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Abstract 

This paper examines the effect of member grouping and selected pool size of discrete cross-sections on 

the optimal design of a large-scale steel frame structure. Member grouping is commonly applied to 

structural optimization problems to significantly reduce the solution space of candidate designs and 

improve the efficiency and robustness of the search to achieve near-optimum solutions.  At the same 

time, discrete sets of cross-sectional steel shapes (profile lists) assigned to a particular member group are 

often limited to a subset of cross-sections to further limit the search space and ensure practicality in the 

final design. However, for large-scale structural systems (e.g., tall buildings), limiting the number of 

member groups coupled with the exclusion of lighter cross-sectional shapes may significantly impact the 

quality of the optimal solution (i.e., weight of the frame). This work presents a case study of a large-scale 

three-dimensional (3D) steel frame to evaluate the sensitivity of the optimal design to practical 

combinations of member groups and steel profile lists used in multi-story steel frames. A recently 

developed metaheuristic search algorithm was applied to the steel frame and independent optimization 

experiments were performed for 16 unique member grouping and profile list combinations (cases) to 

quantify their influence on the variability and quality of the optimal design. Results reveal a 33% 

difference in the optimal (final) weight between member group and profile list combinations producing the 

smallest and largest solution spaces. Yet, the lightest design (corresponding to the largest solution space) 

produced a greater number of unique steel shapes and required significantly higher computational cost.  

© 2022 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0141029622002371
Manuscript_665d1025de5fc4f065b35c3c067eec10

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0141029622002371


 

2 of 35 

 

1 Introduction 

Discrete member sizing optimization of civil engineering structures is a well-accepted approach for 

automating the design process to minimize material cost while meeting code-based (or user-based) 

performance demands related to the survivability, serviceability, and constructability of the structural 

system. Discrete sizing optimization entails selecting the lightest cross-sectional section from a discrete 

set (i.e., list) of structural shapes (e.g., W-Shapes). From a structural optimization standpoint, it is often 

desirable to limit the number of available shapes down to a subset of cross-sections to reduce the size of 

the design space (Barbosa et al., 2008; Lemonge et al., 2011; Carvalho et al., 2018; Peng et al., 2021) 

and improve the efficiency of the structural optimization algorithm. For the most part, the reduction of the 

design domain is, at least in part, performed based on prior knowledge regarding the behavior of the 

structural system (e.g., identifying structural members undergoing elevated internal forces). However, for 

large and complex structural systems (e.g., tall buildings), the exclusion of lighter cross-sectional shapes 

may significantly impact the quality of the optimal solution (i.e., weight of the frame).  

The effect of limiting the set of available cross-sections is magnified when structural members are 

grouped together during the structural optimization process, which is readily implemented in literature to 

reduce the number of design variables in the optimization problem (e.g., Chan and Grierson, 1993; Chan 

and Chui, 2006; Walls and Elvin, 2010b; Spence and Kareem, 2014). In this case, selecting a heavier 

section for one member will affect all the members in the group. When performing member sizing on real-

size multi-story framed structures, it is common practice to establish member groups according to their 

spatial orientation (e.g., vertical, horizontal, or diagonal members) and/or relative location within the 

structure. For instance, corner columns of consecutive stories may be grouped together to constitute one 

member group, while all beams supporting a particular floor may be grouped to have the same cross-

section. Limiting the number of member groups helps reduce the search space of possible designs and, 

at the same time, often simplifies the fabrication process and constructability of the structural system. 

However, reducing the number of member groups may lead to heavier designs. For example, the 

structural capacity (e.g., load-to-capacity ratio) of a particular member group will be controlled by only a 
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few members experiencing the highest internal stresses in the group, while other members may be 

under-stressed. Therefore, strategically selecting the number of member groups (i.e., design variables) 

coupled with careful restriction of the pool size of available structural steel sections can have a significant 

impact on the quality of the optimization results. Yet, most studies on discrete sizing optimization of large-

scale steel frames only consider a single member grouping arrangement and profile list of steel shapes 

(e.g., Hasançebi et al., 2011; Kaveh and Bolandgerami, 2017; Kaveh, 2021). 

The main objective of this study is to offer a detailed examination of member grouping effects and the 

impact of limiting the set of available steel shapes (i.e., profile list) on a large-scale three-dimensional 

(3D) steel frame structure. A series of independent optimization experiments were performed on a 20-

story steel frame for 16 combinations of member grouping and steel profile list arrangements. The work 

applied a recently developed hybridized particle swarm optimization (PSO) and the big bang-big crunch 

(BB-BC) algorithm equipped with a discrete stochastic search scheme, which was specifically calibrated 

for optimizing large-scale steel frames (Fernández-Cabán and Masters, 2018). The frame consisted of 

1040 structural members. Due to the large size of the frame and the vast domain of possible designs (i.e., 

search space), the work leveraged the Accelerating Computational Research for Engineering and 

Science (ACRES) high-performance computing (HPC) cluster at Clarkson University and parallel 

processing to maintain the rigor of the search while significantly minimizing computational time. A detailed 

comparison of the optimal design found for different member grouping and profile list configurations along 

with statistical measures of the variability of the results is reported and discussed. Finally, conclusions 

and future research opportunities are highlighted.  

2 Background 

One of the main challenges of metaheuristics and population-based algorithms when applied to the 

design optimization of large-scale civil structures is performing a robust and efficient search of the vast 

domain of candidate designs and arrive at near-optimal solutions in a reasonable amount of 

computational time (Saka and Geem, 2013; Azad, 2021; Kaveh, 2021; Kashani et al., 2021). When sizing 

the structural members of real-world framed structures, the size of the (discrete) solution space can be 
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dramatically reduced by collecting structural members into groups (i.e., limiting the number of design 

variables) or bounding the discrete set of available structural shapes to only a subset of cross-sections. 

Figure 1 shows a schematic of a typical member grouping arrangement adopted in the optimization of 

multi-story 3D steel frames, where the structural members are collected into  total groups and a unique 

set of discrete steel shapes () are assigned to different types of structural members.  

 

Figure 1. Illustration of member grouping and discrete set of available steel sections for a 3D multi-story 

steel frame. 

 The number of possible candidate designs (i.e., size of search space) as a function of  and 

 is illustrated in Figure 2. The surface plot was created assuming that each member group can select 

from a list of  discrete steel shapes. For instance, the American Institute of Steel Construction (AISC) 

manual (2016) lists 297 distinct wide (W) flange sections. If all member groups can select from any of 

these W-shapes, then the size of the search space would be 297. Increasing the search space can be 

desirable to improve the quality of the solution and potentially achieve a significantly lighter structural 
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system—i.e., assuming the optimization algorithm is robust enough and is not prone to getting trapped in 

a local optimum when applied to large-scale problems (Kaveh, 2021). At the same time, a larger search 

space could lead to a greater number of unique steel profiles and result in a more impractical and 

expensive design and increased complexity during construction (Barbosa et al., 2008; Lemonge et al., 

2011; Boscardin et al., 2019). Therefore, arriving at optimal member grouping arrangements to reduce 

the overall cost of the structural systems is a non-trivial process, especially for large and complex 

structural systems.    

 

Figure 2. Size of solution space as a function of total number of member groups () and profile list of 

available discrete steel sections ().  
 Previous studies have addressed the important role member grouping plays in the optimal design 

(e.g., cost) of civil structures. Grierson and Cameron (1987) developed a computer program called 

Structural Optimization Design & Analysis (SODA) for the automatic member sizing of steel frames. The 

software incorporated member groupings where the user was able to critique the final design and apply 

engineering judgment and heuristics to make changes to the design. Biedermann and Grierson (1995) 

subsequently introduced a Genetic Algorithm (GA) coupled to SODA to automate the design of building 

structures and later applied a neural network and heuristic design knowledge to achieve desirable 

member groupings of steel frame structures (Biedermann, 1997; Biedermann and Grierson, 1996).  
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Most of the literature regarding member grouping has primarily focused on pin-connected (i.e., 

trussed) structures (e.g., Galante, 1996; Barbosa et al., 2008; Toğan and Daloğlu, 2008). For example, 

Galante (1996) developed a multi-objective GA and Shea et al. (1997) proposed a shape annealing 

method with dynamic member grouping for the optimal design of trussed structures. More recently, 

Barbosa and Lemonge (2005) proposed a GA encoding to automatically satisfy a class of cardinality 

constraints, where the algorithm provided the designer with the possibility of directly controlling only the 

number of discrete cross-sectional shapes to be used in each problem and letting the GA search derive 

the grouping of the members. Cardinality constraints were successfully applied in future works to multiple 

benchmark truss problems considering sizing and shape/sizing optimization (Barbosa et al., 2008; 

Lemonge et al., 2010).  

Few studies can be found in literature concerning the optimal member grouping for steel frame 

structures. Notable studies include the work of Walls and Elvin (2010a), which presented an automated 

algorithm for optimizing the grouping of discrete structural members of two-dimensional structures 

carrying axial and/or bending forces. The algorithm grouped members based on their mass per unit 

length and performed an exhaustive search of permutations to find the optimal arrangement of member 

groups. Lemonge et al. (2011) adopted a GA encoder approach originally used in pin-connected 

structures (Barbosa et al., 2008; Lemonge et al., 2010) that enforced cardinality constraint to search for 

the optimal member group arrangement of planar frames while grouping beams and columns 

independently. The current study expands on previous work by systematically examining the effect of 

selecting member groups and pool size of discrete steel sections commonly used in the design of large-

scale three-dimensional (3D) steel frames on the optimal design.  

3 Discrete member sizing optimization of 3D steel frames 

The discrete member sizing optimization problem for the design of large-scale multi-story 3D steel frames 

consists of finding the optimal discrete set of cross-sectional shapes that will minimize the weight of the 

frame with a given topology. In this study, the optimal set of optimal steel shapes are selected from a list 

of standard wide-flange (W) shape sections tabulated in the American Institute of Steel Construction 
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(AISC) manual (2016). The optimization problem is constrained by multiple code-based (e.g., strength 

and drift limit states) to ensure that the optimal design provides adequate lateral stiffness to the system 

and user-specified constraints to satisfy constructability requirements. Strength checks of the structural 

members were performed using Load and Resistance Factor Design (LRFD) specifications from AISC 

(2016). Mathematically, the optimization problem can be formulated as follows: 

Find   

   , , … ,  (1) 

to minimize   

    



 (2) 

subject to   

     1  0							  1,2, … ,  (3) 

     1  0						  1,2, … ,  (4) 

     1  0						  1,2, … ,  (5) 

 1    , 						  1,2, … ,  (6) 

 

where  is a vector of integers representing the sequence numbers of standard steel (W-Shape) sections 

assigned to  design variables (i.e., member groups).   is the weight of the frame;  and  are 

the density and cross-sectional area of member , respectively;  is the length of member  and  is 

the total number of members; Eq. (6) constrains the bounds of each design variable entry ; , is the 

total number of standard steel sections in member group . Eq. (3) and (4) represent inequality constraints 

for strength (Eq. 3) and serviceability (Eq. 4) requirements based on AISC-LRFD specifications (2016), 

while Eq. (5) represent geometric constraints to ensure all the connections between beam and column 

members are feasible. In Eq. (3),  is the load-capacity ratio defined as: 
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  

  

89   
 		if		

  0.2	
2  

 
 		if		

  0.2  (7) 

where  is the required axial strength (i.e., tension or compression),  and  are the required 

flexural strength for strong and weak axis bending, respectively;  is the available axial strength;  and 

 are the available flexural strength for strong and weak axis bending, respectively;  is the resistance 

factor for bending equal to 0.90;  is the axial resistance factor, which equals 0.90 for compression and 

tensile yielding strength limit states.  

Eq. (4) defines the inequality constraint for inter-story drift requirement of multi-story buildings, 

where  can be expressed as follows:  

      							  1, … ,  (8) 

where     is the relative lateral displacement of adjacent stories;  is the allowable interstory 

drift limit;  is the total number of stories. In studies involving 3D frame structures, Eq (8) is typically 

applied to the orthogonal  and  horizontal building directions. 

 In addition to strength and drift constraints, geometric constraints were imposed on the 

optimization problem to ensure the optimal design achieves feasible beam-column connections. In Eq. 

(5),   ,  ,, where: 

	 ,   						  1,2, … , 	 (9) 

	 ,  ′  2 						  1,2, … , 	 (10) 

The dimensional parameters presented in Eqs. (9) and (10) are depicted in Figure 3, in which , ′, 

and  are the flange width for beam 1 (B1), beam 2 (B2), and the column member, respectively;  and 

 are the depth and flange thickness of the column member, respectively.  Eq. (9) ensures the flange 

width of beam B1 does not exceed the flange width of the column, while Eq. (10) enforces the flange 
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width of beam B2 to not exceed the difference between the depth of the column and the flange width of 

both sides of the column. 

 

Figure 3. Schematic of dimensional parameters used for the geometric constraints of beam-column 

connections. 

A penalty function approach (Azad and Hasançebi, 2015; Fernández-Cabán and Masters, 2018; 

Azad, 2021) is applied to transform the constrained optimization problem presented in Eqs. (1) – (6) into 

an unconstrained one: 

 ,   1   (11) 

where  is a penalty coefficient (for this study,  = 0.1), and  is the penalty function defined as 

	   max0, 	 (12) 

	    











	 (13) 
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4 Optimization algorithm 

This study employs a recently developed explore-then-exploit (ETE) metaheuristic optimization strategy 

(Fernández-Cabán and Masters, 2018). The algorithm hybridizes two well-established metaheuristic 

strategies, namely particle swarm optimization (PSO) and big bang-big crunch (BB-BC). PSO is a 

metaheuristic technique which mimics the social behavior of organisms such as bird flocking and fish 

schooling (Kennedy and Eberhart, 1995) and has proven effective in the global investigation (i.e., 

exploration) of large design domains. The BB-BC algorithm was originally developed by Erol and Eskin 

(2006) and was inspired by one of the theories of evolution of the universe. Since then, improved, and 

hybridized versions of the original BB-BC algorithm have been developed and effectively applied to 

optimize civil engineering structures (e.g., Camp, 2007; Kaveh and Talatahari, 2010; Hasançebi and 

Azad, 2014). In this study, the ETE updating scheme used for the generation of new candidate designs 

follows: 	
   round  1    				for			  1,… , (14) 

where  is the position vector of particle  at iteration   1;  is the position of the best solution found 

among all candidates up to iteration  (i.e., global best);  is the best position found by particle  up to 

iteration  (i.e., particle best);  is a control parameter that linearly increases over a user-specified 

number of generations to control the relative influence of  and ;  is a normal distribution operator 

from the BB-BC algorithm (Erol and Eksin, 2006). In this study,  is defined as:  

   round 	     					  1,… ,  (15) 

where 	is a random number from a standard normal distribution; 	is a parameter for controlling the size 

of the search space;  is an exponential parameter; 		and  are the position vectors of the upper 

and lower bounds of each design variable, respectively. After each iteration, 	is adjusted to increase the 

influence of the global best solution () on the swarm, thus effecting a gradual transition from exploration 

to exploitation of the search space. In this study, is linearly increased after each iteration  following: 
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        1   1   (16) 

where  is the maximum number of iterations;  is a parameter which defines the iteration when  will 

transition from a linear variation to a final constant value;  and  are the initial and final values, 

respectively. The rounding function included in Eqs. (14) and (15) converts the continuous design variable 

into discrete integers representing a particular steel cross-section in the profile list of W-Shapes. A 

flowchart of the ETE algorithm is illustrated in Figure 4. 
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Figure 4. Flowchart of ETE optimization algorithm for discrete member sizing optimization of steel frames. 

Metaheuristic design optimization of large-scale steel frames typically demands many iterations 

(Kaveh, 2021) to arrive at near-optimal solutions. From Eq. (15), it is clear that  approaches 0 as  

becomes large. If   0 and   1.0, the new particle  will remain in the same position as the global 

best , according to Eq. (14). Additionally, if every entry in  is equal to or greater than 0,  is certain 

to produce a worst solution than . To address this, a discrete stochastic exploitation scheme (Figure 5) 
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introduced in Fernández-Cabán and Masters (2018) is integrated into the ETE algorithm during late 

stages of the optimization process. 

 

Figure 5. Discrete stochastic exploitation scheme for recalculating . 
5 Case Study 

A 20-story braced steel space (3D) frame structure studied by Hasançebi et al. (2011) was selected to 

investigate the effect of member grouping and limiting the set of available profile lists on the optimal 

solution. Isometric and plan views of the steel frame are shown in Figure 6. The frame comprises 416 

joints and 1040 structural members. The lateral force resisting system consists of K-type bracing located 
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at the mid-bay in each side of the building envelope. The plan building dimensions are 45 ft (13.7 m) × 60 

ft (18.3 m) and all floors are 12 ft (3.66 m) tall. Strength requirements were imposed on all structural 

members according to AISC-LRFD specifications [Eq. (7)]. Additionally, horizontal joint displacements in 

the  and  directions were limited to 1/500 of the building height (/500) while mean inter-story drift limit 

for each floor was set to 1/400 of the story height (ℎ) for all floors [i.e.,  = ℎ/400 in Eq. (8)]. Finally, 

geometric constraints [Eqs. (9) – (10)] were enforced between beam and column members framing into 

each other at all joints. A modulus of elasticity of  = 29,000 ksi (200 GPa) and yield stress of  = 50 ksi 

(344.7 MPa) were assumed for all structural steel members. For compressive strength calculations, the 

effective length factor for all beam, column, and bracing members was taken as unity. 

 

Figure 6. Isometric view (a), plan view (b), and loading condition of 3D 20-story steel frame. 
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5.1 Design loads 

The 20-story steel frame was subjected to both gravity loads and lateral wind loads acting along the two 

principal building axes (i.e.,  and ), as shown in Figure 6. The gravity loads consisted of uniform area 

dead () and live () loads of 60 lb/ft2 (2.88 kPa) and 50 lb/ft2 (2.39 kPa) respectively. The gravity loads 

were applied on the entire floor area of all 20 stories. The following basic load combinations from ASCE 

7-16 (2016) were considered for LRFD strength design checks of the structural steel members:  

 1.4 (17) 

 1.2  1.6 (18) 

 1.2  		0.5 (19) 

 1.2  		0.5 (20) 

 1.2  1.0   (21) 

 1.2  1.0   (22) 

 0.9  1.0 (23) 

 0.9  1.0 (24) 

In Eqs. (19) – (24),  and  are factored wind loads in the  and  direction, respectively. Design wind 

pressures were estimated according to ASCE 7-16 from: 

   0.00256 (25) 

where  (lb/ft2) is the velocity pressure at height  (ft),  is the exposure coefficient,  is the 

topographic factor,  is the wind directionality factor,  is the ground elevation factor, and  is the basic 

wind speed (in mph) corresponding to a 3-sec gust at 33 ft (10-m) above ground in Exposure C (i.e., open 

terrain). In this study,  was computed based on Exposure B,  = 1.0,  = 0.85,  = 1.0, and  = 105 

mph (46.94 m/s). The design wind pressure  for the windward and leeward building faces were 

obtained from: 

    (26) 

where  = 0.85 (i.e., gust factor), and  is the external pressure coefficient which was set to 0.8 and –

0.5 for the windward and leeward faces respectively. 
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ASCE 7-16 (2016) LRFD load combinations require multiple structural analyses to independently 

apply the design loads (wind-, wind-, dead, and live) on the steel frame. In the present work, three 

structural analyses were performed to assess the fitness of each candidate design (i.e., particle) under 

dead and wind loads along the two orthogonal directions (i.e.,  and ). Live loads were determined from 

dead load analysis since both forces were applied on the structure in the same manner and only the 

magnitude was scaled accordingly.  

5.2 Parallel processing and optimization parameters 

Linear elastic structural analysis and the ETE optimization algorithm were coded and executed in 

MATLAB. Due to the relatively large size of the frame and the vast domain of candidate designs (i.e., 

search space), a portion of the optimization runs performed on the frame were offloaded to the ACRES 

high-performance computing (HPC) cluster at Clarkson University. The ACRES cluster consists of 62 

compute-nodes, 2440 CPU cores, 8TB of total memory, and four (4) GPUs—for a total computing power 

of more than 160 teraflops. Structural analysis and optimization scripts were sent to multiple workers (i.e., 

nodes) on the ACRES cluster as batch jobs and parallel processing—using the parfor command in 

MATLAB—was implemented to simultaneously evaluate candidate designs and reduce computational 

time. The bulk of the optimization runs were performed using 6–8 ACRES workers (i.e., nodes).  

Additional optimization runs were performed from a personal computer—Intel(R) Core(TM) i7-10700K 

CPU @ 3.80 GHz with 64 GB RAM—and parallel processing was also applied using all available cores 

on the local machine.  

 In all problems, optimization parameters were set to  = 100,  = 0.1,   0.5,   1.0,	  0.6, 

 = 0.25, and  = 3. Parameters , , and  are specific to ETE and their values control the exploration 

and exploitation of the algorithm at different stages of the optimization process.  The parameter  was 

chosen so that equal influence from  and  was given to initial candidate designs, while  was set to 

unity to limit the search around the global best during late stages of the optimization process. The 

population size of  and  were chosen based on values selected from other population-based 

algorithms found in recent research studies of large-scale steel frames (e.g., Azad and Hasançebi, 2015; 
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Azad, 2021; Kaveh, 2021). Finally, the  parameter in Eq. (16) selected to promote exploration of the 

design space during the first fourth ( 	/4) of the optimization process and was calibrated during 

preliminary optimization runs based on  and . Fernández-Cabán and Masters (2018) demonstrated 

that the final (optimal) solution was relatively insensitive to the value of  in the case of three multi-story 

steel frames, although a faster improvement in the objective function (i.e., frame weight) was observed 

when selecting lower  values (i.e., limiting the exploration stage and prolonging the exploitation stage). 

5.3 Member grouping 

The effect of member grouping was investigated by modifying the total number of member groups (MG) 

used to optimize the 20-story steel frame. Specifically, four MG cases consisting of 60, 70, 90, and 100 

total member groups (i.e., design variables) were examined and are illustrated in Figure 7. Structural 

symmetry about the principal  and  axes of the building were imposed on the four MG cases. Members 

on consecutive stories were collected into groups according to their type and spatial location on the 

structure, as shown in Table 1. The total number of member groups for a specific MG case can be 

calculated as the sum of the member groups per floor multiplied by half the number of floors of the 

building. For instance, the total number of groups for MG060 is 6 × 20 stories/2 = 60 groups.  
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Figure 7. Member group cases considered for the 20-story steel frame. 

 Member group MG060 corresponds to the grouping arrangement adopted in Hasançebi et al. 

(2011), where all interior beams share the same member group and perimeter beams form a separate 

member group. The inner columns, corner columns, and remaining exterior columns make up three 

unique member groups, respectively, resulting in 30 total column groups throughout the building (i.e., 3 × 

20 stories/2 = 30). Similar arrangements to MG060 are commonplace in literature (e.g., Hasançebi et al., 

2011; Kaveh and Bolandgerami, 2017; Kaveh, 2021) for the optimal design of large-scale steel frames. 

Member group MG070 resembles MG060 except that exterior column groups (North-South and East-

West) now constitute two distinct member groups in MG070. MG060 and MG090 share the same number 

of column groups but MG090 has five beam member groups per story. Specifically, the perimeter beams 

are all part of one member group (this is the case for all MG arrangements), and the inner beams are 

divided into four member groups with parallel beams being grouped together (Figure 7). Finally, group 

MG100 has four unique column groups per story where inner columns, corner columns, and exterior 
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column groups (North-South and East-West) are part of a separate member group, resulting in 40 total 

column groups for MG100. In all four cases, K-bracing members are collected into a single member 

group. Thus, in each case, there are 10 total bracing groups. 

Table 1. Structural member grouping (i.e., design variable) cases considered for the 20-story frame. 

Structural Members 
Member Group ID 

MG060 MG070 MG090 MG100 

Inner Beams (East-West) 1  1 1 1 

Inner (Core) Beams (East-West) 1 1 3 3 

Inner Beams (North-South) 1 1 4 4 

Inner (Core) Beams (North-South) 1 1 5 5 

Perimeter Beams 2 2 2 2 

Corner Columns 3 3 6 6 

Exterior Columns (East-West) 4 4 7 7 

Exterior Columns (North-South) 4 5 7 8 

Inner Columns 5 6 8 9 

K-Bracing Members 6 7 9 10 

Total Member Groups (Design Variables) 60 70 90 100 

5.4 Discrete set of steel profiles 

A profile list (PL) constitutes a discrete set of available structural steel shapes that can be used as 

framing members. Table 2 reports the four PL cases considered in this study. The first profile list (PL1) is 

the largest pool size of available structural shapes, with 263 standard W-Shape steel sections ranging in 

size from W8–W44 for column, beam, and bracing member groups. This profile list (PL1) combined with 

member group MG100 results in the largest design space of all MG/PL combinations considered. The 

second profile list (PL2) includes a subset of 117 steel shapes ranging in size from W10–W18 for column 

members and 133 steel shapes ranging from W21–W44 for beam and bracing members. This case 

allows for a relatively thorough search of possible steel shapes but remains limited enough to be 

conservative with respect to computational time. Profile list PL3 further reduces the profile and only 

contains 70 W-shapes ranging from W14–W18 for the columns and 72 steel shapes ranging in size from 

W21–W30 for the beams and bracing members. Finally, profile list PL4 is the smallest profile list 

consisting of 36 W14 steel shapes that can be assigned to column members and 21 W24 steel shapes to 



 

20 of 35 

 

size the beams bracing members. Profile list PL4 was chosen in this study given the prevalence in 

previous studies (Chan and Grierson, 1993; Chan and Chui, 2006; Walls and Elvin, 2010b; Spence and 

Kareem, 2014). 

Table 2. Profile list cases considered for the 20-story frame. 

W-Shape 
Profile List 

W-Shapes Steel Shapes 

Columns Beams K-Bracing 

PL1 W8×10–W44×335 (263) W8×10–W44×335 (263) W8×10–W44×335 (263) 

PL2 W10×12–W18×311 (117) W21×44–W44×335 (133) W21×44–W44×335 (133) 

PL3 W14×22–W18×311 (70) W21×44–W30×391 (72) W21×44–W30×391 (72) 

PL4 W14×22–W14×730 (36) W24×55–W24×370 (21) W24×55–W24×370 (21) 
 

6 Results and Discussion 

A total of 105 independent ETE optimization runs were performed on the 20-story steel frame. First, 16 

experimental cases representing all possible combinations between the four member groups (MG) and 

four profile list (PL) cases were considered. Due to the stochastic nature of the ETE algorithm, each case 

was repeated five times to obtain a statistical measure of the variability observed in the final design (i.e., 

weight). This generated an initial testing matrix of 4 member groups (MG) × 4 profile lists (PL) × 5 

runs/case = 80 independent runs. The maximum number of iterations was chosen as the termination 

criteria and set to  = 500 for the first 80 test runs. An additional series of optimization experiments 

were conducted to further investigate convergence of the ETE algorithm, particularly for the MG case with 

the largest number of design variables (i.e., MG100). 

6.1 Initial optimization runs 

Figure 8 includes the iteration history of the penalized weight () for all 16 combinations of member 

grouping and W-shape profile list cases. Each curve represents the mean value of  obtained from 

five independent ETE optimization runs. The four subplots in Figure 8 all reveal a steeper drop in  for 

MG060 and MG070 at early iterations ( < 80), while member groups with greater number of design 

variables (i.e., MG060 and MG070) consistently show a much shallower descent and slower improvement 
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of . Further, it is evident from Figure 8a (PL1) that the final penalized weight at  = 500 shows 

high variability in the results and the final solution seems to be strongly dependent on the number of 

member groups. For PL1, MG090 and MG100 settled on final weights of approximately 825 kips (3.67 

MN), while MG060 was able to achieve a final mean weight of 658.6 kips (2.93 MN). It is expected for 

cases with a larger number of member groups (e.g., MG100) to produce lighter designs since they are 

less constrained on the different number steel shapes that can be selected. This indicates that  may 

need to be increased for cases with a larger number of member groups (i.e., MG090 and MG100) to 

provide ETE algorithm sufficient time to find solutions that are closer to the global optimum. Conversely, 

Figure 8d (PL4) shows how all member group cases rapidly converge to very similar solutions at  ~ 200. 

Figures 8b and 6c illustrate the two PL cases with design spaces that lie between the PL1 and PL4 

cases. Comparable results are observed in Figure 8b for the four MGs with only slight differences in the 

final penalized weight. Like PL1, MG060 generated the best final weight for PL2. Finally, the subplot 

corresponding to PL3 shows more tightly packed  curves for the four MG cases when compared to 

PL2. Additionally, the four  curves in Figure 8c appear to converge on an optimal design at  > 400. 
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Figure 8. ETE iteration histories of mean penalized weight  for W-shape profile lists (a) PL1, (b) PL2, 

(c) PL3, and (d) PL4. 

 Table 3 summarizes the statistics from five independent ETE runs of  obtained in each of the 

16 cases executed. It is evident that the variability of the final weight is noticeably smaller when the set of 

available steel shapes is reduced to a subset of discrete sections for  = 500. For instance, the 

coefficient of variation (CoV) for PL1 ranged between 2.098–7.923% while PL4 cases were CoV = 0.084–

0.235%. A representative ETE iteration history for the independent runs corresponding to PL4/MG100 is 

depicted in Figure 9. Yet, the lowest penalized weight from all 80 runs was achieved by PL1/MG060 ( 
= 624.9 kips (2.78 MN)). At the same time, the worst run (i.e., heaviest design) was produced by 

PL1/MG100 ( = 938.4 kips (4.17 MN)), which represents the case with the largest design space. The 

ETE iteration for this worst run is illustrated in Figure 10.  For most optimization runs, strength, drift, and 

geometric constraints were satisfied when the final design was reached (at ) and only negligeable 

violations ( < 0.02) were observed in some cases. The number of structural analyses for each 

optimization run was 3 analyses (see Section 5.1) × 100 particles × 500 iterations = 150,000. 

 

 

Table 3. Final penalized weights found by the ETE algorithm for the 20-story frame ( = 500). 

Run ID 
Profile 

List 
Member 
Group  

Final Penalized Weight, , kips (MN) Standard 
Deviation, 
kips (MN) 

CoV 
 (%) Maximum 

(worst run) 
Mean 

Minimum  
(best run) 

T001–T005 

PL1 

MG060 677.7 (3.015) 658.6 (2.930) 624.9 (2.780) 19.1 (0.085) 2.908 

T006–T010 MG070 749.7 (3.335) 712.5 (3.169) 680.8 (3.028) 21.9 (0.098) 3.080 

T011–T015 MG090 851.3 (3.787) 825.6 (3.672) 807.6 (3.592) 17.3 (0.077) 2.098 

T016–T020 MG100 938.4 (4.174) 824.8 (3.669) 734.6 (3.268) 65.4 (0.291) 7.923 

T021–T025 

PL2 

MG060 668.6 (2.974) 664.3 (2.955) 661.6 (2.943) 2.43 (0.011) 0.365 

T026–T030 MG070 679.0 (3.020) 673.5 (2.996) 668.2 (2.973) 3.97 (0.018) 0.590 

T031–T035 MG090 693.6 (3.085) 680.8 (3.028) 661.9 (2.944) 10.9 (0.049) 1.603 

T036–T040 MG100 699.8 (3.113) 686.5 (3.054) 674.2 (2.999) 10.3 (0.046) 1.497 

T041–T045 

PL3 

MG060 683.2 (3.039) 677.1 (3.012) 672.5 (2.992) 3.68 (0.016) 0.544 

T046–T050 MG070 681.0 (3.029) 679.3 (3.022) 676.2 (3.008) 2.01 (0.009) 0.295 

T051–T055 MG090 682.3 (3.035) 678.0 (3.016) 674.2 (2.999) 3.46 (0.015) 0.511 
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T056–T060 MG100 693.3 (3.084) 680.6 (3.027) 674.3 (2.999) 6.61 (0.029) 0.972 

T061–T065 

PL4 

MG060 785.6 (3.494) 784.5 (3.490) 783.5 (3.485) 0.66 (0.003) 0.084 

T066–T070 MG070 786.2 (3.497) 783.4 (3.485) 780.5 (3.472) 1.83 (0.008) 0.233 

T071–T075 MG090 786.7 (3.500) 785.5 (3.494) 784.7 (3.490) 0.94 (0.004) 0.120 

T076–T080 MG100 788.1 (3.506) 784.5 (3.490) 782.8 (3.482) 1.84 (0.008) 0.235 
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Figure 9. ETE iteration histories of (a) unpenalized weight, (b) penalty function, and (c) penalized weight 

corresponding to optimization run T080-MG100-PL4-R04. 

 

Figure 10. ETE iteration histories of (a) unpenalized weight, (b) penalty function, and (c) penalized weight 

corresponding to optimization run T018-MG100-PL1-R03. 

The set of optimal solutions found from the initial series of optimization runs were generally lighter 

that the optimal design reported in Hasançebi et al. (2011) for the same 20-story frame. Yet, comparison 



 

25 of 35 

 

between the two studies is problematic due to differences in design procedures and profile list of steel 

shapes included in the optimization. For instance, Hasançebi et al. (2011) used ASD-AISC (1989) 

specifications and load combinations, and a lower yield strength was assumed for strength checks 

compared to the present work (  36 ksi vs.   50 ksi). Further, the designation bounds for the pool of 

W-shapes assigned to beams and bracing members was not reported. Lastly, the present work chose a 

lower overall lateral deflection limit than the Hasancebi et al. (2011) study. However, it was concluded 

that the difference in overall drift limits (/400 vs. /500) was deemed irrelevant since the optimal 

designs were controlled by inter-story drift, stress ratios, and/or geometric constraints. However, this may 

not be the case for more slender systems where the overall drift constraint may govern.  

6.2 Dependence of  on optimal design 

Statistical results obtained from the initial series of optimization runs indicate that when the number of 

member groups (i.e., design variables) was reduced, the ETE algorithm consistently converged to near-

optimal solutions with minimal fluctuations in the final design over multiple runs.  However, significantly 

larger design domains (e.g., PL1/MG100 combination) revealed greater variability in the final solutions, 

thus suggesting that convergence of the ETE algorithm for these runs required a greater number of 

iterations (). This section examines the effect of   on the quality of the final solution for solution 

spaces of considerably larger sizes. Table 4 lists the  used to execute the second series of ETE runs 

conducted on the 20-steel frame.  

Table 4. Testing matrix for second series of ETE optimization runs performed on the 20-story frame. 

Run ID W-Shape Profile List Member Grouping  No. of Independent Runs 

T081–T085 PL1 MG100 2000 5 

T086–T090 PL1 MG100 4000 5 

T091–T095 PL2 MG100 3000 5 

T096–T100 PL3 MG100 2000 5 

T101–T105 PL4 MG100 1000 5 
 

 Figure 11 depicts the final weight  as a function of  for all ETE optimization runs 

corresponding to profile list PL1 and MG100 grouping configuration. This PL/MG combination represents 
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the largest design space from all cases considered in this study. A dramatic reduction in both the 

variability and quality of  can be observed in Figure 11 when  is increased. For instance, the 

best run of  was reduced by 33.6%—734.6 kips (3.27 MN) vs. 487.9 kips (2.17 MN)—when  was 

increased from 500 to 4000. Further, the CoV dropped from 7.923 % ( = 500) to 1.019 % ( = 

4000), as shown in Tables 3 and 5, respectively. However, this came at the expense of increased 

computational time from 4.4 hr ( = 500) to 29.7 hr ( = 4000). Each of the five optimization runs 

with  = 4000 (T086–T090) required 1.2	×	106 structural analyses (i.e., 3 analyses × 100 particles × 

4000 iterations = 1.2	×	106). When comparing weight statistics for PL2/MG100 executed over  = 500 

(Table 3) and  = 3000 (Table 5), only a 3.22% reduction in the mean final weight  was observed. 

Results reported in Table 5 for PL3 and PL4 indicate that negligible improvements in weight statistics 

occur when   is increased.    

 

 

Figure 11. Final weights found by ETE algorithm for over multiple  values (PL1 and MG100). 

Table 5. Statistics of final penalized weight for the second series of ETE optimization runs performed on 

the 20-story frame. 

W-Shape 
Profile List 

 
Final Penalized Weight, ,	kips (MN) Standard 

Deviation 
(kips) 

Coefficient of 
Variation (%) Maximum 

(worst run) 
Mean 

Minimum  
(best run) 
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PL1 4000 499.5 (2.222) 493.2 (2.194) 487.9 (2.170) 5.025 (0.0223) 1.019 

PL2 3000 669.0 (2.976) 664.4 (2.955) 658.0 (2.927) 4.858 (0.0216) 0.731 

PL3 2000 688.9 (3.064) 682.0 (3.034) 672.8 (2.993) 6.516 (0.0290) 0.955 

PL4 1000 784.6 (3.490) 782.7 (3.481) 780.6 (3.472) 1.447 (0.0064) 0.185 

 

Mean  iteration histories of runs T081–T105 are plotted in Figure 12. Weight optimization curves 

for all four PLs appear to converge to near-optimal solutions. In the case of PL1 and MG100, the mean 

 shows a steady (nearly linear) improvement from iteration 1000 up to  ~ 3200 before plateauing 

toward the final solution— = 493.2 kips (2.19 MN). The persistent improvement in  is primarily 

boosted by the discrete stochastic routine integrated into the ETE algorithm during late stages of the 

optimization process (Fernández-Cabán and Masters, 2018). The best run (i.e., lightest design) from 

PL1/MG100 (T089-MG100-PL1-R04) is illustrated in Figure 13. 

 

Figure 12. ETE iteration histories of mean penalized weight for the four PL cases (MG100). 
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Figure 13. ETE iteration histories of (a) unpenalized weight, (b) penalty function, and (c) penalized weight 

for optimization run T089-MG100-PL1-R04. 

 Figures 14 and 15 display the final member sizes, inter-story drift, and load-capacity ratios () 
for independent runs T089-MG100-PL1-R04 ( = 4000) and T105-MG100-PL4-R05 ( = 1000). 

The linewidth of the structural members is proportional to the depth of the final W-Shapes found by the 

ETE algorithm. Run T089-MG100-PL1-R04 (Figure 14) shows how, for some stories, the inter-story drift 
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along the  direction reached the drift limit (ℎ/400) and a significant number of  values for column, 

beam, and bracing members approached (or reached) the capacity limit ( = 1.0). In contrast, inter-

story drift values for test T105-MG100-PL4-R05 (Figure 15) are comfortably short of the inter-story drift 

limit and only column members show  ~ 1.0, while beam and bracing members are well below the 

 limit. Yet, the relative member sizes illustrated in Figure 14 suggests a rather arbitrary arrangement 

of steel shapes which may greatly complicate the construction of the frame. This is not the case for T105-

MG100-PL4-R05 (Figure 15), where a more uniform distribution of member sizes is enforced as a direct 

result of limiting the selection of available steel shapes (see Table 2). However, this comes at the 

expense of increased weight and impairs the ETE algorithm from approaching target serviceability (i.e., 

inter-story drift) and strength (i.e., ) limit states.   

 

Figure 14. Relative member sizes, inter-story drift, and load-capacity ratios () obtained from 

independent run T089-MG100-PL1-R04 ( = 4000). 
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Figure 15. Relative member sizes, inter-story drift, and load-capacity ratios () obtained from 

independent run T105-MG100-PL4-R05 ( = 1000). 

 Extruded 3D visuals of the final member sizes for the first story of the 20-story frame are 

presented in Figure 16 for runs T089-MG100-PL1-R04 and T105-MG100-PL4-R05. The extruded 

geometry of the structural members is shown to scale. Overall, PL1 found significantly lighter sections 

than PL4 for many of the structural members except the inner column groups and the exterior columns on 

the East-West ends of the building. For example, exterior beams for the PL1 case (Figure 16a) were 

sized down to W8 × 24 compared to W24 × 55 for PL4 (Figure 16b). Similar behavior was observed for 

beam members located in subsequent stories, causing faster weight accumulation for PL4 in relation to 

PL1. In both PL1 and PL4, the heaviest members came from exterior columns connected to the bracing 

members, while inner and corner column groups achieved much lighter steel sections. Finally, bracing 

and beam members for PL4 appeared to reach the lower bound of available W24 shapes (i.e., W24 × 

55). Optimal steel sections obtained for the PL2 and PL3 cases are reported in Table 6. 
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(a) 

(b) 

Figure 16. Optimal W-shapes for the first story of the 20-story frame from runs (a) T089-MG100-PL1-R04 

and (b) T105-MG100-PL4-R05. 

Table 6. Optimal W-shapes found from best ETE runs for the first story of the 20-story frame (MG100). 

Member Group ID 
(MG100) 

Structural Members 
Final Steel (W-shape) Profiles 

PL1 PL2 PL3 PL4 

1 Inner Beams (East-West) W12 × 35 W21 × 44 W21 × 44 W24 × 55 

2 Perimeter Beams W8 × 24 W21 × 44 W21 × 44 W24 × 55 

3 Inner (Core) Beams (East-West) W12 × 35 W21 × 44 W21 × 44 W24 × 55 

4 Inner Beams (North-South) W10 × 26 W21 × 44 W21 × 44 W24 × 55 

5 Inner (Core) Beams (North-South) W10 × 26 W21 × 44 W21 × 44 W24 × 55 

6 Corner Columns W8 × 24 W12 × 26 W14 × 34 W14 × 30 

7 Exterior Columns (East-West) W21 × 122 W14 × 132 W14 × 109 W14 × 120 

8 Exterior Columns (North-South) W24 × 131 W18 × 143 W18 × 143 W14 × 145 

9 Inner Columns W10 × 49 W14 × 34 W18 × 50 W14 × 43 

10 Bracing Members W10 × 22 W21 × 44 W21 × 44 W24 × 55 
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7 C o n cl u si o n s 

T hi s st u d y p erf or m e d a r o b u st i n v e sti g ati o n of m e m b er gr o u pi n g a n d st e el pr ofil e li st eff e ct s o n a r e al-

w orl d 2 0- st or y 3 D st e el fr a m e. A s eri e s of i n d e p e n d e nt str u ct ur al o pti mi z ati o n r u n s w er e p erf or m e d o n t h e 

st e el fr a m e f or 1 6 u ni q u e m e m b er gr o u pi n g a n d st e el ( W- S h a p e) pr ofil e li st c o nfi g ur ati o n s t o r e g ul at e t h e 

si z e of t h e di s cr et e s ol uti o n s p a c e a n d q u a ntif y t h e eff e ct o n t h e o pti m al d e si g n. T h e f oll o wi n g 

c o n cl u si o n s c a n b e dr a w n fr o m t hi s st u d y: 

•   T h e li g ht e st o pti m al d e si g n f o u n d w a s a c hi e v e d b y t h e P L 1/ M G 1 0 0 c o m bi n ati o n, w hi c h 

c o n stit ut e s t h e l ar g e st s e ar c h s p a c e of t h e c a s e s c o n si d er e d. Y et, l ar g er      v al u e s w er e 

n e e d e d f or t h e E T E al g orit h m t o c o n v er g e d u e t o t h e si z e a n d c o m pl e xit y of t h e s ol uti o n s p a c e. 

F urt h er, t h e P L 1/ M G 1 0 0 c a s e pr o d u c e d t h e gr e at e st n u m b er of di sti n ct st e el s h a p e s — d u e t o 

l ar g er n u m b er of m e m b er gr o u p s a n d a v ail a bl e st e el pr ofil e s — w hi c h c a n c o m pli c at e tr a diti o n al 

c o n str u cti o n pr a cti c e s.  

•   W h e n c o m p ari n g t h e b e st E T E o pti mi z ati o n r u n s a m o n g t h e diff er e nt pr ofil e li st ( P L) c a s e s, 

P L 4 —i. e., t h e s m all e st s u b s et of a v ail a bl e st e el pr ofil e s — c o n si st e ntl y g e n er at e d t h e h e a vi e st 

d e si g n s. H o w e v er, P L 4 u s e d t h e l e a st n u m b er of u ni q u e st e el s h a p e s w hi c h c a n tr a n sl at e t o 

l o w er c o st s a s s o ci at e d wit h b ul k p ur c h a si n g a n d f a bri c ati o n c o st. 

•   Pr ofil e li st P L 4 w a s i n s e n siti v e t o c h a n g e s t o t h e s et of m e m b er gr o u p arr a n g e m e nt s i n v e sti g at e d 

in  t hi s st u d y. 

•   R e d u ci n g t h e n u m b er of m e m b er gr o u p s i m pr o v e d c o n v er g e n c e ti m e of t h e E T E al g orit h m f or all 

pr ofil e li st ( P L) c a s e s t e st e d i n t hi s st u d y. 

•   F or o pti mi z ati o n pr o bl e m s wit h l ar g e d e si g n s p a c e s ( P L 1/ M G 1 0 0), t h e v ari a bilit y a n d q u alit y of 

t he o pti m al d e si g n (i. e., fi n al w ei g ht) o bt ai n e d b y t h e E T E al g orit h m w a s str o n gl y d e p e n d e nt o n 

t h e t er mi n ati o n crit eri a (    ). 

•   T h e E T E al g orit h m s e e m e d t o p erf or m a r o b u st s e ar c h of t h e l ar g e st d e si g n s p a c e c o n si d er e d 

( PL 1/ M G 1 0 0) a n d mi ni m al fl u ct u ati o n s i n t h e fi n al w ei g ht w er e f o u n d o v er m ulti pl e r u n s. H o w e v er, 
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achieving convergence demanded significantly longer runtimes compared to cases with smaller 

solution spaces (e.g., PL4/MG60). 

 While the conclusions outlined in this study may apply to other steel frame structures with similar 

topologies and loading conditions, further studies are needed to investigate the dependence of member 

grouping and pool size of discrete sections on the optimal design of systems with geometries that 

significantly deviate from the case study considered. Additionally, future research opportunities may 

include the development of advanced optimization methods to accurately quantify fabrication and 

constructability costs and integrate non-structural (e.g., architectural) constraints into the optimization 

problem. Finally, multi-objective design procedures can also be explored to accurately map the tradeoff 

between competing objectives such as weight minimization and constructability of large-scale structural 

systems.     

8 Acknowledgements 

Some of the research work performed in this study was supported by the National Science Foundation 

(NSF) through the research experience for undergraduate (REU) site at Clarkson University under Grant 

No. 1852102. The authors would also like to thank Clarkson University and the Office of Information 

Technology for providing computational resources and support that contributed to these research results. 

Additional computational resources for this grant were provided by NSF under Grant No. 1925596 

(ACRES cluster). Any opinions, findings, and conclusions or recommendations expressed in this study 

are those of the authors and do not necessarily reflect the views of NSF. 

9 References 

American Institute of Steel Construction (AISC) (2016) Manual of steel construction, load & resistance 
factor design (LRFD), 15th Edition, Chicago, USA. 
 
American Institute of Steel Construction (AISC) (1989) Manual of steel construction, allowable stress 
design (ASD), 9th Edition, Chicago, USA. 
 
ASCE 7-16 (2016) Minimum design loads for building and other structures. American Society of Civil 
Engineers, Virginia, USA 
 
Arora, J. S. (2000). Methods for discrete variable structural optimization. In Advanced Technology in 
Structural Engineering (pp. 1-8). 



 

34 of 35 

 

 
Azad, S. K. (2021). Design optimization of real-size steel frames using monitored convergence 
curve. Structural and Multidisciplinary Optimization, 63(1), 267-288. 
 
Azad, S. K., & Hasançebi, O. (2015). Computationally efficient discrete sizing of steel frames via guided 
stochastic search heuristic. Computers & Structures, 156, 12-28. 
 
Barbosa, H. J., Lemonge, A. C., & Borges, C. C. (2008). A genetic algorithm encoding for cardinality 
constraints and automatic variable linking in structural optimization. Engineering Structures, 30(12), 3708-
3723. 
 
Barbosa, H. J., & Lemonge, A. C. (2005, June). A genetic algorithm encoding for a class of cardinality 
constraints. In Proceedings of the 7th annual conference on Genetic and evolutionary computation (pp. 
1193-1200). 
 
Biedermann, J. D., & Grierson, D. E. (1995). A generic model for building design. Engineering with 
Computers, 11(3), 173-184. 
 
Biedermann, J. D. (1997). Representing design knowledge with neural networks. Computer‐Aided Civil 
and Infrastructure Engineering, 12(4), 277-285. 
 
Biedermann, J. D., & Grierson, D. E. (1996). Training and using neural networks to represent heuristic 
design knowledge. Advances in Engineering Software, 27(1-2), 117-128. 
 
Boscardin, J. T., Yepes, V., & Kripka, M. (2019). Optimization of reinforced concrete building frames with 
automated grouping of columns. Automation in Construction, 104, 331-340. 
 
Camp, C. V. (2007). Design of space trusses using Big Bang–Big Crunch optimization. Journal of 
Structural Engineering, 133(7), 999-1008. 
 
Carvalho, J. P., Lemonge, A. C., Hallak, P. H., & Vargas, D. E. (2018, September). A differential evolution 
to find the best material groupings in truss optimization. In International Conference on Engineering 
Optimization (pp. 102-114). Springer, Cham. 
 
Chan, C. M., & Grierson, D. E. (1993). An efficient resizing technique for the design of tall steel buildings 
subject to multiple drift constraints. The Structural Design of Tall and Special Buildings, 2(1), 17-32. 
 
Chan, C. M., & Chui, J. K. L. (2006). Wind-induced response and serviceability design optimization of tall 
steel buildings. Engineering Structures, 28(4), 503-513. 
 
Eberhart, R. C., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In 
Proceedings of the sixth international symposium on micro machine and human science (Vol. 1, pp. 39-
43). 
 
Erol, O. K., & Eksin, I. (2006). A new optimization method: big bang–big crunch. Advances in Engineering 
Software, 37(2), 106-111. 
 
Fernández-Cabán, P. L., & Masters, F. J. (2018). Hybridizing particle swarm and big bang-big crunch 
optimization methods to explore then exploit the design domain of large planar frame 
structures. Computers & Structures, 202, 1-14. 
 
Galante, M. (1996). Genetic algorithms as an approach to optimize real‐world trusses. International 
Journal for Numerical Methods in Engineering, 39(3), 361-382. 



 

35 of 35 

 

 
Grierson, D. E., & Cameron, G. E. (1987). SODA-structural optimization design and analysis. Waterloo, 
Ontario, Canada: Waterloo Engineering Software. 
 
Hasançebi, O. Ğ. U. Z. H. A. N., & Kazemzadeh Azad, S. (2014). Discrete size optimization of steel 
trusses using a refined big bang–big crunch algorithm. Engineering Optimization, 46(1), 61-83. 
 
Hasançebi, O., Bahçecioğlu, T., Kurç, Ö., & Saka, M. P. (2011). Optimum design of high-rise steel 
buildings using an evolution strategy integrated parallel algorithm. Computers & Structures, 89(21), 2037-
2051. 
 
Kashani, A. R., Camp, C. V., Rostamian, M., Azizi, K., & Gandomi, A. H. (2021). Population-based 
optimization in structural engineering: a review. Artificial Intelligence Review, 1-108. 
 
Kaveh, A. (2021). Optimal Design of Large-Scale Frame Structures. In Advances in Metaheuristic 
Algorithms for Optimal Design of Structures (pp. 593-624). Springer, Cham. 
 
Kaveh, A., & BolandGerami, A. (2017). Optimal design of large-scale space steel frames using cascade 
enhanced colliding body optimization. Structural and Multidisciplinary Optimization, 55(1), 237-256. 
 
Kaveh, A., & Talatahari, S. (2010). A discrete big bang-big crunch algorithm for optimal design of skeletal 
structures. Asian Journal of Civil Engineering, 11(1), 103-122. 
 
Lemonge, A. C., Barbosa, H. J., Coutinho, A. L., & Borges, C. C. (2011). Multiple cardinality constraints 
and automatic member grouping in the optimal design of steel framed structures. Engineering 
Structures, 33(2), 433-444. 
 
Peng, B., Flager, F., Barg, S., & Fischer, M. (2021). Cost-based optimization of steel frame member 
sizing and connection type using dimension increasing search. Optimization and Engineering, 1-34. 
 
Saka, M. P., & Geem, Z. W. (2013). Mathematical and metaheuristic applications in design optimization of 
steel frame structures: an extensive review. Mathematical problems in engineering, 2013. 
 
Shea, K., Cagan, J., & Fenves, S. J. (1997). A shape annealing approach to optimal truss design with 
dynamic grouping of members. 
 
Spence, S. M., & Kareem, A. (2014). Performance-based design and optimization of uncertain wind-
excited dynamic building systems. Engineering Structures, 78, 133-144. 
 
Toğan, V., & Daloğlu, A. T. (2008). An improved genetic algorithm with initial population strategy and self-
adaptive member grouping. Computers & Structures, 86(11-12), 1204-1218. 
 
Walls, R., & Elvin, A. (2010a). An algorithm for grouping members in a structure. Engineering 
Structures, 32(6), 1760-1768. 
 
Walls, R., & Elvin, A. (2010b). Optimizing structures subject to multiple deflection constraints and load 
cases using the principle of virtual work. Journal of Structural Engineering, 136(11), 1444-1452. 
 




