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Abstract

This paper examines the effect of member grouping and selected pool size of discrete cross-sections on
the optimal design of a large-scale steel frame structure. Member grouping is commonly applied to
structural optimization problems to significantly reduce the solution space of candidate designs and
improve the efficiency and robustness of the search to achieve near-optimum solutions. At the same
time, discrete sets of cross-sectional steel shapes (profile lists) assigned to a particular member group are
often limited to a subset of cross-sections to further limit the search space and ensure practicality in the
final design. However, for large-scale structural systems (e.g., tall buildings), limiting the number of
member groups coupled with the exclusion of lighter cross-sectional shapes may significantly impact the
quality of the optimal solution (i.e., weight of the frame). This work presents a case study of a large-scale
three-dimensional (3D) steel frame to evaluate the sensitivity of the optimal design to practical
combinations of member groups and steel profile lists used in multi-story steel frames. A recently
developed metaheuristic search algorithm was applied to the steel frame and independent optimization
experiments were performed for 16 unique member grouping and profile list combinations (cases) to
quantify their influence on the variability and quality of the optimal design. Results reveal a 33%
difference in the optimal (final) weight between member group and profile list combinations producing the
smallest and largest solution spaces. Yet, the lightest design (corresponding to the largest solution space)

produced a greater number of unique steel shapes and required significantly higher computational cost.
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1 Introduction

Discrete member sizing optimization of civil engineering structures is a well-accepted approach for
automating the design process to minimize material cost while meeting code-based (or user-based)
performance demands related to the survivability, serviceability, and constructability of the structural
system. Discrete sizing optimization entails selecting the lightest cross-sectional section from a discrete
set (i.e., list) of structural shapes (e.g., W-Shapes). From a structural optimization standpoint, it is often
desirable to limit the number of available shapes down to a subset of cross-sections to reduce the size of
the design space (Barbosa et al., 2008; Lemonge et al., 2011; Carvalho et al., 2018; Peng et al., 2021)
and improve the efficiency of the structural optimization algorithm. For the most part, the reduction of the
design domain is, at least in part, performed based on prior knowledge regarding the behavior of the
structural system (e.g., identifying structural members undergoing elevated internal forces). However, for
large and complex structural systems (e.g., tall buildings), the exclusion of lighter cross-sectional shapes
may significantly impact the quality of the optimal solution (i.e., weight of the frame).

The effect of limiting the set of available cross-sections is magnified when structural members are
grouped together during the structural optimization process, which is readily implemented in literature to
reduce the number of design variables in the optimization problem (e.g., Chan and Grierson, 1993; Chan
and Chui, 2006; Walls and Elvin, 2010b; Spence and Kareem, 2014). In this case, selecting a heavier
section for one member will affect all the members in the group. When performing member sizing on real-
size multi-story framed structures, it is common practice to establish member groups according to their
spatial orientation (e.g., vertical, horizontal, or diagonal members) and/or relative location within the
structure. For instance, corner columns of consecutive stories may be grouped together to constitute one
member group, while all beams supporting a particular floor may be grouped to have the same cross-
section. Limiting the number of member groups helps reduce the search space of possible designs and,
at the same time, often simplifies the fabrication process and constructability of the structural system.
However, reducing the number of member groups may lead to heavier designs. For example, the

structural capacity (e.g., load-to-capacity ratio) of a particular member group will be controlled by only a
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few members experiencing the highest internal stresses in the group, while other members may be
under-stressed. Therefore, strategically selecting the number of member groups (i.e., design variables)
coupled with careful restriction of the pool size of available structural steel sections can have a significant
impact on the quality of the optimization results. Yet, most studies on discrete sizing optimization of large-
scale steel frames only consider a single member grouping arrangement and profile list of steel shapes
(e.g., Hasangebi et al., 2011; Kaveh and Bolandgerami, 2017; Kaveh, 2021).

The main objective of this study is to offer a detailed examination of member grouping effects and the
impact of limiting the set of available steel shapes (i.e., profile list) on a large-scale three-dimensional
(3D) steel frame structure. A series of independent optimization experiments were performed on a 20-
story steel frame for 16 combinations of member grouping and steel profile list arrangements. The work
applied a recently developed hybridized particle swarm optimization (PSO) and the big bang-big crunch
(BB-BC) algorithm equipped with a discrete stochastic search scheme, which was specifically calibrated
for optimizing large-scale steel frames (Fernandez-Caban and Masters, 2018). The frame consisted of
1040 structural members. Due to the large size of the frame and the vast domain of possible designs (i.e.,
search space), the work leveraged the Accelerating Computational Research for Engineering and
Science (ACRES) high-performance computing (HPC) cluster at Clarkson University and parallel
processing to maintain the rigor of the search while significantly minimizing computational time. A detailed
comparison of the optimal design found for different member grouping and profile list configurations along
with statistical measures of the variability of the results is reported and discussed. Finally, conclusions

and future research opportunities are highlighted.
2 Background

One of the main challenges of metaheuristics and population-based algorithms when applied to the
design optimization of large-scale civil structures is performing a robust and efficient search of the vast
domain of candidate designs and arrive at near-optimal solutions in a reasonable amount of
computational time (Saka and Geem, 2013; Azad, 2021; Kaveh, 2021; Kashani et al., 2021). When sizing

the structural members of real-world framed structures, the size of the (discrete) solution space can be
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dramatically reduced by collecting structural members into groups (i.e., limiting the number of design

variables) or bounding the discrete set of available structural shapes to only a subset of cross-sections.

Figure 1 shows a schematic of a typical member grouping arrangement adopted in the optimization of

multi-story 3D steel frames, where the structural members are collected into nd total groups and a unique

set of discrete steel shapes (Nsec) are assigned to different types of structural members.
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Figure 1. lllustration of member grouping and discrete set of available steel sections for a 3D multi-story

steel frame.

The number of possible candidate designs (i.e., size of search space) as a function of nd and

N, is illustrated in Figure 2. The surface plot was created assuming that each member group can select

from a list of Ny, discrete steel shapes. For instance, the American Institute of Steel Construction (AISC)

manual (2016) lists 297 distinct wide (W) flange sections. If all member groups can select from any of

these W-shapes, then the size of the search space would be 297™¢. Increasing the search space can be

desirable to improve the quality of the solution and potentially achieve a significantly lighter structural
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system—i.e., assuming the optimization algorithm is robust enough and is not prone to getting trapped in
a local optimum when applied to large-scale problems (Kaveh, 2021). At the same time, a larger search
space could lead to a greater number of unique steel profiles and result in a more impractical and
expensive design and increased complexity during construction (Barbosa et al., 2008; Lemonge et al.,
2011; Boscardin et al., 2019). Therefore, arriving at optimal member grouping arrangements to reduce
the overall cost of the structural systems is a non-trivial process, especially for large and complex

structural systems.
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Figure 2. Size of solution space as a function of total number of member groups (nd) and profile list of
available discrete steel sections (Ng.).

Previous studies have addressed the important role member grouping plays in the optimal design
(e.g., cost) of civil structures. Grierson and Cameron (1987) developed a computer program called
Structural Optimization Design & Analysis (SODA) for the automatic member sizing of steel frames. The
software incorporated member groupings where the user was able to critique the final design and apply
engineering judgment and heuristics to make changes to the design. Biedermann and Grierson (1995)
subsequently introduced a Genetic Algorithm (GA) coupled to SODA to automate the design of building
structures and later applied a neural network and heuristic design knowledge to achieve desirable

member groupings of steel frame structures (Biedermann, 1997; Biedermann and Grierson, 1996).
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Most of the literature regarding member grouping has primarily focused on pin-connected (i.e.,
trussed) structures (e.g., Galante, 1996; Barbosa et al., 2008; Todan and Daloglu, 2008). For example,
Galante (1996) developed a multi-objective GA and Shea et al. (1997) proposed a shape annealing
method with dynamic member grouping for the optimal design of trussed structures. More recently,
Barbosa and Lemonge (2005) proposed a GA encoding to automatically satisfy a class of cardinality
constraints, where the algorithm provided the designer with the possibility of directly controlling only the
number of discrete cross-sectional shapes to be used in each problem and letting the GA search derive
the grouping of the members. Cardinality constraints were successfully applied in future works to multiple
benchmark truss problems considering sizing and shape/sizing optimization (Barbosa et al., 2008;
Lemonge et al., 2010).

Few studies can be found in literature concerning the optimal member grouping for steel frame
structures. Notable studies include the work of Walls and Elvin (2010a), which presented an automated
algorithm for optimizing the grouping of discrete structural members of two-dimensional structures
carrying axial and/or bending forces. The algorithm grouped members based on their mass per unit
length and performed an exhaustive search of permutations to find the optimal arrangement of member
groups. Lemonge et al. (2011) adopted a GA encoder approach originally used in pin-connected
structures (Barbosa et al., 2008; Lemonge et al., 2010) that enforced cardinality constraint to search for
the optimal member group arrangement of planar frames while grouping beams and columns
independently. The current study expands on previous work by systematically examining the effect of
selecting member groups and pool size of discrete steel sections commonly used in the design of large-

scale three-dimensional (3D) steel frames on the optimal design.
3 Discrete member sizing optimization of 3D steel frames

The discrete member sizing optimization problem for the design of large-scale multi-story 3D steel frames
consists of finding the optimal discrete set of cross-sectional shapes that will minimize the weight of the
frame with a given topology. In this study, the optimal set of optimal steel shapes are selected from a list

of standard wide-flange (W) shape sections tabulated in the American Institute of Steel Construction
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(AISC) manual (2016). The optimization problem is constrained by multiple code-based (e.g., strength
and drift limit states) to ensure that the optimal design provides adequate lateral stiffness to the system
and user-specified constraints to satisfy constructability requirements. Strength checks of the structural
members were performed using Load and Resistance Factor Design (LRFD) specifications from AISC

(2016). Mathematically, the optimization problem can be formulated as follows:

Find
X= [xi=1!x2! ""xnd] (1)
to minimize
nm
W) = Z PmAmLm (2)
m=1
subject to
gER(x) = LCR,,—1<0 m=12,..,nm (3)
gPx)=ID,—1<0 k=12,..,ns (4)
gix) =G —-1<0 j=12,.,nj (5)
1< X < Nsec,i i= 1,2, ...,nd (6)

where x is a vector of integers representing the sequence numbers of standard steel (W-Shape) sections
assigned to nd design variables (i.e., member groups). W (x) is the weight of the frame; p,, and A4,, are
the density and cross-sectional area of member m, respectively; L,, is the length of member m and nm is
the total number of members; Eq. (6) constrains the bounds of each design variable entry x;; Ny ; is the
total number of standard steel sections in member group i. Eq. (3) and (4) represent inequality constraints
for strength (Eq. 3) and serviceability (Eqg. 4) requirements based on AISC-LRFD specifications (2016),
while Eq. (5) represent geometric constraints to ensure all the connections between beam and column

members are feasible. In Eq. (3), LCR,, is the load-capacity ratio defined as:
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where P, is the required axial strength (i.e., tension or compression), M,, and M,, are the required
flexural strength for strong and weak axis bending, respectively; B, is the available axial strength; M,,,, and
M, are the available flexural strength for strong and weak axis bending, respectively; ¢, is the resistance
factor for bending equal to 0.90; ¢ is the axial resistance factor, which equals 0.90 for compression and
tensile yielding strength limit states.

Eq. (4) defines the inequality constraint for inter-story drift requirement of multi-story buildings,

where 1D, can be expressed as follows:

P .
ID, =~%—*1 k=1, ns (8)
Sallw

where 6§, — 6,_, is the relative lateral displacement of adjacent stories; &, is the allowable interstory
drift limit; ns is the total number of stories. In studies involving 3D frame structures, Eq (8) is typically
applied to the orthogonal x and y horizontal building directions.

In addition to strength and drift constraints, geometric constraints were imposed on the
optimization problem to ensure the optimal design achieves feasible beam-column connections. In Eg.

5), G; = G;, + G;,, where:
J I 1

b
Ga=7> J=12,..1 ©
fk
bl
fb . .
Gy = =12,..,
2= a2, n (10)

The dimensional parameters presented in Egs. (9) and (10) are depicted in Figure 3, in which bsy,, b'f,
and by, are the flange width for beam 1 (B1), beam 2 (B2), and the column member, respectively; d. and
t; are the depth and flange thickness of the column member, respectively. Eq. (9) ensures the flange

width of beam B1 does not exceed the flange width of the column, while Eq. (10) enforces the flange
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width of beam B2 to not exceed the difference between the depth of the column and the flange width of

both sides of the column.

Column

Figure 3. Schematic of dimensional parameters used for the geometric constraints of beam-column
connections.
A penalty function approach (Azad and Hasangebi, 2015; Ferndndez-Caban and Masters, 2018;
Azad, 2021) is applied to transform the constrained optimization problem presented in Egs. (1) — (6) into

an unconstrained one:

Y(x,p) = WE[1+pCx)] (11)

where p is a penalty coefficient (for this study, p = 0.1), and C(x) is the penalty function defined as

C(x) = max[0, g(x)] (12)

nj
9t = Z gHR 0 + Zg ®+) gf® (13)
=1 j=1
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4 Optimization algorithm

This study employs a recently developed explore-then-exploit (ETE) metaheuristic optimization strategy
(Fernandez-Caban and Masters, 2018). The algorithm hybridizes two well-established metaheuristic
strategies, namely particle swarm optimization (PSO) and big bang-big crunch (BB-BC). PSO is a
metaheuristic technique which mimics the social behavior of organisms such as bird flocking and fish
schooling (Kennedy and Eberhart, 1995) and has proven effective in the global investigation (i.e.,
exploration) of large design domains. The BB-BC algorithm was originally developed by Erol and Eskin
(2006) and was inspired by one of the theories of evolution of the universe. Since then, improved, and
hybridized versions of the original BB-BC algorithm have been developed and effectively applied to
optimize civil engineering structures (e.g., Camp, 2007; Kaveh and Talatahari, 2010; Hasangebi and
Azad, 2014). In this study, the ETE updating scheme used for the generation of new candidate designs

follows:

x¥*! = round|6,G* + (1 — 6, )P}] + d; for i=1,..,N (14)
where x¥*1 is the position vector of particle i at iteration k + 1; G* is the position of the best solution found
among all candidates up to iteration k (i.e., global best); P¥ is the best position found by particle i up to
iteration k (i.e., particle best); 6, is a control parameter that linearly increases over a user-specified

number of generations to control the relative influence of P} and G¥; d; is a normal distribution operator

from the BB-BC algorithm (Erol and Eksin, 2006). In this study, d; is defined as:

d; = round [ari" (M)]

> i=1.,N (15)

where r;is a random number from a standard normal distribution; a is a parameter for controlling the size
of the search space; n is an exponential parameter; x,,,, and x,,;, are the position vectors of the upper
and lower bounds of each design variable, respectively. After each iteration, 6, is adjusted to increase the
influence of the global best solution (G*) on the swarm, thus effecting a gradual transition from exploration

to exploitation of the search space. In this study, 6,is linearly increased after each iteration k following:
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0 —( b — )(k D+6 16
=gk, ——1 i (16)
where k., is the maximum number of iterations; g is a parameter which defines the iteration when 6, will
transition from a linear variation to a final constant value; 8; and 6, are the initial and final values,

respectively. The rounding function included in Egs. (14) and (15) converts the continuous design variable

into discrete integers representing a particular steel cross-section in the profile list of W-Shapes. A

flowchart of the ETE algorithm is illustrated in Figure 4.
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Figure 4. Flowchart of ETE optimization algorithm for discrete member sizing optimization of steel frames.

Metaheuristic design optimization of large-scale steel frames typically demands many iterations

(Kaveh, 2021) to arrive at near-optimal solutions. From Eq. (15), it is clear that d; approaches 0 as k

becomes large. If d; = 0 and 6, = 1.0, the new particle x¥** will remain in the same position as the global
k+1

best G, according to Eq. (14). Additionally, if every entry in d; is equal to or greater than 0, xf** is certain

to produce a worst solution than G*. To address this, a discrete stochastic exploitation scheme (Figure 5)
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introduced in Fernandez-Caban and Masters (2018) is integrated into the ETE algorithm during late

stages of the optimization process.

function d, ,,, =recalcd(d,,d,)
if g, =1.0 and min(d,)>0
di new

j =randi —)[1 nd]

a= round(?/NsecJ )

d

i,new,j

if j=nd

b= round({/m)

d =randi — [0 5]
else

c= round(m)

d =randi — [0 c]

i,new,j+l1

= zeros(1,nd)

=randi > [-a —1]

i,new,j—1

end
else
d

end

— Eq. (15)

i,new

end

Figure 5. Discrete stochastic exploitation scheme for recalculating d;.

5 Case Study

A 20-story braced steel space (3D) frame structure studied by Hasancgebi et al. (2011) was selected to
investigate the effect of member grouping and limiting the set of available profile lists on the optimal
solution. Isometric and plan views of the steel frame are shown in Figure 6. The frame comprises 416

joints and 1040 structural members. The lateral force resisting system consists of K-type bracing located
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at the mid-bay in each side of the building envelope. The plan building dimensions are 45 ft (13.7 m) x 60
ft (18.3 m) and all floors are 12 ft (3.66 m) tall. Strength requirements were imposed on all structural
members according to AISC-LRFD specifications [Eq. (7)]. Additionally, horizontal joint displacements in
the x and y directions were limited to 1/500 of the building height (H/500) while mean inter-story drift limit
for each floor was set to 1/400 of the story height (k) for all floors [i.e., 84, = A/400 in Eq. (8)]. Finally,
geometric constraints [Egs. (9) — (10)] were enforced between beam and column members framing into
each other at all joints. A modulus of elasticity of E = 29,000 ksi (200 GPa) and yield stress of F, = 50 ksi
(344.7 MPa) were assumed for all structural steel members. For compressive strength calculations, the

effective length factor for all beam, column, and bracing members was taken as unity.
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Figure 6. Isometric view (a), plan view (b), and loading condition of 3D 20-story steel frame.
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5.1 Design loads

The 20-story steel frame was subjected to both gravity loads and lateral wind loads acting along the two
principal building axes (i.e., x and y), as shown in Figure 6. The gravity loads consisted of uniform area
dead (D) and live (L) loads of 60 Ib/ft?> (2.88 kPa) and 50 Ib/ft?> (2.39 kPa) respectively. The gravity loads
were applied on the entire floor area of all 20 stories. The following basic load combinations from ASCE

7-16 (2016) were considered for LRFD strength design checks of the structural steel members:

1.4D (17)

1.2D + 1.6L (18)
1.2D + (L or 0.5W;) (19)
1.2D + (L or 0.5W,) (20)
12D + 1.0W, + L (21)
1.2D + 1.0W, + L (22)
0.9D + 1.0W, (23)
0.9D + 1.0W, (24)

In Egs. (19) — (24), W, and W, are factored wind loads in the x and y direction, respectively. Design wind

pressures were estimated according to ASCE 7-16 from:

q, = 0.00256K,K,, K K,V? (25)
where q, (Ib/ft?) is the velocity pressure at height z (ft), K, is the exposure coefficient, K,, is the
topographic factor, K, is the wind directionality factor, K, is the ground elevation factor, and V is the basic
wind speed (in mph) corresponding to a 3-sec gust at 33 ft (10-m) above ground in Exposure C (i.e., open
terrain). In this study, K, was computed based on Exposure B, K,; = 1.0, K; = 0.85, K, = 1.0, and V = 105
mph (46.94 m/s). The design wind pressure p,, for the windward and leeward building faces were

obtained from:

Pw = QZGFCp (26)
where G = 0.85 (i.e., gust factor), and C, is the external pressure coefficient which was set to 0.8 and —

0.5 for the windward and leeward faces respectively.
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ASCE 7-16 (2016) LRFD load combinations require multiple structural analyses to independently
apply the design loads (wind-x, wind-y, dead, and live) on the steel frame. In the present work, three
structural analyses were performed to assess the fitness of each candidate design (i.e., particle) under
dead and wind loads along the two orthogonal directions (i.e., x and y). Live loads were determined from
dead load analysis since both forces were applied on the structure in the same manner and only the

magnitude was scaled accordingly.

5.2 Parallel processing and optimization parameters

Linear elastic structural analysis and the ETE optimization algorithm were coded and executed in
MATLAB. Due to the relatively large size of the frame and the vast domain of candidate designs (i.e.,
search space), a portion of the optimization runs performed on the frame were offloaded to the ACRES
high-performance computing (HPC) cluster at Clarkson University. The ACRES cluster consists of 62
compute-nodes, 2440 CPU cores, 8TB of total memory, and four (4) GPUs—for a total computing power
of more than 160 teraflops. Structural analysis and optimization scripts were sent to multiple workers (i.e.,
nodes) on the ACRES cluster as batch jobs and parallel processing—using the parfor command in
MATLAB—was implemented to simultaneously evaluate candidate designs and reduce computational
time. The bulk of the optimization runs were performed using 6-8 ACRES workers (i.e., nodes).
Additional optimization runs were performed from a personal computer—Intel(R) Core(TM) i7-10700K
CPU @ 3.80 GHz with 64 GB RAM—and parallel processing was also applied using all available cores
on the local machine.

In all problems, optimization parameters were setto N = 100, p = 0.1, §; = 0.5, 6; = 1.0, a = 0.6,
B =0.25, and n = 3. Parameters 6;, 6, and 8 are specific to ETE and their values control the exploration
and exploitation of the algorithm at different stages of the optimization process. The parameter 8, was

chosen so that equal influence from G* and P¥ was given to initial candidate designs, while 6 was set to

unity to limit the search around the global best during late stages of the optimization process. The
population size of N and a were chosen based on values selected from other population-based

algorithms found in recent research studies of large-scale steel frames (e.g., Azad and Hasancgebi, 2015;
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Azad, 2021; Kaveh, 2021). Finally, the g parameter in Eq. (16) selected to promote exploration of the
design space during the first fourth (k... /4) of the optimization process and was calibrated during
preliminary optimization runs based on N and k,,,,. Fernandez-Caban and Masters (2018) demonstrated
that the final (optimal) solution was relatively insensitive to the value of g in the case of three multi-story
steel frames, although a faster improvement in the objective function (i.e., frame weight) was observed

when selecting lower B values (i.e., limiting the exploration stage and prolonging the exploitation stage).

5.3 Member grouping

The effect of member grouping was investigated by modifying the total number of member groups (MG)
used to optimize the 20-story steel frame. Specifically, four MG cases consisting of 60, 70, 90, and 100
total member groups (i.e., design variables) were examined and are illustrated in Figure 7. Structural
symmetry about the principal x and y axes of the building were imposed on the four MG cases. Members
on consecutive stories were collected into groups according to their type and spatial location on the
structure, as shown in Table 1. The total number of member groups for a specific MG case can be
calculated as the sum of the member groups per floor multiplied by half the number of floors of the

building. For instance, the total number of groups for MGO060 is 6 x 20 stories/2 = 60 groups.
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Figure 7. Member group cases considered for the 20-story steel frame.

Member group MGO060 corresponds to the grouping arrangement adopted in Hasancgebi et al.
(2011), where all interior beams share the same member group and perimeter beams form a separate
member group. The inner columns, corner columns, and remaining exterior columns make up three
unique member groups, respectively, resulting in 30 total column groups throughout the building (i.e., 3 x
20 stories/2 = 30). Similar arrangements to MG060 are commonplace in literature (e.g., Hasangebi et al.,
2011; Kaveh and Bolandgerami, 2017; Kaveh, 2021) for the optimal design of large-scale steel frames.
Member group MGO070 resembles MGO60 except that exterior column groups (North-South and East-
West) now constitute two distinct member groups in MG070. MG060 and MGO090 share the same number
of column groups but MG090 has five beam member groups per story. Specifically, the perimeter beams
are all part of one member group (this is the case for all MG arrangements), and the inner beams are
divided into four member groups with parallel beams being grouped together (Figure 7). Finally, group

MG100 has four unique column groups per story where inner columns, corner columns, and exterior
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column groups (North-South and East-West) are part of a separate member group, resulting in 40 total
column groups for MG100. In all four cases, K-bracing members are collected into a single member
group. Thus, in each case, there are 10 total bracing groups.

Table 1. Structural member grouping (i.e., design variable) cases considered for the 20-story frame.

Structural Members Member Group 1D
MGO060 MGO070 MGO090 MG100

Inner Beams (East-West) 1 1 1 1
Inner (Core) Beams (East-West) 1 1 3 3
Inner Beams (North-South) 1 1 4 4
Inner (Core) Beams (North-South) 1 1 5 5
Perimeter Beams 2 2 2 2
Corner Columns 3 3 6 6
Exterior Columns (East-West) 4 4 7 7
Exterior Columns (North-South) 4 5 7 8
Inner Columns 5 6 8 9
K-Bracing Members 6 7 9 10
Total Member Groups (Design Variables) |60 70 90 100

5.4 Discrete set of steel profiles

A profile list (PL) constitutes a discrete set of available structural steel shapes that can be used as
framing members. Table 2 reports the four PL cases considered in this study. The first profile list (PL1) is
the largest pool size of available structural shapes, with 263 standard W-Shape steel sections ranging in
size from W8-W44 for column, beam, and bracing member groups. This profile list (PL1) combined with
member group MG100 results in the largest design space of all MG/PL combinations considered. The
second profile list (PL2) includes a subset of 117 steel shapes ranging in size from W10-W18 for column
members and 133 steel shapes ranging from W21-W44 for beam and bracing members. This case
allows for a relatively thorough search of possible steel shapes but remains limited enough to be
conservative with respect to computational time. Profile list PL3 further reduces the profile and only
contains 70 W-shapes ranging from W14-W18 for the columns and 72 steel shapes ranging in size from
W21-W30 for the beams and bracing members. Finally, profile list PL4 is the smallest profile list

consisting of 36 W14 steel shapes that can be assigned to column members and 21 W24 steel shapes to
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size the beams bracing members. Profile list PL4 was chosen in this study given the prevalence in

previous studies (Chan and Grierson, 1993; Chan and Chui, 2006; Walls and Elvin, 2010b; Spence and

Kareem, 2014).

Table 2. Profile list cases considered for the 20-story frame.

W-Shape W-Shapes Steel Shapes

Profile List Columns Beams K-Bracing
PL1 W8x10-W44x335 (263) W8x10-W44x335 (263) W8x10-W44x335 (263)
PL2 W10x12-W18x311 (117) W21x44-W44x335 (133) W21x44-W44x335 (133)
PL3 W14x22-W18x311 (70) W21x44-W30x391 (72) W21x44-W30x391 (72)
PL4 W14x22-W14x730 (36) W24x55-W24x370 (21) W24x55-W24x370 (21)

6 Results and Discussion

A total of 105 independent ETE optimization runs were performed on the 20-story steel frame. First, 16
experimental cases representing all possible combinations between the four member groups (MG) and
four profile list (PL) cases were considered. Due to the stochastic nature of the ETE algorithm, each case
was repeated five times to obtain a statistical measure of the variability observed in the final design (i.e.,
weight). This generated an initial testing matrix of 4 member groups (MG) x 4 profile lists (PL) x 5
runs/case = 80 independent runs. The maximum number of iterations was chosen as the termination
criteria and set to k,,,, = 500 for the first 80 test runs. An additional series of optimization experiments
were conducted to further investigate convergence of the ETE algorithm, particularly for the MG case with

the largest number of design variables (i.e., MG100).

6.1 Initial optimization runs

Figure 8 includes the iteration history of the penalized weight (¥ (x)) for all 16 combinations of member
grouping and W-shape profile list cases. Each curve represents the mean value of 1 (x) obtained from
five independent ETE optimization runs. The four subplots in Figure 8 all reveal a steeper drop in 1 (x) for
MGO060 and MGO70 at early iterations (k < 80), while member groups with greater number of design

variables (i.e., MG060 and MGO070) consistently show a much shallower descent and slower improvement
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of Y (x). Further, it is evident from Figure 8a (PL1) that the final penalized weight at k., = 500 shows
high variability in the results and the final solution seems to be strongly dependent on the number of
member groups. For PL1, MG090 and MG100 settled on final weights of approximately 825 kips (3.67
MN), while MGO060 was able to achieve a final mean weight of 658.6 kips (2.93 MN). It is expected for
cases with a larger number of member groups (e.g., MG100) to produce lighter designs since they are
less constrained on the different number steel shapes that can be selected. This indicates that k,,,, may
need to be increased for cases with a larger number of member groups (i.e., MG090 and MG100) to
provide ETE algorithm sufficient time to find solutions that are closer to the global optimum. Conversely,
Figure 8d (PL4) shows how all member group cases rapidly converge to very similar solutions at k ~ 200.
Figures 8b and 6c¢ illustrate the two PL cases with design spaces that lie between the PL1 and PL4
cases. Comparable results are observed in Figure 8b for the four MGs with only slight differences in the
final penalized weight. Like PL1, MGO60 generated the best final weight for PL2. Finally, the subplot
corresponding to PL3 shows more tightly packed ¢ (x) curves for the four MG cases when compared to

PL2. Additionally, the four ¥ (x) curves in Figure 8c appear to converge on an optimal design at k > 400.
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Figure 8. ETE iteration histories of mean penalized weight ¥ (x) for W-shape profile lists (a) PL1, (b) PL2,
(c) PL3, and (d) PL4.

Table 3 summarizes the statistics from five independent ETE runs of y(x) obtained in each of the
16 cases executed. It is evident that the variability of the final weight is noticeably smaller when the set of
available steel shapes is reduced to a subset of discrete sections for k,,,, = 500. For instance, the
coefficient of variation (CoV) for PL1 ranged between 2.098-7.923% while PL4 cases were CoV = 0.084—
0.235%. A representative ETE iteration history for the independent runs corresponding to PL4/MG100 is
depicted in Figure 9. Yet, the lowest penalized weight from all 80 runs was achieved by PL1/MGO060 (i (x)
= 624.9 kips (2.78 MN)). At the same time, the worst run (i.e., heaviest design) was produced by
PL1/MG100 (y(x) = 938.4 kips (4.17 MN)), which represents the case with the largest design space. The
ETE iteration for this worst run is illustrated in Figure 10. For most optimization runs, strength, drift, and
geometric constraints were satisfied when the final design was reached (at k,,,,) and only negligeable
violations (C(x) < 0.02) were observed in some cases. The number of structural analyses for each

optimization run was 3 analyses (see Section 5.1) x 100 particles x 500 iterations = 150,000.

Table 3. Final penalized weights found by the ETE algorithm for the 20-story frame (k,,4, = 500).

D Prc_>fi|e Member Fllnal Penalized Weight, ¥ (x), kips .(I\./IN) Ds(ta%?;%g CoV
List Group Maximum Mean Minimum Kips (MN)’ (%)
(worst run) (best run)

T0O01-T005 MGO060 | 677.7 | (3.015) | 658.6 |(2.930)| 624.9 |(2.780) | 19.1((0.085)|2.908
T006-T010 PL1 MGO70 | 749.7 | (3.335) | 712.5 |(3.169)| 680.8 |(3.028) | 21.9((0.098)|3.080
T011-T015 MGO090 | 851.3 | (3.787) | 825.6 |(3.672)| 807.6 |(3.592)|17.3((0.077)|2.098
T016-T020 MG100 | 938.4 | (4.174) | 824.8 |(3.669)| 734.6 |(3.268) | 65.4((0.291)|7.923
T021-T025 MGO060 | 668.6 | (2.974) | 664.3 |(2.955)| 661.6 |(2.943) |2.43|(0.011)|0.365
T026-T030 PLo MGO070 | 679.0 | (3.020) | 673.5 [(2.996)| 668.2 |(2.973) |3.97 [(0.018)|0.590
T031-T035 MGO090 | 693.6 | (3.085) | 680.8 [(3.028)| 661.9 |(2.944)|10.9((0.049)|1.603
T036-T040 MG100 | 699.8 | (3.113) | 686.5 |(3.054)| 674.2 |(2.999) | 10.3|(0.046)|1.497
T041-T045 MGO060 | 683.2 | (3.039) | 677.1 |(3.012)| 672.5 |(2.992) | 3.68 |(0.016)|0.544
T046-T050 | PL3 | MGO070 | 681.0 | (3.029) | 679.3 |(3.022)| 676.2 |(3.008) |2.01 |(0.009)|0.295
T051-T055 MGO090 | 682.3 | (3.035) | 678.0 |(3.016)| 674.2 |(2.999) | 3.46 |(0.015)|0.511
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T056-T060 MG100 | 693.3 | (3.084) | 680.6 |(3.027)| 674.3 |(2.999) | 6.61 [(0.029)|0.972
TO61-T065 MGO060 | 785.6 | (3.494) | 784.5 |(3.490)| 783.5 |(3.485)|0.66 [(0.003)|0.084
T066-T070 PL4 MGO070 | 786.2 | (3.497) | 783.4 |(3.485)| 780.5 |(3.472)|1.83((0.008)|0.233
TO71-T075 MGO090 | 786.7 | (3.500) | 785.5 [(3.494)| 784.7 |(3.490) |0.94 [(0.004)|0.120
TO76-T080 MG100 | 788.1 | (3.506) | 784.5 [(3.490)| 782.8 |(3.482) |1.84 ((0.008)|0.235
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Figure 9. ETE iteration histories of (a) unpenalized weight, (b) penalty function, and (c) penalized weight

corresponding to optimization run T080-MG100-PL4-R04.
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Figure 10. ETE iteration histories of (a) unpenalized weight, (b) penalty function, and (c) penalized weight
corresponding to optimization run T018-MG100-PL1-R083.
The set of optimal solutions found from the initial series of optimization runs were generally lighter

that the optimal design reported in Hasangebi et al. (2011) for the same 20-story frame. Yet, comparison
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between the two studies is problematic due to differences in design procedures and profile list of steel
shapes included in the optimization. For instance, Hasangebi et al. (2011) used ASD-AISC (1989)
specifications and load combinations, and a lower yield strength was assumed for strength checks
compared to the present work (F, = 36 ksi vs. F, = 50 ksi). Further, the designation bounds for the pool of
W-shapes assigned to beams and bracing members was not reported. Lastly, the present work chose a
lower overall lateral deflection limit than the Hasancebi et al. (2011) study. However, it was concluded
that the difference in overall drift limits (H/400 vs. H/500) was deemed irrelevant since the optimal
designs were controlled by inter-story drift, stress ratios, and/or geometric constraints. However, this may

not be the case for more slender systems where the overall drift constraint may govern.

6.2 Dependence of k,,,, on optimal design

Statistical results obtained from the initial series of optimization runs indicate that when the number of
member groups (i.e., design variables) was reduced, the ETE algorithm consistently converged to near-
optimal solutions with minimal fluctuations in the final design over multiple runs. However, significantly
larger design domains (e.g., PL1/MG100 combination) revealed greater variability in the final solutions,
thus suggesting that convergence of the ETE algorithm for these runs required a greater number of
iterations (k,,qx)- This section examines the effect of k.4, on the quality of the final solution for solution
spaces of considerably larger sizes. Table 4 lists the k4, used to execute the second series of ETE runs
conducted on the 20-steel frame.

Table 4. Testing matrix for second series of ETE optimization runs performed on the 20-story frame.

Run ID |W-Shape Profile List|Member Grouping | k... | NO. of Independent Runs
T081-T085 PL1 MG100 2000 5
T086-T090 PL1 MG100 4000 5
T091-T095 PL2 MG100 3000 5
T096-T100 PL3 MG100 2000 5
T101-T105 PL4 MG100 1000 5

Figure 11 depicts the final weight y(x) as a function of k., for all ETE optimization runs

corresponding to profile list PL1 and MG100 grouping configuration. This PL/MG combination represents
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the largest design space from all cases considered in this study. A dramatic reduction in both the
variability and quality of ¥(x) can be observed in Figure 11 when k,,,, is increased. For instance, the
best run of Y (x) was reduced by 33.6%—734.6 kips (3.27 MN) vs. 487.9 kips (2.17 MN)—when k.., was
increased from 500 to 4000. Further, the CoV dropped from 7.923 % (kpqex = 500) to 1.019 % (kjpax =
4000), as shown in Tables 3 and 5, respectively. However, this came at the expense of increased
computational time from 4.4 hr (k.. = 500) to 29.7 hr (k... = 4000). Each of the five optimization runs
with k., = 4000 (T086-T090) required 1.2 x 10° structural analyses (i.e., 3 analyses x 100 particles x
4000 iterations = 1.2 x 10%). When comparing weight statistics for PL2/MG100 executed over k,,,, = 500
(Table 3) and k4, = 3000 (Table 5), only a 3.22% reduction in the mean final weight y(x) was observed.
Results reported in Table 5 for PL3 and PL4 indicate that negligible improvements in weight statistics

occur when k,,,,, is increased.
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Figure 11. Final weights found by ETE algorithm for over multiple k., values (PL1 and MG100).
Table 5. Statistics of final penalized weight for the second series of ETE optimization runs performed on

the 20-story frame.

Final Penalized Weight, ¥ (x), kips (MN) Standard o
W-Shape k _ — Deviation Coefficient of
Profile List | "™mex | Maximum Mean Minimum o Variation (%)
(worst run) (best run) (kips)
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PL1 4000 | 499.5 (2.222) | 493.2 (2.194) | 487.9 (2.170) |5.025 (0.0223) 1.019
PL2 3000 | 669.0 (2.976) | 664.4 (2.955) | 658.0 (2.927) |4.858 (0.0216) 0.731
PL3 2000 | 688.9 (3.064) | 682.0 (3.034) | 672.8 (2.993) |6.516 (0.0290) 0.955
PL4 1000 | 784.6 (3.490) | 782.7 (3.481) | 780.6 (3.472) |1.447 (0.0064) 0.185

Mean Y (x) iteration histories of runs T081-T105 are plotted in Figure 12. Weight optimization curves

for all four PLs appear to converge to near-optimal solutions. In the case of PL1 and MG100, the mean

P (x) shows a steady (nearly linear) improvement from iteration 1000 up to k ~ 3200 before plateauing

toward the final solution—y(x) = 493.2 kips (2.19 MN). The persistent improvement in ¥ (x) is primarily

boosted by the discrete stochastic routine integrated into the ETE algorithm during late stages of the

optimization process (Fernandez-Caban and Masters, 2018). The best run (i.e., lightest design) from

PL1/MG100 (T089-MG100-PL1-R04) is illustrated in Figure 13.
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Figure 12. ETE iteration histories of mean penalized weight for the four PL cases (MG100).
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Figure 13. ETE iteration histories of (a) unpenalized weight, (b) penalty function, and (c) penalized weight
for optimization run T089-MG100-PL1-R04.

Figures 14 and 15 display the final member sizes, inter-story drift, and load-capacity ratios (LCRs)

for independent runs T089-MG100-PL1-R04 (k. = 4000) and T105-MG100-PL4-R05 (k.. = 1000).

The linewidth of the structural members is proportional to the depth of the final W-Shapes found by the

ETE algorithm. Run T089-MG100-PL1-R04 (Figure 14) shows how, for some stories, the inter-story drift
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along the x direction reached the drift limit (h/400) and a significant number of LCR values for column,
beam, and bracing members approached (or reached) the capacity limit (LCR = 1.0). In contrast, inter-
story drift values for test T105-MG100-PL4-R05 (Figure 15) are comfortably short of the inter-story drift
limit and only column members show LCRs ~ 1.0, while beam and bracing members are well below the
LCR limit. Yet, the relative member sizes illustrated in Figure 14 suggests a rather arbitrary arrangement
of steel shapes which may greatly complicate the construction of the frame. This is not the case for T105-
MG100-PL4-R05 (Figure 15), where a more uniform distribution of member sizes is enforced as a direct
result of limiting the selection of available steel shapes (see Table 2). However, this comes at the
expense of increased weight and impairs the ETE algorithm from approaching target serviceability (i.e.,

inter-story drift) and strength (i.e., LCR) limit states.
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Figure 14. Relative member sizes, inter-story drift, and load-capacity ratios (LCR) obtained from

independent run T089-MG100-PL1-R04 (k4 = 4000).
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H(x) = 780.6 k (3.47 MN)
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Figure 15. Relative member sizes, inter-story drift, and load-capacity ratios (LCR) obtained from
independent run T105-MG100-PL4-R05 (k4 = 1000).

Extruded 3D visuals of the final member sizes for the first story of the 20-story frame are
presented in Figure 16 for runs T089-MG100-PL1-R04 and T105-MG100-PL4-R05. The extruded
geometry of the structural members is shown to scale. Overall, PL1 found significantly lighter sections
than PL4 for many of the structural members except the inner column groups and the exterior columns on
the East-West ends of the building. For example, exterior beams for the PL1 case (Figure 16a) were
sized down to W8 x 24 compared to W24 x 55 for PL4 (Figure 16b). Similar behavior was observed for
beam members located in subsequent stories, causing faster weight accumulation for PL4 in relation to
PL1. In both PL1 and PL4, the heaviest members came from exterior columns connected to the bracing
members, while inner and corner column groups achieved much lighter steel sections. Finally, bracing
and beam members for PL4 appeared to reach the lower bound of available W24 shapes (i.e., W24 x

55). Optimal steel sections obtained for the PL2 and PL3 cases are reported in Table 6.
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Figure 16. Optimal W-shapes for the first story of the 20-story frame from runs (a) T089-MG100-PL1-R04
and (b) T105-MG100-PL4-R05.

Table 6. Optimal W-shapes found from best ETE runs for the first story of the 20-story frame (MG100).

Final Steel (W-shape) Profiles
Mem(l')\;laé?(;g;jp ID Structural Members BLT Lo ( pPES L2
1 Inner Beams (East-West) W12 x 35 (W21 x 44 |W21 x 44 |W24 x 55
2 Perimeter Beams W8 x 24 (W21 x44 |W21 x 44 (W24 x 55
3 Inner (Core) Beams (East-West) W12 x 35 |W21 x 44 |W21 x 44 |W24 x 55
4 Inner Beams (North-South) W10 x 26 (W21 x 44 |W21 x 44 |W24 x 55
5 Inner (Core) Beams (North-South) |W10 x 26 |W21 x 44 |W21 x 44 |W24 x 55
6 Corner Columns W8 x24 [(W12x26 |[W14x 34 (W14 x 30
7 Exterior Columns (East-West) W21 x 122|W14 x 132|W14 x 109|W14 x 120
8 Exterior Columns (North-South) W24 x 131 |W18 x 143|W18 x 143|W14 x 145
9 Inner Columns W10 x 49 |W14 x 34 |W18 x 50 |W14 x 43
10 Bracing Members W10 x 22 (W21 x 44 |W21 x 44 |W24 x 55
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7 Conclusions

This study performed a robust investigation of member grouping and steel profile list effects on a real-

world 20-story 3D steel frame. A series of independent structural optimization runs were performed on the

steel frame for 16 unique member grouping and steel (W-Shape) profile list configurations to regulate the

size of the discrete solution space and quantify the effect on the optimal design. The following

conclusions can be drawn from this study:

The lightest optimal design found was achieved by the PL1/MG100 combination, which
constitutes the largest search space of the cases considered. Yet, larger k,,, values were
needed for the ETE algorithm to converge due to the size and complexity of the solution space.
Further, the PL1/MG100 case produced the greatest number of distinct steel shapes—due to
larger number of member groups and available steel profiles—which can complicate traditional
construction practices.

When comparing the best ETE optimization runs among the different profile list (PL) cases,
PL4—i.e., the smallest subset of available steel profiles—consistently generated the heaviest
designs. However, PL4 used the least number of unique steel shapes which can translate to
lower costs associated with bulk purchasing and fabrication cost.

Profile list PL4 was insensitive to changes to the set of member group arrangements investigated
in this study.

Reducing the number of member groups improved convergence time of the ETE algorithm for all
profile list (PL) cases tested in this study.

For optimization problems with large design spaces (PL1/MG100), the variability and quality of
the optimal design (i.e., final weight) obtained by the ETE algorithm was strongly dependent on
the termination criteria (k,;, 4 ).

The ETE algorithm seemed to perform a robust search of the largest design space considered

(PL1/MG100) and minimal fluctuations in the final weight were found over multiple runs. However,
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achieving convergence demanded significantly longer runtimes compared to cases with smaller

solution spaces (e.g., PL4/MG60).

While the conclusions outlined in this study may apply to other steel frame structures with similar
topologies and loading conditions, further studies are needed to investigate the dependence of member
grouping and pool size of discrete sections on the optimal design of systems with geometries that
significantly deviate from the case study considered. Additionally, future research opportunities may
include the development of advanced optimization methods to accurately quantify fabrication and
constructability costs and integrate non-structural (e.g., architectural) constraints into the optimization
problem. Finally, multi-objective design procedures can also be explored to accurately map the tradeoff
between competing objectives such as weight minimization and constructability of large-scale structural

systems.
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