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SLICED INVERSE REGRESSION IN METRIC SPACES
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Abstract: In this article, we propose a general nonlinear sufficient dimension reduc-
tion (SDR) framework when both the predictor and the response lie in some general
metric spaces. We construct reproducing kernel Hilbert spaces with kernels that are
fully determined by the distance functions of the metric spaces, and then leverage
the inherent structures of these spaces to define a nonlinear SDR framework. We
adapt the classical sliced inverse regression within this framework for the metric
space data. Next we build an estimator based on the corresponding linear opera-
tors, and show that it recovers the regression information in an unbiased manner.
We derive the estimator at both the operator level and under a coordinate system,
and establish its convergence rate. Lastly, we illustrate the proposed method using
synthetic and real data sets that exhibit non-Euclidean geometry.
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1. Introduction

High-dimensional data are now commonplace in almost every branch of sci-
ence and business, and dimension reduction plays a central role in analyzing such
data. A particularly useful reduction paradigm is sufficient dimension reduction
(SDR), which embodies a family of methods that aim to reduce the dimensional-
ity in a regression setting, without losing any information. Since the pioneering
work of the sliced inverse regression (Li (1991, SIR)), SDR has developed rapidly.
For a univariate response Y and a p-dimensional predictor X, SDR seeks a low-
dimensional representation, usually in the form of linear combinations "X, for
a p x d matrix 8 = (f1,...,8q) with d < p, such that

YIX|BX,...,BX. (1.1)

As such, 87X contains full regression information of Y given X, and the dimension
is reduced because d is often much smaller than p. SDR then seeks the minimum
subspace spanned by S, called the central subspace, which exists uniquely under
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very mild conditions (Yin, Li and Cook (2008)). Numerous SDR methods have
since been proposed based on SIR (Li (1991)), mostly in a model-free fashion
that does not impose a specific parametric form on the association between Y
and S'X. Examples include the works of Cook and Weisberg (1991), Li (1992),
Cook and Li (2002), Xia et al. (2002), Li and Wang (2007), and Ma and Zhu (2012,
2013), among many others. See also Li (2018b) for a comprehensive review.
The SDR in (1.1) achieves a linear dimension reduction, because the low-
dimensional representation takes the form of linear combinations of X. However,
although it preserves the original coordinates of X and is easier to interpret, it
is also less flexible. A more recent line of SDR research instead seeks nonlinear
dimension reduction (Fukumizu, Bach and Jordan (2004, 2009); Li, Artemiou
and Li (2011); Lee, Li and Chiaromonte (2013); Li and Song (2017)), such that

Y ULX | (X)), falX), (1.2)

where f1,..., fq are some functions in a Hilbert space. Nonlinear SDR is more
flexible, and may require fewer functions than its linear counterpart to capture
the full regression information. However, in general, it is also more difficult to
interpret.

Despite the substantial progress of SDR, most existing SDR solutions target
data in a Euclidean space. However, modern data objects are becoming increas-
ingly complex, and often reside in non-Euclidean spaces. Such data are routinely
collected in applications such as medical imaging, computational biology, and
computer vision, and thus it is of great interest to understand the associations
between these complex data objects (Lin et al. (2017); Cornea et al. (2017);
Dubey and Miiller (2019); Petersen and Miiller (2019); Lin and Yao (2019); Pan
et al. (2020)). As examples, we consider geometric data, positive-definite matrix
data, and compositional data. For instance, in brain structural and functional
connectivity analyses (Zhu et al. (2009); Zhang, Sun and Li (2020)), the data are
usually in the form of positive-definite matrices that measure the connectivity
strengths of pairs of nodes of a network and admit a certain manifold structure.
In chemistry, geology, and microbiome analysis (Lu, Shi and Li (2019)), the data
are the proportions of individual components that sum to a fixed constant. There
are many other examples of complex object data (Wang and Marron (2007)). In
all these examples, the data reside in some non-Euclidean spaces, and a proper
metric is needed to characterize the intrinsic features of the data.

We propose a general nonlinear SDR, framework when both the predictor and
the response lie in some general, and possibly different, metric spaces. Our key
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idea is to construct a pair of reproducing kernel Hilbert spaces (RKHSs), the ker-
nels of which are fully determined by the distance functions of the metric spaces.
We then leverage the inherent structures of these spaces to define a nonlinear
SDR framework for the metric space data. Here, we adapt the sliced inverse
regression of Li (1991) within this framework. We build the estimator based on
some linear operators, and show that it recovers the regression information in an
unbiased manner. We derive the estimator at both the operator level and under
a coordinate system. We also establish the convergence rate of the estimator
under both settings when the response lies on a general metric space, and when
the response is categorical. We illustrate the proposed method using synthetic
and real data sets that exhibit non-Euclidean geometry.

Our proposal is related to, but also differs from the nonlinear SDR method of
Lee, Li and Chiaromonte (2013), as well as some recent SDR solutions involving
functional or non-Euclidean data, such as those of Yeh, Huang and Lee (2008),
Li and Song (2017), Tomassi et al. (2019), Ying and Yu (2020), and Lee and
Li (2022). In particular, Lee, Li and Chiaromonte (2013) developed a general
framework for nonlinear SDR in which they estimate the functions fi,..., fg in
(1.2) as the eigenfunctions of some linear operator defined on a Hilbert space H.
However, they target Euclidean data, and take H to be an Lo-space at the popu-
lation level and an RKHS at the sample level. Our framework is similar to theirs,
but we consider data residing in a general metric space. Moreover, we take H to
be an RKHS at both the population and the sample levels, which makes the con-
nection between the population and sample versions of the estimation procedure
more transparent. Yeh, Huang and Lee (2008) proposed a kernel SIR under the
framework of (1.2), but require a functional version of the linearity condition. We
instead adopt a general form of conditional independence based on o-fields, and
avoid relying on the linearity condition. Li and Song (2017) considered nonlinear
SDR for functional data, where X is a function residing in some Hilbert space,
and Lee and Li (2022) studied linear SDR when X and Y are both functions
in some Hilbert space. In contrast, we consider more general data objects than
functional data. Tomassi et al. (2019) developed linear SDR, for compositional
data, but restricted their solution to a specific set of parametric models for the
conditional distribution of X given Y. Ying and Yu (2020) developed SDR when
the response is in a metric space and the predictors reside in a Euclidean space.
However, because the dimension reduction is performed for the predictors, our
method differs considerably from that of Ying and Yu (2020).

The rest of the article is organized as follows. In Section 2, we develop the
general framework for nonlinear SDR for data in metric spaces, and in Section
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3, we derive the metric version of SIR under this framework. In Section 4, we
describe a finite-sample implementation, and in Section 5, we study the conver-
gence properties of the estimator. In Section 6, we present the results of our
numerical studies. All proofs are provided in the online Supplementary Material.

2. Nonlinear SDR for Metric Space Data

In this section, we propose a general framework for conducting nonlinear SDR,
on data residing in arbitrary metric spaces. First, we define a minimal o-field
that captures the full regression information. Then, we construct RKHSs for X
and Y from the metric spaces, and use these RKHSs to define a representation
of the minimal o-field that is easier to estimate.

Let (€2, F, P) be a complete probability space. Let (2%,dx) and (QY.,dy)
be arbitrary separable metric spaces in which the predictor and the response,
respectively, take values. We make no further assumption on the data space and,
depending on Qg( and Qg]/, there may be multiple feasible choices for the metrics
dx and dy. For instance, in Section 6, we take QOX to be some manifold spaces
and consider different choices of metrics for dx.

Let Fx and Fy be the Borel o-fields generated by the open sets in the
metric topologies in Q% and QY. respectively. Consider X : @ — Q% to be an
F | Fx-measurable random variable with the distribution Py = Po X! and Y :
QO — QOY to be an F/Fy-measurable random variable with the distribution Py =
PoY 1. For simplicity, suppose the joint random variable (X, Y) is F/(Fx x Fy)-
measurable. Let Px)y : Fx X Q?, — R be the conditional distribution of X given
Y =y, and suppose the set {Pxy(- | y) | y € Q) } is dominated by a o-finite
measure. Let ox be the o-field generated by X. We adopt the following definition
from Lee, Li and Chiaromonte (2013).

Definition 1. A sub-o-field G of ox is said to be an SDR o-field for Y given X
if the random elements Y and X are conditionally independent given G, in that
Y 1L X | G. When the set of conditional distributions {Pxy (- | y) | y € Q)} is
dominated by a o-finite measure, the intersection of all SDR o-fields is itself an
SDR o-field, called the central o-field, and is denoted by Gy |x.

Definition 1 suggests that there exists a unique smallest SDR, o-field. In our pur-
suit of nonlinear SDR, we seek a set of functions fi, ..., f4, lying in some suitable
function space Hx, that are Gy|y-measurable, and achieve the dimension reduc-
tion by replacing X with the corresponding sufficient predictors f1(X),..., fa(X).

A natural candidate for the function space Hx is Lo(Px), the class of all
square integrable functions f : Q% — R; see Lee, Li and Chiaromonte (2013).
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We instead take Hx to be a suitably defined RKHS, which makes the subse-
quent methodology and theory development considerably simpler. To connect
the RKHS Hx to the metric structure of the space Q())(, we consider a posi-
tive semi-definite kernel kx : Qg( X Q())( — R, for which there exists a function
p: R — R, such that, for all 1,29 € Qg(,

K(x1, w2) = p{dx (21, 22)}, (2.1)

where dx is the metric of Q%. We further impose the following finite second-
order moment requirement for the kernel function, which is essentially the RKHS-
equivalent of requiring a random variable to be square integrable, and is a rather
mild condition.

Assumption 1. Suppose E{rx (X, X)} < 0o, and E{xy (Y,Y)} < 0.

There are multiple choices for this type of kernel function, including the Gaussian
kernel and the Laplace kernel, among others. Here, we use a Gaussian kernel with
a positive covariance.

Given the kernels kx and xy, let 7—[9( and 7—[?/ be the RKHSs generated by
kx and Ky, respectively. By Assumption 1, we have that H} C Lo(Px) and
HY C Lo(Py). Moreover, by the Riesz representation theorem, there exist a
unique mean element pux € ”Hg( and a unique covariance operator 29( > such
that

(f ux)ug, = E{f(X)}, forall feHg,
(f 2% x [ )ms, = Cov{f(X), f/(X)}, forall f,f" €H.

Note that every fy € ker(X% ) satisfies Var{fo(X)} = (fo, Eg(xf0>7{‘§( =0, and
is almost surely equal to a constant, where ker(-) denotes the null space. As such,
we restrict our attention to Hx = ran(X% y ), where ran(-) denotes the range, and
ran(-) denotes the closure of the range.

Lemma 1. Suppose Assumption 1 holds. There exists a set Qx C Qg(, such that
Px(Qx) =1 and kx(-,x) — px € Hx, for all x € Qx.

Lemma 1 states that the functions kx (-, z) — ux, for x € Qx, belong to the space
‘Hx, which allows us to perform centering using the inner product, (f, kx(-,x) —
px)ny = f(x) — E{f(X)}. The proof of Lemma 1 also shows that the space
Hx admits an alternative characterization, Hx = span{rx(-,z) —px : © € Qx},
where span(-) denotes the closure of the space spanned by the set of functions. A
similar result was obtained by Li and Song (2017, Lemma 1). However, their proof
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implicitly assumes that the empty set is the only set for which Px assigns a zero
probability, essentially ruling out all continuous distributions; our Lemma 1 fixes
this issue. Furthermore, this characterization does not imply that the elements
[ € Hx are centered in the sense that E{f(X)} = 0. Instead, focusing on Hx
removes the constant functions that are of no interest to us in terms of dimension

reduction. We construct uy, Eg’/y, and the RKHS Hy in an analogous manner.

Definition 2. We call the set of all f € Hx that are Gy y-measurable the central
class, and denote this set by Sy|x.

We make two remarks. First, our notion of dimension reduction is based on the
smallest SDR o-field, that is, the central o-field. In our setting, the concept of
“dimensionality” is less obvious than that in the classical SDR setting, where it
is simply the dimension of the central subspace. This is because there are sets
that generate the same o-field, but with different dimensions. Nevertheless, our
formulation is useful when one is interested in reducing the dimensionality in
the class sense, because the central class induced by the central o-field contains
all sets of functions that generate the same o-field, and we seek the smallest
one. Second, the relation between the central o-field Gy|x and the central class
Sy|x is analogous to the relation between the central subspace and the sufficient
predictors in the classical setting. That is, in lieu of estimating Gy |x, we search
for subsets of elements of Sy|x, which are more concrete and easier to estimate.

3. Metric SIR

In this section, we derive the population-level SIR for metric space data. In
the classical SIR (Li (1991)), X and Y both lie in a Euclidean space, and one
estimates the central subspace using the range of the matrix,

Var(X) " 'Var{E(X | Y)}. (3.1)

We next derive the operator analogue for (3.1) for two cases: the general case of
Y residing in a metric space, and the special case of Y being a discrete random
variable.

3.1. Metric response

We first define a number of covariance operators that serve as the building
blocks of our nonlinear metric SIR procedure:

Yxx :Hx = Hx, (f, EXXf/>HX = COV{f(X),f/(X)},
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Exy  Hy = Hx, (f,Exv9)n, = Cov{f(X),g(Y)}, (3.2)
Syy : Hy = Hy, (¢, Zyyvg)n, = Cov{g'(Y),9(Y)},

for f,f" € Hx and ¢g,g’ € Hy. In addition, the cross-covariance operator
Yyx : Hx — Hy can be obtained as Yy x = X%y, the adjoint of the opera-
tor L xy. Furthermore, because Hx = tan(X% ), we have ker(Xxx) = {0} and
M(Zxx) =Hx.

We next introduce two regularity conditions.

Assumption 2. Suppose that Hx + R and Hy + R are dense in La(Px) and
Lo(Py), respectively, where + denotes the direct sum.

Assumption 3. Suppose ran(Xyx) C ran(Xyy) and ran(Xxy) C ran(Xxx).

Assumption 2 is typical in kernel learning and holds in general, for example,
when kx is a Gaussian kernel (Fukumizu, Bach and Jordan (2009)). In this
assumption, by “dense” we mean that, for every f € Lo(Px), there exists a
sequence of elements f, € Hx, such that var{f(X) — fo(X)} — 0, as n — oo.
Assumption 3 is essentially a smoothness condition on the relation between X
and Y (Li (2018a)). Similar conditions are common in the SDR literature (Ying
and Yu (2020); Li and Song (2022)). Assumption 3 guarantees that the operator
EJ{,YEY x is both well-defined and bounded (Douglas (1966, Thm. 1)), where {
denotes the Moore-Penrose pseudo-inverse of Xyy; see Li (2018a) for details on
the Moore—Penrose pseudo-inverse of an operator.

The next lemma provides some useful expressions for the conditional mo-
ments of X given Y at the operator level that are essential in the construction
of the operator analogue for the SIR estimator (3.1). In addition, they help turn
conditional moments into unconditional moments, thus avoiding the slicing step
in the original SIR.

Lemma 2. Suppose Assumptions 1, 2, and 3 hold. Then,
(a) for any f € Hx, B{f(X)|Y} = B{f(X)} = (S} Syx fory (V) = iy ), 5
(b) for any f, f'€Hx, Cov[E{f(X)|Y},E{f'(X)|YH=(f,Sxvy Sy Sy x f )y

By Lemma 2, the operator X XyEJ{,YZy x can be viewed as the analogue of
the matrix Var{E(X | Y)} in (3.1), and the operator E;X can be viewed as the
analogue of Var(X)~! in (3.1). Consequently, a direct operator counterpart of
(3.1) is

Asir = 2 Zxy S, Sy x. (3.3)
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This operator is well-defined, by Assumption 3. Moreover, if we choose linear
kernels kx and ky, then Agr reduces precisely to the matrix of the canonical
correlation analysis (CCA).

The next theorem shows that the operator Agr is bounded and that the
closure of its range is unbiased for the central class, mirroring the classical SIR
for linear SDR of Euclidean data. We need an additional regularity condition.

Assumption 4. Suppose the set ran(EXX)ﬂS¢|X is dense in the set S¢|X’ where

the orthogonal complement is taken with respect to Hx.

Assumption 4 requires that the intersection between ran(¥xx) and Sﬁ < 1s suit-
ably rich in S}%' - This is a mild condition, because ran(Xxx) is, by definition,
dense in its closure Hyx. A similar condition is imposed implicitly in Li and Song
(2017).

Theorem 1. Suppose Assumptions 1 to 4 hold. Then, Agir is a bounded operator
and tan(Agr) C SY|X'

Theorem 1 suggests that we can recover the central class using the range of
Agir, or equivalently, by using the spectral decomposition of AgirAgz. This
is the foundation of our estimation procedure, developed in Section 4. We call
our proposed nonlinear SDR method based on Agir the metric sliced inverse
regression (MSIR).

3.2. Discrete response

Next, we consider a special case in which Y lies in the usual Euclidean space
and is discrete. This scenario is perhaps most often encountered in real appli-
cations. The main difference between this special case and the general case is
that, when Y is discrete, we can obtain direct RKHS representations for the con-
ditional moments, rather than resorting to unconditional representations, as in
Lemma 2.

Specifically, suppose QY- = {1,..., K}, and let 7, = P(Y = k) and 7 > 0,
for all k£ € Qg)/. By the Riesz representation theorem, elements vyx;, € Hx, for
k=1,..., K, exist such that, for any f € Hx,

E{f(X) Y =k} = E{f(X)} = (vxiks [)ps-

The elements yx|; provide a discrete counterpart of Lemma 2(a). We then define
the covariance operator
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K

Pxxpy = Zﬁk(%(vc ®vxk) : Hx — Hx, (3.4)
k=1

where ® denotes the tensor product. Note that, for any f, f’ € Hx,

Cov[E{f(X) | YLE{f(X) Y} = (f.Dxx)v [ -
Consequently, the counterpart of Agig in (3.3) when Y is categorical is

Asir,p = Z&XFXX\Y- (3.5)

This operator is well-defined under the following smoothness condition, and the
closure of its range provides an unbiased estimator of the central class.

Assumption 5. Suppose ran(I'x x|y) € ran(Xxx).

Theorem 2. Suppose Assumptions 1, 2, 4 and 5 hold. Then, Asir,p s a bounded
operator and Tan(Asir,p) C Sy|x-

4. Sample Estimation

In this section, we develop the sample estimator for the proposed metric SIR,
first at the operator level, then under a coordinate system, given the independent
and identically distributed (i.i.d.) random sample observations {(X1,Y1),...,
(Xn,Yn)} of (X,Y).

4.1. Estimation at the operator level

For the general case when the response Y resides in a metric space, we
first obtain the sample estimators of the mean elements as ix = E,{xx (-, X)}
and iy = E.{rky(-,Y)}, where E, is the sample mean operator, such that
E,w = n! Z?:l w; for the samples wq,...,w, from w. We next obtain the
sample estimators of the covariance operators ¥ xx, X xy, and Xyy in (3.2) as

i:XX - En[{HX(vX) - ﬂX} ® {F‘:X(7X) - /lX}]v
Sxy =Enl[{rx (- X) — iix} ® {ry (- Y) — iy }],
Syy =Enl{ty (- Y) — iy} ® {ry (-, Y) — iy }]-

Moreover, we have Syx = fl}y We then obtain the sample estimator of the
metric SIR operator Agg in (3.3) as

Asir = (2XX + Tﬂ)‘lixy(ﬁ)yy + TgI)‘IEYX,
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where we use a ridge regularization to estimate the pseudo-inverses, 7 and 7
are the ridge parameters, and I is the identity operator. Finally, we estimate the
range of Agir using the spectral decomposition of the operator ASIRASIR Suppose
f1, .. fd are the d leading eigenfunctions of ASIRASIR Then, the estimated suf-
ﬁcient predictors corresponding to the observation X € Q% are fl( )yeves fd( ).

For the special case when Y resides in the usual Euclidean space and is
discrete, we obtain the sample estimator of the covariance operator I'x x|y in

(3.4) as
K

~ 1 R N
Ixxyy = - Z nE(Yx |k @ Yx|k)s
k=1
where nj, is the number of samples belonging to the class k, I(-) is the indicator
function, and Jx, = (n/ng) E{I(Y = k)kx (-, X)} — fix, for k=1,..., K. We
then obtain the sample estimator of the metric SIR operator Agir,p in (3.5) as

Asirp = (Bxx +7I) Txypy-

Finally, we estimate the range of Agrp using the spectral decomposition of

ASIRDAEIR,D'
4.2. Estimation under a coordinate representation

We next develop an estimation procedure under a chosen coordinate system.
We divide the procedure into three main steps, and focus on the general case in
which Y resides in a metric space. We do also briefly discuss the special case in
which Y is discrete.

In Step 1, we choose the kernel functions xkx and xy. Although there are mul-
tiple choices of kernel functions, we use the Gaussian kernel throughout. We use
the leave-one-out cross-validation method to determine the bandwidth parame-
ters in kx and Ky, following a similar strategy to that in Lee, Li and Chiaromonte
(2013). We then compute the Gram matrices Kx = (kx(Xi, Xi))] =y € R
and Ky = (/ﬁy(Y;,}fi/))i’i,zl € R™ ™ where the kernel functions IiX and Ky are
evaluated under the given metrics dy and dy, as in (2.1). Let Q = I —n =117
denote the centering matrix, where 1 € R” is a vector of ones. We then compute
the centered version of the Gram matrices as

GX = QK)(Q, and GY = QKyQ (4.1)

In Step 2, we compute the coordinate representation of the sample metric SIR
operator Agir. Consider the sample counterpart of the space ’H %» which is the
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span of the sample elements, ?:[9( = span{/ﬁ;x(-,Xi) li=1,... ,n}. We impose
the following linear independence assumption, which is a mild requirement. When
it does not hold, we can simply delete a subset of the elements to obtain a linearly
independent set. Alternatively, we can construct a linearly independent basis
using the Karhunen—Loeéve expansion; see, for example, Lee and Li (2022).

Assumption 6. The elements kx (-, X;), fori=1,...,n, are linearly indepen-
dent.
Under Assumption 6, the elements kx (-, X;), for i = 1,...,n, form a basis for

”Hg( and, given an arbitrary member f € 7:[9(, we define its coordinate [f] € R”
as the vector of its coefficients under this basis. As such, for any f € 7:[9( and
X € 0%, f(X) = [fI"kx(X), where kx(X) = (kx(X,X1),...,5x(X, Xn))".
In addition, we take the inner product of ?:[g( to be the bilinear form (f, f’) —
(f, f/>3ft‘;( = [fI"Kx][f], for f, ' € 7:[8(, and the Gram matrix K is ensured to be
positive definite by Assumption 6. Analogously, consider the sample counterpart
of the space Hx, which is the span of the centered sample elements, Hy =
span{ﬁ:X(-,Xi) —hx |1 = 1,...,n}. We construct the sample spaces 7:[9/ and
Hy similarly.

Correspondingly, following Fukumizu, Bach and Jordan (2009) the coordi-
nates of the sample covariance operators )y XX, )y XY, Ey x, and Eyy are

Exx]=n"1Gx, [Exv]=n"'Gy, [Eyx]=n"'Gx, and [Lyy]=n"1Gy,

respectively, where Gx and Gy are as defined in (4.1). Although this coordinate
representation seems to suggest that Sy x does not depend on Y, this is not
the case. Actually, )y xx and ﬁ)y x share the same coordinate, namely n~'Gyx,
but they involve different sets of bases, because they have different range spaces.
For simplicity, we drop the underlying bases in the coordinate bracket notation.
However, note that 3y x depends on Y through the underlying bases; a similar
discussion applies to Yxy.

We then obtain the coordinate representation of ASIR in the next lemma.
The proof follows immediately by the definition of Agg, and is thus omitted.

Lemma 3. The metric SIR operator Agir has the coordinate representation
[Asr] = GGy G Gx, (4.2)

where T denotes the Moore—Penrose pseudo-inverse of a matriz.

To improve the numerical stability, we replace the pseudo-inverse G} in
Lemma 3 with its ridge-regularized counterpart {Gx + 71 In}_l, where 71 is taken
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to be ¢ X ¢1(Gx), ¢1(+) is the largest eigenvalue of the designated matrix, and
¢ = 0.2. A similar procedure was also employed in Lee and Li (2022). Similarly,
we replace GJ{, with {Gy + 7o1,} 71, where 7 = ¢ x ¢1(GYy).

In Step 3, we estimate the range of Agr using the eigen-decomposition of
its coordinate in (4.2). Letting vi,...,vs denote the d leading eigenvectors of
[ASIR] [ASIR]T, the estimated sufficient predictors corresponding to an observa-
tion X € Q% are v]Qkx(X),...v;Qkx(X), where kx(X) = (kx(X,X1),...,
kx(X,X,))". Alternatively, one can also use the eigenvectors of the matrix [Agg].

The computational complexity of our proposed method is O(n3). When the
sample size n is huge, the computation can be intensive. For such a case, we
propose an alternative estimation strategy similar to that of Hung and Huang
(2019). That is, we first divide all sample observations into ) disjoint subsets,
Ti,...,Zg. We then estimate the sufficient predictors, given each subset Z,, for
qg=1,...,Q. To accommodate possible discrepancies in the signs of the resulting
eigenvectors, we choose their signs such that, for each 7 = 1,...,d, we maxi-
mize the sum qu,zl v} Vig's Where vj g is the jth eigenvector of [ASIR] [ASIR]T
computed based on the gth subset Z,. We then average the estimated sufficient
predictors over all () subsets to produce the final estimate for the full sample.

For the special case in which Y resides in the usual Euclidean space and
is discrete, the coordinate representation of vy, is [Yxx] = (1/n%)1x — (1/n)1,
where the ith element of the vector 1, € R™ is the indicator I(Y; = k), for
i =1,...,n. Correspondingly, the coordinate representation of /AXSIR,D is

K
[Asirp] = GLQ (Z nlklkli> QGx.
k=1
Finally, we briefly comment on the problem of selecting the reduced dimen-
sion d in the SDR. Several information criterion-based selection methods have
been proposed for the SDR of Euclidean data (Zhu, Miao and Peng (2006); Luo
et al. (2009); Xia, Xu and Zhu (2015)). We expect a similar information crite-
rion is applicable for our metric SIR as well, which we leave as a topic for future
research.

5. Asymptotic Theory

In this section, we establish the convergence rate of the proposed metric SIR
estimator at the operator level for the general Y and categorical Y settings.

We begin with some regularity conditions.
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Assumption 7. Suppose the kernel functions kx and Ky are continuous.
Assumption 8. Suppose E{rx (X, X)?} < oo and E{xy(Y,Y)?} < .
Assumption 9. Suppose ran(Xyy) C ran(¥2.) and ran(Xxy) C ran(33% ).

Assumption 7 is quite mild and, together with the separability of the metric
spaces Qg( and Qg)/, ensures that the RKHSs Hy and Hy are separable (Hein
and Bousquet (2004)), which, in turn, ensures that Hx and Hy admit countable
orthonormal bases. Assumption 8 is analogous to the requirement that a random
variable has a finite fourth moment, and is reasonable. Assumption 9 can be
viewed as a stronger version of Assumption 3; that is, compared with Assumption
3, the mapping of X xy needs to concentrate even more on the leading eigenspaces
of ¥ xx and Yyy. This, again, can be understood as a smoothness condition.

In our sample estimation, we use the ridge regularization for the pseudo-
inverses. For simplicity, in our theoretical analysis, we suppose the ridge parame-
ters 71 = 7o = 7, and that 7 approaches zero as the sample size n diverges. Denote
the operator norm of a linear operator A : H — H' as ||Allop = sup{||Af|lw :
£l = 1}. The next theorem establishes the convergence of Agig in terms of
the operator norm for the general response case.

Theorem 3. Suppose Assumptions 7 to 9 hold. Then, as n — oo,

. 1
Asir — A H 0, (r+—=).
I
For the special case of Y being categorical, we replace the smoothness con-
dition of Assumption 9 with the following counterpart.

Assumption 10. Suppose ran(I'x x|y) C ran(X% ).

Theorem 4. Suppose Assumptions 7, 8, and 10 hold. Then, as n — 00,

. 1
HASIRD — ASIR,DHOP =0, (T + n/ﬁ) :
Theorems 3 and 4 suggest that our metric SIR estimator is consistent. Its conver-
gence rate consists of two parts. The first part is due to the ridge regularization,
and the second part represents the convergence of the sample operators to their
population counterparts. If 7 = n=?, for some constant 8 > 0, then the conver-
gence rate becomes n~? + nf~1/2 implying that the best possible convergence
rate given by our result is O(n~/4), achieved when 3 = 1/4. Note that this is the
same as the rate obtained by Li and Song (2017) in nonlinear SDR for functional

data.
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6. Numerical Studies

In this section, we investigate the empirical performance of our proposed
MSIR, under various choices of distance metrics, and compare it with that of
the nonlinear SIR method of Lee, Li and Chiaromonte (2013, GSIR). Although
the GSIR method was originally formulated using Euclidean geometry, it can be
extended easily to incorporate an arbitrary distance metric.

6.1. Torus manifold data

As the first example, we consider a two-dimensional torus as the predictor,
and simulate the response using different distance metrics. A torus is best vi-
sualized as a unit square [0,1]? in which the opposite edges have been “glued

together.” We consider two generative models:
Model 1: Y; = dg{X;, (0.5,0.5)"} + &;;
Model 2: Y; = de{X;, (1,1)"} + &4,

where the two-dimensional predictor X; is uniformly distributed in [0, 1], the
error term ¢; is drawn from a normal distribution with mean zero and variance
02, and dg denotes the geodesic distance. Because the point (0.5,0.5)" lies in the
middle of the unit square, we have dg{X;, (0.5,0.5)"} = dg{X;, (0.5,0.5)"}, where
dp denotes the Euclidean distance. Consequently, in Model 1, the true relation
between the response and the predictor is a smooth function of the Euclidean
distance between the predictor and the center point of the square, and we expect
the two distance functions to perform similarly under Model 1. However, the same
is not true for Model 2, where the reference point (1,1)" lies at the corner of the
square. In this case, the true regression relationship is not a smooth function of
the Euclidean distance, but is so for the geodesic distance, making the geodesic
distance more favorable under Model 2. For both models, we consider two sample
sizes n = 250, 500, and two noise levels o = 0.05,0.10. We further divide the data
into 80% training samples, and 20% testing samples. We consider two distance
metrics, namely, the geodesic distance and the Euclidean distance.

Table 1 reports the distance correlation between the response and the first
two estimated sufficient predictors evaluated on the testing samples, averaged over
200 data replications. The results show that the proposed MSIR outperforms the
competing GSIR by achieving a higher distance correlation and a smaller standard
error. Moreover, the Euclidean metric is slightly better suited to Model 1, where
the toroidal geometry plays no role, whereas the geodesic metric is considerably
better for Model 2, where the toroidal geometry plays a crucial role. An increased
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Table 1. The torus data example: the average distance correlation (with the standard
deviation shown in parentheses) between the response and the estimated sufficient pre-
dictors.

Model 1 n = 250 n = 500
o =0.05 o =0.10 o =0.05 o =0.10
MSIR d¢  0.912 (0.025)  0.766 (0.058)  0.911 (0.018)  0.777 (0.038)
GSIR dg  0.719 (0.082)  0.611 (0.088) 0.715 (0.071)  0.599 (0.081)
MSIR dg  0.926 (0.021)  0.779 (0.060)  0.926 (0.014)  0.790 (0.037)
GSIR dg  0.654 (0.092) 0.563 (0.091) 0.646 (0.083) 0.552 (0.082)
Model 2 n = 250 n = 500
o =0.05 o =0.10 o =0.05 o =0.10

MSIR de 0.912 (0.025)  0.784 (0.054) 0.913 (0.017)  0.775 (0.040)
GSIR de  0.726 (0.079)  0.623 (0.094)  0.724 (0.073)  0.616 (0.082)
MSIR d  0.841 (0.046)  0.729 (0.067)  0.845 (0.032)  0.722 (0.046)
GSIR dg  0.602 (0.087)  0.526 (0.098)  0.587 (0.084)  0.509 (0.085)

sample size helps to reduce the standard error of the estimator. Figure 1 provides
a visualization of the estimated sufficient predictors for a single data replication
under Model 2 with n = 500 and ¢ = 0.05. The results agree with the qualitative
patterns observed in Table 1 that the MSIR produces sufficient predictors that
are more informative than those of the GSIR.

6.2. Positive-definite matrix data

As the second example, we consider a positive-definite matrix data example
from a neuroimaging-based autism study (Di Martino et al. (2014)). Autism is an
increasingly prevalent neurodevelopmental disorder, characterized by symptoms
such as social difficulties, communication deficits, stereotyped behaviors, and cog-
nitive delays (Rudie et al. (2013)). The data set consists of n = 795 subjects,
among whom 362 were diagnosed with autism, and the rest were healthy controls.
For each subject, a resting-state functional magnetic resonance imaging (fMRI)
scan was obtained, which measures the intrinsic functional architecture of the
brain using the correlated synchronizations of brain systems. The corresponding
brain functional connectivity network has been shown to alter under different dis-
orders or during different brain developmental stages. Such alterations contain
crucial insights for both disorder pathology and the development of the brain
(Fox and Greicius (2010)). Therefore, there is great scientific importance in un-
derstanding the association between the autism status and the brain connectivity
network. Thus, our goal is to produce sufficient predictors that correctly separate
the autism patients from the healthy controls.
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Figure 1. The torus data example: the sufficient predictors under two SDR methods and
two distance metrics.

We follow the data-processing procedure of (Sun and Li (2017)), and sum-
marize the brain connectivity network for each subject as a 116 x 116 correlation
matrix, corresponding to the synchronizations of 116 brain regions-of-interest un-
der the commonly used Anatomical Automatic Labeling atlas (Tzourio-Mazoyer
et al. (2002)). Moreover, most of the observed connectivity matrices of this data
are numerically rank-deficit, with the typical numerical rank ranging from 60 to
80. As such, we employ a common principal components analysis, and project the
connectivity matrices onto the space of the top 30 common principal components,
such that the minimal eigenvalue is at least 10™% for each resulting matrix.

We consider six distance metrics between two positive-definite matrices, M
and My: the affine invariant metric, da(My, My) = HLog(Ml_l/2M2M1_1/2)||F,
where Log(:) denotes the matrix logarithm, and || - || denotes the Frobenius
norm; the log-Euclidean metric, drg(Mp, M2) = ||Log(M;) — Log(M2)||r; the
S-divergence (Sra (2016)), dg(Mi, Ma) = log |(M; + M2)/2| — (1/2) log | M7 My|,
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Table 2. The positive-definite matrix data example: the leave-one-out cross-validation
prediction error under two SDR methods and three metrics.

Affine invariant  S-divergence FEuclidean
MSIR 0.306 0.302 0.333
GSIR 0.319 0.328 0.357

where |-| denotes the determinant; the symmetrized Kullback—Leibler divergence,
dKL(M17 MQ) = {h(Ml, M2)+h(M2, Ml)}/2, where h(Ml, Mg) = {tr(MflMg) +
log |Mi| — log | Ma|}/2; the standard Euclidean metric, dg(My, My) = ||[M; —
Ms||F; and the Pearson metric, dp(My, Ma) = |[My/||Mi||lr — Ma/||Ma|| 7| F-
The first three distance metrics properly acknowledge the geometry of the matrix
space My, the fourth hinges on the normality distribution, and the last two
leverage only Euclidean geometry.

Figure 2 shows the first two estimated sufficient predictors graphically. The
first sufficient predictors found by MSIR and GSIR are both able to separate the
two groups of subjects to a good extent, with MSIR achieving better separation,
in general, than that of GSIR. Moreover, the first three distance metrics achieve
better separation than the final three metrics, which agrees with our expectation.
Table 2 reports the leave-one-out cross-validation prediction error when applying
a quadratic discriminant analysis classifier to the first two sufficient predictors.
For simplicity, we consider only three metrics: the affine invariant metric and S-
divergence metric, owing to their competitive performance, as shown in Figure 2,
and the Euclidean metric, which serves as a benchmark. The results confirm
the visual observation from Figure 2 that MSIR outperforms GSIR, and that the

metrics that acknowledge the matrix geometry outperform those that do not.

6.3. Compositional data

As the final example, we consider a compositional data set from a gut micro-
biota study (Guo et al. (2016)). The data set consists of n = 83 subjects, among
whom 41 suffer from gout, and the rest do not. For each subject, p = 3,684
operational taxonomic units (OTUs) were measured, which together characterize
the structure of the subject’s intestinal microbiota. It is of scientific interest to
understand the association between the gout status and the OTU compositions
(Guo et al. (2016)). Thus, we aim to produce sufficient predictors that correctly
reflect the gout status of a subject.

We follow the data-processing procedure of Pan et al. (2020), who analyzed
the same data. Specifically, we first standardize the OTUs, so that the OTU
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Affine invariant (MSIR)

Log—Euclidean (MSIR) S—Divergence (MSIR)

)

Sufficient predictor 2

Figure 2. The positive-definite matrix data example: the sufficient predictors under two
SDR methods and six metrics, with two groups of subjects, namely, autism and control,

marked by different colors.

measurements for each subject sum to one, and thus the data are compositional.
In addition, the data are highly sparse, in that, on average, only 202 out of 3,684
measurements are nonzero. As in Pan et al. (2020), we map the standardized
vector to the p-dimensional unit sphere by taking element-wise square roots of

the coordinates.

Sufficient predictor 1

Diagnosis ® Autism No autism
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Figure 3. The compositional data example: the sufficient predictors under two SDR
methods (row) and three metrics (column), with two groups of subjects, those with gout
or not, marked by different colors.

We consider three distance metrics. The first metric is the arc length dis-
tance between two transformed compositions. The second metric is the Hamming
distance, evaluated on the dichotomized transformation of the compositions; that
is, the nonzero entries all become equal to one. This is motivated by the obser-
vation that the compositions are very sparse, and that the positions rather than
the magnitudes of the nonzero entries are more relevant. The third metric is the
usual Euclidean distance.

Figure 3 shows the estimated top two sufficient predictors graphically. Here,
the first sufficient predictors found by MSIR and GSIR are both able to sep-
arate the two groups of subjects, to some extent. MSIR with the Hamming
distance metric achieves the best separation. Table 3 reports the leave-one-out
cross-validation prediction error when applying a quadratic discriminant analysis
classifier to the extracted sufficient predictors when d is taken as one and then
two. Again, the proposed MSIR with the Hamming distance metric achieves the
best prediction accuracy. Moreover, there is little difference between d = 1 and
d = 2, suggesting that a single summary predictor is sufficient, which agrees with
our expectation, because the response is only binary.
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Table 3. The compositional data example: the leave-one-out cross-validation prediction
error under two SDR methods, three metrics, and two working dimensions.

d Method Arclength Hamming FEuclidean
1 MSIR 0.241 0.229 0.253
GSIR 0.253 0.229 0.289
9 MSIR 0.229 0.229 0.277
GSIR 0.253 0.229 0.289
Arc length Hamming Euclidean
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Correlation with the first sufficient predictor

Figure 4. The compositional data example: histograms of the correlations between the
first sufficient predictor obtained using MSIR, and the original predictor under the three
metrics.

To conclude this paper, we give an example on how to interpret the obtained
sufficient predictors. The key idea is to compute the correlations between the
sufficient and the original predictors. Figure 4 shows histograms of the correla-
tions between the first sufficient predictor obtained using MSIR and the original
predictor under the three metrics, which demonstrate a relatively clear bimodal
pattern. By Figure 3, a large value of the first MSIR sufficient predictor indi-
cates the presence of gout in a subject. As such, we expect the rightmost peaks
of the three histograms in Figure 4 to correspond to OTUs associated with gout.
To confirm this, we note that Guo et al. (2016) identified the OTUs of the geni
Coprococcus (78 in total) and Barnesiella (14 in total) as those most associated
with subjects without gout and those with gout, respectively. The OTUs of these
two geni have been colored in the rugs below the histograms of Figure 4, and are
indeed roughly divided between the two modes of the histograms, with Copro-
coccus concentrating to the left peak and Barnesiella to the right. This effect is
most pronounced in the middle histogram, corresponding to the Hamming dis-
tance, which is in line with our result that the Hamming distance gives the best
performance of the three distance metrics.
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Supplementary Material

The Supplementary Appendix contains the proofs of our theoretical results.
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