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ABSTRACT: Machine learning (ML) offers an attractive method for making predictions
about molecular systems while circumventing the need to run expensive electronic structure
calculations. Once trained on ab initio data, the promise of ML is to deliver accurate
predictions of molecular properties that were previously computationally infeasible. In this
work, we develop and train a graph neural network model to correct the basis set
incompleteness error (BSIE) between a small and large basis set at the RHF and B3LYP
levels of theory. Our results show that, when compared to fitting to the total potential, an
ML model fitted to correct the BSIE is better at generalizing to systems not seen during
training. We test this ability by training on single molecules while evaluating on molecular
complexes. We also show that ensemble models yield better behaved potentials in situations
where the training data is insufficient. However, even when only fitting to the BSIE, acceptable performance is only achieved when
the training data sufficiently resemble the systems one wants to make predictions on. The test error of the final model trained to
predict the difference between the cc-pVDZ and cc-pV5Z potential is 0.184 kcal/mol for the B3LYP density functional, and the
ensemble model accurately reproduces the large basis set interaction energy curves on the S66x8 dataset.

■ INTRODUCTION

Today, we can readily compute properties of molecular
systems with up to hundreds of atoms using ab initio methods
such as Hartree−Fock (HF) or Kohn−Sham Density Func-
tional Theory (DFT). These methods have proven very
successful in computational chemistry, and DFT is, in many
cases, the preferred method due to its pragmatic accuracy/cost
tradeoff. The computational cost of most ab initio methods
scales poorly with the number of basis functions, and one is
therefore often forced to compromise on the quality of the
basis set to stay within a certain cost limit for a given system.
Some strategies to circumvent this steep computational scaling
while still using large basis sets include incremental methods
(e.g., the focal point method)1−3 or the many-body expansion
scheme (i.e., partitioning the target system into more
manageable molecular fragments).4−6

In practice, any finite basis set is incomplete, and the use of a
finite basis set introduces a basis set incompleteness error
(BSIE).7 This BSIE is especially vexing for the atom-centered
Gaussian basis sets in widespread use (and to which we confine
our attention in the following), while it tends to be more well-
behaved for plane-wave basis sets. For sufficiently large basis
sets, such as the quintuple zeta cc-pV5Z basis set, the BSIE is
well-behaved and its effect may be considered negligible.8,9

Such large basis sets are usually prohibitively expensive, and
most work uses smaller or even minimal basis sets.
Unfortunately, these smaller basis sets can introduce significant
error.

Computational chemists have long sought to correct for the
BSIE of small basis set calculations, and many schemes such as

Feller-type basis set extrapolation10 (eq 1) have been proposed
to extrapolate the energies from a series of small basis sets to
the complete basis set (CBS) limit.7,11−17 These extrapolation
methods work by considering an assumed functional form
expressing how the electronic energy depends on the basis set
cardinal number; for example,

= +E E e
X

X

CBS (1)

where X is the basis set cardinal number, EX and ECBS are the
electronic energies using a basis with cardinal number X and a
complete basis set, respectively. Using a series of calculations
with progressively larger basis sets, the assumed functional
form enables extrapolation to the CBS limit.

The major drawback of extrapolation schemes is that they
require calculations with large basis sets, typically of triple-ζ
quality or greater.18,19 Hence, in situations where one is limited
to a smaller basis set and the need to correct the BSIE is the
greatest, extrapolation is not an available option for correcting
the BSIE.

For basis set corrections to become routinely available, the
correction must cost less to compute than the small basis set
calculation. Such a method could be of great utility, since it
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would allow computational chemists to study larger systems
without having to worry about small basis set effects. An
important early step in this direction was the geometric
counterpoise (gCP) method.20 The gCP method assumes an
explicit functional form for the BSIE, depending only on
element types, atomic coordinates, and a set of parameters
determined by fitting. Machine learning (ML) is finding
widespread use in computational chemistry, because there is a
general need for computing molecular properties much less
expensively than ab initio methods would otherwise allow. In
the Δ-ML21−25 approach, the goal is to use Machine Learning
(ML) techniques to fit the difference between an inexpensive
low-level and a more expensive high-level computation. In this
paper, we explore a Δ-ML approach to correct the BSIE for
HF or DFT.

This strategy imposes an important question: Why try to fit
the BSIE rather than the complete potential itself as defined
with a large basis set? Since there is already an extensive
amount of work published that shows modern ML techniques
fitting total potentials to a high accuracy, fitting the difference
between two potentials might seem like more work than
necessary. However, it is possible that the error of any
computational method has a simple structure that is easier to
learn than the total potential itself. It is even possible that if the
error is divided into its constituent pieces, such as the BSIE
and the correlation error, then the individual constituents
themselves are even easier to learn. Indeed, the success of gCP
suggests that this is true for the present case of BSIE. It has
also been shown that Δ-ML schemes can learn these
components with either less data or simpler ML techni-
ques,23,26 while also yielding corrections that are more robust
than when trying to learn the total potential.

ML methods for potential energy surface (PES) fitting is a
field in rapid development. Since 2007 with the introduction of
the Behler−Parinello27 network, the most successful ap-
proaches utilize artificial neural networks (NNs). In the
Behler−Parinello approach, one constructs a descriptor that
captures the local environment of each atom in a way that
respects the translational and rotational symmetries by using
atom-centered symmetry functions.28−32 The descriptors are
then used as the input to a feed-forward NN, and the final
prediction is taken as either the sum or the mean of the atomic
contributions. While there is current debate on the best
descriptors for quantum chemistry,33−38 an alternative
approach is to use the naturally occurring graph structure of
molecules to construct feature descriptors. Much of the recent
development in the field has focused on constructing graph
neural network39,40 (GNN) models that respect these
symmetries.

GNNs for learning molecular properties became widespread
when the “message-passing” framework was introduced in
2017.41 In this framework, “messages” of information are
exchanged between adjacent atoms in the graph structured
input representation, with the goal of constructing atomic
descriptors meaningful to the final prediction task. Many
different GNN models have been proposed that differ in how
the messages are constructed, how the messages are
aggregated, and how the aggregated messages are used to
update the atomic representations. Two of the more successful
models for PES fitting are PhysNet42 and SchNet,43 which use
only nuclear charges and interatomic distances as input. More-
advanced GNNs that utilize angular information also exist such
as DimeNet,44 and recently equivariant GNNs such as E(n)-

GNN45−48 have proven useful for predicting vectorial
quantities, such as forces.

In this work, we demonstrate the use of GNNs to provide a
geometric correction for the BSIE. We start by building a
simplified GNN model based on SchNet. We then train this
model on an in-house dataset with DFT and HF energies
calculated in a sequence of basis sets (STO-3G, cc-pVDZ, cc-
pVTZ, cc-pVQZ, and cc-pV5Z). Fitting our model directly to
electronic energy in the cc-pV5Z basis set leads to large errors.
However, we find that using Δ-ML significantly reduces errors
and standard deviations. After the model is shown to
sufficiently outperform traditional extrapolation schemes, we
move on to constructing an ensemble model to correct BSIE
for S66x8 and large hydrocarbon chains.

■ METHODS

Our model applies a GNN to correct the BSIE based on
molecular geometry. Predicting the BSIE correction of
molecular systems is related to potential energy surface
(PES) fitting, and the GNN model structure inherits directly
from the SchNet and PhysNet models. The model takes
atomic numbers (Z) and coordinates (R) as input, and outputs
the sum of two contributions. The first contribution, EAtomConst,
adds up a constant atomic contribution specific to each
element. This part is intended to capture the linear component
of the BSIE between basis sets, which will allow the GNN to fit
exclusively to the nonlinear geometry-dependent part of the
BSIE. The constant atomic contributions are found through
linear regression over the training dataset, and these weights
are frozen while the GNN fits to the residual BSIE. The model
is then trained to predict the BSIE between a smaller basis set
(e.g., cc-pVDZ) and the target basis set cc-pV5Z:

= +E E EZ R Z R Z R( , ) ( , ) ( , )cc pV5Z cc pVDZ ML (2)

= +E E EZ R Z Z R( , ) ( ) ( , )ML AtomConst GNN (3)

The nonlinear part of the BSIE, EGNN, is computed by the
GNN. This part of the model uses the atom-type information
along with geometric information and operates on a graphic
representation G = (A,E) of the system with a predefined
connectivity. The atoms of the system constitute the nodes of
the graph, and the atomic number is the initial node-associated
information A = [Z1,Z2,···,ZN]. In the graphic representation,
there is an edge between all pairs of atoms that are separated
by a distance, rij, less than the cutoff distance Rc. For the final
model, the cutoff distance is chosen to be 6 Å. Associated with
each edge, there is an edge embedding, which encodes the
distance E separating the atoms (E = [eij|rij < Rc].

The embeddings eij are constructed using Nr = 32 equally
spaced radial basis functions (RBFs) centered between 0 and
the cutoff distance Rc (eq 5). The functional form of the RBFs
is a product between a Gaussian and a cutoff function (eq 6),
as in the Behler−Parinello27 network.

= [ ··· ]e U r U r( ) ( )ij ij N ij1 r (4)

= ×U r f r( ) ( ) ek ij c ij
r R( )ij k

2

(5)
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(6)

The Rc and Nr hyperparameters were tested across a range of
values, and no improvement to the validation error was

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01298
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01298?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


observed when making them larger than the chosen values.
The width parameter η of the RBFs was set to Nr

2/Rc
2 for the

chosen number of basis functions and cutoff radius (η = 28.44
Å−2 in our model). The centers and widths of the RBFs are not
optimized during model training.

To predict the geometry-dependent BSIE contribution, the
GNN model relies on higher-order atom embeddings that
include geometric information. We used an embedding layer
(Figure 1A) to map atomic numbers (Z) to initial zeroth-order

atom embeddings (X0), following SchNet and PhysNet. The
interaction blocks that follow are responsible for incorporating
geometric information into the higher-order atom embeddings
(Xi, i > 0). All atom embeddings have the same dimension, and
for this model, the dimensionality was chosen to be Nd = 32.

The design of the interaction block closely follows PhysNet.
In Figure 1B, the algorithm can be understood by following an
atom center with the index i. After an initial preactivation, the
path of the atom embeddings splits into two. The atom we are
following, xi, follows the left-side path. Its immediate neighbor
atoms, {xj|j ∈ N(i)}, follow the right-side path.

The edge embeddings enter the right-side path of the
interaction block to construct the neighborhood representa-
tion. The edge embedding is used to form an attention mask
through a learnable linear transformation A. The attention
mask is then applied to the corresponding intermediate
embeddings of adjacent atoms through the Hadamard product
x̃j ◦ Aeij. Next, the dimensionality of the neighborhood
information (the right-side path) is reduced through element-

wise summation of the intermediate embeddings over the
atoms. Finally, through element-wise addition, the intermedi-
ate center atom embedding, x̃i (left-side path), combines with
the neighborhood information.

In PhysNet and our model, many of the skip connections are
made using residual blocks49 as depicted in Figure 1C. When
training deep neural networks, residual blocks have been
shown to improve the training performance by allowing the
gradient to flow unimpeded throughout the model. If the only
path of gradient flow to early parameters in the model is
through all of the later dense layers, then the model can be
difficult to train, due to the vanishing/exploding gradient
problem.50

Our model is significantly smaller than the original PhysNet,
both in terms of the depth of the NN and the number of
parameters (19 617 trainable parameters, compared to more
than 106 trainable parameters in PhysNet). The width of the
layers is reduced by a factor of 2 to Nd = 32. Inside the
interaction block, there are only two residual blocks instead of
three. While the original PhysNet model has two additional
residual layers after each interaction block, our model has no
such residual blocks. The original PhysNet model is five
interaction blocks deep, but our model only has two
interaction blocks. The interaction block itself also differs
slightly from the original structure. Our interaction block does
not have gated skip connections, since these were not found to
help our comparatively shallow artificial NN. The Swish51

activation function was chosen over the shifted-softplus
activation used in the original PhysNet model.

All the intermediate dense layers preserve the dimensionality
of the atom embeddings. This is, in part, due to the use of skip
connections throughout the model. Therefore, the shape of the
network is completely defined by the dimensionality of the
atom, Nd, and edge embeddings, Nr. The parameters of all
matrices, W, are initialized using the Glorot Normal50 scheme.
The bias vectors b are initialized to zero. The matrices A and
Wout and the vectors bout are initialized to zero. The zeroth-
order atom embeddings are initialized with a uniform
distribution in the range [−31/2

··· 31/2]. All initializations are
performed as proposed for the original PhysNet model. The
model is implemented in TensorFlow using the Keras
interface.52 We validated our hyperparameter choices for the
model by examining the validation errors. More detail is given
in the Results section that quantifies our findings.

The model is trained by minimizing the mean squared error
(MSE) loss function, L:

=L
n

y
1

(BSIE )
i

n

i i

2

(7)

We use the Adam optimizer,53 with the learning parameters set
to those proposed in the original paper, to minimize the loss
function. The loss function is evaluated over minibatches, each
of which has a size of 64 data points. During training, the
model accuracy is monitored on validation data, and training is
stopped once the validation accuracy has not improved for 200
epochs. The parameters yielding the best validation error are
used as the final model parameters. The model was only
evaluated on the test dataset after the final parameters were
found.

All data points used for training or evaluation are computed
using the density-fitted restricted Hartree−Fock code in Psi4.54

For each geometry, the energy is computed with the basis sets

Figure 1. Overview of the GNN model structure applied in this paper.
(A) Overall structure of the model; the GNN part of the model
consists of two passes through interaction blocks. (B) Structure of the
interaction block; the interaction block applied closely resembles the
interaction block from the PhysNet model, with the biggest difference
being the absence of the gated skip connection. (C) Structure of the
residual block as it is used throughout the model.
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STO-3G, cc-pVDZ, cc-pVTZ, cc-pVQZ, and, cc-pV5Z.55 We
use the def2-svp-jkfit auxiliary basis for the STO-3G primary
basis set and the cc-pVXZ-JKFIT auxiliary basis set for the cc-
pVXZ primary basis sets (X = DTQ5).56 We use cc-pV5Z as
the target basis set, due to computational affordability and
literature precedents.57 However, one should modify their
target basis set for the desired application. The convergence
threshold value is set to 10−8 for both the energy change and
the RMS of the orbital gradient criteria.

For the purpose of training our model, we constructed an in-
house (GDB-BSIE) dataset58 that consisted of all unique
molecules with up to seven heavy atoms from the GDB-1159,60

and GDB-1361 databases. The dataset contains more than
13 000 molecules, which are further sampled to yield more
than 140 000 data points. For each molecule, we include in the
dataset the B3LYP/cc-pVDZ optimized structure as well as 10
additional conformations sampled using molecular dynamics
(MD). To sample the conformational space, NVT MD
simulations at 1000 K were run with B3LYP/cc-pVDZ,
sampling geometries every 100 fs intervals for an additional
10 geometries per molecule. Optimization of molecular
structures and MD was performed using TeraChem.62−64

Initial structures (to seed B3LYP/cc-pVDZ geometry opti-
mization) were obtained from SMILES representations of the
molecules by using RDKit65 and the Merck Molecular Force
Field.66 Some of the high-temperature MD trajectories resulted
in bond cleavage or overly stretched bonds. We discarded
these geometries (less than 1%) by filtering out structures
containing bond lengths more than 1.3 times greater than the
equilibrium bond length. All conformations of each respective
molecule were found to be within 90 kcal/mol of the structure
labeled as the minimum energy geometry (see Figure S9 in the
Supporting Information).

The elements represented in the GDB-BSIE dataset are H,
C, N, O, F, S, and Cl, and the model trained of this dataset is
therefore limited to organic molecules containing only subsets
of these elements. If one were to apply this method to
molecules containing any other elements, new training data
including that element would have to be generated.
Furthermore, it is possible that heavier elements have
structural motifs accessible to them that require special
consideration to correct the BSIE. Such elements would also
demand that the BSIE−GNN model can recognize the special
cases, and it is possible that the model would need further
refinement. Model structures that incorporate higher-order
information, such as angles, already exist and might be
applicable in this situation. In the Results section, we show
how hypervalent sulfur provides a special case, but this case is
recognized and treated correctly by the BSIE-GNN, even when
relying only on interatomic distances.

The GDB BSIE data set was split by molecular identity into
training, validation, and test partitions. Validation and testing
were performed on molecules not seen during training. The
split ratios were 70% training set, 20% validation set, and 10%
test set (see Table 1).

For further testing of the GNN model’s performance, we
constructed two additional datasets. The first dataset is
composed of hydrocarbons (only C and H) up to 15 carbon
atoms and intends to test the model’s ability to generalize to
molecules larger than the ones seen in the GDB development
dataset. Specifically, the dataset contains all the straight chain
hydrocarbons within the size constraint, and the polycyclic
aromatic hydrocarbon (PAH) molecules benzene, naphtha-

lene, phenanthrene, phenalene and anthracene. All these
geometries are also optimized at the B3LYP/cc-pVDZ level
of theory. The second test dataset is an extension of the S66x8
dataset to include more geometries for each complex. In total,
this dataset67 includes 100 geometries (S66x100) for each
complex. We emphasize geometries that are close to the
equilibrium distance (re) by equidistant spacing of the
intermolecular distance in increments of 0.025 from 0.7re to
3.0re, with additional data points further away from the
equilibrium distance (3.25re, 3.5re, 4.0re, 5.0re, 10.0re, 50.0re,
and 100.0re).

■ RESULTS

We begin our discussion by benchmarking Feller-type three-
point extrapolation schemes and the GNN models using the
GDB-BSIE dataset. From this benchmark test, we note that
models based on Δ-ML outperform extrapolation schemes
while simultaneously eliminating systematic biases present in
Feller-type extrapolation. Using the B3LYP Δ-ML model
based on double-ζ basis sets, we further validate our model
against the intermolecular dataset, S66x100, and a large
hydrocarbon dataset. The Δ-ML models yield predictions
within 0.2 kcal/mol of cc-pV5Z results, offering a promising
alternative for basis set extrapolation.

■ COMPARISON OF FELLER CBS EXTRAPOLATION
TO GNN MODELS

First, we performed the Feller-type three-point extrapolation as
a control to compare each GNN model’s performance. The
mean absolute error (MAE) is reported for each partition of
GDB-BSIE dataset so that a comparison can be made to the
GNN model’s test performance. A summary of the model
performance after training on the GDB dataset is provided in
Table 2.

As expected, the Feller-type extrapolation exhibits a large
MAE (more than 16 kcal/mol) for both RHF and B3LYP
when extrapolating from single/double/triple-ζ to quintuple-ζ
([S,D,T]ζ→5ζ), and the error is too large for this method to
be useful. At first glance, the [D,T,Q]ζ→5ζ extrapolation for
B3LYP falls short of chemical accuracy with a MAE of 1.31
kcal/mol. This echoes earlier difficulties with conventional
extrapolation methods for density functional theory.68 Figure
2C shows that a large part of this error comes from a relatively
small set of outliers, i.e., a systematic bias. We have examined
the molecules with large error in detail and these are all
hypervalent compounds with sulfur. One could improve the
Feller-type extrapolation with a correction term proportional
to the number of sulfur atoms in the molecule. However, we
did not pursue this further since the Feller-type extrapolation
is, in any case, too computationally demanding, especially
compared to the GNN correction method that we develop
here. If the [D,T,Q]ζ→5ζ extrapolation is performed for RHF,
then the method is within chemical accuracy with a MAE of
0.187 kcal/mol with a STD of the absolute errors of 0.288
kcal/mol. This level of accuracy will be the target of our GNN

Table 1. Number of Molecules and Data Points of the GDB-
BSIE Dataset in the Training, Validation, and Test
Partitions

Training Validation Test Total

Number of molecules 9227 2631 1321 13 179

Number of data points 100 537 28 685 14 426 143 648
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correction method, and we would hope the method could
achieve this accuracy from a cc-pVDZ or smaller basis set
calculation.

Next, we present the performance of the GNN model
trained to reproduce the target cc-pV5Z basis set potential
energy (i.e., not using Δ-ML approach). We are not able to
achieve chemical accuracy training the model directly to either
the RHF or B3LYP cc-pV5Z potential energy, with testing
errors of 2.66 and 3.35 kcal/mol, respectively (Table 2). Even
though these results appear to improve on the Feller-type
[S,D,T]ζ→5ζ extrapolation, they do not achieve chemical
accuracy.

The accuracy improves as the Δ-ML model is applied by
fitting to the difference between a smaller basis set and the cc-
pV5Z one. Training the same model architecture to predict the
difference between the single-ζ and quintuple-ζ energies, i.e.,
the Δ(Sζ,5ζ) incompleteness error, achieves a test MAE of
0.977 and 0.928 kcal/mol for the RHF and B3LYP potentials,
respectively. Figure 2B shows the distribution of errors for the
GNN-based Δ(Sζ,5ζ) extrapolations and Figure 2D shows the
distribution of errors for the Feller-type [S,D,T]ζ→5ζ

extrapolation. Comparing these two distributions, one can
see that the GNN model achieves a much narrower error
distribution with a STD of the absolute error of 0.844 kcal/
mol. Even though the desired level of accuracy (that of the
[D,T,Q]→5ζ extrapolation) is not achieved, this GNN model
might be useful in some contexts since it only requires a
minimal basis set ab initio calculation.

When we instead train the model to predict the difference
between the double-ζ and quintuple-ζ energies, i.e., the
Δ(Dζ,5ζ) incompleteness error, MAEs of 0.151 and 0.184
kcal/mol are achieved for RHF and B3LYP, respectively. We
tried to further decrease the errors in the RHF Δ(Dζ,5ζ)
model by modifying the hyperparameters in our GNN model
through Nr, Rc, the atomic attribute dimensionality, and
number of interaction blocks. Any modification of Nr or Rc

from the original values yielded errors larger than 0.151 kcal/
mol. However, we did notice modest improvements by altering
the atomic attribute dimensionality and number of interaction
blocks. For example, by changing the atomic attribute
dimensionality from 32 to 64, the model achieved a MAE of
0.146 kcal/mol. This marginal gain comes at the cost of
quadrupling the overall size of the model and was kept fixed at
32 for training efficiency. In addition, increasing the number of
interaction blocks from two to three also improves the model
to a MAE of 0.146 kcal/mol but increases the number of
trainable parameters by 50%. Thus, the number of interaction
blocks was also fixed to two. As a final test, we trained the
original SchNet model on our GDB-BSIE dataset for RHF
Δ(Dζ,5ζ), yielding a MAE of 0.159 kcal/mol. While
containing significantly more trainable parameters than our
model, it was not able to find a set of parameters that
performed dramatically better, which indicates that a MAE of
0.14−0.16 kcal/mol is most likely optimal, based on our
dataset.

Table 2. Mean Absolute Errors for Predictions of the NN Model and Feller-Type Extrapolation on the GDB-BSIE Partitions
(Standard Deviation of Absolute Errors Given in Parentheses)a

Mean absolute error (kcal/mol)

TRAINING VALIDATION TEST

Feller RHF [S,D,T]ζ→5ζ 16.9 (3.24) 16.8 (3.21) 16.9 (3.14)

Feller RHF [D,T,Q]ζ→5ζ 0.203 (0.367) 0.192 (0.343) 0.187 (0.288)

GNN Model RHF 5ζ 1.87 (1.53) 2.67 (2.37) 2.66 (2.43)

GNN Model RHF Δ(Sζ,5ζ) 0.713 (0.590) 0.963 (0.881) 0.977 (0.916)

GNN Model RHF Δ(Dζ,5ζ) 0.119 (0.0988) 0.151 (0.135) 0.151 (0.134)

Feller B3LYP [S,D,T]ζ→5ζ 21.0 (3.71) 21.0 (3.83) 20.9 (3.80)

Feller B3LYP [D,T,Q]ζ→5ζ 1.33 (0.666) 1.33 (0.636) 1.31 (0.547)

GNN Model B3LYP 5ζ 1.78 (1.56) 2.37 (2.06) 2.38 (2.15)

GNN Model B3LYP Δ(Sζ,5ζ) 0.670 (0.556) 0.897 (0.818) 0.928 (0.844)

GNN Model B3LYP Δ(Dζ,5ζ) 0.149 (0.123) 0.182 (0.161) 0.184 (0.163)
aThe model is separately trained to fit either the BSIE error between cc-pVDZ and cc-pV5Z (Δ(Dζ,5ζ)), the BSIE between STO-3G and cc-pV5Z
(Δ(Sζ,5ζ)), or the total potential of cc-pV5Z (5ζ). The Feller type three-point extrapolation targets the cc-pV5Z energy and extrapolates from
either cc-pV[D,T,Q]Z ([D,T,Q]ζ→5ζ) or from sto-3G, cc-pVDZ, and cc-pVTZ ([S,D,T]ζ→5ζ). The best performing models are indicated by
boldface font.

Figure 2. Histogram of the prediction errors of the GNN model
(panels (A) and (B)) and the Feller-type extrapolation (panels (C)
and (D)) for the B3LYP potential. The first column of plots compares
the model trained on the Δ(Dζ,5ζ) incompleteness error and the
[D,T,Q]ζ→5ζ Feller-type extrapolation. The second column
compares the NN model trained on the Δ(Sζ,5ζ) incompleteness
error and the [S,D,T]ζ→5ζ Feller-type extrapolation.
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In the Δ(Dζ,5ζ) setting, the level of accuracy exceeds that of
[D,T,Q]ζ→5ζ extrapolation, and achieves chemical accuracy
at a much less-expensive computational cost, compared to the
extrapolation method. The increased error for the B3LYP
prediction compared to RHF is somewhat surprising, since
DFT results converge faster than HF or correlated wave
function methods.19 One would assume that the DFT starting
point at cc-pVDZ is closer to the converged value. Apparently,
this is not so clear and could be related to the difficulties
observed in applying conventional extrapolation methods to
DFT. It has been suggested that this may be due to basis set
dependence in functionals with empirical parameters (i.e.,
when the functional parameters have been optimized for
molecules in a specific basis set).68,69 Comparing Figures 2A
and 2C, we see that the Δ(Dζ,5ζ) GNN model centers the
error distribution on zero and eliminates the outliers observed
for the [D,T,Q]ζ→5ζ extrapolation. As mentioned above, the
outliers in the [D,T,Q]ζ→5ζ extrapolation are molecules
containing hypervalent atoms (which are exclusively sulfur
atoms in the GDB-BSIE dataset). We finally note that
corrections to post-HF methods such as MP2 is outside the
current scope of this paper (i.e., one should not expect the
trends we observe in solely RHF or DFT to transfer neatly to
MP2). We are currently examining the potential for this GNN
strategy to correct BSIE in post-HF methods.

■ S66x8 INTERACTION ENERGIES

The Basis Set Superposition Error (BSSE) is a consequence of
basis set incompleteness that manifests as too strong
noncovalent interactions and/or too short equilibrium
distances. The superposition error arises due to an imbalance
in the expressive power of a basis set when comparing across
different scales of separation for interacting units. At close
range, the basis functions on neighboring noncovalently

interacting units are available to atoms in the interacting
region, but these functions are not available at longer
separations. In the CBS limit, there is no imbalance between
the two regimes as the basis is complete, regardless of the
complex separation distance.

There exist methods for approximately dealing with the
BSSE without performing calculations in large basis sets, and
the most famous one is the Boys and Bernardi Counterpoise
Correction70 (CP). The CP method approximately identifies
the imbalanced energy contribution by calculating the
stabilization of the separate molecular components in the
presence of the basis functions of neighboring components.
This method is therefore only applicable in situations where
the system can be easily separated into molecular components,
and it would not be usable for larger systems with
intramolecular BSSE. Other methods have been developed,
such as Atomic Counterpoise71 and the gCP20 method, and
those methods are more appropriate for use when there are no
clear separable subunits of the overall system. Similarly, our
GNN model does not require identification of separable
subunits. However, application to molecular complexes
traditionally used to study BSSE represents a good test of
the model.

We test our ML approach in its ability to correct for the
BSSE by applying the GNN model to the S66x8 dataset72 of
molecular complexes. The GNN model did not generalize well
to molecular complexes when only trained on the GDB-BSIE
dataset (see Figures S4, S5, and S6 in the Supporting
Information), but similar deficiencies were observed for
SchNet (trained on the QM9 dataset) and the ANI-1 model
(trained on the ANI dataset), as shown in Figures S7 and S8 in
the Supporting Information. Figure S7 shows the default single
ANI-1 model performance for several molecules in the
S66x100 dataset, along with the ensemble models provided

Figure 3. Interaction energy curves of four representative test complexes of the S66x100 dataset. The model correction is obtained from an
ensemble of 30 models trained to fit the B3LYP/Δ(Dζ,5ζ) potential of the GDB-BSIE + S66 dataset. The close spaced data points are obtained
from the S66x100 extension to the S66x8 dataset.
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by TorchANI.73 Figure S8 shows the same comparisons using
the default SchNet model.74 Both these models were used
without any additional training or hyperparameter tuning. The
ML potentials generated from these models are qualitatively
incorrect, as might be expected since they were not explicitly
trained on intermolecular complexes.

We included data points of 50 complexes from our S66x100
dataset in the training/validation dataset, and the remaining 16
complexes are used for testing. The S66x100 data points were
repeated to achieve a total weight of 25% within the total
training dataset that also contains the GDB-BSIE data. This
way, we are upsampling the minority dataset (S66x100) such
that we apply more weight to these structures during the
training procedure.

While the GNN HF results from Table 2 are encouraging,
we carry out our further tests with the B3LYP density
functional as a more illustrative use case. Figure 3 shows the
B3LYP/Δ(Dζ,5ζ) model corrected interaction energy curves
for four representative complexes of the test partition. The
correction shown is the mean of an ensemble of models with
30 members, and the ensemble effectively cancels high-
frequency components of the potential produced by the
individual models (Figures S1 and S2 in the Supporting
Information). The overall correction to the interaction
energies is generally successful, although one can see a small
bump in the potential for benzene−benzene π-stacking
(complex 24, at approximately 1.4re). The corrected potential
of pyridine-ethyne (complex 65 in Figure S1) displays the
largest qualitative deviation from the target potential of all the
complexes in the test partition, but the model correction still
improves upon the cc-pVDZ potential. Notably, the same
approach was applied to fit the Δ(Sζ,5ζ) and 5ζ models.
However, the quality of the corrections to the S66 interaction
energies degrades significantly, and the use of an ensemble
model is not enough to eliminate the deficiencies (see Figures
S2 and S3 in the Supporting Information).

In Figure 4, we compare the magnitude of errors in
interaction energies (IEs) compared to the B3LYP/cc-pV5Z
potential. Figure 4A shows a single model trained on the
Δ(Dζ,5ζ) potential of the GDB-BSIE dataset, and Figure 4B
shows the errors of the 30-member ensemble model trained on
GDB-BSIE and S66x100 data. Although the errors in Figures
4A and 4B look comparable, the quality of corrections
obtained from the ensemble model that has seen S66x100
data is significantly better, in terms of the smoothness of the
potential (see Figure S4 and S1). The magnitude of the errors
of the ensemble model are comparable to those of the CP
corrections shown in Figure 4C, but the GNN model is much
more broadly applicable since the system does not have to be
separable into molecular components. Finally, Figure 4D
shows the gCP correction method which produces IE errors
significantly larger in magnitude than of the ensemble model.

■ EXAMINING LARGER MOLECULES

The ultimate goal of using NNs for PES fitting is to apply the
trained model in a regime where direct electronic structure
computations are too expensive. We further test our models on
larger systems to gauge the generalizability to regimes
previously not seen. The computational cost of a cc-pV5Z
calculation limits the energy calculations to rather small
molecules, and the GDB-BSIE dataset only has molecules with
up to seven heavy atoms. We do include some larger systems
with up to 16 heavy atoms from the S66x100 dataset, but this

dataset does not add much chemical diversity to the training
data. We constructed a test data set of linear hydrocarbons and
polycyclic aromatic hydrocarbons (PAHs) of increasing sizes
up to 15 carbon atoms, where all molecules containing eight or
more carbons are not found in the training data. Figure 5
shows how the GNN model trained on the GDB-BSIE +
S66x100 dataset performs on the hydrocarbon test dataset.

In Figure 5, we see that the ensemble model produces
marginally larger uncertainties for molecules containing more
heavy atoms than the train/validation data, but the accuracy of
the ensemble mean prediction is almost unaffected by
molecular size. The large uncertainty in the correction for
methane is explained by the fact that methane is not seen
during training of the models. Outside of the region where the
models have seen a lot of data (3−7 heavy atoms), any
individual model displays some bias. For the larger linear
hydrocarbons, the bias is well-behaved (linear as a function of
molecule size), and good corrections can be achieved using
ensemble models, which allow the Δ(Dζ,5ζ) ensemble to
make chemically accurate predictions for molecules of larger
sizes that are not represented in training. Furthermore, the
prediction uncertainties for PAHs are much larger than the
linear hydrocarbons, but again the ensemble mean is well-
predicted and well within chemical accuracy.

■ CONCLUSION

In conclusion, we have demonstrated the use of GNNs to
correct BSIE. We started by developing our own dataset, GDB-
BSIE, which consisted of molecules from GDB11 and GDB13
calculated at RHF and B3LYP with basis sets ranging from
STO-3G to cc-pV5Z. We show that the Feller-type basis set

Figure 4. Errors in IEs compared the B3LYP/cc-pV5Z potential. (A)
Single model trained on the B3LYP/Δ(Dζ,5ζ) potential of the GDB-
BSIE dataset. (B) Ensemble of 30 models trained on the B3LYP/
Δ(Dζ,5ζ) potential of the GDB-BSIE + S66 dataset. (C) Counter-
poise correction applied to B3LYP/cc-pVDZ basis set calculations.
(D) gCP correction applied to B3LYP/cc-pVDZ calculations.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.2c01298
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c01298/suppl_file/ct2c01298_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c01298/suppl_file/ct2c01298_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c01298/suppl_file/ct2c01298_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c01298/suppl_file/ct2c01298_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c01298/suppl_file/ct2c01298_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.2c01298/suppl_file/ct2c01298_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01298?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01298?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01298?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.2c01298?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.2c01298?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


extrapolation works well using [D,T,Q] ζ→5ζ extrapolation
for RHF and B3LYP. However, we find that, for our dataset,
Feller-type extrapolations contain a systematic shift and large
errors for molecules containing hypervalent atoms. We present
a Δ-ML scheme, correcting the incompleteness error between
the cc-pVDZ and cc-pV5Z basis sets, which yields chemical
accuracy on par with or better than the Feller extrapolations
for both RHF and B3LYP with small standard deviation in the
errors. Furthermore, we show this method of basis set
corrections yields more well-behaved potentials than a Δ-ML
approach starting from the STO-3G basis set, or the prediction
of the total cc-pV5Z potential.

We thoroughly tested our GNN models on two key metrics:
intermolecular energies and size extensivity. For the
intermolecular benchmarks, we show that individual models
yield qualitatively incorrect behavior across different inter-
molecular separations in the S66x8 dataset when trained solely
on GDB-BSIE. Augmenting the dataset with some S66x100
data yields individual models with the correct behavior, but
these are not as smooth as expected, with respect to separation
distance.

We remedy the nonsmoothness by constructing ensemble
models which display the correct behavior in the PES and
provide uncertainties for the final predicted potentials. Given
the limited data in S66x100, we applied an upsampling
procedure to give more weight to the intermolecular
complexes during training. Best practices for upsampling
minority classes in machine learning is still an open question
and improvements here might remove the residual small
corrugation seen in some of the intermolecular PESs.75,76

We also tested our model in regions of chemical space with
larger molecules that are not represented in our training and
validation data. We show results with chemical accuracy on
long linear hydrocarbons, and polycylic aromatic hydrocarbons
up to 15 heavy atoms, albeit with somewhat larger
uncertainties as the molecules get larger.

Overall, we have shown that one can achieve cc-pV5Z
accuracy for RHF or B3LYP at the computational cost of cc-
pVDZ in tandem with a GNN to correct the basis set
incompleteness error. The Δ-ML approach shows evidence of
more-reliable predictions across chemical space when the
training data are very limited, as they are in this case. In the
future, we anticipate that one could also extract the learned
features from a GNN model which contribute to accurate
predictions and try to relate the weights back to a physics-
based model. This could allow for the development of a
constrained physics-informed model, which would likely yield
more well-behaved potentials and more reliable extrapolation
from limited sets of training data than current GNNs are able
to achieve.
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geometries and HF/B3LYP energies in STO-3G, cc-pVDZ, cc-
pVTZ, cc-pVQZ, and cc-pV5Z basis sets) and 10.5281/
zenodo.7402871 (GDB-BSIE dataset with geometries and HF/
B3LYP energies in STO-3G, cc-pVDZ, cc-pVTZ, cc-pVQZ,
and cc-pV5Z basis sets).
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