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Abstract: In this article, we propose a new sparse neural ordinary differential equation (ODE) model to
characterize flexible relations among multiple functional processes. We characterize the latent states of the
functions via a set of ODEs. We then model the dynamic changes of the latent states using a deep neural
network (DNN) with a specially designed architecture and a sparsity-inducing regularization. The new
model is able to capture both nonlinear and sparse-dependent relations among multivariate functions. We
develop an efficient optimization algorithm to estimate the unknown weights for the DNN under the sparsity
constraint. We establish both the algorithmic convergence and selection consistency, which constitute the
theoretical guarantees of the proposed method. We illustrate the efficacy of the method through simulations
and a gene regulatory network example. The Canadian Journal of Statistics 50: 59-85; 2022 © 2021
Statistical Society of Canada

Résumé: Afin de caractériser des relations flexibles entre plusieurs processus fonctionnels, les auteurs de
cet article proposent un nouveau modele d’équations différentielles ordinaires (EDO) neuronales éparses.
Dans un premier temps, ils commencent par caractériser les états latents des fonctions via un ensemble
d’équations différentielles ordinaires, pour ensuite modéliser les changements dynamiques d’états latents en
utilisant un réseau neuronal profond (RNP) avec une architecture spécialement congue et une régularisation
induisant I’éparpillement. Le nouveau modele est capable de capturer a la fois des relations non linéaires
et des relations de dépendance éparse entre des fonctions multivariées. Un algorithme d’optimisation
efficace pour estimer les poids inconnus des RNP sous contraintes d’éparpillement est également
proposé. Les auteurs établissent les convergences algorithmique et de la sélection qui témoignent du bon
comportement théorique de la méthode proposée. Enfin, I’efficacité de la méthode est illustrée a 1’aide de
simulations numériques et un exemple de réseaux de régulation génétique. La revue canadienne de
statistique 50: 59-85; 2022 © 2021 Société statistique du Canada

1. INTRODUCTION

Ordinary differential equations (ODEs) have been widely used to model dynamical systems
in science and engineering applications. Examples include neuroscience (Izhikevich, 2006),
genomics (Chou & Voit, 2009), chemical engineering (Biegler, Damiano & Blau, 1986), and
infectious diseases (Wu, 2005), among many others. An ODE model involves a system of
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differential equations that link the functions and their derivatives. Moreover, the system is
usually observed on a set of discrete time points with measurement error.

There have been a number of pioneering works studying statistical modelling of ODEs.
However, most existing solutions constrain the forms of functional relations in the system.
Particularly, Lu et al. (2011) studied a system of linear ODEs. Zhang et al. (2015) extended
the linear ODEs by including the two-way interactions. Dattner & Klaassen (2015) studied a
generalized linear form of ODEs, but without interactions. Ramsay et al. (2007), Henderson
& Michailidis (2014), Wu et al. (2014), and Chen, Shojaie & Witten (2017) all considered an
additive ODE model and used spline basis expansion to incorporate possible nonlinear effects.
Dai & Li (2021) recently developed a reproducing kernel version of a nonlinear ODE model
through smoothing spline analysis of variance.

In the past decade, deep neural networks (DNNs) have demonstrated outstanding performance
in numerous challenging tasks such as image recognition and natural language processing
(Goodfellow et al., 2016). In this article, we employ DNNs to develop a highly flexible nonlinear
ODE model. Specifically, we propose a new sparse neural ODE (SNODE) model to estimate
and uncover the possibly nonlinear structure of an ODE system from noisy observations. We
approximate the unknown and possibly nonlinear effects in ODEs by a DNN with a specially
designed architecture. Moreover, we adopt the strategy of Chen et al. (2020) to incorporate a
sparsity regularization to the DNN, which helps to produce a sparse estimate of the ODE system
and improves the interpretability. The sparsity structure is scientifically motivated, and has
been commonly adopted in numerous applications. For instance, Gardner et al. (2003) and Cai,
Bazerque & Giannakis (2013) have advocated that gene regulatory networks and various other
biochemical networks are sparse, and Zhang et al. (2015) have demonstrated that connectivity
networks in the brain are also sparse. Such tendency towards sparsity may be due to the fact
that connections consume energy, and biological units tend to minimize energy-consuming
activities (Bullmore & Sporns, 2009). We then develop an efficient optimization algorithm that
integrates a DNN-based ODE solver (Chen et al., 2018) with sparsity estimation. We assess the
theoretical performance of the proposed method by studying the algorithmic convergence and by
establishing that selection consistency is achieved when the objective function satisfies certain
regularity conditions. Finally, we investigate empirical performance, numerically compare with
a number of alternative ODE solutions, and review the strengths and limitations of our method.

The rest of the article is organized as follows. Section 2 introduces the ODE system and the
sparse DNN architecture. Section 3 presents the optimization algorithm. Section 4 establishes the
theoretical guarantees. Section 5 presents the simulations, and Section 6 gives an analysis of a
gene network dataset. Section 7 concludes the paper. The Appendix collects all technical proofs.

2. MODEL

We first present a general ODE system. We then introduce a sparse DNN architecture to model
the ODE system.

2.1. The ODE System

Let x(r) = (xl(t), ,xp(t))AT : D — R? denote p smooth functional processes over a compact
domain D C R. For instance, x(¢) can denote the expression levels of p genes, or the neuronal
states of p brain regions, at time ¢. Let u(t) = (ul ®,..., uq(t)) ’ : D — RY denote g experimental
input functions, e.g., some stimulus functions. The ODE model characterizes the dynamic changes
of x(¢) starting from some initial state x(0) = x,, under the influence of experimental inputs u(t) by

dx(r)
7l S @), u@®), ey
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where f = (fl, ,fp)T : RPY9 — RP is a set of unknown, possibly nonlinear functions, and
/i characterizes the influences exerted by the present states x; (%), ... ,xp(t) and the experimental
input u; (1), ... ,u,(?) on the ith process x,(r), i = 1, ..., p. Model (1) is deterministic, as we treat
[ as fixed functions.

Moreover, we postulate that f; is a nonlinear sparse function that only depends on some of
the X;, or equivalently, x;(?) is affected by only a subset of the xj(t), i,j=1,...,p. That is, we
assume f; € F, where

e = S RS R 3 f(xpsg.u) = feu),xs,) € R%,Vx €R?, fis Lipschitz},

X[ s, represents the subvector of x only including those entries with indices in S; C {1,2, ..., p},
and the cardinality |S;| = s}, which reflects the true sparsity.

Typically, the ODE system (1) is observed on a finite set of discrete time points {f,, ... ,t,}
with additional measurement error

y(t) =x(t) +e(t), k=1,....n, )

T . .
where £(1) = (el(t), ,ep(t)) : D — R? denotes the p-dimensional zero-mean measurement
error process. For simplicity, we assume £(¢) is a white noise process, but it is possible to consider
auto-correlated errors as well.

22. Sparse DNN Architecture

We propose to approximate the functional f by a DNN with a special architecture, as displayed
in Figure 1. The network consists of two key parts: a selection layer, and a sequence of
approximation layers.

Specifically, for each function f;, i =1,...,p, the selection layer involves two sets of

. T . .
parameters: the weights w; = (Wu’ c W ) € RP that reflect the influences of the functional

pi
. T . .
process x(#), and the weights 9;‘ = (Q’fl., ,0;1.) € R4 that reflect the influences of the stimulus

function u(z). This selection layer transforms the input (x,u) = (x;, ..., x,, u)" € RP* into

(Wi, 0) © (e,u) = (Wypxp, o s Wy, (6?,u))T.

Input layer  Selection layer Approximation layer Output layer
gt
& - “
) reo. . . .
YO . . .
v ® ®

w, % oW, 981) o), ggH)

FiGurE 1: Architecture of the proposed deep neural networks for the sparse neural ODE.

DOI: 10.1002/cjs. 11666 The Canadian Journal of Statistics / La revue canadienne de statistique



62 LIU, LI AND WANG Vol. 50, No. 1

We then impose a sparsity constraint on the weight w;, such that ||w;||, = s;, where || - ||, denotes
the 7, norm and equals the number of nonzero elements in this vector, and s; is the working
sparsity parameter, i = 1, ..., p. Such a constraint allows us to select the individual functions x;
that influence x;.

Next, for each function f;, i = 1, ..., p, the approximation layer contains a number of fully
connected neural network layers. Let H be the number of approximation layers, z;,_; € R"-!
be the weighted input to the neurons in the hth approximation layer, and n;, be the number of
neurons in the hth approximation layer, 2 = 1, ..., H. We approximate f; by

gix)=TyoooTy 1oco..c0T o ((w,0!) O u),

where T}, (z;,_;) = 0"z, + 03’) is an affine transformation with the parameters 8" € R™<"i-1

and Og') eR", h=1,...,H, ny= p2 + pgq, and o(-) is the activation function. Some common
choices of the activation function include the sigmoid function o(x) = 1/ (1 + ¢™), the tanh
function o(x) = tanh(x), and the ReLLU function o(x) = max(0, x).

Let vec(-) denote the operator that vectorizes a matrix. Write

W= (wl,...,wp),

T
0= ((69)",... (02)" vee(60)", (65")", .. .vee(6™) " (6")" ), 3)

such that W € R”? collects all the parameters in the selection layer, and @ € R4, with
d=pg+ Zzlzl n,n;,_; + ny, collects all the parameters for the stimulus function # and in the set
of approximation layers. Let s = (s, ... ,sp)T collect all the working sparsity parameters, and
H ,, denote the collection of all such neural networks.

Given the observed data {y(tk)}zzl under models (1) and (2), our goal is to find a member
in H; , to approximate the high-dimensional and possibly nonlinear functional f that encodes
the regulatory relations among x(#), and also identify the underlying sparsity structure among all
pairs of x.

3. ALGORITHM

We develop an algorithm to estimate the unknown parameters in our sparse neural ODE model.
We solve the following optimization problem:

minimize £ (W,0)=¢(W,0)+ 4,[|W|3+ 4, 0],

subject to [|w;||, < s i=1,....p, “)

where the loss function is of the form
1 ¢ X
£ = 3 v =2 D 5)
k=1

f is a function of the unknown parameters W and ©, and %(7) is an estimate of x(¢). We adopt an
ODE solver similar to that in Chen et al. (2018) to obtain X(#). The ¢, ridge regularization terms
I| W||§ and ||G)||§ are introduced to prevent overfitting of the DNN. The ¢, sparsity regularization
is placed on W to achieve sparsity recovery and variable selection. Other choices of sparsity
regularization include the #; penalty (Allen, 2013), and the group lasso penalty (Yuan & Lin,
2006). Nevertheless, we choose the £, penalty thanks to its nice theoretical properties (Zhang &
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Zhang, 2012). There are two major challenges in solving (4). One is to compute the gradient of
Z£(f) with respect to W and @, respectively. The other is to incorporate the sparsity constraint.
We next discuss how to address these two issues in some detail.

First, to compute the gradient of Z(f) with respect to W and ®, we adopt the adjoint
sensitivity method (Pontryagin, 2018). The key is to compute the adjoint, a(t) = o£(f)/ox(1),
whose dynamics are given by another ODE

da(t) _ Of (1), u(®) _
= =

T
7 —a()"b(),

—an)’
with the initial value a(¢;) = 0. Note that b(¢) can be efficiently evaluated by some numerical
derivative evaluation during back-propagation (Baydin et al., 2018). The gradient with respect
to © is then

o) _ Jt‘ af(X(t),u(t))dt

T
t
90 T

The gradient with respect to W is computed similarly. Moreover, the computations of X(?),
a(t), and the two derivatives can all be done in a single call to the ODE solver. We write the
derivative as

aTe(f) aTe(f)\'
) (f)>’ ©)

(vw], ,va,v®> = VW, 0) = ( S
wherev, € RP,i=1,...,p,andvg € R4, where d is given after (3).
Next to incorporate the sparsity constraint, we adopt and extend the algorithm of Bahmani,
Raj & Boufounos (2013), which iteratively updates the sparse W and the nonsparse 0.
Specifically, we first initialize all the parameters in the selection layer by a uniform distribution,

ie., w()~Unif0rm(—1/\/p+ .1/4/p+4¢), and 9”(0)~Unif0rm(—1/\/p+ /AP +4).

fori,j=1,...,p, 7 =1,...,q. We initialize all the parameters in the approximation layers by
a normal distribution, i.e., @(h)(o) ~ Normal(O 0.1 xI, . | ) forh=1,...,H, where I, , s
an identity matrix of dimension n;, X n;,_;. We next compute the grad1ent of Z(f) with respect

to W and O, and obtain the gradient vector at the current iteration r as ( 52 var;, g) )

following Equation (6). We then record the indices of the largest 2s; entries of v(r) and the

(r)

indices of the nonzero entries of the current estimate w, ', and merge them to form the index

set 7;(” C{l,...,p}, i=1,...,p. By construction, Ti(r) has at most 3s; indices. Finally, we
minimize £(W,®) as in (4), but force all the entries of w; whose corresponding indices are
not in 7 ) to zero. We take the s; largest absolute values of the minimizer of this constrained

minimization as the updated estimate for w(r+1) wo+h = ( §r+1)’ ,ng)), and @D We

stop the iterations when the support Ti( " does not change from the previous step, or when it has
reached the maximum number of iterations. We discuss the selection of the tuning parameters
A, Ay, and s = (sq, ... ,sp) later in Section 5.1.

We summarize the complete estimation procedure in Algorithm 1.

4. CONVERGENCE ANALYSIS

We next establish the theoretical guarantees of our proposed SNODE estimator. We note that the
optimization problem in (4) is nonconvex and is NP-hard. We show that our estimator converges
to the true parameters under some reasonable conditions on the objective function and that we
can recover the true sparsity structure under some mild regularity conditions.
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Algorithm 1. SNODE estimation procedure.

Input: y(z)),...,y(t,) and s = (54, ... ,sp)
1: Initialization: W® , 00,
2: repeat
. : () () Ny _
3:  Compute the gradient vector (vw1 s Vo Vg ) = VZ(W,0).
4:  Form the support Ti(r) by merging the indices of the largest 2s; entries of vf:l) and the
indices of the nonzero entries of wgr), i=1,...,p.
5:  Minimize £(W,®) while constraining to zero the entries of w; whose corresponding
indices are not in Tl.(r).

6: Take the s; largest absolute values of the minimizer to update the estimates WU*tD and
QU+l

7: until the stopping criterion is met.
Output: W =w'*) @ =@V

We first introduce the group generalized stable restricted Hessian (G2SRH) condition for the
objective function, which generalizes a similar condition from Chen et al. (2020). We refer to a
vector with s nonzero entries as an s-sparse vector.

Definition 1 (Group generalized stable restricted Hessian condition). Suppose the objective
function £ is twice continuously differentiable. Let H () be the Hessian of L. Let w; € R”
be any s;-sparse vector, and © € R4 be a vector of the same dimension as ©, i =1, ..., p. Let

T
~ _ o AT .
A= (w]T, ,wZ,@ ) ,and s = (s, ...,s,) . Furthermore, define

A(W,0) = sup{&THc(W, 0)A | supp(w;) U supp(w;) < s;,
Vi=1,....p, ||A||2=1}, %
By(W,0) = inf {&THﬁ(W, @)& | supp(w;) U supp(w;) < s;,
Vi=1,....p|IAll, = 1}.
Then L is said to satisfy the G2SRH condition with constant g if

AW, 0)
1< 22— <y
B,(W,0)

We make some remarks on this condition. First, the G2SRH condition relaxes the convexity
requirement for £, but instead requires that the curvature of the objective function over some
special sparse space be bounded locally. Second, it requires that the condition number of the
submatrix of the Hessian H (W, ®) whose rows correspond to the nonzero rows of W be not
greater than . See also the discussion in Chen et al. (2020). Third, this G2SRH condition
can be viewed as a generalization of the stable restricted Hessian condition of Bahmani, Raj
& Boufounos (2013) used in feature selection, and the restricted isometry property of Candes,
Romberg & Tao (2006) used in compressive sensing.
We next provide a simple example to further illustrate the G2SRH condition.
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Example 1. Consider the objective function L(W,0) = (w,"Q,w; +w,"Qw, + 4, Iw, 13 +
Arlw, |12 + A4,110112) /2, where @, = 2x 117 =1, @, = I,,. This objective function’s Hessian is
of the form

0, + 41, 0 0
H(W,0)= 0 O+ 41, 0

Note that all diagonal entries of @, are 1, and all off-diagonal entries are 2. Therefore, for any
1-sparse vectorTwlT and Ww,, we have WITQIW] = ||w, ||%,Tand W;Qzﬁiz = ||ﬁ/2||§. 2Then forzany
A :}w{,w;,e )" that satisfies ||A||3 =1, we have A H A = (14 A)(||#]5 + W2, ) +
/12||®||§. If14+ 4, > A, thenA|(W,0) =1+ 4, and B;(W,®) = 4,. Therefore, L satisfies the
G2SRH condition with y; = (1 4+ 4;)/4,. On the other hand, we note that the Hessian of L is
not positive semi-definite, and thus £ is not convex, because WIT (Q1 + /I]Ip) W, =24 -2<0
when w, = (1,-1,0,...,0)7 € R’.

The next theorem shows that our SNODE estimator from Algorithm 1 converges to the
population minimizer. Let (W, @*) denote the population minimizer of (4), and let (W(’ ), 0" ))
denote the estimator from the rth iteration of Algorithm 1. Write A* = (Vec(W*)T, (0*)T)T (S
[RP2+d, and AV = (vec(W(r))T, ((i)(’))T)T € R”**+4_Then the derivative VL (W*, @*) is a vector
of dimension p? + d. Let Z; denote the set of positions of the 3s; largest entries of VL (W*, ©%)
in absolute value corresponding to each w, i = 1,...,p, and Sg denote the set of positions of
O"in VL (W*,0%). Let S+ = (U, I;) U Sg-.

=1 i

Theorem 1.  Suppose that L satisfies the G2SRH condition with p, < (1 + \/§ ) /2. Further-

more, suppose that B,;,(W,0)) > e for some € > 0 and all 4s;-sparse w;. Then, the estimate
(W(r), (9(’)) of the rth iteration of Algorithm I satisfies that

r * 1 *
Ia” - A%, < o7 A - a7

+ @va( , (8)

W ")

[Sax] |2

where V[“(W*’@*)[SA*] denotes the subvector of VL(W*,0%) only including those entries
with indices in Syx.

We note that the bound in (8) has two terms. The first term converges to zero as the iteration
number r goes to infinity. The second term, VL (W*, oF ) , determines how accurate the estimator

can be. From (4), VL (W*, G)*) can be decomposed into two parts:
ve (W*,@)*)+2(/11IIW*II1 +/12||@*||1)~ )

When (W*, @*) is sufficiently close to an unconstrained minimum of #, then the first term of
(9) is negligible, since V& (W*, G)*) is small at the minimum. Meanwhile, the magnitude of the
second term in (9) can be controlled by adjusting the ratio of 4, and 4,.

The next theorem shows that our estimator can recover the true sparsity structure. Let
S; € {1,...,p} denote the set of indices corresponding to the nonzero entries of wj.‘, and SA'I.(r) the
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()

set of indices corresponding to the nonzero entries of w. ' at the rth iteration fori =1, ..., p and

r=0,1,....Letm; = mm{ |w, l,j € 51} be the minimum nonzero entry in absolute value in w:.",
and M; = max{max(|w(o)| |wu|) jesPus).

Theorem 2.  Suppose the same conditions as in Theorem 1 hold.

(a) The set \SA'lFr), i=1,...,p, satisfies that

T
wT o U el .
1[51\51 ] p[Sp\Sp ] )

where Si\SA'l.(r) denotes the set of all indices that are in S; but are not in SA'l.(r).
(b) Furthermore, if, for some 0 < & < 1

1 ,
< 2 [a” -],

6+2\/_ [ve (w0

>

[SA*] 2

6+2v3 |ve (w.e7)

Zmn

and for some ¢ > 0, max (||G)*||oo, ||®(0)||oo) < ¢/2, then we have

[Sax]

) P JsM +c\d
8" = S; when r>log, —— VS . : (10)
(l - 5) Zi:l m

Following the remark after Theorem 1, it is reasonable to assume [|VL (W*,0") I3,

] |2 1S
bounded. In addition, the conditions on ||®||,, and ||®(0)||oo are mild, because we can apply
weight normalization to all approximation layers. Then (10) shows that our algorithm can recover
the exact support after a finite number of iterations.

5. SIMULATION STUDIES
5.1. Setup and Implementation Details

We consider two simulation examples: a linear ODE model, and a nonlinear ODE model. The
observed data y(¢) are drawn at equally spaced time points {f, ..., ,} in [0, 1], with measurement
errors following a normal distribution with mean 0 and standard deviation 0.1. We consider a sin-
gle experimental input u(f) that equals O for the first half of time interval and 1 for the second half.

For implementation, we employ the ODE solver of Chen et al. (2018). To obtain the initial
values, we adopt a simple moving average technique to smooth the observed time series and
remove short-term fluctuations, by

1 1 1 .
Yuaity) = Zyi(tk) + E)’i(tkﬂ) + Zyi(tk+2)’ i=1,...,p, k=1,...,n=2.

In addition, considering that the zero-one signal of u(f) is nondifferentiable at the change point
t = (t, +1,)/2, we consider a smooth approximation

1
1 +exp [—8 <t— %)]
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and feed this approximated version of u(#) into the DNNs. We use one approximation layer with
128 neurons for the linear ODE model, and two approximation layers, each with 128 neurons,
for the nonlinear ODE model. We use the ReLLU activation function in both cases. For simplicity,
we set all the sparsity parameters equal such thats; = s,i =1, ..., p, and tune s using a BIC-type
criterion following Chen & Chen (2008) and Gao & Song (2010):

BIC = nlog 6% + p s - log n,

where 62 is the mean squared error of the estimated time series £(f). We choose s that min-
imizes BIC. We tune A, and A, following Chen et al. (2020) by first fixing their ratio and
then choosing the ratio that minimizes the loss function of Equation (5). Furthermore, after
we obtain the final estimate of the selection layer, we further update the approximation lay-
ers, which is similar in spirit to refitting the model after variable selection as in Chen et al.
(2020).

We compare our method with three alternative ODE solutions: the linear ODE of Zhang et al.
(2015), the additive ODE of Chen, Shojaie & Witten (2017), and the kernel ODE of Dai & Li
(2021). All three alternative methods can be implemented within a unified framework with
different choices of the kernel functions: a linear kernel for the linear ODE, an additive
Matérn kernel for the additive ODE, and a general Matérn kernel for the kernel ODE. We
evaluate the empirical performance using the estimation error, ||§ — y||2, and the false selection
rate (FSR)

where S; and $‘,- denote the support of the true w} and of its estimate, respectively. We repeat the
replications 50 times, and report the average results.

52. A Linear ODE Example

We first consider a linear ODE example, following a setup similar to that in Zhang et al. (2015).
Specifically, we generate an ODE system with p = 8 as

% = Ax(t) + u(t)Bx(t) + u(nly,

where x(r) € R¥!, and A = B € R®®. Figure 2a shows the matrix A, which takes a block
diagonal structure with two blocks. Figure 2b shows the corresponding network structure among
the eight nodes of x(#). We first set the sample size at n = 1000, and later consider different
values of n for the SNODE method only.

Table 1 reports the average FSR and estimation error for various ODE methods for this
linear ODE example, showing that our SNODE method achieves the smallest selection error as
well as the smallest estimation error. On the other hand, our method has the largest standard
error for the estimation error. This reflects the classical bias—variance trade-off: our method
is the most flexible and achieves the smallest bias, but pays the price of having a larger
variance in terms of the estimation. Figure 3 shows the true signal trajectories x(f) and the
estimated trajectories for one data replication. It appears that our method estimates the signal
trajectories well.
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(a) Matrix A
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(b) True network structure

C O D

FiGure 2: Linear ODE example: (a) the coefficient matrix A = B; and (b) the true network
structure.

TaBLE 1: Comparison of various ODE methods in terms of false selection rate (FSR) and estimation error
(error; standard deviations in parentheses)

Linear model

Nonlinear model

Method FSR Error FSR Error

SNODE 0.205 2.530 (1.218) 0.251 3.286 (1.546)

Kernel ODE 0.250 3.157 (0.289) 0.392 3.908 (0.318)

Additive ODE 0.350 3.690 (0.344) 0.446 4.460 (0.374)

Linear ODE 0.242 3.287 (0.296) 0.539 4.984 (0.327)
4

; 2
2
2 1
0 147y 0
of =1
=2 -11 i\, -2
—2{— x(0 —3{— x(t)
—41---- SNODE ---- SNODE —3{---- SNODE _4]---- SNODE \
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
t t t
1.5 3
2
1.0 2
! 0.5
0 ’ 1
X 0.0 ol #
e Lo.5
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Ficure 3: Linear ODE example: the true and estimated trajectories.
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(a) Matrix A (b) True network structure

L e
e e,

-1.00

FiGUure 4: Nonlinear ODE example: (a) the coefficient matrix A; and (b) the true network
structure.

5.3. A Nonlinear ODE Example

We next consider a nonlinear ODE example. Specifically, we generate an ODE system with
p=28as
dx(1)

9 =Ax(t) + x(t) © [Bx(t)] + 0.1u(H)x(t) + u(Hlg,

wherex(f) € R¥!, A, B € R¥3 and @ is the Hadamard product. Figure 4a shows the coefficient
matrix A, and Figure 4b shows the corresponding network structure according to A. The matrix
B = (B, ;)sxs has Bs g = 0.5, Bg ; = —0.5, and the rest equal to 0. This model thus includes two
interaction terms, which correspond to interactions between x5(¢) and x4(f), and between x,()
and xg(#). We again fix the sample size at n = 1000.

Table 1 reports the average FSR and estimation error for various ODE methods for this
nonlinear ODE example. Once again, our SNODE method achieves the smallest selection
error and estimation error, but the largest estimation variation. Figure 5 shows the true signal
trajectories x(¢) and the average estimated trajectories for one data replication. Again, it is seen
that our method works well for this nonlinear example.

54. Sample Size and Nonlinear Function Estimation

We have considered the case with n = 1000, which corresponds to the situation with dense signal
observations. Next, we investigate the performance of our method under a smaller sample size
by employing the same linear and nonlinear ODE models, but setting either n = 50 or n = 100.
Recognizing that DNN methods usually require a relatively large training sample size, we
employ linear interpolation to interpolate the observed data, and increase the training sample size
to n’ = 1000 for each signal trajectory. We also apply the moving average technique to smooth
the trajectories. Table 2 reports the results based on the interpolated samples and compares them
with the previous results with n = 1000. It can be seen that performance degrades a little with a
smaller sample size, but remains reasonably close.

Next, we investigate the performance of our method in terms of estimating the dynamic
function f in model (1). Table 3 reports the estimation error, || fl —fill2,i=1,...,p. It can be
seen that our method estimates f reasonably well.
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Ficure 5: Nonlinear ODE example: the true and estimated trajectories.

TaBLE 2: Comparison of false selection rate (FSR) and estimation error (error; standard deviations in
parentheses) for different sample sizes, averaged over 50 data replications.

Linear model

Nonlinear model

Sample size FSR Error FSR Error
50 0.217 2.706 (1.061) 0.276 3.511 (1.541)
100 0.214 2.655 (1.122) 0.269 3.447 (1.535)
1000 0.205 2.530(1.218) 0.251 3.286 (1.547)

TaBLE 3: Evaluation of the estimation accuracy of the dynamic function f (standard deviations in

parentheses).
N 2
fi - fi”2
Model i=1 i=2 i=3 i=4
Linear model 2.324 (0.298) 2.028 (0.348) 1.946 (0.292) 1.812 (0.345)

Nonlinear model

1.031 (0.436)

2.285 (2.252)

1.964 (1.394)

1.002 (1.667)

i=5

i=6

i=7

i=38

Linear model

Nonlinear model

0.417 (0.035)
0.816 (0.245)

0.843 (0.104)
0.548 (0.097)

1.843 (0.135)
0.440 (0.088)

0.950 (0.151)
0.412 (0.086)
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6. APPLICATION TO GENE NETWORK ANALYSIS

We illustrate our method with an in silico benchmark gene network data provided by
GeneNetWeaver (GNW). The data has been generated for accessing the performance of
reverse engineering of gene regulatory networks from yeast or Escherichia coli (Schaffter,
Marbach & Floreano, 2011), and was used in the third DREAM challenges (Marbach
etal., 2009). The regulatory networks are determined by a system of ODEs with external
perturbations.

We investigate five networks from GNW with p = 10 nodes, which have been previ-
ously studied by Henderson & Michailidis (2014), Chen, Shojaie & Witten (2017), and Dai
& Li (2021). For each network, GNW provides a set of noiseless gene expressions where
the trajectories are normalized to the range [0, 1] and are measured at 21 evenly spaced
time points. Similar to the previous analyses, we add independent normal measurement error
with mean O and standard deviation 0.25. We employ linear interpolation to interpolate the
observed data, and increase the training sample size to n’ = 1000 for each signal trajec-
tory. We then apply the moving average technique to smooth the trajectory for the initial
values:

14
1 .
Yuai(t) = Emzzoyi(t,mn), i=1,...,10, k=1,...,986.

Figure 6 shows the noiseless trajectories, the trajectories with added error, and the smoothed
trajectories of the 10 genes from one experiment on E. coli.

We apply our method with two approximation layers, each with 64 neurons. The rest of
the model setup is the same as the one used in Section 5. For each network, we run 100 data
replications. Table 4 reports the area under the receiver operating characteristic curve (AUC),
our sparse neural ODE, the linear ODE of Zhang et al. (2015), the additive ODE of Chen,
Shojaie & Witten (2017), and the kernel ODE of Dai & Li (2021). It can be seen that our method
performs the best, achieving the largest AUC in all cases.

— G1 10
— Gz e PR E
G5 1.04 Mu M“‘l"‘j"-‘“w’“‘,ff?.l, et
Ga g
— Gs 0.8
— Ge ‘
— Gy |
Go 0.6 0.6 ‘
Go ‘*“H o iy m‘
- G i
) - N I W ‘
0.2
0.2
0.0

0.000.250.500.751.001.251.501.752.00 0.000.250.500.751.001.251.501.752.00 0.000.250.500.751.001.251.501.752.00

FiGure 6: Left: The noiseless trajectories of 10 genes using linear interpolation. Middle: The
trajectories of 10 genes after adding independent N'(0, 0.025%) noise. Right: The smoothed noisy
trajectories.
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TaBLE 4: Comparison table of SNODE, kernel ODE, additive ODE, and linear ODE methods based on
AUC (standard deviations in parentheses) over 100 simulations; boldface indicates largest AUC.

Dataset SNODE Kernel ODE Additive ODE Linear ODE
Ecolil 0.705 (0.003) 0.582 (0.003) 0.541 (0.003) 0.460 (0.004)
Ecoli2 0.742 (0.003) 0.662 (0.002) 0.632 (0.003) 0.562 (0.003)
Yeastl 0.723 (0.003) 0.603 (0.002) 0.541 (0.003) 0.436 (0.003)
Yeast2 0.622 (0.002) 0.599 (0.002) 0.562 (0.004) 0.536 (0.003)
Yeast3 0.682 (0.002) 0.612 (0.002) 0.569 (0.002) 0.487 (0.003)
7. DISCUSSION

We have proposed a new sparse neural ODE model to characterize flexible relations among
multiple functional processes. The key is to model the dynamic changes of the latent states
through a set of ODEs, and a DNN with a specially designed architecture. We have developed
an estimation algorithm, established the theoretical guarantees, and demonstrated the efficacy of
the proposed method.

The main advantages of our method include its ability to capture both linear and nonlinear
relations among multivariate functions, thanks to the flexibility of the DNN model, and the
interpretability of the final model thanks to the special regularization structure. Limitations
include the intensive computations and the large sample size required for the DNN model fitting
requires, but given the rapid advancement of computing power and availability of larger imaging
datasets, we expect these problems to be alleviated.
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APPENDIX A

Let v denote restriction of the vector o to the indices in set Z, or a vector that equals
v except for coordinates in 7¢ where it is zero, depending on the context. Let P; denote
the restriction of the identity matrix to the columns indicated by I. For convenience, we also
denote a; (. q) = L} Ap + (1 = Dg)dt, B (p.q) = L: By(p + (1 = )g)dt, and v, (p, q) = (P, q) —
b, q), where A;(.) and B, (.) are defined by (7) respectively, and p, g are any vectors of the same
dimension.

In Theorems 1 and 2, we establish the convergence of our estimates and the selection
consistency. To prove Theorems 1 and 2, we first establish a series of results on how the
algorithm operates on its current estimate, leading to the convergence of the estimates over itera-

tions. Specifically, in order to search for population minimizer A* = ( (w’i‘ ) T, ey (w; ) T, (@*)T) T,

: . r=1) _ (r=\T (r=I\T r—=\I\T
we obtain the pruned estimates AU7D = ((w1 ) (wy ) (G)( )) ) aTt the
(r — Dth iteration of the SNODE algorithm and the intermediate estimates YO = ((Y(’)) s

wi

(var))T, (Yg))T)T, which are explicitly defined in Lemma A2 at the rth iteration, as well as the
p

pruned estimates A" = ((w(lr))T, e (w;r))T, (G)(’))T)T at the rth iteration.
To get the results of Theorems 1 and 2, we follow the flow of proof below:

(r=1) «\T (r=1) _ T ”
1. We construct the upper bound for “( —-w )[(VY_I))‘] v (wy [(VO—U)L )

(see proof of Lemma A1), which helps establishing the upper bound for an iteration-invariant

i) |

magnitude fori =1, ...,p.
2. Based on some properties of G2SRH (see Definition 1, Propositions Al and A2),
we construct the upper bound for the distance between the intermediate estimates in

(f b}

Here v(’ Dis the 2s; coordinates of v, with the largest
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T
the (r— 1)th iteration and iteration-invariant <w*T " o wi T " . (") ) -
1[sn\sy”] p[s\8]

((var?)T, ’(Yf:) )T, (Y(G;))T) (see proof of Lemma A2).
P

3. Based on the results from step 1 and step 2, we obtain an inequality related to the estimation
error in the (r — 1)th iteration ||A(’_1) — A”||, and the estimation error in the rth iteration

||A(’) — A*||, (see proof of Lemma A3).
4. Based on the result from step 3, we can obtain the inequalities for [|A” ) — A*||, and

in a recursive way (see proof of Theorems 1 and 2).
2

T
*T *T
(wl SRR A )

Now we can proceed to prove the main results of Theorems 1 and 2.

Proof of Theorem 1. Let RS{;“ denote the set supp(wgr_l) —w*), i.e., the support set which

1) _
i

includes the indices of the nonzero entries of (w w*), i=1,...,p. For consistency with

. T
the notation of s, let s’ denote (sll, ,s;)) .
Following Definition 1, it is easy to verify that for s; < s:. and any vector v, we have

Ag(v) <Ay (v) and B(v) > By (v). Henceforth, for s; < s; and any pair of vectors p and ¢, we
have ay(p,q) < ay (p,q), fP.q) = By .q), and pg < pgs. Consequently, for any function that
satisfies u,-GSRH,

@) _ Jo A+ (400 [) uByp+ (1 + ) _
b9 [IB(p+(1+0g)dt [, Byap + (1 + Dg)dr

>

v <
. . . Bs0.q)
iteration, we obtain

holds and therefore ug, — 1. Thus, applying Lemma A3 to the estimation in the rth

[a — A",

2

ve (W*,@*)[(

‘2

\Js (W*,G*)[( » vg—l)\Rw—l))]

i=1 i

Lo
< (M4s - 1) /‘4S||A(r_]) - A*||2 +

ﬁ4s (Y(r—l)’ A*)

+
2

ﬂzs (A(r—l)’ A*)

\7s (W*’ ®*>[ [;:] <R£:i_1)\vi(r—l))] ,

+ Hag

2||ve (wee7)

[Sax]
ﬂ4s (Y(V—l), A*)

< (/"4s - 1) /44s||A(r_1) - A*llz + -

[ s,

+2
Has b, (A(r—l),A*)
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Applying the assumption p,, < 1+2\/§ and e < B, (W, 0) for some ¢ > 0 for all 4s;-sparse w;,
i=1,...,p, we have
oo 3+4/3
(r) _ A* < = (r=1) _ A* * *
1A — A ||2_2‘A AT+ — ||W:(W,(~) )[SA*]”Q. (A1)
Theorem 1 follows using (A1) recursively. [ ]
Proof of Theorem 2.  Since w*T Yo Wil (r) * T .
' G ) H onstl
(wl()r) - w:’)TSp\ﬁ,(,’)] > H < ||A(r) — A”"||,, based on Theorem 1, we have
2
T
1 _
«T (r—=1) *
—[lA -A
“([ St J) < :
L \f ‘o
”V[l (W".0") 15,1, (A2)

Part (1) of Theorem 2 follows using (A2) recursively.
Furthermore

T
w*T o v o
1[51\51 ] p[sp\sp ]

<27|[AQ — A%||, + 6+2v3 +f\/§ Hw: (W*,0%)
- c 0)
(B -,

_r<2i\/S_iMi+C\/5) +5imi
i=1 i=1

P 27 M. +cr\/d
SZmi if rz( Zl:l\/s_lpl C\/_.
i=1 (1 _é) Z,’=1m

2

[Sa]ll2

SA*]

+ ”9(0) _ @*”2> 6+ 2\/_ ||V£ W* @* .

IA

The second inequality follows from the triangle inequality. With max ([|©*| .. |®0?||.,) < ¢/2.
0@ -, < ¢V/d holds, where ¢ is a constant. Combining this fact and the assumption
0 m> 6*3\/5 |V (W*.07) 54|, with0 < & < 1. the third inequality can be obtained. The

i=1
225,7:1 \/S_,-M,-+c\/;l
a3 m -

last inequality follows after some algebra. This implies S, S = =S, ifr > log, [ ]

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11666



2022 SPARSE NEURAL ODE MODEL FOR MULTIPLE FUNCTIONAL PROCESSES 77

Proposition Al. Let O(t) be a matrix-valued function such that for all t € [0,1], Q(¢) is
symmetric and its eigenvalues lie in interval [B(t), A(t)] with B(t) > 0. Then for any vector v, we

have
1 1 1
(J B(t)dt> lloll, < q Q(t)dt)v < (j A(t)dt) llvll.
0 0 ) 0

Proposition A2. Let Q(t) be a matrix-valued function such that for all t € [0, 1], Q(¢) is
symmetric and its eigenvalues lie in the interval [B(t), A(t)] with B(t) > 0. If T is a subset of
row/column indices of Q(t), then for any vector v, we have

1 1
A() — B(1)
” <J PIZQ(t)Pcht> o|| < (J Tdt ol
0 2 0
Proof of Propositions Al and A2.  The detailed proof of Propositions Al and A2 can be found
in Bahmani, Raj & Boufounos (2013), and thus is omitted here. ]

Lemma Al. The estimate at the (r — Dth iteration ((w(lr_l))r,...,(w[(,r_l))T, (@)(’_1))T)T
satisfies

T
H <(w(1,_1) . w*)ﬁv;’_l))c]’ s (wl(7r_l) — w*)f(v;’—l)y])
- (A(r_l)’A*) + 7a (A(r—l)’A*)
2ﬁ2s (A(r_l)’A*)

2

< AP - A7,

+
2

ﬁ2s (A(r_l),A*)

VE(W*,@*)[ P (RG]

i=1

ve (W, eY) (U, v RG]
=1 i 2

+

S ) — (DT =IN\T (=TT
Proof of Lemma Al For simplicity, we rewrite v~ = ( (v, ") ,...,(va ) (ve )

in the following proof.

Since Vl.(r_l) is the 2s; coordinates of »\/™"

.~ with the largest magnitude and |Rfvri_l)| < 2s;, we

(r=1)
[ ]

have ||v v([r_(l)l)] fori=1,...,p. Therefore
pr=

2

<
2

yb <" : (A3)
| Tl )
QR Q0 we)

i=1

2

According to the algorithm, v~ = V(W™D 0"~Y), and thus

pUD

p 3 -
[}:Jl(kﬁ’i 1)\];]_( 1))] i

> |[ve (WeD, e D),

] -vc (W*,@*)[

i=1<R£vr;l)\v"(ril)> ,-Q <R£vr;l)\vi('7”)]

2
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- ‘ VL (W*’G*)[p <Rgfl>\v_(r—1>)]
=1\ ! 2
-1
_ T r=1) _ * (r=1) _ A*
- uoPG (R5571>\v_<r—1>)Hﬁ(tA +(1-nA%)dr| (A A%
i=1 ! ! 2
- ‘ ve(w.e7) [ )]
P ! 2
>1+11- VC(W*a@’*)[G(Rg_n\vgr1>>] ;
P ! 2
where we have
b or 1)
- L " (Rg_—1>\v,<r-1>)H‘(m A=A ) s
2 ; i i=1
X (A(r—l) _ A*

k)

) |

(r=1) _ * ,
. CJ(RE{;”\V}”")HE(IA +(1 -nA*)P, dt

(r=1) o r=1)
u U (Rw,« ny; )uS@
i=

i=1

s

AT AR,
X( )[b (Rh}ri—l)nv’.(r—l))use]
i=1

2

and the last inequality is derived from the triangle inequality by splitting < Ui;l Rf::”) usS,

into two sets (J¥_, (Rﬁ{;”\l)f"”) and |J/_| <R$:1) N Vl.(r_])> U Se.
Applying Propositions Al and A2, we have

(r=1)
v | »
u (Rfv',._”\v,-('_”)

i=1

2

Z ﬁzs (A(r—l)’A*)

(A(r—l) _ A*)[

i

:1(7{;’[—1)\1};’—1))] i

A(r_l),A*
Vs ( - ) (A(r—l)_A*) )

U (Rfv”,’”nvf””)us@]

i=1

2
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vL (W* @*) U<R(r—l)\v(r—l))]
2
2 ﬁ2s (A(r_l)’A*) (A(r_l) - A*) _LPJ (Rsv’i—l)\vi(r—l))]
i=1 2
1§) (A(r_l)’A*) r— * x o
_ sf”A( D— A*||, - |[VL (W, 0%) O(n&;‘.-”\v.("-”)]
=1 ! ! 2

Similarly, by Propositions Al and A2, we get

(r=1)

e =D\ o (=1)
VTR

[191( P vi )]

2

S VL: (W(r—l)’(_)(r—l))

] -vL (W*,@*)[

[0 (v.("”\Rfj.‘”)

i=1

P
(r—1) (r—1)
Qo) |

+||Ve (W*,@*)[

O(VF"”\RSJ.‘”)]

i=1 2
=1+ ||VL (W5, 0%),
G|
Vas (A(r_l)’A*) (=1) * %
< f “A - A VL (W (0] ) U(v(, U\R(' 1))]
i=1 2

where we have

1
Il = J P’ H, (A" Y +1=nA")P,, dr
[0 )™ ()
(r=1) _ A*
S (R
i=1 2
. r— * (r=1) * T
Since H(A( D_A )[Ulp_ R<, 1)\v(r—1) ]” ”( - W] v(’ ])) ] .
(w;r—l) w*)ﬁv(’ , ) ” by combining (A3)—(A5) we obtain
(A(r b A ) (r—=1) * % *
f”A —-A ” + \s (W @ ) U(v(r 1)\R(r 1))]
2

79

(A4)

(AS5)
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(r=1)
v 13
Q0]

i=1

v

(r=1)
v P
|6 (= )]

1

\%

2
T

(7= gy 7 =)

Yas (A(r_l),A*)
— f

Z ﬁzs (A(f—l)’ Aa‘»)

a7 - a7, -

Therefore

T

R it

B y4s (A(r_l),A*) + yzs (A(r—l)’A*)
2ﬁ2s (A(F—l)’ A*)

2

[N

VL (W5 0% , D) (e +||VL (W*, ®F _ -
B e ' M a1 Y
ﬂzs (A(r—l)’A*)
|
Lemma A2. The vector given by
Yo-n)' ye-n)' (v T—ar in £ S)
(1) o () (0)) =m0
s.t. wi[(Ti(Fl))C] =0, (A6)
fori=1,...,p, satisfies
’ T T T
w7 T T _ (r=1) (r=1) (r=1)
H<wl[ﬁ“’”]’""WP[TP("”]’(@)) <(le ) () (v )) 2

\JS (W*,@*) [(

14 (r=1)
Ui=1 7 )US@] 5

ﬁ4s (Y(r—l)’ A*)

(o)
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2
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T
Proof of Lemma A2. For simplicity, we rewrite ((Y;’V_l))T, (Y(G;_I))T> = ((varl_l))T,...,

T
(Y;r—l))T, (Yg_l))T> in the following proof.
P
By definition

ve (o) - ve (YU ag ™)

1
= [ H, (A" + (1 =0Y" V) dr (A" =YV,
0

Since (Yg,_l), Yg_l)) is the solution of Equation (16), we have V. (Y(r_l),Yg_l)) [( p 7o) UR(_)]

w
=0.
Therefore
1
ve(ws. et =| P H, (tA* +(1 =YY" D) gr (A" =YD
N o]~ e 800
1
= PT ) H, (tA*+(1 =Y D) p J
L <1 Ti(r_])>U5® E(t 4 ) (G, i(’-1>>U5 !
i=1 L
x (A% = YD) [(6 T<,_.>>Us®]
i=1 "
1
+ PT H, (tA* + 1_tY(r—]) P i
L <Ler(r—1>)Us® Ll( ( ) ) fJ(??(r—l))
i=1 " U
X (A=) ey (A7)
|66

Since L has p,,-GSRH and Ti(r_l) u supp(twﬁr_l) +(1 - I)YE:,_D) <2s;foralli=1,...,p and
t € [0, 1], functions A, (.) and By(.), which are defined by Equation (7), exist such that

By (tA* + (1 —nY" Dy < . |PT H, (tA* + (1 - YD) p ,
4s ( ( ) ) min (fj l_(r_l))US@ L ( ( ) ) (6} Ti(r—l))use
i=1 =
and
Ay (A" +A =Y D)y >4 |PT H; (tA*+ (1 -pY=)p
4s ( ( ) ) Z Amax <L’J Ti(r_l))US@ L ( ( ) ) <‘LPJI Ti(r—1)>U5®
i=1 =
Thus, we can apply Proposition A1 here and obtain
1
(r=1) A* T * (r=1)
ﬂ4s (Y LA ) < )‘min JO P(G T(V—1)>U5 H[; (IA + (1 -0Y )P(LPJ -(r_l)>US dr|,
= o =1
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and
1
(r=1) A T x oy 1)
Ay (Y A ) > Amax [J() P(O i(r1)>U5®HE ([A +(1-0Y )P<61 7[_(’_1)>U5®dt .
i=1 i=
This indicates that the matrix Io] PzUP o ”)uso H, (tA* +( - t)Y(r—l)) P< 3 T("”)u S@dt,
i=1"i 6 i=1"i
denoted by G, is positive-definite. Hence, it is invertible and
1 -1 -1 1
—————————— < in (G7) £ Ay (G7) £ ————. A8
g (Y(r—l)’ A*) min ( ) max ) Bas (Y(r—l)’ A*) (A8)
Multiplying both sides of Equation (A7) by G™!, we get
G've (W, 0*
SR ((ER
(A% (r=1) -1
_(A -Y )[(LPJ A(r71)>use] +G
i=1 !
1
x|| P”, H, (A" +(1 =Y D) P odt
[L (L,J Ti(r—l)>uR® el ) ig“(r—l))
i=1
T
T T
" <w[(ff’”)”]""’wﬂ[(n“Y]) |
where we derive the last equality from the fact that (A*—Y'™D) e, ()] = vec(W*—
i=1 i

5 ()] = (“ff(a”-”>1"“’”?f<¢”4»C1> - boease (7

05 ygyy) =

By (A8) and Proposition A2, we obtain

=T %7 T T_ (r=1) T (r=1) T (r=1) v
H(wl[ﬁ“’”]’""WP[TP("”]’(@)) <(le ) () (v ))

_ (A* _ Y(r—l)) [<

2

P
U Ti(r—l)>U3®:|

i=1

<|G've (WHheH)
[(G7e)osel |,
1
-1 T € _ r=1)
+||G [LP<GTi(r_”>US®H£(tA +(-0Y )P,Q(T,-('”)Edt]
i=1 =
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x <wa( rony ] ’w;f(ﬂf’*”)f] )T

\s (W*, @)*) [(

2

UL 7)ol ],y (X004
ﬁ4s (Y(r_l),A*) 2,B4s (Y(r_l), A*)

Lemma A3. The estimation error in the (r — Vth iteration, | Y™V — A* l,, and that in the rth
iteration, | Y — A* |l,, are related by the inequality

[a7 - A", <

V4s (A(r_l)’A*) + V2 (A(r_l)’A*> 1 Vas (Y(r_l) A*) % ”A(r—l) _ A*”
2ﬂ2s (A(r_l),A*) Bus ( (r—l),A ) 2
L (W*’@*)[(Uf’ 7Y uSe ]

i1 T ) L s Yas (Y(r_l),A*)
ﬂ4s (Y(r_]),A*) ﬁ4s (Y(r—l)’A*)

Ve (W, eY) [ (RG]

0o o],

X
Pas (AU7D.A¥)

Proof of Lemma A3.  Since Vl.(r_l) c Ti(’_l), we have (7;(“1))0 C (Vi(r_l))c fori=1,...,p.
Therefore

Applying Lemma A1, we have

(]|

Yas (A(”—l)’A*) + Yas (A(r_l),A*)
zﬂzs (A(r_l),A*)

< AP - AT,
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\s (W*,@*)[ E_I(RE:._])\VU_])H +||VL (W*’Q*)[(UF_IV.U_D\RS;—I))]
+ — P — " (A9
Prs (A77D, A7)

Furthermore
A7 — A%,
:
S (RIS <@<”>T>T-<W1‘fr:r-l>r"-’Wi:fr,:r-wr“’”T) :
T
' (”wa~>fr'“"”if<wﬂ) :

a

T
T T T
«T *T T _ (r—1) (r=1) (r—1)
S”(‘”w—w’%r,:r-“J’(@)) () (520) (057

2
T
A(r) _ Y(r—l) *T s *T .
+ “ ”2 + <wl[<7,l(r—1)> ] wp[<Tp(r—l)> ]) ,
’ T T T
o (o) = (0 o0
2

w*[ } 1)] <s;and w?’) is the best s;-term approxima-
A

i 0

tion to YEv’f'), i.e., keeps the s largest absolute values of Ygf” fori=1,...,p. Thus, following
Lemma A2

where the last inequality holds because

2

\US (W*,@*) [(

P =1
i=1 7; )US@] 5

A _A* <
| a7, TS

ra (AN r '
1 =) A * Cy9 see s * ¢
’ < e (0w ) ey T )

Combining (A9) and (A10), we get

1A — A",
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Y(r_l), A* A(r_]),A* A(r_]),A*
<(1+ Vas ( ) Vs ( ) + V2 ( ) x ”A(r—l) _ Ax”2
ﬁ4s (Y(r—l),A*) zﬁzs (A(r_l),A*)
2||\VL (W*, 0F —
(| (1o
ﬁ4s (Y(r_l),A*) ﬂ4s (Y(r—l)’A*)
I A )] M i !
,BZS (A(r_]),A*) :
|
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