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ABSTRACT

We study the market structure for emerging distribution-level en-

ergy markets with high renewable energy penetration. Renewable

generation is known to be uncertain and has a close-to-zero mar-

ginal cost. In this paper, we use solar energy as an example of

such zero-marginal-cost resources for our focused study. We first

show that, under high penetration of solar generation, the clas-

sical real-time market mechanism can either exhibit significant

price-volatility (when each firm is not allowed to vary the supply

quantity), or induce price-fixing (when each firm is allowed to vary

the supply quantity), the latter of which leads to extreme unfair-

ness of surplus division. To overcome these issues, we propose a

new rental-market mechanism that trades the usage-right of solar

panels instead of real-time solar energy. We show that the rental

market produces a stable and unique price (therefore eliminating

price-volatility), maintains positive surplus for both consumers and

firms (therefore eliminating price-fixing), and achieves the same

social welfare as the traditional real-time market. A key insight

is that rental markets turn uncertainty of renewable generation

from a detrimental factor (that leads to price-volatility in real-time

markets) to a beneficial factor (that increases demand elasticity and

contributes to the desirable rental-market outcomes).
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1 INTRODUCTION

1.1 Motivation

As the deployment of renewable generation at the distribution level

continues to rise [9, 38], there are significant interests in developing

a new distribution-level electricity market that allows renewable-

energy producers and electricity consumers to directly trade renew-

able energy [29]. In today’s power systems, renewable generation

at the distribution level has to be either consumed locally, or sold

to the utility according to a combination of net-metering/feed-in-

tariff, connection charges, and/or peak-based demand charges. At

the same time, consumers are charged by the utility via a separate

set of retail prices. These prices and tariffs are often decided by

a consortium of utility, government regulators, and/or consumer

interest groups. However, since their financial interests are often

conflicting with each other, determining the łright" price/charges

has already become a fierce political fight [14, 27]. With the intro-

duction of new distribution-level markets, the renewable producers

and electricity consumers will be able to directly trade energy with

each other [10, 17, 24, 26, 36, 39]. The hope is that, by its łinvisible

hand", a well-designed market may be more effective in discovering

the łrightž valuation for renewable energy based on the market

condition.

Most studies of distributed-level markets (including the recent

pilot program in [24]) have focused on real-time markets [10, 17, 26,

36, 39], which replicate the real-time markets at the transmission-

level. Real-time markets set prices based on discovering the lowest

łmarginal cost" of generation to meet demand. Such prices can

be shown to maximize the total social surplus of the system, and

is thus łefficientž [5]. However, from a market designer’s point

of view, efficiency is usually not the only consideration. In fact,

as we will show shortly, due to the much higher penetration of

zero-marginal-cost renewable generation, real-time markets at the

distribution level tend to produce multiple equilibrium prices, all

of which are efficient. Thus, it is no longer clear why pricing based

on the marginal cost is the most appealing option.

In addition to efficiency, there are a few other equally important

considerations, including: (i) Will the social surplus be fairly dis-

tributed between consumers and producers [19]? (ii) Is the market

outcome unique and predictable [21]? (iii) Is the market price stable

and easy to predict [12]? To the best of our knowledge, there does

not exist a comprehensive study of the distribution-level markets

under these more comprehensive lenses. This motivates our study
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Figure 1: (a) Relatively elastic supply and demand functions

assumed in classical market theory lead to a unique mar-

ket price that maximizes the social surplus. (b) With zero-

marginal-cost supply and highly-inelastic demand, any point

𝐷 between 𝐴 and 𝐵 maximizes the social surplus.

in this paper, which hopes to provide some preliminary understand-

ings of these important considerations.

1.2 Key results

Throughout the rest of the paper, we will use solar energy as an

example of such zero-marginal-cost resources for our focused study

(while many of the insights could also be extended to other types

of renewable energy). Motivated by the above questions, we first

study the traditional real-time markets, and reveal their deficiencies

when facing the zero marginal cost of solar generation and inelastic

demand. This then motivates us to propose the new rental market

with more desirable features. Table 1 summarizes our key results.

Real-time markets: We focus on the setting where solar gener-

ation can be predicted quite accurately at the beginning of each

time-interval of real-time markets [13, 35], the marginal cost of

solar producers is zero [7] (which reflects that fact that solar gener-

ation incurs high investment cost but low production cost), and the

consumer (if she wishes) can always buy electricity from the utility

at a fixed retail price 𝜋𝑔 . Prior studies have shown that, due to the

uncertainty and variability of solar generation, the market prices

will fluctuate wildly between 0 and 𝜋𝑔 , depending on whether the

total solar generation is higher or lower than the total electricity

demand [20, 32]. We advance this line of study by further studying

how such price volatility will incentivize solar producers to with-

hold supply. In particular, when the total supply is higher than the

demand, the solar producers will earn zero revenue since the price

becomes 0. As a result, they will have a strong incentive to with-

hold their supply and raise the price. Indeed, in this paper we show

that, once the solar producers can withhold supply, significantly

different outcomes will arise, which can be quite unpredictable and

unfair (see Table 1).

The role of zero marginal cost and inelastic demand: The underly-

ing reason for the above highly-undesirable outcome is the combi-

nation of (i) zero marginal cost of solar producers, and (ii) inelasic

demand. In classical market design theory, one would expect a

supply curve with an upward slope and a demand curve with a

downward slope (see Fig. 1(a)). As a result, there is only one point

where the demand meets the supply, which maximizes the social

surplus. However, when the marginal cost of the supply is zero and

the demand is fixed, both the supply and demand curves become

highly-inelastic (see Fig. 1(b)). Note that although the intersection

point A of the supply and demand curves still maximizes the so-

cial surplus, any points between A and B will also do! Further, the

suppliers have every incentive to drive the equilibrum to B, so that

they earn the entire social surplus and drive the consumer surplus

to zero.

Rental markets: In view of the above issues of real-time markets,

we then propose an alternate form of distribution-level markets,

which we refer to as rental markets. In such a rental market, con-

sumers rent a certain amount of solar panels from solar producers

in advance. Then, in real time, the consumer gets to use the elec-

tricity generated from the rented panels at no addition costs. We

then study the strategic behavior of solar producers and the re-

sulting rental price, and show the following desirable results. First,

the rental price is naturally stable (i.e., non-volatile) as it is not

immediately affected by real-time conditions. Second, as long as the

solar generation is variable, the rental demand function becomes

relatively elastic (i.e., having a downward slope as in Fig. 1(a)). Thus,

once the number of producers is larger than a threshold (which is

function of the elasticity of the rental demand function), a unique

outcome arises, which is always equal to the outcome of perfect

competition (i.e, the point C in Fig. 1(a)) [34]. Third, at this unique

market outcome, both the consumer surplus and producer surplus

are not zero. Last but not least, this unique outcome also maximizes

the social welfare.

The role of solar variability: A key insight revealed from our

analysis is how the variability of solar generation will affect the

market outcome under different market rules. Recall that in real-

time markets, since we assume that solar generation can be accu-

rately predicted for the immediately next time-interval, there is

no solar variability within each time-interval of real-time markets.

Instead, this variability manifests as high price-volatility across

time-intervals [20, 32]. In contrast, rental markets operate over a

longer time horizon of many time-intervals. Thus, the variability

directly enters into the strategic consideration of the market partici-

pants. Our results suggest that, while the variability and uncertainty

of solar generation is often considered a detrimental factor for real-

time markets (e.g., it may lead to price-volatility [32]), it becomes a

beneficial factor for rental markets (e.g., it produces demand elastic-

ity and lowers the bar for perfectly-competitive outcome to arise).

Due to this reason, we expect that rental markets may serve as

a more favorable alternative for distribution-level markets under

high renewable penetration.

2 RELATED WORK

There is significant interest in understanding how providers of

uncertain renewable energy should participate in the energymarket.

Existing work can be broadly divided into two categories, according

to the assumption on the market price.

The first category assumes that prices are exogenously given,

and studies optimal bidding strategies when market participants are

price-takers (see, e.g., [8, 10, 23]). Specifically, [8] and [23] study how

renewable providers (e.g., wind farms) bid in a day-ahead electricity

market, based on future scenarios of generation and prices; while

[10] further studies how the availability of local generation and

market recourse will impact their bidding strategy. However, this
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Table 1: Features comparison of different markets.

markets

features
Social welfare Price volatility Fairness of surplus division Predictability of outcome

Real-time markets

(no supply withholding)
Maximized High Relatively fair

Unique outcome

(for most of the time)

Real-time markets

(with supply-withholding)
Maximized Zero

Extremely unfair

(consumer surplus is 0)

Multiple Nash equilibria

and outcomes

Rental markets Maximized Zero Relatively fair
Unique outcome

(with modest assumptions)

line of work fails to capture the impact of the market participants’

bidding strategies on the price.

The second category explicitly consider how the market price is

formed from the agents’ bidding. A significant body of related work

assume traditional generators at the transmission level with signifi-

cant production costs [16, 31]. In contrast, renewable generators

(such as solar panels) at the distribution level have nearly-zero mar-

ginal cost. There are only limited studies on the market equilibrium

with zero-marginal-cost generation, for the settings of two pro-

ducers [36], with storage [20], or along with the investment game

[22]. However, these results all assume that the suppliers can only

change the bidding prices but cannot withhold the supply quantity,

which is not realistic when firms have the flexibility to curtail their

generation (especially when the price is not favorable). In contrast,

our work is the first to study the setting where renewable energy

suppliers can vary both price and quantity in their bids, and reveal

the emergence of price-fixing behavior in real-time energy markets.

Further, all of these studies assume a real-time energy market, while

our work is the first to study alternative market designs in the form

of rental markets.

The rental market is also inspired by the structure of other mar-

kets with zero marginal costs, in particular markets for telecom-

munication services [18]. For example, for mobile wireless service

providers, while base stations and backbone networks are very

expensive to build, the cost of providing service for one phone

call or one kilobyte (KB) of data is often negligible. Although dy-

namic pricing based on real-time demand levels was discussed at

various times, what prevails today are often fixed-price monthly

contracts (e.g., unlimited voice and data for 50 dollars per month).

Such a fixed-price contract has been found to reduce the financial

uncertainty to the suppliers, and provide them with the guaranteed

revenue for future network expansion. In addition to these potential

benefits, our study of rental markets further investigates how rental

markets eliminates market manipulation and supply withholding.

Therefore, our study provides new insights why alternative forms

of markets can be more favorable than real-time energy markets.

3 SYSTEM MODEL

We consider a distribution-level power system with one utility,

𝑁 consumers, and 𝑀 firms (i.e., suppliers). We will characterize

different market players, based on which we will introduce the

market mechanisms in Section 4 and Section 5.

The utility not only manages the physical power distribution

grid, but also operates a distribution-level energy market. Further,

it provides a reliable source of energy external to the distribution-

level market at a fixed retail price 𝜋𝑔 (see further discussions on

consumer model below).

Firms own solar panels and sell solar energy to the distribution-

level market. Note that a key attribute of solar generation is that

it incurs high investment cost but low operation cost. Thus, we

assume that the marginal cost of each firm is zero. For simplicity,

we assume that a firm does not receive revenue for any solar energy

that is not sold in the distribution-level market. This assumption

corresponds to the case where utility either does not buy back

electricity from the distribution level or imposes a feed-in tariff of

zero. (See remark below for possible extensions.) Let 𝐶𝑖 denote the

size (in𝑚2) of firm 𝑖’s solar panel. Let 𝐶 =
∑𝑀
𝑖=1𝐶𝑖 denote the total

size of panels of all firms. Let 𝐺 (𝑡) denote the energy generated by

unit size of solar panels at time 𝑡 , which is assumed to be a random

variable. We assume that all solar panels have the same efficiency

𝐺 (𝑡) (see further discussion at the end of this section). Therefore,

the amount of solar energy available from firm 𝑖 is 𝐶𝑖𝐺 (𝑡).

Consumers (e.g., households) consume but do not generate elec-

tricity. We let 𝐿𝑛 (𝑡) denote the real-time electricity demand of

consumer 𝑛 at time 𝑡 , which is a continuous random variable. Let

𝐿(𝑡) denote the total electricity demand of all consumers at time

𝑡 , i.e., 𝐿(𝑡) =
∑𝑁
𝑛=1 𝐿𝑛 (𝑡). We assume that the real-time demand is

inelastic, i.e., no demand-response, which reflects the practical set-

ting where demand elasticity is low [4]. We assume that consumers

can always buy electricity from the utility at the fixed retail price

𝜋𝑔 . On the other hand, consumers would be interested in buying

the solar energy from the distribution-level market if the price is

lower.

The objective of the distribution-level market is to determine

the price and quantity with which firms and consumers can di-

rectly trade solar energy, based on the bids submitted by them. We

are particularly interested in how the equilibirum market price is

formed due to the strategic behaviors of the participants. As we

discussed in the introduction, we will study not only the efficiency

(i.e., whether the social surplus is maximized), but also the questions

of (i) fairness of surplus division between consumers and firms; (ii)

the uniqueness and predictability of the market outcome; and (iii)

price volatility.

Remark:We briefly comment on some of the simplifying assump-

tion made earlier. We assume that firms and consumers are separate,

i.e., one market participant cannot be both a firm and a consumer

at the same time. In reality, a firm may consume energy by herself.

In that case, it is common for the firm to first use the solar energy

for her own demand, and then sell the remaining solar energy to
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the market. Note that such firms can be equivalently viewed as

having a lower generation efficiency 𝐺 (𝑡). It is possible to extend

our analysis to the setting with varying generation efficiency 𝐺 (𝑡)

across firms. Indeed, our results for real-time markets will still hold

(since the equilibrium at each time only depends on the exact value

of the random generation at the time, regardless of its distribution),

and readers can refer to Section 5.7 on how the rental market can

work with heterogeneous𝐺 (𝑡). It is also possible to generalize some

of our results to the setting where utility offers non-zero feed-in

tariffs, without changing the main conclusions qualitatively. For

example, price volatility and price-fixing in real-time markets will

still hold, with the only difference being that the price will vary

between 𝜋𝑔 and the feed-in-tariff (instead of between 𝜋𝑔 and 0).

4 REAL-TIME MARKETS

In this section, we will consider real-time distribution-level energy

markets, which operate in a way similar to how renewable suppliers

bid in the existing transmission-level real-time energy markets [25].

We fix a time-instant 𝑡 , and consider an instance of the real-time

market at time 𝑡 . Thus, we will drop the index 𝑡 when there is

no source of confusion. Let 𝑞0𝑖 = 𝐶𝑖𝐺 (𝑡) be the actual amount

of renewable electricity generated by firm 𝑖 at time 𝑡 , which is

determined exogeneously (by solar irradiance). We assume that

each firm knows the value of 𝑞0𝑖 when she submits her bid to the

real-time market, which is reasonable as short-term prediction of

solar generation can be quite accurate [6]. Next, we consider the

four features listed in Table 1 for two types of real-time markets. We

will show that, depending on whether the suppliers can vary the

bidding quantities, the real-time markets can lead to price-volatility

or price-fixing behaviors.

4.1 Price-volatility in a single-price-bid market

We first consider a single-price-bid system where each firm 𝑖 can

only vary the bidding price 𝑝𝑖 , while the supply quantity 𝑞𝑖 is

fixed at 𝑞0𝑖 and cannot be varied. Some earlier studies [22, 36] have

shown that this type of real-time markets with single-price-bids

will produce high price volatility. Here, we report a similar result

but for uniform prices, under a mechanism that is closer to how

the current transmission-level energy markets operate.

Market clearing mechanism: After the market receives the bids of

all firms, i.e., their bidding price 𝑝𝑖 and actual generation amount

𝑞0𝑖 , the market stacks all the bids together to compute the supply

curve, i.e., the total available quantity from all bids at or below each

price point 𝑝 . Then, the market clearing price 𝜋eq is given by the

lowest price such that the total available quantity exceeds the total

demand 𝐿(𝑡).

The sold amount 𝑠𝑖 of each firm 𝑖 is then determined as follows.

All bids with price lower than 𝜋eq clear their entire quantity 𝑞
0
𝑖 , i.e.,

𝑠𝑖 = 𝑞
0
𝑖 . All bids with price higher than 𝜋eq clear zero quantity, i.e.,

𝑠𝑖 = 0. For those bids with price exactly equal to 𝜋eq, we assume

that the sold/cleared amount is assigned proportionally to 𝑞0𝑖 to

split the left-over demand, i.e.,

𝑠𝑖 = min



𝑞0𝑖

(
𝐿(𝑡) −

∑
{ 𝑗 : 𝑝 𝑗<𝜋eq } 𝑞

0
𝑗

)
∑
{ 𝑗 : 𝑝 𝑗=𝜋eq } 𝑞

0
𝑗

, 𝑞0𝑖



. (1)

Under such a market rule, the whole system can be viewed as

a game where each firm chooses her bidding price. The market

outcome can be analyzed by the Nash equilibrium of the firms’

bidding strategies, which is summarized as follows.

Proposition 4.1. Assume
∑
𝑖∈𝑆

𝑞0𝑖 ≠ 𝐿(𝑡) for all 𝑆 ⊆ {1, · · · , 𝑀}
1.

Then, at each time-instant 𝑡 , the equilibrium market outcome has

three cases:

Case 1. (Limited Supply)When
∑𝑀
𝑖=1 𝑞

0
𝑖 ≤ 𝐿(𝑡), Nash equilibrium

exists, and the market clearing price must be 𝜋eq = 𝜋𝑔 .

Case 2. (Abundant Supply) When
∑
𝑖≠𝑗 𝑞

0
𝑖 > 𝐿(𝑡) for all 𝑗 , Nash

equilibrium exists, and at any equilibrium the market clearing price

must be 𝜋eq = 0.

Case 3. (Borderline Supply) Consider the situationwhere
∑𝑀
𝑖=1 𝑞

0
𝑖 >

𝐿(𝑡),
∑
𝑖≠𝑗 𝑞

0
𝑖 < 𝐿(𝑡) for some 𝑗 (let I denote the set of those 𝑗 ’s).

Then Nash equilibrium exists, and at any equilibrium the market

clearing price must be 𝜋eq = 𝜋𝑔 .

(Detailed characterization of these Nash equilibria can be found in

the proof in Appendix A.1.)

Proposition 4.1 indicates that real-time markets with single-price

bids will experience significant price-volatility: as the real-time so-

lar generation fluctuates above or below the demand, the market

price will jump between 0 and 𝜋𝑔 (corresponding to point A and

point B of Fig. 1, respectively). Specifically, when the total solar

generation is limited (Case 1), the consumers have to buy electricity

from the utility, which drives the market price to 𝜋𝑔 . When there is

too much solar generation in the market (Case 2), the demand short-

age leads to fierce competition among firms, and eventually drives

the market price to 0. In Case 3, the firms in I have a high market

power. Specifically, without any firm in I, the system changes from

łexcessive supply" to łinsufficient supply". Thus, firms in I will be

the ones that set the market price to 𝜋𝑔 .

Cases 1 and 2 of Proposition 4.1 are similar to results reported in

[1, 36], but the result for Case 3 is different. In [1, 36], there exists

no pure Nash equilibrium for Case 3. The reason for the existence

of Nash equilibrium here is that we assume uniform price for all

firms, while [1, 36] considered differentiated prices.

4.2 Price-fixing in markets allowing
price-quantity bids

In this paper, we advance this line of study of real-time markets

by furthering considering the impact of price-volatility on firms’

strategic behavior. Specifically, whenever the total solar generation

exceeds the demand (Case 2 in Proposition 4.1), firms will receive

zero revenue because the market price is driven to zero. Intuitively,

there will then be a strong incentive for firms to withhold sup-

ply, which will likely lead to very different equilibrium dynamics

compared to Section 4.1.

We note that existing studies in the literature [22, 36] assume

that renewable suppliers cannot vary their bidding quantity, partly

because renewable generation (unlike fossil-fuel generation) is usu-

ally considered uncontrollable. However, there are several reasons

1This assumption holds almost surely, e.g., when all 𝑞0𝑖 ’s follows a continuous distri-

bution with a finite probability density function (i.e., with no atoms).
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that we believe it is important to study this possibility of withhold-

ing. First, in practice it is actually quite easy for a solar-energy

supplier to adjust her supply. For example, a firm can shut down

part of her solar panels. Second, even though the utility may build

additional mechanisms to detect such withholding (e.g., by monitor-

ing irradiance and cloud covers), such detection mechanisms would

incur extra costs. Further, if each firm’s solar panel is small (e.g., for

rooftop solar panels of a small house), even a small amount of local

change in cloud conditions can impact its generation amount sig-

nificantly, making fine-grade monitoring based on cloud conditions

difficult. Due to this inherently uncertainty, it would be difficult for

the utility to tell whether the lower supply is due to withholding

or due to lack of solar irradiance. Finally, when a utility penalizes a

withholding firm, it limits the freedom of the bidders, which may

also be undesirable. (Ideally, we want a free market that can lead

to desirable outcomes even without such limitations.) Due to these

reasons, we believe that it is practically important to consider the

possibility of withholding supply.

Supply withholding leads to the following model for a real-time

market with price-quantity bids. Recall that 𝑞0𝑖 = 𝐶𝑖𝐺 (𝑡) is the real

solar generation available to firm 𝑖 at time 𝑡 . Now, each firm can

submit a bid that varies both the price 𝑝𝑖 ∈ [0, 𝜋𝑔] and the quantity

𝑞𝑖 ∈ [0, 𝑞
0
𝑖 ]. The market clearing mechanism remains the same as

in Section 4.1, except that the supply curve is computed based on

the declared quantity 𝑞𝑖 instead of 𝑞0𝑖 . The following result shows

that the equilibriummarket outcome changes drastically once firms

can submit price-quantity bids.

Proposition 4.2. With price-quantity bids, in additional to the

Nash equilibria characterized in Proposition 4.1, a Nash equilibrium

with 𝜋eq = 𝜋𝑔 always exists, regardless of the demand or the gener-

ation. Specifically, any bidding strategy that satisfies the following

conditions is a Nash equilibrium with 𝜋eq = 𝜋𝑔 :



𝑀∑
𝑖=1

𝑞𝑖 = min
{
𝐿(𝑡),

𝑀∑
𝑖=1

𝑞0𝑖

}
(firms may withhold supply),

and 𝑝𝑖 = 0 for all 𝑖 (every firm bids zero price).

(2)

In sharp contrast to Proposition 4.1, Proposition 4.2 shows that

real-time markets with price-quantity bids always have a Nash

equilibrium where the market price2 is 𝜋𝑔 . Such an equilibrium

is highly unfair to the consumers because the consumer surplus

(which corresponds to the difference between the consumer’s cost

of buying from the market and that of directly purchasing electric-

ity from the utility) will always be zero. In the other words, the

entire social surplus is earned by the firms as the producer surplus

(corresponding to Fig. 1(b) where point D is moved to B). As a re-

sult, consumers will be disincentivized to participate in the market.

Compared to Case 2 of Proposition 4.1, a key difference in Proposi-

tion 4.2 is that, when the total solar generation exceeds the supply

(i.e., 𝐿(𝑡) <
∑𝑀
𝑖=1 𝑞

0
𝑖 ), some firms do understate their generation at

the new Nash equilibrium (2), which then drives the price back up

to 𝜋𝑔 . We note that in practice it is also easy for each firm to reach

such an equilibrium strategy. To see this, consider two successive

2Note that under Eq. (2) the total bidding quantity is no greater than the demand.
Thus, even though every firm bids zero price, the market clearing price is set by the
grid price 𝜋𝑔 because we define 𝜋eq as the lowest price such that the total available

quantity exceeds the supply.

time-instants such that the solar generation amount does not vary

much. If the market price was zero in the previous time-instant

due to over-supply, each firm can simply withhold her supply at

the next time-instant to be slightly below her sold/cleared-amount

from the previous time-instant.

Another consequence of the above analysis is that there exist

multiple equilibriummarket outcomes. In particular, it is not hard to

verify that, in addition to the equilibrium stated in Proposition 4.2,

the outcome predicted in Proposition 4.1 is also a Nash equilibrium

for the setting with price-quantity bids. Note that the equilibrium

stated in Proposition 4.2 is Pareto optimal, i.e., no firms can gain

higher payoff without hurting other firms, and thus may be more

favorable. However, because (2) has multiple solutions, there will

be multiple such Pareto-optimal equilibria too. The existence of

multiple equilibria means that it is difficult to predict the outcome

of the market.

4.2.1 When there exists demand elasticity. Note that our earlier

discussions have assumed that the energy demand 𝐿(𝑡) has no

elasticity, i.e., it does not change with price. This is a reasonable

approximation due to limited demand elasticity in the current grid.

Even if this assumption is relaxed, we expect that our qualitative

conclusions on the real-time energy markets will still be valid. For

example, we can show that even when there is a small amount of

demand elasticity, the problem of price-fixing may still exist. In this

case, the demand function 𝐿(𝑡) should be a non-increasing function

of the price 𝜋 , i.e., 𝐿(𝑡, 𝜋). As the price 𝜋 decreases from 𝜋𝑔 , we

can define the demand elasticity as the absolute ratio between the

relative change of demand and the relative change of price, i.e.,

𝜂𝑡 (𝜋) :=
𝐿 (𝑡,𝜋 )−𝐿 (𝑡,𝜋𝑔)

𝐿 (𝑡,𝜋𝑔)

𝜋𝑔
𝜋𝑔−𝜋

> 0. The following result shows that

the price-fixing problem still exists when the demand elasticity and

the number of firms are small.

Proposition 4.3. With price-quantity bids, ifmax𝜋 ∈[0,𝜋𝑔 ] 𝜂𝑡 (𝜋) ≤

min𝑖∈{1,2,· · · ,𝑀 }
𝑞𝑖

𝐿 (𝑡,𝜋𝑔)
, then Eq. (2) (after replacing 𝐿(𝑡) in Eq. (2)

by 𝐿(𝑡, 𝜋𝑔)) still corresponds to a Nash equilibrium with 𝜋eq = 𝜋𝑔 .

We prove Proposition 4.3 in Appendix A.3. Notice that
𝑞𝑖

𝐿 (𝑡,𝜋𝑔)
is

the fraction of the sold amount of firm 𝑖 . Its value is likely to be large

when the number of firms is small (in which case the condition in

Proposition 4.3 is easier to hold).

5 SOLAR-PANEL RENTAL MARKETS

In view of the issues of price-volatility and pricing-fixing in real-

time markets, we propose an alternative form of distribution mar-

kets that avoid these issues and lead to desirable outcomes in terms

of all four considerations in Table 1. The key ideas of this new mar-

ket are two-fold. First, instead of trading in real-time, this market

trades once over a time-period of length𝑇 (e.g.,𝑇 could correspond

to a month). Second, instead of trading energy, this market trades

the usage right for a certain size of solar panels. Specifically, con-

sumers lease a certain size of solar panels from the firms 𝑇 time

ahead and can then use all the electricity generated by the rented

solar panels in real-time. Therefore, we refer to this type of markets

as rental markets. Note that if the real-time demand of a consumer

exceeds the generation of her rented panels, she still has to buy the

deficit part from the utility at the grid price 𝜋𝑔 .
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We will show that rental markets can eliminate both price-

volatility and price-fixing. First, the price in the rental market is

determined once over the time-period of length 𝑇 . Thus, real-time

price-volatility is eliminated by design. Second and more impor-

tantly, we will show soon that solar variability naturally induces

elasticity of the solar panel demand function in such a rental mar-

ket. Recall that the inelasticity of the demand was one of the main

reasons for price-fixing in real-time markets. In contrast, we will

show that this variability-induced demand elasticity will help the

rental market avoid price-fixing. We note that the work in [2] also

proposed to trade usage rights in an electricity market. However,

[2] focused on studying the existence of a feasible contract without

addressing the price-fixing behavior in such markets.

Readers familiar with transmission-level energy markets will

recognize rental markets as a form of forward markets. Indeed, one

may also use a form of forward energy market similar to the design

of day-ahead markets in current transmission-level energy markets

[3]. A key difference, however, is that, in traditional day-ahead

markets, due to their uncertainty in generation, solar producers has

to bid more conservatively to avoid the penalty of under-generation.

In contrast, firms in rental markets do not need to bid conservatively

because the forward commitment is in the usage rights of panels,

not energy. We will discuss this point further in Section 5.6.

5.1 Panel demand function and its elasticity in
rental markets

We first derive the panel demand function in rental markets, which

corresponds to the size (in𝑚2) of the solar panel that consumer 𝑛

wishes to rent at a unit rental price of 𝜋 (in $/𝑚2, normalized to

one time-instant). Recall that the real-time electricity demand of

consumer 𝑛 is 𝐿𝑛 (𝑡).

Suppose that the consumer 𝑛 has rented 𝑐𝑛 unit of solar panels.

Then, the generation at time 𝑡 is 𝐺 (𝑡)𝑐𝑛 . If 𝐿𝑛 (𝑡) ≤ 𝐺 (𝑡)𝑐𝑛 , the

consumer does not need to buy any electricity from the utility.

Otherwise, she needs to buy the deficit 𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛 at the price

𝜋𝑔 . Thus, when the market price of renting unit-size solar panel for

a unit-time is 𝜋 , the time-average expected cost of the consumer 𝑛

is given by

𝐽𝑛 (𝜋, 𝑐𝑛) = 𝜋𝑐𝑛 +
𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛]

+𝑑𝑡 . (3)

We take the panel demand function 𝑑𝑛 (𝜋) of customer 𝑛 as the

largest 𝑐∗𝑛 that minimizes 𝐽𝑛 (𝜋, 𝑐𝑛) over 𝑐𝑛 , i.e.,

𝑑𝑛 (𝜋) = sup
{
𝑐∗𝑛

�� 𝐽𝑛 (𝜋, 𝑐∗𝑛) ≤ 𝐽𝑛 (𝜋, 𝑐𝑛), for all 𝑐𝑛 ≥ 0
}
. (4)

When there are multiple global cost minimizers for 𝐽𝑛 (𝜋, ·),

Eq. (4) chooses 𝑑𝑛 (𝜋) to be the maximum global minimizer. This

will ensure the existence of the Nash equilibrium, especially when

the clearing price is at one of the discontinuity points of panel de-

mand function. We will discuss this point further after we introduce

Theorem 5.2.

For any demand functions we define elasticity as the absolute ra-

tio between the relative change of demand and the relative change

of price, i.e., 𝜂 (𝜋) := | 𝜋
𝐷 (𝜋 )

𝑑𝐷 (𝜋 )
𝑑𝜋
|. Due to this definition, the elas-

ticity is always a non-negative value. We call a demand function

perfectly inelastic when its elasticity is zero. Otherwise, we call it

elastic.

It is easy to see that, if 𝐿𝑛 (𝑡) and 𝐺 (𝑡) were both constant over

𝑡 , i.e., 𝐿𝑛 (𝑡) = 𝐿 and 𝐺 (𝑡) = 𝐺 , then the demand function 𝑑𝑛 (𝜋)

would be equal to 𝐿
𝐺 when 𝜋 ≤ 𝜋𝑔 , and 0, otherwise. In other

words, the demand function would still be inelastic. In contrast, the

following result shows that, if the solar generation is sufficiently

random, then the demand function will become elastic. Towards

this end, we introduce the following assumption on the randomness

of solar generation.

Assumption 1. Suppose that for any 𝑡 ∈ [0,𝑇 ], 𝐿𝑛 (𝑡) and 𝐺 (𝑡)

are non-negative continuous random variables with a joint probabil-

ity density function (pdf) 𝑓 𝑡
𝐺,𝐿𝑛
(𝑥,𝑦) = 𝑓 𝑡

𝐺 |𝐿𝑛
(𝑥 |𝑦) · 𝑓 𝑡

𝐿𝑛
(𝑦), where

𝑓 𝑡
𝐺 |𝐿𝑛
(𝑥 |𝑦) denotes the conditional pdf of 𝐺 (𝑡) conditioned on 𝐿𝑛 (𝑡),

and 𝑓 𝑡
𝐿𝑛
(𝑦) denotes the marginal pdf of 𝐿𝑛 (𝑡). We assume that there

is a finite 𝛾 > 0 such that

𝑥2 𝑓 𝑡
𝐺 |𝐿𝑛
(𝑥 |𝑦) ≤ 𝛾 for all 𝑥,𝑦, and 𝑡 . (5)

Intuitively, Assumption 1 states that the probability distribution

of solar generation should not be too concentrated (e.g., there should

not be any atom in the distribution) and its tail should not be too

heavy. Assumption 1 holds for many common continuous random

distributions, such as Gaussian distribution and any sub-Gaussian

distributions [11] whose tail probability decays at least as fast as

that of Gaussian distribution.

We now define the total demand function 𝐷 (𝜋) as the sum of all

consumers’ demand functions, i.e., 𝐷 (𝜋) =
∑𝑁
𝑛=1 𝑑𝑛 (𝜋). We then

have the following result, which relates the elasticity of 𝐷 (𝜋) to

the parameter 𝛾 in Assumption 1.

Proposition 5.1. At any 𝜋 such that 𝐷 (𝜋) > 0, the elasticity of

the total demand function 𝐷 (𝜋) is bounded by

𝜂 (𝜋) ≥
𝜋

𝜋𝑔𝛾
. (6)

(Note that since 𝐷 (𝜋) may be discontinuous,
𝜕𝐷 (𝜋 )
𝐷 (𝜋 )

may be +∞.

Nonetheless, Eq. (6) still holds.)

Proposition 5.1 shows that the demand elasticity in rental mar-

kets is bounded from below by a function of 𝛾 . Note that according

to (5), as 𝛾 decreases, the distribution of random solar generation

is even less concentrated (i.e., more random). Proposition 5.1 then

shows that the demand elasticity will also be higher. In this sense,

while the variability and uncertainty of solar generation is often

regarded as a detrimental factor for energy systems, in our pro-

posed rental markets it becomes a beneficial factor in contributing

to demand elasticity.

5.2 Mechanism of rental markets

Recall from Section 4.2 that price-fixing in real-time markets arises

when each firm is allowed to vary both her price and quantity. Later

in this section, we wish to show that rental markets can eliminate

such price-fixing under price-quantity bids. However, we also note

that in today’s transmission-level energy markets, a generator can

even bid multiple blocks of price-quantity pairs, which is more

general than a single price-quantity bid. It is conceivable that future
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Figure 2: Determination of the market clearing price 𝜋eq in

rental markets, depending on the different ways that the

supply curve intersects the demand curve. The supply curve

𝐹 (𝜋) is given by as 𝐹 (𝜋) =
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘 ≤𝜋 } 𝑞𝑖,𝑘 . We use 𝜋𝑟−1 and

𝜋𝑟 to denote the bidding prices of two bids in this figure. Here

we assume that the bids are ordered by the bidding prices,

and thus 𝜋𝑟−1 and 𝜋𝑟 are the prices of two consecutive bids.

distribution-level markets may also allow such flexibility of multi-

block bids. Further, when a few firms form a coalition, they can

coordinate their single price-quantity bids in a way that effectively

simulates multi-block bids. In this paper, we wish to show that

our positive result on rental markets will hold even for this more

general setting. Hence, below we will introduce the rental market

mechanism directly for multi-block bids, so that we can state a

more general and stronger result. (For real-time markets, we can

also show that our conclusion in Section 4.2 about price-fixing also

holds under multi-block bids.)

We now describe the mechanism of rental markets under multi-

block bids. The key difference from the mechanism in Section 4.2

is that the traded product is solar panel size instead of electrical

energy. Suppose that the firm 𝑖 makes a multi-block bid containing

𝐾𝑖 sub-bids. Denote the price and the quantity (i.e., solar panel

size) of her 𝑘-th sub-bid as 𝑝𝑖,𝑘 and 𝑞𝑖,𝑘 , respectively. Without loss

of generality, assume that 𝑝𝑖,1 < 𝑝𝑖,2 < · · · < 𝑝𝑖,𝐾𝑖 , 𝑞𝑖,𝑘 > 0 for

all 𝑘 ∈ {1, · · · , 𝐾𝑖 }, and
∑𝐾𝑖
𝑘=1

𝑞𝑖,𝑘 ≤ 𝐶𝑖 . Firm 𝑖’s bid can then be

described by ®𝑝𝑖 = [𝑝𝑖,1 𝑝𝑖,2 · · · 𝑝𝑖,𝐾𝑖 ] and ®𝑞𝑖 = [𝑞𝑖,1 𝑞𝑖,2 · · · 𝑞𝑖,𝐾𝑖 ].

Let p and q denote the collection of ®𝑝𝑖 and ®𝑞𝑖 , respectively, for all 𝑖 .

Themarket collects the bids from all firms, as well as the panel de-

mand functions 𝑑𝑛 (𝜋) from all consumers.3 The market then stacks

all the sub-bids together to compute the supply curve (similar to

real-timemarkets in Section 4) for the total available solar-panel size

at each price point. Similarly, the demand function 𝑑𝑛 (𝜋) is added

together to form the total demand curve 𝐷 (𝜋). The market clearing

price is then determined by the intersection of the supply curve

and the demand curve. Algorithm 1 describes the detailed process

to determine the market price 𝜋eq. Denote 𝑠𝑖,𝑘 as the cleared/sold

3Note that we assume that the demand functions are truthful, which may be reasonable
when the number of consumers is large and each consumer cannot influence themarket
price.

Algorithm 1: Compute market price 𝜋eq.

1 Sort elements in {𝑝𝑖,𝑘 : for all 𝑖, 𝑘} in an ascending order as

𝜋1 < 𝜋2 < · · · < 𝜋𝑅 (note that all 𝜋𝑟 ’s are distinct);

2 𝑄 ← 0;

3 for 𝑟 = 1 : 𝑅 do

4 if 𝐷 (𝜋𝑟 ) < 𝑄 then

5 𝜋eq ← 𝜋𝑟−1; (cases (a) and (b) in Fig. 2)

6 exit;

7 𝑄 ← 𝑄 +
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋𝑟 } 𝑞𝑖,𝑘 ;

8 if 𝐷 (𝜋𝑟 ) < 𝑄 then

9 𝜋eq ← 𝜋𝑟 ; (cases (c) and (d) in Fig. 2)

10 exit;

11 𝜋eq ← 𝜋𝑅 ;

Algorithm 2: Decide the sold amount 𝑠𝑖,𝑘 .

1 𝑄 ← 0

2 𝑠𝑖,𝑘 ← 0, for all 𝑖, 𝑘 ;

3 for 𝑖 = 1 : 𝑀 do

4 for 𝑘 = 1 : 𝐾𝑖 do

5 if 𝑝𝑖,𝑘 < 𝜋eq then

6 𝑠𝑖,𝑘 ← 𝑞𝑖,𝑘 ;

7 𝑄 ← 𝑄 + 𝑞𝑖,𝑘 ;

8 Denote those bids with the price 𝜋eq as

𝑞𝑎1,𝑏1 , 𝑞𝑎2,𝑏2 , · · · , 𝑞𝑎ℎ,𝑏ℎ .

9 for 𝑖 = 1 : ℎ do

10 𝑠𝑎𝑖 ,𝑏𝑖 ← min

{
𝑞𝑎𝑖 ,𝑏𝑖

(
𝐷 (𝜋eq) −𝑄

)
∑ℎ
𝑙=1

𝑞𝑎𝑙 ,𝑏𝑙

, 𝑞𝑎𝑖 ,𝑏𝑖

}
. (7)

amount of the 𝑘-th sub-bid of firm 𝑖 . In Algorithm 2, we specify the

process of determining the cleared amount. Specifically, for those

sub-bids with prices lower than (or higher than, correspondingly)

𝜋eq, the sold amount is equal to the bidding quantity (or zero, cor-

respondingly). For those sub-bids with price equal to 𝜋eq, the sold

amount is assigned proportionally to the bidding quantity (similar

to (1)).

Comparing the former real-timemarketmechanism in Section 4.2

with the rental market mechanism, the main difference is that the

former assumes a fixed demand while the latter assumes a demand

function 𝐷 (𝜋) that decreases with the price 𝜋 . As a result, in Algo-

rithm 1 there are multiple cases (in Line 4, Line 8 and some other

corner cases) where the market price is calculated. That is because,

when the demand is not fixed, there are multiple ways that the

supply curve and the demand curve intersect as illustrated in Fig. 2.

Remark: The above market mechanism is described for the more

general multi-block bids. It is easy to see that, even if each firm is

only allowed to bid a single price-quantity block, the mechanism

would be exactly the same (we just need to restrict 𝑘 to be equal to

1 for all firms).
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5.3 Outcomes of rental markets

Next, we show that, thanks to the demand elasticity reported in

Proposition 5.1, rental markets will be able to eliminate price-fixing

and produce much more desirable outcomes than real-time markets.

The following Theorem 5.2 shows that, under a condition of
max𝑖 𝐶𝑖
𝐶 , i.e., the solar panel size of the largest firm compared to the

total panel size in the market, a Nash equilibrium always exists in

such a rental market with desirable features.

Theorem 5.2. Consider the rental market allowing multi-block

bids. If max𝑖 𝐶𝑖
𝐶 ≤

𝐷−1 (𝐶)
𝜋𝑔𝛾

, then (i) (existence of Nash equilibrium)

there exists at least one Nash equilibrium where each firm 𝑖 bids a

single price-quantity pair (of quantity 𝐶𝑖 and price 𝐷−1 (𝐶))4; (ii)

(features of any Nash equilibrium) at any Nash equilibrium, all

solar panels from all firms are cleared, i.e.,
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 =
∑𝐾𝑖
𝑘=1

𝑞𝑖,𝑘 =

𝐶𝑖 for all 𝑖 , and the market clearing price must be 𝜋eq = 𝐷−1 (𝐶).

We comment on the highly-desirable features of the market

outcome predicted by Theorem 5.2. Note that𝐷−1 (𝐶) can be viewed

as the price under perfect competition [30]. Theorem 5.2 thus states

that the market clearing price 𝜋eq is always identical to perfect

competition. Further, since all solar panels from all firms are cleared,

there is no price-fixing or supply-withholding. Finally, since one

of the equilibria corresponds to each firm bidding a single price-

quantity pair, the same conclusion will hold if we allow each firm

to always bid a single price-quantity pair only. We provide a proof

sketch in Section 5.4 and a complete proof in Appendix C.

The condition max𝑖 𝐶𝑖
𝐶 ≤

𝐷−1 (𝐶)
𝜋𝑔𝛾

in Theorem 5.2 can be inter-

preted as follows. Since 𝐷−1 (𝐶) = 𝜋eq, according to Proposition

5.1, the right-hand-side of the condition is simply a lower bound on

the demand elasticity. Thus, Theorem 5.2 captures precisely the im-

portance of demand elasticity, which is induced by the randomness

of solar generation via Proposition 5.1. Specifically, price-fixing

is eliminated as long as no single firm dominates, i.e., the supply

of each firm is smaller than a corresponding fraction of the total

supply. This fraction is exactly equal to the demand elasticity. Thus,

the more random the solar generation is (i.e., the smaller 𝛾 is),

the higher the demand elasticity, and the larger each firm can be

without the worry of price-fixing.

Why supremum in Eq. (4) is necessary: Consider the case that𝐷 (·)

has a discontinuity at the clearing price 𝜋eq = 𝐷−1 (𝐶) predicted by

Theorem 5.2. If consumers do not define the demand function as the

supremum in Eq. (4), we may have 𝐷 (𝜋eq) < 𝐶 . Then, there must

exist a firm that cannot clear all her panels at price 𝜋eq. This firm

can then undercut the price 𝜋eq to gain more profit, which means

that 𝜋eq = 𝐷−1 (𝐶) no longer corresponds to a Nash equilibrium as

stated in Theorem 5.2. In contrast, Eq. (4) ensures that 𝐷 (𝜋eq) ≥ 𝐶 ,

and thus the above situation will not occur.

The outcomes of the rental market for price volatility, fairness,

and uniqueness of outcome follows directly from Theorem 5.2 and

are concluded in Table 1. It remains to show the social welfare

of the rental market. Here, for both real-time and rental markets,

we define the social welfare SW as the total surplus of all firms,

4In fact, only one firm needs to bid at the price 𝐷−1 (𝐶) and other firms can bid at a
lower price, which still results into a Nash equilibrium.

consumers and the utility, i.e.,

SW = Util𝑐 − Cost𝑐 + Rev𝑓 − Cost𝑓 + Rev𝑢 − Cost𝑢 ,

where Util𝑐 and Cost𝑐 are the consumers’ utility value and cost, re-

spectively, Rev𝑓 andCost𝑓 are firms’ revenue and cost, respectively,

and Rev𝑢 and Cost𝑢 are utility company’s revenue and cost, respec-

tively, for meeting the consumers’ remaining electricity needs not

met by the distribution-level market. We also need the following

additional assumption.

Assumption 2. When a consumer’s demand 𝐿𝑛 (𝑡) is below the

solar generation 𝐺 (𝑡)𝑐𝑛 of the rented panels, the surplus generation

𝐺 (𝑡)𝑐𝑛 − 𝐿𝑛 (𝑡) will be fed back to the grid.

Assumption 2 is reasonable because, after solar panels are already

traded in the rental market, neither the firm nor the consumer

has the incentive to curtail the surplus generation. (Note that this

assumption is only needed here and is not needed for the earlier

Nash equilibrium result.)

The following Proposition 5.3 shows that both markets attain

the same social welfare. We provide the proof in Section 5.5.

Proposition 5.3. Under Assumption 2, the rental market always

attains the same social welfare as the real-time market.

5.4 Proof sketch of Theorem 5.2

We will focus on the second part of the theorem, i.e., at all Nash

equilibria (NE) all firms will clear all of their capacity and the re-

sulting market price is 𝜋eq = 𝐷−1 (𝐶). (The first part of theorem

for verifying the existence of NE is easier. See Part 1 of Appen-

dix C.5.) To begin with, it is not hard to show that, if at an NE all

firms clear all of their capacity, the resulting market price must

be 𝜋eq = 𝐷−1 (𝐶) (see Lemma C.12 of the supplemental material).

Thus, next we focus on proving that all firms must clear all of their

capacity. We prove by contradiction. Suppose on the contrary that,

at a Nash equilibrium (p, q), there exists at least one firm 𝑖 that

does not clear her capacity, i.e.,
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 < 𝐶𝑖 . We can show that

the corresponding market price must satisfy 1○ 𝜋eq > 𝐷−1 (𝐶), i.e.,

it must be higher than the market price when all capacity is cleared

(see Part 2, Step 5 of Appendix C.5. We then proceed as follows.

First, among all firms with unsold capacity, we can always find

a certain firm 𝑗 such that 2○
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐷 (𝜋eq)

≤
𝐶 𝑗
𝐶 , i.e., the proportion of

firm 𝑗 ’s sold amount to the cleared demand is less than or equal to

the proportion of her panel size to the total panel size. To see why,

consider the simpler case where all firms have uncleared capacity.

Then, the sum of the left-hand-side of 2○ over all firms 𝑗 is less than

or equal to 1, because the cleared capacity cannot be higher than

the cleared demand. However, the corresponding sum of the right-

hand-side equals to 1, which leads to a contradiction. Therefore, at

least one firm 𝑗 must satisfy 2○. For the more general case where

not every firm has uncleared capacity, we can still show 2○ by first

eliminating the contribution of those firms that clear their capacity

(see Part 2, Step 1 of Appendix C.5).

Second, we let this firm 𝑗 deviate to a different bidding strategy.

Below, we will use (·)′ to denote the new values (for bidding or

market outcome) after the deviation. Specifically, the new bidding

strategy of firm 𝑗 is 𝐾 ′𝑗 = 1, 𝑝 ′𝑗,1 = 𝜋∗ < 𝜋eq, and 𝑞
′
𝑗,1 = 𝐶 𝑗 , i.e.,

134



Distribution-Level Markets under High Renewable Energy Penetration e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

firm 𝑗 bids all of her capacity at a lower price 𝜋∗ < 𝜋eq. Using

the property that the original bidding strategy is an NE, we can

show that, for some 𝛿 > 0, as long as 𝜋eq − 𝛿 ≤ 𝜋
∗
< 𝜋eq, the new

market clearing price must be 𝜋 ′eq = 𝜋∗. In other words, the new

undercutting bid of firm 𝑗 will set the market price (see Part 2, Step

3 of Appendix C.5).

Third, we can show that the new cleared quantity of firm 𝑗 must

satisfy 3○ 𝑠 ′𝑗,1 −
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘 ≥ 𝐷 (𝜋
∗) − 𝐷 (𝜋eq), i.e, the firm 𝑗 should

be able to clear more capacity, and the increase should be at least

equal to the increase in the cleared demand. (Firm 𝑗 may clear more

because it can łrobž other firms’ cleared capacity too.)

However, because (p, q) is a Nash equilibrium, the firm 𝑗 should

not earn more profit by deviating to the new bidding strategy. We

thus have

𝜋∗𝑠 ′𝑗,1 ≤ 𝜋eq
∑︁𝐾𝑗

𝑘=1
𝑠 𝑗,𝑘

=⇒ 𝜋∗
(
𝑠 ′𝑗,1 −

∑︁𝐾𝑗

𝑘=1
𝑠 𝑗,𝑘

)
≤

(
𝜋eq − 𝜋

∗) ∑︁𝐾𝑗

𝑘=1
𝑠 𝑗,𝑘

=⇒
𝐷 (𝜋∗) − 𝐷 (𝜋eq)

𝐷 (𝜋eq)
≤
𝜋eq − 𝜋

∗

𝜋∗
·

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘

𝐷 (𝜋eq)
(by 3○)

=⇒

���� 𝜕𝐷 (𝜋eq)𝐷 (𝜋eq)

���� ≤
���� 𝜕𝜋eq𝜋eq

����
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘

𝐷 (𝜋eq)
(letting 𝜋∗ → 𝜋eq).

Using 2○ and
𝐶 𝑗
𝐶 ≤

𝐷−1 (𝐶)
𝜋𝑔𝛾

(the condition of this theorem), we

then have
��� 𝜕𝐷 (𝜋eq)𝐷 (𝜋eq)

��� ≤ ��� 𝜕𝜋eq𝜋eq

��� 𝐶 𝑗𝐶 ≤
��� 𝜕𝜋eq𝜋eq

��� 𝐷−1 (𝐶)𝜋𝑔𝛾
. Applying 1○, we

thus have
��� 𝜕𝐷 (𝜋eq)𝐷 (𝜋eq)

��� < ��� 𝜕𝜋eq𝜋eq

��� 𝜋eq𝜋𝑔𝛾
. This contradicts the elasticity of

𝐷 (·) stated in Proposition 5.1. The second part of the theorem thus

follows.

5.5 Proof of Proposition 5.3 (social welfare
comparison)

Proof. The insensitivity reported in Proposition 5.3 is again due

to the inelasticity of consumers’ real-time demand and the zero

marginal-costs of the firms. First, the consumer’s utility value Util𝑐
is a constant since the real-time energy demand is inelastic. Second,

the firms’ cost Cost𝑓 is always zero due to zero marginal costs.

Third, the payment of the consumers must equal to the revenue

of the firms plus the revenue of the utility company, i.e., Cost𝑐 =

Rev𝑓 + Rev𝑢 . Thus, for both rental and real-time markets, the only

term that may change the social welfare is the utility company’s

cost. However, under Assumption 2 for rental markets, the amount

of electricity that the utility needs to procure from the transmission

level is fixed at [𝐿(𝑡) −𝐺 (𝑡)𝐶]+. The same is also true for the real-

time markets in Section 4. Therefore, the total social welfare is

independent of the market outcome, and thus rental markets are as

efficient as real-time markets in terms of social welfare. □

5.6 Comparison with forward energy markets

As we discussed at the beginning of Section 5, instead of using

rental markets, an alternative form of forward markets would be

a forward energy market, similar to the day-ahead market in the

transmission level. In this subsection, we briefly discuss about the

possible implementation of such a forward energy market at the

distribution level, and compare it with the rental market.

Consider a day-ahead energy market where the market price

𝜋eq and the sold amount 𝑠𝑖 for each firm 𝑖 are determined before

actual generation. In real-time, firm 𝑖’s actual generation quan-

tity 𝐶𝑖𝐺 (𝑡) can be smaller or larger than 𝑠𝑖 . We assume that, when

under-generation occurs, i.e.,𝐶𝑖𝐺 (𝑡) < 𝑠𝑖 , firm 𝑖 must pay a penalty

for the under-generation amount at the grid price 𝜋𝑔 , Thus, firm

𝑖’s profit is equal to 𝑠𝑖𝜋eq − 𝜋𝑔E[𝑠𝑖 −𝐶𝑖𝐺 (𝑡)]
+. Similar to the rental

market, we can show that the firms’ supply function will also pos-

sess elasticity thanks to the uncertainty of generation𝐺 (𝑡) (similar

to Proposition 5.1). As a result, we can expect that such a forward

energy market can also avoid price-fixing thanks to the uncertainty

of future generation (similar to Theorem 5.2).

However, in such a forward energy market, firm 𝑖 usually has

to bid (and clear) a lower amount 𝑠𝑖 day-ahead, due to the penalty

described above. As a result, part of the generation when 𝐶𝑖𝐺 (𝑡) >

𝑠𝑖 , i.e., when the actual generation is larger than the sold amount,

is wasted in the day-ahead market. This can also be viewed as a

form of withholding supply, and will lead to a lower social welfare

compared to the rental market. We provide numerical results in

Section 6.4 to illustrate this effect.

One may argue that there may be ways to make this residual

amount [𝐶𝑖𝐺 (𝑡) − 𝑠𝑖 ]
+ available to consumers in real-time. For

example, the firms may feed-in this residual amount at zero or low

feed-in prices, which however may be deemed as unfair to the firms.

Alternatively, another real-time energy market could be established

to trade this residual amount of energy. Unfortunately, the latter

approach will not only increase the complexity of the market design

but also re-introduce the price-volatility or price-fixing behaviors

(that we reported earlier for real-time energy markets). In contrast,

as illustrated by Theorem 5.2 and Proposition 5.3, the proposed

rental market sells out all panels, and thus no withholding of supply

occurs at the seller side. Furthermore, there is no need to establish

two markets at different time-scales. Therefore, we argue that the

proposed rental market may be more suitable than the traditional

forward energy market.

5.7 Heterogeneity of generation efficiency

As we discussed in Section 3, we assume that all firms have the

same generation efficiency 𝐺 (𝑡). We now briefly discuss how het-

erogeneous generation efficiency can be handled in our proposed

rental market by a normalization procedure (see more detailed

discussions in Appendix D). At a high level, the idea is that the

utility can pool the generations of all panels together, and calculate

a common efficiency 𝐺 (𝑡) equal to the total generation divided

by the sum of declared panel sizes. Then, the utility can calculate

an łeffective panel sizež 𝐶𝑖 for each firm based on how her histori-

cal generation contributes to this common pool of the normalized

generation efficiency 𝐺 (𝑡). Intuitively, if a firm’s contribution to

the common pool is higher (correspondingly, lower), its łeffective

panel sizež will also be larger (correspondingly, smaller). Then, our

rental markets can operate based on the effective panel size 𝐶𝑖
and the common normalized efficiency 𝐺 (𝑡) only. Note that this

normalization procedure does not introduce any surplus/deficit of
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Figure 3: Real-time single-price-bid market experiences high

price volatility, while real-time price-quantity-bid market

experiences price fixing.

Figure 4: Producer surplus, consumer surplus, and social

surplus for differentmarkets under different amount of solar

panels.

solar energy to the market operator, and hence it will not affect the

calculation of social surplus.

This normalization procedure has a number of benefits. First, the

consumer does not need to be concerned about from which firm

she rents the solar panel, because the amount of solar generation

łcreditedž to her rented panel is based on the common 𝐺 (𝑡) that

represents the generation of the whole rental market. Second, this

procedure does allow firms with low generation to be penalized, ei-

ther directly by their lower łeffective panel sizes,ž or by introducing

additional penalty based on their actual generation. Finally, other

real-time operational issues that may limit actual solar generation,

such as malfunctioning of solar panels or physical constraints (e.g.,

line or voltage limits), can also be accounted for by the effective

panel sizes.

6 SIMULATIONS

In this section, we verify the earlier analytical results by simulating

the outcomes of different markets in Table 1 using real traces of

solar generation and household energy consumption. The solar

generation data are from a PV farm located near Purdue University

(latitude: 40.45◦, longitude: 86.85◦). The data were taken every five

minutes during the whole year 2006 (provided by NREL[37]). The

load data are from two residential houses, one at Purdue University,

the other in Indianapolis. The data were taken hourly during a

typical meteorological year (provided by EERE[28]). We scale the

generation and load data to simulate different solar energy pene-

tration ratio 𝑅, which is defined as the ratio between the total solar

generation and the total load in the system (averaged across the

Figure 5: (a) Demand function with different amount of un-

certainty for PV generation. (b) The requirement firms’ size

in Theorem 5.2 (i.e., max𝑖 𝐶𝑖
𝐶 ≤

𝐷−1 (𝐶)
𝜋𝑔𝛾

) with different amount

of solar panels.
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Figure 6: Comparison between the forward energy mar-

ket and the rental market in terms of the solar generation

amount that is actually used by consumers under different

penetration ratio 𝑅.

whole year). The retail price of electricity at Purdue University is

equal to 𝜋𝑔 = 0.1029$/kWh.

6.1 Price volatility and price fixing in real-time
markets

As we discussed in Section 4, real-time markets suffer from either

price-volatility (with single-price-bid (SPB)) or price-fixing (with

price-quantity-bid (PQB)). Indeed, in Fig. 3, for real-time markets

with SPB, the clearing price (the blue curve) fluctuates between 0

and 𝜋𝑔 as the demand (the pink curve) goes below or above the solar

generation (the green curve), suggesting severe price volatility. On

the other hand, for real-time markets with PQB, the market clearing

price stays at 𝜋𝑔 (the dashed curve), suggesting price-fixing.

6.2 Social welfare and fairness of surplus
division

According to Proposition 5.3, the rental markets are as efficient as

real-time markets in terms of social welfare. We find that this is also

true in terms of social surplus (i.e., the sum of only the consumer

surplus and the producer surplus, excluding utility’s profit). Specifi-

cally, in Fig. 4, we plot the consumer surplus, producer surplus, and

their sum, for different markets with different solar penetration

level 𝑅. We can see that the social surplus (over consumers and

firms only) is also almost the same across the three markets (the top

curve). We can thus conclude that the rental market is also quite

efficient in terms of social surplus.

However, Fig. 4 shows drastic difference in terms of how the

social surplus is split between consumers and firms. For real-time

markets with price-quantity bids (RT PQB), the producer surplus
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almost overlaps with the social surplus (the top curve), while the

corresponding consumer surplus equals to zero (the bottom ⊳ curve).

In other words, the firms takes all of the social surplus, which is

highly unfair. In contrast, both rental markets (red curves) and real-

time markets with SPB (green curves) have similar and positive

consumer-surplus and producer-surplus. Further, the consumer

surplus increases with the solar penetration level 𝑅, suggesting that

consumers gain more benefit as more solar is invested in these two

markets. In contrast, the producer surplus first increases with 𝑅

but eventually decreases due to the increased competition as more

solar is available.

6.3 Impact of solar generation uncertainty

One important insight from our analysis (Proposition 5.1 and The-

orem 5.2) is that, in rental marketsź the uncertainty of solar genera-

tion becomes a beneficial factor that contributes to the elasticity of

the demand function and the desirable market outcome. In order to

illustrate this effect, we next turn to a synthetic setting so that we

can vary the level of uncertainty easily. We consider a total time

duration of unit length, i.e., 𝑇 = 1. The generation𝐺 (𝑡) for all 𝑡 ∈

[0, 1] is equal to a common random variable 𝐺 that follows a trun-

cated normal distribution Ntruncated (𝜇, 𝜎
2,𝐺,𝐺), where a larger 𝜎

means higher uncertainty of solar generation.We let the load profile

for each consumer be flat, i.e., 𝐿𝑛 (𝑡) = 𝐿𝑛, for all 𝑡 ∈ [0, 1]. Thus,

the total load 𝐿 ≜
∑𝑁
𝑛=1 𝐿𝑛 is a constant. In the following numerical

simulation, we let 𝐺 = 2 and 𝐺 = 18, 𝜇 =
𝐺+𝐺
2 = 10, 𝐿 = 10, and

𝜋𝑔 = 10.

In Fig. 5(a), we plot several demand functions 𝐷 (·) correspond-

ing to different values of 𝜎 . Clearly, as 𝜎 increases, the demand

function becomes more elastic. For example, the demand function

of 𝜎 = 1 (the red curve) is the least elastic one because it is the

flattest curve. Then, in Fig. 5(b) we plot the value of 𝐷−1 (𝐶)/𝜋𝑔𝛾

at different solar penetration levels 𝑅. Recall from Theorem 5.2

that this quantity is an upper bound on max𝐶𝑖/𝐶 , i.e., the ratio

between the maximum panel size of any firm 𝑖 and the total panel

size, so that the desirable outcome predicted by Theorem 5.2 will

occur. Clearly, a larger 𝜎 (i.e., higher solar uncertainty) makes this

quantity bigger, suggesting each firm can be bigger, without losing

the guarantee of Theorem 5.2.

6.4 Comparison with forward energy market

We now present simulation results in Fig. 6 to illustrate our dis-

cussion in Section 5.6 that the rental market can utilize more solar

generation than the forward energy market. We let both 𝐿(𝑡) and

𝐺 (𝑡) be uniformly distributed in [0, 20] for all 𝑡 (and hence the

penetration ratio 𝑅 is equal to 𝐶). For the correlation between gen-

eration and consumption, we consider two cases: 1○ 𝐿(𝑡) = 𝐺 (𝑡),

i.e., fully correlated, and 2○ 𝐿(𝑡) and 𝐺 (𝑡) are independent. Details

of other system setup can be found in Appendix E.

In Fig. 6, we plot the expected amount of solar generation used

by consumers, where the two solid red curves are for the forward

energy market (’▶’ for case 1○ and ’+’ for case 2○) and two dashed

blue curves are for the rental market (’◀’ for case 1○ and ’×’ for

case 2○). We can see that both red curves are lower than the cor-

responding blue curves when the penetration ratio 𝑅 is around

1, while their difference becomes smaller when 𝑅 is away from

1. This behavior is because the used generation amount for the

forward energy market equals to the minimum among the solar

generation amount, the load amount, and the amount cleared by

the forward energy market. When 𝑅 is very low or very high (i.e.,

either too much consumption or too much generation), either the

solar generation amount or the load amount becomes the bounding

term. In contrast, when the total generation amount and the total

consumption amount are comparable, the cleared amount becomes

the bounding term, in which case the wasting in forward energy

market becomes more significant.

7 CONCLUSION AND FUTUREWORK

In this paper, we study different forms of markets for distribution-

level energy markets under high penetration of uncertain and zero-

marginal-cost solar generation. While real-time markets exhibit

either price-volatility or price-fixing, our proposed rental markets

eliminate both price-volatility and price-fixing and achieve out-

comes such that the market price is stable and uniquely determined.

Further, the rental-market is as efficient as real-time markets in

terms of social welfare, and maintain positive surplus to both pro-

ducers and consumers. Although we focus on the case of exactly

zero marginal cost in this paper (as in [7]), our conclusion that the

rental market performs better than real-time markets (in terms of

eliminating price-volatility and price-fixing) still holds even when

the marginal cost is close to zero. Finally, our analysis of rental

markets reveals the important contribution of the uncertainty of

solar generation to the desirable market outcomes. Thus, rental

markets could potentially be a highly-desirable alternative to real-

time markets in such settings with high penetration of uncertain

and zero-marginal-cost resources.

There are several interesting directions for future work. First, in

this paper we have focused on the strategic bidding of the firms, but

assumed that the consumers’ demand functions are always truthful.

It would be interesting to study the setting where both sides are

strategic. Second, energy storage has been considered an important

player in energy markets with uncertain renewable. It would be

useful to understand how the addition of storage will change the

market operation and market outcomes. Third, this paper assumes

that the probability distribution of each consumer’s consumption

𝐿𝑛 (𝑡) is given. Thus, each consumer can compute her panel demand

to minimize the expected cost Eq. (3). In practice, this distribution

itself may be uncertain due to the long time-horizon of the rental

market (e.g., the consumer may be uncertain whether the next sea-

son is hotter or colder than before). In that case, the consumer may

bid more aggressively or conservatively than minimizing her ex-

pected cost, depending on how she weighs the different possibilities.

Studying the rental market under such an imprecise distribution of

consumption can be an interesting and valuable future direction.
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A PROOFS IN SECTION 4

We provide the following two algorithms to describe how real-

time markets compute market price and sold amount according to

bidding and demand. Notice that those algorithms work for both

the single-price-bid market and markets allowing price-quantity

bids.

Algorithm 3: Compute market price 𝜋eq.

1 Sort elements in {𝑝𝑖 : for all 𝑖} as 𝜋1 < 𝜋2 < · · · < 𝜋𝑅 (note

that all 𝜋𝑟 ’s are distinct);

2 𝑄 ← 0;

3 𝜋eq ← 𝜋𝑔 ;

4 for 𝑟 = 1 : 𝑅 do

5 𝑄 ← 𝑄 +
∑
{𝑖: 𝑝𝑖=𝜋𝑟 } 𝑞𝑖 ;

6 if 𝐿(𝑡) < 𝑄 and 𝜋𝑟 < 𝜋𝑔 then

7 𝜋eq ← 𝜋𝑟 ;

8 break;

Remark: In Eq. (8) of Algorithm 4, bids at the market price 𝜋eq
split the sold amount in proportion to their generation amount.

Here is an example. After clearing the supply below the price 𝜋eq,

the remaining demand is 10, firm 1 has a bid at the price 𝜋eq with

the amount 60, firm 2 has a bid at the price 𝜋eq with the amount

40. There is no other bid at the price 𝜋eq. Note that in this case
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Algorithm 4: Decide the sold amount 𝑠𝑖 .

1 𝑄 ← 0;

2 𝑠𝑖 ← 0, for all 𝑖;

3 for 𝑖 = 1 : 𝑀 do

4 if 𝑝𝑖 < 𝜋eq then

5 𝑠𝑖 ← 𝑞𝑖 ;

6 𝑄 ← 𝑄 + 𝑞𝑖 ;

7 Denote those bids with the price 𝜋eq as 𝑞𝑎1 , 𝑞𝑎2 , · · · , 𝑞𝑎ℎ .

8 for 𝑖 = 1 : ℎ do

9 𝑠𝑎𝑖 ← min

{
𝑞𝑎𝑖 (𝐿(𝑡) −𝑄)∑ℎ

𝑙=1
𝑞𝑎𝑙

, 𝑞𝑎𝑖

}
. (8)

the market price will indeed equal to 𝜋eq according to Algorithm

3. Then, firm 1 sells the amount 6 and the firm 2 sells the amount

4, i.e., they split the remaining demand 10 in proportion to their

bidding amount.

We immediately get the following lemma that reveals useful

properties of those two algorithms.

Lemma A.1. (a) If
∑𝑀
𝑖=1 𝑞𝑖 > 𝐿(𝑡), then we must have 𝜋eq =

𝑝 𝑗 for all 𝑗 that satisfies∑︁
𝑖: 𝑝𝑖 ≤𝑝 𝑗

𝑞𝑖 > 𝐿(𝑡),

∑︁
𝑖: 𝑝𝑖<𝑝 𝑗

𝑞𝑖 ≤ 𝐿(𝑡),

and this kind of 𝑗 must exists.

(b) If 𝑠𝑖 = 0, then we must have 𝑝𝑖 ≥ 𝜋eq.

(c) If 𝑝𝑖 > 𝜋eq, then 𝑠𝑖 = 0. If 𝑝𝑖 < 𝜋eq, then 𝑠𝑖 = 𝑞𝑖 .

(d) If 0 < 𝑠𝑖 < 𝑞𝑖 , then we must have 𝑝𝑖 = 𝜋eq. Further, if 0 <

𝑠𝑖 < 𝑞𝑖 and 𝑠 𝑗 = 𝑞 𝑗 , then we must have 𝑝 𝑗 < 𝑝𝑖 = 𝜋eq.

(e) When 𝐿(𝑡) ≤
∑
𝑖 𝑞𝑖 , we have

𝐿(𝑡) =
∑︁

𝑖: 𝑝𝑖<𝜋eq

𝑞𝑖 +
∑︁

𝑖: 𝑝𝑖=𝜋eq

𝑠𝑖 .

Remark: These results are intuitive. Part (a) states that at 𝜋eq,

supply and demand are close. Part (b) states that if one bid gets

no sell, then this bid must have the price higher than 𝜋eq. Part (c)

states that bidding above 𝜋eq gets no sell, while bidding below 𝜋eq
sells all. Part (d) states that a partly sold bid must have the price

𝜋eq. Part (e) states that when the supply is enough, the total sell

amount equals to the demand.

Proof. (a) Because
∑𝑀
𝑖=1 𝑞𝑖 > 𝐿(𝑡), the condition stated in Line 6

of Algorithm 3 must be met at some iteration. Thus, we can directly

get the result of this Lemma by Line 5∼7 of Algorithm 3.

(b) By Algorithm 4, we know that if 𝑝𝑖 < 𝜋eq, then 𝑠𝑖 = 𝑝𝑖 > 0.

Thus, if 𝑠𝑖 = 0, then we must have 𝑝𝑖 ≥ 𝜋eq.

(c) This result is directly derived from Algorithm 4.

(d) Due to Line 5 of Algorithm 4, we get the first statement that

𝑝𝑖 = 𝜋eq if 0 < 𝑠𝑖 < 𝑞𝑖 . Next, we prove the second statement.

Because 𝑠 𝑗 = 𝑞 𝑗 > 0, we know that 𝑝 𝑗 ≤ 𝜋eq (otherwise 𝑠 𝑗 = 0 from

part (c)). Thus we only need to prove that 𝑝 𝑗 = 𝜋eq is impossible.

We prove by contradiction. Suppose in contrary that 𝑝 𝑗 = 𝜋eq. Since

0 < 𝑠𝑖 < 𝑝𝑖 , from Eq. (8) we know that 𝐿(𝑡) −𝑄 >

∑ℎ
𝑙=1

𝑞𝑎𝑙 . Thus,

we must have 𝑠 𝑗 < 𝑞 𝑗 by Eq. (8). This contradicts with 𝑠 𝑗 = 𝑞 𝑗 . Thus,

we conclude that 𝑝 𝑗 ≠ 𝜋eq. As a result, we must have 𝑝 𝑗 < 𝜋eq.

Finally, using the result of the first statement, we can get the result

of the second statement that 𝑝 𝑗 < 𝑝𝑖 = 𝜋eq.

(e) This result directly follows from Algorithm 4. □

A.1 Proof of Proposition 4.1

We first give the following on the statement about any Nash equi-

librium in the single-price-bid market, where every firm bids all

generation amount, i.e., 𝑞𝑖 = 𝑞
0
𝑖 for all 𝑖 ∈ {1, 2, · · · , 𝑀}.

Lemma A.2. Suppose
∑
𝑖∈𝑆 𝑞

0
𝑖 ≠ 𝐿(𝑡) for all 𝑆 ⊆ {1, 2, · · · , 𝑀}

and
∑𝑀
𝑖=1 𝑞

0
𝑖 > 𝐿(𝑡). At a Nash equilibrium, if 𝜋eq > 0, then there

must exist one and only one firm 𝑗 that satisfies 0 < 𝑠 𝑗 < 𝑞0𝑗 , and

𝑠𝑖 = 𝑞
0
𝑖 for all other firms 𝑖 ≠ 𝑗 .

Proof. We split the proof by several steps as below.

Step 1: we prove that, for any bidding strategy (not necessarily a

Nash equilibrium), we must have 𝑠𝑖 > 0 for all 𝑝𝑖 = 𝜋eq. To see this,

by Line 6 of Algorithm 4, we know that 𝑄 must equal to the sum

of the elements in some subset of {𝑞01, 𝑞
0
2, · · · , 𝑞

0
𝑀
}. In other words,

we can write 𝑄 =
∑
𝑖∈𝑆0 𝑞

0
𝑖 ≠ 𝐿(𝑡), where 𝑆0 consists of the indices

of firms that bid prices less than 𝜋eq. Obviously, we have 𝑆0 ⊆

{1, 2, · · · , 𝑀}. Because
∑
𝑖∈𝑆 𝑞

0
𝑖 ≠ 𝐿(𝑡) for all 𝑆 ⊆ {1, 2, · · · , 𝑀}, in

Eq. (8) we must have 𝐿(𝑡) ≠ 𝑄 . Thus, by Eq. (8), we must have

𝑠𝑖 > 0 for all 𝑝𝑖 = 𝜋eq.

Step 2: we prove that 𝑠𝑖 > 0 for all 𝑖 at any Nash equilibrium. We

prove by contradiction. Suppose on the contrary that there exists a

firm 𝑖∗ such that 𝑠𝑖∗ = 0. Thus, the payoff of the firm 𝑖∗ equals to

𝑠𝑖∗𝜋eq = 0. Because 𝑠𝑖∗ = 0, by Lemma A.1(b), we have 𝑝𝑖∗ ≥ 𝜋eq.

Further, considering the result in step 1, we must have 𝑝𝑖∗ > 𝜋eq.

By Lemma A.1(a), we have∑︁
𝑖: 𝑝𝑖 ≤𝜋eq

𝑞0𝑖 > 𝐿(𝑡), (9)

∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 ≤ 𝐿(𝑡). (10)

Now, let the firm 𝑖∗ deviate to another bidding strategy with 𝑝 ′𝑖∗ =

𝜋eq. Then, Eq. (9) and Eq. (10) still hold. By Lemma A.1(a), we know

that the new market price will not change, i.e., 𝜋 ′eq = 𝜋eq. By the

result of step 1, we have 𝑠 ′𝑖∗ > 0. Thus, the new payoff of the firm

𝑖∗ equals to 𝑠 ′𝑖∗𝜋
′
eq = 𝑠 ′𝑖∗𝜋eq > 0, which is larger than the previous

payoff of zero. This contradicts the assumption that the original

bidding strategy is a Nash equilibrium. Thus, we have proven that

𝑠𝑖 > 0 for all 𝑖 .

Step 3: we prove that there exists one and only one firm 𝑗 that

satisfies 𝑠 𝑗 < 𝑞
0
𝑗 at any Nash equilibrium. Because

∑
𝑖∈𝑆 𝑞

0
𝑖 ≠ 𝐿(𝑡)

for all 𝑆 ⊆ {1, 2, · · · , 𝑀}, Lemma A.1(e) implies that at least one

firm 𝑗 satisfies 0 < 𝑠 𝑗 < 𝑞
0
𝑗 . Now, we prove by contradiction that

no other firms satisfy 𝑠 𝑗 < 𝑞
0
𝑗 . Suppose on the contrary that there

exists another firm 𝑘 ≠ 𝑗 such that 0 < 𝑠𝑘 < 𝑞0
𝑘
. By Lemma A.1(d),

we have 𝑝 𝑗 = 𝑝𝑘 = 𝜋eq. The payoff of the firm 𝑗 equals to 𝑠 𝑗𝜋eq. By
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Lemma A.1(a) we have ∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 ≤ 𝐿(𝑡).

By Lemma A.1(e) we have

𝐿(𝑡) =
∑︁

𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 +
∑︁

𝑖: 𝑝𝑖=𝜋eq

𝑠𝑖 ≥
©­
«

∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖
ª®
¬
+ 𝑠 𝑗 + 𝑠𝑘 . (11)

Now, let the firm 𝑗 deviate to another bidding strategy that 𝑝 ′𝑗 =

𝜋eq − 𝜖 where

𝜖 =
𝜋eqmin{𝑠𝑘 , 𝑞

0
𝑗 − 𝑠 𝑗 }

2min{𝑠 𝑗 + 𝑠𝑘 , 𝑞
0
𝑗 }

, (12)

and all other firms’ bidding prices do not change, i.e., 𝑝 ′𝑖 = 𝑝𝑖 , for all 𝑖 ≠

𝑗 . (Note that 0 < 𝜖 <
𝜋eq
2 because min{𝑠𝑘 , 𝑞

0
𝑗 − 𝑠 𝑗 } < min{𝑠𝑘 , 𝑞

0
𝑗 −

𝑠 𝑗 }+𝑠 𝑗 = min{𝑠 𝑗 +𝑠𝑘 , 𝑞
0
𝑗 }.) Then, we must have {𝑖 : 𝑝𝑖 < 𝜋eq−𝜖} =

{𝑖 : 𝑝 ′𝑖 < 𝜋eq − 𝜖}, {𝑖 : 𝑝𝑖 = 𝜋eq − 𝜖} = {𝑖 : 𝑝
′
𝑖 = 𝜋eq − 𝜖, 𝑖 ≠ 𝑗},

and ∑︁
𝑖: 𝑝′𝑖<𝜋eq−𝜖

𝑞0𝑖 =
∑︁

𝑖: 𝑝𝑖<𝜋eq−𝜖

𝑞0𝑖 ≤
∑︁

𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 ≤ 𝐿(𝑡),

where the last inequality follows from Eq. (11). By Lemma A.1(a), it

implies that the new market price must satisfy 𝜋 ′eq ≥ 𝜋eq −𝜖 . There

exist two possible cases. Case 1: 𝜋 ′eq > 𝜋eq − 𝜖 . By Lemma A.1(c),

we have 𝑠 ′𝑗 = 𝑞
0
𝑗 . Case 2: 𝜋

′
eq = 𝜋eq − 𝜖 . We have

∑︁
𝑖: 𝑝𝑖<𝜋eq−𝜖

𝑞0𝑖 +
©­«

∑︁
𝑖: 𝑝𝑖=𝜋eq−𝜖

𝑠 ′𝑖
ª®¬
+ 𝑠 ′𝑗

=

∑︁
𝑖: 𝑝′𝑖<𝜋eq−𝜖

𝑞0𝑖 +
∑︁

𝑖: 𝑝′𝑖=𝜋eq−𝜖

𝑠 ′𝑖

(because only the firm 𝑗 deviates)

= 𝐿(𝑡) (by Lemma A.1(e))

≥
©­
«

∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖
ª®
¬
+ 𝑠 𝑗 + 𝑠𝑘 (by Eq. (11)).

Moving the first two terms of the left-hand side to the right-hand

side, we have

𝑠 ′𝑗 ≥ 𝑠 𝑗 + 𝑠𝑘 +
©­
«

∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 −
∑︁

𝑖: 𝑝𝑖<𝜋eq−𝜖

𝑞0𝑖 −
∑︁

𝑖: 𝑝𝑖=𝜋eq−𝜖

𝑠 ′𝑖
ª®
¬

≥ 𝑠 𝑗 + 𝑠𝑘 +
©­«

∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 −
∑︁

𝑖: 𝑝𝑖<𝜋eq−𝜖

𝑞0𝑖 −
∑︁

𝑖: 𝑝𝑖=𝜋eq−𝜖

𝑞0𝑖
ª®¬

= 𝑠 𝑗 + 𝑠𝑘 +
©­«

∑︁
𝑖: 𝑝𝑖<𝜋eq

𝑞0𝑖 −
∑︁

𝑖: 𝑝𝑖 ≤𝜋eq−𝜖

𝑞0𝑖
ª®¬

≥ 𝑠 𝑗 + 𝑠𝑘 .

In summary, in both cases, we always have 𝑠 ′𝑗 ≥ min{𝑠 𝑗 + 𝑠𝑘 , 𝑞
0
𝑗 }.

Thus, the new payoff 𝜋 ′eq𝑠
′
𝑗 of the firm 𝑗 satisfies

𝜋 ′eq𝑠
′
𝑗 ≥ (𝜋eq − 𝜖)min{𝑠 𝑗 + 𝑠𝑘 , 𝑞

0
𝑗 }

= 𝜋eqmin{𝑠 𝑗 + 𝑠𝑘 , 𝑞
0
𝑗 } − 𝜖 min{𝑠 𝑗 + 𝑠𝑘 , 𝑞

0
𝑗 }

= 𝜋eqmin{𝑠 𝑗 + 𝑠𝑘 , 𝑞
0
𝑗 } −

𝜋eqmin{𝑠𝑘 , 𝑞
0
𝑗 − 𝑠 𝑗 }

2
(by Eq. (12))

> 𝜋eq
(
min{𝑠 𝑗 + 𝑠𝑘 , 𝑞

0
𝑗 } −min{𝑠𝑘 , 𝑞

0
𝑗 − 𝑠 𝑗 }

)
= 𝜋eq𝑠 𝑗 .

That means that the firm 𝑗 gets more payoff after deviating, which

contradicts the assumption that the original bidding strategy is a

Nash equilibrium. Thus, we have proven that there exists one and

only one firm 𝑗 that satisfies 0 < 𝑠 𝑗 < 𝑞
0
𝑗 .

Finally, recall from step 2 that for all firm 𝑖 must satisfy 𝑠𝑖 > 0.

Thus, the result of step 3 also implies that 𝑠𝑖 = 𝑞0𝑖 for all 𝑖 ≠ 𝑗

(where the firm 𝑗 is the one in step 3 that is the only firm that

satisfies 0 < 𝑠 𝑗 < 𝑞
0
𝑗 ). □

Now we are ready to prove Proposition 4.1.

A.1.1 Proof of Case 1.

Proof. When
∑𝑀
𝑖=1 𝑞

0
𝑖 ≤ 𝐿(𝑡), Line 6 of Algorithm 3 will never

be reached. Thus, the market price must be 𝜋eq = 𝜋𝑔 . Next, we show

that every firm bids at 𝜋𝑔 is a Nash equilibrium. First, when every

firm bids at 𝜋𝑔 , because 𝜋eq = 𝜋𝑔 , we have 𝑎𝑖 = 𝑖 and𝑄 = 0 in Eq. (8).

Thus, we have 𝑠𝑖 = 𝑞
0
𝑖 in Eq. (8) since𝐿(𝑡)−𝑄 = 𝐿(𝑡) >

∑𝑀
𝑖=1 𝑞

0
𝑖 . As a

result, the profit of the firm 𝑖 equals 𝑞0𝑖 𝜋𝑔 . Since at any circumstance

the market price cannot exceed 𝜋𝑔 and the firm 𝑖 cannot sell more

than 𝑞0𝑖 , the firm 𝑖 cannot earn more profit than 𝑞0𝑖 𝜋𝑔 by choosing

any other bidding strategy. Thus, the situation that every firm bids

at 𝜋𝑔 is Nash equilibrium. □

A.1.2 Proof of Case 2.

Proof. First, we prove that the strategy that all firms bid zero

price is a Nash equilibrium.When every firm 𝑖 bids zero price 𝑝𝑖 = 0,

because
∑𝑀
𝑖=1 𝑞

0
𝑖 ≥

∑
𝑖≠𝑗 𝑞

0
𝑖 > 𝐿(𝑡) for all 𝑗 , the condition in Line

6 of Algorithm 3 must be met at some time. Thus, we must have

𝜋eq = 0, and the payoff for every firm 𝑖 equals to 𝑞0𝑖 𝜋eq = 0. If one

firm 𝑗∗ bids differently (i.e., 𝑝 ′𝑗∗ > 0), since
∑
𝑖≠𝑗∗ 𝑞

0
𝑖 > 𝐿(𝑡), we still

have 𝜋 ′eq = 0 by Algorithm 3. Because 𝑝 ′𝑗∗ > 0 = 𝜋 ′eq, by Algorithm

4, we have 𝑠 ′𝑗∗ = 0. As a result, the new payoff of the firm 𝑗∗ equals

to 𝜋 ′eq𝑠
′
𝑗∗ = 0, i.e., the firm 𝑗∗ cannot get more benefits. Thus, we

have proven that the strategy that all firms bid zero price is a Nash

equilibrium.

Then, we prove the second statement of this proposition by

contradiction. Suppose on the contrary that, at a Nash equilibrium,

we have 𝜋eq > 0. By Lemma A.2, we have one firm 𝑗∗ such that

0 < 𝑠 𝑗∗ < 𝑞 𝑗∗ and 𝑠𝑖 = 𝑞0𝑖 for all other firms 𝑖 ≠ 𝑗∗. By Lemma

A.1(d), we know 𝑝 𝑗∗ = 𝜋eq and 𝑝𝑖 < 𝜋eq for all 𝑖 ≠ 𝑗∗. Thus, by
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Lemma A.1(e), we have

𝐿(𝑡) =
©­
«
∑︁
𝑖≠𝑗∗

𝑞0𝑖
ª®
¬
+ 𝑠 𝑗∗ >

∑︁
𝑖≠𝑗∗

𝑞0𝑖 .

This contradicts the assumption that
∑
𝑖≠𝑗 𝑞

0
𝑖 > 𝐿(𝑡) for all 𝑗 . Thus,

we have proven that at any Nash equilibrium, we must have 𝜋eq =

0. □

A.1.3 Proof of Case 3.

Proof. First, we illustrate that the following bidding strategy is

a Nash equilibrium: one firm 𝑗 ∈ I bids the price 𝜋𝑔 , and all other

firms bid the price zero. Since
∑
𝑖≠𝑗 𝑞

0
𝑖 < 𝐿(𝑡), we have 𝜋eq = 𝜋𝑔

because Line 6 of Algorithm 3 will never be met. By Algorithm 4,

any firm 𝑖 ≠ 𝑗 sells all, i.e., 𝑠𝑖 = 𝑞
0
𝑖 . Thus, any firm 𝑖 ≠ 𝑗 has already

achieved its maximum possible payoff 𝑞0𝑖 𝜋𝑔 and none of them has

an incentive to deviate. Consider the firm 𝑗 . Since all firms except

the firm 𝑗 bid zero price, the firm 𝑗 cannot sell more unless bidding

the price zero. Thus, if the firm 𝑗 bids any positive price less than 𝜋𝑔 ,

its payoff will be lower. If the firm 𝑗 bids zero price, by Algorithm

3 we know the market price will be zero and thus its payoff will

be zero because
∑𝑀
𝑖=1 𝑞

0
𝑖 > 𝐿(𝑡). In summary, we conclude that the

firm 𝑗 cannot get more payoff by deviating. Thus, we have shown

the strategy that 𝑝 𝑗 = 𝜋eq, 𝑝𝑖

����
𝑖≠𝑗

= 0 is a Nash equilibrium.

Then, we prove that at any Nash equilibrium we must have

𝜋eq = 𝜋𝑔 and only one firm in I bids at 𝜋𝑔 . We split the proof by

several steps as follows.

Step 1: we show that if any firm 𝑗 ∈ I bids the price 𝑝 𝑗 = 𝜋𝑔 ,

then 𝜋eq = 𝜋𝑔 (regardless of other firms’ bids). At the beginning

of this subsection, we have already made the assumption that a

legitimate bid should satisfy 𝑝𝑖 ∈ [0, 𝜋𝑔]. Thus, we have

∑︁
𝑖: 𝑝𝑖 ≤𝜋𝑔

𝑞0𝑖 =

𝑀∑︁
𝑖=1

𝑞0𝑖 > 𝐿(𝑡).

Further, if any firm 𝑗 ∈ I bids the price 𝑝 𝑗 = 𝜋𝑔 , we then have∑︁
𝑖: 𝑝𝑖<𝜋𝑔

𝑞0𝑖 ≤
∑︁
𝑖≠𝑗

𝑞0𝑖 < 𝐿(𝑡) (by the definition of I).

By Lemma A.1(a), we know 𝜋eq = 𝜋𝑔 . Thus, we have proven that if

𝑝 𝑗 = 𝜋𝑔 for some 𝑗 ∈ I, then 𝜋eq = 𝜋𝑔 .

Based on the result of step 1, to complete the rest of the proof,

we only need to show that, at any Nash equilibrium, there must

exist one firm 𝑗 ∈ I that bids 𝑝 𝑗 = 𝜋𝑔 . Towards this end, we will

first show that 𝜋eq > 0 at any Nash equilibrium in step 2, based on

which we then apply Lemma A.2 in step 3.

Step 2: We prove 𝜋eq > 0 at any Nash equilibrium by contradic-

tion. Suppose on the contrary that 𝜋eq = 0 at a Nash equilibrium.

Consider any firm 𝑗 ∈ I. By step 1, we know 𝑝 𝑗 ≠ 𝜋𝑔 . Note that

since 𝜋eq = 0, the payoff of the firm 𝑗 equals to 0. Let the firm 𝑗

deviate its bidding strategy to 𝑝 ′𝑗 = 𝜋𝑔 . By step 1, we know that

the new market price equals to 𝜋 ′eq = 𝜋𝑔 . Because
∑
𝑖∈𝑆 𝑞

0
𝑖 ≠ 𝐿(𝑡)

for all 𝑆 ⊆ {1, 2, · · · , 𝑀}, by Eq. (8) we must have 𝑠 ′𝑗 > 0. Thus, the

new payoff of the firm 𝑗 equals to 𝑠 ′𝑗𝜋
′
eq > 0, which is larger than

the payoff of its previous bidding strategy. This contradicts the as-

sumption that the previous bidding strategy is a Nash equilibrium.

Thus, we have proven that 𝜋eq > 0 at any Nash equilibrium.

Step 3: we prove 𝜋eq = 𝜋𝑔 at any Nash equilibrium. We prove by

contradiction. Suppose on the contrary that 𝜋eq < 𝜋𝑔 . By the result

of step 2, we must have 𝜋eq > 0. By Lemma A.2, there exists one

and only one firm 𝑗 such that 0 < 𝑠 𝑗 < 𝑞
0
𝑗 and 𝑠𝑖 = 𝑞

0
𝑖 for all 𝑖 ≠ 𝑗 .

Thus, by Lemma A.1(e), we have

𝐿(𝑡) =
©­
«
∑︁
𝑖≠𝑗

𝑞0𝑖
ª®
¬
+ 𝑠 𝑗 ,

which implies that
∑
𝑖≠𝑗 𝑞

0
𝑖 < 𝐿(𝑡), i.e., 𝑗 ∈ I. By Lemma A.1(d),

we have 𝑝 𝑗 = 𝜋eq < 𝜋𝑔 and 𝑝𝑖 < 𝑝 𝑗 for all 𝑖 ≠ 𝑗 . The payoff of the

firm 𝑗 thus equals to 𝜋eq𝑠 𝑗 . Now, let the firm 𝑗 deviate to another

bidding strategy that 𝑝 ′𝑗 = 𝜋𝑔 . By step 1, we know that the new

market price equals to 𝜋 ′eq = 𝜋𝑔 . Because 𝑝𝑖 < 𝑝 𝑗 = 𝜋eq < 𝜋𝑔 =

𝜋 ′eq for all 𝑖 ≠ 𝑗 , by Lemma A.1(e), we have 𝑠 ′𝑗 = 𝐿(𝑡) −
∑
𝑖≠𝑗 𝑞

0
𝑗 = 𝑠 𝑗 .

Thus, the new payoff of the firm 𝑗 equals 𝜋 ′eq𝑠
′
𝑗 = 𝜋𝑔𝑠

′
𝑗 > 𝜋eq𝑠 𝑗 .

This contradicts the assumption that the previous bidding strategy

is a Nash equilibrium. Thus, we have proven that 𝜋eq = 𝜋𝑔 .

In summary, we conclude that, at any Nash equilibrium, we must

have 𝜋eq = 𝜋𝑔 and only one firm in I bids at the price 𝜋𝑔 while

other firms bid the price below 𝜋𝑔 . □

A.2 Proof of Proposition 4.2

Proof. We first verify that all Nash equilibria in Proposition 4.1

are still Nash equilibria in the price-quantity-bid mechanism. To

that end, we will check whether there exists any firm that can

earn more profit by withholding supply (who may also change

the corresponding bidding price at the same time). For Case 1 of

Proposition 4.1, the price is already at the highest possible price

𝜋𝑔 . Further, at the Nash equilibrium (where every firm bids at 𝜋𝑔)

every firm has already sold all generation. Thus, withholding supply

and/or changing the bidding price will not increase the payoff of

any firm. Therefore, all firms bidding their full generation at price

𝜋𝑔 is still a Nash equilibrium. For Case 2 of Proposition 4.1, no firm

is large enough to change the situation from abundant supply to

limited supply because
∑
𝑖≠𝑗 𝑞

0
𝑖 > 𝐿(𝑡) for all 𝑗 , which implies that

the market price will still always be zero and thus the profit of

the firm that withholding supply will still be zero. Therefore, the

Nash equilibrium of Case 2 (every firm bidding at zero price) is

still a Nash equilibrium. For the Nash equilibrium of Case 3 (one

firm 𝑗 ∈ I bids at 𝜋𝑔 , all other firms 𝑖 ≠ 𝑗 bid at zero price), first

note that those firms with zero bidding price already achieve their

maximum payoff (selling all generation at 𝜋𝑔). Hence, they have no

incentive to withhold supply and/or change the bidding price. It

remains to consider the firm 𝑗 who bids at 𝜋𝑔 . We consider three

sub-cases. 1○ If the firm 𝑗 bids at another price 𝑝 ′𝑗 ∈ (0, 𝜋𝑔], then

by Algorithm 3 and Algorithm 4 we know that, after deviation from

𝜋𝑔 to 𝑝
′
𝑗 , the market price becomes 𝜋 ′eq = 𝑝 ′𝑗 , and the firm 𝑗 ’s sold

amount becomes 𝑠 ′𝑗 = min{𝐿(𝑡) −
∑
𝑖≠𝑗 𝑞

0
𝑖 , 𝑞
′
𝑗 } (where 𝑞

′
𝑗 ∈ [0, 𝑞

0
𝑗 ]

denotes the new bidding quantity of firm 𝑗 after deviation which

allows supply withholding). Let 𝑠 𝑗 = 𝐿(𝑡) −
∑
𝑖≠𝑗 𝑞

0
𝑖 be the sold

amount of firm 𝑗 before deviation. Thus, the firm 𝑗 ’s payoff after
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the deviation is

𝑠 ′𝑗𝜋
′
eq =min



𝐿(𝑡) −

∑︁
𝑖≠𝑗

𝑞0𝑖 , 𝑞
′
𝑗



· 𝑝 ′𝑗 = min{𝑠 𝑗 , 𝑞

′
𝑗 } · 𝑝

′
𝑗

≤𝑠 𝑗𝜋eq,

which implies that the firm 𝑗 cannot increase her payoff after de-

viation if 𝑝 ′𝑗 ∈ (0, 𝜋𝑔]. 2○ If 𝑝 ′𝑗 = 0 and 𝑞′𝑗 > 𝐿(𝑡) −
∑
𝑖≠𝑗 𝑞

0
𝑖 ,

then 𝜋 ′eq = 0 and thus the firm 𝑗 ’ payoff becomes zero, which

also implies that her payoff does not increase. 3○ If 𝑝 ′𝑗 = 0 and

𝑞′𝑗 ≤ 𝐿(𝑡)−
∑
𝑖≠𝑗 𝑞

0
𝑖 = 𝑠 𝑗 , then 𝑠

′
𝑗𝜋
′
eq ≤ 𝑞

′
𝑗𝜋𝑔 ≤ 𝑠 𝑗𝜋eq, which implies

that the firm 𝑗 cannot increase her payoff after deviation. Therefore,

in all possible sub-cases 1○ 2○ 3○ of Case 3, we have shown that

firm 𝑗 cannot increase her payoff by changing her bidding. We can

then conclude that the original Nash equilibrium of Case 3 is still

a Nash equilibrium when withholding supply is allowed. To sum

up, we have shown that all Nash equilibria in all three cases of

Proposition 4.1 are still Nash equilibria under price-quantity-bids.

We then focus on proving the new Nash equilibrium described

in (2). First, we prove that, if 𝐿(𝑡) >
∑𝑀
𝑖=1 𝑞

0
𝑖 , then there must exist

a Pareto-optimal Nash equilibrium with 𝜋eq = 𝜋𝑔 . Specifically, we

want to show the bidding strategy that 𝑞𝑖 = 𝑞
0
𝑖 , 𝑝𝑖 = 𝜋eq for all 𝑖 is

a Pareto-optimal Nash equilibrium with 𝜋eq = 𝜋𝑔 . Because 𝐿(𝑡) >∑𝑀
𝑖=1 𝑞

0
𝑖 =

∑𝑀
𝑖=1 𝑞𝑖 , by Algorithm 3, we have 𝜋eq = 𝜋𝑔 . By Algorithm

4, we have 𝑠𝑖 = 𝑞𝑖 . Because 𝑞
0
𝑖 = 𝑞𝑖 , any firm 𝑖 sells all of its

generation, i.e., 𝑠𝑖 = 𝑞
0
𝑖 . Thus, each firm 𝑖 has already achieved its

maximum possible profit 𝜋𝑔𝑞
0
𝑖 . In other words, no bidding strategy

can make any firm get more profit. Thus, the bidding strategy

𝑞𝑖 = 𝑞
0
𝑖 , 𝑝𝑖 = 𝜋eq for all 𝑖 is a Pareto-optimal Nash equilibrium.

Then, we prove that if 𝐿(𝑡) ≤
∑𝑀
𝑖=1 𝑞

0
𝑖 , then there must exist a

Pareto-optimal Nash equilibrium with 𝜋eq = 𝜋𝑔 . Specifically, we

will show that any bidding strategy that satisfies the following

conditions is such a Nash equilibrium:{
𝐿(𝑡) =

∑𝑀
𝑖=1 𝑞𝑖 ,

𝑝𝑖 = 0 for all 𝑖 .
(13)

Because 𝐿(𝑡) ≤
∑𝑀
𝑖=1 𝑞

0
𝑖 , we can always find such (𝑞0, 𝑞1, · · · ) that

satisfies Eq. (13). By Algorithm 3 (especially Line 6), we know that

𝜋eq = 𝜋𝑔 in this situation
5. By Algorithm 4, we know 𝑠𝑖 = 𝑝𝑖 for all 𝑖 .

Thus, the profit of any firm 𝑗 equals 𝑝 𝑗𝜋𝑔 . Now, suppose that the

firm 𝑗 deviates to an arbitrary bidding strategy (𝑞′𝑗 , 𝑝
′
𝑗 ), while the

bids of the other firms remain the same, i.e., 𝑝 ′𝑖 = 𝑝𝑖 , 𝑞
′
𝑖 = 𝑞𝑖 for all

𝑖 ≠ 𝑗 . There are three different cases.

Case 1: 𝑝 ′𝑗 > 0. By Algorithm 4, we know that 𝑠 ′𝑖 = 𝑞′𝑖 =

𝑞𝑖 for all 𝑖 ≠ 𝑗 , because all other firms 𝑖 ≠ 𝑗 bid lower than

the firm 𝑗 and
∑
𝑖≠𝑗 𝑞

′
𝑖 =

∑
𝑖≠𝑗 𝑞𝑖 = 𝐿(𝑡) − 𝑞 𝑗 < 𝐿(𝑡). Thus,

𝑠 ′𝑗 ≤ 𝐿(𝑡) −
∑
𝑖≠𝑗 𝑞𝑖 = 𝑞 𝑗 . As a result, the payoff of the firm 𝑗

becomes 𝑠 ′𝑗𝜋eq ≤ 𝑞 𝑗𝜋𝑔 , which is not greater than the original pay-

off.

5Readers may be surprised why the market price is 𝜋𝑔 even though every firm bids
at zero price. Note that by Algorithm 4, the market price is the marginal cost for
one additional unit of demand. With the bids in Eq. (13), the demand is equal to the
total bidding quantity. Thus, the marginal price that consumers have to pay for one
additional unit of electricity is 𝜋𝑔 . See the remark at the end of this subsection on
what happens if the market price is defined as the marginal cost for the last unit of
demand.

Case 2: 𝑝 ′𝑗 = 0 and 𝑞′𝑗 ≤ 𝑞 𝑗 . The payoff of the firm 𝑗 equals to

𝑠 ′𝑗𝜋eq ≤ 𝑞
′
𝑗𝜋𝑔 ≤ 𝑞 𝑗𝜋𝑔 , which is also not greater than the original

payoff.

Case 3: 𝑝 ′𝑗 = 0 and 𝑞′𝑗 > 𝑞 𝑗 . Thus, we have

𝑀∑︁
𝑖=1

𝑞′𝑖 = 𝑞
′
𝑗 +

∑︁
𝑖≠𝑗

𝑞𝑖 > 𝑞 𝑗 +
∑︁
𝑖≠𝑗

𝑞𝑖 =

𝑀∑︁
𝑖=1

𝑞𝑖 = 𝐿(𝑡) .

By Algorithm 3, we have that the new market price now equals to

𝜋 ′eq = 0. Thus, the payoff of the firm 𝑗 becomes zero, which cannot

be greater than its original payoff.

In all three cases, the firm 𝑗 cannot get more payoff by deviating

to another bidding strategy. As a result, we conclude that the origi-

nal bidding strategy is a Nash equilibrium. Now, we prove that this

Nash equilibrium is Pareto optimal. The total payoff of all firms

equals to 𝜋eq
∑𝑀
𝑖=1 𝑠𝑖 = 𝜋𝑔

∑𝑀
𝑖=1 𝑞𝑖 = 𝜋𝑔𝐿(𝑡). By Algorithm 3, we

know that the market price cannot exceed 𝜋𝑔 . By Algorithm 4, we

know that the total sold amount cannot exceed 𝐿(𝑡). Thus, 𝜋𝑔𝐿(𝑡) is

the maximum total payoff to the firms as a whole. It implies that this

Nash equilibrium is Pareto optimal. The result of this proposition

thus holds. □

Remark on how the marginal price is determined: In Algorithm

3, the marginal price (i.e., market price 𝜋eq) is defined as the cost

for one additional unit of demand. There is an alternative way of

defining the market price as the cost of the last unit of demand.

Specifically, we may change the condition in Line 6 in Algorithm 3

as łif 𝐿(𝑡) ≤ 𝑄 and 𝜋𝑟 < 𝜋𝑔". For markets allowing only single-price

bids (which we study in subsection 4.1), since we assume

Pr

{∑︁
𝑖∈𝑆

𝑞𝑖 ≠ 𝐿(𝑡) for all 𝑆 ⊆ {1, 2, · · · , 𝑀}

}
= 1,

the above change makes no difference to the calculation of E[𝜋eq]

in subsection 4.1. For markets allowing price-quantity bids (which

we study in this subsection), as we explain below, similar outcomes

as Proposition 4.2 will arise even when the market price is defined

as the cost of the last unit of demand. In this case, we made the

additional assumption that the quantity of a bid must be a multiple

of some smallest-possible unit 𝛿 (e.g., 1 kW). Then, we can change

the bidding strategy in Eq. (2) to{∑𝑀
𝑖=1 𝑞𝑖 = min

{⌊
𝐿 (𝑡 )
𝛿

⌋
· 𝛿,

∑𝑀
𝑖=1 𝑞

0
𝑖

}
,

𝑝𝑖 = 0, both 𝑞𝑖 and 𝑞
0
𝑖 are a multiple of 𝛿, for all 𝑖 .

(14)

We can use similar methods as in the proof of Proposition 4.2

to show that Eq. (14) is a Pareto-optimal Nash equilibrium with

𝜋eq = 𝜋𝑔 . Detailed proof is omitted here.

A.3 Proof of Proposition 4.3

Proof. When
∑𝑀
𝑖=1 𝑞

0
𝑖 < 𝐿(𝑡, 𝜋𝑔), according to Eq. (2), every

firm sells all generation amount at the highest price 𝜋𝑔 . Thus, she

cannot earn more profit by changing her bid, which implies that

Eq. (2) is a Nash equilibrium. It remains to consider the situation

where
∑𝑀
𝑖=1 𝑞

0
𝑖 ≥ 𝐿(𝑡, 𝜋𝑔). By Eq. (2), we have

∑𝑀
𝑖=0 𝑞𝑖 = 𝐿(𝑡, 𝜋𝑔).

We now prove by contradiction. Suppose on the contrary that one

firm 𝑖 can earn more profit by deviating her bid away from what

described in Eq. (2). Since the new equilibrium price 𝜋eq can never
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be higher than 𝜋𝑔 , this can only happen if firm 𝑖’s new sold amount

satisfies 𝑠 ′𝑖 > 𝑞𝑖 , with the new market price 𝜋 ′eq > 0. For all other

firms 𝑗 ≠ 𝑖 , since they bid zero price, it implies that 𝑠 ′𝑗 = 𝑠 𝑗 = 𝑞 𝑗
for all 𝑗 ≠ 𝑖 (by Lemma A.1(d) in Appendix A). Thus, we have

𝑠 ′𝑖 − 𝑞𝑖 = 𝐿(𝑡, 𝜋 ′eq) − 𝐿(𝑡, 𝜋𝑔). In other words, the increased sold

amount of firm 𝑖 all comes from the total demand elasticity and

does not come from other firms’ sold amount. The profit of firm 𝑖

after the deviation is 𝑠 ′𝑖𝜋
′
eq. The change of firm 𝑖’s profit is then

𝜋 ′eq𝑠
′
𝑖 − 𝜋𝑔𝑞𝑖

=𝜋𝑔 (𝑠
′
𝑖 − 𝑞𝑖 ) − (𝜋𝑔 − 𝜋

′
eq)𝑠
′
𝑖

=(𝜋𝑔 − 𝜋
′
eq)𝐿(𝑡, 𝜋𝑔)

(
𝑠 ′𝑖 − 𝑞𝑖

𝐿(𝑡, 𝜋𝑔)

𝜋𝑔

𝜋𝑔 − 𝜋
′
eq
−

𝑠 ′𝑖
𝐿(𝑡, 𝜋𝑔)

)

=(𝜋𝑔 − 𝜋
′
eq)𝐿(𝑡, 𝜋𝑔)

(
𝐿(𝑡, 𝜋 ′eq) − 𝐿(𝑡, 𝜋𝑔)

𝐿(𝑡, 𝜋𝑔)

𝜋𝑔

𝜋𝑔 − 𝜋
′
eq
−

𝑠 ′𝑖
𝐿(𝑡, 𝜋𝑔)

)

≤(𝜋𝑔 − 𝜋
′
eq)𝐿(𝑡, 𝜋𝑔)

(
max

𝜋 ∈[0,𝜋𝑔 ]
𝜂𝑡 (𝜋) −

𝑞𝑖

𝐿(𝑡, 𝜋𝑔)

)

≤0.

(The last inequality is from the condition of this proposition.) In

other words, firm 𝑖 cannot earn more profit by deviating to another

bid. This contradicts our previous assumption that firm 𝑖 can earn

more profit. The result of this proposition thus follows. □

B ABOUT THE PANEL DEMAND FUNCTION

In this part, we will show more detailed properties of the panel de-

mand function defined in Section 5.1. From Appendix B.1 to Appen-

dix B.4, we will first study properties of the panel demand function

such as existence and monotonicity. Then we will prove Proposi-

tion 5.1 in Appendix B.5. In Appendix B.6, we will also provide a

corollary of Proposition 5.1, which will be useful in the proof of

Theorem 5.2. We will need some extra notations as follows. Define

x𝑡 = (𝐿𝑛 (𝑡), 𝐺 (𝑡)) ∈ R
2, and 𝐻𝑛 (x𝑡 , 𝑐𝑛) = 𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛 . Then,

[𝐻𝑛 (x𝑡 , 𝑐𝑛)]
+ is the amount of extra electricity that the consumer

𝑛 needs to buy from the grid at time 𝑡 , where [𝑎]+ = max{0, 𝑎}. Let

[0,𝑇 ] denote the range of time6.

B.1 Existence of 𝑑𝑛 (𝜋)

Lemma B.1. The function 𝐽𝑛 (𝜋, 𝑐𝑛) is continuous with respect to

both 𝜋 and 𝑐𝑛 .

6Although we adopt a continuous-time model here, the result also applies to the
discrete-time model.

Proof. To verify the continuity of 𝐽𝑛 , note that

lim
Δ𝜋→0,Δ𝑐𝑛→0

(𝐽𝑛 (𝜋 + Δ𝜋, 𝑐𝑛 + Δ𝑐𝑛) − 𝐽𝑛 (𝜋, 𝑐𝑛))

= lim
Δ𝜋→0,Δ𝑐𝑛→0

((𝜋 + Δ𝜋) (𝑐𝑛 + Δ𝑐𝑛) − 𝜋𝑐𝑛)

+
𝜋𝑔

𝑇
lim

Δ𝑐𝑛→0

∫ 𝑇

0
E
[
[𝐿𝑛 (𝑡) −𝐺 (𝑡) (𝑐𝑛 + Δ𝑐𝑛)]

+

− [𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛]
+
]
𝑑𝑡 (by Eq. (3))

=0 +
𝜋𝑔

𝑇

∫ 𝑇

0
E lim
Δ𝑐𝑛→0

[
[𝐿𝑛 (𝑡) −𝐺 (𝑡) (𝑐𝑛 + Δ𝑐𝑛)]

+

− [𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛]
+
]
𝑑𝑡

=0 +
𝜋𝑔

𝑇

∫ 𝑇

0
E 0 𝑑𝑡 = 0.

Thus, 𝐽𝑛 is continuous with respect to both 𝜋 and 𝑐𝑛 . Note that

in the second equality, we exchange the order between the limit

and the expectation. This exchange of order is valid by the Domi-

nated Convergence Theorem [33], since
���∫ 𝑇0 E[𝐿𝑛 (𝑡)]𝑑𝑡

��� < ∞ and��[𝐿𝑛 (𝑡) −𝐺 (𝑡) (𝑐𝑛 + Δ𝑐𝑛)]+�� ≤ 𝐿𝑛 (𝑡) for all Δ𝑐𝑛 . □

It is obvious that 𝑑𝑛 (0) = +∞ by the definition of 𝑑𝑛 (𝜋). The

following lemma indicates that 𝑑𝑛 (𝜋) also exists for all 𝜋 > 0.

Lemma B.2. For any 𝜋 > 0, the minimizer of 𝐽𝑛 (𝜋, 𝑐𝑛) over 𝑐𝑛
must exist, i.e., there exists 𝑐∗𝑛 such that

𝐽𝑛 (𝜋, 𝑐
∗
𝑛) ≤ 𝐽𝑛 (𝜋, 𝑐𝑛) for all 𝑐𝑛 ≥ 0.

Proof. We first prove that, for any 𝜋 ≥ 0, there exists 𝑐 > 0

such that

𝐽𝑛 (𝜋, 1) ≤ 𝐽𝑛 (𝜋, 𝑐𝑛) for all 𝑐𝑛 ≥ 𝑐. (15)

To see this, note that because 𝐻𝑛 (x𝑡 , 𝑐𝑛) ≤ 𝐿(𝑡), we have

𝐽𝑛 (𝜋, 1) ≤ 𝜋 +
𝜋𝑔

𝑇

∫ 𝑇

0
𝐿(𝑡)𝑑𝑡

= 𝜋

(
1 +

𝜋𝑔

𝜋𝑇

∫ 𝑇

0
𝐿(𝑡)𝑑𝑡

)
.

We let 𝑐 = 1 +
𝜋𝑔
𝜋𝑇

∫ 𝑇
0
𝐿(𝑡)𝑑𝑡 . Thus, we have

𝐽𝑛 (𝜋, 1) ≤ 𝜋

(
1 +

𝜋𝑔

𝜋𝑇

∫ 𝑇

0
𝐿(𝑡)𝑑𝑡

)
= 𝜋𝑐

≤ 𝐽𝑛 (𝜋, 𝑐𝑛), for all 𝑐𝑛 ≥ 𝑐.

Further, by the Extreme Value Theorem [15], over the closed and

bounded interval [0, 𝑐], the continuous function 𝐽𝑛 (𝜋, 𝑐𝑛) must

have a minimum 𝑐∗𝑛 , i.e.,

𝐽𝑛 (𝜋, 𝑐
∗
𝑛) ≤ 𝐽𝑛 (𝜋, 𝑐𝑛) for all 𝑐𝑛 ≤ 𝑐.

Combining with Eq. (15), the result of the lemma then follows. □

B.2 Calculation of the threshold price 𝜋𝑛
Intuitively, when the price is too high, the consumer 𝑛 will choose

to rent zero amount of PV panels. Let 𝜋𝑛 be the threshold, above

which the customer 𝑛 will rent zero amount of PV panels. In the

following lemma, we give the exact value of 𝜋𝑛 and prove that

𝑑𝑛 (𝜋) = 0 when 𝜋 > 𝜋𝑛 .
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Lemma B.3. If 𝜋 > 𝜋𝑛 ≜
𝜋𝑔
𝑇

∫ 𝑇
0
E[𝐺 (𝑡)1{𝐿𝑛 (𝑡 )>0}]𝑑𝑡 , then

𝐽𝑛 (𝜋, 𝑐𝑛) > 𝐽𝑛 (𝜋, 0) for all 𝑐𝑛 > 0, and thus 𝑑𝑛 (𝜋) = 0.

Proof.

𝜋 >

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1{𝐿𝑛 (𝑡 )>0}]𝑑𝑡 and 𝑐𝑛 > 0

=⇒ 𝜋𝑐𝑛 >

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)𝑐𝑛1{𝐿𝑛 (𝑡 )>0}]𝑑𝑡

=⇒ 𝜋𝑐𝑛 >

𝜋𝑔

𝑇

∫ 𝑇

0
E
[ (
𝐿𝑛 (𝑡) − [𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛]

+)
· 1{𝐿𝑛 (𝑡 )>0}

]
𝑑𝑡

=⇒ 𝜋𝑐𝑛 +
𝜋𝑔

𝑇

∫ 𝑇

0
E

[
[𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐𝑛]

+
]
𝑑𝑡

>

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐿𝑛 (𝑡)]𝑑𝑡

=⇒ 𝐽𝑛 (𝜋, 𝑐𝑛) > 𝐽𝑛 (𝜋, 0) .

□

In LemmaB.3, the condition 𝜋 > 𝜋𝑛 ≜
𝜋𝑔
𝑇

∫ 𝑇
0
E[𝐺 (𝑡)1{𝐿𝑛 (𝑡 )>0}]𝑑𝑡

can be rewritten as

𝜋

1
𝑇

∫ 𝑇
0
E[𝐺 (𝑡)1{𝐿𝑛 (𝑡 )>0}]𝑑𝑡

> 𝜋𝑔 .

Notice that the left hand side represents the equivalent price of one

unit amount of solar energy that is useful for the consumer 𝑛 (i.e.,

when her load is positive). Lemma B.3 thus states that, when this

equivalent price is higher than the retail price, the consumer 𝑛 will

not rent any PV panels, i.e., 𝑑𝑛 (𝜋) = 0 if 𝜋 > 𝜋𝑛 .

B.3 Monotonicity of the panel demand function

LemmaB.4. Defineℎ(𝑐𝑛) =
∫ 𝑇
0
E[𝐺 (𝑡)1A(𝑐𝑛) ]𝑑𝑡 whereA(𝑐𝑛) =

{(𝑡, x𝑡 ) : 𝐻𝑛 (x𝑡 , 𝑐𝑛) > 0}. Then, under Assumption 1, ℎ(𝑐𝑛) is con-

tinuous when 𝑐𝑛 > 0. Specifically, for all 𝑐𝑖,2 > 𝑐𝑖,1 > 0, we have

0 ≤ ℎ(𝑐𝑖,1) − ℎ(𝑐𝑖,2) ≤ 𝛾𝑇 ln
(
𝑐𝑖,2
𝑐𝑖,1

)
≤ 𝛾𝑇

𝑐𝑖,2−𝑐𝑖,1
𝑐𝑖,1

.

Proof. Suppose that 𝑐𝑖,2 > 𝑐𝑖,1 > 0. Because 𝐻𝑛
(
x𝑡 , 𝑐𝑖,2

)
≤

𝐻𝑛
(
x𝑡 , 𝑐𝑖,1

)
, we have A(𝑐𝑖,2) ⊆ A(𝑐𝑖,1). Thus, we have ℎ(𝑐𝑖,1) −

ℎ(𝑐𝑖,2) ≥ 0. By the definition of ℎ(·), we have

ℎ(𝑐𝑖,1) − ℎ(𝑐𝑖,2)

=

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑐𝑖,1) ]𝑑𝑡 −

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑐𝑖,2) ]𝑑𝑡

=

∫ 𝑇

0

∫ ∞

0

∫ 𝑦
𝑐𝑖,1

0
𝑥 𝑓 𝑡𝐺,𝐿𝑛

(𝑥,𝑦)𝑑𝑥𝑑𝑦𝑑𝑡

−

∫ 𝑇

0

∫ ∞

0

∫ 𝑦
𝑐𝑖,2

0
𝑥 𝑓 𝑡𝐺,𝐿𝑛

(𝑥,𝑦)𝑑𝑥𝑑𝑦𝑑𝑡

=

∫ 𝑇

0

∫ ∞

0

∫ 𝑦
𝑐𝑖,1

𝑦
𝑐𝑖,2

𝑥 𝑓 𝑡
𝐺 |𝐿𝑛
(𝑥 |𝑦) · 𝑓 𝑡𝐿𝑛 (𝑦)𝑑𝑥𝑑𝑦𝑑𝑡

≤

∫ 𝑇

0

∫ ∞

0

∫ 𝑦
𝑐𝑖,1

𝑦
𝑐𝑖,2

𝛾

𝑥
· 𝑓 𝑡𝐿𝑛 (𝑦)𝑑𝑥𝑑𝑦𝑑𝑡 (by Assumption 1)

=

∫ 𝑇

0

∫ ∞

0
𝛾 ln

(
𝑐𝑖,2

𝑐𝑖,1

)
· 𝑓 𝑡𝐿𝑛 (𝑦)𝑑𝑦𝑑𝑡

=𝛾𝑇 ln

(
𝑐𝑖,2

𝑐𝑖,1

)

≤𝛾𝑇
𝑐𝑖,2 − 𝑐𝑖,1

𝑐𝑖,1
(because ln(𝑥) ≤ 𝑥 − 1 for 𝑥 ≥ 1).

It also implies that

lim
𝑐𝑖,2→𝑐𝑖,1

(
ℎ(𝑐𝑖,2) − ℎ(𝑐𝑖,1)

)
= 0.

As a result, we conclude that ℎ(𝑐𝑛) is continuous when 𝑐𝑛 > 0. □

LemmaB.5. Under Assumption 1, for a fixed 𝜋 , the function 𝐽𝑛 (𝜋, 𝑐𝑛)

is differentiable, and

𝜕𝐽𝑛 (𝜋, 𝑐𝑛)

𝜕𝑐𝑛
= 𝜋 −

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑐𝑛) ]𝑑𝑡, (16)

where A(𝑐𝑛) = {(𝑡, x𝑡 ) : 𝐻𝑛 (x𝑡 , 𝑐𝑛) > 0}.

Proof. Since 𝜋𝑐𝑛 (the first term of 𝐽𝑛 (𝜋, 𝑐𝑛)) is differentiable, we

only need to prove that
∫ 𝑇
0
E

[
[𝐻𝑛 (x𝑡 , 𝑐𝑛)]

+
]
𝑑𝑡 is differentiable.

Towards this end, we have

lim
Δ𝑐→0

1

Δ𝑐

( ∫ 𝑇

0
E

[
[𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐)]

+
]
𝑑𝑡

−

∫ 𝑇

0
E

[
[𝐻𝑛 (x𝑡 , 𝑐𝑛)]

+
]
𝑑𝑡

)

= lim
Δ𝑐→0

1

Δ𝑐

( ∫ 𝑇

0
E

[
𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) 1A(𝑐𝑛+Δ𝑐)

]
𝑑𝑡

−

∫ 𝑇

0
E

[
𝐻𝑛 (x𝑡 , 𝑐𝑛) 1A(𝑐𝑛)

]
𝑑𝑡

)

= lim
Δ𝑐→0

1

Δ𝑐

( ∫ 𝑇

0
E[𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) (1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛) )]

𝑑𝑡 +

∫ 𝑇

0
E[(𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) − 𝐻𝑛 (x𝑡 , 𝑐𝑛)) · 1A(𝑐𝑛) ]𝑑𝑡

)

= lim
Δ𝑐→0

∫ 𝑇
0
E[𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐)

(
1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛)

)
]𝑑𝑡

Δ𝑐

+ lim
Δ𝑐→0

−
∫ 𝑇
0
E[𝐺 (𝑡)Δ𝑐 · 1A(𝑐𝑛) ]𝑑𝑡

Δ𝑐
.
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For the first limit, we have

������� limΔ𝑐→0

∫ 𝑇
0
E[𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐)

(
1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛)

)
]𝑑𝑡

Δ𝑐

�������
≤ lim

Δ𝑐→0

∫ 𝑇
0
E[|𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) | ·

��1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛) ��]𝑑𝑡
|Δ𝑐 |

≤ lim
Δ𝑐→0

∫ 𝑇
0
E

[
|𝐺 (𝑡)Δ𝑐 | ·

��1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛) ��] 𝑑𝑡
|Δ𝑐 |

(∗)

= lim
Δ𝑐→0

∫ 𝑇

0
E

[
𝐺 (𝑡)

��1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛) ��] 𝑑𝑡
=

∫ 𝑇

0
E

[
𝐺 (𝑡) lim

Δ𝑐→0

��1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛) ��
]
𝑑𝑡

(by the Dominated Convergence Theorem)

=0.

The reason of the inequality (∗) is as follows. If 1A(𝑐𝑛+Δ𝑐) −

1A(𝑐𝑛) = 1, then 𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) > 0 and 𝐻𝑛 (x𝑡 , 𝑐𝑛) ≤ 0. Thus,

we have 0 < 𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) = 𝐻𝑛 (x𝑡 , 𝑐𝑛) +𝐺 (𝑡)Δ𝑐 ≤ 𝐺 (𝑡)Δ𝑐 . If

1A(𝑐𝑛+Δ𝑐)−1A(𝑐𝑛) = −1, then𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) ≤ 0 and𝐻𝑛 (x𝑡 , 𝑐𝑛) >

0. Thus, we have 0 ≥ 𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) = 𝐻𝑛 (x𝑡 , 𝑐𝑛) + 𝐺 (𝑡)Δ𝑐 >

𝐺 (𝑡)Δ𝑐 . In conclusion, when
��1A(𝑐𝑛+Δ𝑐) − 1A(𝑐𝑛) �� = 1, we must

have |𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐) | ≤ |𝐺 (𝑡)Δ𝑐 |.

Thus, we have

lim
Δ𝑐→0

1

Δ𝑐

( ∫ 𝑇

0
E

[
[𝐻𝑛 (x𝑡 , 𝑐𝑛 + Δ𝑐)]

+
]
𝑑𝑡

−

∫ 𝑇

0
E

[
[𝐻𝑛 (x𝑡 , 𝑐𝑛)]

+
]
𝑑𝑡

)

=0 + lim
Δ𝑐→0

−
∫ 𝑇
0
E[𝐺 (𝑡)Δ𝑐 · 1A(𝑐𝑛) ]𝑑𝑡

Δ𝑐

= −

∫ 𝑇

0
E

[
𝐺 (𝑡)1A(𝑐𝑛)

]
𝑑𝑡 .

Thus, we have proven the differentiability of 𝐽𝑛 (𝜋, 𝑐𝑛), and it follows

that

𝜕𝐽𝑛 (𝜋, 𝑐𝑛)

𝜕𝑐𝑛
= 𝜋 −

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑐𝑛) ]𝑑𝑡 .

□

Lemma B.6. The demand function 𝑑𝑛 (𝜋) is monotone decreasing

with respect to 𝜋 .

Proof. It suffices to prove that any 𝑐 > 𝑑𝑛 (𝜋0) cannot be the

minimizer of 𝐽𝑛 (𝜋1, 𝑐) for all 𝜋1 > 𝜋0. In other words, it suffices to

show that

𝐽𝑛 (𝜋1, 𝑐) > 𝐽𝑛 (𝜋1, 𝑑𝑛 (𝜋0)), for all 𝑐 > 𝑑𝑛 (𝜋0).

To prove this, we have

𝐽𝑛 (𝜋1, 𝑐) − 𝐽𝑛 (𝜋1, 𝑑𝑛 (𝜋0))

=𝜋1 (𝑐 − 𝑑𝑛 (𝜋0)) +
𝜋𝑔

𝑇

∫ 𝑇

0

(
E

[
[𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐]

+
]

− E
[
[𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑑𝑛 (𝜋0)]

+
] )
𝑑𝑡

=(𝜋1 − 𝜋0) (𝑐 − 𝑑𝑛 (𝜋0)) + 𝜋0 (𝑐 − 𝑑𝑛 (𝜋0))

+
𝜋𝑔

𝑇

∫ 𝑇

0

(
E

[
[𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑐]

+
]

− E
[
[𝐿𝑛 (𝑡) −𝐺 (𝑡)𝑑𝑛 (𝜋0)]

+
] )
𝑑𝑡

=(𝜋1 − 𝜋0) (𝑐 − 𝑑𝑛 (𝜋0)) + 𝐽𝑛 (𝜋0, 𝑐) − 𝐽𝑛 (𝜋0, 𝑑𝑛 (𝜋0))

≥(𝜋1 − 𝜋0) (𝑐 − 𝑑𝑛 (𝜋0))

(because 𝐽𝑛 (𝜋0, 𝑐) − 𝐽𝑛 (𝜋0, 𝑑𝑛 (𝜋0)) ≥ 0

by the definition of 𝑑𝑛 (𝜋0))

>0.

The result of the lemma thus holds. □

Lemma B.7. Recall the definition of 𝜋𝑛 in Appendix B.2. Under

Assumption 1, the demand function 𝑑𝑛 (𝜋) is strictly monotone de-

creasing with respect to 𝜋 when 𝜋 ∈ (0, 𝜋𝑛).

Proof. Consider two prices 𝜋0 and 𝜋1 that 0 < 𝜋1 < 𝜋0 < 𝜋𝑛 .

By Lemma B.6, we already have 𝑑𝑛 (𝜋0) ≥ 𝑑𝑛 (𝜋1). Thus, we only

need to prove that𝑑𝑛 (𝜋0) ≠ 𝑑𝑛 (𝜋1). Towards this end, it is sufficient

to prove that such 𝑑𝑛 (𝜋1) must not be the minimizer of 𝐽𝑛 (𝜋0, 𝑐𝑛).

Because 𝜋1 < 𝜋𝑛 , we have

𝜋1 <

𝜋𝑔

𝑇

∫ 𝑇

0
E

[
𝐺 (𝑡)1{𝐿𝑛 (𝑡 )>0}

]
𝑑𝑡 .

Applying Lemma B.5, we thus have

𝜕𝐽𝑛 (𝜋1, 𝑐𝑛)

𝜕𝑐𝑛

����
𝑐𝑛=0

= 𝜋1 −
𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1{𝐿𝑛 (𝑡 )>0}]𝑑𝑡 < 0.

This implies that 𝑑𝑛 (𝜋1) > 0. By the first-order condition at the

minimizer 𝑑𝑛 (𝜋1) of 𝐽𝑛 (𝜋1, 𝑐𝑛) with respect to 𝑐𝑛 , we have

𝜕𝐽𝑛 (𝜋1, 𝑐𝑛)

𝜕𝑐𝑛

����
𝑐𝑛=𝑑𝑛 (𝜋1)

= 0.

Similarly, we have

𝜕𝐽𝑛 (𝜋0, 𝑐𝑛)

𝜕𝑐𝑛

����
𝑐𝑛=𝑑𝑛 (𝜋0)

= 0.
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possible

discontinuities

Figure 7: Demand function 𝐷 (𝜋) and the corresponding in-

verse function 𝐷−1 (𝑥).

As a result, we have

𝜕𝐽𝑛 (𝜋0, 𝑐𝑛)

𝜕𝑐𝑛

����
𝑐𝑛=𝑑𝑛 (𝜋1)

=𝜋0 −
𝜋𝑔

𝑇

∫ 𝑇

0
E

[
𝐺 (𝑡)1A(𝑑𝑛 (𝜋1))

]
𝑑𝑡

(where A(·) is defined in Lemma B.5)

=(𝜋0 − 𝜋1) +

(
𝜋1 −

𝜋𝑔

𝑇

∫ 𝑇

0
E

[
𝐺 (𝑡)1A(𝑑𝑛 (𝜋1))

]
𝑑𝑡

)

=(𝜋0 − 𝜋1) +
𝜕𝐽𝑛 (𝜋1, 𝑐𝑛)

𝜕𝑐𝑛

����
𝑐𝑛=𝑑𝑛 (𝜋1)

=𝜋0 − 𝜋1 ≠ 0.

Therefore, we conclude that𝑑𝑛 (𝜋1) is not theminimizer of 𝐽𝑛 (𝜋0, 𝑐𝑛).

The result of this lemma then holds. □

B.4 Inverse function of 𝐷 (·)

Based on the properties of 𝑑𝑛 (𝜋), we know that 𝐷 (𝜋) is strictly

monotone decreasing with respect to 𝜋 when 𝜋 ∈ [0, max𝑛 𝜋𝑛],

and 𝐷 (𝜋) equals to zero when 𝜋 > max𝑛 𝜋𝑛 . We depict 𝐷 (𝜋) in

Fig. 7. Then, we can define the inverse function 𝐷−1 (𝑥) on 𝑥 > 0.

Notice that even though 𝑑𝑛 (·) and 𝐷 (·) may have discontinuities,

𝐷−1 (𝑥) is well-defined for all 𝑥 > 0 due to the strict monotonicity

of 𝐷 (·). Further, we can verify that 𝐷−1 (𝑥) := max{𝜋 : 𝐷 (𝜋) ≥ 𝑥}.

Actually, because 𝐷 (·) is strictly monotone decreasing, we still

have 𝐷−1 (𝐷 (𝜋)) = 𝜋 . However, 𝐷 (𝐷−1 (𝑥)) = 𝑥 is not always true.

Instead, we have 𝐷 (𝐷−1 (𝑥)) ≥ 𝑥 . Fig. 7 shows what 𝐷 (𝜋) and

corresponding 𝐷−1 (𝑥) look like.

B.5 Proof of Proposition 5.1

Proof. Let 𝜋𝑎 > 𝜋𝑏 . According to Lemma B.5 and the first-order

condition, we have

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑑𝑛 (𝜋𝑎)) ]𝑑𝑡 = 𝜋𝑎,

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑑𝑛 (𝜋𝑏 )) ]𝑑𝑡 = 𝜋𝑏 .

Thus, by Lemma B.4, we have

𝜋𝑎 − 𝜋𝑏 =

𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑑𝑛 (𝜋𝑎)) ]𝑑𝑡

−
𝜋𝑔

𝑇

∫ 𝑇

0
E[𝐺 (𝑡)1A(𝑑𝑛 (𝜋𝑏 )) ]𝑑𝑡

≤𝜋𝑔𝛾
𝑑𝑛 (𝜋𝑏 ) − 𝑑𝑛 (𝜋𝑎)

𝑑𝑛 (𝜋𝑎)

=⇒ 𝑑𝑛 (𝜋𝑎) ≤𝜋𝑔𝛾
𝑑𝑛 (𝜋𝑏 ) − 𝑑𝑛 (𝜋𝑎)

𝜋𝑎 − 𝜋𝑏
.

Fix 𝜋𝑎 and let 𝜋𝑏 approach 𝜋𝑎 . We have

𝑑𝑛 (𝜋) ≤ 𝜋𝑔𝛾

���� 𝜕𝑑𝑛 (𝜋)𝜕𝜋

���� .
(Notice that

𝜕𝑑𝑛 (𝜋 )
𝜕𝜋 ≤ 0 by Lemma B.6.) Summing this inequality

over all consumers, we then have

𝐷 (𝜋) ≤ 𝜋𝑔𝛾

���� 𝜕𝐷 (𝜋)𝜕𝜋

����
=⇒

��� 𝜕𝐷 (𝜋 )𝐷 (𝜋 )

����� 𝜕𝜋
𝜋

�� ≥ 𝜋

𝜋𝑔𝛾
.

□

B.6 Corollaries of Proposition 5.1

Solving the differential inequality in Proposition 5.1, we have the

following corollary.

Corollary B.8. Let 𝜋 and 𝜋0 be two arbitrary prices such that

𝜋 > 𝜋0. We then have

𝐷 (𝜋) ≤ 𝐷 (𝜋0)𝑒
−
𝜋−𝜋0
𝜋𝑔𝛾 .

Proof. Notice that 𝐷 (𝜋) is strictly monotone decreasing. We

have ���� 𝜕𝐷 (𝜋)𝐷 (𝜋)

���� ≥ 𝜋

𝜋𝑔𝛾

���� 𝜕𝜋𝜋
����

=⇒

�����
∫ 𝐷 (𝜋 )

𝐷 (𝜋0)

1

𝐷 (𝑎)
𝜕𝐷 (𝑎)

����� ≥
����
∫ 𝜋

𝜋0

1

𝜋𝑔𝛾
𝜕𝜋

����
=⇒

����ln 𝐷 (𝜋)

𝐷 (𝜋0)

���� ≥
����𝜋 − 𝜋0𝜋𝑔𝛾

����
=⇒ ln

𝐷 (𝜋0)

𝐷 (𝜋)
≥
𝜋 − 𝜋0

𝜋𝑔𝛾

(since 𝐷 (𝜋0) ≥ 𝐷 (𝜋) by the monotonicity of 𝐷 (·))

=⇒ ln
𝐷 (𝜋)

𝐷 (𝜋0)
≤ −

𝜋 − 𝜋0

𝜋𝑔𝛾

=⇒ 𝐷 (𝜋) ≤ 𝐷 (𝜋0)𝑒
−
𝜋−𝜋0
𝜋𝑔𝛾 .

□

Replacing 𝜋0 by 𝐷
−1 (𝑥) and replacing 𝐷 (𝜋0) by 𝑥 , we have a

more general conclusion stated in the following corollary.

Corollary B.9. Let 𝜋 > 𝐷−1 (𝑥). We then have

𝐷 (𝜋) ≤ 𝑥𝑒
−
𝜋−𝐷−1 (𝑥 )

𝜋𝑔𝛾 .
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Proof. If 𝑥 = 𝐷 (𝐷−1 (𝑥)), then the result of this corollary is ob-

viously true by applying Corollary B.8. If 𝑥 ≠ 𝐷 (𝐷−1 (𝑥)), then𝐷 (·)

must be discontinuous at 𝐷−1 (𝑥), which implies that 𝐷 (𝑦) < 𝑥 <

𝐷 (𝐷−1 (𝑥)) for all 𝑦 > 𝐷−1 (𝑥). Thus, for all 𝑦 such that 𝐷−1 (𝑥) <

𝑦 < 𝜋 , we have

𝐷 (𝜋) ≤ 𝐷 (𝑦)𝑒
−
𝜋−𝑦
𝜋𝑔𝛾 < 𝑥𝑒

−
𝜋−𝑦
𝜋𝑔𝛾 .

Let 𝑦 approach 𝐷−1 (𝑥), we have

𝐷 (𝜋) ≤ lim
𝑦→𝐷−1 (𝑥)

𝑥𝑒
−
𝜋−𝑦
𝜋𝑔𝛾 = 𝑥𝑒

−
𝜋−𝐷−1 (𝑥 )

𝜋𝑔𝛾 .

□

C NASH EQUILIBRIA OF THE RENTAL
MARKET

In this part, we provide details of how to analyze the Nash equilib-

rium of the rental market (i.e., the outcome shown by Theorem 5.2).

In Appendix C.1, we will show a theorem that reveals the equiva-

lence between the multi-block-bid mechanism and the two-block-

bid mechanism for the rental market. Specifically, Theorem C.2

states that, for any Nash equilibrium of the rental market with

multi-block bids, there must exist an łequivalentž Nash equilibrium

with only two-block bids. The significance of this result is that,

in our later analysis of the outcome of rental markets, we only

need to focus on equilibria with two-block bids, which significantly

simplifies our analysis. We then prove Theorem C.2 (with some

other useful lemmas) in Appendix C.2 and Appendix C.3. In Ap-

pendix C.4, we show some results that help us to focus on what is

necessary for Theorem 5.2 to hold. After that, we prove Theorem 5.2

in Appendix C.5.

C.1 Equivalence between the multi-block-bid
mechanism and the two-block-bid
mechanism

Directly analyzing Nash equilibria in a multi-block-bid market

described by Algorithm 1 and Algorithm 2 is relatively difficult, as

the action space of the players is large. Fortunately, we can simplify

such analysis by introducing the concept of outcome-equivalent

Nash equilibria (Definition C.1). With this definition, we only need

to consider the situation that each firm only makes two bids at any

Nash equilibrium (Theorem C.2).

Remark on Algorithm 1 and 2: We have assumed that the multiple

bids of each firm have different prices, i.e., 𝑝𝑖,𝑘1 ≠ 𝑝𝑖,𝑘2 when

𝑘1 ≠ 𝑘2. This assumption is without loss of generality because,

if a firm has two or more bids at the same price, we can merge them

into on bid, and both the market price price and the firm’s profit

remains the same under Algorithms 1 and 2. That is because we

adopt the uniform price policy (i.e., all sold part gets paid at the

common market price 𝜋eq), and the proportional assignment Eq. (7)

(that all bids at the market price 𝜋eq are assigned sales in proportion

to the bidding quantity). The above property also implies that, even

if a firm divides its equity into two firms that bid cooperatively in

the market, the outcome of the market would be the same as the

firm bids as a single entity.

Definition C.1. Two Nash equilibriums (p, q) and (p′, q′) are

outcome-equivalent when
∑𝐾 ′𝑖
𝑘=1

𝑠 ′
𝑖,𝑘

=
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 for all 𝑖 , and

𝜋 ′eq = 𝜋eq.

Theorem C.2. For any Nash equilibrium (p, q) in the multi-block-

bid system, there must exist an outcome-equivalent Nash equilibrium

(p′, q′) such that each firm only makes two bids, and the price of any

bid is either 0 or 𝜋eq.

C.2 Preparation for the proof of Theorem C.2

We first provide some useful definitions, lemmas, and corollaries.

Figure 8: An example of 𝜋 ′eq > 𝜋eq when {𝑝 ′
𝑖,𝑘

: for all 𝑘} ⊈

{𝑝 𝑗,𝑘 : for all 𝑗, 𝑘} ∪ {0}.

Definition C.3. In the multi-bid system, suppose a firm 𝑖 changes

her bid from ( ®𝑝𝑖 , ®𝑞𝑖 ) to ( ®𝑝𝑖
′
, ®𝑞𝑖
′). we say that the firm 𝑖 bids more

aggressively (in the new bid ( ®𝑝𝑖
′
, ®𝑞𝑖
′)) if{∑

{𝑘 : 𝑝′
𝑖,𝑘

<𝜋 } 𝑞
′
𝑖,𝑘
≥

∑
{𝑘 : 𝑝𝑖,𝑘<𝜋 } 𝑞𝑖,𝑘 , for all 𝜋 ∈ R,

{𝑝 ′
𝑖,𝑘

: for all 𝑘} ⊆ {𝑝 𝑗,𝑘 : for all 𝑗, 𝑘} ∪ {0}.

Remark on Definition C.3: The first condition states that, when

a firm bids more aggressively, her total bidding quantity below

any price 𝜋 becomes larger. Later, we will show that, when a firm

bids more aggressively, the market price should not increase (see

Lemma C.5(b)). However, for this to be true, the second condition

in this definition becomes necessary, i.e., the new prices must be

from the set of prices in the original bids (possibly by another firm

𝑗 ). Fig. 8 shows an counter-example where market price actually

increases after one firm increases her bidding quantity at certain

prices without this constraint.

Lemma C.4. For real numbers 𝑎, 𝑏, 𝑥,𝑦 that 𝑎 ≥ 0, 𝑏 > 0, 𝑥 ≥

0, 𝑦 ≥ 0, 𝑎 − 𝑥 ≥ 0, 𝑏 − 𝑥 + 𝑦 > 0, we must have

min

{
𝑎 − 𝑥

𝑏 − 𝑥 + 𝑦
, 1

}
≤ min

{𝑎
𝑏
, 1

}
.

Proof. If 𝑎 ≥ 𝑏, then we have

min

{
𝑎 − 𝑥

𝑏 − 𝑥 + 𝑦
, 1

}
≤ 1 = min

{𝑎
𝑏
, 1

}
.
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If 𝑎 < 𝑏, then we only need to prove
𝑎 − 𝑥

𝑏 − 𝑥 + 𝑦
≤
𝑎

𝑏
,

which is true because
𝑎 − 𝑥

𝑏 − 𝑥 + 𝑦
≤
𝑎 − 𝑥

𝑏 − 𝑥
≤
𝑎

𝑏
.

This lemma thus holds. □

Lemma C.5. (a)

𝜋eq = max



𝑝 𝑗,𝑙 :

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝑝 𝑗,𝑙 }

𝑞𝑖,𝑘 ≤ 𝐷 (𝑝 𝑗,𝑙 )



.

(b) If any firm 𝑖∗ bids more aggressively and other firms do not

change, then 𝜋 ′eq ≤ 𝜋eq.

(c) 𝐷 (𝜋eq) ≥
∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 . Further, if𝐷 (𝜋eq) >
∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 ,

we have 𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 that 𝑝𝑖,𝑘 ≤ 𝜋eq.

(d) Consider two different bidding strategies (p, q) and (p′, q′). If∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋eq }

𝑞′
𝑖,𝑘

=

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 , and

∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
=𝜋eq }

𝑞′
𝑖,𝑘
≥

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑞𝑖,𝑘 ,

then 𝜋 ′eq ≥ 𝜋eq.

(e) If 𝑠𝑖∗,𝑘∗ = 0 and 𝑝𝑖∗,𝑘∗ = 𝜋eq, then we have 𝑠𝑖,𝑘 = 0 for all 𝑖, 𝑘

that 𝑝𝑖,𝑘 = 𝜋eq, andwe also have𝐷 (𝜋eq) =
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 .

Remark on Lemma C.5: These results are intuitive. Part (a) states

that 𝜋eq is roughly the point where the demand curve and the supply

curve intersect. Part (b) states that bidding more aggressively only

makes the market price lower. Part (c) states that the total sold

amount is always less than or equal to the demand. Further, if

the total sold amount is less than the demand, then there are no

partly sold bids. Part (d) states that, if the bidding amount below

the original market price 𝜋eq is the same, but the bidding amount at

the original market price 𝜋eq is larger (and thus the bidding amount

above the original market price 𝜋eq is smaller), then the newmarket

price 𝜋 ′eq cannot decrease. Part (e) states that if a bid with the price

𝜋eq sells zero amount, then any bid with the price 𝜋eq must also

sell zero amount.

Proof. (a) We examine the outcome of Algorithm 1 in all pos-

sible situations. Define 𝐹 (𝜋) as 𝐹 (𝜋) =
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘 ≤𝜋 } 𝑞𝑖,𝑘 . Define

𝑆 (𝜋) as 𝑆 (𝜋) =
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋 } 𝑞𝑖,𝑘 . Obviously, 𝐹 (𝜋) and 𝑆 (𝜋) is

monotone increasing. Recall that in Algorithm 1 all different bid-

ding prices are ranked as 𝜋1 < 𝜋2 < · · · < 𝜋𝑅 . We have 𝑆 (𝜋𝑎+1) =

𝐹 (𝜋𝑎) for any pair of adjacent prices (𝜋𝑎, 𝜋𝑎+1). We also have

𝑆 (𝜋) ≤ 𝐹 (𝜋) for all 𝜋 . What we need to prove can be written as

𝜋eq = max
𝑖
{𝜋𝑖 : 𝑆 (𝜋𝑖 ) ≤ 𝐷 (𝜋𝑖 )}. (17)

We consider three cases (i.e., Case 1 to 3 below).

Case 1: 𝐷 (𝜋1) < 𝐹 (𝜋1). Then 𝜋eq = 𝜋1 as Algorithm 1 exits on

the branch of Line 8. We have 𝑆 (𝜋1) = 0 ≤ 𝐷 (𝜋1), and 𝑆 (𝜋2) =

𝐹 (𝜋1) > 𝐷 (𝜋1). Eq. (17) thus follows.

Case 2: 𝐷 (𝜋𝑅) ≥ 𝐹 (𝜋𝑅). Then 𝜋eq = 𝜋𝑅 as Algorithm 1 does

not exit on the branch of Line 4 or Line 8, i.e., 𝜋eq is determined by

Line 11. We have 𝑆 (𝜋eq) ≤ 𝐹 (𝜋eq) ≤ 𝐷 (𝜋eq). Eq. (17) thus follows.

Case 3: 𝐷 (𝜋1) ≥ 𝐹 (𝜋1) and 𝐷 (𝜋𝑅) < 𝐹 (𝜋𝑅). Then, we can

always find 𝜋𝑟 such that 𝐷 (𝜋𝑟−1) ≥ 𝐹 (𝜋𝑟−1) and 𝐷 (𝜋𝑟 ) < 𝐹 (𝜋𝑟 )

(notice that 𝐷 (𝜋) −𝐹 (𝜋) is monotone decreasing). We consider two

sub-cases (i.e., Case 3.1 and 3.2) below.

Case 3.1: 𝐷 (𝜋𝑟−1) = 𝐹 (𝜋𝑟−1). Then 𝜋eq = 𝜋𝑟−1 as Algorithm 1

exits on the branch of Line 4. See Fig. 2(a). We have 𝑆 (𝜋𝑟−1) ≤

𝐹 (𝜋𝑟−1) = 𝐷 (𝜋𝑟−1), and 𝑆 (𝜋𝑟 ) = 𝐹 (𝜋𝑟−1) = 𝐷 (𝜋𝑟−1) > 𝐷 (𝜋𝑟 ). Eq.

(17) thus follows.

Case 3.2: 𝐷 (𝜋𝑟−1) ≠ 𝐹 (𝜋𝑟−1). Because 𝐷 (𝜋𝑟−1) ≥ 𝐹 (𝜋𝑟−1) in

Case 3, we now have 𝐷 (𝜋𝑟−1) > 𝐹 (𝜋𝑟−1). We then consider three

further sub-cases (i.e., Case 3.2.1 to 3.2.3).

Case 3.2.1: 𝐷 (𝜋𝑟 ) < 𝐹 (𝜋𝑟−1). Then 𝜋eq = 𝜋𝑟−1 as Algorithm 1

exits on the branch of Line 4. See Fig. 2(b). We have 𝑆 (𝜋𝑟−1) ≤

𝐹 (𝜋𝑟−1) ≤ 𝐷 (𝜋𝑟−1), and 𝑆 (𝜋𝑟 ) = 𝐹 (𝜋𝑟−1) > 𝐷 (𝜋𝑟 ). Eq. (17) thus

follows.

Case 3.2.2:𝐷 (𝜋𝑟 ) > 𝐹 (𝜋𝑟−1). Then 𝜋eq = 𝜋𝑟 as Algorithm 1 exits

on the branch of Line 8. See Fig. 2(c). We have 𝑆 (𝜋𝑟 ) = 𝐹 (𝜋𝑟−1) <

𝐷 (𝜋𝑟 ), and 𝑆 (𝜋𝑟+1) = 𝐹 (𝜋𝑟 ) > 𝐷 (𝜋𝑟 ). Eq. (17) thus follows.

Case 3.2.3: 𝐷 (𝜋𝑟 ) = 𝐹 (𝜋𝑟−1). Then 𝜋eq = 𝜋𝑟 as Algorithm 1 exits

on the branch of Line 8. See Fig. 2(d). We have 𝑆 (𝜋𝑟 ) = 𝐹 (𝜋𝑟−1) =

𝐷 (𝜋𝑟 ), and 𝑆 (𝜋𝑟+1) = 𝐹 (𝜋𝑟 ) > 𝐷 (𝜋𝑟 ). Eq. (17) thus follows.

To sum up, Eq. (17) holds for all cases. Therefore, the result of

(a) thus follows.

(b) Because only one firm deviates, by the definition of bidding

more aggressively, we have∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋 }

𝑞′
𝑖,𝑘
≥

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋 }

𝑞𝑖,𝑘 , for all 𝜋 ∈ R, and

{𝑝 ′
𝑖,𝑘

: for all 𝑖, 𝑘} ⊆ {𝑝𝑖,𝑘 : for all 𝑖, 𝑘} ∪ {0}.

As a result, we have



𝑝 ′
𝑗,𝑙

:
∑︁

{𝑖,𝑘 : 𝑝′
𝑖,𝑘

<𝑝′
𝑗,𝑙
}

𝑞′
𝑖,𝑘
≤ 𝐷 (𝑝 ′

𝑗,𝑙
)




⊆



𝑝 𝑗,𝑙 :

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝑝 𝑗,𝑙 }

𝑞𝑖,𝑘 ≤ 𝐷 (𝑝 𝑗,𝑙 )



∪ {0}.

By (a), we have 𝜋 ′eq ≤ 𝜋eq.

(c) Obviously, 𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 < 𝜋eq. We now

consider two cases. (i) If𝐷 (𝜋eq)−
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 ≤

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘 ,

by Eq. (7), we have

𝑠 𝑗,𝑙 =
𝑞 𝑗,𝑙

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘

for all 𝑗, 𝑙 such that 𝑝 𝑗,𝑙 = 𝜋eq .

Summing this equation over all such 𝑗 and 𝑙 , we have∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑠𝑖,𝑘 = 𝐷 (𝜋eq) −
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘

=⇒ 𝐷 (𝜋eq) =

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 .

(ii) If 𝐷 (𝜋eq) −
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 >

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘 , by Eq. (7),

we have 𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 = 𝜋eq. Thus, 𝑠𝑖,𝑘 =

148



Distribution-Level Markets under High Renewable Energy Penetration e-Energy ’22, June 28-July 1, 2022, Virtual Event, USA

𝑝𝑖,𝑘 for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 ≤ 𝜋eq. As a result, we have

𝐷 (𝜋eq) >
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 +
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑞𝑖,𝑘 =

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 .

The result of part (c) then follows.

(d) By (a), we have
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 ≤ 𝐷 (𝜋eq). By the given re-

lationship between (p, q) and (p′, q′), we have
∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋eq } 𝑞

′
𝑖,𝑘

=∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 ≤ 𝐷 (𝜋eq). Thus, we have

𝜋eq ∈



𝑝 ′
𝑗,𝑙

:
∑︁

{𝑖,𝑘 : 𝑝′
𝑖,𝑘

<𝑝′
𝑗,𝑙
}

𝑞′
𝑖,𝑘
≤ 𝐷 (𝑝 ′

𝑗,𝑙
)




=⇒ max



𝑝 ′
𝑗,𝑙

:
∑︁

{𝑖,𝑘 : 𝑝′
𝑖,𝑘

<𝑝′
𝑗,𝑙
}

𝑞′
𝑖,𝑘
≤ 𝐷 (𝑝 ′

𝑗,𝑙
)



≥ 𝜋eq

=⇒ 𝜋 ′eq ≥ 𝜋eq (applying (a)).

(e) Because 𝑠𝑖∗,𝑘∗ = 0, by Eq. (7), we have 𝐷 (𝜋eq) −𝑄 = 0, which

implies 𝑠𝑖,𝑘 = 0 for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 = 𝜋eq. Therefore, we must

have 𝐷 (𝜋eq) =
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 . □

Lemma C.6. Consider any bidding strategy (p, q) (not necessarily

a Nash equilibrium). Suppose that a firm 𝑖∗ bids more aggressively and

other firms do not change their bids. Then, we must have 𝜋 ′eq ≤ 𝜋eq
and 𝑠 ′

𝑖,𝑘
≤ 𝑠𝑖,𝑘 , for all 𝑖 ≠ 𝑖

∗, and for all 𝑘 . Consequently, any other

firm 𝑖 ≠ 𝑖∗ will not earn more profit.

Proof. By Lemma C.5(b), we have 𝜋 ′eq ≤ 𝜋eq. It only remains

to show that 𝑠 ′
𝑖,𝑘
≤ 𝑠𝑖,𝑘 , for all 𝑖 ≠ 𝑖∗ and for all 𝑘 . There are two

possible cases, 𝜋 ′eq < 𝜋eq or 𝜋
′
eq = 𝜋eq. We discuss them separately

as follows.

Case 1: 𝜋 ′eq < 𝜋eq. By Algorithm 2, we have

𝑠 ′
𝑖,𝑘

= 𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 , for all 𝑖, 𝑘 that 𝑝𝑖,𝑘 < 𝜋 ′eq, 𝑖 ≠ 𝑖
∗,

𝑠 ′
𝑖,𝑘
≤ 𝑞𝑖,𝑘 = 𝑠𝑖,𝑘 , for all 𝑖, 𝑘 that 𝑝𝑖,𝑘 = 𝜋 ′eq, 𝑖 ≠ 𝑖

∗,

and

𝑠 ′
𝑖,𝑘

= 0 ≤ 𝑠𝑖,𝑘 , for all 𝑖, 𝑘 that 𝑝𝑖,𝑘 > 𝜋 ′eq, 𝑖 ≠ 𝑖
∗ .

Thus, we have shown that 𝑠 ′
𝑖,𝑘
≤ 𝑠𝑖,𝑘 , for all 𝑖 ≠ 𝑖

∗ and for all 𝑘 in

this case.

Case 2: 𝜋 ′eq = 𝜋eq. We have

𝑠 ′
𝑖,𝑘

= 𝑞𝑖,𝑘 = 𝑠𝑖,𝑘 , for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 < 𝜋eq, 𝑖 ≠ 𝑖
∗,

and

𝑠 ′
𝑖,𝑘

= 0 = 𝑠𝑖,𝑘 , for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 > 𝜋eq, 𝑖 ≠ 𝑖
∗ .

Further, let

𝑥 =

∑︁
{ 𝑗,𝑙 : 𝑝′

𝑗,𝑙
<𝜋eq }

𝑞′
𝑗,𝑙
−

∑︁
{ 𝑗,𝑙 : 𝑝 𝑗,𝑙<𝜋eq }

𝑞 𝑗,𝑙 ≥ 0,

𝑦 =

∑︁
{ 𝑗,𝑙 : 𝑝′

𝑗,𝑙
≤𝜋eq }

𝑞′
𝑗,𝑙
−

∑︁
{ 𝑗,𝑙 : 𝑝 𝑗,𝑙 ≤𝜋eq }

𝑞 𝑗,𝑙 ≥ 0.

(Notice that 𝑥 and 𝑦 are positive because of Definition C.3.) Then,

for all 𝑖, 𝑘 that 𝑝𝑖,𝑘 = 𝜋eq, 𝑖 ≠ 𝑖
∗, we have

𝑠 ′
𝑖,𝑘

= min



𝑞𝑖,𝑘

(
𝐷 (𝜋eq) −

∑
{ 𝑗,𝑙 : 𝑝′

𝑗,𝑙
<𝜋eq } 𝑞

′
𝑗,𝑙

)
∑
{ 𝑗,𝑙 : 𝑝′

𝑗,𝑙
=𝜋eq } 𝑞

′
𝑗,𝑙

, 𝑞𝑖,𝑘




= min



𝑞𝑖,𝑘

(
𝐷 (𝜋eq) −

∑
{ 𝑗,𝑙 : 𝑝 𝑗,𝑙<𝜋eq } 𝑞 𝑗,𝑙 − 𝑥

)
∑
{ 𝑗,𝑙 : 𝑝 𝑗,𝑙=𝜋eq } 𝑞 𝑗,𝑙 − 𝑥 + 𝑦

, 𝑞𝑖,𝑘




≤ min



𝑞𝑖,𝑘

(
𝐷 (𝜋eq) −

∑
{ 𝑗,𝑙 : 𝑝 𝑗,𝑙<𝜋eq } 𝑞 𝑗,𝑙

)
∑
{ 𝑗,𝑙 : 𝑝 𝑗,𝑙=𝜋eq } 𝑞 𝑗,𝑙

, 𝑞𝑖,𝑘




(applying Lemma C.4)

= 𝑠𝑖,𝑘 .

Thus, we have also shown that 𝑠 ′
𝑖,𝑘
≤ 𝑠𝑖,𝑘 , for all 𝑖 ≠ 𝑖

∗ and for all 𝑘 .

The conclusion of this lemma thus follows. □

Lemma C.7. Suppose that the original bidding strategy (p, q) is

a Nash equilibrium. Consider a new bidding strategy where an ar-

bitrary firm 𝑖∗ deviates from this Nash equilibrium and bids more

aggressively, and another firm 𝑗∗ ≠ 𝑖∗ also deviates from ( ®𝑝 𝑗∗ , ®𝑞 𝑗∗ )

in an arbitrary way. Assume that no other firm 𝑘 ≠ 𝑖∗, 𝑗∗ changes

her bid. Then, no matter how the firm 𝑗∗ changes her bid, her payoff

under (p′, q′) cannot increase compared to her payoff at the original

Nash equilibrium (p, q).

Proof. Because (p, q) is a Nash equilibrium, no matter how

the firm 𝑗∗ changes its strategy to ( ®𝑝 𝑗∗
′
, ®𝑞 𝑗∗

′), her payoff cannot

increase. After the firm 𝑗∗ deviates, suppose now the firm 𝑖∗ bids

more aggressively. By Lemma C.6, this change of the firm 𝑖∗ cannot

make the payoff of the firm 𝑗∗ higher. Thus, firm 𝑗∗ still cannot

make more payoff. The conclusion of this lemma thus follows. □

Corollary C.8. Assume that (p, q) is a Nash equilibrium. Con-

sider a new bidding strategy (p′, q′) where the firm 𝑖∗ bids more

aggressively and other firms do not deviate. If the market outcome

under (p′, q′) satisfies 𝜋 ′eq = 𝜋eq and
∑𝐾 ′𝑖
𝑘=1

𝑠 ′
𝑖,𝑘

=
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 for all 𝑖 ,

then the new bidding strategy (p′, q′) must also be a Nash equilib-

rium.

Proof. Because 𝜋 ′eq = 𝜋eq and
∑𝐾 ′𝑖
𝑘=1

𝑠 ′
𝑖,𝑘

=
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 for all 𝑖 , we

know every firm’s payoff does not change under (p′, q′) compared

with that under (p, q). Then, we check whether any firm can get

more payoff by deviating to (p′′, q′′) from (p′, q′).

First, we consider the case where the firm 𝑖∗ deviates. In this case,

the firm 𝑖∗ is the only firm that changes her bid from the Nash equi-

librium (p, q) to (p′′, q′′). By the definition of the Nash equilibrium

(p, q), the firm 𝑖∗ cannot get more payoff under (p′′, q′′) than that

under (p, q), which is also equal to her payoff under (p′, q′). Hence,

we conclude that the firm 𝑖∗ cannot get more payoff by deviating

from (p′, q′).

Second, we consider the case where another firm 𝑖 ≠ 𝑖∗ deviates.

The whole deviation process from (p, q) to (p′′, q′′) is the same as

what described in Lemma C.7. As a result, the payoff of the firm

𝑖 under (p′′, q′′) is not more than that under (p, q), which is also

equal to her payoff under (p′, q′). This means that any firm 𝑖 ≠ 𝑖∗
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cannot get more payoff by deviating from (p′, q′). The conclusion

of this corollary thus follows. □

Lemma C.9. For any real numbers 𝑎, 𝑏, 𝑥,𝑦 that 𝑏 ≥ 𝑎 > 0, 𝑥 ≥ 0,

and 𝑦 > 0, we must have

min
{𝑎𝑦
𝑏
, 𝑎

}
≤ min

{
(𝑎 + 𝑥)𝑦

𝑏 + 𝑥
, 𝑎 + 𝑥

}
,

where equality holds if and only if 𝑥 = 0 or 𝑎 = 𝑏 and 𝑦 ≤ 𝑏.

Proof. Since 𝑎 ≤ 𝑎 + 𝑥 (equality holds when 𝑥 = 0), it only

remains to show that
𝑎𝑦
𝑏
≤
(𝑎+𝑥)𝑦
𝑏+𝑥

. We have

𝑎𝑦

𝑏
≤
(𝑎 + 𝑥)𝑦

𝑏 + 𝑥

⇐⇒
𝑎

𝑏
≤
𝑎 + 𝑥

𝑏 + 𝑥
⇐⇒ 𝑎(𝑏 + 𝑥) ≤ 𝑏 (𝑎 + 𝑥)

⇐⇒ (𝑎 − 𝑏)𝑥 ≤ 0.

Because 𝑎 ≤ 𝑏 and 𝑥 ≥ 0, we do have (𝑎 − 𝑏)𝑥 ≤ 0 (equality holds

if and only if 𝑎 = 0 or 𝑥 = 0).

Now,we check the condition ofmin
{𝑎𝑦
𝑏
, 𝑎

}
= min

{
(𝑎+𝑥)𝑦
𝑏+𝑥

, 𝑎 + 𝑥
}
.

When 𝑥 = 0, equality obviously holds. When 𝑥 ≠ 0, equality holds

if and only if
𝑎𝑦
𝑏

=
(𝑎+𝑥)𝑦
𝑏+𝑥

and
𝑎𝑦
𝑏
≤ 𝑎, which implies 𝑎 = 𝑏 and

𝑦 ≤ 𝑏. This lemma thus follows. □

Proposition C.10. Assume that (p, q) is a Nash equilibrium.

Suppose that a firm 𝑖∗ has at least one bid with the bidding price

higher or equal than 𝜋eq. Let 𝑘
∗
= min{𝑘 : 𝑝𝑖∗,𝑘 ≥ 𝜋eq}. Consider

the new bidding strategy (p′, q′) when the firm 𝑖∗ bids as follows



𝐾 ′𝑖∗ = 𝑘

∗,

𝑝 ′
𝑖∗,𝑘∗

= 𝜋eq, 𝑞′
𝑖∗,𝑘∗

=
∑
𝑘≥𝑘∗ 𝑞𝑖∗,𝑘 ,

𝑝 ′
𝑖∗,𝑘

= 𝑝𝑖∗,𝑘 , 𝑞′
𝑖∗,𝑘

= 𝑞𝑖∗,𝑘 , for all 𝑘 < 𝑘∗,

and other firms’ bids do not change. Then, the bidding strategy (p′, q′)

is an outcome-equivalent Nash equilibrium.

Proof. From the assumptions, the firm 𝑖∗ bids more aggressively.

Note that 𝜋eq must belong to {𝑝 𝑗,𝑘 : for all 𝑗, 𝑘} ∪ {0}, and thus

the new bid satisfies Definition C.3. Specifically, we have∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋eq }

𝑞′
𝑖,𝑘

=

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 ,

∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
=𝜋eq }

𝑞′
𝑖,𝑘
≥

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑞𝑖,𝑘 .

By Lemma C.5(b) and C.5(d), we have 𝜋 ′eq = 𝜋eq. It only remains to

show that
∑𝐾 ′𝑖
𝑘=1

𝑠 ′
𝑖,𝑘

=
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 , for all 𝑖 . First, we have 𝑠
′
𝑖,𝑘

= 𝑞𝑖,𝑘 =

𝑠𝑖,𝑘 for all (𝑖, 𝑘) that 𝑝
′
𝑖,𝑘

< 𝜋eq. Second, we prove
∑
{𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑠𝑖,𝑘 =∑

{𝑘 : 𝑝′
𝑖,𝑘

=𝜋 ′eq }
𝑠 ′
𝑖,𝑘

for all 𝑖 by three steps7.

Step 1: We prove that, if there exists no 𝑙 such that 𝑝𝑖∗,𝑙 = 𝜋eq,

then 𝑠 ′
𝑖∗,𝑘∗

= 0 and 𝑠 ′
𝑖,𝑘

= 𝑠𝑖,𝑘 = 0 for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 = 𝜋eq.

Towards this end, note that because (p, q) is a Nash equilibrium,

7Note that for every firm 𝑖 , both {𝑘 : 𝑝𝑖,𝑘 = 𝜋eq } and {𝑘 : 𝑝′
𝑖,𝑘

= 𝜋 ′eq } have at most

one element, and (one or both) could be empty for some firms.

the firm 𝑖∗’s payoff under (p′, q′) should be less than or equal to

her payoff under (p, q). In other words, we have

𝜋 ′eq
©­­«
𝑠 ′
𝑖∗,𝑘∗
+

∑︁
{𝑘 : 𝑝′

𝑖∗,𝑘
<𝜋 ′eq }

𝑠 ′
𝑖∗,𝑘

ª®®¬
≤ 𝜋eq

∑︁
{𝑘 : 𝑝𝑖∗,𝑘<𝜋eq }

𝑠𝑖∗,𝑘

=⇒ 𝑠 ′
𝑖∗,𝑘∗

= 0 (because 𝜋 ′eq = 𝜋eq)

=⇒ 𝑠 ′
𝑖,𝑘

= 0 for all 𝑖, 𝑘 such that 𝑝 ′
𝑖,𝑘

= 𝜋 ′eq,

and thus 𝐷 (𝜋 ′eq) =
∑︁

𝑖,𝑘 : 𝑝′
𝑖,𝑘

<𝜋 ′eq

𝑞′
𝑖,𝑘

(because of Lemma C.5(e))

=⇒ 𝐷 (𝜋eq) =
∑︁

𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq

𝑞𝑖,𝑘

(because 𝜋eq = 𝜋 ′eq and 𝑞𝑖,𝑘 = 𝑞′
𝑖,𝑘

for all 𝑖, 𝑘

that 𝑝𝑖,𝑘 < 𝜋eq)

=⇒
∑︁

𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq

𝑠𝑖,𝑘 =

∑︁
𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq

𝑞𝑖,𝑘 = 𝐷 (𝜋eq)

≥

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 (by Lemma C.5(c))

=⇒ 𝑠𝑖,𝑘 = 0 for all 𝑖, 𝑘 such that 𝑝𝑖,𝑘 = 𝜋eq .

In conclusion, we have 𝑠 ′
𝑖∗,𝑘∗

= 0 and 𝑠 ′
𝑖,𝑘

= 𝑠𝑖,𝑘 = 0 for all 𝑖, 𝑘 such

that 𝑝𝑖,𝑘 = 𝜋eq.

Step 2: We prove that, if there exists 𝑙 such that 𝑝𝑖∗,𝑙 = 𝜋eq, then

𝑠 ′
𝑖∗,𝑘∗

= 𝑠𝑖∗,𝑙 . Since there exists at most one bid of user 𝑖∗ at 𝜋eq,

we must have 𝑙 = 𝑘∗. Thus, it is equivalent to prove 𝑠 ′
𝑖∗,𝑘∗

= 𝑠𝑖∗,𝑘∗ .

To that end, we define 𝑥 = 𝑞′
𝑖∗,𝑘∗
− 𝑞𝑖∗,𝑘∗ . Note that 𝑥 ≥ 0 because

𝑞′
𝑖∗,𝑘∗

=
∑
𝑘≥𝑘∗ 𝑞𝑖∗,𝑘 . By Eq. (7), we have

𝑠 ′
𝑖∗,𝑘∗

=min



𝑞′
𝑖∗,𝑘∗

(
𝐷 (𝜋 ′eq) −

∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋 ′eq }

𝑞′
𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
=𝜋 ′eq, 𝑖≠𝑖

∗ } 𝑞
′
𝑖,𝑘
+ 𝑞′

𝑖∗,𝑘∗
, 𝑞′
𝑖∗,𝑘∗




=min



𝑞′
𝑖∗,𝑘∗

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq, 𝑖≠𝑖∗ } 𝑞𝑖,𝑘 + 𝑞

′
𝑖∗,𝑘∗

, 𝑞′
𝑖∗,𝑘∗




(since 𝜋 ′eq = 𝜋eq, and 𝑞𝑖,𝑘 = 𝑞′
𝑖,𝑘

for all 𝑖 ≠ 𝑖∗)

=min

{
(𝑞𝑖∗,𝑘∗ + 𝑥)

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘 + 𝑥

,

𝑞𝑖∗,𝑘∗ + 𝑥

}

≥min



𝑞𝑖∗,𝑘∗

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘

, 𝑞𝑖∗,𝑘∗




(applying Lemma C.9)

=𝑠𝑖∗,𝑘∗ (By Eq. (7)).
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Then, it only remains to show 𝑠 ′
𝑖∗,𝑘∗

≤ 𝑠𝑖∗,𝑘∗ . Because (p, q) is a

Nash equilibrium, the firm 𝑖∗’s payoff under (p′, q′) should be less

than or equal to her payoff under (p, q). In other words, we have

𝜋 ′eq
©­­
«
𝑠 ′
𝑖∗,𝑘∗
+

∑︁
{𝑘 : 𝑝′

𝑖∗,𝑘
<𝜋 ′eq }

𝑠 ′
𝑖∗,𝑘

ª®®
¬

≤ 𝜋eq
©­«
𝑠𝑖∗,𝑘∗ +

∑︁
{𝑘 : 𝑝𝑖∗,𝑘<𝜋eq }

𝑠𝑖∗,𝑘
ª®¬

=⇒ 𝜋eq
©­
«
𝑠 ′
𝑖∗,𝑘∗
+

∑︁
{𝑘 : 𝑝𝑖∗,𝑘<𝜋eq }

𝑞𝑖∗,𝑘
ª®
¬

≤ 𝜋eq
©­
«
𝑠𝑖∗,𝑘∗ +

∑︁
{𝑘 : 𝑝𝑖∗,𝑘<𝜋eq }

𝑞𝑖∗,𝑘
ª®
¬

=⇒ 𝑠 ′
𝑖∗,𝑘∗
≤ 𝑠𝑖∗,𝑘∗ .

Thus, we must have 𝑠 ′
𝑖,𝑘∗

= 𝑠𝑖∗,𝑘∗ , i.e., 𝑠
′
𝑖,𝑘∗

= 𝑠𝑖∗,𝑙 .

Step 3: we prove that, if there exists 𝑙 such that 𝑝𝑖∗,𝑙 = 𝜋eq,

then 𝑠 ′
𝑖,𝑘

= 𝑠𝑖,𝑘 for all 𝑖, 𝑘 such that 𝑝 ′
𝑖,𝑘

= 𝜋 ′eq. By the definition

of 𝑘∗, we have 𝑙 = 𝑘∗. By Step 2, we have 𝑠 ′
𝑖∗,𝑘∗

= 𝑠𝑖∗,𝑘∗ . Let 𝑥 =

𝑞′
𝑖∗,𝑘∗
− 𝑞𝑖∗,𝑘∗ ≥ 0. Define 𝑦 = 𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘 . If

𝑦 = 0, by Lemma C.5(c), we have 𝑠 ′
𝑖,𝑘

= 𝑠𝑖,𝑘 = 0 for all 𝑖, 𝑘 such that

𝑝 ′
𝑖,𝑘

= 𝜋 ′eq. Thus, it only remains to consider the situation of 𝑦 > 0.

From the conclusion of Step 2, we have

𝑠𝑖∗,𝑘∗ = 𝑠
′
𝑖∗,𝑘∗

,

which implies

min



𝑞𝑖∗,𝑘∗

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘

, 𝑞𝑖∗,𝑘∗




= min



𝑞′
𝑖∗,𝑘∗

(
𝐷 (𝜋 ′eq) −

∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋 ′eq }

𝑞′
𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
=𝜋 ′eq }

𝑞′
𝑖,𝑘

, 𝑞′
𝑖∗,𝑘∗



,

i.e.,

min



𝑞𝑖∗,𝑘∗

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘

, 𝑞𝑖∗,𝑘∗




= min

{
(𝑞𝑖∗,𝑘∗ + 𝑥)

(
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘

)
∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘 + 𝑥

,

𝑞𝑖∗,𝑘∗ + 𝑥

}
.

Applying Lemma C.9, we have

𝑥 = 0 or 𝑞𝑖∗,𝑘∗ =
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑞𝑖,𝑘 .

If 𝑥 = 0, then (p, q) and (p′, q′)) are exactly the same. If 𝑞𝑖∗,𝑘∗ =∑
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘 , then (𝑖

∗, 𝑘∗) is the only pair (𝑖, 𝑘) that 𝑝𝑖,𝑘 =

𝜋eq. In both cases, we always have 𝑠 ′
𝑖,𝑘

= 𝑠𝑖,𝑘 for all 𝑖, 𝑘 that 𝑝 ′
𝑖,𝑘

=

𝜋 ′eq.

By Step 1 to 3, we have
∑
{𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑠𝑖,𝑘 =

∑
{𝑘 : 𝑝′

𝑖,𝑘
=𝜋 ′eq }

𝑠 ′
𝑖,𝑘

for

all 𝑖 . Notice that
∑
{𝑘 : 𝑝𝑖,𝑘>𝜋eq } 𝑠𝑖,𝑘 = 0 =

∑
{𝑘 : 𝑝′

𝑖,𝑘
>𝜋 ′eq }

𝑠 ′
𝑖,𝑘

for all 𝑖 .

Thus, we have
∑𝐾 ′𝑖
𝑘=1

𝑠 ′
𝑖,𝑘

=
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 for all 𝑖 . By Corollary C.8, we

conclude that (p′, q′) is an outcome-equivalent Nash equilibrium.

□

Proposition C.11. Assume that (p, q) is a Nash equilibrium.

Suppose that a firm 𝑖∗ has at least one bid with the bidding price lower

than 𝜋eq and higher than 0. Let 𝑘∗ = min{𝑘 : 0 < 𝑝𝑖∗,𝑘 < 𝜋eq}
8.

Consider the new bidding strategy (p′, q′) when the firm 𝑖∗ bids as

follows



𝐾 ′𝑖∗ = 𝐾𝑖∗ − (𝑘

∗ − 1),

𝑝 ′𝑖∗,1 = 0, 𝑞′𝑖∗,1 =
∑
𝑘∈{1}∪{𝑘∗ } 𝑞𝑖∗,𝑘 ,

𝑝 ′
𝑖∗,𝑘

= 𝑝𝑖∗,𝑘+𝑘∗−1, 𝑞
′
𝑖∗,𝑘

= 𝑞𝑖∗,𝑘+𝑘∗−1, for all 𝑘 ≥ 2.

and other firms’ bids do not change. Then, the new bidding strategy

(p′, q′) is an outcome-equivalent Nash equilibrium.

Proof. By assumptions, the firm 𝑖∗ bids more aggressively and

we have ∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋eq }

𝑞′
𝑖,𝑘

=

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 ,

∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
=𝜋eq }

𝑞′
𝑖,𝑘

=

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑞𝑖,𝑘 .

Thus, by Lemma C.5(b)(d), we have 𝜋 ′eq = 𝜋eq. For any firm 𝑖 , we

have ∑︁
{𝑘 : 𝑝′

𝑖,𝑘
<𝜋eq }

𝑞′
𝑖,𝑘

=

∑︁
{𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 ,

𝑞′
𝑖,𝑘

����
𝑘 : 𝑝′

𝑖,𝑘
=𝜋eq

= 𝑞𝑖,𝑙

����
𝑙 : 𝑝𝑖,𝑙=𝜋eq

.

Thus, by Algorithm 2, for any firm 𝑖 , we have

𝐾 ′𝑖∑︁
𝑘=1

𝑠 ′
𝑖,𝑘

=

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 .

By Corollary C.8, the new bidding strategy (p′, q′) is an outcome-

equivalent Nash equilibrium. □

C.3 Proof of Theorem C.2

Now we are ready to prove Theorem C.2.

Proof. At any Nash equilibrium (p, q) in the multi-block-bid

system, if a firm has more than 1 bid with the bidding price lower

than 𝜋eq, then we can repeatedly apply Proposition C.11 to combine

all such bids with prices below 𝜋eq to one bid with the price 0. If a

firm has any bid with the price higher than or equal to 𝜋eq, then

we can apply Proposition C.10 to merge such bids into one bid at

the price 𝜋eq. Each step in those changes produces an outcome-

equivalent Nash equilibrium. At the end, each firm only has at most

two bids, one at the price 𝜋eq and another at the price 0. The result

of this theorem thus follows. □

8Note that, because there can be only one bid at price zero, 𝑘∗ can only take values of
either 1 or 2. Specifically, 𝑘∗ = 2 when 𝑝𝑖∗,1 = 0, and 𝑘∗ = 1 when 𝑝𝑖∗,1 > 0.
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C.4 Preparation for the proof of Theorem 5.2

By Theorem C.2, when analyzing the Nash equilibrium (p, q) of

the market, we can restrict our attention to 𝐾𝑖 ≤ 2, 𝑝𝑖,𝑘 ∈ {0, 𝜋eq}

for all 𝑖, 𝑘 . We first obtain the following lemma on the relation-

ship between the sold amount and the market price at any Nash

equilibrium.

Lemma C.12. 𝐷−1
(∑𝑀

𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘

)
= 𝜋eq at any Nash equilib-

rium (p, q).

Proof. We prove by contradiction. Suppose on the contrary that

𝐷−1
(∑𝑀

𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘

)
≠ 𝜋eq. Since 𝐷

−1 (𝐷 (𝜋eq)) = 𝜋eq, it implies

that we must have 𝐷 (𝜋eq) ≠
∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 . By Lemma C.5(c), we

must have 𝐷 (𝜋eq) >
∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 . Recall from Theorem C.2 that

we can restrict our attention to outcome-equivalent Nash equi-

librium such that 𝑝𝑖,𝑘 ∈ {0, 𝜋eq} for all 𝑖 and for all 𝑘 . By Lemma

C.5(c), we must have 𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 . Thus, the payoff of the

firm 𝑖 equals 𝜋eq
∑𝐾𝑖
𝑘=1

𝑞𝑖,𝑘 . We also have

𝐷 (𝜋eq) >

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘

=⇒ 𝐷 (𝜋eq) >

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑞𝑖,𝑘

=⇒ 𝐷 (𝜋eq) > 𝐶 (recall that

𝐾𝑖∑︁
𝑘=1

𝑞𝑖,𝑘 = 𝐶𝑖 ).

Wefirst show that theremust exist 𝜋0 such that𝜋0 > 𝜋eq and 𝐷 (𝜋eq) >

𝐷 (𝜋0) > 𝐶 . (Recall that we have shown in Appendix B.3 that 𝐷 (𝜋)

is strictly monotone decreasing when 𝐷 (𝜋) > 0.) To see this, sup-

pose on the contrary that 𝐷 (𝜋) ≤ 𝐶 for all 𝜋 > 𝜋eq. Then, because

we have shown that 𝐷 (𝜋eq) > 𝐶 , 𝐷 (·) must be discontinuous at

𝜋eq. Thus, we have 𝜋eq = 𝐷−1 (𝐶) = 𝐷−1
(∑𝑀

𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘

)
, which

contradicts our initial assumption that 𝐷−1
(∑𝑀

𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘

)
≠

𝜋eq. Thus, there must exist 𝜋0 such that 𝜋0 > 𝜋eq and 𝐷 (𝜋eq) >

𝐷 (𝜋0) > 𝐶 .

Then, we let a firm 𝑖∗ deviate to another bidding strategy (p′, q′)

that 𝐾 ′𝑖∗ = 1, 𝑝 ′𝑖∗,1 = 𝜋0, 𝑞
′
𝑖∗,1 = 𝐶𝑖 (i.e., bidding all her amount at

the price 𝜋0). Since 𝜋0 > 𝜋eq and 𝑝
′
𝑖,𝑘

= 𝑝𝑖,𝑘 ∈ {0, 𝜋eq} for all 𝑖 ≠

𝑖∗ and for all 𝑘 , we have 𝑝 ′
𝑖,𝑘
≤ 𝜋0 for all 𝑖 and for all 𝑘 . Thus, re-

calling that
∑𝐾 ′𝑖
𝑘=1

𝑞′
𝑖,𝑘

= 𝐶𝑖 , we then have

∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
≤𝜋0 }

𝑞′
𝑖,𝑘

=

𝑀∑︁
𝑖=1

𝐾 ′𝑖∑︁
𝑘=1

𝑞′
𝑖,𝑘

= 𝐶.

Because 𝐷 (𝜋0) > 𝐶 , we then have 𝐷 (𝜋0) > 𝐶 =
∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
≤𝜋0 } 𝑞

′
𝑖,𝑘

.

By Lemma C.5(a), we have 𝜋 ′eq ≥ 𝜋0. Since only the firm 𝑖∗ bids at

the price 𝜋0 and other firms bids at 𝜋eq or 0, by Algorithm 1, we

have 𝜋 ′eq = 𝜋0. Because 𝐷 (𝜋0) >
∑
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
≤𝜋0 } 𝑞

′
𝑖,𝑘
≥

∑
𝑖,𝑘 𝑠
′
𝑖,𝑘
, by

Lemma C.5(c), we have 𝑠 ′𝑖∗,1 = 𝑞
′
𝑖∗,1 = 𝐶𝑖 . Thus, the profit of the firm

𝑖∗ under (p′, q′) equals to 𝜋 ′eq𝐶𝑖 = 𝜋0𝐶𝑖 > 𝜋eq
∑𝐾𝑖
𝑘=1

𝑞𝑖∗,𝑘 , i.e., the

new profit is greater than the profit of the original bidding strategy

(p, q). This contradicts the assumption that the original bidding

strategy is a Nash equilibrium. The conclusion of this lemma thus

follows. □

Recall that in Theorem 5.2, we want to show that
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 =∑𝐾𝑖
𝑘=1

𝑞𝑖,𝑘 = 𝐶𝑖 for all 𝑖 and 𝜋eq = 𝐷−1 (𝐶). Lemma C.12 implies that

𝜋eq = 𝐷−1 (𝐶) would automatically hold if
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 =
∑𝐾𝑖
𝑘=1

𝑞𝑖,𝑘 =

𝐶𝑖 for all 𝑖 . Therefore, in the rest of the proof, we only need to focus

on proving
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 =
∑𝐾𝑖
𝑘=1

𝑞𝑖,𝑘 = 𝐶𝑖 for all 𝑖 .

Proposition C.13. If 𝐶 ≤ 𝐷 (max𝑛 𝜋𝑛), then the outcome of the

market could only be the outcome described in Theorem 5.2. Further,

at any Nash equilibrium, we must have 𝜋eq = max𝑛 𝜋𝑛 .

Proof. Step 1: We prove that the bidding strategy (p, q) defined

as 𝐾𝑖 = 1, 𝑞𝑖,1 = 𝐶𝑖 , 𝑝𝑖,1 = max𝑛 𝜋𝑛 for all 𝑖 is a Nash equilibrium.

By Algorithm 1, we have 𝜋eq = max𝑛 𝜋𝑛 . By Algorithm 2, we have

𝑠𝑖,1 = 𝑞𝑖,1 = 𝐶𝑖 for all 𝑖 . Thus, the payoff of the firm 𝑖 is𝐶𝑖 max𝑛 𝜋𝑛 .

Because 𝐷 (𝜋) = 0 for all 𝜋 > max𝑛 𝜋𝑛 , we know the firm 𝑖 has al-

ready gotten themaximum payoff compared to any bidding strategy.

Thus, the bidding strategy (p, q) is a Nash equilibrium.

Step 2:We prove that, if a firm 𝑖∗ bids as𝐾𝑖∗ = 1, 𝑝𝑖∗,1 = max𝑛 𝜋𝑛,

and 𝑞𝑖∗,1 = 𝐶𝑖∗ , then we must have 𝜋eq = max𝑛 𝜋𝑛 and 𝑠𝑖∗,1 = 𝐶𝑖∗ .

Because 𝐷 (𝜋) = 0 for all 𝜋 > max𝑛 𝜋𝑛 and 𝐷 (max𝑛 𝜋𝑛) > 𝐶 ,

by Lemma C.5(a), we have 𝜋eq = max𝑛 𝜋𝑛 . Now, it remains to

show that 𝑠𝑖∗,1 = 𝐶𝑖∗ . To that end, because 𝐶 ≤ 𝐷 (max𝑛 𝜋𝑛) and

𝜋eq = max𝑛 𝜋𝑛 , we then have

𝐷 (𝜋eq) ≥ 𝐶

=⇒ 𝐷 (𝜋eq) ≥
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 +
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq }

𝑞𝑖,𝑘

=⇒
𝐷 (𝜋eq) −

∑
{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq } 𝑞𝑖,𝑘∑

{𝑖,𝑘 : 𝑝𝑖,𝑘=𝜋eq } 𝑞𝑖,𝑘
≥ 1.

By Eq. (7), we have 𝑠𝑖∗,1 = 𝑞𝑖∗,1 = 𝐶𝑖∗ .

Step 3: We prove that at any Nash equilibrium, we must have

𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 , and 𝜋eq = max𝑛 𝜋𝑛 . We prove by contradic-

tion. Suppose on the contrary that, at a Nash equilibrium, there

exist 𝑖∗, 𝑘∗ such that 𝑠𝑖∗,𝑘∗ < 𝑞𝑖∗,𝑘∗ or 𝜋eq ≠ max𝑛 𝜋𝑛 . Then the firm

𝑖∗’s payoff is 𝑠𝑖∗,𝑘∗𝜋eq < 𝐶𝑖 max𝑛 𝜋𝑛 . Now, let the firm 𝑖∗ deviates to

the bidding strategy described in Step 2. Then, the firm 𝑖∗’s payoff

under the new bidding strategy is𝐶𝑖 max𝑛 𝜋𝑛 , which is larger than

her payoff under the original bidding strategy. This contradicts the

assumption that the original bidding strategy is a Nash equilibrium.

Thus, we must have 𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 and 𝜋eq = max𝑛 𝜋𝑛 at any

Nash equilibrium. The result of the proposition thus follows. □

Proposition C.13 shows that if the total panel area is scarce, then

every firm leases out all of her solar panels, and thus the market

outcome must be the outcome described in Theorem 5.2.

By Proposition C.13, to finish the proof of Theorem 5.2, we only

need to consider the case when 𝐶 > 𝐷 (max𝑛 𝜋𝑛), i.e., the total

panel area is plentiful.

C.5 Proof of Theorem 5.2

We first prove the following lemma.
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Lemma C.14. Let 𝑎, 𝑏, 𝑐, 𝑟, 𝑠 be five positive real numbers. If 𝑠𝑟 ≤

min
{
𝑎
𝑐 , 1

}
and 𝑏 > 𝑎, then we must have

𝑟 −
𝑏 − 𝑎

𝑏
𝑠 ≥ 𝑟𝑒−

𝑏−𝑎
𝑐 .

Proof. We consider two cases.

Case 1: 𝑎𝑐 ≤ 1. Then, we have 𝑠𝑟 ≤ min
{
𝑎
𝑐 , 1

}
=
𝑎
𝑐 . Since

𝑏

𝑎
−
𝑏 − 𝑎

𝑐
≥
𝑏

𝑎
−
𝑏 − 𝑎

𝑎
= 1,

we have

𝑏−𝑎
𝑐

𝑏
𝑎 −

𝑏−𝑎
𝑐

≤
𝑏 − 𝑎

𝑐
.

Then, because 𝑒𝑥 ≥ 1 + 𝑥 for all 𝑥 ∈ R, we have

𝑒
𝑏−𝑎
𝑐 ≥ 1 +

𝑏 − 𝑎

𝑐
≥ 1 +

𝑏−𝑎
𝑐

𝑏
𝑎 −

𝑏−𝑎
𝑐

=

𝑏
𝑎

𝑏
𝑎 −

𝑏−𝑎
𝑐

=
1

1 − 𝑎
𝑐
𝑏−𝑎
𝑏

,

which implies

𝑟𝑒−
𝑏−𝑎
𝑐 ≤ 𝑟 − 𝑟

𝑎

𝑐

𝑏 − 𝑎

𝑏
≤ 𝑟 − 𝑠

𝑏 − 𝑎

𝑏

(since
𝑠

𝑟
≤
𝑎

𝑐
, then 𝑟

𝑎

𝑐
≥ 𝑠).

Case 2: 𝑎𝑐 > 1. Then, we have 𝑠𝑟 ≤ min
{
𝑎
𝑐 , 1

}
= 1. Let 𝑐 ′ = 𝑎 > 𝑐 .

We have

𝑒−
𝑏−𝑎
𝑐′ ≥ 𝑒−

𝑏−𝑎
𝑐 .

Thus, it is sufficient to show that

𝑟 −
𝑏 − 𝑎

𝑏
𝑠 ≥ 𝑟𝑒−

𝑏−𝑎
𝑐′ for all

𝑠

𝑟
≤ 1,

which is true by case 1 as 𝑎
𝑐′ = 1.

In conclusion, the result of this lemma thus follows. □

Now, we start to prove Theorem 5.2.

Proof of Theorem 5.2. Before entering the main part of our

proof, we first show that 𝜋eq > 0 for any Nash equilibrium. Because
max𝑖 𝐶𝑖
𝐶 ≤

𝐷−1 (𝐶)
𝜋𝑔𝛾

, we must have 𝐷−1 (𝐶) > 0. By Lemma C.12, we

then have 𝜋eq = 𝐷−1 (
∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 ) ≥ 𝐷
−1 (𝐶) > 0.

We divide the proof into two parts according to the definition

of the desired outcome. In Part 1, we prove the existence of Nash

equilibrium. In Part 2, we prove the statements for any Nash equi-

librium. (Notice that in Section 5.4, we omit Part 1 and provide the

proof sketch of only the main steps of Part 2.)

Part 1: we show that the bidding strategy (p, q) defined as 𝐾𝑖 =

1, 𝑝𝑖,1 = 𝐷
−1 (𝐶), 𝑞𝑖,1 = 𝐶𝑖 for all 𝑖 is a Nash equilibrium. By Algo-

rithm 1 and 2, we must have 𝜋eq = 𝐷−1 (𝐶) and 𝑠𝑖,1 = 𝐶𝑖 for all 𝑖 .

For any firm 𝑗 , the payoff equals to 𝜋eq𝐶 𝑗 . We now prove by contra-

diction that (p, q) is a Nash equilibrium. Suppose on the contrary

that the current bidding strategy is not a Nash equilibrium. Then,

there must exist a firm 𝑗 that can deviate to another bidding strat-

egy (p′, q′) to increase her payoff. Thus, we must have 𝜋 ′eq > 𝜋eq
because the new sold amount of the firm 𝑗 cannot exceed 𝐶 𝑗 . For

any other firm 𝑖 ≠ 𝑗 , since 𝑝 ′𝑖,1 = 𝑝𝑖,1 = 𝜋eq < 𝜋 ′eq, by Algorithm 2,

we must have 𝑠 ′𝑖,1 = 𝑞𝑖,1. Thus, by Lemma C.5(c), we have

𝐾 ′𝑗∑︁
𝑘=1

𝑠 ′
𝑗,𝑘
≤ 𝐷 (𝜋 ′eq) −

∑︁
𝑖≠𝑗

𝑠 ′𝑖,1

= 𝐷 (𝜋 ′eq) −
∑︁
𝑖≠𝑗

𝑞𝑖,1

= 𝐷 (𝜋 ′eq) −𝐶 +𝐶 𝑗 .

On the one hand, since the new payoff of the firm 𝑗 is larger than

her old payoff, we then have

𝜋 ′eq

𝐾 ′𝑗∑︁
𝑘=1

𝑠 ′
𝑗,𝑘

> 𝜋eq𝑞 𝑗,1

=⇒ 𝜋 ′eq

(
𝐷 (𝜋 ′eq) −𝐶 +𝐶 𝑗

)
− 𝜋eq𝐶 𝑗 > 0

=⇒ (𝜋 ′eq − 𝜋eq)𝐶 𝑗 + 𝜋
′
eq

(
𝐷 (𝜋 ′eq) −𝐶

)
> 0

=⇒ 𝐷 (𝜋 ′eq) > 𝐶 −
𝜋 ′eq − 𝜋eq

𝜋 ′eq
𝐶 𝑗 . (18)

On the other hand, by Corollary B.9, we have

𝐷 (𝜋 ′eq) ≤ 𝐶𝑒
−
𝜋′eq−𝜋eq

𝜋𝑔𝛾 .

Because
𝐶 𝑗
𝐶 ≤ 1 and

𝐶 𝑗
𝐶 ≤

max𝑖 𝐶𝑖
𝐶 ≤

𝜋eq
𝜋𝑔𝛾

, we must have
𝐶 𝑗
𝐶 ≤

min
{
𝜋eq
𝜋𝑔𝛾

, 1
}
. Applying Lemma C.14, we have

𝐷 (𝜋 ′eq) ≤ 𝐶 −
𝜋 ′eq − 𝜋eq

𝜋 ′eq
𝐶 𝑗 .

This contradicts Eq. (18). Thus, we have proven that the original

bidding strategy (p, q) is a Nash equilibrium.

Part 2: we next prove that, at any Nash equilibrium, wemust have

𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 . We roughly follow the main steps sketched in

Section 5.4. We prove by contradiction. Suppose on the contrary

that at a Nash equilibrium (p, q), there exists at least one firm with

an unsold/partly-sold bid, i.e.,


𝑖
∗ :

𝐾𝑖∗∑︁
𝑘=1

𝑠𝑖∗,𝑘 < 𝐶𝑖∗

 ≠ ∅.

In the following, we will consider another bidding strategy (p′, q′)

that a carefully-chosen firm 𝑗 deviates from the original bidding

strategy (p, q) to another strategy with 𝐾 ′𝑗 = 1, 𝑝 ′𝑗,1 = 𝜋∗, and

𝑞′𝑗,1 = 𝐶 𝑗 . We find 𝑗 and 𝜋∗ through the following steps 1 and 2.

We then get some useful properties in steps 3, 4 and 5. In the end,

we establish the contradiction to complete the proof in step 6.
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Step 1: We prove that there exists a firm 𝑗 such that
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘 <

𝐶 𝑗 and

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐷 (𝜋eq)

≤
𝐶 𝑗
𝐶 . (Notice that this step is mentioned in con-

clusion 2○ of Section 5.4.) By Lemma C.5(c), we must have

𝐷 (𝜋eq) ≥

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 =

©­­­
«

∑︁
{
𝑖∗:

∑𝐾𝑖∗
𝑘=1

𝑠𝑖∗,𝑘<𝐶𝑖∗
}
𝐾𝑖∗∑︁
𝑘=1

𝑠𝑖∗,𝑘

ª®®®
¬

+
∑︁

{
𝑖:

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

}𝐶𝑖 ,

which implies that

∑︁
{
𝑖∗:

∑𝐾𝑖∗
𝑘=1

𝑠𝑖∗,𝑘<𝐶𝑖∗
}

∑𝐾𝑖∗

𝑘=1
𝑠𝑖∗,𝑘

𝐷 (𝜋eq) −
∑{

𝑖:
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

} 𝐶𝑖 ≤ 1.

On the other hand, we have

𝐶 =

∑︁
{
𝑖∗:

∑𝐾𝑖∗
𝑘=1

𝑠𝑖∗,𝑘<𝐶𝑖∗
}𝐶𝑖∗ +

∑︁
{
𝑖:

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

}𝐶𝑖

=⇒
∑︁

{
𝑖∗:

∑𝐾𝑖∗
𝑘=1

𝑠𝑖∗,𝑘<𝐶𝑖∗
}

𝐶𝑖∗

𝐶 −
∑{

𝑖:
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

} 𝐶𝑖 = 1.

As a result, there must exist a firm 𝑗 such that
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘 < 𝐶 𝑗 and

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘

𝐷 (𝜋eq) −
∑{

𝑖:
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

} 𝐶𝑖
≤

𝐶 𝑗

𝐶 −
∑{

𝑖:
∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

} 𝐶𝑖

=⇒
©­
«
𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘
ª®
¬
©­­­«
𝐶 −

∑︁
{
𝑖:

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

}𝐶𝑖
ª®®®¬

≤ 𝐶 𝑗

©­­­
«
𝐷 (𝜋eq) −

∑︁
{
𝑖:

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘=𝐶𝑖

}𝐶𝑖
ª®®®
¬

=⇒
©­«
𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘
ª®¬
𝐶 ≤ 𝐶 𝑗𝐷 (𝜋eq) (because

𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘 < 𝐶 𝑗 )

=⇒

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘

𝐷 (𝜋eq)
≤
𝐶 𝑗

𝐶
.

Step 2:We let the firm 𝑗 found in step 1 change her bids in theway

that we describe earlier (i.e., 𝐾 ′𝑗 = 1, 𝑝 ′𝑗,1 = 𝜋∗, and 𝑞′𝑗,1 = 𝐶 𝑗 ). In

this step, wewill prove that for all 𝜋∗ ∈

(
𝜋eq

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

, 𝜋eq

)
, the mar-

ket outcome must satisfy 𝑠 ′𝑗,1 < 𝐶 𝑗 . We prove by contradiction. Sup-

pose on the contrary that there exists a price 𝜋 ∈

(
𝜋eq

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

, 𝜋eq

)

such that 𝑠 ′𝑗,1 = 𝐶 𝑗 when the firm bids 𝑝 ′𝑗,1 = 𝜋 . The firm 𝑗 ’s pay-

off with (p′, q′) must then be equal to or greater than 𝜋𝐶 𝑗 . Since

𝜋 >

𝜋eq
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

, we then have

𝜋𝐶 𝑗 > 𝜋eq

𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘 ,

i.e., the firm 𝑗 ’s payoff under (p′, q′) is larger than that under (p, q).

This contradicts the assumption that (p, q) is a Nash equilibrium.

Thus, we have proven that, for all 𝜋∗ ∈

(
𝜋eq

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

, 𝜋eq

)
, the

market outcome under the new bid must satisfy 𝑠 ′𝑗,1 < 𝐶 𝑗 .

Step 3: We now let firm 𝑗 found in step 1 change her bid in

the way that we describe earlier, with 𝜋∗ ∈

(
𝜋eq

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

, 𝜋eq

)
.

In this step, we will prove that the market outcome must satisfy

𝜋 ′eq = 𝜋∗. By Step 2, we have 𝑠 ′𝑗,1 < 𝐶 𝑗 = 𝑞′𝑗,1. Thus, we have

𝜋 ′eq ≤ 𝑝 ′𝑗,1 = 𝜋∗. Because 𝑝 ′
𝑖,𝑘
∈ {0, 𝜋∗, 𝜋eq} for all (𝑖, 𝑘) (notice

that 𝜋eq > 𝜋∗ >

𝜋eq
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

≥ 0 and we have restricted our

attention to two-block bids by Theorem C.2), we have

∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
<𝜋∗ }

𝑞′
𝑖,𝑘

=

∑︁
{𝑖,𝑘 : 𝑝′

𝑖,𝑘
=0}

𝑞′
𝑖,𝑘

=

∑︁
{𝑖,𝑘 : 𝑝𝑖,𝑘=0, 𝑖≠𝑗 }

𝑞𝑖,𝑘

≤
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘=0}

𝑞𝑖,𝑘

≤
∑︁

{𝑖,𝑘 : 𝑝𝑖,𝑘<𝜋eq }

𝑞𝑖,𝑘 (because 𝜋eq > 0)

≤ 𝐷 (𝜋eq) (by Lemma C.5(a))

≤ 𝐷 (𝜋∗) .

Applying Lemma C.5(a), we have 𝜋 ′eq ≥ 𝜋
∗. As a result, we conclude

that 𝜋 ′eq = 𝜋∗.

Step 4: Following step 3, we prove that 𝑠 ′𝑗,1−
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘 ≥ 𝐷 (𝜋
∗)−∑𝑀

𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 . By step 2, we know that 𝑠 ′𝑗,1 < 𝐶 𝑗 . By step 3, we

know 𝜋eq = 𝜋∗. (Notice that this step is mentioned in conclusion

3○ of Section 5.4.) Thus, by Lemma C.5(c), we must have 𝐷 (𝜋∗) =∑𝑀
𝑖=1

∑𝐾 ′𝑖
𝑘=1

𝑠 ′
𝑖,𝑘
. As a result, we have

𝐷 (𝜋∗) −

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 =

𝑀∑︁
𝑖=1

𝐾 ′𝑖∑︁
𝑘=1

𝑠 ′
𝑖,𝑘
−

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘

= 𝑠 ′𝑗,1 −

𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘 +
∑︁
𝑖≠𝑗

©­«
𝐾 ′𝑖∑︁
𝑘=1

𝑠 ′
𝑖,𝑘
−

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘
ª®¬
.
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Because 𝜋 ′eq = 𝜋∗ ∈ (0, 𝜋eq) and the bidding strategy of any other

firm 𝑖 ≠ 𝑗 does not deviate, we have

𝐾 ′𝑖∑︁
𝑘=1

𝑠 ′
𝑖,𝑘

=

∑︁
{𝑘 : 𝑝′

𝑖,𝑘
=0}

𝑞′
𝑖,𝑘

=

∑︁
{𝑘 : 𝑝𝑖,𝑘=0}

𝑠𝑖,𝑘

≤

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘 for all 𝑖 ≠ 𝑗 .

Thus, we have 𝑠 ′𝑗,1 −
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘 ≥ 𝐷 (𝜋
∗) −

∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 .

Step 5: We prove that 𝜋eq > 𝐷−1 (𝐶) by contradiction. Suppose

on the contrary that 𝜋eq ≤ 𝐷−1 (𝐶). Thus, we have 𝐷 (𝜋eq) ≥

𝐷
(
𝐷−1 (𝐶)

)
≥ 𝐶 >

∑𝑀
𝑖=1

∑𝐾𝑖
𝑘=1

𝑠𝑖,𝑘 . By Lemma C.5(c), we have

𝑠𝑖,𝑘 = 𝑞𝑖,𝑘 for all 𝑖, 𝑘 (because 𝑝𝑖,𝑘 ∈ {0, 𝜋eq}). That contradicts the

assumption that the firm 𝑗 has an unsold/partly-sold bid. Thus, we

have proven that 𝜋eq > 𝐷−1 (𝐶). (Notice that Step 5 is mentioned

in conclusion 1○ of Section 5.4.)

Step 6: We establish the contradiction for the initial assump-

tion of the whole Part 2 that there exists at least one firm with

an unsold/partly-sold bid at (p, q). Following the strategy (p′, q′)

stated in step 3, because (p, q) is a Nash equilibrium, we have

𝜋∗𝑠 ′𝑗,1 ≤ 𝜋eq

𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘

=⇒ 𝜋∗
©­«
𝑠 ′𝑗,1 −

𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘
ª®¬
≤

(
𝜋eq − 𝜋

∗) 𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘

=⇒ 𝜋∗

(
𝐷 (𝜋∗) −

𝑀∑︁
𝑖=1

𝐾𝑖∑︁
𝑘=1

𝑠𝑖,𝑘

)
≤

(
𝜋eq − 𝜋

∗) 𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘

(by step 4)

=⇒ 𝜋∗
(
𝐷 (𝜋∗) − 𝐷 (𝜋eq)

)
≤

(
𝜋eq − 𝜋

∗) 𝐾𝑗∑︁
𝑘=1

𝑠 𝑗,𝑘

(by Lemma C.5(c))

=⇒
𝐷 (𝜋∗) − 𝐷 (𝜋eq)

𝐷 (𝜋eq)
≤
𝜋eq − 𝜋

∗

𝜋∗
·

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘

𝐷 (𝜋eq)
.

Note that the last inequality holds for any 𝜋∗ ∈

(
𝜋eq

∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘
𝐶 𝑗

, 𝜋eq

)
.

Letting 𝜋∗ approach 𝜋eq, we have

���� 𝜕𝐷 (𝜋eq)𝐷 (𝜋eq)

���� ≤
���� 𝜕𝜋eq𝜋eq

����
∑𝐾𝑗
𝑘=1

𝑠 𝑗,𝑘

𝐷 (𝜋eq)

≤

���� 𝜕𝜋eq𝜋eq

���� 𝐶 𝑗𝐶 (by step 1)

≤

���� 𝜕𝜋eq𝜋eq

���� 𝐷−1 (𝐶)𝜋𝑔𝛾

<

���� 𝜕𝜋eq𝜋eq

���� 𝜋eq𝜋𝑔𝛾
(by step 5),

which contradicts Proposition 5.1.

In conclusion, the result stated in this theorem thus holds. □

D SITUATIONWITH HETEROGENEOUS 𝐺𝑖 (𝑡)

In this section, we discuss briefly the situation when the efficiency

of solar generation𝐺 (𝑡) is not the same for all firms, in which case

we use 𝐺𝑖 (𝑡) to denote the generation per unit size of solar panel

by firm 𝑖 at time 𝑡 . Such a situation occurs when the firms are not

receiving the same level of irradiance, or they use solar panels with

different conversion efficiency, or some prosumers use the solar

generation for their own demand first (before selling the remaining

generation to the market). We note that this situation has no impact

to our results for real-time markets in Section 4. However, it does

affect the rental markets in Section 5, as a consumer renting from

a firm with low 𝐺𝑖 (𝑡) will receive less solar energy in real-time,

which complicates the calculation of the panel demand function in

(4).

To resolve this issue, we propose that the rental market operator

introduces a normalization procedure to complement the rental

market mechanism presented in Section 5. This normalization pro-

cedure calculates an łeffective panel sizež𝐶𝑖 for each firm based on

her historical generation efficiency 𝐺𝑖 (𝑡) and her declared panel

size 𝐶𝑟𝑖 , and calculates a common efficiency 𝐺 (𝑡) based on the gen-

eration efficiency of all firms in the market. Afterwards, the rental

markets can operate based on the effective panel size 𝐶𝑖 and com-

mon/normalized efficiency 𝐺 (𝑡) only. The high-level goals of this

normalization procedure are the following. First, firms with higher

(correspondingly, lower) 𝐺𝑖 (𝑡) will have larger (correspondingly,

smaller) effective panel sizes 𝐶𝑖 than their declared panel sizes 𝐶𝑟𝑖 ,

so that the firms are compensated by their actual solar generation,

not merely by what panel size they declare. Second, regardless of

from which firm a consumer rents the solar panel from, the con-

sumer will receive the same amount of solar energy in real-time

per unit of effective panel size. Third, the normalized 𝐺 (𝑡) and

the effective panel sizes 𝐶𝑟𝑖 are calculated in such a way that the

total available solar energy to the market at each time equals to

the actual solar generation (see (19) below), so that the normalized

procedure does not lead to any surplus/deficit of solar energy to

the market operator.

Specifically, we propose the following normalization procedure:

(1) The market operator estimates the overall efficiency of each

firm’s solar panels based on historical data over a past in-

terval of length 𝑇 . Recall that 𝐺𝑖 (𝑡) denote the generation

per unit area of firm 𝑖’s solar panel at time 𝑡 . The overall

efficiency 𝑒𝑖 of firm 𝑖 is estimated by the average of 𝐺𝑖 (𝑡)

over the past interval, i.e.,

𝑒𝑖 =
1

𝑇

∫ 𝑇

0
𝐺𝑖 (𝑡)𝑑𝑡 .

(2) The market operator rates the effective panel size of each

firm 𝑖 by her overall efficiency 𝑒𝑖 . Specifically, the market

operator chooses a baseline efficiency 𝑒0 in advance. (For

example, 𝑒0 could be the expected overall efficiency of a

typical panel over the past interval.) Denote firm 𝑖’s declared

panel size as𝐶𝑟𝑖 . Its effective panel size can then be calculated

as

𝐶𝑖 =
𝑒𝑖

𝑒0
𝐶𝑟𝑖 .
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Note that this formula ensures that firms with higher gener-

ation efficiency on average will be rated with larger effective

panel sizes.

(3) The market operator calculates the normalized generation

efficiency (per unit of effective panel size) for all firms in the

market as

𝐺 (𝑡) =

∑𝑀
𝑖=1𝐺𝑖 (𝑡)𝐶

𝑟
𝑖∑𝑀

𝑖=1𝐶𝑖
.

Note that this formula guarantees that the total generation

calculated by the normalized 𝐺 (𝑡) and the effective panel

sizes equlas to the actual total generation at each time, i.e.,

𝐺 (𝑡)

𝑀∑︁
𝑖=1

𝐶𝑖 =

𝑀∑︁
𝑖=1

𝐺𝑖 (𝑡)𝐶
𝑟
𝑖 . (19)

Once𝐶𝑖 and𝐺 (𝑡) are provided by the market operator, the rental

market will operate in the same way as we presented in Section 5

for the next interval of length 𝑇 . Specifically, the consumers will

use the historical data of 𝐺 (𝑡) to estimate its future probability dis-

tribution, assuming that the future time interval will have a similar

distribution as the previous interval. Based on this distribution of

𝐺 (𝑡), the consumers can calculate their panel demand functions

in (4). Similarly, the firms submit their bids to the market using

only their effective panel sizes. The rental market operator then

determines, for the next interval of length 𝑇 , the rental price (per

unit of effective panel size), and settles the payment between firms

and consumers based on the effective panel sizes that are cleared. In

real-time, the market operator will distribute the solar generation

according to the effective panel size. Specifically, at time 𝑡 in the

next interval of length 𝑇 , we still denote 𝐺𝑖 (𝑡) as the generation

per unit area of firm 𝑖’s solar panel at time 𝑡 . The total generation

is then
∑𝑀
𝑖=1𝐺𝑖 (𝑡)𝐶

𝑟
𝑖 . For each consumer 𝑛 renting 𝑐𝑛 units of ef-

fective panel, she will then łbe creditedž with the amount of solar

generation equal to

𝑐𝑛∑𝑀
𝑖=1𝐶𝑖

𝑀∑︁
𝑖=1

𝐺𝑖 (𝑡)𝐶
𝑟
𝑖 .

In this way, the consumer will receive the same amount of solar

energy per unit of effective panel size, regardless of from which

firm she rents. At the end of this interval of length 𝑇 , the above

normalized procedure is repeated to update 𝐶𝑖 and 𝐺 (𝑡) for the

next interval of rental market operation.

E SYSTEM SETUP OF FIG. 6

In this part, we describe the system setup of the forward energy

market used in Fig. 6, and explain how to calculate the solar gen-

eration amount that is utilized in both the rental market and the

forward energy market.

We first explain the market clearing mechanism of the forward

energy market. For each firm 𝑖 , the supply curve is determined by

𝑠𝑖 (𝜋) = argmax
𝑥

(
𝑥𝜋 − 𝜋𝑔E[𝑥 −𝐶𝑖𝐺 (𝑡)]

+) .
Due to our assumption that all solar panels have the same genera-

tion efficiency 𝐺 (𝑡), we can easily prove that 𝑠𝑖 (𝜋) is proportional

to 𝐶𝑖 . Thus, the aggregate supply curve is then

𝑆 (𝜋) :=

𝑀∑︁
𝑖=1

𝑠𝑖 (𝜋) = argmax
𝑥

(
𝑥𝜋 − 𝜋𝑔E[𝑥 −𝐶𝐺 (𝑡)]

+) .
Similarly, for the customers side, their aggregate demand curve is

𝐷 (𝜋) :=

𝑁∑︁
𝑖=1

𝑑𝑖 (𝜋) = argmin
𝑥

(
𝑥𝜋 + 𝜋𝑔E[𝐿(𝑡) − 𝑥]

+) .
Thus, when 𝐺 (𝑡) and 𝐿(𝑡) are uniformly distributed in [𝑎, 𝑏], we

have

𝑆 (𝜋) = 𝐶 ·

(
(𝑏 − 𝑎) ·

𝜋

𝜋𝑔
+ 𝑎

)
, 𝐷 (𝜋) = 𝑏 − (𝑏 − 𝑎) ·

𝜋

𝜋𝑔
.

The market price 𝜋eq is determined by the intersection of the aggre-

gate supply curve and the aggregate demand curve, i.e., 𝑆 (𝜋eq) =

𝐷 (𝜋eq). We thus get
𝜋eq
𝜋𝑔

=
1

𝐶+1 ·
𝑏−𝑎𝐶
𝑏−𝑎

.

We can then calculate the the expected amount of solar gener-

ation that is used. For the forward energy market (without any

additional real-time market), the used generation amount can be

calculated by

E[min{𝐶𝐺 (𝑡), 𝐷 (𝜋eq), 𝐿(𝑡)}] .

In comparison, since the rental market experiences the outcome

described in Theorem 5.2, we can calculate its expected used gener-

ation amount by

E[min{𝐶𝐺 (𝑡), 𝐿(𝑡)}] .

The curves in Fig. 6 correspond to these two expressions, assuming

the two different settings of correlation between 𝐿(𝑡) and 𝐺 (𝑡)

described in Section 5.6.
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