the marginal price that consumers have to pay for one
additional unit of electricity is 7. See the remark at the end of this subsection on
what happens if the market price is defined as the marginal cost for the last unit of
demand.
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Case 2: p;. =0and q;. < qj. The payoff of the firm j equals to
sj’.r[eq < q}i‘rg < gqjmg, which is also not greater than the original
payoft.

Case 3: pj’. =0 and q;. > ¢j. Thus, we have

M M
Dlai=di+ Y ai>ai+ ), ai= ), q=Lt).
i=1 =1

i#j i#] i
By Algorithm 3, we have that the new market price now equals to
7tq = 0. Thus, the payoff of the firm j becomes zero, which cannot
be greater than its original payoftf.

In all three cases, the firm j cannot get more payoff by deviating
to another bidding strategy. As a result, we conclude that the origi-
nal bidding strategy is a Nash equilibrium. Now, we prove that this
Nash equilibrium is Pareto optimal. The total payoff of all firms
equals to meq Z?ﬁl i = g Z?ﬁl qi = myL(t). By Algorithm 3, we
know that the market price cannot exceed 7. By Algorithm 4, we
know that the total sold amount cannot exceed L(t). Thus, 74 L(t) is
the maximum total payoff to the firms as a whole. It implies that this
Nash equilibrium is Pareto optimal. The result of this proposition
thus holds. O

Remark on how the marginal price is determined: In Algorithm
3, the marginal price (i.e., market price 7eq) is defined as the cost
for one additional unit of demand. There is an alternative way of
defining the market price as the cost of the last unit of demand.
Specifically, we may change the condition in Line 6 in Algorithm 3
as “if L(t) < Q and 7, < 7,". For markets allowing only single-price
bids (which we study in subsection 4.1), since we assume

Pr{z qi # L(t) forall S C {1,2,- -- ,M}} =1,
ieS

the above change makes no difference to the calculation of E[eq]
in subsection 4.1. For markets allowing price-quantity bids (which
we study in this subsection), as we explain below, similar outcomes
as Proposition 4.2 will arise even when the market price is defined
as the cost of the last unit of demand. In this case, we made the
additional assumption that the quantity of a bid must be a multiple
of some smallest-possible unit § (e.g., 1 kW). Then, we can change
the bidding strategy in Eq. (2) to

{Zfl qi = min { {%)J 16, T q?}’

(14)
pi =0, both g; and q? are a multiple of 8, for all i.

We can use similar methods as in the proof of Proposition 4.2
to show that Eq. (14) is a Pareto-optimal Nash equilibrium with
Teq = 7g. Detailed proof is omitted here.

A.3 Proof of Proposition 4.3

Proor. When Zﬁ\il q? < L(t, m4), according to Eq. (2), every
firm sells all generation amount at the highest price 74. Thus, she
cannot earn more profit by changing her bid, which implies that
Eq. (2) is a Nash equilibrium. It remains to consider the situation
where Z?ﬁl q? > L(t, 7). By Eq. (2), we have Z?;IO qi = L(t, mg).
We now prove by contradiction. Suppose on the contrary that one
firm i can earn more profit by deviating her bid away from what
described in Eq. (2). Since the new equilibrium price 7eq can never
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be higher than 7y, this can only happen if firm i’s new sold amount
satisfies s; > g;, with the new market price 7y > 0. For all other
firms j # i, since they bid zero price, it implies that sj’. =sj=gqj
for all j # i (by Lemma A.1(d) in Appendix A). Thus, we have
slf —qi = L(4, néq) — L(t, JTg). In other words, the increased sold
amount of firm i all comes from the total demand elasticity and
does not come from other firms’ sold amount. The profit of firm i
after the deviation is s{{y. The change of firm i’s profit is then

ne'qs; - 744
=my(s; —qi) — (g — Il'e’q)3;
si—qi 7y s )
L(t, g) g — néq L(t, y)
L(t, ne'q) - L(t, mg)
L(t, mg)

=(my - ﬂéq)L(t, 7g) (

T, s
=(1q — 1) L(t, 1) -
Mg = Teq L(t, )

qi
L(t, mg)

< (g = g L(t, 79) (”En[lgi an(ﬂ) -
hTlg

<0.

(The last inequality is from the condition of this proposition.) In
other words, firm i cannot earn more profit by deviating to another
bid. This contradicts our previous assumption that firm i can earn
more profit. The result of this proposition thus follows. O

B ABOUT THE PANEL DEMAND FUNCTION

In this part, we will show more detailed properties of the panel de-
mand function defined in Section 5.1. From Appendix B.1 to Appen-
dix B.4, we will first study properties of the panel demand function
such as existence and monotonicity. Then we will prove Proposi-
tion 5.1 in Appendix B.5. In Appendix B.6, we will also provide a
corollary of Proposition 5.1, which will be useful in the proof of
Theorem 5.2. We will need some extra notations as follows. Define
x; = (Lp(t), G(t)) € R?, and Hy, (x4, ¢n) = Ln(t) — G(t)cp. Then,
[Hy (x¢,¢n)]™ is the amount of extra electricity that the consumer
n needs to buy from the grid at time ¢, where [a]* = max{0, a}. Let

[0, T] denote the range of time®.

B.1 Existence of d,(7)

LeEMMA B.1. The function J, (7, cp) is continuous with respect to
both r and cy,.

© Although we adopt a continuous-time model here, the result also applies to the
discrete-time model.
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Proor. To verify the continuity of J,, note that

lim . Un(m+ Am,cp + Acy) — Jn(m,cn))

Amr—0,Ac,—

= An—})l,IAncn—ﬂ) ((r + Ax)(cn + Acy) — 7en)
T4 T
+TAE:20 A E[[Ln(2) = G(t)(cn + Acn)]*

= [Ln(t) = G(t)ep] "] dt (by Eq. (3))

T
0+ /o E lim [[La(t) - G()(cn + Acy)]*

Acy, —0

- [La(®) - G(t)en]* ]t
T
=0+ %'/O' Eodt=0.

Thus, J, is continuous with respect to both 7 and c,. Note that
in the second equality, we exchange the order between the limit
and the expectation. This exchange of order is valid by the Domi-
W E[Ln(t)]dt‘ < coand
[[Ln(t) = G(t)(cn + Acn)]*| < Ly(t) for all Acy,. o

nated Convergence Theorem [33], since

It is obvious that d,(0) = +oo by the definition of d, (7). The
following lemma indicates that dp, () also exists for all 7 > 0.

LEMMA B.2. For any w > 0, the minimizer of J, (7, cpn) over cy
must exist, i.e., there exists c;, such that
Jn(m,cy) < Ju(m, cn) forallep > 0.
Proor. We first prove that, for any 7 > 0, there exists ¢ > 0
such that
Jn(m, 1) < Ju(m,cp) forall e, >c.

(15)

To see this, note that because Hy, (x¢, ¢,) < L(t), we have

T
J,,(n,l)s;H@/ L(t)dt
T Jo

T
=n(1+%/0 L(t)dt)A

Weletc=1+ 2 T L(t)dt. Thus, we have

7T Jo

T4 T
Jn(m 1) <z 1+ —/ L(t)dt
T Jo
= rc
< Ju(m, cp), forallc, >¢.
Further, by the Extreme Value Theorem [15], over the closed and

bounded interval [0,¢], the continuous function J, (7, c,) must
have a minimum c},, i.e.,

Jn(m,cy) < Ju(m,cp) forallc, <c.

Combining with Eq. (15), the result of the lemma then follows. O

B.2 Calculation of the threshold price 7,

Intuitively, when the price is too high, the consumer n will choose
to rent zero amount of PV panels. Let 7, be the threshold, above
which the customer n will rent zero amount of PV panels. In the
following lemma, we give the exact value of 7, and prove that
dp(m) =0 when & > 7.
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— T
LEmmA B3. If # > 7, = %fo E[G(1) Lz, (s)>0}]dt, then
Jn(m,cn) > Ju(m,0) forallcp, > 0, and thus dp () = 0.

ProOOF.

T
T
™z ?-‘7 o E[G(t)L (1, (r)>0y]dt and cp > 0

T
T,
= 7ep > Tg E[G()enl (1, (1)0}ldt
0

T
=>7zcn>% E[ (Ln(t) - [Ln(t) - G(t)ca]*)
0

L1, (1)>0y]dt
T T
— 7cp + ?9 E [[Ln(t) = G(t)en]*] dt
0

T
> %/O E[Ln(t)]dt

S ]fl(n’ Cl’l) > Jn(ns 0)

In Lemma B.3, the condition 7 > 7, £ % fo
can be rewritten as

T

T
7 Jy BIGML (1, (1)>0y1dt

> 7l'g.

Notice that the left hand side represents the equivalent price of one
unit amount of solar energy that is useful for the consumer n (i.e.,
when her load is positive). Lemma B.3 thus states that, when this
equivalent price is higher than the retail price, the consumer n will
not rent any PV panels, i.e., d, () = 0if 7 > 7.

B.3 Monotonicity of the panel demand function

LEmMMA B.4. Defineh(c,) = /OTE[G(t)]ly[(cn)]dt where A(cy) =
{(t, x¢) : Hp (X¢,¢n) > 0}. Then, under Assumption 1, h(cy) is con-
tinuous when cp, > 0. Specifically, forallc;s > c;1 > 0, we have

0 < h(ci1) — h(ciz2) <)/Tln(c’2) <chlz Cit

Ci1

ProoOF. Suppose that ¢;j2 > c¢j1 > 0. Because Hy (xt, ci,z) <

Hy, (x4, ¢i1), we have A(ciz) € A(ci). Thus, we have h(c;1) —

TE[G()1 (1, (1)>0)1dt

Peizhong Ju, Xiaojun Lin, and Jianwei Huang.

h(ci2) = 0. By the definition of h(-), we have
h(ci1) = h(ciz)

T
-/ [G(t)nmcl)]dt—/o BIG(1)L (e, ldt

/ / / ; xXfG 1, (% y)dxdydt
_/o /0 /0 C xXfé (% y)dxdydt
- /OT /Ooo _/La xfCt;ILn (xly) - ff (y)dxdydt

I

=/ / yln(ﬂ)-f[(y)dydt
0 0 Ci1 n
Ci2
—yTn 22
rrin 22)

Ci2 —Ci1

c:
<yT ———= (because In(x) < x — 1 for x > 1).
Ci,1

fL (y)dxdydt (by Assumption 1)

It also implies that
lim . (h(c,-yg) — h(Cl’,l)) =0.

Ci2—Cj

As a result, we conclude that A(c,) is continuous when ¢, > 0. O

LEmMMA B.5. Under Assumption 1, for a fixed 7, the function J,, (7, cp)
is differentiable, and

a]rl( > fl) T T
enin) n-2 [ BCWLA I 6
where A(cp) = {(t, X¢) : Hy (X4,¢cp) > 0}.

ProoOF. Since 7cy, (the first term of J,, (7, ¢,)) is differentiable, we

only need to prove that /OT E [[Hn (x4, cn)]+] dt is differentiable.

Towards this end, we have
([T
AILI'EO e (/0 E [[Hp (xt,cn + Ac)]*] dt

T
_ /0 B [[Hn (xt.co)]"] dt)

) T
_AICEOE(./ E [Hn (x¢, cn + Ac) L g (c,4nc) | dt
T
- / E [Hn (xt,¢n) 1 (cp) ] dt)
0

1T
= Jim ([ Bl (xt e 06) (om0 = L)

T
dt + '/0 E[(Hy (x¢,¢n + Ac) — Hp (%¢,¢p)) - lg(cn)]dt)

T
/0 E[H, (x¢, cn + Ac) (]lg{(an,AC) - ]lyl(cn))]dt

= lim
Ac—0 Ac
~ [TE[G()Ac- 1 () ldt
+ lim
Ac—0 Ac
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For the first limit, we have

T
/0 E[H, (x¢, ¢ + Ac) (]lg{(an,Ac) - ]ly{(cn))]dt
Ac

lim
Ac—0

T
Jo EllHn (xt,¢n + A - [1 (e ene) = La(e, [1dt

< lim
Ac—0 |Ac|
_ JENIGMA - [Lae, a0 ~ Lagen|] dt
< lim (*)
Ac—0 |Ac|
) T
=Jim | E[GO[Lae,sa0 - La,|]dt

T
=/ E [G(t) lim i]lﬂ(crﬁAc) - ]l»ﬂ(é‘n)l dt
0 Ac—0
(by the Dominated Convergence Theorem)
=0.

The reason of the inequality (x) is as follows. If 1 (¢ ,+Ac) —

T a(c,) = 1, then Hy (X, ¢cp + Ac) > 0 and Hy (X4, ¢n) < 0. Thus,
we have 0 < Hy, (X4, ¢ + Ac) = Hy (X4, ¢n) + G(t)Ac < G(t)Ac. If
La(c,+n0)~La(e,) = —1,then Hy (x4, ¢p + Ac) < 0and Hp (%4, ¢n) >
0. Thus, we have 0 > Hy (x¢,cp + Ac) = Hp (%4, ¢n) + G(t)Ac >
G(t)Ac. In conclusion, when |1ﬂ(cn+AC) - ]lﬂ(cn)| = 1, we must
have |Hy, (x¢, cn + Ac)| < |G(E)Ac|.

Thus, we have

(T
Alclfo E(/o E [[Hn (x¢,cn + Ac)] ] dt

T
- / E [[Hy (x2. c)]*] dt

0
T
- Jy BIG(t)Ac- 1 g(c,)]dt

=0+ lim
Ac—0 Ac
T
:—/0 E[G(D)1 A, ] dt.

Thus, we have proven the differentiability of J, (7, ¢,), and it follows
that

AJn (7, cn) -

%, - ?/O E[G(t)lﬂ(cn)]dt

LEMMA B.6. The demand function d, () is monotone decreasing
with respect to 1.

Proor. It suffices to prove that any ¢ > dj () cannot be the
minimizer of Jy, (1, ¢) for all w1 > mg. In other words, it suffices to
show that

Jn(m1,¢) > Jo(m1, dn(m)), forall ¢ > dp (7).
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To prove this, we have

]n(ﬁ:ls C) - ]n(”b dn(”o))

T
=m1(c — dn(m)) + % /0 (E [[Ln(t) = G(t)e]*]

~E[[Ln(t) = G()dn(m0)]"] )dt

=1 = ) (e = dn(10)) + 70(c = dy )
T
2 [ [l - o]

~E[[Ln(t) = G()dn(m0)]*] )dt

=(rmy — 7o) (¢ — dn(m0)) + Jn (70, ¢) = Jn (70, dn(70))
2(m — mo) (¢ — dn(mo))

(because Ju (7o, ¢) = Jn (70, dn(m0)) 2 0

by the definition of dj, (7))
>0.

The result of the lemma thus holds. ]

LEMMA B.7. Recall the definition of &, in Appendix B.2. Under
Assumption 1, the demand function dp () is strictly monotone de-
creasing with respect to & when m € (0, 7).

Proor. Consider two prices 7y and 77 that 0 < 71 < 7y < 7Tp.
By Lemma B.6, we already have dp,(79) > d,(71). Thus, we only
need to prove that dy, (7r9) # dj, (7r1). Towards this end, it is sufficient
to prove that such dj (;r1) must not be the minimizer of J, (7o, cp).

Because 1y < 7, we have

g T
m < ?L E [G(t)n{Ln(t)>0}] dt.
Applying Lemma B.5, we thus have

9Jn (1, cn)
acp

T
TT,
=m — _g/ E[G(t)ﬂ{Ln(t)>0}]dt <0.
cn=0 T Jo

This implies that d (1) > 0. By the first-order condition at the
minimizer dp, (71) of J, (71, ¢n) with respect to ¢, we have

dJn (771, Cn) -0
9n cn=dn(m)
Similarly, we have
dJn (o, cn) -0
%n ley=dy, ()




e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA
D(r) D Y(z)

possible
discontinuities

// 3

a b max,T7, 0
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max,, T,

Figure 7: Demand function D(r) and the corresponding in-
verse function D™1(x).

As a result, we have

dJn (70, cn)
acp

cp=dpn (1)
g T
=70 — 7/0 E [T ad,m ] dt
(where A(-) is defined in Lemma B.5)
g T
=(mo —m) +|m - T /0 E[G(OLa(d,(m)] dt

OJn(m1, cn)

=(mp — 1) +
(mo — 1) 20

cn=dn (1)

=my —m # 0.

Therefore, we conclude that dj, (1) is not the minimizer of J, (7o, ¢y,).

The result of this lemma then holds. |

B.4 Inverse function of D(-)

Based on the properties of dj, (), we know that D(r) is strictly
monotone decreasing with respect to 7 when 7 € [0, max, 7,],
and D(r) equals to zero when 7 > max, 7,. We depict D(r) in
Fig. 7. Then, we can define the inverse function D™!(x) on x > 0.
Notice that even though dj, (-) and D(-) may have discontinuities,
D~ !(x) is well-defined for all x > 0 due to the strict monotonicity
of D(-). Further, we can verify that D™!(x) := max{x : D(r) > x}.
Actually, because D(-) is strictly monotone decreasing, we still
have D™!(D(x)) = z. However, D(D~!(x)) = x is not always true.
Instead, we have D(D~1(x)) > x. Fig. 7 shows what D(x) and
corresponding D~ (x) look like.

B.5 Proof of Proposition 5.1

Proor. Let my > mp. According to Lemma B.5 and the first-order
condition, we have

g [T
? ‘A E[G(t)ﬂﬂ(dn(”a))]dt = Tig,

g T
T /O E[G()L a(d,, (np))1dt = 7p.
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Thus, by Lemma B.4, we have

T
T,
Ta — 7p =?g/0 E[G() L a(d, (x,))]dt

T[g T
_T/o E[G(1)1 A (dy, (r,)) ] dt
dn(7p) ~ dn(7a)

<
=7 dn(7a)
- dn(ﬂ'a) Sﬂg}/—dn(”;-) : i’;(”a) .
a

Fix 7, and let , approach 7,. We have

ady (1)
or

dn () < mgy

adp ()

(Notice that =5
over all consumers, we then have

< 0 by Lemma B.6.) Summing this inequality

oD(r)
D(r) < mgy e
‘6D(7r)‘
N D() L
1| v

B.6 Corollaries of Proposition 5.1

Solving the differential inequality in Proposition 5.1, we have the
following corollary.

CoROLLARY B.8. Let & and mo be two arbitrary prices such that
7 > 1. We then have

=70

D(n) < D(mp)e ™7 .

Proor. Notice that D(r) is strictly monotone decreasing. We
have

()|, = |on
D(m) |  mgy| =
D(x) 1 T o1
= / ——9dD(a)| > / —on
D(m) D(a) n Tg¥
D(r) T —
S
D(o) gy
D(my) _ m-m
In
D(r) gy
(since D(mp) > D(sr) by the monotonicity of D(-))
— In D(x) < IR
D(m) gy

= D(r) < D(mp)e ™97 .
o
Replacing 79 by D™!(x) and replacing D () by x, we have a
more general conclusion stated in the following corollary.

COROLLARY B.9. Let w > D™!(x). We then have

n-D71 (x)
gy

D(n) < xe”
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ProoF. If x = D(D~!(x)), then the result of this corollary is ob-
viously true by applying Corollary B.8. If x # D(D~!(x)), then D(-)
must be discontinuous at D~!(x), which implies that D(y) < x <
D(D™(x)) for all y > D~1(x). Thus, for all y such that D™(x) <
y < 7, we have

-y -y

D(n) < D(y)e ™Y < xe ™97,

Let y approach D~1(x), we have

_ 7-D7! (x)
gy

-y
lim xe ™Y =xe

D(r) <
y—D1(x)

C NASH EQUILIBRIA OF THE RENTAL
MARKET

In this part, we provide details of how to analyze the Nash equilib-
rium of the rental market (i.e., the outcome shown by Theorem 5.2).
In Appendix C.1, we will show a theorem that reveals the equiva-
lence between the multi-block-bid mechanism and the two-block-
bid mechanism for the rental market. Specifically, Theorem C.2
states that, for any Nash equilibrium of the rental market with
multi-block bids, there must exist an “equivalent” Nash equilibrium
with only two-block bids. The significance of this result is that,
in our later analysis of the outcome of rental markets, we only
need to focus on equilibria with two-block bids, which significantly
simplifies our analysis. We then prove Theorem C.2 (with some
other useful lemmas) in Appendix C.2 and Appendix C.3. In Ap-
pendix C.4, we show some results that help us to focus on what is
necessary for Theorem 5.2 to hold. After that, we prove Theorem 5.2
in Appendix C.5.

C.1 Equivalence between the multi-block-bid
mechanism and the two-block-bid
mechanism

Directly analyzing Nash equilibria in a multi-block-bid market
described by Algorithm 1 and Algorithm 2 is relatively difficult, as
the action space of the players is large. Fortunately, we can simplify
such analysis by introducing the concept of outcome-equivalent
Nash equilibria (Definition C.1). With this definition, we only need
to consider the situation that each firm only makes two bids at any
Nash equilibrium (Theorem C.2).

Remark on Algorithm 1 and 2: We have assumed that the multiple
bids of each firm have different prices, i.e., p;x, # pix, When
k1 # k. This assumption is without loss of generality because,
if a firm has two or more bids at the same price, we can merge them
into on bid, and both the market price price and the firm’s profit
remains the same under Algorithms 1 and 2. That is because we
adopt the uniform price policy (i.e., all sold part gets paid at the
common market price 7eq), and the proportional assignment Eq. (7)
(that all bids at the market price 7req are assigned sales in proportion
to the bidding quantity). The above property also implies that, even
if a firm divides its equity into two firms that bid cooperatively in
the market, the outcome of the market would be the same as the
firm bids as a single entity.
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Definition C.1. Two Nash equilibriums (p,q) and (p’,q’) are
outcome-equivalent when ZIk(il sl.’,k = Zfil si forall i, and
Mg = Teq-

THEOREM C.2. For any Nash equilibrium (p, q) in the multi-block-
bid system, there must exist an outcome-equivalent Nash equilibrium

(p’,q’) such that each firm only makes two bids, and the price of any
bid is either 0 or meq.

C.2 Preparation for the proof of Theorem C.2

We first provide some useful definitions, lemmas, and corollaries.

demand

- - =supply
supply (after deviation)

quantity

price

Figure 8: An example of 1{q > 7eq When {p/, : forall k} ¢
{pjk: forall jk} U {0}.

Definition C.3. In the multi-bid system, suppose a firm i changes
her bid from (p;, §;) to (p;’, §i’). we say that the firm i bids more
aggressively (in the new bid (p;’, ¢;")) if

ik p <) Qi 2 ks pae<r) Giks forallw € R,
{plfk : forallk} € {pjx : forall j,k} U {0}.

Remark on Definition C.3: The first condition states that, when
a firm bids more aggressively, her total bidding quantity below
any price 7 becomes larger. Later, we will show that, when a firm
bids more aggressively, the market price should not increase (see
Lemma C.5(b)). However, for this to be true, the second condition
in this definition becomes necessary, i.e., the new prices must be
from the set of prices in the original bids (possibly by another firm
Jj). Fig. 8 shows an counter-example where market price actually
increases after one firm increases her bidding quantity at certain
prices without this constraint.

LeEmMA C.4. For real numbers a, b, x,y thata > 0, b > 0, x >
0,y>0, a—x >0, b—x+y >0, wemust have
a-x

min{b——x-l—y’ 1} < min{g, 1}.

Proor. If a > b, then we have
) { a-x
min

m, 1}S1:min{g, 1}.
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If a < b, then we only need to prove

a-—x a
— < -,
b-x+y ~ b
which is true because
a-—x a-x _a
—F— < < -
b-x+y b-x"0b
This lemma thus holds. O

Lemma C.5.

(@)

2

{ik: pix<pji}

Teg = MAX 4 Pj : qik < D(pj1)

(b) If any firm i* bids more aggressively and other firms do not
change, then Jféq < Teg.

(¢) D(7eq) 2 Z?ﬁl Zlkil si k- Further, if D(7eq) > 2?;11 Zlkil Siks
we have s; i = q; x for alli,k that p; ;. < 7eq.

(d) Consider two different bidding strategies (p,q) and (p’,q’). If

2.

{i.k: pix<rreq}

2.

{ik: pi,k:”eq}

’
4 = Giso and

{i,k: p;,k<7req}
’
Uik =
{ik: p  =meq}

qi.k>

then mpy > Teq.
(e) If s g = 0 and pj» g+ = Teq, then we have s; ;. = 0 for all i, k

thatp; . = Teg, and we also haveD(:req) = Z{i,k: Pik<eg} ik

Remark on Lemma C.5: These results are intuitive. Part (a) states
that 7eq is roughly the point where the demand curve and the supply
curve intersect. Part (b) states that bidding more aggressively only
makes the market price lower. Part (c) states that the total sold
amount is always less than or equal to the demand. Further, if
the total sold amount is less than the demand, then there are no
partly sold bids. Part (d) states that, if the bidding amount below
the original market price 7eq is the same, but the bidding amount at
the original market price 7eq is larger (and thus the bidding amount
above the original market price 7eq is smaller), then the new market
price ﬂ'éq cannot decrease. Part (e) states that if a bid with the price
Teq sells zero amount, then any bid with the price 7eq must also
sell zero amount.

ProoF. (a) We examine the outcome of Algorithm 1 in all pos-
sible situations. Define F(rr) as F(rr) = X(ik: p; <n} 9i k- Define
S(m) as S(7) = ik pir<n} 9ik- Obviously, F(r) and S(x) is
monotone increasing. Recall that in Algorithm 1 all different bid-
ding prices are ranked as 71 < 13 < --- < 7g. We have S(7g4+1) =
F(rg) for any pair of adjacent prices (4, 7g+1). We also have
S() < F(r) for all #. What we need to prove can be written as

(17)

Teq = m?x{ﬂi : S(m) < D(mj)}.

We consider three cases (i.e., Case 1 to 3 below).

Case 1: D(71) < F(s). Then meq = 71 as Algorithm 1 exits on
the branch of Line 8. We have S(i1) = 0 < D(s1), and S(12) =
F(m1) > D(sr1). Eq. (17) thus follows.

Case 2: D (ng) 2 F (nR). Then meq = 7g as Algorithm 1 does
not exit on the branch of Line 4 or Line 8, i.e., Teq is determined by
Line 11. We have S(eq) < F(7Teq) < D(7eq). Eq. (17) thus follows.
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Case 3: D(;r1) > F(rrp) and D (ng) < F (ng). Then, we can
always find 7, such that D(n,—1) > F(n,-1) and D(n,) < F(7x)
(notice that D(sr) — F(7r) is monotone decreasing). We consider two
sub-cases (i.e., Case 3.1 and 3.2) below.

Case 3.1: D(7ry—1) = F(ry-1). Then meq = 7,1 as Algorithm 1
exits on the branch of Line 4. See Fig. 2(a). We have S(7m,—1) <
F(nr-1) = D(7tr-1), and S(7y) = F(7r-1) = D(7r-1) > D (7). Eq.
(17) thus follows.

Case 3.2: D(my—1) # F(mr—1). Because D(my—1) = F(my—1) in
Case 3, we now have D(m,—1) > F(m—1). We then consider three
further sub-cases (i.e., Case 3.2.1 to 3.2.3).

Case 3.2.1: D(7r;) < F(mr-1). Then meq = 7r—1 as Algorithm 1
exits on the branch of Line 4. See Fig. 2(b). We have S(7,-1) <
F(ny-1) < D(mr-1), and S(n,) = F(nr-1) > D(7). Eq. (17) thus
follows.

Case 3.2.2: D(7ry) > F(my—1). Then meq = 7y as Algorithm 1 exits
on the branch of Line 8. See Fig. 2(c). We have S(r,) = F(m,-1) <
D(ny), and S(7r41) = F(ry) > D(my). Eq. (17) thus follows.

Case 3.2.3: D(ny) = F(ry—1). Then meq = 71y as Algorithm 1 exits
on the branch of Line 8. See Fig. 2(d). We have S(n,) = F(7m,-1) =
D(ny), and S(nr41) = F(ry) > D(y). Eq. (17) thus follows.

To sum up, Eq. (17) holds for all cases. Therefore, the result of
(a) thus follows.

(b) Because only one firm deviates, by the definition of bidding
more aggressively, we have

2.

{i.k: p;’k<7r} {ik: pig<m}
{p;, : foralli,k} C {p; : forallik} U {0}.

9 = gif forallw € R, and

As a result, we have

pis D, 4 <D®))
{ik: P;’k<P})1}
Cipius . k<D pUio)

{ik: pix<pji}

By (a), we have 7{q < Teq.
(c) Obviously, s; k. = g;  for all i, k such that p; . < 7eq. We now

consider two cases. (i) If D(req) —2. (i k: Pik<meq} dik < 2ik: Pik=rteq} Diks

by Eq. (7), we have

9,1 (D(”eq) - Z{i,k: Pik<Teq} qi,k)
Sj,l =

Z{ik: pi=req} ik
forall j, I such that p;; = 7eq.

Summing this equation over all such j and I, we have

Z Sik = D(”eq) - Z 9ik
{i,k: pi,k:ﬂ'eq} {i’k: Pi,k<7req}
M K;
- D(T[eq) = z Z Si,k.
i=1 k=1

(i) IfD(ﬂ'eq) - Z{i,k: Pik<meq} ik > Z{i,k: Pik=eq} Qik> by Eq. (7),
we have s; = g; forall i,k such that p; = meq. Thus, ;3 =
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ik for all i, k such that p; . < 7eq. As a result, we have

M K;
D(meq) > Do Gkt D Gk=). ) Sk
(ik: pig<eq} (ik: prr=rteq} i=1 k=1

The result of part (c) then follows.
(d) By (a), we have X’ (; . Pik<req} Dk < D(7eq). By the given re-
lationship between (p, q) and (p’, q"), we have 3 (; . P <e) 9’y

2 {ik: Pik<meq} Dik < D(req). Thus, we have

2

{ik: p;’,k <P_;-’[}

2

{ik: P:k<P}1}

Teq € 1P % <D}

= max p;‘,l qlk = D(P]l) 2 Tleq

= ”eq Tleq (applying (a)).

(e) Because s;x x+ = 0, by Eq. (7), we have D(1eq) — Q = 0, which
implies s; . = 0 for all i, k such that p; j = 7eq. Therefore, we must
have D(7eq) = Z{i,k: Pik<Teq} dik: o

Lemma C.6. Consider any bidding strategy (p, q) (not necessarily
a Nash equilibrium). Suppose that a firmi* bids more aggressively and
other firms do not change their bids. Then, we must have neq < Teg
and si’k < ik, foralli # i*, and for all k. Consequently, any other
firmi # i* will not earn more profit.

Proor. By Lemma C.5(b), we have ﬂéq < Tleq- It only remains
to show that slf’k < sjk, foralli # i* and for all k. There are two
possible cases, ﬂéq < Jeq OF néq = Mleq- We discuss them separately
as follows.

Case 1: er/q < Teq- By Algorithm 2, we have

k—slk—qlk, foralllkthatplk<7re i+

sik < qik = Si forall i,k that p; . = i# i

eq’
and

Stk =0 < sig, forall ik that p; > mlg, i # "

Thus, we have shown that slfk < sjk, foralli # i* and for all k in

this case.
L
Case 2: meq

= Teq- We have
Sik = ik = Sik forall i,k such that p; < 7eq, i # 1",
and

sl.',k =0=s;4, forall i, k such that p; ;. > 7eq, i #i".

Further, let

(il P}'l<7feq} {l: Pj,l<71'eq}
y= i D, 420

Ul P ”eq} {l: pjl S”eq}

=
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(Notice that x and y are positive because of Definition C.3.) Then,
for all i, k that p; j = 7eq, i # i*, we have

9ik (D(”eq) = Ll g, <meq) q;-},)

s/, =min qi
k . i 7 > ik
! Z{],l: P =meq} qj,l
| 9ik (D(”eq) - Z{j,l: Pii<meqt 4l — x)
= min ik
Z{jil p=met Al —X Y '
qik (D(ﬂeq) = 2l pju<req) qj,l)
< min > Gik
Ll pji=req) Ui
(applying Lemma C.4)
= Sik-

Thus, we have also shown that s’ S < Sik foralli # i* and for all k.

The conclusion of this lemma thus follows. m]

LeEmMA C.7. Suppose that the original bidding strategy (p,q) is
a Nash equilibrium. Consider a new bidding strategy where an ar-
bitrary firm i* deviates from this Nash equilibrium and bids more
aggressively, and another firm j* # i* also deviates from (pj+, gj+)
in an arbitrary way. Assume that no other firm k # i*, j* changes
her bid. Then, no matter how the firm j* changes her bid, her payoff
under (p’,q’) cannot increase compared to her payoff at the original
Nash equilibrium (p, q).

ProOF. Because (p,q) is a Nash equilibrium, no matter how
the firm j* changes its strategy to (pj-’, gj+"), her payoff cannot
increase. After the firm j* deviates, suppose now the firm i* bids
more aggressively. By Lemma C.6, this change of the firm i* cannot
make the payoff of the firm j* higher. Thus, firm j* still cannot
make more payoff. The conclusion of this lemma thus follows. O

CororLARY C.8. Assume that (p, q) is a Nash equilibrium. Con-
sider a new bidding strategy (p’,q’) where the firm i* bids more
aggressively and other firms do not dewate Ifthe market outcome

under (p’,q’) satisfies Il’eq = Tleq and Zk 1 1k Zk 1 Sik for all i,
then the new bidding strategy (p’,q’) must also be a Nash equilib-
rium.

PROOF. Because 7{q = 7eq and Zk 1 zk Zk 1 Sik forall i, we
know every firm’s payoff does not change under (p’,q’) compared
with that under (p, q). Then, we check whether any firm can get
more payoff by deviating to (p”’,q"") from (p’,q’).

First, we consider the case where the firm i* deviates. In this case,
the firm i* is the only firm that changes her bid from the Nash equi-
librium (p, q) to (p”’, q"’). By the definition of the Nash equilibrium
(p, q), the firm i* cannot get more payoff under (p”’,q’’) than that
under (p, q), which is also equal to her payoff under (p’, q’). Hence,
we conclude that the firm i* cannot get more payoff by deviating
from (p’,q’).

Second, we consider the case where another firm i # i* deviates.
The whole deviation process from (p, q) to (p”’,q’’) is the same as
what described in Lemma C.7. As a result, the payoff of the firm
i under (p”’, q”’) is not more than that under (p, q), which is also
equal to her payoff under (p’, q’). This means that any firm i # i*
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cannot get more payoff by deviating from (p’, q’). The conclusion
of this corollary thus follows. O

LemMmA C.9. For any real numbers a, b, x,y thatb > a > 0, x > 0,
andy > 0, we must have

min {ab—y, a} < min{%, a +x},
where equality holds if and only ifx =0 ora="b andy < b.

PRrOOF. Since a < a + x (equality holds when x = 0), it only

remains to show that %y < M. We have

c latx)y
b = Thex
g<a+x
b~ b+x

— a(lb+x) <bla+x)
 (a-b)x<0.

Because a < b and x > 0, we do have (a — b)x < 0 (equality holds

if and only if a = 0 or x = 0).

(a+x)y
b+x

When x = 0, equality obviously holds. When x # 0, equality holds

if and only if 5= 2y (ab:x) Y nd < a, which implies a = b and

y < b. This lemma thus follows. O

Now, we check the condition of min { %, a} = min {

ProrosITION C.10. Assume that (p,q) is a Nash equilibrium.
Suppose that a firm i* has at least one bid with the bidding price
higher or equal than meq. Let k* = min{k : pjj > 7eq}. Consider
the new bidding strategy (p’, q’) when the firm i* bids as follows

’ L%
K. =K%,

p;*,k* = Tegs qz{*,k* = Yksk* 9t ko

pi,*,k = Pit koo q;*,k =gk, forallk < k¥,

and other firms’ bids do not change. Then, the bidding strategy (p’,q’)
is an outcome-equivalent Nash equilibrium.

ProoF. From the assumptions, the firm i* bids more aggressively.
Note that meq must belong to {p;x : forall j, k} U {0}, and thus
the new bid satisfies Definition C.3. Specifically, we have

’
dir = Z 9ik>
{i,k: p;,k<”‘fq} {ik: pix<meq}
’
dik 2 Z 9ik-
{i’k: P;kzﬂeq} {i’k: Pi‘k:”eq}

By Lemma C. 5(b) and C.5(d), we have Jze’q = JTeq. It only remains to

show that Zk 1 Zk 1 Si k> for all i First, we have s/ s;

=4ik =

sj  forall (i, k) thatpl < Teq-Second, we prove 3 (. pi)k_ﬂeq} Sik =

2 {k: P=rle) sl.’,k for all i by three steps’.

Step 1: We prove that, if there exists no [ such that p;« ; =
thens*k* = Oands = s;x = 0 forall i, k such that p; ;. =
Towards this end, note that because (p, q) is a Nash equilibrium,

Tleqs
Teq-

"Note that for every firm i, both {k : p;x = Teq} and {k : p}, = Jréq} have at most
one element, and (one or both) could be empty for some firms.

a+x}.
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the firm i*’s payoff under (p’, q") should be less than or equal to
her payoff under (p, q). In other words, we have

’ ’ ’
Teq | S e + Si k

{k: pl o <mlq}

< Tleq Si*k
(ks pi e <7req }

= g =0 (because ﬂeq = Tleq)

= sl. i = 0 for all i, k such that pi,k =Ty

2

- ’
Lk: Pl <Teq

and thus D(7q) = q

(because of Lemma C.5(e))

2

Lk: pik<Teq

== D(”eq) = qik

’ ’ .
(because meq = 7eq and g; g = 9 for all i, k

2.

Lk pig<teq

that p; ¢ < 7req)

2

Lk: pig<teq

d Sik = 9ik = D(”eq)

M K;
> Z:‘ kZ: si k. (by Lemma C.5(c))
=1 k=1

= s, = 0 for all i, k such that p; ;. = 7eq.

In conclusion, we have s’, i = Sik = 0forall i, k such

i and s/
i,

that Pik = Tleq-
Step 2: We prove that, if there exists [ such that p;« ; = 7eq, then
Sl g = Si=1- Since there exists at most one bid of user i* at 7eq,
we must have [ = k*. Thus, it is equivalent to prove sl; o = Sivkr

To that end, we define x = q’ e T ik Note that x > 0 because

4} g = Zk=k* 9iv k- By Eq. (7). we have
S g

ql{*,k* (D(”éq) - Z{i,k: p;.‘k<n'éq} q;,k)

’

=min ; ; s Qe g
L{ik: ply=nlg, i#i') Dy + Do g
) qlf*,k* (D(”eq) - Z{i,k: Pik<Teq} qi,k)
=min s Qo g
Z{i,k; Pik=rteq, i#i*} ik T q;*,k* ik
(since ¢y = meq, and g; . = q; . for all i # i)

(qi k= +x) (D(ﬂeq) = 2 {ik: pig<req} qi,k)

Z{ik: pig=meq} ik +X

qi*,k* + x}

qi* k* (D(ﬂeq) = 2 {ik: pi<iteq} qi,k)

>

=min {

> min

5 q*,k*
Y ik pir=reg} Dik !

(applying Lemma C.9)
=si~k (By Eq. (7).



Distribution-Level Markets under High Renewable Energy Penetration

Then, it only remains to show si’* o S
Nash equilibrium, the firm i*’s payoff under (p’, q”") should be less

than or equal to her payoff under (p, q). In other words, we have

s;* k+- Because (p,q) is a

7
Si k
{k: Pl <7q}

’ ’
”eq si*,k* +

< Tleq si*,k* + Si*’k

{k: pix g <tTeq }

4
= Tleq si*,k* + qi* k

{k7 pl*,k<”eq}

2

{k: Pi*k <7req}

< Tleq | Sisk+ + qi* k

’
= Sp e S Sit -

Thus, we must have si’)k* = Sj o, L, si’)k* =S

Step 3: we prove that, if there exists [ such that p;: | = req,
then slf’ ¢ = Sik foralli k such that plf’ k = Teq- By the definition
of k*, we have I = k*. By Step 2, we have Si/*,k* = sj g+ Let x =
q;*,k* — qij+ 2 0. Define y = D(7eq) = X{ik: p;j<rmeq) ik If
y = 0, by Lemma C.5(c), we have Sz{,k = s; = 0 for all i, k such that
plf’ & = Teq- Thus, it only remains to consider the situation of y > 0.
From the conclusion of Step 2, we have

—
Stk = Spi oo

which implies

9i* k* (D(”eq) = 2 {ik: pig<req) qi,k)

min s Qi k>
Z{i,k: Pik=meq} Aik
) q;*,k* (D(”éq) - Z{i,k: Pip<meq} q;,k) ,
= min ; s Qe (5
Z{ik: pl=rty) Dik
ie.,
qi* k* (D(neq) = 2 {ik: pig<req} qi,k)
min s it k>

2{ik: pig=req} ik

5

| { (@i +2) (DCTeq) = E ik pry<m) 91k
= min

2 {ik: Pik=meq} ik TX

qi*,k* + x},

Applying Lemma C.9, we have

x=00r g+ = Qi k-

{i.k: Pi,k:ﬂ'eq}
If x = 0, then (p, q) and (p’,q’)) are exactly the same. If g;+ j» =
2{ik: pix=req} dik> then (i*,k") is the only pair (i, k) that p; k
Teq- In both cases, we always have s;, = s;x for all i, k that p

k
’
Mg
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By Step 1 to 3, we have 3 . Pik=req) Sik = 2k P =) Sz{,k for

all i. Notice that ¥ (x. p, >} Sik = 0= Xk >} s; forall i.
K] : ’ ’

Thus, we have 3, 7| Sz{,k = Zf’zl s; x for all i. By Corollary C.8, we

conclude that (p’, q’) is an outcome-equivalent Nash equilibrium.
u]

ProrositiOoN C.11. Assume that (p,q) is a Nash equilibrium.
Suppose that a firm i* has at least one bid with the bidding price lower
than meq and higher than 0. Let k* = min{k : 0 < p; < neq}g.
Consider the new bidding strategy (p’,q’) when the firm i* bids as
follows

K], = Kp = (k* = 1),
Py =0 qhy = Zke(njuik ) 9i ko
Pi g = Pirkerkr—1> Qi g = Qi ke —1> for allk = 2.

and other firms’ bids do not change. Then, the new bidding strategy
(p’,q’) is an outcome-equivalent Nash equilibrium.

Proor. By assumptions, the firm i* bids more aggressively and
we have

Gp= D, ik
{i,k: P;’k<ﬂeq} {ik: pig<meq}

QG = ik
{i,k: p;yk=n'eq} {i.k: pix=rreq}

Thus, by Lemma C.5(b)(d), we have néq = fleq. For any firm i, we
have

’
4 = Z 9ik>
{k: P;k<”eq} {k: pik<treq}
’ p—
9k =41 .
k: P;-)kzneq I: Pii=Teq

Thus, by Algorithm 2, for any firm i, we have

K Ki
7’
k=1 k=1

By Corollary C.8, the new bidding strategy (p’, q’) is an outcome-
equivalent Nash equilibrium. O

C.3 Proof of Theorem C.2

Now we are ready to prove Theorem C.2.

Proor. At any Nash equilibrium (p, q) in the multi-block-bid
system, if a firm has more than 1 bid with the bidding price lower
than 7req, then we can repeatedly apply Proposition C.11 to combine
all such bids with prices below 7eq to one bid with the price 0. If a
firm has any bid with the price higher than or equal to 7eq, then
we can apply Proposition C.10 to merge such bids into one bid at
the price 7eq. Each step in those changes produces an outcome-
equivalent Nash equilibrium. At the end, each firm only has at most
two bids, one at the price 7eq and another at the price 0. The result
of this theorem thus follows. O

8Note that, because there can be only one bid at price zero, k* can only take values of
either 1 or 2. Specifically, k* = 2 when p;+« ; = 0, and k* = 1 when p;« ; > 0.
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C.4 Preparation for the proof of Theorem 5.2

By Theorem C.2, when analyzing the Nash equilibrium (p, q) of
the market, we can restrict our attention to K; < 2, p; x € {0, 7eq}
for all i, k. We first obtain the following lemma on the relation-
ship between the sold amount and the market price at any Nash
equilibrium.

LEmma C.12. D! (Z?ﬁl Zf;l s,-,k) = TTeq at any Nash equilib-
rium (p, q).

Proor. We prove by contradiction. Suppose on the contrary that
D! (Z{\il ZIk(’zl Si,k) # Teq. Since D_l(D(rreq)) = Teq, it implies
that we must have D(7eq) # Z?ﬁl ZIk(il s; k- By Lemma C.5(c), we

must have D(7eq) > Z?;Il ZIk(i1 s; k- Recall from Theorem C.2 that
we can restrict our attention to outcome-equivalent Nash equi-
librium such that p; ;. € {0, 7eq} for all i and for all k. By Lemma
C.5(c), we must have s; ;. = g;  for all i, k. Thus, the payoff of the

firm i equals 7eq Zfi1 qi k- We also have

M K;
D(rmeq) > Z Z Sik
i=1 k=1
M K;
= D(meq) > Z Z dik
i=1 k=1
K
= D(7eq) > C (recall that Z gix = Ci).
k=1

We first show that there must exist 7o such that 7o > 7req and D(7req) >

D(mp) > C. (Recall that we have shown in Appendix B.3 that D(r)
is strictly monotone decreasing when D(r) > 0.) To see this, sup-
pose on the contrary that D(rr) < C for all 7 > 7eq. Then, because
we have shown that D(7eq) > C, D(:) must be discontinuous at

Tleq- Thus, we have 7req = D1(c) =D! (Z?ﬁl Zlk(;l Si,k), which

contradicts our initial assumption that D! (Zi\i 1 Zlk(il Si,k) +
Teq- Thus, there must exist 7o such that 7y > 7eq and D(7eq) >
D(n’o) > C.

Then, we let a firm i* deviate to another bidding strategy (p’, q")
that Kl.'* =1, plf*’l = 1o, qlf*’l = C; (i.e., bidding all her amount at
the price 7). Since 1y > 7eq and p{,k = pik € {0, meq} forall i #
i* and for all k, we have plf’ ¢ S o for all i and for all k. Thus, re-

calling that Zlkil q; . = Ci, we then have

M K

Z ql{,k = Z Z ql{,k =C.

{ik: pl, <m} i=1 k=1
Because D(79) > C, we then have D(m) > C = X ;. Pl<m) q;’k.
By Lemma C.5(a), we have ﬂéq > 7. Since only the firm i* bids at
the price mp and other firms bids at Teq OF 0, by Algorithm 1, we
have m{y = mo. Because D(m0) > 2 (i plp<m) q;,k > Yik s;,k’ by
Lemma C.5(c), we have sl@ L= q;* | = Ci. Thus, the profit of the firm
i* under (p’,q’) equals to 7{,C; = mCi > 7req Zlk(;l gi* k> i.e., the
new profit is greater than the profit of the original bidding strategy
(p, q)- This contradicts the assumption that the original bidding
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strategy is a Nash equilibrium. The conclusion of this lemma thus
follows. O

Recall that in Theorem 5.2, we want to show that Zfil Sik =
Zlkzl iy = C; for all i and 7req = D71(C). Lemma C.12 implies that
Teq = D~1(C) would automatically hold if Zlk(lzl Sik = 2115;1 Qik =
C; for all i. Therefore, in the rest of the proof, we only need to focus

. K; K; .
on proving 37 sk = 27, g; = G forall i.

ProrosiTION C.13. IfC < D(maxy 7rp), then the outcome of the
market could only be the outcome described in Theorem 5.2. Further,
at any Nash equilibrium, we must have 7eq = maxy 7p.

PROOF. Step 1: We prove that the bidding strategy (p, q) defined
as K; =1, gi1 = G, pi,1 = maxy 7, for all i is a Nash equilibrium.
By Algorithm 1, we have 7eq = maxy, 7,. By Algorithm 2, we have
si1 = qi,1 = C; for all i. Thus, the payoff of the firm i is C; maxy, 7p.
Because D(r) = 0 for all £ > maxy, 7, we know the firm i has al-
ready gotten the maximum payoff compared to any bidding strategy.
Thus, the bidding strategy (p, q) is a Nash equilibrium.

Step 2: We prove that, if a firm i* bids as Kj+ = 1, p;* 1 = maxy 7,
and g;+; = Cj+, then we must have 7eq = max, 7, and s;+ 1 = Cj.
Because D(rr) = 0 forall x > maxy 7, and D(max, 7,) > C,
by Lemma C.5(a), we have meq = maxy, 7,. Now, it remains to
show that s;« 1 = C;+. To that end, because C < D(maxy, 7,) and
Teq = Maxy 7p, we then have

D(rmeq) 2 C

Ed D(”eq) = Z qik + Z qik
{i.k: Pi,k<”eq} {i.k: Pi,k:”eq}

D(”eq) - Z{i,k: Pik<meq} Aik -

ik pig=rteq} Dick -
By Eq. (7), we have s;+ 1 = ¢4+ 1 = Cj+.

Step 3: We prove that at any Nash equilibrium, we must have
Sik = qik for all i, k, and 7eq = maxy, 7,. We prove by contradic-
tion. Suppose on the contrary that, at a Nash equilibrium, there
exist i*, k* such that s jx < gj+ g+ Of 7Teq # maxy 7. Then the firm
i*’s payoff is s;+ g Teq < Cj maxy 7. Now, let the firm i* deviates to
the bidding strategy described in Step 2. Then, the firm i*’s payoff
under the new bidding strategy is C; maxy, 7, which is larger than
her payoff under the original bidding strategy. This contradicts the
assumption that the original bidding strategy is a Nash equilibrium.
Thus, we must have s; . = g; . for all i, k and 7eq = max,, 7, at any
Nash equilibrium. The result of the proposition thus follows. O

Proposition C.13 shows that if the total panel area is scarce, then
every firm leases out all of her solar panels, and thus the market
outcome must be the outcome described in Theorem 5.2.

By Proposition C.13, to finish the proof of Theorem 5.2, we only
need to consider the case when C > D(max, 7,), i.e., the total
panel area is plentiful.

C.5 Proof of Theorem 5.2

We first prove the following lemma.
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LEmMmA C.14. Let a, b, c,r,s be five positive real numbers. If% <
min {% 1} and b > a, then we must have

Proor. We consider two cases.
Case 1: 4 < 1. Then, we have ¥ < min{%, l} = 4. Since

b b-a_ b b—a_1
a c a a
we have
b—a
e b-a
b_b-a ™ ¢
a c
Then, because e* > 1 + x for all x € R, we have
b;a>1 b—a>1 b%a %
c =
¢ T T T _ba b_ba
a c a c
_ 1
- ab-a’
1-%
which implies
_b-=a ab-a b-a
re ¢ <r—r— <r-s
c b
s a a
(since - < —, thenr— > s).
r-c c

Case 2: 2 > 1. Then, we have 3 < min{%, 1} =1.Letc’=a>c.
We have

_b-a

e ¢ >e ¢ .

Thus, it is sufficient to show that
b—a b-

_b-a s
r— s>re @ forall- <1,
r

which is true by case 1as & = 1.
In conclusion, the result of this lemma thus follows. ]

Now, we start to prove Theorem 5.2.

ProoF oF THEOREM 5.2. Before entering the main part of our
proof, we first show that eq > 0 for any Nash equilibrium. Because
max; C; < D' (C)

C = gy
then have 7eq = D_I(Z?il Zlk(;l Sik) = D) > 0.

We divide the proof into two parts according to the definition
of the desired outcome. In Part 1, we prove the existence of Nash
equilibrium. In Part 2, we prove the statements for any Nash equi-
librium. (Notice that in Section 5.4, we omit Part 1 and provide the
proof sketch of only the main steps of Part 2.)

Part 1: we show that the bidding strategy (p, q) defined as K; =
1, pi1 = D71(C), gi1 = C; for all i is a Nash equilibrium. By Algo-
rithm 1 and 2, we must have meq = D1(C) and si1 = Cj forall i.
For any firm j, the payoff equals to 77eqC;. We now prove by contra-
diction that (p, q) is a Nash equilibrium. Suppose on the contrary
that the current bidding strategy is not a Nash equilibrium. Then,
there must exist a firm j that can deviate to another bidding strat-
egy (p’,q’) to increase her payoff. Thus, we must have 7y > 7eq
because the new sold amount of the firm j cannot exceed C;. For

, we must have D! (C) > 0. By Lemma C.12, we
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any other firm i # j, since p;, = pi,1 = Teq < 7¢q, by Algorithm 2,
we must have s/, = g; ;1. Thus, by Lemma C.5(c), we have

K’
J
/ !’ !
D sh <Dy = D sy
k=1

i%)

=D(m¢g) - Z i1
i%)

= D(néq) -C+C;j.

On the one hand, since the new payoff of the firm j is larger than
her old payoff, we then have

’
Kj

’ ’
Teq E Sik > Teqqiit
k=1

= Ife/q (D(ll’éq) -C+ Cj) — TeqCj > 0
= (1q — Teq)Cj + g (D(Jféq) - C) >0
Mq — Teq A

e (18)
€q

= D(rq) > C~

On the other hand, by Corollary B.9, we have

néq —Teq

D(Jzéq) < Ce 7Y

o ¢ iCi o T ¢
Because ?’ < 1 and FJ < %lc’ < Eﬂ;” we must have & <
min {;e;l/ 1}. Applying Lemma C.14, we have

9

’
bty < T
Teq

This contradicts Eq. (18). Thus, we have proven that the original
bidding strategy (p, q) is a Nash equilibrium.

Part 2: we next prove that, at any Nash equilibrium, we must have
Sik = q; x for all i, k. We roughly follow the main steps sketched in
Section 5.4. We prove by contradiction. Suppose on the contrary
that at a Nash equilibrium (p, q), there exists at least one firm with
an unsold/partly-sold bid, i.e.,

In the following, we will consider another bidding strategy (p’, q")
that a carefully-chosen firm j deviates from the original bidding
strategy (p,q) to another strategy with Kj’ =1, p;.,l = ¥, and
q;.’l = Cj. We find j and 7* through the following steps 1 and 2.

Ky

PETE Ci*} 0.

k=1

We then get some useful properties in steps 3, 4 and 5. In the end,
we establish the contradiction to complete the proof in step 6.
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Step 1: We prove that there exists a firm j such that }; ki 1Sk <
K;

. Zkil Sik

C j and T”eq)

clusion () of Section 5.4.) By Lemma C.5(c), we must have

M K; K
D(req) 2 ZZ Zsi*’k
i=1 k=1 k

K =
i 25 s gy | R

2

. K;
{l: pIN si,k=C,~}

<Cf

. (Notice that this step is mentioned in con-

+ Ci,

which implies that

K+
Zk:l Si* k <1
D(feq) - 3, i, G ©
{i*: ng Si*,k<ci*} e {“ Zk:l sik=C, } !
On the other hand, we have
C= > Ci + > G

K f
i 28 siepe<Car | {i 24, su=ci
o

— =1.

C—Z{

. ki Ci
zzzkéls,«,k=Cl—} t

K;
{i*: Zk:; six | <Cyx }

. . K;
As a result, there must exist a firm j such that Zkil sjk <Cj and

K
Zkil Sj,k
D(rmeq) — . C;
( eq) Z{i: Zlkzl Si,k:Ci} i
C.
STy c
{ii Zﬁl Si,k:Ci} !
K;
- Z Sj’k C- Z Ci
= fi 255 e
<Cj|D(rg)- D, G
{ii Zlkzl Si,kZCi}
K; Kj
= Zsj’k C < CjD(meq) (because Zsj’k <Cj)
k=1 k=1
K.
Zkil sj,k < &
D(ﬂ'eq) - C

Step 2: We let the firm j found in step 1 change her bids in the way
that we describe earlier (i.e., K]’ =1, p;.l =7*, and q;.l =Cj).In

this step, we will prove that for all 7* € (w, neq), the mar-
J

ket outcome must satisfy s ;',1 < Cj. We prove by contradiction. Sup-

Kj
. . Tl Z1Sj
pose on the contrary that there exists a price = € (% Jreq)
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such that s/, 1=Cj when the firm bids p 1 = 7. The firm j’s pay-
off with (p q’) must then be equal to or greater than zC;. Since

TTe, Z 1Sk
> q Ck—l

, we then have

K

7'[Cj > Teq Z Sj ks
k=1

i.e, the firm j’s payoff under (p’, q") is larger than that under (p, q).

This contradicts the assumption that (p, q) is a Nash equilibrium.
Kj )

Thus, we have proven that, for all 7% € w, ﬂeq), the
J

1<Cj.

market outcome under the new bid must satisfy s;.
Step 3: We now let firm j found in step 1 change her bid in

the way that we describe earlier, with 7* € (w, neq).
J

In this step, we will prove that the market outcome must satisfy

mq = m*. By Step 2, we have sj’.1 < Cj = q;. 1+ Thus, we have
mq < p;.xl = m*. Because p;,k € {0, 7%, meq} for all (i, k) (notice

K;

J
Teq Dpiq Sik .
k= R C" 1% > 0 and we have restricted our

that 7eq > 7* >
attention to two-block b1ds by Theorem C.2), we have

2

{ik: pl, =0}

r ’
9ix = 9; k

{i,k: p;,k<7r*}
dik

{ik: pix=0, i#j}

= dik

{i,k: Pi,kzo}

< g; i (because 7eq > 0)

{i.k: pik <7feq}

< D(7eq) (by Lemma C.5(a))

< D(r%).

Applying Lemma C.5(a), we have ire’q > 7*. As aresult, we conclude
that ¢y = 7*.

. K; .
Step 4: Following step 3, we prove that s;.’l =20 Sjk 2 D(r") -

Z?ﬁl Zfil si k- By step 2, we know that s;.l < Cj. By step 3, we
know 7eq = 7*. (Notice that this step is mentioned in conclusion

® of Sectlon 5.4.) Thus, by Lemma C.5(c), we must have D(rx*) =
pyd Z P

As a result, we have

M K; M K] M K;
LCOEDIDITEDIPICTEDIPILT:
i=1 k=1 i=1 k=1 i=1 k=1
Kj Kl, K;
— ’
=817 2 SikT Sik LSk
k=1 i#j \k=1 k=1
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Because ﬂéq =" € (0, eq) and the bidding strategy of any other
firm i # j does not deviate, we have

Ki
Zsi’,k = Z qu,k = Z Sik
k=1 {k: p} =0} {k: pir=0}
K;
< six foralli # j.
k=1

Thus, we have 5;',1 - Zlkzl sjk = D(r*) - Z?;Il 2115;1 Sik-

Step 5: We prove that Teq > D1 (C) by contradiction. Suppose
on the contrary that meq < D71(C). Thus, we have D(7eq) 2
D (DY) = C > Z?il Zlk(;l s k- By Lemma C.5(c), we have
Sik = qik for all i, k (because p; i € {0, meq}). That contradicts the
assumption that the firm j has an unsold/partly-sold bid. Thus, we
have proven that 7eq > D~1(C). (Notice that Step 5 is mentioned
in conclusion @ of Section 5.4.)

Step 6: We establish the contradiction for the initial assump-
tion of the whole Part 2 that there exists at least one firm with
an unsold/partly-sold bid at (p, q). Following the strategy (p’,q)
stated in step 3, because (p, q) is a Nash equilibrium, we have

K/
E
T Sjq < ﬂquSj’k
k=1
K;

(req = 7") Z Sjk
k=1
M K;
DIESEDY Zs,-,k)

i=1 k=1
(by step 4)

K;

< (freq — ") Z Sjk

k=1

:}7[*

K
== (D(n'*) - D(”eq)) < (ﬂeq - ”*) Z Sjk
k=1
(by Lemma C.5(c))

K.
D(r*) - D(ﬂ'eq) < Teq — 7 ) Zkil Sjk
D(ﬂeq) B ¥ D(ﬂ'eq)

K
Note that the last inequality holds for any 7* € (%jls”k,

Letting 7" approach 7q, we have

K;
Zkil Sj,k
D(”eq)

OTteq | Cj
“ EJ (by step 1)

OTleq

'3D(7Teq)
D(”eq)

Tleq

IA

ﬂeq
Imeq| D71 (C)

gy

IN

Teq
OTleq

T
- (by step 5),
gy

<

Tleq

which contradicts Proposition 5.1.
In conclusion, the result stated in this theorem thus holds. O
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D SITUATION WITH HETEROGENEOUS G;(t)

In this section, we discuss briefly the situation when the efficiency
of solar generation G(t) is not the same for all firms, in which case
we use G;(t) to denote the generation per unit size of solar panel
by firm i at time ¢. Such a situation occurs when the firms are not
receiving the same level of irradiance, or they use solar panels with
different conversion efficiency, or some prosumers use the solar
generation for their own demand first (before selling the remaining
generation to the market). We note that this situation has no impact
to our results for real-time markets in Section 4. However, it does
affect the rental markets in Section 5, as a consumer renting from
a firm with low G;(t) will receive less solar energy in real-time,
which complicates the calculation of the panel demand function in
4).

To resolve this issue, we propose that the rental market operator
introduces a normalization procedure to complement the rental
market mechanism presented in Section 5. This normalization pro-
cedure calculates an “effective panel size” C; for each firm based on
her historical generation efficiency G;(t) and her declared panel
size C, and calculates a common efficiency G(t) based on the gen-
eration efficiency of all firms in the market. Afterwards, the rental
markets can operate based on the effective panel size C; and com-
mon/normalized efficiency G(t) only. The high-level goals of this
normalization procedure are the following. First, firms with higher
(correspondingly, lower) G;(¢) will have larger (correspondingly,
smaller) effective panel sizes C; than their declared panel sizes C},
so that the firms are compensated by their actual solar generation,
not merely by what panel size they declare. Second, regardless of
from which firm a consumer rents the solar panel from, the con-
sumer will receive the same amount of solar energy in real-time
per unit of effective panel size. Third, the normalized G(t) and
the effective panel sizes C] are calculated in such a way that the
total available solar energy to the market at each time equals to
the actual solar generation (see (19) below), so that the normalized
procedure does not lead to any surplus/deficit of solar energy to
the market operator.

Specifically, we propose the following normalization procedure:

(1) The market operator estimates the overall efficiency of each
firm’s solar panels based on historical data over a past in-
terval of length T. Recall that G;(t) denote the generation
per unit area of firm i’s solar panel at time t. The overall
efficiency e; of firm i is estimated by the average of G;(t)
over the past interval, i.e.,

1 T
e = ¥‘/()' Gi(t)dt.

The market operator rates the effective panel size of each
firm i by her overall efficiency e;. Specifically, the market
operator chooses a baseline efficiency eg in advance. (For
example, ey could be the expected overall efficiency of a
typical panel over the past interval.) Denote firm i’s declared
panel size as C] . Its effective panel size can then be calculated
as

e
Ci=—Cl.
€0
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Note that this formula ensures that firms with higher gener-
ation efficiency on average will be rated with larger effective
panel sizes.

(3) The market operator calculates the normalized generation
efficiency (per unit of effective panel size) for all firms in the
market as

oM Giter
Zgl Ci

Note that this formula guarantees that the total generation
calculated by the normalized G(¢) and the effective panel
sizes equlas to the actual total generation at each time, i.e.,

M M
G(t) Z Ci = Z Gi(t)Cl.
i=1 i=1

Once C; and G(t) are provided by the market operator, the rental
market will operate in the same way as we presented in Section 5
for the next interval of length T. Specifically, the consumers will
use the historical data of G(t) to estimate its future probability dis-
tribution, assuming that the future time interval will have a similar
distribution as the previous interval. Based on this distribution of
G(t), the consumers can calculate their panel demand functions
in (4). Similarly, the firms submit their bids to the market using
only their effective panel sizes. The rental market operator then
determines, for the next interval of length T, the rental price (per
unit of effective panel size), and settles the payment between firms
and consumers based on the effective panel sizes that are cleared. In
real-time, the market operator will distribute the solar generation
according to the effective panel size. Specifically, at time ¢ in the
next interval of length T, we still denote G;(t) as the generation
per unit area of firm i’s solar panel at time ¢. The total generation

G(t) =

(19)

is then Z{\il Gi(t)C}. For each consumer n renting cp, units of ef-
fective panel, she will then “be credited” with the amount of solar
generation equal to

Cn

M
Z Gi(1)C}.
i=1

M
Zi:l Ci i—

In this way, the consumer will receive the same amount of solar
energy per unit of effective panel size, regardless of from which
firm she rents. At the end of this interval of length T, the above
normalized procedure is repeated to update C; and G(t) for the
next interval of rental market operation.

E SYSTEM SETUP OF FIG. 6

In this part, we describe the system setup of the forward energy
market used in Fig. 6, and explain how to calculate the solar gen-
eration amount that is utilized in both the rental market and the
forward energy market.

We first explain the market clearing mechanism of the forward
energy market. For each firm i, the supply curve is determined by

si() = argmax (x7 — mgE[x — C;G(1)]F) .

Due to our assumption that all solar panels have the same genera-
tion efficiency G(t), we can easily prove that s;(7r) is proportional

156

Peizhong Ju, Xiaojun Lin, and Jianwei Huang.

to C;. Thus, the aggregate supply curve is then
M
S(r) = Z si() = arg max (xm — mgE[x - CG(1)]*).
i=1 x
Similarly, for the customers side, their aggregate demand curve is
N
D(r) = Z di(m) = argmin (x7 + mgB[L(t) - x]*).
i=1 x
Thus, when G(t) and L(t) are uniformly distributed in [a, b], we
have

S(ﬂ)zc-((b—a)-”£+a), D(n):b—(b—a)~”£.
g9 g

The market price 7req is determined by the intersection of the aggre-
gate supply curve and the aggregate demand curve, i.e., S(7eq) =

T 1 b—aC
D(7eq). We thus get ﬂigq = o e

- C+1

We can then calculate the the expected amount of solar gener-
ation that is used. For the forward energy market (without any
additional real-time market), the used generation amount can be
calculated by

E[min{CG(t), D(eq), L(1)}].

In comparison, since the rental market experiences the outcome
described in Theorem 5.2, we can calculate its expected used gener-
ation amount by

E[min{CG(t), L(t)}].

The curves in Fig. 6 correspond to these two expressions, assuming
the two different settings of correlation between L(t) and G(t)
described in Section 5.6.
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