IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

Machine/Deep Learning for Software
Engineering: A Systematic Literature Review

, Liguo Huang™', Amiao Gao, Jidong Ge ™, Tengfei Zhang, Haitao Feng

, Ishna Satyarth™
, and Vincent Ng

Abstract—Since 2009, the deep learning revolution, which was triggered by the introduction of ImageNet, has stimulated the synergy
between Software Engineering (SE) and Machine Learning (ML)/Deep Learning (DL). Meanwhile, critical reviews have emerged that
suggest that ML/DL should be used cautiously. To improve the applicability and generalizability of ML/DL-related SE studies, we
conducted a 12-year Systematic Literature Review (SLR) on 1,428 ML/DL-related SE papers published between 2009 and 2020. Our
trend analysis demonstrated the impacts that ML/DL brought to SE. We examined the complexity of applying ML/DL solutions to SE
problems and how such complexity led to issues concerning the reproducibility and replicability of ML/DL studies in SE. Specifically, we
investigated how ML and DL differ in data preprocessing, model training, and evaluation when applied to SE tasks, and what details
need to be provided to ensure that a study can be reproduced or replicated. By categorizing the rationales behind the selection of ML/
DL techniques into five themes, we analyzed how model performance, robustness, interpretability, complexity, and data simplicity

1188
Simin Wang
Ming Li, He Zhang
affected the choices of ML/DL models.
Index Terms—Software engineering, machine learning, deep learning
4+
1 INTRODUCTION

HE software development and evolution paradigm has
Tshifted from human experience-based to data-driven
decision making. In the past, the state of software intelli-
gence in Software Engineering (SE) tasks has been very
rudimentary, with many of the decisions supported by gut
feeling and at best through consultation with senior devel-
opers [1]. For instance, managers allocate development and
testing resources based on their experience in previous proj-
ects and their intuition about the complexity of the new
project relative to previous projects. This decision-making
process leads to wasted resources and increased costs of
building and maintaining large complex software systems.
The primary reason is that SE data is more complex for its
size than perhaps any other human construct, and many of
the classical problems of developing software products

Simin Wang, Liguo Huang, Amiao Gao, and Ishna Satyarth are with the
Department of Computer Science, Southern Methodist University, Dallas,
TX 75275 USA. E-mail: {siminw, amiaog, isatyarthj@smu.edu, Ighuang
@lyle.smu.edut.

Jidong Ge, Tengfei Zhang, Haitao Feng, Ming Li, and He Zhang are with
the Nanjing University, Nanjing, Jiangsu 210093, China. E-mail: {gjd,
hezhang J@nju.edu.cn, terryzhang1009@foxmail.com, fenghaitaofht@gmail.
com, lim@lamda.nju.edu.cn.

Vincent Ng is with the Human Language Technology Research Institute,
University of Texas at Dallas, Richardson, TX 75083 USA. E-mail: vince
@hlt.utdallas.edu.

Manuscript received 1 January 2021; revised 1 April 2022; accepted 18 April
2022. Date of publication 10 May 2022; date of current version 15 March
2023.

This work was supported in part by NSF under Grant 2034508, in part by
NSF of Jiangsu Province under Grant BK20201250, and in part by The Over-
sea Open Research Funding State Key Laboratory for Novel Software Technol-
ogy, Nanjing University.

(Corresponding authors: Liguo Huang, Jidong Ge, Vincent Ng and He Zhang.)
Recommended for acceptance by H. Rajan.

Digital Object Identifier no. 10.1109/TSE.2022.3173346

derive from this essential complexity and its nonlinear
increases with size [2].

Data plays an essential role in modern software develop-
ment because what is hidden in the data and the relations
among the data instances is information about the quality of
software and services and the dynamics of software devel-
opment and evolution. SE data, such as code bases, execu-
tion traces, historical code changes, mailing lists, forum
discussion, and bug/issue reports, contain a wealth of infor-
mation about a project’s progress and evolution [3].
Although many traditional automated SE methods and
tools were developed to assist human experience-based
decision making and improve productivity in various SE
tasks such as requirements traceability management, design
specification, test data generation, defect tracking, cost esti-
mation, etc., they focused on automating the generation,
storage and management of the data localized and isolated
in a specific SE task. However, these methods and tools
could not reveal the deep semantics behind the data or the
latent relationships among various kinds of data, which
contained valuable information mentioned above to inform
and impact the software project decision making process,
especially under uncertainty. With the enhanced capabili-
ties of Machine Learning (ML)/Deep Learning (DL) algo-
rithms,! ML/DL models have been trained to undertake
structured analysis of big data software repositories to dis-
cover patterns and novel information clusters and perform
the systematic and continuous evaluation and integration of
these data in neural networks. This allows for better

1. The term “machine learning” is an “umbrella” term that covers
many kinds of models including deep learning models. For ease of
exposition, however, we will use the term “ML” to refer to those studies
that involve canonical/traditional machine learning and the term “DL”
to refer to those studies that involve deep learning in this paper.

0098-5589 © 2022 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

understanding of the deep semantics and inter-connections
of the data using statistical and probabilistic routines [4] to
generate comprehensive and systematic information and
decision frameworks [5]. ML/DL techniques can automati-
cally analyze and crosslink the rich data available in soft-
ware repositories to uncover interesting and actionable
information about software systems and projects, which is
not achievable only through practitioners’ intuition and
experience. Moreover, with the rapid increase in the size
and complexity of SE data, ML methods have found their
way into the automation of SE tasks.

Underlying the popularity of ML/DL to represent and
analyze data is the fact that a number of SE problems can
naturally be formulated as data analysis (learning) tasks [6],
including (1) classification tasks, where the goal is to classify
a data instance into one of a predefined set of categories; (2)
ranking tasks, where the goal is to induce a ranking over a
set of data instances; (3) regression tasks, where the goal is
to assign a real value to a data instance; and (4) generation
tasks, where the goal is to produce a (typically short) natural
language description as output. For example, binary defect
prediction, which predicts whether new instances of code
regions (e.g., files, changes, and methods) contain defects,
can be naturally cast as a classification task. Code search [7],
defect localization [8], bug assignment [9], pull requests/
requirements/reports/test case prioritization [10], [11], [12],
[13] and recommendation in software crowdsourcing [14]
can be cast as ranking tasks. Continuous data are also uti-
lized by SE researchers using regression models to estimate
(1) the effort required to develop a software system [15], (2)
the number of defects [16] and bug-fixing time [17], (3) per-
formance of configurable software [18], (4) energy con-
sumption [19], and (5) software reliability [18], which is a
time series forecasting problem. Finally, code summariza-
tion [20], which provides a high level natural language
description of the function performed by code, as well as
the generation of well-formed code [21] and code artifacts
(e.g., code comments) [22], have been reformulated as gen-
eration tasks.

The goals of this Systematic Literature Review (SLR) are
three-fold. First, given the extensive use of ML/DL in SE,
we believe the time is ripe to take a step back and examine
the unique impacts of ML and DL on different kinds of SE
tasks. In particular, we examine whether ML or DL techni-
ques are more popularly used for a given category of SE
tasks and analyze the circumstances in which one would
prefer applying DL to ML (or vice versa) in SE. Second, we
examine the complexity of applying ML /DL solutions to SE
problems. Specifically, ML/DL applications to a particular
task typically require specifying how the data are prepro-
cessed and represented, and how the model is trained and
evaluated. A proper understanding of these issues is crucial,
as missing details in any areas above would result in a study
that suffers from replicability and reproducibility problems.
Consequently, we examine each of these issues, and in par-
ticular, we discuss the issues commonly shared by ML and
DL and how they are different in terms of data representa-
tion and model design/training. Finally, given the plethora
of ML/DL algorithms, it is essential to understand the
rationales behind a researcher’s choice of a particular ML/
DL algorithm given a SE task. As noted above, there are

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE

1189

task-specific circumstances in which we would prefer a par-
ticular learner over the others. There are also task-indepen-
dent issues that researchers may take into account when
determining which models to use (e.g., whether it is easy to
interpret a model’s decision). Therefore, we investigate the
rationales commonly provided by SE researchers.

In sum, this study makes the following contributions:

e To the best of our knowledge, we are the first to carry
out a comprehensive SLR on 1,428 papers published
in the last twelve years. We demonstrated the unique
impacts that ML and DL techniques each have on SE
tasks and summarized some guidelines on the use of
ML or DL for a given SE task.

e We examined the complexity of applying ML/DL
solutions to SE problems and how such complexity
has led to issues concerning the reproducibility and
replicability of ML /DL studies in SE.

e By categorizing the rationales behind the selection of
ML/DL techniques into five themes, we analyzed
how model performance, robustness, interpretabil-
ity, complexity, and data simplicity affected choices.

Paper Organization. The remainder of this paper is orga-

nized as follows. Section 2 introduces the background infor-
mation concerning the ML and DL techniques adopted in
SE. Section 3 presents our research methodology for identi-
fying relevant studies and extracting (and synthesizing)
related information for this SLR. Section 4 discusses the
results of our research questions in detail. Section 5 presents
the summary of findings, actionable implications and future
work. The limitation of our SLR is discussed in Section 6.
Section 7 presents the related work. Finally, Section 8 con-
cludes this SLR.

2 MACHINE/DEEP LEARNING: PRELIMINARIES

There have been multiple efforts in academia to exploit the
advantages of ML /DL to help solve various problems in SE
tasks (illustrated in Section 1) in the past decade. This sec-
tion describes these applied ML and DL technologies that
will be mentioned in the rest of this paper. We provided an
overview of the basic terminologies in machine learning
(Section 2.1) and deep learning (Section 2.2).

2.1 Machine Learning

The origin of ML can be traced back to 1959 by Arthur Sam-
uel [23]. A widely quoted, more formal definition of ML
was proposed by Tom M. Mitchell: “a computer program is
said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at
tasks in T, as measured by P, improves with experience E”
[24]. The three main paradigms in ML include supervised
learning (SL), unsupervised learning (UL), and reinforcement
learning (RL). In SL, the training data comprises examples
along with their target values and its aim is to assign each
input instance one of a finite number of discrete categories
(classification) or a real value (regression) [25]. UL is often
used to discover groups of similar examples within the data
(clustering), where none of its training examples is labeled
with the corresponding target value [25]. Finally, RL is con-

cerned with the problem of finding suitable actions to take
plore. Restrictions apply.

1190

in a given situation in order to maximize a reward by inter-
acting with the surrounding environment [25]. Deep learn-
ing is a branch of ML that has been rapidly expanding in
the last decade and will be introduced further in the next
section (Section 2.2).

According to the output of models, SL can be further
divided into three categories: Classification-based, Regres-
sion-based, and Sequence-based.

o C(lassification predictive modeling is the task of
approximating a mapping function (f) from input
variables (X) to a discrete output variable (y) [26].
The output variables are often called labels or cate-
gories. The mapping function predicts the class or
category for a given observation. Some common SL
classifiers are: Decision Trees (DT), Support Vector
Machines (SVM), Naive Bayes (NB), Logistic Regres-
sion (LoR), K Nearest Neighbor (KNN), Neural Net-
works (NN), Random Forest (RF).

e Regression predictive modeling is the task of approxi-
mating a mapping function (f) from input variables
(X) to a continuous output variable (y) [26]. A continu-
ous output variable is a real-value, such as an integer
or floating point value. These are often quantities,
such as amounts and sizes. Some common regression
models are: Linear Regression (LiR), Support Vector
Regression (SVR), Stepwise Regression (SWR), Classi-
fication And Regression Trees (CART), Ridge Regres-
sion, and Artificial Neural Network (ANN).

e Sequence generative modeling is the task of predict-
ing what word/letter comes next. The current output
is dependent on the previous input and the length of
the input is not fixed. Most of the sequence models
are based on DL, such as encoder-decoder frame-
work, which is widely used in the SE community.
Hidden Markov Models (HMMs) and Conditional
Random Fields (CRFs) are two popular non-DL
sequence models in SE.

There is some overlap between the algorithms for classifi-
cation and regression. Some algorithms can be used for both
classification and regression with minor modifications, such
as DT and ANN. In certain cases, it is possible to convert a
regression problem to a classification problem. For instance,
linear regression could be converted into binary classification
by setting appropriate thresholds: Given a threshold (k), if
output (y) is larger than k, the document (d) would be labeled
as 1; otherwise, d would be labeled as 0 [27].

In addition, some advanced ML approaches have been
introduced to SE as well:

Ensemble learning. Rather than choosing one method, ensem-
bles build multiple predictors, where estimates coming from
different learners are combined through particular mecha-
nisms, such as voting of individual learner estimates on the
final prediction (the so-called majority voting) [28]. Bagging
(Bootstrap Aggregating) and Boosting are among the most
common approaches [29]. In Bagging, many solo methods are
independently applied on different training samples, where
each training sample is selected via bootstrap sampling with
replacement. On the other hand, Boosting arranges solo meth-
ods sequentially: Each solo method pays more attention to the
instances in which the previous method was unsuccessful.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

Semi-supervised learning. In semi-supervised learning, the
learning algorithm is fed a labeled subset of data used as
the starting point in the construction of a model which clas-
sifies the remaining unlabeled data. Self-training is a stan-
dard semi-supervised learning method: It learns a
classification model using all labeled training data and then
takes the top unlabeled examples that the model is most cer-
tain of their labels. These unlabeled examples are then
treated as labeled data and used along with existing labeled
data to train a final prediction model [30].

Active learning. Active learning, which is another major
approach for learning in the presence of a large number of
unlabeled data points, aims to reduce annotation effort by
selecting only the informative examples in the training set
for manual annotation in an iterative fashion [31], so as to
minimize the number of manually annotated examples
needed to reach a certain level of performance. It assumes
that the learner has some control over the data sampling
process by allowing the learner to actively select and query
the label of some informative unlabeled examples which, if
the labels are known, may contribute the most for improv-
ing the prediction accuracy [32].

Transfer learning. Transfer learning is a form of machine
learning that takes advantage of transferable knowledge
from the source to learn an accurate, reliable, and less costly
model for the target environment [33]. Rather than training a
model from scratch, we can train a model that has been pre-
trained on a related task. Because of this ability to exploit
knowledge from a related task, we may be able to reduce the
amount of annotated training data needed (the so-called
local data) for our task to reach a given level of performance.
Researchers in transfer learning reported that using data
from other projects can yield better predictors than just using
local data. This is especially true when the local data is very
scarce [34]. However, some studies [34], [35] warned that if
predictors are always being updated based on the specifics
of the new data, then those new predictors may suffer from
overfitting. Such updates very commonly occur when newly
constructed code modules are considered or when we learn
using data from other newly available projects.

2.2 Deep Learning
A neural network is composed of many simple elements
called “neurons” or “units.” Neurons are connected
together with weights on the connections so that they can
process information collaboratively and store the informa-
tion on these weights [36]. A collection of neurons, the so-
called “layer,” is operating together at a specific depth
within a neural network. The first layer of the network is
called the input layer which contains the raw training data,
and the final layer is the output layer. The middle layer of
neurons is called the hidden layer, because its values are
not observed in the training set. Each layer can be viewed as
creating an abstract representation of the output of the pre-
vious layer. Representation learning is a set of methods (one
or more hidden layers) that allows a machine to be fed with
raw data and to automatically discover the representations
needed for detection or classification [37].

Deep learning methods are representation learning
methods with multiple levels of representation (more than

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

one hidden layer), obtained by composing simple but non-
linear modules that each transform the representation at
one level (starting with the raw input) into a representation
at a higher, slightly more abstract level [37]. For example,
the first hidden layer is responsible for creating a represen-
tation of the inputs. The second hidden layer is responsible
for creating a representation of the output of the first hidden
layer, and so on. Hence, the more layers there are in the net-
work, the more abstract the resulting representation of the
inputs will be. The resulting representation is typically
passed to one or more so-called dense layers, which are typi-
cal feed-forward networks, before reaching the output layer.
In addition, each node/unit in the network is associated
with a non-linear activation function. Hence, a network
with numerous layers of non-linear units will express
highly non-linear, arbitrarily complex functions.

Four neural architectures that are commonly used in
SE include: feed-forward neural networks (FNNs), deep
belief networks (DBNs), recurrent neural networks
(RNNs) and convolutional neural networks (CNNs).
FNNs are a family of acyclic artificial neural networks
with one or more hidden layers between the input and
output layers that aim to represent high-level abstractions
in data by using model architectures with multiple non-
linear transformations [38]. In a FNN, data flows from
one layer to the next without going backward, and the
links between layers are one way in the forward direc-
tion. Since there are no backward links, a FNN does not
have any memory: Once data passes through the network,
it is forgotten, and it cannot be exploited (as historical
context) to predict data items encountered at a later point
in time. A DBN is a generative graphical model that uses
a multi-level neural network to learn a hierarchical repre-
sentation from training data that could reconstruct the
semantic and content of input data with a high probabil-
ity [39]. A CNN is especially well suited for image recog-
nition and video analysis tasks because a CNN, which is
inspired by the biological findings that the mammal’s
visual cortex has small regions of cells that are sensitive
to specific features of the visual receptive field [40], can
exploit the strong spatially local correlation present in
images. A RNN, unlike a FNN, allows backward links
and, therefore, can remember things. It is therefore well
suited for processing sequential data such as text and
audio because its feedback mechanism simulates a
“memory” so that a RNN'’s output is determined by both
its current and prior inputs [41]. While a RNN has mem-
ory, its memory may not be that good. Specifically, it may
only remember things in the recent past and not those it
saw a while ago due to a problem known as vanishing
gradient. To address this problem with the standard
RNN model, two variants are widely adopted in SE with
mechanisms for capturing long-term dependencies: Long
Short Term Memory (LSTM) networks [42], [43] and
Gated Recurrent Units (GRUs) [44], [45].

3 RESEARCH METHOD

This SLR was initiated in the middle of 2018, following the
approach proposed by Kitchenham and Charters [46] that
uses database searches to identify relevant studies based on

1191

a rigorous research strategy. We also considered the snow-
balling approach but decided not to use it in the end (see
Appendix A.1, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TSE.2022.3173346).

To avoid missing critical papers, we adopted an
enhanced version of Kitchenham’s approach, the GQS
method proposed by Zhang et al. [47] and described in
detail in Sections 3.2 and 3.3. The leading author of this
study is a Ph.D. candidate whose research interest lies in
employing ML/DL techniques to explore challenging SE
tasks. The remaining co-authors and our supervisors have
long-term experiences with either SE or ML/DL. This sec-
tion describes the research methodology used for conduct-
ing this study.

3.1 Research Questions and Motivations

In 2009, the deep learning revolution — triggered by the
introduction of ImageNet — has transformed Al research in
both academia and industry [48]. At almost the same time, a
leap in Nvidia’s graphics processing units (GPUs) signifi-
cantly reduced the computation time of DL algorithms.
Both milestone accomplishments became the catalyst for the
ML/DL boom in all applications, and SE has undoubtedly
become one of the beneficiaries. Xie et al. [49] conducted an
empirical study on data mining involving ML methods for
SE in 2009, which described several challenges of mining SE
data and proposed various algorithms to effectively mine
sequences, graphs, and text from such data. The study pro-
jected to see the expansion of the scope of SE tasks that
could benefit from data mining and ML methods and the
range of SE data that can be mined and studied. Besides, the
oldest active Al and ML repository on GitHub was created
in 2009 [50]. The annual proportion of new repositories
related to Al and ML gradually rose since then, until the
“boom” in 2017. Considering all above factors, we set 2009
as the starting year for our search of publications when pre-
paring a 12-year review that spans the period from 2009 to
2020.

Generalizing applications of ML/DL in SE remains a
concern, which has been acknowledged by many studies
[41], [51], [52], [53]. Specifically, research results of ML/DL
studies in SE may not generalize and be applicable to other
projects with different datasets, projects written in different
languages, and projects from different domains and/or
technology stacks [51]. The main purpose of this study is
not to re-evaluate model performance but to investigate
what is missing and how the missing information leads to
the gap which impedes the application and generalization
of ML/DL methods and results on SE tasks reported in the
academic literature. Specifically, this empirical study aims
to answer the following research questions:

RQ1. What are the trends of impacts of ML and DL techniques
on SE tasks from 2009 to 2020?

How do ML and DL differ in data preprocessing, model
training, and evaluation when applied to SE tasks, and what
details need to be provided with respect to these three aspects

to ensure that a study can be reproduced or replicated?
RQ3. How do SE studies select the ML/DL models?

RQ2.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1192 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023
Study Identification Automated Search Study Selection
M Dol Export Filter by page limit (pages > 7) }—» 31,180 papers
SCOPUS Library IEEE Xplore
Derive ‘ Apply exclusion Y
search strings 37,848 papers 4,578 papers 6,411 papers criteria 1

Machine / Deep - Remove duplicate studies }—» 28,387 papers

Learning Reflne. :

search strings o ;E; Apply inclusion/exclusion criteria
Quasi-gold § g
standard ® = 49,208 papers Inspect venue, title and abstract 6,528 papers
> p (371 papers) Ii g
: LT & B
Identify Export o Apply inclusion/exclusion criteria
QRES‘?afT s relevant venues +
uestion 1-
Manual Search Export | Scan full-text to select primary studies }—» 1,605 papers
—
Qﬁ(»| Researcher 1 16 Selected | 4+ |8 Selected Al \
SE venues venues
\ ‘ | Conduct quality evaluation }—» 1,428 papers
Software
Engineering Researcher 2 348 papers 23 papers

Fig. 1. Study identification and selection process.

RQ1 attempts to summarize the changes (accomplish-
ments and deficiencies) we discovered as part of our trend
analysis of ML- and DL-related SE studies. Through RQ2 and
RQ3, we hope to shed light on issues concerning how to
improve the applicability and generalizability of ML/DL-
related SE studies. Specifically, RQ2 attempts to examine the
complexity of applying ML/DL techniques to SE tasks. RQ3
aims to find the patterns with respect to the choice of a ML/
DL technique suitable for a particular SE task.

3.2 Search Strategy

As shown in Fig. 1, we applied the “Quasi-Gold Standard”
(QGS) [47] method to construct a set of known studies for
refining search strings by integrating manual and automated
search strategies. We chose this search strategy because of the
large number of relevant papers. It balances the search effi-
ciency and the coverage of studies, which is much faster than
purely manual search, and captures the most relevant studies
following a relatively rigorous process. Specifically, we took
six steps to identify relevant studies:

1) Select publication venues for manual search and
select digital databases for automated search which
can cover all selected venues.

2) Establish QGS: Screen all papers for manual search
and filter by inclusion/exclusion criteria (defined in
Table 2).

3) Subjectively define the search string based on
domain knowledge.

4) Conduct automated search using the search string
defined in Step 3.

5) Evaluate the quality of automated search against
QGS by calculating quasi-sensitivity.

6) If quasi-sensitivity > 80%, the results from the auto-

mated search can be merged with the QGS and

move forward. Otherwise, the process has to go back

to Step 3 for search string refinement, which forms

an iterative improvement until the performance
reaches the threshold.

As the manual search venues, we chose 16 top SE (ICSE,

ASE, ESEC/FSE, ICSME, ICPC, RE, ESEM, ISSTA, MSR,

SANER, TSE, TOSEM, EMSE, IST, JSS, JSEP) and eight Al
(AAAIL IJCAI, ACL, ICML, ATJ, JMLR, EMNLP, CoNLL)
conferences and journals that have published papers
addressing the ML/DL applications in SE (shown in
Table 1). Correspondingly, the follow-up databases for
automated search are IEEE Xplore, ACM Digital Library
and SCOPUS. Then, two authors independently screened
the title-abstract-keywords fields of all the papers published
in the selected venues from 2009 to 2020. Any disagreement
on any of the identified papers was resolved via discussion
after both of them examined the full text of the paper. In
total, 371 papers (348 SE + 23 Al papers) were retrieved for
building the QGS. The detailed process of refining the
search string is described in Appendix A.2, available in the
online supplemental material and the final search string is
shown below:

“(‘machine learn* OR ‘deep learning” OR ‘neural network?”’
OR ‘reinforcement learning’ OR ‘unsupervised learn* OR
‘supervised learn*’) AND (‘software engineering’ OR (software
AND defect) OR ‘software requirement?” OR ‘software design’
OR ‘software test* OR ‘software maintenance’ OR ‘source code’
OR “project management’ OR ‘software develop*)"

Finally, we retrieved a total of 49,208 papers from three
digital databases and via manual search. The automated
search results can be directly downloaded as spreadsheets (.
csv), containing paper titles, publication years, publication
titles (venue), paper lengths (in pages), etc.

3.3 Study Selection
Once we retrieved the studies deemed potentially relevant
based on our search strategy, an assessment of their actual
relevance according to the inclusion and exclusion criteria
in Table 2 was executed in order to select the primary stud-
ies that provide direct evidence about the research
questions.

The selection procedure was performed in five phases as
illustrated in Fig. 1. The first two phases (filtering and dedu-
plication) were automatically processed by manipulating the

2. An asterisk (*) in a search term is used to match zero or more char-
acters, and a question mark (?) is used to match a single character.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

TABLE 1
Publication Venues for Manual Search

1193

TABLE 2
Study Inclusion and Exclusion Criteria

Acronym Venues Inclusion criteria

ICSE International Conference on Software 1) The paper claims that a ML /DL technique is used
Engineering . :

ASE International Conference on Automated Software 2) The paper claims t.hat the Stuclly 1nvqlves an SE task
Engineering or one or more topics covered in the field of SE [54]

ESEC/FSE European Software Engineering Conference and
International Symposium on Foundations of
Software Engineering

ICSME International Conference on Software
Maintenance and Evolution
ICPC International Conference on Program
Comprehension
ESEM Symposium on Empirical Software Engineering
and Measurement
RE Requirements Engineering Conference
ISSTA International Symposium on Testing and
Analysis

MSR Working Conference on Mining Software
Repositories

SANER International Conference on Software Analysis,

Evolution and Reengineering

EMSE Empirical Software Engineering

TSE IEEE Transactions on Software Engineering

TOSEM ACM Transactions on Software Engineering and

Methodology

JSEP Journal of Software: Evolution and Process

JSS Journal of Systems and Software

IST Information & Software Technology

AAAI AAAI Conference on Artificial Intelligence

[JCAI International Joint Conference on Artificial
Intelligence

ACL Meeting of the Association for Computational
Linguistics

ICML International Conference on Machine Learning

AlJ Artificial Intelligence (Journal)

JMLR Journal of Machine Learning Research

EMNLP Empirical Methods in Natural Language
Processing

CoNLL Computational Natural Language Learning

spreadsheet of search results, reducing the total number of
papers to 28,387. Next, applying the inclusion/exclusion crite-
ria to check the venue, paper title, and abstract, the total num-
ber of included papers declined substantially to 6,528 in the
third phase. Unrelated topics to SE (not satisfying inclusion
criteria 1) was the leading cause for the decline. We also
removed 1,925 papers that were grey publications or were
published in a workshop (exclusion criteria 5,6,7), 89 SLRs or
mapping studies/surveys (exclusion criteria 4), 134 papers
that focused on SE for ML/DL (exclusion criteria 3), and 24
papers that were old versions of extended papers (exclusion
criteria 2). The SE for ML/DL papers, which apply SE methods
to ML/DL systemss, were not considered because our SLR
focuses exclusively on ML/DL for SE, which concerns how SE
tasks can be formulated as data analysis (learning) tasks and
thus can be supported by ML and DL techniques (see

3.In this paper, ML/DL systems refer to software frameworks,
tools, or libraries that provide ML/DL functionalities, or software sys-
tems that have ML or DL models as their core with extra software
encapsulation.

3) The paper with accessible full text

Exclusion criteria

1) The paper whose number of pages is less than 8

2) The old version of the paper that has been extended
from conference to journal

3) The paper using SE methods to contribute to ML/DL
systems

4) The paper that is published as a SLR, review or sur-
vey

5) Short papers, tool demos and editorials

6) The paper that is published in a workshop or a doc-
toral symposium

7) The paper that is a grey publication, e.g., a technical
report or thesis

Section 2) [6]. The differences between these two branches
are: (1) in ML/DL for SE studies, the proposed methodologies
were ML/DL-based technologies, but in SE for ML/DL stud-
ies, non-ML/DL based SE methods (e.g., software testing
techniques, such as metamorphic testing [55]) were used; and
(2) in SE for ML/DL studies, the used data was gathered from
ML/DL systems, but ML/DL for SE studies explored various
kinds of data generated in the software development and evo-
lution lifecycle. To eliminate SE for ML/DL papers, we checked
whether the proposed methodologies were non-ML/DL
based in the method design of the paper and determined
whether data was collected from ML/DL systems in the
experimental design of the paper. Finally, before moving to
the primary studies selection, a pilot was conducted in order
to establish a homogeneous interpretation of the selection cri-
teria between two researchers [56]:

1) Randomly select 30 studies from the current collec-
tion and assess them individually by full-text read-
ing according to the inclusion/exclusion criteria.

2) Calculate the Cohen’s Kappa value [57] after classify-
ing all 30 studies as included or not.

3) Hold a discussion to resolve disagreement and strive
to reach a consensus between two raters, if the
Cohen’s Kappa value did not reach almost perfect
agreement (> 0.8) according to Landis and Koch [58].

4) Repeat Steps 1-3 by randomly selecting a new set of
30 studies until the Cohen’s Kappa valueis > 0.8.

Initially, two researchers had 25 agreements and five dis-

agreements, which made the Cohen’s Kappa value reach a
moderate agreement (0.6). To resolve these disagreements, we
had to determine (1) whether a paper that is a comparative
study should be excluded or not and (2) whether a paper
whose proposed methodology is statistical learning or data
mining should be excluded or not. In the end, we agreed
that a comparative study should be included as long as it

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1194
TABLE 3
Extracted Data ltems and Related Research Questions
RQ Data item
1 Published year
12,3 The category of SE task
1,2 The SE activity to which the SE task belongs
1,23 The adopted ML /DL techniques
2 Whether the dataset is from industry, an open
source, or a student collection
1,2 The type of feature engineering and input data
2 The adopted data preprocessing techniques
2 The adopted hyper-parameter optimization
techniques
2 The adopted weight training algorithms and
optimizer
2 The selected evaluation metrics
1,2 The size of the data before and after preprocessing
2,3 The rationales behind ML /DL techniques selection
2 The number of times a study has been replicated or
reproduced

conducted experiments and satisfied all inclusion criteria,
and statistical learning or data mining should be excluded
due to the exclusive focus on ML/DL applications in SE for
this SLR. After another iteration, the Cohen’s Kappa value
increased to 0.9, which was our acceptable level to start the
primary studies selection. Finally, 1,605 papers remained as
primary studies by scanning the full-text in the final pool.
The final number of included primary studies was reduced
to 1,428 papers after conducting the quality assessment
described in Section 3.5.

The above pilot process with Kappa measurement is also
used for later data extraction, data synthesis, and study
quality assessment with a slight difference in the number of
selected sample studies or the contents to be assessed.
Besides, our supervisors, the two domain experts in SE and
ML/DL, provided their advice on “Hard to Determine”
studies.

3.4 Data Extraction

Table 3 presents the data items extracted from the primary
studies, where the column “RQ” shows the related research
questions to be answered by the extracted data items on the
right.

We distributed the workload among three researchers as
follows: each researcher was given 2/3 of the studies in
order to guarantee that all primary papers were assessed by
at least two researchers [46]. All the information was
recorded in spreadsheets via the data extraction form. By
setting 20 sample studies for each iteration, the pilot process
with Kappa measurement (stated in Section 3.3) was
applied to each individual data item to check the data
extraction consistency, during which the extracted data was
cross-checked and disagreement was resolved by discus-
sion or expert advice. After two iterations, the Cohen’s
Kappa value for extracting each data item exceeded 0.8,
except three “Hard to Determine” items: the SE task, the
rationale behind ML/DL techniques selection, and repli-
cated /reproduced count. Then we decided to extract these
three items separately, with the corresponding Kappa meas-
urements documented:

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

e SE task: Initially, to determine the candidate term for
a SE task addressed in each paper, we manually
identified the keywords following the abstract or in
the related work of the paper. Then, comparing with
already identified SE tasks, we decided whether this
candidate term should be merged with the existing
SE tasks or kept as a new task. The Cohen’s Kappa
value increased to 0.9 within four iterations (0.4, 0.6,
0.7, 0.9, respectively).

e Rationales behind ML/DL techniques selection: We
examined three places where the rationales are most
likely explained (i.e., identifying the discussion of
the suitability and advantages of the selected meth-
ods and why the selected model works better),
including motivating examples, model design, and
background. Three kinds of similar but noisy
descriptions were excluded during the iterative pro-
cess: the purpose of using ML/DL algorithms, the
rationale of selecting non-ML/DL methods, and the
introduction and definition of selected ML /DL algo-
rithms. The Cohen’s Kappa value increased to nearly
0.9 after five iterations (0.3, 0.5, 0.5, 0.7, 0.9,
respectively).

e Replicated/reproduced count: First, we extracted titles
of baseline studies replicated or reproduced by all
1,428 studies in our collection (this can typically be
found in the section of experimental setup). Then,
we checked each of the extracted paper titles and
increased the count if the study was included in our
collection. The Cohen’s Kappa value increased to 0.9
within three iterations (0.5, 0.7, 0.9, respectively).

3.5 Study Quality Assessment

Based on the five roles that quality assessment (QA) may
play in SLRs by Kitchenham et al. [59], the two main roles
played in our SLR are as follows: (1) Selection — to provide
more extensive inclusion and exclusion criteria, and (2)
Interpretation — to guide the interpretation of findings and
determine the strength of inferences.

With a selection purpose, QA was conducted before the
main data extraction. The included primary studies
assessed as low-quality were inadequate to answer the
research questions and possibly biased the results [60].
Therefore, three QA criteria (QA1-QA3) were created to
evaluate the full-text again for all 1,605 primary studies.
Papers that elicited a NO answer to any of the following
questions were excluded:

e QA1 Is ML/DL adopted in the proposed methodol-
ogy and not simply used in one of the baseline

methods?

e QA2. Is the impact of proposed ML/DL techniques
on SE clearly stated?

e QA3. Is the contribution of the research clearly
stated?

Following the process of Kappa measurement stated in
Section 3.3, we successfully improved the Cohen’s Kappa
value from 0.7 to 0.9 within two iterations. As a result, we
excluded 38, 86, 13 papers after being assessed based on
QA1, QA2, QAS3, respectively. During the assessment pro-

cess, 40 additional papers were excluded by applying the
TC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

TABLE 4
Checklist of Questions to Assess the Quality of ML/DL
Studies in SE
ID Quality assessment question
QA4 Is the raw dataset retrieved from open source?
QA5 Are the data extraction methods fully described?
QA6 Does the paper describe any data preprocessing
process?
QA7 Does the paper describe any data cleaning process?
QA8 Are the independent variables clearly reported?
QA9 Does the paper report how the proposed ML/DL
model is implemented?
QA10 Are the process of determining the correct hyper-
parameters for ML /DL models fully described?
QA11 Does the paper describe evaluation metrics when
comparing to other approaches?
QA12 Is the proposed ML/DL model compared with other
approaches?

QA13 Does the paper provide error analysis after the

performance evaluation?

inclusion/exclusion criteria, thus reducing the total number
of included primary studies from 1,605 to 1,428.

With an interpretation purpose, quality data could be col-
lected along with data extraction process using separate
spreadsheets. As shown in Table 4, a quality checklist
(QA4-QA13) was designed to generate quality data which
was then used as evidence to support part of the answers to
RQ2, which is to assess the quality (replicability and repro-
ducibility) of ML/DL studies in SE. The answers to these
questions in the checklist and subsequent analysis were
stated in Section 4.3.5 and Appendix A.5, available in the
online supplemental material.

3.6 Data Synthesis

We applied both quantitative and qualitative methods to
collate and summarize the results of the included primary
studies. For RQ1, meta-summary — a quantitative synthesis
which aims to identify the frequency of each discovery as
well as the discovery of high frequent findings [61] — was
used to construct a frequency matrix of different ML/DL
methods that the applied to different SE tasks (presented in
Table 6). Then we discovered several patterns based on the
higher frequency of ML/DL applications, such as demon-
strating both the spectrum and research depth of SE tasks
on which ML/DL methods were applied for ML for SE. For
RQ2, we used narrative synthesis [61] — a qualitative synthe-
sis which features its defining characteristic that is summa-
rized in narrative — to identify whether results from
studies are consistent with one another. We prepared the
required elements for narrative synthesis:

o Theoretical base: (1) Required elements to design a
solution for SE tasks (i.e., Data source, Retrieval
methodology, Raw dataset, Extraction methodology,
Study parameters, Processed dataset, Analysis meth-
odology, and Results dataset) from [62], and (2)
nine-stage ML workflow activities from [63].

o Preliminary synthesis: Upon the theoretical base, we
identified relevant information in terms of ML/DL

1195

in data preparation, model training, and evaluation
based on the extracted data.

e Relationship exploration and evaluation: We analyzed
this information to discover the patterns about com-
monalities and differences between ML and DL in
data preparation, model training, and evaluation.
We also designed a quality checklist (in Table 4) to
evaluate the replicability /reproducibility of ML/DL
studies in SE.

For RQ3, thematic synthesis [64] — a qualitative synthesis
for identifying, analyzing and reporting recurring patterns
in the data — was employed to investigate how well the
authors were able to understand and justify the SE task
being addressed by their selected ML/DL methods. Based
on the collected rationales behind ML/DL techniques selec-
tion, two researchers took the following steps to synthesize
the evidence:

1) Randomly select 10 rationales and label them by vivo
coding [64], which refers to a code scheme extracted
directly from the data record. This code scheme
stands out as a summary of what is being stated and
also serves as the basis for the subsequent clustering
process. For instance, the code “used in many previ-
ous empirical studies” was extracted from “We
selected random forest since this algorithm has been
used in many previous empirical studies and tends
to have good predictive power.”

2) Compare the documented themes (vivo codes) and
calculate the Cohen’s Kappa value.

3) If the Cohen’s Kappa value is < 0.8, a discussion
would be held to resolve the disagreement on the
selected vivo codes.

4) Repeat Steps 1 to 3 until the Cohen’s Kappa value is
> 0.8.

After two iterations, the Cohen’s Kappa value was
improved from 0.6 to 0.8. In the end, we manually grouped
all the rationales by clustering vivo codes into categories,
which will be elaborated in Section 4.4.

4 RESULTS AND SYNTHESIS

4.1 Overview

We selected 1,428 papers related to the applications of
ML/DL to SE, with 1,209 ML and 358 DL studies (139
studies employ both ML and DL techniques), which are
publicly available at [65]. These studies are from 70
conferences and 27 journals, covering varieties of
domains besides SE and Al, such as data mining (Data
and Knowledge Engineering) and system engineering
(International Systems Conference). Still, Fig. 2 shows that
SE researchers contribute the most papers since the top
ten conferences and journals are all related to SE
domains, and the full list of included venues is publicly
available at [65]. Here are the venues presented in
Fig. 2 that are not included in Table 1: PROMISE (Inter-
national Conference on Predictive Models and Data Analyt-
ics in Software Engineering), APSEC (Asia-Pacific Software
Engineering Conference), ASE_] (Automated Software Engi-
neering Journal), SQJ (Software Quality Journal), and TR
(IEEE Transactions on Reliablity).

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1196
Top 10 Conferences
0 10 2|0 30 40 50 60 70 80 90 ICIJO 110

IEEE Access -

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

Top 10 Journals
JSS 104

EMSE -

|
[l
=

IST

\
~
=

61

TSE 55!

s - =
vt - **
sor - *
TOSEM -

' ' '
10 20 30 40 50 60 70 80 90 100 110

N
w

o

Fig. 2. Conferences and journals that published the largest number of papers in our study.

Sl

2020

2019 A

o
©o

2018 - L

|

2017 - mie

|

2016

]
o
g

2015 A

|

~
N

2014 -

|

2013 -

1

2012 -

1

2011 -

. ML
NN DL

2010 -

I

2009 -

50 100 150 200 250

o

Fig. 3. Distribution of papers over years.

Fig. 3 shows a significant increase in the number of papers
published each year between 2009 and 2020. The blue bar shows
the number of ML studies, and the red bar shows the number of
DL studies. The initial application of DL to SE did not take place
until 2015 when White et al. [66] introduced DL to software lan-
guage modeling, which offered the SE community new ways to
learn from source code files to support SE tasks. A possible
explanation for this late date is that it took time for SE research-
ers to digest the DL techniques and cautiously validate their fea-
sibility and effectiveness on SE tasks. Since 2015, DL has drawn
increasing attention from researchers and practitioners in the
SE community — especially in the past two years (2019-2020 in
Fig. 3), tripling and quadrupling the 2018 number, respectively.

Fig. 4 shows several apparent trends with regard to the
applications of five categories of ML and DL techniques in
SE. The labeled number in white represents the number of
papers that employed the techniques from each category
per year.* First, for both ML and DL applications in SE, clas-
sification-based approaches are dominant and steadily
increasing, indicating that classification tasks in SE are the
priority concerns throughout the years. Second, unsuper-
vised and reinforcement learning are more widely adopted
in ML applications in the last two years. Third, the signifi-
cant increase of deep sequence-based approaches reveals
one of the greatest contributions by DL techniques. In the

4. One paper might employ more than one category of techniques,
so the labeled number in Fig. 4 might have the overlap among different
categories.

ML-Techniques Distribution

2020 - N]

2019 - S N N

2015 - E N]

2017 - Y YR E

2016 - T

POLE 67 112114

2014 59 821}

2013 - IECENEY S = Classification

2012 -EZEY & BN Regression

2011 -3 S Sequence

2010 -G mm Unsupervised

2009 - B Reinforcement
(I) 5‘0 160 l'_‘-;O 2(‘]0 25‘:0

DL-Techniques Distribution

e

2020 |

2019 -

N |

2018 |

2017 -Vl
Classification-DL

Regression-DL
Sequence-DL

|
2016 - L
N Unsupervised-DL
|
20

-
2015 i Reinforcement-DL

20 40 60 80 100 4 140 160

o-

Fig. 4. Distribution of applied ML/DL techniques in SE over years.

next section, we conduct a further analysis among SE tasks
and ML/DL techniques.

4.2 Trend Analysis for ML/DL for SE (RQ1)

We analyzed the impact of ML for SE and DL for SE. Based on
how ML/DL-based techniques generate impacts on diverse SE
tasks, we categorized the 1,428 studies into a total of 77 distinct
SE tasks over the aforementioned seven SE activities in Table 5.
More detailed information is presented in Tables A.6 and A.7
(see Appendix A, available in the online supplemental mate-
rial), which show the number of ML-based studies and the
number of DL-based studies that were published in each year
between 2009 and 2020 respectively for different SE tasks.
Among these activities, defect analysis (349 ML+DL) and soft-
ware maintenance and evolution (504 ML+DL) take up over half
of the collection, mainly because significant amounts of bug
reports and software evolution histories are publicly available
in the open source repositories. According to the categories
defined in Section 2.1, we classified both ML and DL studies
into the same five categories for each SE task in Table 6. All the
data is publicly available at [65].

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW 1197
TABLE 5
Distribution of 77 SE Tasks over Seven SE Activities
SE Activity SE Task Total
R1.Requirements Tracing (9) R4.User Story Detection (2) 70
Requirements R2.Requirements Detection and R5.Requirements Uncertainty /Inconsistency
Engineering Classification (46) Detection (6)
R3.Requirements Prioritization (4) R6.Requirements Assessment (3)
D1.Architecture Tactics Detection (7) D6.Architecture Evaluation (3) 51
D2.Software Modeling (8) D7.Model Repair (1)
Design and Modeling D3.Model Optimization (7) D8.Model Extraction (3)
D4.Design Elements Management (14) D9.Design Discussion Mining (1)
D5.Design Pattern Detection (7)
I1.Code Optimization (27) I7.Code Smell/ Anti-pattern Detection (32) 202
12.Code Summarization (27) I8.Program Classification (8)
Implementation I3.API Learning (22) 19.Code Comments Management (14)
P 14.Code Generation and Completion (26) I10.Error Specification Generation (1)
I5.Code Search and Retrieval (19) I11.Type Inference (8)
16.Program Synthesis (12) I12.Logging Statements Prediction (6)
T1.Test Case Generation (26) T4.Test Automation and Prioritization (49) 99
Testing T2.Test Case Management (14) T5.Assert Statements Generation (2)
T3.Test Report Management (5) T6.Runtime Verification (3)
Al.Defect Prediction (259) A4 Error Feedback Generation (2) 349
Defect Analysis A2.Defect Detection and Localization (71) A5.Root Cause Analysis (2)
A3.Defect Categorization (15)
M1.Repository Mining (30) M15.Tag Recommendation (7) 504
M2.Sentiment Analysis (29) M16.Traceability Recovery (14)
M3.Code Clone and Similarity Detection (40) M17 Report/Review Summarization (7)
M4.Authorship Attribution (6) M18.Incident/Ticket Management (10)
MS5.Software Change Prediction (38) M19.Bug Report Management (44)
M6.Defect Fixing (25) M20.Bug Assignment (26)
Maintenance and M?7 .Software Apph(clastions Categorization M21.Issue/Malware/ Anomaly Detection (45)
Evolution MS8.Software Artifacts Classification (23) M22.Commits and Conflicts Management (7)
MO9.Software Refactoring (5) M23.Pull Requests Management (6)
M10.Software Quality Prediction (76) M24.App Permission Recommendation (2)
M11.Specification Mining (8) M25.Software localization (1)
M12.Software Modularization (4) M26.Documentation Effort Prioritization (1)
M13.Configuration Optimization (13) M27.App Usage Analytics (5)
M14.Code Review (14) M28.Query Reformulation (3)
P1.Software Effort/Cost Estimation (67) P7.Performance Prediction (24) 153

P2.Software Schedule Estimation (16)

P3.Software Size Estimation (1)
P4.Process Management (8)
P5.Energy Estimation (6)

Project Management

P6.Risk Management (5)

P8.Project Outcome Prediction (5)
P9.Software Crowdsourcing Recommendation (6)
P10.Community Smells Detection (1)
P11.Developers’ Behavior and Physiology Analysis
(14)

The total number of relevant studies is shown in parentheses beside each SE task. “Total” shows the aggregated total number of papers for each SE activity.

4.2.1 ML for SE

ML applications cover almost all SE tasks (76 out of 77) except
Software Localization (M25). We investigated both the breadth
and the depth of the changes that ML techniques have brought
to SE. Of all the 77 SE tasks in Table 6, the total number of clas-
sification-based, regression-based and unsupervised ML
studies is considerably larger than that of DL studies: 937
(CM) versus 222 (CP), 142 (RM) versus 14 (RP), 110 (U™M) ver-
sus 8 (UP).

What impacts does the continuous and long-term use of ML
approaches bring to SE tasks? According to Tables A.6 and A.7,
we found that Test Automation and Prioritization (T4), Defect

Prediction (A1), Defect Detection and Localization (A2), Software
Quality Prediction (M10), Bug Assignment (M20), and Software
Effort/Cost Estimation (P1) are the six tasks that receive continu-
ous contributions of ML applications from SE researchers every
year between 2009 and 2020. Among these six tasks, Defect Pre-
diction (A1) not only claims the top numbers of two columns
(233 in CM and 18 in U*) in Table 6, but also contributes the
largest number of papers (259) according to Table 5 (depth).
What different impacts do ML techniques bring to SE tasks in the
last six years? In general, we observed a rapid growth in the
number of SE tasks that can be supported and automated by
ML techniques. We set 2015 as the line of demarcation to

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1198 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023
TABLE 6
Number of ML and DL Techniques over 77 SE Tasks

Task(Yr) Cc¥ ¢ RM RP SM g» yuM U”? FY FP Task(yYry C¥ C?P RM RP SM gP yM y? FEM PP
R1 (10) 5 1 0 0 0 0 3 0 1 0 R4 (17) 1 0 0 0 0 1 0 0 0 0
R2 (09) 36 4 0 0 2 2 7 1 0 0 R5 (10) 4 1 0 0 1 0 1 0 0 0
R3 (09) 2 0 1 0 0 0 1 0 0 0 R6 (15) 3 0 0 0 0 0 0 0 0 0
D1 (16) 6 1 0 0 1 0 0 0 0 0 D6 (10) 0 0 1 0 0 0 1 0 1 0
D2 (09) 4 0 1 0 0 1 0 0 3 0 D7 (20) 0 0 0 0 0 0 0 0 1 0
D3 (13) 3 0 1 0 0 0 2 0 1 0 D8 (10) 3 0 0 0 0 0 0 0 0 0
D4 (18) 3 8 0 0 0 1 0 2 1 0 DY (20) 1 1 0 0 0 0 0 0 0 0
D5 (12) 6 1 0 0 0 0 2 0 0 0

I1(11) 8 3 0 0 6 11 2 0 1 0 17 (11) 29 7 1 0 0 0 0 0 0 0
12 (15) 0 0 0 0 2 27 0 0 0 3 18 (14) 4 2 0 0 0 0 2 0 0 0
13 (09) 13 1 0 0 4 2 3 0 0 0 19 (13) 10 2 0 0 0 3 0 0 0 0
14 (09) 4 0 0 0 7 15 1 0 2 0 110 (19) 1 0 0 0 0 0 0 0 0 0
15 (11) 3 8 0 0 0 7 0 0 2 0 111 (16) 3 2 0 0 0 3 1 0 0 0
16 (14) 0 1 0 0 5 4 0 0 5 0 112 (15) 2 0 0 0 0 0 0 0 0
T1(11) 3 1 0 0 4 8 0 1 8 1 T4 (09) 30 4 5 0 0 1 7 0 7 2
T2 (09) 9 0 1 0 0 0 0 0 6 0 T5 (14) 1 1 0 0 0 0 0 0 0 0
T3 (16) 5 0 0 0 0 0 0 0 0 0 T6 (17) 2 0 0 0 0 1 0 0 0 0
A1 (09) 233 3 17 0 0 2 18 1 0 0 A4(16) 0 1 0 0 0 0 1 0 0 0
A2 (09) 57 20 3 1 0 1 5 0 1 0 A5 (13) 2 0 0 0 0 0 0 0 0 0
A3 (09) 13 1 0 0 0 0 1 0 0 0

M1 (13) 2 10 0 0 0 3 3 0 0 0 MI5(13) 5 4 0 0 0 0 0 0 0 0
M2 (14) 25 6 0 0 1 1 0 0 0 0 Mle(l) 13 3 0 0 0 0 1 0 0 0
M3 (11) 20 19 1 1 0 2 0 0 1 0 MI710) 5 0 0 0 0 1 3 2 0 0
M4 (13) 6 2 0 0 0 0 0 0 0 0 MI8(17 8 5 0 0 0 0 0 0 0 0
M5 (11) 36 0 0 0 1 2 1 0 0 0 M9 37 12 0 0 0 1 2 0 1 0
M6 (12) 12 3 1 0 0 11 1 0 0 0 M2009 24 3 0 0 0 0 2 0 0 0
M7 (09) 9 3 0 0 0 0 4 0 0 0 M21(12) 30 12 1 0 0 0o 11 1 1 0
M8 (09) 18 4 0 0 1 0 1 0 1 0 M2010 7 0 0 0 0 0 0 0 0 0
M9 (17) 3 1 1 0 0 0 2 0 0 0 M23(14 6 0 0 0 0 0 0 0 0 0
MI0(09 56 14 13 0 0 1 3 0 0 0 M214319 2 0 0 0 0 0 0 0 0 0
M11 (13) 4 2 0 0 0 0 2 0 1 0 M25(19 0 0 0 0 0 1 0 0 0 0
M2 (12) 1 0 0 0 0 0 3 0 0 0 M26(18) 1 0 0 0 0 0 0 0 0 0
M13 (14) 6 2 3 0 0 1 0 0 2 0 M27(15 3 0 1 0 0 0 1 0 0 0
MI14(13) 10 5 0 0 0 2 1 0 0 0 M28(13 2 0 0 0 0 1 0 0 0 0
P1(09) 4 0 63 4 0 0 4 0 0 0 P7 (09) 9 1 13 3 0 0 1 0 1 0
P2 (09) 11 0 6 1 1 0 1 0 0 0 P8 (13) 4 0 1 1 0 0 0 0 0 0
P3(17) 0 0 1 1 0 0 0 0 0 0 P9 (16) 5 0 0 0 0 1 0 0 0 0
P4 (10) 5 0 0 0 0 0 3 0 0 0 P10(20) 1 0 0 0 0 0 0 0 0 0
D5 (14) 0 0 5 1 0 0 1 0 1 0 Pl1(15) 13 2 1 1 1 0 2 0 0 0
P6 (10) 4 1 0 0 1 0 0 0 0 0

The Task-1D is directly mapped from Table 5. The columns CM ,RM ,SM UM FM gre ML-based and the columns CP RP SP,UP FP are DL-based, which represent
the following categories: classification-based (C), regression-based (R), sequence-based (S), unsupervised (U), and reinforcement (F). The earliest year of each task
that appeared in our collections is shown in parentheses beside each Task-ID. The red numbers indicate the largest number(s) of papers from the corresponding

columns.

compare studies published in two time periods, 2009-14 and
2015-20, as 2015 is the year in which DL applications started to
become popular in the SE community. According to Table 6, 22
SE tasks experimented with different categories of ML methods
after 2014. Based on a further analysis on 77 studies from these
22 tasks, we discovered two changes that ML techniques bring
to SE (breadth).

First, a larger variety of SE artifacts has been effectively analyzed
using different ML techniques to improve the productivity of the
development processes, including user stories (R4), architecture
tactics (D1), design discussions (D9), test reports (T3), incident
reports or support tickets (M18), user interaction data (M27),
crowdsourcing resources (P9) and developer interaction data
(P11). For example, Bao et al. [67] used a Condition Random
Field (CRF) sequence-based ML approach to infer a set of basic

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28

development activities in real world settings by analyzing
developers’ low-level actions and Girardi et al. [68] used six
popular supervised classifiers (NB, KNN, DT, SVM, NN, RF)
to predict developers’ emotions based on biometric features
during the programming tasks. Then these interaction data
could be utilized for facilitating coordination between software
developers by using SVM to recommend coordination needs to
developers [69], determining whether a developer will leave
the software team by using five supervised classifiers (NB,
SVM, DT, KNN, and RF) to predict the turnover of software
developers [70], and recommending suitable architectural
expertise to support the design decision-making process by
applying SVM to build an expert recommendation system [71].

Second, word embedding techniques have begun to be integrated

into different ML-based allﬂ_plications in SE after 2014, which can
UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

typically improve the performance in text and code based SE tasks.
Even though word embeddings are more frequently used in
DL-based applications, ML-based applications in SE can also
benefit from embeddings in that they can bridge the lexical
gap by projecting natural language descriptions and code
snippets as meaningful vectors in a shared representation
space [72]. Among the 22 SE tasks, we found three classifica-
tion-based applications in Test Report Management (T3) [73],
Incident/Ticket Management (M18) [74], and App Permission Rec-
ommendation (M24) [75]. Two popular pre-trained embed-
dings are used for these applications: Word2Vec (trained on
Google News [76]) and GloVe (trained on Wikipedia [77]).
For instance, Liu et al. [75] developed a permission recommen-
dation system based on KNN that recommends permissions
for given apps according to their used APIs and API descrip-
tions. To prepare API-API similarities for all training apps,
they first mapped each word from API descriptions in
Android documentation into the pre-trained GloVe embed-
dings and then computed the semantic similarities between
APIs. In the end, they showed that their GloVe+KNN model
outperforms NB and KNN-only models for the app permis-
sion recommendation. In addition, we identified more SE
tasks that used word embeddings when we continued to
investigate the remaining ML studies beyond the above 22
tasks, including sequence-based applications in API Learning
(13) and Program Synthesis (16), and unsupervised applications
in Repository Mining (M1). For instance, Ye et al. [78] solved a
sequential labeling task through two steps: (1) using pre-
trained Word2Vec embeddings with unsupervised algo-
rithms (Brown Clustering and K-means) to learn word repre-
sentations of unlabeled API-related information from Stack
Overflow and (2) training a CRF on these word representa-
tions with a small set of human labeled sentences to classify
each word as an API mention or a normal word. Apart from
pre-trained Word2Vec and GloVe embeddings, Han et al. [79]
developed a knowledge graph embedding which embeds
software weakness and their relations in the knowledge graph
into a semantic vector space, and Yeet al. trained [72] a SE-spe-
cific embedding on API documents, tutorials and reference
documents.

What impacts does non-DL-based RL bring to SE tasks?
According to Table 6, the major contribution of RL applica-
tions is in the testing domain. Specifically, RL is adopted to
(1) help random input generators toward producing a
diverse set of valid inputs (T1) by maximizing the number of
unique valid inputs generated [80], (2) prioritize test cases
(T2) by maximizing some predefined criteria such as addi-
tional code coverage or fault detection rate [81], and (3) auto-
mate the testing process (T4) by maximizing the number of
execution paths in the shortest possible time [82]. In addition,
as mentioned in Section 4.1, the number of RL applications
was rapidly increasing in the last two years. Besides the
steady increase in the testing domain, we observed a broader
range of RL applications to SE tasks, such as automatically
repairing software models (D7) by minimizing the model
distance with respect to the original model [83] and synthe-
sizing a program input grammar from a given set of seed
inputs (I6) by maximizing the total number of constructed
input accepted by the target program [84].

What SE tasks are addressed by ML techniques but not DL
techniques? According to Tables 5 and 6, the following seven

1199

SE tasks were explored by at least 5 studies with only ML
techniques: Model optimization (D3), Test Case Management
(T2), Test Report Management (T3), Commits and Conflicts
Management (M22), Pull Requests Management (M23), Process
Management (P4), and Software Crowdsourcing Recommenda-
tion (P9). It can be seen that the majority of these SE tasks
are management-based, including classification (or categori-
zation) [85], prioritization (or recommendation) [81], and
quality assessment [86] of these SE artifacts. For instance,
Honel et al. [85] introduced source code density5, which is
incorporated into traditional hand-crafted features (e.g.,
keywords and comments) to classify commits based on size
by using RF, achieving up to a 89% accuracy for the cross-
project and a 93% accuracy for within-project commit classi-
fication. However, there may be other semantic features of
textual descriptions that could be generated by deep neural
networks to improve the performance of these SE tasks fur-
ther [87].

4.22 DL for SE

Since 2015, SE researchers have demonstrated enormous
interest in applying different categories of DL techniques to
59 of the 77 SE tasks (77%) across all seven SE activities, as
shown in Tables A.6 and A.7. The majority of DL applica-
tions are classification-based and sequence-based, as shown
in Fig. 4. Based on the 358 studies applying DL to SE prob-
lems, we observed the use of four basic types of deep learn-
ing networks (DNNs), namely feed-forward neural
networks (FNNs), deep belief networks (DBNs), recurrent
neural networks (RNNs) and convolutional neural net-
works (CNNs) (see Section 2.2 for an overview of these
models). To further explore the impact of DL when inte-
grated with SE, we made a comparative analysis of the SE
tasks that employed both ML and DL techniques, and also
investigated the unique contributions of DL studies in the
most recent two years (2019-2020).

For classification-based SE tasks where ML techniques are dom-
inant, what different impacts does DL bring to SE? According to
the results in Table 6, we identified the 11 classification-
based SE tasks that have the largest number of ML applica-
tions but have also used DL techniques. Table 7 presents the
top three commonly used classifiers and all DL models for
these 11 tasks. We found that (1) the classification results could
be improved by the replacement or combination of the hand-crafted
features (required by ML) with representation learning (by DL);
(2) the results are continuously improved by enhanced DL models;
and (3) the generalizability to different presentation styles (unseen
projects) could be improved by BERT (Bidirectional Encoder Rep-
resentations from Transformers).

First, two examples of SE tasks are illustrated below to
show the changes of feature representations for classifica-
tion problems. Traditional supervised classifiers are the
dominant solutions to software defect prediction and these
classifiers were mainly trained on hand-crafted features,
including code metrics (e.g., McCabe features [182]) and
process metrics (e.g., change histories), which sometimes

5. Source code density refers to the ratio of net size to gross size. Net
size is the size of the unique code in the system and gross size is the
size of everything, including clones, comments, and white-space.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1200

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

TABLE 7

ML and DL Models Used in Selected Classification-Based SE Tasks

SE Task

Top-3 ML Classifiers

DL models

R2.Requirements
Detection and
Classification
17.Code Smell / Anti-
pattern Detection
T4.Test Automation
and Prioritization
Al.Defect Prediction

A2 .Defect Detection
and Localization

M2.Sentiment Analysis

M3.Code Clone and
Similarity Detection

M10.Software Quality
Prediction

M19.Bug Report
Management
M20.Bug Assignment

M21.Issue/Malware/
Anomaly Detection

(1) NB [88], (2) SVM
[89], (3) RF [90]

(1) RF[92], (2) NB [92],
(3) DT [92]
(1) SVM [95], (2) DT
[96], (3) RF [97]
(1) NB [100], (2) RF
[101], (3) LoR [102]

(1) SVM [109], (2) DT
[110], (3) NB [111],

(1) SVM [122], (2) NB
[122], (3) LoR [122]

(1) DT [127], (2) SVM
[127], (3) NB [127]

(1) RF [133], (2) SVM
[133], (3) NB [133]

(1) NB [141], 2) SVM
[141], (3) RF [141]

(1) NB [148], (2) SVM

[148], (3) KNN [148]

(1) SVM [151], (2) RF
[151], (3) DT [151]

(1) BiLSTM [89], (2) CNN [91], (3) CNN + BiLSTM [90], (4) BERT [88]

(1) CNN [92], (2) Variational Auto-Encoder (VAE) [93], (3) CNN +
RNN [94]

(1) RNN/LSTM [95], (2) CNN [97], (3) DNN [97], (4) Deep
Reinforcement Learning (DRL) [98], (5) RNN Encoder-Decoder [99]
(1) RNN/LSTM/Tree-based LSTM (+supervised classifier) [43], (2)

CNN/Graph-based CNN (+supervised classifier) [103], (3) DBN
(+supervised classifier) [104], (4) DNN (+supervised classifier) [105],
(5) Stacked Denoising Autoencoders (SDAEs) [106], (6) Deep Forest
[107], (7) Graph Neural Network (GNN) [108], (8) Deep Adaptation
Networks (DAN) [103]

(1) (Bi-)RNN/GRU/LSTM [112], (2) CNN/Tree-based CNN
(+supervised classifier) [113], (3) DBN (+supervised classifier) [114], (4)
DNN [115], (5) (Attention+) CNN + LSTM/GRU [116], (6) Knowledge

Graph Embedding + Bi-Attention [117], (7) RNN Encoder-Decoder
[118], (8) Tree-based CNN (TBCNN) [119], (9) Critic Neural Network
[120], (10) Enhanced CNN [121]

(1) RNN [123], (2) Recursive Neural Tensor Network [124], (3)
Attentional RNN Encoder-Decoder [125], (4) Text Attention+Audio
Attention+CNN [126]

(1) (Siamese) RNN GRU/LSTM/RNN (+supervised classifier) [128],
(2) (Siamese) CNN/Tree-based CNN (+supervised classifier) [129], (3)
(Siamese) DNN (+supervised classifier) [130], (4) RNN + Recursive
Autoencoder + Graph Embedding [131], (5) Graph Neural Network
[132]

(1) (Bi-)LSTM/GRU (+supervised classifier) [134], (2) CNN
(+supervised classifier) [135], (3) DNN [136], (4) CNN + RNN
(+supervised classifier) [137], (5) RNN Encoder-Decoder [138], (6)
Maximal Divergence Sequential Autoencoder [139], (7) Random Vector
Functional Link network (RVFL) [140]

(1) (Bi-)LSTM/GRU (+supervised classifier) [142], (2) (Siamese) CNN
(+supervised classifier) [143], (3) DNN [144], (4) GNN [145], (5) CNN +
BiLSTM [146], (6) Textual Encoder (BiLSTM) + Embedding + DNN
(SABD) [147]

(1) CNN [149], (2) (Dual) DNN [150]

(1) (Siamese/Phased) LSTM + Attention (+supervised classifier) [152],
(2) CNN (+supervised classifier) [153], (3) CNN + LSTM [154], (4)
Deeplearning4j [155]

TABLE 8

ML and DL Models Used in Selected Generation-Based SE Tasks

SE Task

Top-3 ML Models

DL Generators

12.Code Summarization

14.Code Generation and

Completion

T1.Test Case
Generation

M6.Defect Fixing

(1) Nearest Neighbor Generator [156]

(1) PCFGs and neuro-probabilistic
language models [163], (2) HMM [164]

(1) RL [170]

None

(1) CODE-NN [157], (2) Attentional RNN Encoder-Decoder
[158], (3) Code-RNN [22], (4) Graph Neural Network [159], (5)
BERT + Encoder-Decoder + Transformer [160], (6) Attentional

BiLSTM + CNN + TreeL.STM [161], (7) DRL [20], (8)
Convolutional Attentional Model [162]

(1) Attentional RNN Encoder-Decoder [21], (2) RNN [165], (3)
LSTM + Attention + Embedding + BERT [166], (4) Latent
Predictor Networks [167], (5) Tree-based CNN [168], (6) RNN
+ GNN + LSTM + GRU (DIRE) [169], (7) Transformer [166]
(1) RNN [171], (2) Attentional RNN Encoder-Decoder [172],
(3) Transformer [173], (4) Wasserstein generative adversarial
networks (WGANSs) [174], (5) DRL [175]

(1) RNN [176], (2) Attentional RNN Encoder-Decoder [177],
(3) BiRNN + Attention + GRU + GNN [178], (4) Tree-based
RNN Encoder-Decoder + CNN [179], (5) Word2Vec + RNN +
Recursive Autoencoders + K-Means [180], (6) BERT [181]

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

failed to capture the semantics of programs [183]. To
address this problem, since 2015, DL-based approaches
have been widely adopted to generate more expressive,
complicated, and nonlinear features from the initial feature
sets [184] or directly from source code [39], [185]. For
instance, Wang et al. [104] leveraged DBN to automatically
learn semantic features using token vectors extracted from
the programs’ Abstract Syntax Trees (AST) and fed them
into ML classifiers (ADTree, NB, LoR) for file-level defect
prediction. Their experimental results indicated the DBN-
based semantic features can significantly improve the per-
formance of within-project defect prediction against the
ML-based 20 hand-crafted features by 2.1% to 41.9% in F1.
In addition, Li et al. [186] built a defect prediction model
consisting of CNN-based features with hand-crafted fea-
tures, which performs better than models that use purely
CNN-based features and purely hand-crafted features. Code
Clone and Similarity Detection (M3) is another common SE
task whose initial capability was limited to detecting only
Type I-1II clones based on the textual similarity computed
from hand-crafted features. It was then augmented to spot
all four types of clones using both textual and functional
similarities through the source code representation learned
via DL [128]. For instance, Li ef al. [187] implemented the
first solely token-based clone detection approach using a
FNN, which effectively captured the similar token usage
patterns of clones in the training data and detected nearly
20% more Strong Type 3 clones than ML approaches.
Second, besides ML classifiers and the four basic types of
DL architectures, many studies from these 11 tasks currently
involved some continuously enhanced DL models for classifi-
cation tasks, as shown in Table 7. For defect prediction, most
existing approaches started by exploiting the tree representa-
tions of programs — ASTs. They simply represented the
abstract syntactic structure of source code but did not show the
execution process of programs, so software metrics and AST
features might not reveal different types of defects in pro-
grams. Phan ef al. [188] formulated a directed graph-based con-
volutional neural network (DGCNN) over control flow graphs
(CFGs) that indicate the step-by-step execution process of pro-
grams to automatically learn defect features. DGCNNs can
treat large-scale graphs and process the complex information
of vertices like CFGs, significantly outperforming baselines by
12% to 12.39% in terms of accuracy. For defect detection and
localization, two enhanced DL approaches were proposed to
improve the mean average precision (MAP) by around 5%.
Specifically, since ML approaches ignored the semantic infor-
mation in bug reports and code tokens in source files, while
DL approaches ignored the structural information of both bug
reports and source files [189], Xiao et al. [189] proposed
CNN_Forest, a CNN and Random Forest-based approach
where an ensemble of random forests is applied to detect the
structural information from the source code and the alternate
cascade forest works as the layer-structure in the CNN to learn
the correlated relationships between bug reports and source
files. Moreover, current studies using DL achieved poor perfor-
mance and most improvements still came from Information
Retrieval (IR) techniques (which focused more on textual simi-
larity than semantics). In other words, the final results may still
be heavily influenced by the performance of IR [190], meaning
that the deep neural network in their model was more like a

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from |

1201

subsidiary. Xiao et al. proposed an enhanced model for bug
localization, DeepLocator, which consists of a revised TF-IDuF
(term frequency-user focused inverse document frequency)
method, word2vec and an enhanced CNN by adding bug-fix-
ing recency and frequency in the fully connected layer as two
penalty terms to the cost function. DeepLocator correlated the
bug reports to the corresponding buggy files rather than rely-
ing on the textual similarity used in IR-based approaches.

Third, unlike traditional word embedding techniques
(summarized in Table 9) that produce fixed representations
regardless of the context, BERT is pre-trained on large text
corpora and produces word representations that are
dynamically informed by the text [197], which has been
proven useful for transfer learning in text processing tasks.
For requirements detection and classification, state-of-the-
art ML-based approaches usually use lexical and syntactic
features, but their main problem is poor generalization,
meaning that their performance drops when applied to
unseen projects [88]. Taking advantage of BERT’s fine tun-
ing mechanism on specific tasks by providing only a small
amount of data, Hey et al. [88] investigated its performance
on unseen projects and concluded that BERT performs bet-
ter than NB and CNN for both functional and non-func-
tional requirements classification.

What benefits does DL bring to the SE tasks that ML techni-
ques were not capable of tackling? In Table 6, we found three
tasks where the number of studies using DL techniques is
considerably larger than that using ML techniques, namely
Design Elements Management (D4), Code Summarization (12),
and Code Search and Retrieval (I5). We also found that the
number of sequence-based DL applications is much larger
than that of ML applications, especially in Code Optimization
(11), Code Summarization (12), Code Generation and Completion
(I14), Code Search and Retrieval (I5), Test Case Generation (T1),
and Defect Fixing (M6). Given the above two findings, we
conducted a further analysis and discovered two primary
contributions for DL models.

First, for studies in Code Search and Retrieval and Design Ele-
ments Management, through the application of CNNs, SE research-
ers have made significant progress in identifying and extracting
elements embedded in multimedia (e.g., image, programming
screenshots, video) artifacts, which has expanded SE data sources
and given developers access to a richer set of documented data that
was previously not leveraged. For the task of extracting correct
code appearing in video tutorials, existing approaches that
applied Optical Character Recognition (OCR) techniques to
software programming screencasts often result in a lot of
noise (e.g., menus) being extracted with the source code [198].
Therefore, it is necessary to first accurately identify the section
of the screen where the code is located and then apply OCR
only to that section. With the powerful and accurate object rec-
ognition abilities through the use of filters, CNNs are cur-
rently the best choice to classify the presence or absence of
code [199], remove non-code and noisy-code frames from pro-
gramming screencasts [200], and predict the exact location of
source code within each frame (code editing window) [198].
This accelerates code identification and code example resolu-
tion in video tutorials. For detecting Graphical User Interface
(GUI) elements in GUI images, existing non-ML/DL methods
are intrusive and require the support of accessibility APIs or

runtime infrastructures that expose information about GUI
E Xplore. Restrictions apply.

1202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023
TABLE 9
Summary of Embedding Techniques and Their Advantages in DL Studies
Embedding Advantages Related Tasks
Word2Vec Better express the similarity and analogy relationship between words. Two R1,R2,R4,R5,11,12,14, 15,16, 17,
training modes: skip-gram and continuous bag of words (CBOW). The skip- 19,111,112, T1, A1, A2, A4, M1,
gram model is concerned with using one word to predict the surrounding M2, M3, M6, M8, M10, M14, M15,
words, while CBOW model is concerned with using the surrounding words to M16, M18, M19, M20, M21, P1, P2,
predict the central word [191]. P9

GloVe Inspired by the word co-occurrence probability that may encode global 17,19, A2, M20, M7, M8, M10, P1

information for words, this model can make up for the weakness of Word2Vec

just using local word co-occurrence information [77].
FastText As a derivative of Word2Vec, the advantage of this method is that in English 17
words, the morphological similarity of prefixes or suffixes can be used to
establish relationships between words [192].
ELMo To input sentences into a pre-trained language model in real time to get 17, M8, M20
dynamic word vectors, which can effectively deal with polysemy [193].
Code2Vec An attention-based neural code embedding model developed to predict the 11, A1, A2, M6, M10
semantic properties of code fragments [194], for instance, to predict method
names.

Doc2Vec An unsupervised framework mostly used to learn continuous distributed A2, M6, M7, M10, M15, P1

vector representations of sentences, paragraphs and documents, regardless of

their lengths [195].

CC2Vec A specialized hierarchical attention neural network model which learns vector 11, M6

representations of code changes (i.e., patches) guided by the associated
commit messages, which presents promising performance on commit message
generation, bug fixing patch identification, and just-in-time defect prediction

[196].

The Task-IDs are in Table 5.

elements within a GUI [201]. Borrowing mature pixel-based
methods from the computer vision domain, some popular
CNN-based object detection models have been adopted in SE,
which can directly analyze the image of a GUI to support
many design elements management tasks, such as GUI auto-
mation and testing [202], [203], GUI skeletons generation [40]
and linting of GUI visual effects [204] in both Android and
IO0S. CNN-based object detection often involves two sub-
tasks: (1) Region detection locates the bounding box that con-
tains an object and (2) region classification determines the class
of the object in the bounding box. Two popular object detec-
tion models used in SE studies are: (1) Faster R-CNN, which
first computes an objectness score to determine whether it
contains an object or not by a region proposal network (RPN)
and then uses a CNN-based image classifier to determine the
object class [205]; and (2) YOLO (You Only Look Once), which
labels an image by seeding the whole image through a CNN
once and predicting the positions and dimensions of the
objects in an image [203].

Second, with the help of sequence-to-sequence (SEQ2SEQ) deep
generation models, code and text based generation tasks in SE have
been tackled more effectively than before. Table 8 shows the ML and
DL models that have been used in four popular generation-
based SE tasks, including Code Summarization (12), Code Genera-
tion and Completion (14), Test Case Generation (T1), and Defect Fix-
ing (M6). As can be seen, the number of ML models that have
been applied to these generation tasks is fairly limited, owing
in part to the fact that there are a limited number of canonical
ML models that can be used for generation. In fact, we found
no attempt to apply canonical ML models to M6. In contrast,
popular DL generators for generation-based SE tasks include
SEQ2SEQ models, of which the encoder-decoder architecture is
arguably the most popular. As an example, most of the existing

code summarization methods learn the semantic representa-
tion of source codes based on statistical language models.
However, a statistical language model (e.g., the n-gram model)
has a major limitation: It predicts a word based on a fixed num-
ber of predecessor words [20]. Following the trend of employ-
ing different variations of the DL-based attentional encoder-
decoder framework, recent studies have built a language
model for natural language text and aligned the words in text
with individual code tokens directly using an attention compo-
nent. These DL studies can predict a word using preceding
words that are farther away from it. In addition, two enhanced
DL approaches were introduced that improved performance
by around 20% and 10%, respectively, in terms of ROUGE.®
First, Wan et al. [20] integrated RL into the attentional encoder-
decoder framework to remove the biased assumption that
decoders are trained to predict the next word by maximizing
the likelihood of the next ground-truth word given the previ-
ous ground-truth word. Specifically, using deep reinforcement
learning, one can generate text from scratch without relying on
ground truth in the testing phase. Second, due to the fact that
the attentional encoder-decoder framework does not exploit
the code block representation vectors, Liang et al. [22] proposed
a new RNN model called Code-RNN, which gets a vector
representation of each code block and this vector contains rich
semantics of a code block.

Is there any correlation among an SE task, the DL architec-
tures that have been applied to the task and the data types that
have been used to support the task? To answer this question,
we enumerate for each SE task the DL architectures and the
data types that have been used in Table A.12 (see Appendix

6. The ROUGE score counts the number of overlapping units
between a generated sentence and a target sentence [22].

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

A, available in the online supplemental material). Based on
358 DL studies over 59 SE tasks, we identified the following
input data types:

e Metrics values: Calculated from a set of software met-
rics or measures (i.e., traditional metrics, object-ori-
ented metrics, and process metrics) that provide
some insights about the software system, such as the
number of lines of source code and the number of
possible execution paths in a method [101].

e Code: Processed by extracting different syntactic
information from source code as features for a ML/
DL model, such as variables (declaration), methods
(method signature, method body), and method calls
(the API invocation sequence) [39].

e Text: Processed based on the bag-of-words (BoW)
model, where n-grams or some exquisitely designed
patterns are typically extracted as features [206].

e Image: Comprised of pixels (e.g., RGB color or gray-
scale pixels) that are transformed from the raw
images, video frames and screencasts [198].

e Others: E.g., stack/log/execution traces [207], PDF
objects [171].

According to Table A.12, we found two general trends of
applying different DL architectures in SE. First, CNN or RNN
based architectures are applied to almost all 59 SE tasks
(except R5, A4, M28, P8, and P9). For one reason, Code and
Text are the dominant data types in SE studies, which cover
204 (57%) and 105 (29%) of 358 studies, respectively. Given a
text document (or a piece of code) represented as a sequence
of words (or code elements), the use of RNN's allows us to eas-
ily extract n-gram level features from the sequence. Besides,
RNNs such as LSTMs will enable us to model long-distance
dependencies. In contrast, the advantage of CNNs is that
CNN layers can be stacked to extract hierarchical features and
better model source code at different granularity levels (e.g.,
statements and functions) [208]. Many researchers attempt to
combine RNNs and CNNs in their model when given text
data as input, as the resulting model allows them to combine
the best of both worlds. CNNs can capture local textual
dependencies, particularly the dependencies among the
words or code elements in an n-gram, whereas RNN's can cap-
ture long-distance dependencies. Second, whenever images
are involved, CNNs are used. This explains the dominant
usage of CNNs in Design Elements Management (D4) (see Table
A.12): All the datasets for this task are image-based. As noted
before, CNNs have become the de facto model for image proc-
essing, as they are adept at modeling spatial correlations and
hence the spatial locality that are often crucial to object identi-
fication in images.

In addition, many types of CNNs and RNNs (LSTMs,
GRUE) are specifically modified to fit SE tasks. In particular,
CNNs and RNNs are commonly embedded with two types of
architectures as shown in Table A.12: (1) Siamese and (2)
Tree-based (i.e., TBCNN, Tree-LSTM, CNN-TreeLSTM). Sia-
mese architectures contain two or more identical sub-neural
networks, which are best suited for SE tasks where two objects
must be compared in order to assess their similarity, such as
Code Clone and Similarity Detection (M3) [45], [129], [130], [209],
Defect Detection and Localization (A2) [210], and Issue/Malware/
Anomaly Detection (M21) [211]. For instance, given two

1203

methods in code clone detection, the Siamese network (Sia-
mese GRU) first maps them to the same feature space [45]. If
they are not a clone pair, the network will adjust its parame-
ters to make them less similar as training progresses. On the
contrary, if they are a clone pair, the model parameters will be
adjusted so that they will become more similar to each other,
thus making it possible to detect semantic clones even if they
are syntactically dissimilar. The key benefit brought by Sia-
mese architectures is a reduction in the number of parameters:
the weight parameters are shared within two identical sub-
neural networks, so it requires fewer parameters than a plain
architecture with the same number of layers [130]. Tree-based
architectures are often adopted to tackle tree-structured data
by sliding over an entire tree to capture subtree features and
are especially suitable for SE tasks which require parsing code
fragments into ASTs [168], [179], [212], [213], [214]. For
instance, Tree-LSTM (Recursive Neural Network) exploits a
tree-structured sequence to extract the features of a code snip-
pet from its AST since the output of the root node will contain
the feature information of all AST nodes, thus achieving
node-level feature extraction [212]. In addition, as discussed
earlier, two variants of CNN — Faster R-CNN, which embeds
a region-proposal network, and YOLO, which divides images
into a grid system — are widely utilized to predict the pres-
ence and location of GUI elements on image-based datasets.
What architectures have not yet been implemented for specific
SE tasks? First, Tree-based CNNs/RNNs (discussed above)
and Graph Neural Networks (GNN) are rarely applied to
the tasks for which code-based datasets are scarce (e.g.,
requirements detection). Gated Graph Neural Networks
(GGNN), the most commonly-used type of GNNs in SE
[132], [169], [178], use an iterative graph propagation
method to learn the neural representation of nodes in a
graph. Different from images and natural languages, graph
data is much more complex. An image can be viewed as a
set of pixels and a text can be viewed as a sequence of
words. In contrast, in a graph, there are at least two types of
information: nodes and the relationship between them
(edges). Since ASTs and and graph information are the
required inputs for Tree-based architectures and GNNs,
Code is currently the most suitable data type to be trans-
formed into the required formats. Second, while Generative
Adversarial Networks (GANSs) (i.e., two neural networks
contest with each other in a zero-sum game framework)
[215] are generally applied on image-based datasets [204]
due to the abundance of data and their continuous nature,
we observed very few GAN applications in the SE tasks that
primarily assume as inputs Code and Text because applying
GAN: s to discrete data (e.g., text) poses technically challeng-
ing issues that are not present in the continuous case (e.g.,
propagating gradients through discrete values) [216].

4.2.3 Novel ML/DL Applications in SE

As mentioned above, much recent research involved apply-
ing ML and DL techniques to novel SE artifacts. In this sub-
section, we will introduce some of these novel ML/DL
applications.

Screencast analysis in SE. Screencasting is a technique for
recording the computer or mobile screen output at a specific
time interval [217]. Each screenshot is a screen image and is

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1204

referred to as a frame in the screencast. Work on automati-
cally analyzing screencasts (or screenshots) in SE can
broadly be divided into two categories: (1) content detection
and extraction [198], [201], and (2) video search and naviga-
tion [202], [217]. Content detection and extraction (e.g., code
extraction and GUI elements detection), an active research
topic in SE, is performed primarily through the application
of CNNSs, as discussed in Section 4.2.2. For video search and
navigation, CNN models are usually developed to translate
video recordings of app usages into replayable scenarios
[202] and automate the recognition of developer actions in
programming screencasts [217]. For instance, programming
screencasts provide a direct record of both a developer’s
workflow actions and the application content involved in
programming tasks (e.g., typing code, scrolling content,
switching windows). Workflow actions in a programming
screencast, if available, can significantly improve video
search and navigation efficiency and enhance a user’s learn-
ing experience [217]. In addition, they are a common content
carrier for disseminating SE knowledge, such as seeing a
developer’s coding in action (e.g., how changes are made to
source code step by step; how errors occur and how they
are fixed), which can be more valuable than text-based tuto-
rials [218]. Therefore, we expect more SE researchers to
leverage ML/DL techniques to enhance the interactive
learning experience of programming video tutorials.

Use of biometrics in SE. Biometric sensors are used to mea-
sure the link between emotions and physiological feedback
(i.e., cognition, processes, and states) [219], and some of the
most commonly used measures in SE can be divided into
four categories: eye-related (e.g., eye-tracking), brain-related
(e.g., EEG (Electroencephalography)), skin-related (e.g., EDA
(Electrodermal)) and heart-related (e.g., BVP (Blood Volume
Pulse)). The SE research community has begun to apply
ML/DL techniques to study the relations between devel-
opers’ /users’ physiological feedback (as measured using
these sensors) and several SE tasks, including Developers’
Behavior and Physiology Analysis (P11) [68], Code Review
(M14) [220], [221], Program Classification (I8) [219], and Senti-
ment Analysis (M2) [222]. For instance, based on the psycho-
physiological data recorded from a combination of eye-track-
ing, EDA, and EEG, Fritz et al. [219] applied NB to predict
whether a code comprehension task is perceived as easy or
difficult.

Keystrokes evaluation in code completion. Keystroke is the
number of times a developer or user needs to type to com-
plete a task such as completing a whole line of code. It is
commonly used to evaluate ML/DL-based code completion
systems in SE [164], [165], [223]. For instance, Han et al.
[164] presented a HMM for abbreviation completion that is
integrated with a new user interface for multiple-keyword
completion. To evaluate time savings and keystroke sav-
ings, the time usage and the number of keystrokes needed
in the Abbreviation Completion system were compared
with those needed in a conventional code completion sys-
tem in Eclipse, a popular Java development tool. If the code
completion system can significantly reduce the keystrokes,
coding can be more efficient.

Emojis in sentiment analysis. An emoji is a digital image
that is added to a message in electronic communication in

order to express a particular idea or feeling. Not only are
Authorized licensed use limited to: Southern Methodist University.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

emojis pervasive in social media, but they are also widely
adopted in the communication of developers to express sen-
timent [224]. Given that the small amounts of annotated text
data available for many SE tasks can cover only very limited
expressions, Chen et al. [225] employed emotional emojis as
noisy labels of sentiments and proposed SEntiMoji, a cus-
tomized DL-based sentiment classifier that uses both
Tweets and GitHub posts containing emojis to learn senti-
ment-aware representations for SE-related texts. These
emoji-labeled posts not only supply the technical jargon,
but also incorporate more general sentiment patterns shared
across domains.

4.2.4 Novel ML/DL Models for SE Applications

It is worth noting that some ML/DL models were specifi-
cally developed for the SE domain. In this subsection, we
give an overview of some of these models.

Pre-trained models of source code. One of the exciting devel-
opments in DL involves pre-training. Specifically, pre-train-
ing has revolutionized the way computational models are
trained in the natural language processing (NLP) commu-
nity [226]. For a long time, supervised learning has been the
most successful natural language learning paradigm. The
pioneers of the pre-training idea challenged this view by
showing that a vast amount of general knowledge about
language, including both linguistic and commonsense
knowledge, can be acquired by (pre-)training a model in a
task-agnostic manner using self-supervised learning tasks.
Self-supervised learning tasks are NLP tasks for which the
label associated with a training instance can be derived
automatically from the text itself. Consider, for instance,
one of the most well-known self-supervised learning tasks,
Masked Language Modeling (MLM) [227]. Given a
sequence of word tokens in which a certain percentage of
tokens is masked randomly, the goal of MLM is to predict
the masked tokens. As can be easily imagined, a model for
MLM can therefore be trained on instances where each one
is composed of a partially masked sequence of word tokens
and the associated “class” value is the masked tokens them-
selves. Because no human annotation is needed, a model
can be pre-trained on a very large amount of labeled data
which is automatically generated, thereby acquiring a
potentially vast amount of knowledge about language. A
pre-trained model can then be optimized for a specific task
by fine-tuning its parameters using task-specific labeled
data in the standard supervised fashion.

A number of pre-trained models have been successfully
developed and applied in NLP, including BERT [228]. GPT-
2 [229], LNet [230], RoBERTa [231], ELECTRA [226], T5
[232], and BART [233]. These pre-trained models differ
terms of (1) what is being pre-trained (e.g., the encoder, the
decoder, or both), (2) the pre-training objectives (e.g.,
MLM), and (3) the dataset(s) used for pre-training (e.g.,
Wikipedia).

Inspired by the successes of pre-trained models in NLP, a
number of pre-trained models of source code have been
proposed and successfully applied to a range of SE tasks
that involve code understanding and generation. Well-
known pre-trained models of source code include SCELMo
[234], CodeDisen [235], CuBERT [236], C-BERT [237],

ownloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

JavaBERT [238], CugLM [239], CodeBERT [240], OSCAR
[241], GraphCodeBERT [242], SynCoBERT [243], GPT-C
[244], DOBF [245], DeepDebug [246], T5-learning [247],
PLBART [248], CoTexT [249], ProphetNet-Code [250],
CodeT5 [251], TreeBERT [252], and SPT-Code [253]. Like
the pre-trained models developed in NLP, pre-trained mod-
els of source code can also be distinguished by (1) what is
being pre-trained; (2) the pre-training objectives, and (3) the
datatsets used for pre-training. Unlike the pre-trained mod-
els developed in NLP, which assume primarily text (.e.,
word sequences) and features as inputs, many pre-trained
models of source code have been specifically designed to
take as inputs not only source code, which is viewed as a
token sequence, but also the natural language embedded in
the code (e.g., documentation, variable names) as well as
the code structure (e.g., ASTs, Data Flow Graphs (DFGs)).
Given these additional input modalities, novel pre-training
tasks have been specifically designed to acquire information
from these input modalities. For instance, pre-training tasks
such as Edge Prediction [242], which masks the edges con-
necting randomly selected nodes in DFGs and aims to pre-
dict the masked edges, and Node Order Prediction [252],
which randomly changes the order of some nodes in the
ASTs and aims to identify if a change occurs, allow a model
to learn representations of the code structure. Moreover,
there are pre-training tasks that allow a model to learn
across input modalities and thus capture the relationships
between different modalities. For instance, Bimodal Data
Generation [251] aims to generate a natural language sum-
mary (if code is given) or code (if NL is given), and Tree
MLM [252], which masks some terminal node/identifiers in
AST/code on the encoder/decoder side, aims to generate a
complete code sequence.

Other ML/DL models. In addition to pre-trained models of
source code, there are several well-known ML/DL models
specifically developed for the SE domain:

e CO-PILOT (COllaborative Planning and relnforcement
Learning On sub-Task curriculum) [254] is a novel
goal-conditioned RL technique where RL and plan-
ning can collaboratively learn from each other to
overcome sparse reward and inefficient exploration
in navigation and continuous control tasks.

o DACE (Deep Automatic Code reviEw) [255] is a novel
DL model for automatic code review, which learns
the revision features based on pairwise autoencoding
and a context-enriched representation of source code.

o TAG (Type Auxiliary Guiding) [256] is a novel encoder-
decoder framework for code comment generation,
which consists of an adaptive Type-associated encoder, a
Type-restricted decoder, and a hierarchical RL approach
that jointly optimizes the operation selection and
word selection stages.

e HOPPITY [257] is a novel DL model to detect and fix
a broad range of bugs in Javascript programs via
learning a sequence of graph transformations.

e CNN Decoder [168] is a grammar-based structural
CNN for code generation, including tree-based con-
volution and pre-order convolution, whose informa-
tion is further aggregated by dedicated attentive
pooling layers.

1205

o MDSAE (Maximal Divergence Sequential Auto-Encoder)
[139] is a novel DL model for binary code vulnerabil-
ity detection, which can work out representations of
binary code in such a way that representations of
vulnerable and non-vulnerable binaries are encour-
aged to be maximally different for vulnerability
detection purposes, while still preserving crucial
information inherent in the original binaries.

425 MLorDL?

Given the above discussion, it should be clear that for some
SE tasks, ML has been predominantly used, while for other
tasks, DL is the preferred approach. In general, ML and DL
differ in terms of how to understand and represent data.
The relevant question is: How should we decide whether we
should employ ML or DL for a given SE task? Below we pro-
vide some guidelines that SE researchers can follow in their
decision-making process. A detailed discussion of how SE
studies select specific ML/DL models can be found in
Section 4.4.

Feature Engineering. In canonical ML, given an input (be it
an image, a text document, or a non-linear structure such as
a graph), features will have to be manually designed and
extracted from the input, and the resulting feature vectors
will then be used to train a model. The success of canonical
ML, therefore, depends heavily on the success of manual
feature engineering. While some of these features are task-
independent and can be computed automatically (e.g., n-
gram features), others may be task-dependent and need to
be designed by domain experts. In contrast, DL obviates the
need for manual feature engineering. The input for a DL
model can simply be the raw data, an image or a text docu-
ment. During the model training process, a DL model will
learn representations of the input that would be useful for
the task. For instance, manual feature engineering is a chal-
lenging task for vulnerability severity prediction problem (a
Software Quality Prediction task) because of the diversity of
software vulnerabilities and the conciseness of vulnerability
descriptions [135]. Software vulnerabilities are diverse in
terms of the range of products from which vulnerabilities
are discovered, the amount of vulnerability data for differ-
ent products, and the mechanisms of how vulnerabilities
work. Vulnerability descriptions are concise in that they are
brief in form but comprehensive in scope, which results in a
very high-dimensional and sparse feature space. To address
this problem, Han ef al. [135] design a CNN architecture to
learn to extract and compose the most informative n-grams
of vulnerability descriptions when mapping the meaning of
individual words in a sentence to a continuous vector of the
sentence. It removes the need for manual feature engineer-
ing and greatly reduces the need for adapting to other vul-
nerability rating systems. Hence, if complex, domain-
dependent features are needed but a domain expert is either
unavailable or too costly to hire, one may want to apply DL
instead.

If one has the resources to perform manual feature engi-
neering, it does not imply that one should use ML rather than
DL despite the latter’s ability to learn feature representations.
The reason is that a DL model could be improved with hand-
engineered features. We refer the reader to Section 4.3.1 and

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1206

Appendix A.3, available in the online supplemental material,
for a further discussion of feature engineering.

Concept Complexity. If the target concept that the learner is
supposed to learn is not particularly complex, ML may be
the preferred choice; otherwise, it may be better to employ
DL. For instance, mutation testing is widely recognized to be
expensive due to the expensive mutant execution procedure
[258]. However, a mutant has two alternative execution
results — killed or alive — and thus Zhang et al. [258] simpli-
fied the prediction of mutant execution results as a binary
classification problem solved by RF. As an extreme example,
if the target concept can be represented by a linear function,
we can simply train a SVM with a linear kernel. Using a
model as complex as a DL model will lead to overfitting (dis-
cussed further in Section 4.3.2) even with regularization. In
contrast, given the complexity of DL models, they can easily
represent any function and should be used when the target
concept is potentially complex. This guideline has been rec-
ognized in many ML/DL studies in SE, and will be further
discussed in the theme “Simple Task/Data” in Section 4.4.

Amount of Labeled Training Data. The decision of whether to
apply ML or DL is in part determined by the amount of anno-
tated data available for model training. Typically, if labeled
training data is abundant, then DL is the preferred choice;
otherwise, ML may be the better choice. For example, to pre-
dict if spectrum-based fault localization (SBFL) is effective,
Golagha et al. [259] did not consider any DL architectures but
picked four ML classifiers (LoR, DT, RF, and SVM) because
their dataset only consists of 341 instances. The reason is that
the number of parameters of a DL model is typically much
larger than that of a ML model. For instance, in an SVM, there
is one weight parameter associated with each feature. Even
when n-grams are used as features, it would be uncommon
to see more than several millions of features. In contrast, it
would be uncommon to see a DL model, specifically those
that achieve state-of-the-art results on SE tasks, with less than
several millions of parameters. The substantially larger num-
ber of parameters typically associated with a DL model
implies that robust performance cannot be achieved unless
the model is trained on a large amount of labeled data. Hav-
ing said that, how much labeled data is needed for a given
task depends on the complexity of the task.

The Need for Deep Semantic Understanding. If a deep
semantic understanding of the input is needed, then DL is
the preferred choice, but if a shallow understanding is suffi-
cient for achieving good performance, then ML can be con-
sidered. For instance, most non-DL techniques lack the
sophistication needed to reason about semantic associations
between artifacts in requirements traceability and therefore
fail to establish trace links when there is little meaningful
overlap in the use of terms [41]. Guo et al. [41] utilized word
embedding and RNN models to generate trace links
because word embeddings represent knowledge of the
domain corpus and RNN uses these word vectors to learn
the sentence semantics of requirements artifacts. It is well-
known that commonly used hand-crafted features, such as
n-gram features, are lexical in nature and may only encode
shallow semantic information. While semantic features can
be designed to address this problem, computing such fea-
tures may be difficult: It may require access to a knowledge
base, and in addition, heuristics may need to be designed to

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

extract information from the knowledge based, thus yield-
ing noisy extractions.

One may argue that we can use word embeddings as
inputs for ML models since word embedding techniques
have begun to be integrated into different ML-based applica-
tions in SE as mentioned in Section 4.2.1, including pre-
trained Word2Vec and GloVe [75], [78], and task-specific
embedding trained on SE data [72]. These embeddings are
typically trained on large text corpora and are reasonably
good at encoding semantic information. The reason is that
two semantically similar words are trained to have similar
embeddings. However, these embeddings are typically
trained in a context-independent manner, meaning that each
word will only have one embedding, even when the word is
polysemous (e.g., has multiple senses). In contrast, DL ena-
bles contextualized representations to be learned as part of the
model training process. These representations are not only
context-dependent but also task-specific. It is typically
because of these automatically learned representations that
allow a DL model to achieve good performance on a SE task.

The Need to Capture Spatial/Temporal Correlations. It is not
uncommon to see that the input for learning a SE task
involves an image (e.g., [201], [203], [205]), a text document
(e.g., [206], [260]), or a non-linear structure such as a graph
(e.g., [81], [261]). Evenif itis easy to design features to encode
such input, it may not be easy to design features to capture
the spatial and/or temporal correlations that exist in the
input. If it is important to encode spatial correlations in an
image and long-distance dependencies in a text document,
for instance, then DL may be preferred to ML, as CNNs and
LSTMs/GRUs can naturally capture such correlations in
images and text dcouments, respectively. To handle data
instances that are structurally more complex than images
and sequences, such as trees and graphs, which are com-
monly found in SE (e.g., control flow graphs, API call graphs,
AST), one may employ new neural models such as tree
LSTMs [262] and graph convolutional neural networks [263].

Classification versus Generation. While canonical ML mod-
els are good at classification tasks, they are by no means
good at tasks that involve generating text. In principle,
generation via canonical ML can be performed using
sequence-based generative models such as HMMs, CRFs,
and Probabilistic Context-Free Grammars (PCFGs). In prac-
tice, these generative models are weak at generating long
sequences and words that are not seen in the training data.
In SE, however, there are many tasks that involve text gen-
eration of long sequences involving words that are unseen
with respect to the training data, such as bug report/
reviews summarization [264] and code summarization [20],
[22], whose goal is to generate a short natural language
summary of a given input (e.g., a method). Traditional
approaches to summarization/generation in SE do not rely
on generative models. Instead, these approaches proceed in
multiple steps, where one needs to first extract the relevant
information from the input, and then the extracted elements
are fed into some hand-crafted templates for generating the
output. Such hand-crafted templates are needed because
canonical ML approaches fail to provide a way to directly
generate text output from a given input.

DL, on the other hand, provides an end-to-end framework
(the so-called encoder-decoder framework) where a given

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

input is being mapped to the desired output directly in a
model. This framework enables so-called sequence-to-
sequence (SEQ2SEQ) learning [265]. As the name suggests,
this neural architecture takes a sequence as input and produ-
ces a sequence as output. Hence, it is a natural framework for
generation tasks such as machine translation, where the
input is a word sequence in the source language and the out-
put is a word sequence in the target language, as well as
summarization, where the input is a sequence of words or
code elements and the output is a textual summary (i.e., a
word sequence). The encoder-decoder framework can be
improved using a mechanism known as attention [266]. Intui-
tively, attention aims to amplify the relevant information
from the input and de-emphasize the not-so-relevant infor-
mation from the input. Attention has been shown to be effec-
tive in improving the encoder-decoder framework and has
been extensively used by SE researchers.

Interpretability. Despite the large amount of recent work
on interpretability, it remains difficult to interpret the out-
put of DL models. Hence, if interpretability is a key issue,
then ML models that are easily interpretable, such as deci-
sion trees and SVMs with a linear kernel, can be used. We
refer the reader to Section 4.4 for a detailed discussion of
ML/DL interpretability.

4.2.6 Challenges with Applying ML/DL to SE

Given the above observations, next we will discuss the chal-
lenges that need to be addressed to better leverage ML and
DL to improve the productivity of SE tasks.

Addressing the Data Annotation Bottleneck. This challenge
is common to both the ML and DL applications to SE tasks.
Training ML/DL models typically requires a large amount
of annotated training data. This is in general a key issue in
the application of ML /DL to SE tasks: Although, for certain
SE tasks, labeling is inexpensive or even free because they
are either directly recorded in a software artifact (e.g., pre-
dicting whether a bug will be closed, how long it will take
to close it, and who will close it) or easy to compute/mine
from software artifacts (e.g., fault prediction), for the major-
ity of SE tasks (e.g., code summarization), this is not possi-
ble. Unfortunately, obtaining manually annotated data is
time-consuming and labor-intensive.

To address the data annotation bottleneck, we recom-
mend the development of new unsupervised and semi-
supervised learning algorithms, which by definition have
less reliance on labeled data than their supervised counter-
parts. Though the application of unsupervised and semi-
supervised learning to SE has been somewhat successful,
the resulting models typically do not offer the same level of
performance as those trained in a fully supervised manner.
The challenge, then, would be to design unsupervised and
semi-supervised learners that can achieve similar levels of
performance as their supervised counterparts. One option
may be to inject domain-specific knowledge (about the tar-
get SE task) in the learning process, either as hard con-
straints that a clustering algorithm must satisfy, or as soft
constraints by encoding such knowledge as features in the
learning process. The additional challenge, then, would be
to identify and accurately extract such potentially useful
domain-specific features.

1207

Another way we can address the data annotation bottle-
neck is to directly obtain annotated data. This can be
achieved in a cost-effective manner such as active learning
or crowdsourcing, the latter of which involve hiring human
workers at a cheap rate for performing annotation tasks.
While the use of active learning and crowdsourcing to
obtain annotated data is not a new idea, crowdsourcing has
so far been successfully applied to obtain annotated data for
simple SE tasks [14]. It is well-known that training crowd-
sourced workers to produce high-quality annotated data for
complex SE tasks remains a challenge for SE researchers.
However, it is typically the complex tasks that require a lot
of annotated data to train accurate models.

Improving Pre-Trained Models of Source Code. Despite the
recent promising results achieved by pre-trained models of
source code, the design of these models is still heavily influ-
enced by the ideas developed in NLP and may therefore not
yield optimal performances for SE tasks. For instance, these
pre-trained models use the tokenization and embedding
methods developed in NLP, such as SentencePiece and posi-
tion embeddings. However, code is not exactly the same as
natural language: It contains different types of lexical tokens
such as variables, control symbols, and keywords. In addi-
tion, despite the fact that many pre-training tasks have been
specifically designed to handle code characteristics (see Sec-
tion 4.2.4), many of these SE-specific pre-training tasks still
do not completely step outside the NLP mindset. IMLM, for
example, is just a version of MLM that masks identifiers, and
in fact, pre-training on IMLM can sometimes even yield
worse results than pre-training on MLM [245]. We believe
that the design of code-specific pre-training methods is cur-
rently limited in part by the NLP tokenization and embed-
ding methods that are currently in use, and that a
fundamental overhaul in the design of code-specific pre-
training methods may involve designing code-specific toke-
nization and embedding methods.

4.3 Applying ML/DL to SE (RQ2)

How do ML and DL differ in data preprocessing, model training,
and evaluation when applied to SE tasks, and what details need to
be provided with respect to these three aspects to ensure that a study
can be reproduced or replicated? Data preparation, model train-
ing, and evaluation are the core steps in applying ML/DL
techniques to SE tasks. Missing details in any one of the three
aforementioned areas would result in a study suffering from
replicability or reproducibility. To answer the question
above, based on all 1,428 papers, we will first summarize the
patterns of how SE studies describe the details in the three
steps in Sections 4.3.1, 4.3.2, and 4.3.3. Then we will conduct
a comparative analysis to compare the purpose, the datasets,
the applied preprocessing techniques, the tuning strategies,
and the evaluation metrics for ML and DL applied to three
popular SE tasks in Section 4.3.4. Finally, we will assess the
replicability and reproducibility of the collected studies by
checking whether they have provided detailed descriptions
of these three steps according to Table 4.

4.3.1 Data Preparation

Data preparation involves three steps: (1) Identify the
appropriate software repositories from which the raw

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1208

Step 1. We check out the source code repository from version control system to local
directory by using check out command.

Step 2. We use log command (svn log or git log) on the local checked out Java files to extract
logs from version control system.

Step 3. We extract bug number from logs using SZZ algorithm [16].

Step 4. For each bug number, we check out its pre-fix and post-fix versions of source code
files from version control systems using the cat command.

Step 5. For each bug number, we fetch the differences of its pre-fix and post-fix source code
files from version control systems by using diff command.

Step 6. For each pre-fix and post-fix source code file, we used JDT AST [30] to parse its
fields and methods.

Step 7. For each diff fetched in Step 5, we get the name of each file and method where those
diffs are located.

Step 8. For each bug number, we obtain the corresponding bug report from the bug tracking
system.

Step 9. By corresponding each bug number, diffs in Step 5, methods in Step 7 and bug report
in Step 8, the benchmark data is created including bug number, Java file and methods.

Fig. 5. The procedures for establishing benchmark data.

dataset(s) can be directly obtained, (2) extract the relevant
data from the raw dataset(s), and (3) preprocess the
extracted data to be ready for training. There are similarities
as well as differences between ML and DL in terms of data
preparation. Below we describe first the similarities and
then the differences.

Data Source. We observed three types of data sources:
open source (benchmark) datasets, industrial datasets, and
student collections.” Open source or benchmark datasets are
publicly available to everyone, while most industrial data-
sets and student collections were proprietary without public
accessibility. Most ML and DL studies (nearly 90%) used
open source repositories (e.g., GitHub [267]). In addition, 20
of the 70 studies (29%) in requirements engineering
employed datasets from industry, which is the highest rate
among the seven SE activities. Examples include extracting
transaction functions from a financial software in a commer-
cial bank [268], and generating trace links based on a Positive
Train Control (PTC) domain, which is a communication-
based train control system [41]. The source of a raw dataset
(QA4) could have an impact on replicability [269] since the
closed data source would hinder the replication process.
Due to the confidentiality of a proprietary dataset, research-
ers cannot replicate these types of studies but can only repro-
duce the experiment on an open source dataset [270].

Data Extraction. Data extraction refers to the process of
extracting and storing the relevant data from a raw dataset,
usually implemented (totally or in part) with software tools
and self-designed scripts [62]. The more detailed steps of
data extraction provided by a paper, the fewer discrepan-
cies between the regenerated data and the original data. For
instance, Zhang et al. [271] provided the procedures, as
shown in Fig. 5, to establish the benchmark data for
method-level bug localization.

Although it is not mandatory, data annotation places an
important role in supervised and unsupervised learning.
Data annotation is the categorization and labeling of data
for ML/DL applications, where training data must be
properly organized and annotated for a specific use case.
In this study, we observed four scenarios of data annota-
tion: Researchers in a given study may choose to (1)

7. A student collection is a dataset from an exclusive source, such as
a student submission, a survey, or a field study.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

annotate manually, (2) automatically generate labeled data,
(3) use an open source dataset where labels are available,
and/or (4) use annotated datasets from studies provided
by the original authors. We found that the rates for all
1,428 papers that used Scenario 1 through Scenario 4 are
about 18%, 18%, 66%, 17%, respectively. Though the rate
of manual annotation is low, manually annotating over a
thousand samples is sometimes a mandatory process when
it comes to a SE task with new data or a completely new
SE task, such as manual labeling of developer actions in
programming screencasts [217]. According to the results,
Scenario 3 has been applied to the majority of studies since
labeling is inexpensive or even free for many SE tasks
(both regression and classification tasks). This is because
SE has repositories where labels can be mined directly,
such as predicting whether a bug will be closed, how long
it will take to close it, and who will close it (which appear
directly in the repositories) [17], [272]. Scenario 2 is another
way to reduce the cost of data labeling by creating an algo-
rithm for generating labeled data. For instance, Heo et al.
[109] automatically generated training data from an exist-
ing annotated codebase for the ML technique on anomaly
detection. Scenario 4 often appears in comparative or repli-
cated studies, which usually revisit other’s work with the
same datasets [273].

Data Preprocessing. Data preprocessing is indispensable
for generating the final training data for ML/DL models
because a dataset could contain various problems — such
as inconsistencies, errors, out-of-range values, impossible
data combinations, and missing values — making it unsuit-
able to start a ML /DL workflow [274]. Alternatively, data-
sets (especially industrial proprietary data and open source
data) are usually different from each other, thus calling for
extra caution when selecting appropriate types of data pre-
processing methods that match a dataset. We observed four
types of data preprocessing techniques widely used in ML/
DL studies, as described below.

e Data cleaning (DC): DC is the process of either
removing the noisy data (noise filtering, which
includes stopword removal, stemming, and/or
downcasing) or filling in the missing values (missing
data imputation). Raw datasets are often noisy and
contain outliers and missing values that can skew
results [275]. Therefore, confidence in the prediction
results by other researchers (who intend to replicate
and reproduce) can be compromised where there is
a lack of description about the data cleaning process
[275], [276], [277]. Additionally, when the data clean-
ing process is stated, the availability of the data sizes
before and after data cleaning [275] could also have
an impact on replication because missing both or
either of the data sizes may lead to the inconsistent
sizes of the regenerated and original training data.

e Imbalanced Data Preprocessing (IDP): Training a
classifier on an imbalanced dataset makes it biased
toward the majority class label. This is due to the fact
that the classifier tends to increase the overall accu-
racy, which results in ignoring minority class sam-
ples in the training set [278]. Hence, when a paper
mentions that its used dataset is imbalanced, lacking

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

TABLE 10
Data Preprocessing Techniques, Feature Engineering, and Input
Data Types over 7 SE Activities

SE Activity ML DL

DC IDP FS FC DC IDP FS FC
RE (66,9) 55% 15% 30% 18% 78% 44% 22% 22%
DM (41,15) 44% 10% 29% 17% 87% 13% 20% 13%
CO (119,100) 61% 16% 25% 19% 75% 5% 9% 9%
TE (82,20) 41% 11% 23% 22% 55% 15% 20% 25%
DA (325,61) 48% 32% 36% 26% 49% 43% 17% 36%
ME (427,137) 64% 16% 35% 26% 69% 9% 21% 18%
PM (149,16) 47% 7% 29% 35% 63% 6% 31% 38%

The total number of relevant ML and DL studies is shown in the parentheses
besides each SE activity. For instance, “RE (66,9)” means that there are 66
ML studies and 9 DL studies in the RE domain. “"DC”, “IDP”, “FS,” and
“FC” show the total number of studies (in percentage) that used these four
data preprocessing techniques in each SE activity, respectively: Data Cleaning
(DC), Imbalanced Data Preprocessing (IDP), Feature Selection (FS), and Fea-
ture Scaling (FC).

the description of how to overcome the imbalanced
dataset problem may downgrade the credibility of
the prediction results from the original studies and
is also less useful for other researchers to replicate or
reproduce.

e Feature Selection (FS): FS is the process of identifying
and removing as much irrelevant and redundant infor-
mation from a dataset as possible. A variant of feature
selection is feature weighting. Rather than identifying
and removing irrelevant features, feature weighting
retains all the available features but assigns lower
weights to those features that are determined to be less
relevant to the task under consideration. A more
advanced version of feature selection is dimensionality
reduction, where high-dimensional data instances are
projected into a low-dimensional space using techni-
ques such as Principal Component Analysis [279]. For
ease of exposition, we will henceforth refer to this col-
lection of related techniques simply as “feature
selection.” If feature selection is employed in the stud-
ies, the level of details about the feature selection pro-
cess may have an impact on replication. An incomplete
description of the process may make it difficult to repli-
cate the feature selection methods.

e Feature Scaling (FC): Also known as data normaliza-
tion, FC is a method used to normalize the range of
independent variables or features of data [280]. Since
feature values extracted from different datasets often
have varied scales, they are often normalized before
further processing, which can improve prediction
performance [281].

Based on all 1,428 papers, we further investigated the
adopted data preprocessing techniques mentioned in these
papers over seven SE activities: Requirements Engineering
(RE), Design and Modeling (DM), Implementation (CO),
Testing (TE), Defect Analysis (DA), Maintenance and Evolu-
tion (ME), and Project Management (PM). Results are
shown in Table 10, and additional statistics over all 77 SE
tasks are publicly available at [65].

What patterns did we observe by examining the data prepro-
cessing techniques for ML and DL studies? According to

uthorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from |

1209

Table 10, for data preprocessing techniques, we observed
that ML and DL studies present a similar pattern in general.
Data cleaning was mentioned in a large majority of papers
for both ML and DL compared to the other three techniques
for each SE activity. Specifically, we observed two common
DC techniques: data filtering and missing data imputation.
For data filtering, the most common way is to filter the raw
dataset based on manually designed heuristics [267] or
some common practices, such as stop words removal. On
the other hand, we found that many studies in PM, typically
for Software Effort/Cost Estimation tasks [282], [283], [284],
have been conducted on handling missing data due to the
fact that historical datasets used by these studies, such as
the ISBSG (International Software Benchmarking Standard
Group), contain a large amount of missing data caused by
measurement noise or data corruption [285]. Missing data
can be handled using either the embedded method (e.g.,
missing data toleration) or the independent method (e.g.,
Class Mean Imputation) [283].

For imbalanced dataset preprocessing, it is evident, as
shown in Table 10, that more ML and DL studies from the
DA domain provided the description of IDP techniques
because in defect datasets there are fewer defective data
instances than non-defective data instances [286]. Many
techniques are proposed by SE researchers to address the
imbalanced data challenge, e.g., Synthetic Minority Over-
sampling Technique (SMOTE) [100], [104], oversampling
[286], undersampling [287], and cost-sensitive learning
[258]. On the other hand, it is somewhat surprising to see
that IDP is more frequently mentioned in DL studies than
ML studies in RE. In particular, DL studies [88], [197] used
undersampling techniques more often than oversampling
techniques because the latter would increase the training set
size and hence the training time.

Feature selection techniques are mentioned more often in
ML than DL studies. A possible reason is that features are
automatically learned by DL models, thus allowing them to
ignore feature selection. Besides, we observed that feature
selection is more often used by studies with metrics value
based datasets. Because software metrics often have strong
correlations among themselves (e.g., the widely used NASA
datasets in the DA domain) and not all metrics are relevant
to the proposed ML/DL models [288], many studies [130],
[289], [290] used FS techniques to remove metrics that are
correlated and irrelevant in order to improve model perfor-
mance. For SE studies, filter-based and wrapper-based fea-
ture selection techniques are two commonly used
automated feature selection techniques. Filter-based feature
selection techniques search for the best subset of metrics
according to an evaluation criterion regardless of model
construction [288], including Information Gain (IG) [291],
Correlation-based [292], and Chi-Squared-based [290].
Wrapper-based feature selection techniques use classifica-
tion techniques to assess each subset of metrics and find the
best subset of metrics according to an evaluation criterion
[288], including Recursive Feature Elimination (RFE) [293]
and Stepwise Regression [294].

Feature scaling is used more often in PM as shown in
Table 10. This may imply that normalization has a positive
impact on regression models as they are dominant

approaches in Software Effort/Cost Estimation and
E Xplore. Restrictions apply.

1210

Performance Prediction. While the most common method is to
normalize the values into the range from 0 to 1 in the data
vectors [104], some studies adopted the z-score to normalize
software metrics, which made the normalized software met-
ric have a mean value of zero and a variance of one [280].

While ML and DL share the aforementioned commonali-
ties in data preparation, there is a crucial difference between
the two as far as data representation is concerned. As men-
tioned in Section 4.2.5, canonical ML approaches have a sig-
nificant time-sink in manual feature engineering techniques
to improve the data representation, whereas DL approaches
obviate the need for manual feature engineering and allow
task-specific data representations to be learned as part of
the model training process. Next, we will investigate the
trend of applying feature engineering in SE and discuss the
relations among different data types (see Appendix A.3,
available in the online supplemental material).

4.3.2 Model Training

The issues involved in training a ML model are different
from those involved in training a DL model. Below we
describe how the two differ from each other with respect to
model construction and hyper-parameter optimization (i.e.,
choosing a set of optimal hyper-parameters for an algo-
rithm). Generally speaking, a study should list all the attrib-
utes of a proposed approach described below, as failure to
do so will result in a lack of reproducibility and replicability
of the approach.

Model Construction. To construct a ML model, one needs
to specify the learner to be used (e.g., DT, NB, or SVM).
Specifying the learner is equivalent to specifying the algo-
rithm to be used in the model construction process. For
instance, a decision tree learner uses a particular splitting
criterion (e.g., information gain, gain ratio) to learn a small
tree (Occam’s Razor — discussed in Section 4.4) that
achieves a high accuracy on the training set. A SVM, on the
other hand, uses the sequential minimal optimization algo-
rithm to find the hyperplane with the largest margin. Once
the learner is specified, one needs to specify a set of (typi-
cally) learner-specific hyper-parameters. For example, in
random forest learning, one would specify how many trees
are used.

Constructing a DL model is slightly more complicated.
While there are standard, off-the-shelf neural network
architectures that can be used, such as CNNs and RNNs
(e.g., LSTMs, GRUEs), if one desires to achieve good perfor-
mance on a specific SE task, it is typically important to
design task-specific architectures. For instance, one can (1)
create multiple layers of LSTMs by stacking them, (2)
employ bidirectional LSTMs to encode information from
both sides of an input sequence, and/or (3) combine CNNs
with RNNs. Since DL models typically assume embeddings
as input, one has to decide what kind of embeddings to use
and whether the embeddings can be updated in the model
construction process. More recently, pre-trained models
have been extensively used to construct DL models for SE
tasks (see Section 4.2.4). Specifying the pre-trained model (if
one is to be used) is part of the DL model construction pro-
cess. As for hyper-parameters, there is typically a set of neu-
ral network-specific hyper-parameters that needs to be

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

tuned, such as weight training algorithm (e.g., stochastic
gradient descent [41], gradient descent [295], gradient
ascent [296], conjugate gradient [297], quasi-newton method
— Limited-memory BFGS [128], Levenberg-Marquardt
[298]), the dropout rate, the number of epochs (training iter-
ations), the learning rate, the number of hidden layers, the
activation function, the dimensionality of a particular repre-
sentation, the loss function, and the optimizer used for
weight estimation (e.g., Adam [43], RMSprop [129], Ada-
Grad [22], Adadelta [299], AdaMax [295], the Momentum
[300]).

We discovered two common ways that SE studies imple-
mented their proposed ML and DL models: (1) using an off-
the-shelf toolkit package, or (2) creating self-designed versions.
In general, both ways are adopted in ML studies, while DL
studies tend to build models from scratch or modify an existing
model since off-the-shelf packages are more readily available
for canonical ML algorithms. An off-the-shelf toolkit encapsu-
lates all the implementation details to allow experiments to be
configured on it and run on a user’s machine [269]. For exam-
ple, many ML studies [301], [302] used Waikato Environment
for Knowledge Analysis (WEKA) [303], which is an open
source collection of machine learning algorithms for data min-
ing tasks, to create adopted classifiers with the default configu-
ration. Compared to ML, DL usually adds two additional
components to its model construction: word embedding and
enhanced structures. As mentioned in Section 4.2.2, varieties of
word embedding techniques are integrated into DL models
and, typically applied to very large corpora. Embeddings can
be used to reduce the space complexity of computation and
measure the similarity of the words [304]. According to Table 7,
standard DL architectures can be enhanced by other DL archi-
tectures (e.g, CNN+RNN), ML learners (e.g, DL+RL) and non-
ML/DL techniques (e.g., Neural Machine Translation + Infor-
mation Retrieval). To promote replicability and reproducibil-
ity, ML studies using an open source toolkit do not need to
describe model elements in detail and can only specify their
configuration of hyper-parameters. On the other hand, for the
ML and DL studies that do not take advantage of an existing
toolkit, missing any description of the aforementioned model
elements in the original studies may make it difficult to repli-
cate and reproduce the necessary details of proposed ML/DL
methods.

Hyper-Parameter Optimization. As for hyper-parameter
optimization, even though it is typically regarded as a
“black art,” its impact is well understood [305] and tuning
needs to be repeated whenever the data or the goals are
changed [306]. We discovered two different ways employed
by ML and DL studies in SE for parameter tuning: (1) Use
state-of-the-art hyper-parameter optimization techniques,
and (2) create a self-designed algorithm or strategy to tune
specific hyper-parameters. Both ways are adopted in ML
studies, while DL studies tend to use a self-designed script.
Specifically, we observed four automated parameter optimi-
zation techniques: (1) Grid Search (e.g., [307], [308]), which
is the simplest optimization technique based on an exhaus-
tive search through a set of parameters within a manually
specified parameter space; (2) Random Search (e.g., [309]),
which exhaustively searches through a set of parameters
within a randomly generated parameter space; (3) Genetic
Algorithm (e.g., [310]), which is an evolutionary-based

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

optimization technique based on natural selection and
genetics concepts, where the chromosomes of the two indi-
viduals (parents) work together to form a new individual
by keeping the best properties from each of the parents; and
(4) Differential Evolution (e.g., [311]), which is another evo-
lutionary-based optimization technique based on the differ-
ential equation concept and uses mutation as a search
mechanism [312]. Since DL typically has many hyper-
parameters, the hyper-parameter space, which is the Carte-
sian product of the domains of all hyper-parameters, is
huge. Ha et al. [313] proposed an efficient hyper-parameter
optimization strategy for a deep FFN with three hyper-
parameters that control the complexity of the network (i.e.,
number of layers, number of neurons/layer, regularization
hyper-parameter) and two hyper-parameters that control
the model training process (i.e., learning rate, number of
epochs). It reduces the hyper-parameter search effort by (1)
fixing some dependent hyper-parameters and (2) deriving a
search strategy to effectively reduce the hyper-parameter
space. We refer the reader to Appendix A.4 (available in the
online supplemental material) for an investigation of
whether there are hyper-parameter values and optimization
techniques that are typically used in existing ML /DL mod-
els for SE tasks.

Overfitting. There is one critical problem for ML/DL
models to combat during the model training process —
overfitting, which occurs when a model that fits the training
data too well but performs poorly on new, unseen data.
Many methods are proposed to reduce the effect of overfit-
ting and we listed some widely-used techniques in Table
A.8 (see Appendix A), available in the online supplemental
material. Based on our collection, we found that cross-valida-
tion is the most widely-used method in ML studies [123],
[314] but it is not prevalent in DL studies. This is probably
because much less data is needed by ML than DL and k-fold
cross-validation is particularly useful when data is scarce
(according to Table A.8). However, recent studies [104] in
defect prediction revealed that k-fold cross-validation often
introduces a nontrivial bias for evaluation, which makes the
evaluation inaccurate, especially for change-level defect
prediction. One typical reason is that randomly partitioning
a dataset into k folds may cause a model to use future
knowledge which should not be known at the time of pre-
diction to predict changes in the past. On the other hand,
due to the model depth and the capacity required to capture
more complex representational spaces, DL models are often
more susceptible to overfitting [315], particularly in net-
works with millions or billions of learnable parameters. For
DL studies, we found that regularization strategies (e.g., L1
reqularization [313], L2 reqularization [313], dropout [90], [313],
[316], [317], early stopping [901, batch normalization [153]) are
often adopted to add some constraints to the objective func-
tion, allowing for good generalization to unseen data even
when training on a small training set or with an inadequate
number of iterations. Among them, we discovered that drop-
out is the most popular one since it not only prevents over-
fitting but also provides a way of approximately combining
exponentially many different neural network architectures
(e.g., Deep Siamese Network [90]) efficiently [318]. In addi-
tion, we found that CNNs [199] and the Siamese architec-

ture [130] usually use a shared weight paradigm, and Xavier
Authorized licensed use limited to: Southern Methodist

niversity. Downloaded on

1211

initializer [319] is a popular technique to initialize the non-
embeddings weights [256], [320].

4.3.3 Evaluation

To comprehensively evaluate the proposed ML and DL
models, performance evaluation and subsequent error anal-
ysis are two common activities.

Performance Evaluation. Prediction results are produced
by applying the proposed ML/DL methodology to the pre-
processed training and testing data, which would be the
basis for the research results and outcomes [62]. To make
the prediction results more credible, many studies chose to
compare their proposed ML/DL models to other models or
baseline approaches. There are many ways to determine the
“quality” of an approach when compared to others. Provid-
ing the used evaluation metrics of this comparison is impor-
tant for the replicability of the results.

Table 11 presents nine commonly used evaluation met-
rics against prediction performance and their definitions.
Accuracy, precision, recall, F1, AUC and MAP are often
used in classification tasks. However, precision and accu-
racy may not be robust to datasets where the target class is
rare [328], which is common in defect prediction. On the
other hand, F1 and Recall are relatively robust to data
imbalance problems. AUC has been advocated to be a
robust scalar summary of the performance of a binary scor-
ing classifier [329]. However, the computational cost of
AUC is high, especially for discriminating a volume of gen-
erated solutions of multi-class problems [330]. MAE has
been recommended for the evaluation of software effort
estimators because it is unbiased towards over or underesti-
mations [331]. Choosing the right evaluation metric for a
given task is essential, as failure to do so may provide an
inaccurate characterization of how good a system is. How
to choose the right evaluation metric for a given task
depends on at least two factors. First, it depends on whether
the task is a classification, regression, ranking, or generation
task. As shown in the table, BLEU is appropriate for genera-
tion tasks but not classification tasks. Second, it depends on
the class distribution. While accuracy makes the most sense
to use when the class distribution in the test data is rela-
tively balanced, the other metrics may be more suitable for
datasets with skewed class distributions. As an extreme
example, consider a 2-class classification task where one
class comprises 99% of the instances. Merely classifying
every instance in this test set as belonging to the majority
class will enable the model to achieve a 99% accuracy. How-
ever, this is not reflective of the model’s actual performance
because, with such a skewed distribution, it would typically
be necessary for the model to perform well on the minority
class, which comprises only 1% of the test data. For this rea-
son, metrics such as recall, precision, and F1, which can be
computed for each class in the dataset regardless of whether
the class is a majority class or a minority class, may provide
a better characterization of model performance. For
instance, to evaluate the performance of a neural network
for API retrieval tasks, Nguyen ef al. [332] used precision to
show the number of correctly predicted relevant fragment-
API pairs over all the retrieved pairs. They also used recall

to get the number of the correctly predicted relevant
ay 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1212 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023
TABLE 11
Summary of Common Performance Evaluation Metrics for ML and DL Studies
Metrics Definition Suitable Tasks
Accuracy The ratio of numbers of correct classification in a dataset. Classification tasks.

Top-k accuracy

The ratio of the number of hits over the total number of cases.

Recommendation or
prioritization tasks.
Classification tasks.
Classification tasks.
Classification tasks.

Classification tasks.

Classification tasks.

Precision The ratio between the number of correctly predicted relevant data over
all the retrieved data.

Recall The ratio between the number of the correctly predicted relevant data

over all the data.

F1 The harmonic mean of precision and recall, which gives a combined
measure of accuracy

AUC (Area Under the The relationship between true positive rate (TPR) and false positive rate

Curve) (FPR).

MAP (Mean Average The mean of average precision across all data.

Precision)

BLEU

The similarity between two sentences in evaluation of machine

Code or text generation tasks.

translation systems.

MAE (Mean Absolute

Error) pattern

A measure of errors between paired observations expressing the same

Regression tasks.

fragment-API pairs over all the pairs. Top-k accuracy is
used to reward a ML/DL model that makes at least one cor-
rect recommendation in the top k% ranked classes, and will
allow us to see the trade-off performance when as k
increases [333]. BLEU measures the quality of generated
comments by calculating the similarity between the gener-
ated comments and references [334].

In addition, we observed some non-traditional and task-
specific metrics being used, such as robustness and effec-
tiveness. For instance, in test automation [335], robustness
was defined as the percentage of passed test cases that were
properly classified, measuring how well a ML model cor-
rectly identifies the negative cases; and effectiveness was
defined as the percentage of failed test cases that were prop-
erly classified, measuring how well a model correctly identi-
fies a condition. To evaluate the Discrete Adversarial
Manipulation of Programs (DAMP) attack using three DL
architectures [336], in targeted attacks robustness was
defined as the percentage of examples in which the correctly
predicted label was not changed to the adversary’s desired
label, and in non-targeted attacks it was defined as the per-
centage of examples in which the correctly predicted label
was not changed to any label other than the correct label.
Effectiveness was just the opposite: the lower the model
robustness is, the higher the effectiveness of the attack is.
We also found that explainability has been indirectly mea-
sured in technical debt detection [337], where the Jaccard
coefficient was employed to measure the similarity among
the set of key phrases extracted by a CNN. The higher the
similarity is, the more intuitive and explainable the CNN-
extracted key phrases are.

Error Analysis. Error analysis for ML/DL models exam-
ines the instances that the model misclassified so that one
can understand the underlying causes of the errors, which
is essential for reproducing the studies on a different prob-
lem. When the reproduced results are far from the results
reported in the original study, previous error analysis could
provide clues to locate the problem by steps such as: (1) Pri-
oritize which problems deserve attention, (2) suggest the

missing critical information in the methodology design, (3)
provide a direction for handling the errors, and (4) check
the validity of the assumptions. As an excellent example of
error analysis, Liu et al. [338] performed a comprehensive
error analysis on the misclassified pairs of changed source
code and untangled change intents of AutoCILink-ML, a
supporting tool for automatically identifying/recovering
links between the untangled change intents in segmented
commit messages and the changed source code files. They
prioritized the problems of the misclassified pairs. One pri-
mary source of errors they found was misclassifying a
“linked” code-intent pair (as “not linked”). Through their
error analysis, this misclassification can be attributed to the
inconsistent definitions/ambiguity of specific terms used in
commit messages and their related documents and the
same ones used in source code. To address this kind of
error, they recommended word sense disambiguation.

4.3.4 Comparison of the Latest ML and DL Studies

In this subsection, we examine the latest ML and DL studies
on the three SE tasks listed in Table 12 that are associated
with the largest number of publications, namely Defect Pre-
diction (A1), Defect Detection and Localization (A2), and Soft-
ware Quality Prediction (M10). Specifically, for each of these
three SE tasks, we selected two recent ML studies and two
recent DL studies. Table 12 presents the purpose of these
ML/DL studies and shows for each study (1) the proposed
ML/DL model(s), (2) the chosen dataset(s), (3) the data pre-
processing techniques, (4) whether hyper-parameter optimi-
zation was conducted, and (5) the evaluation metrics. For
each SE task, the two ML studies are listed above the two
DL studies.

For each task in Table 12, we found that it is difficult to
directly compare the model performance or even draw gen-
eral conclusions among different studies. The reasons are
two-fold. First, the purposes of different studies for the
same task can be different. Second, there is a lack of a stan-
dard evaluation methodology/framework for a given SE

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from |IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

TABLE 12

1213

Comparison of the Latest ML and DL Studies on Three Popular SE Tasks: Defect Prediction (A1), Defect Detection and Localization

(A2), and Software Quality Prediction (M10)

Task Purpose Model Dataset Preprocessing Tuning Metric
Modify and enhance three Cross- Bagging 9 open source projects (e.g., IDP NO Recall, G-mean
Project Just-In-Time Software Defect Tomcat, JGroups) & 3
Prediction (JIT-SDP) approaches proprietary projects
[321]
Compare supervised and Supervised AEEEM, NASA, PROMISE, NO NO F1, AUC
Al unsupervised methods for Effort- RELINK
Aware Cross-Project Defect
Prediction [273]
Propose a novel approach for defect CNN ant, camel, jEdit, log4j, FS NO F1
prediction based on visualizing lucene, xalan, xerces, ivy,
program files as images [103] synapse, poi
Propose a novel just-in-time defect CNN Bugzilla, Platform, Mozilla, DC, IDP, FC NO Accuracy,
prediction approach [322] JDT, Columba, PostgreSQL Precision,
Recall, F1
Propose an approach to RF Defects4] NO NO Exam Score
automatically localize faults in
software by modeling and predicting
counterfactual outcomes [323]
Conduct a study on whether a fault BN, SVM, Apache Commons Codec, IDP NO Precision,
can be detected by specific code RF CLIL CSV, JXPath, Lang, Recall, F1, AUC
A2 coverage in automated test Math, JFreeChart
generation [324]
Propose an approach to predict Seq2Seq TBLD, CBGD DC, FC NO Precision,
locations of try blocks and Recall, F1
automatically generate the complete
catch blocks [118]
Improve deep-learning-based fault CNN chart, math, mockito, time, IDP NO EXAM,
localization with resampling [325] python, gzip, libtiff, space, Relative
nanoxml Improvement
Predict vulnerable classes and SVM, LoR Apache Tomcat, Apache DC, IDP, FC NO Recall,
methods in Java projects [326] CXF, Stanford SecuriBench Precision, F1,
AUC
Propose and evaluate a general KNN, RF, Windows 10, QuickTime, IDP NO Precision,
framework for vulnerability severity DT Oracle Business suite, etc. Recall, F1,
M10 classification [327] Accuracy, AUC
Conduct a comparative study on the LSTM, the National Vulnerability DC NO Precision,
performance of machine learning- GRU, Database (NVD), Software Recall, F1
based vulnerability detection [134] CNN Assurance Reference
Dataset (SARD)
Assess the generalizability of Seq2Seq SWaT, WADI DC NO Precision,
code2vec token embeddings [138] Recall, F1,
BLEU

task. More specifically, standard evaluation benchmarks are
missing, and as a result, different researchers evaluated
their methods on different datasets. Moreover, there is no
standard evaluation metric(s), and as a result, different eval-
uation metrics were adopted. Worse still, none of these
studies reported the hyper-parameters tested, which makes
it difficult to reproduce the results. Data cleaning and imbal-
anced data preprocessing techniques are widely adopted in
these studies.

What are the current trends of the competing ML and DL tech-
niques applied to these three SE tasks? For defect prediction,
the two ML studies focused on investigating or improving
the effectiveness of state-of-the-art ML learners on two pop-
ular types of defects: just-in-time defects and effort-aware
defects. For instance, Just-In-Time Software Defect Predic-
tion (JIT-SDP) is concerned with predicting whether

software changes are defect-inducing or clean [321]. To
address this task, Tabassum ef al. [321] proposed an ensem-
ble model (Oversampling Online Bagging), which tackles
class imbalance evolution in an online JIT-SDP scenario tak-
ing verification latency into account. We found that one DL
study began to use a different data type (image) for defect
prediction and exploited the advantage of a CNN in image
classification. More specifically, Chen et al. [103] proposed
an end-to-end DL framework that can directly get predic-
tion results for programs without utilizing feature extrac-
tion tools. They first visualized programs as images, then
applied a self-attention mechanism to extract image features
and used transfer learning to reduce the difference in sam-
ple distributions between projects, and finally, fed the
image files into a pre-trained, deep learning model for
defect prediction.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1214

For defect detection and localization, the two ML studies
highlighted the advantages of two different categories of
fault localization techniques: value-based techniques [323]
and code-based techniques [324]. Specifically, code-based
techniques measure the statistical associations/correlations
between the occurrence of observable software failures and
the coverage of individual program elements that are poten-
tial fault locations, such as statements, basic blocks, and
subprograms. By contrast, value-based techniques focus on
the values of a program’s variables, which carry relevant
information that is often neglected when conditional
branches are omitted or incorrect. On the other hand, the
DL models can help localize the fault in the program and
generate patches to fix defects. Specifically, Zhang et al.
[118] utilized a DL generator (SEQ2SEQ) to learn patterns
from a large amount of historical exception handling code,
which can localize potential exceptions in the source code
and generate code to handle the exceptions.

For software quality prediction, vulnerability prediction
appears to be an active research topic in software security
since both ML studies and one of the DL studies focused on it.
Sultana et al. [327] concluded the positive effect of the identi-
fied class-level metrics, and Chen et al. [326] confirmed the
effectiveness of feature selection on vulnerability prediction.
Zheng et al. [134] concluded that DL models can achieve better
performance in vulnerability prediction than canonical ML
models. The other DL study [138] investigated a different
quality attribute, the generalizability of the token embeddings
learned by code2vec for downstream SE tasks.

4.3.5 Replicability and Reproducibility Assessment

According to the ACM policy on artifact review and badging
[339], replicability refers to the ability of an independent group
to obtain the same result using the author’s own artifacts. Like-
wise, reproducibility is the act of obtaining the same result
using generally the same methods rather than the original arti-
facts. Reproducibility is clearly the ultimate goal, but replicabil-
ity is an intermediate step to promote practices.

Why are replicability and reproducibility of studies essential to
SE? Replicability and reproducibility are essential to identify-
ing the quality and testing the credibility of the original studies,
which in turn can increase the confidence that we can have in
the results and allow us to distinguish reliable and unreliable
results [269]. More importantly, the replicability and reproduc-
ibility of ML /DL applications have a great impact on generaliz-
ing and applying research results to different domains. As
mentioned in Section 1, ML /DL has become a popular way to
represent data in SE due to the great performance in classifica-
tion, regression and generation tasks. A lack of reproducibility
and replicability can be detrimental to the SE research
community.

How many studies addressing ML/DL applications were repli-
cated and reproduced in SE? Following the extraction process
stated in Section 3.4, we found that 236 of the 1,428 papers
(17%) claimed that they either replicated the same method-
ologies of other studies in our collection as baselines and
used the same dataset to test their performance [189] or
reproduced the methodologies on a different dataset to test
the generalizability of their findings [340]. Tracing back to
the studies being replicated or reproduced, we found that

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

189 studies were being replicated and 41 studies were being
reproduced (24 studies were being replicated and repro-
duced) in these 236 papers. Following the narrative synthesis
stated in Section 3.6 and based on the quality checklist in
Table 4, we found two types of relations between replicabil-
ity /reproducibility and the level of detail provided by ML/
DL-related SE studies: direct and indirect.

What and how much information should a ML/DL study provide
to simplify replicability and reproducibility in SE? According to
Fu and Menzies [314], it is hard to replicate or reproduce ML/
DL applications in SE research due to the nondisclosure of
datasets and source code. Therefore, for the direct relations,
we checked whether a study provided the full replication
package, including training data and source code,® which is
the easiest way for other researchers to replicate the original
experiments. Training data comprises the data consumed by
ML/DL algorithms after preprocessing a raw dataset. If the
data is not accessible, there may be a mismatch between the
regenerated data and the originally preprocessed data [103].
On the other hand, the full package of source code consists of
at least two parts, end-to-end scripting (e.g., data preprocess-
ing, statistical analyses) and the implementation of the ML/
DL-based approach (e.g., model construction, parameter tun-
ing methods, training algorithms) [341], which guarantee the
compliance with the same ML/DL workflow when replicat-
ing. If the source code is not accessible, it would leave follow-
up studies no choice but to re-implement the entire approach
from scratch by relying on the description of the approach in
the original study, which may not contain all original imple-
mentation details [103]. A further analysis is described in
Appendix A.5, available in the online supplemental material.

Recommendation. According to the results from Tables
A2, A3 and A.5 (see Appendix A), available in the online
supplemental material, “Rep” studies have a better rate
than “Non-Rep” studies for providing almost all the details
in the checklist (except QAS8), which indicates that this infor-
mation indeed benefits the replicability and reproducibility
of ML/DL studies in SE. On the other hand, though we sep-
arately assessed the studies with and without available rep-
lication packages, providing both the replication packages
and detailed descriptions is recommended. While replica-
tion packages could make the replication and reproduction
of ML/DL studies much easier, detailed descriptions of the
ML /DL workflow activities could promote the understand-
ing of the proposed ML/DL methodologies by other
researchers, which would be helpful for reproducing the
ML/DL studies in more generalized and applicable scenar-
ios. Therefore, based on the patterns found in the analysis
of direct and indirect relations (see Appendix A.5), available
in the online supplemental material, we summarize some
actionable implications against the threats to replicability
and reproducibility, as described below:

e Sharing the replication package and providing usage
instructions. It is good for long-term maintenance to
share the implementation and training data in an
open-access platform (e.g., GitHub, Zenodo), which

8. According to the ACM policy, an artifact is available if a DOI or a
link to the data or source code repository, along with a unique identifier
for the object, is provided.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

can reduce the risk of deprecated links. We found
that such cases usually occurred when a dataset was
posted on the server of a company or an educational
constitution. To address the privacy concerns of pro-
prietary or industry data, some state-of-the-art algo-
rithms are available to prevent the disclosure of
sensitive metric values [342], such as CLIFF&-
MORPH and ManualDown. Besides, it would be bet-
ter to provide some instructions (e.g., readme) on (1)
how to deploy the proposed ML/DL model on dif-
ferent operating systems, and (2) which files should
be used for training or testing.

o Sharing the tools or methods for data extraction and prepro-
cessing. For state-of-the-art tools, it is necessary to
provide the access link or the referenced studies.
Open-source and free-access tools are highly recom-
mended, such as BeautifulSoup (a Python parser for
HTML and XML files) [343], Scrapy (a crawler to
obtain web pages) [344], SZZ (an approach to identify
bug-introducing commits) [345], Stanford CoreNLP (a
set of NLP tools) [346], and Porter Stemming (an algo-
rithm for term normalization) [347]. For self-designed
methods, researchers are encouraged to provide the
pseudo code with detailed explanations in the paper
and include the implementation in the replication
package. In addition, for data cleaning, noise filtering
criteria and related statistics are needed in order for
other researchers to verify and replicate. These include
statistics on how the data size changes by following
each filtering criterion.

e Fully specifying hyper-parameter optimization for ML/
DL. ML/DL papers should specify (1) which hyper-
parameters are to be tuned (and if so, using which
method) and which ones are set to their default val-
ues, and (2) training details, such as the loss function
and the weight update algorithm.

e Performing an error analysis for ML/DL. We recom-
mend that researchers locate and understand the
underlying causes of the errors, typically following
the four steps described in Section 4.3.3.

4.4 Understanding ML/DL Technique
Selection (RQ3)

It is important to ensure that others understand why a ML/
DL technique is selected for a specific SE problem. Lacking
rationales and tradeoff analysis among SE studies would
adversely affect the generalizability and applicability of the
ML/DL models. Many ML/DL techniques are chosen
based on heuristics or experiences. For a given problem, a
model can be chosen because (1) it performed better in the
past (discussed in Theme 1), (2) the comparative results are
better, or (3) the trials show success. For the second sce-
nario, according to QA12 in Table A.5, 1,157 (975 + 182)
studies compared their proposed approaches with other
baseline approaches. We discovered that the majority of
these baseline methods are also ML/DL-based (different
ML classifiers or DL architectures), though some other non-
ML/DL baseline methods/tools were also adopted. For
instance, Wang et al. [348] compared six different ML classi-
fiers (i.e., RF, Decision Table, DT, NB, LoR, and SVM) to

1215

assess the automated patch correctness and results showed
that RF was the most effective model since it achieved the
highest recall while still maintaining a relatively high preci-
sion for two experimental settings. For the third scenario, Ye
et al. [72] trained task-specific word embeddings to estimate
semantic similarities between documents and empirical
evaluations showed that the embeddings led to improve-
ments in a previously explored bug localization task and
the newly defined task of linking API documents to com-
puter programming questions. To further address RQ3, we
first used the thematic synthesis method by vivo coding
(described in Section 3.6) to collect summarized rationales
(vivo codes) from all 1,428 papers with regard to the selec-
tion of ML /DL models. Then based on these vivo codes, we
manually identified five patterns (themes) and grouped the
vivo codes into similar categories. The result analysis of
these five patterns is shown below.

We found that 516 of the 1,428 papers (36%) provided
explicit rationales for their proposed ML/DL models,
including 346 ML studies and 170 DL studies, respectively.
We then grouped the collected vivo codes into five themes,
as shown in Table 13. We observed that the rationales for
the chosen ML models spanned over all five categories,
while almost all rationales for the chosen DL models fell
into two themes: “Better Performance” and “Simple Task/
Data.” As mentioned earlier, due to the complex internal
representation of DL, it is understandable why “Better Inter-
pretability” and “Simple Implementation/Model” were not
the two reasons for SE researchers to select DL models.
However, it was somewhat surprising that only one paper
explicitly mentioned that “Robustness to Data Problems”
(CNN-based image classification techniques can effectively
remove the non-code and noisy-code frames [200]) was one
of the reasons for selecting DL models. Next, we will dis-
cuss essential findings upon these five themes.

Better Performance. The rationale “Better Performance” is
described in a similar fashion for selecting both ML and DL
models — that is, “previous studies have demonstrated the
great performance of the chosen ML /DL model in similar SE
tasks.” As shown in Table 13, we noticed that 319 (236+83) of
the 516 studies (62%) reporting rationales considered perfor-
mance as the top criterion for selecting ML/DL algorithms.
This result shows that Theme 1 is dominant in selecting the
appropriate ML/DL models for SE tasks. However, using
“Better Performance” as the top prioritized rationale of select-
ing the appropriate ML/DL models for specific SE tasks may
potentially have a negative impact: Researchers may blindly
trust the reported good performance of specific ML /DL tech-
niques while ignoring their downsides, such as the long com-
putation time and the higher modeling complexity, thus
missing a trade-off analysis among techniques [158], [314],
[349], [350]. The above-mentioned two downsides are corre-
lated to Theme 4 and Theme 5.

Robustness to Data Problems. Due to the unique character-
istics and capability, different ML and DL models can be
resilient to diverse data problems, which may still achieve
good performance in imperfect datasets without any pre-
processing work. For ML, we identified five different kinds
of data problems which the selected ML models from 36
studies were resilient to, as shown in Table 14. First, Noisy
and missing data is the most common problem when

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1216

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

TABLE 13
Rationale Categorization for ML and DL Studies
ID Theme Comments Example #ML #DL
1 Better Proven in prior studies compared “We selected random forest since this algorithm has 236 83
Performance with other ML/DL models. been used in many previous empirical studies and
tends to have good predictive power.”
2 Robustness to Apply robust learners which are “We use Random Forest to take into account the 36 1
Data Problems resilient to diverse data problems specific characteristics of merge data, such as being
(e.g., noise, missing data). imbalanced, in our classifiers.”
3 Simple Task/ The complexity of the underlying “The advantages of using a neural network is to 77 108
Data task/data. automatically extract useful features of link artifacts.
We can train the network to encode the artifacts into
real-valued vectors that capture relevant features.
This relieves us from the arduous and brittle task of
manual feature extraction, which requires (i) expert
domain knowledge and (ii) maintenance in case of
changes in Android icc or the used static analysis”
4 Better Explainable model. “We chose to use a decision tree classifier for this 13 0
Interpretability study since it offers an explainable model. This is
very advantageous because we can use these models
to understand what attributes affect whether or not a
bug will be re-opened.”
5 Simple Easy to implement or simpler “Naive Bayes was the best choice because of the ease 26 1
Implementation/ structure of the model. in which its training can be updated on-the-fly,
Model improving its performance as it adjusts to its user.”

“Theme” shows the summarized themes and “Comments” lists the guidelines to group the similar vivo codes. Sample rationales are shown in “Example,” and “#
ML"” and “# DL” show the total number (includes the overlap that a rationale could be grouped into multiple themes) of relevant rationales per theme for ML and

DL, respectively.

obtaining data directly from raw datasets in software repos-
itories since these datasets are rarely clean and complete
[274]. In addition to the aforementioned data preprocessing
techniques in Section 4.3, another solution to mitigate the
noisy and missing data issue is to apply robust learners,
which are characterized as being less influenced by imper-
fect data, such as decision tree learners. DTs are widely
applied in SE studies because of their robustness against
noise. They have the ability to identify irrelevant attributes,
as well as detect discriminating, missing or empty attributes
[363]. Second, class imbalance refers to the samples of one
class significantly outnumber the samples of others, which
appears frequently in classification tasks, such as Defect Pre-
diction. Third, overfitting is a common problem during the
model training process, which was discussed in Sec-
tion 4.3.2. Ensemble learning algorithms are often selected
by researchers due to their robustness to class imbalance
and overfitting problems. Robustness is guaranteed by aver-
aging the classification performance of multiple classifiers,
which leads to the elimination of uncorrelated errors and,
thus, enhances overall classification performance[353].
Fourth, small datasets can always be well addressed by
SVMs [364] because SVMs are based on a solid theoretical
foundation and can adapt to datasets with relatively small-
scale samples. Finally, for unlabeled data, unsupervised or
semi-supervised algorithms are selected because they either
do not need the prior labeled data (unsupervised) or require
only a small set of labeled data (semi-supervised). As shown
in Table 13, only one DL study explicitly addressed the
robustness to data problems. This implies that researchers
might need to pay more attention to the robustness of differ-
ent DL model architectures in SE.

Simple Task/Data. As mentioned earlier, there are indeed
circumstances in which one may prefer DL to ML (and vice
versa). The oft-cited reasons for using ML include task/data
simplicity. However, when the underlying data points can
be fit, for instance, by a linear function, one may prefer to
use a SVM with a linear kernel to prevent overfitting the
training data (e.g., [360]). In contrast, when the underlying
data exhibit complex patterns and/or require a deeper, pos-
sibly semantic understanding, then DL is certainly the pre-
ferred choice (e.g., [260]). In addition, if the task is too
complex to enable the design of hand-crafted features, then
the ability of DL to learn task-specific feature representa-
tions would make DL the ideal choice (e.g, [214]).

Better Interpretability. Interpretability (also called explana-
bility) can be achieved at two levels: (1) Global — using inter-
pretable ML techniques or intrinsic model-specific
techniques (e.g., SkopeRules and RuleMatrix [365], Duplex Out-
put algorithm [289]) so that the entire predictions and recom-
mendations processes are transparent and comprehensible;
and (2) local — using model-agnostic techniques (e.g., LIME
[366]) to make the prediction results more interpretable [367].
For global interpretability, as shown in Table 13, all 13 ML
studies selected DTs (or tree-based algorithms, e.g., Classifi-
cation and Regression Tree) considering the interpretability
of the model. DT boundaries are parallel to the dimensions of
the input space and expressible in terms of linear conditions
over input variables, which makes DT boundaries under-
standable by researchers [368]. None of 170 DL studies
reported rationales related to global interpretability because
DL is inherently harder to interpret given their internal mech-
anisms are a “black box” to SE researchers. Note that the
states of a RNN are in the form of numerical vectors which

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

1217

TABLE 14
Summary of Data Problems Extracted from ML Studies

Data Problem Tasks Selected ML Models Example References
Noisy or missing data R2,R6,19,A1,M7,P1,M12,P2,T4,M10 DT, RF, SVM, NN [282], [351], [352]
Class imbalance A1,M21,M22 Ensemble (e.g., RF, Bagging), NN [353], [354], [355]
Small dataset 13,A2,P1,M2,P7,16 Regression Tree, SVM, Reinforcement [84], [356], [357]
Overfitting to training set M21,M10,M3,A1,I11 SVM, Ensemble (e.g, RF, AdaBoost, XGBoost) [358], [359], [360]
Unlabeled data P1,M5,P4 Semi-supervised, Unsupervised [282], [361], [362]

The Task-IDs are in Table 5, and “Selected ML Models” denotes some typical ML models chosen by ML studies to address each data problem.

have multiple values and are hard to interpret [369]. Further-
more, the intrinsic logic of the convolutional layers of a
CNN is less interpretable, which prevents understanding the
attention of a CNN at different levels and scales [370]. The
difficulty in the interpretability of neural network representa-
tions, such as CNNs and RNNSs, has always been a limiting
factor for the applicability and generalizability of DL applica-
tions in SE. Although no DL studies provided rationales
related to global interpretability, with the increasing attention
paid to the interpretability of both ML and DL models, bal-
ancing the trade-off between performance and interpretabil-
ity is now becoming a hot topic in SE [288], [371]. This is
mainly being addressed in SE for ML/DL, which is beyond
the scope of this study. Rather than understanding and rea-
soning about neural networks directly through software test-
ing and verification techniques (e.g., mutation testing [372],
concolic testing [373]), recent research aims to extract simpler
models from neural networks such that they are human-
interpretable [369].

For local interpretability, model-agnostic techniques can
provide an explanation for each prediction (i.e., an instance
to be explained) [367], which can let users understand why
the prediction is made by ML/DL models. Such techniques
were first introduced and empirically evaluated in SE in
2020 by Jiarpakdee et al. [374], which focused on generating
instance explanations for defect prediction models. We
encourage SE researchers to improve state-of-the-art ML and
DL models to not only provide insights or generate recom-
mendations but also be able to explain how these insights
and recommendations are generated by the ML/DL models,
in order to help other researchers or practitioners under-
stand how the models arrive at a decision and why they out-
perform or underperform in specific scenarios.

Simple Implementation/Model. Based on the 26 ML studies
and one DL study in Table 13, we observed two patterns of
describing rationales related to simple implementation. First,
one common kind of rationales observed in all 27 ML/DL
studies is “available off-the-shelf implementations” [375] or
“available replication packages from other studies” [376]. Sec-
ond, for the studies that built a self-designed version, the sim-
plicity of the implementation for ML and DL models depends
on various factors. From the point of view of feature engineer-
ing, as mentioned in Sections 4.2.5 and 4.3.1, a DL model
might be easy to implement because it obviates the need for
feature engineering, while all canonical ML models can only
utilize manual feature engineering, which is labor-intensive
and may need to be performed for each new task or dataset
[377]. However, DL models typically require larger amounts
of time and computational resources to train [314] than many
ML models (e.g., LiR, LoR).

The other kind of rationales (observed in the 26 ML stud-
ies) is that a chosen ML model has a much simpler structure
than a DL model, making the learning process understand-
able and easily explainable. Simply put, the complexity of a
learning algorithm will affect the generalizability of the
learning model. According to Occam’s Razor [378], machine
learning models with less complexity are preferred as they
are expected to generalize better. In other words, if two mod-
els have the same performance on a training dataset, then the
simpler model should be chosen because it is expected to
generalize better when used to make predictions on new
data [379]. Among the 27 ML/DL studies in our collection,
four studies did not provide any comparative analysis, and
the remaining 23 studies provided the comparison analysis
and experiments among ML or non-ML models in terms of
complexity. Given that DL is generally more complex than
canonical ML classifiers, “ML versus DL” is the most appar-
ent tradeoff analysis. However, we observed no such trade-
off analysis in these 23 studies, which indicates little
consideration of Occam’s Razor [378] in SE — a complexity
comparison as well as tradeoff analysis on various ML /DL
models for a specific SE task. Recently, controversial studies
have emerged that warn us to use ML/DL cautiously and
encourage the exploration of simple methods as part of the
rationale of model selection. For instance, Liu et al. [156] pro-
posed a nearest neighbor algorithm that did not require any
training to generate short commit messages, which not only
was much faster and simpler but also performed better than
the Neural Machine Translation approach by Jiang et al.
[158]. Xu et al. [350], [380] and Fu and Menzies [314], [349]
debated the effectiveness of DL versus SVM in predicting the
relatedness between Stack Overflow knowledge units. Even-
tually, they agreed in part that while SVM based approaches
offered slightly better performance, they were slower than
DL-based approaches on larger datasets. These studies shed
light and provide excellent examples on how the complexity
tradeoff analysis can be performed to guide the selection of
appropriate ML/DL models for SE tasks.

For these five themes, we have provided answers to the
questions of “when to use ML/DL,” and “which ML/DL to
use.” A natural question is “when not to use ML/DL.” Recall
that ML/DL allows us to automatically acquire knowledge
from data. Hence, one can easily conceive the scenarios in
which one should not apply ML/DL to a given SE task.

First, the amount of data available for training — particu-
larly annotated data — is inadequate for training an accu-
rate model. As mentioned before, while annotated data can
be obtained easily for some SE tasks, the same is not true for
other SE tasks. Consider, for instance, process management
tasks, where the associated software project data (e.g., the

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1218

attributes characterizing software projects and the success-
ful software process models [381]) is relatively small and
has to be collected over a long period of time. This implies
that it could take a long time to collect a reasonable amount
of data for these tasks. The difficulties involved in data col-
lection could be a reason for SE researchers to consider
employing non-ML/DL approaches.

Second, the knowledge needed to properly address a given
SE task is absent from data. This typically occurs when expert
knowledge is required to address the task. Root cause analysis
is a good example of a task that needs to be addressed with
expert knowledge: It is usually hard to extract meaningful fea-
tures from ground-truth root-causes (e.g., log data), and it
requires a huge amount of manual effort to transfer adequate
domain knowledge to a feature matrix. For instance, in order
to categorize the root causes of failed tests from log data
through ML clustering and classification algorithms, Kahles
et al. [382] had to conduct further interviews with the testing
engineers and map their expert knowledge into distinctive
ground-truth root-cause categories.

5 DISCUSSION

5.1 Summary of Findings
In this section, we will summarize the findings from the
three research questions.

RQ1. As far as the application of ML to SE tasks is con-
cerned, we have observed two important trends over the last
six years: (1) a larger variety of SE artifacts has been effec-
tively analyzed using different ML techniques; and (2) word
embedding techniques are being integrated into different
ML-based applications. As for the application of DL to SE
tasks, we have observed that (1) classification results could
be improved by replacing or combining the hand-crafted fea-
tures that are typically used in ML with representation learn-
ing (by DL); (2) results are continuously improved by
enhancing DL models; (3) the generalizability to different
presentation styles (unseen projects) could be improved by
pre-trained models such as BERT; (4) through the application
of CNNs, SE researchers have made significant progress on
identifying and extracting elements embedded in multime-
dia; and (5) with the help of SEQ2SEQ deep generation models,
code and text based generation tasks in SE have been tackled
more effectively than before. In addition, we have found that
(1) CNN or RNN based architectures are widely adopted in
DL models because they are adept at handling images and
text, which are the two major types of data in SE research; (2)
two types of CNNs and RNNs, namely Siamese and Tree-
based models, have been specifically tailored to fit SE tasks.
Finally, we have identified novel ML /DL applications in SE,
such as screencast analysis and the use of biometrics, as well
as novel ML /DL models that were specifically developed for
the SE domain, such as pre-trained models of source code.

RQ2. For data preparation, ML and DL share commonali-
ties in data source and data extraction. As far as data prepro-
cessing is concerned, while we discussed the similarities in
preprocessing text, code and image for ML and DL, we identi-
fied that imbalanced data preprocessing techniques are more
frequently mentioned in DL studies than ML studies in
requirements engineering. In addition, thereis a crucial differ-

ence between the two with resgard to feature engineering:
Authorized licensed use limited to:

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

Canonical ML approaches have a significant time-sink in
manual feature engineering techniques to improve the data
representation, whereas DL approaches obviate the need for
manual feature engineering and allow task-specific data rep-
resentations to be learned as part of the model training pro-
cess. Besides, we observed that there were an increasing
number of studies that employ automated feature engineer-
ing in the last two years, and that automated feature engineer-
ing has been a preferred choice recently when using code. As
for model training, we found two common ways that SE stud-
ies implemented their proposed ML and DL models: (1) using
an off-the-shelf toolkit package, or (2) creating self-designed
versions. However, we discovered that DL studies typically
involve building models from scratch or modifying existing
models while off-the-shelf packages are more readily avail-
able for canonical ML algorithms. As far as hyper-parameter
optimization is concerned, we discovered two common ways
employed by ML and DL studies in SE for parameter tuning:
(1) use state-of-the-art hyper-parameter optimization techni-
ques, and (2) create self-designed algorithms or strategies to
tune specific hyper-parameters. Both ways are adopted in ML
studies, while DL studies tend to use self-designed scripts.
Though DL models typically have more hyper-parameters
than ML models, we did not observe the correlations among
the SE task, the type of hyper-parameter optimization and the
type of DL architecture. With respect to evaluation, for both
ML and DL, we discussed nine commonly used evaluation
metrics against prediction performance and three non-tradi-
tional, task-specific evaluation metrics, namely robustness,
effectiveness and explainability. We noticed that there was a
lack of a standard evaluation methodology/framework for
ML/DL studies when applied to each SE task, and that it was
still not a common practice for SE researchers to share their
data and ML/DL implementations.

Finally, we discovered that it was not uncommon to
encounter replicability and reproducibility issues in SE
because of the prevalence of inadequate descriptions. Specifi-
cally, we found that ML/DL studies in SE need to provide
detailed descriptions of (1) the tools or methods for data
extraction and preprocessing in data preparation, (2) the
hyper-parameter optimization procedure, and (3) the error
analysis in evaluation.

RQ3. We found that heuristics and past experiences, espe-
cially “Better Performance”, have been adopted as the top
rationale of selecting the appropriate ML/DL models for a
specific SE task by SE researchers, and that little consideration
has been given to model complexity (Occam’s Razor) in this
decision process. In addition, we identified five data problems
to which the selected ML models were resilient. We also
acknowledged the improvements in interpreting neural net-
work representations and the attempts made by complex and
black-box models to explain their decisions.

5.2 Actionable Implications
Given the above findings, next we will propose some action-
able items for researchers who conduct research related to
the synergy between SE and Al, ML/DL tool builders for
SE research/practices, and educators.

To promote the generalizability and applicability of ML/DL
approaches to SE tasks, researchers should take into consideration more
factors rather than blindly trust heuristics and prior experiences during

outhern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

the model selection process. Specifically, based on the guidelines
(Section 4.2.5) summarized in RQ1 and the findings from RQ3,
it is necessary for researchers to perform a comprehensive
trade-off analysis among the following factors: Occam’s Razor
(model complexity), task complexity, task types (e.g., classifica-
tion, generation), interpretability, and dataset quality.

To ensure the replicability and reproducibility of ML/DL studies in
SE, researchers should share a replication package and provide suffi-
cient details when describing the processes of data preparation, model
training, and evaluation. In addition, we recommend that the
organizers of SE conferences consider adopting a practice that
is now fairly standard in Al conferences, which is to ask the
authors to fill out a reproducibility checklist when submitting a
paper. The checklist is typically composed of a set of questions
which ensures that the authors have provided sufficient infor-
mation for replicability/reproducibility, such as “Did you
report the number of parameters in the models used, the total
computational budget (e.g., GPU hours), and computing infra-
structure used?” and “Did you discuss the experimental setup,
including hyperparameter search and best-found hyperpara-
meter values?”® Reviewers are then explicitly asked to take
into account the information provided in the checklist when
reviewing a submission.

To narrow the gap between academics and real-world practices,
tool builders should make the ML/DL techniques more explainable
and actionable. According to a qualitative survey of practi-
tioners’ needs in defect prediction models [383], the explain-
ability and actionability of software analytics are as important
as the predictions. Most software practitioners do not under-
stand the reason behind the predictions from software analyt-
ics (explainability) and do not know what to actually do or
what to avoid doing to improve the quality of the software sys-
tem (actionability) [384]. This leads to a lack of trust and trans-
parency, hindering the adoption of ML/DL techniques in
practice. According to RQ3, there is still much work required
to improve both the global and local levels of interpretability
(explainability) for ML/DL techniques in SE. To make ML /DL
more explainable, three steps are recommended to tool build-
ers: (1) analyze the domain for better understanding the SE
task, social contexts, and stakeholders, especially figuring out
the “explain to whom?” (e.g., developers); (2) elicit the require-
ments to understand practitioners’ needs, including the goals
(e.g., gain deeper insights) and “what to explain” (e.g., why a
file is predicted as defective); and (3) design the solution for
explanation, figuring out the scopes (local or global), the types
of ML/DL models (described in Section 2) and the (model-spe-
cific or model-agnostic) techniques. A lack of actionable guid-
ance for ML/DL remains an extremely challenging problem in
SE. Tantithamthavorn et al. [383] generated two types of action-
able guidance for defect prediction models by using a rule-
based model-agnostic technique: (1) What developers should
do to mitigate the risk of having defects and (2) what develop-
ers should not do to avoid increasing the risk of having defects.

To address SE concerns in Al courses, relevant course materials
or books (e.g., ML/DL for SE and SE for ML/DL) should be provided
to educators who teach the applications of Al in SE. Al education
typically focuses on algorithms and techniques or applying
these techniques in artificial settings (e.g., fixed datasets and

9. See https:/ /aclrollingreview.org/responsibleNLPresearch/ for a
sample checklist.

1219

Jupyter notebooks), and are narrowly focused on optimizing
model accuracy [385]. However, there are some discrepancies
between the SE process and the ML workflow, so knowledge
of how to integrate the ML workflow into the SE process
should be discussed in a book or taught in a specific curricu-
lum. For instance, according to RQ2, our review identified a
lack of a standard evaluation methodology/framework for
ML/DL applications in each SE task. Hence, more formal and
practical tutorials of evaluating ML/DL applications in SE
could be provided, which can standardize the evaluation pro-
cess and let researchers easily compare model performance
among different studies for the same SE task. More generally,
the field of ML/DL for SE has been growing so rapidly in
recent years that it has been difficult for SE students and prac-
titioners to keep abreast of the research progress. Someone
who wants to understand this area of research may not even
know where to begin, and this SLR could provide a useful
starting point. To better organize the research results in this
field, the SE community may consider building a website that
enumerates each SE task. Specifically, for each SE task, there
can be a dedicated webpage that enumerates the relevant
resources, including the links to papers published on that
task, the publicly available annotated datasets, the publicly
available implementations of systems developed for that task,
as well as a leaderboard that tracks the best results achieved
to date on each dataset. We note that this requires commu-
nity-wide effort, but having a website like this could have a
lasting impact on the SE community, as it would make it eas-
ier for SE researchers — particularly those who are new to the
field — to access the resources relevant to each SE task. Lastly,
our SLR represents an important first attempt on analyzing a
sub-discipline (ML/DL for SE) in SE. We expect the insights to
be updated continuously by incorporating emerging ML/DL
studies in the future.

5.3 Future Work

SE for ML/DL. In the last two years, the widespread adoption of
deep neural networks in software systems has fueled the need
for software engineering practices specific to DL systems [386]
and the number of studies to investigate SE for ML/DL is rap-
idly increasing — typically for testing and debugging ML/DL
systems [387], [388], [389]. Compared to traditional software
systems, ML/DL systems are relatively less deterministic and
more statistics-orientated [389] due to their fundamentally dif-
ferent nature and construction. In the future work, we would
conduct a deep analysis of SE for ML/DL, where SE techniques
can be used to help guide the creation of useful ML /DL soft-
ware. We are also interested in investigating the replicability
and reproducibility of those papers related to SE for ML/DL.
Lastly, we plan to explore the recent studies that have tried to
tackle the interpretability [369], [371], fairness [390], and
robustness [391] of DL, and anticipate that future research
could bring additional insights to how improved DL model
performance can be turned into more effective and efficient SE
practices, and what changes in SE practices would be useful to
optimize the proposed DL-based approach.

Transferring ML/DL Research Results to Real-World Applica-
tions. Technology transfer demands significant efforts to adapt
a research prototype to a product-quality tool that addresses
the needs of real scenarios and which is to be integrated into a

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1220

mainstream product or development process [392]. It also
requires close cooperation and collaboration between industry
and academia throughout the entire research process. Later on,
we would like to collaborate with industry partners to create a
road-map to improve the state-of-the-art ML/DL-related SE
research and facilitate the transfer of research results into real-
world applications. The potential road-map also aims to stimu-
late the future directions for research on the synergy between
SE and ML/DL, and to build a healthy eco environment for col-
laboration among SE/AI researchers and industrial practi-
tioners through observing the limitations from this road-map.

6 LIMITATIONS

One limitation of our study is the potential bias in determin-
ing the categories of SE tasks for the collected studies. To
better explore the insights from the classification, the cate-
gories’ granularity should be neither too coarse nor too fine.
For those questionable studies, we first identified the key-
words, which indicate related tasks, in the abstract or
related work according to the authors’ claim to determine
their temporary categories. Then, we compared the objec-
tives and contributions with other studies. We decided
whether these temporary categories should be merged with
the existing SE tasks or kept as new ones. The advice from
the SE experts also mitigated this threat to study validity.

Another limitation might be the possibility of missing
ML/DL-related studies during the search and selection
phases. Although it was impossible to identify and retrieve
all relevant publications considering the many ML/DL-
related SE studies, our search strategy integrated manual
and automated searches. This could keep the number of
missing studies as small as possible.

7 RELATED WORK

Some empirical and case studies of SE and ML emerged at the
beginning of the 21st century. Di Stefano and Menzies [393]
suggested academic application guidelines and conducted a
case study on a reuse dataset using three different machine
learners. Zhang et al. [2] grouped around 60 existing ML stud-
ies in SE at that time into a limited number of SE tasks in
which the majority of them are software maintenance and
project management tasks. Then they discussed some general
steps regarding applying machine learning methods to SE
tasks and provided a guideline on how to select the type of
learning methods for a given task. One common purpose of
these studies was to stimulate more research interest (which
was scarce at that time) in the areas of ML and SE. In the end,
this new research materialized, and was verified by our SLR:
The number of canonical ML and emerging ML (e.g., DL)
studies in SE is thriving in the past decade (2009-2020), with
thousands of papers being published on nearly 80 SE tasks,
and the process of applying ML techniques to SE tasks has
been regulated to three specific stages: data preparation,
model training and evaluation.

Mahmood et al. [269] found low replicability'” in defect
prediction and potential low quality studies in defect pre-
diction. They investigated what characteristics of a defect

10. In their study, they used the term replication and reproduction
to refer to replicability and reproducibility respectively.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

prediction study make it likely to be replicated and pro-
vided practical steps to incentivize and standardize aspects
of replication. In contrast, we aim to extend this study to the
entire SE domain, investigating not only what but also how
the identified factors could make the original studies more
replicable and reproducible.

Many SLRs, surveys and comparative studies [183],
[394], [395], [396], [397], [398], [399], [400] have focused on
investigating the use of ML/DL in software defect predic-
tion. Wen et al’s SLR [401] explored ML-based software
development effort estimation models from four aspects:
type of ML technique, estimation accuracy, model compari-
son, and estimation context. Fontana et al. [402] performed
the large-scale experiment of applying 16 ML algorithms to
code smells and concluded that the application of ML to
detect code smells can provide a high accuracy. Compared
to our SLR, the findings from the above studies are limited
to several specific SE tasks, and performance comparisons
(rather than a comprehensive evaluation) are often the main
purpose.

8 CONCLUSION

This paper presented a systematic literature review that
comprehensively investigated and evaluated 1,428 state-of-
the-art ML/DL-related SE studies to address three research
questions that are of interest to the SE community. Through
an elaborated investigation and analysis, we provided a
comprehensive review of the current progress and gener-
alizability of ML/DL for SE, which can be summarized as
follows. First, we observed two changes that ML brings to
SE after 2014. Second, we identified three improvements by
DL classification models over ML classification models and
two unique DL contributions to SE tasks that ML techniques
were not capable of tackling. Third, though having some
commonalities in data preparation, model training and
evaluation, ML and DL have different feature representa-
tions, different hyper-parameters to be tuned, and different
ways to be implemented when applied to SE tasks. Finally,
we discovered five main reasons why SE researchers select
a ML/DL technique for a specific SE task.

REFERENCES

[1] A. E. Hassan and T. Xie, “Software intelligence: The future of
mining software engineering data,” in Proc. FSE/SDP Workshop
Future Softw. Eng. Res., 2010, pp. 161-166.

[2] D. Zhang and J. J. Tsai, “Machine learning and software engi-
neering,” Softw. Qual.]., vol. 11, no. 2, pp. 87-119, Jun. 2003.

[3] A.E.Hassan and T. Xie, “Mining software engineering data,” in
Proc. IEEE/ACM 32nd Int. Conf. Softw. Eng., 2010, pp. 503-504.

[4] Q. Niyaz, W. Sun, and A. Y. Javaid, “A deep learning based
DDoS detection system in software-defined networking (SDN),”
2016, arXiv:1611.07400.

[5] D. Charte, F. Charte, S. Garcia, M. J. del Jesus, and F. Herrera, “A
practical tutorial on autoencoders for nonlinear feature fusion:
Taxonomy, models, software and guidelines,” Informat. Fusion,
vol. 44, pp. 78-96, 2018. [Online]. Available: https://www.
sciencedirect.com/science/article/ pii/S1566253517307844

[6] S. Martinez-Fernandez et al., “Software engineering for Al-based
systems: A survey,” 2021, arXiv:2105.01984.

[7] H. Niu, I. Keivanloo, and Y. Zou, “Learning to rank code exam-
ples for code search engines,” Empirical Softw. Eng., vol. 22, no. 1,
pp. 259-291, 2017.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]

Y. Kim, S. Mun, S. Yoo, and M. Kim, “Precise learn-to-rank fault
localization using dynamic and static features of target pro-
grams,” ACM Trans. Softw. Eng. Methodol., vol. 28, no. 4, Oct.
2019. [Online]. Available: https://doi.org/10.1145/3345628

Y. Tian, D. Wijedasa, D. Lo, and C. Le Goues, “Learning to rank
for bug report assignee recommendation,” in Proc. IEEE 24th Int.
Conf. Prog. Comprehension, 2016, pp. 1-10.

A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S.
Russo, “Learning-to-rank versus ranking-to-learn: Strategies for
regression testing in continuous integration,” in Proc. IEEE/ACM
42nd Int. Conf. Softw. Eng., 2020, pp. 1-12.

G. Zhao, D. A. da Costa, and Y. Zou, “Improving the pull
requests review process using learning-to-rank algorithms,”
Empirical Softw. Eng., vol. 24, no. 4, pp. 2140-2170, 2019.

A. Perini, F. Ricca, and A. Susi, “Tool-supported requirements
prioritization: Comparing the AHP and CBRank methods,” Infor-
mat. Softw. Technol., vol. 51, no. 6, pp. 1021-1032, 2009. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
50950584908001717

X. Ye, R. Bunescu, and C. Liu, “Mapping bug reports to relevant
files: A ranking model, a fine-grained benchmark, and feature eval-
uation,” IEEE Trans. Softw. Eng., vol. 42, no. 4, pp. 379402,
Apr. 2016.

W. Sun, X. Yan, and A. A. Khan, “Generative ranking based
sequential recommendation in software crowdsourcing,” in Proc.
Eval. Assessment Softw. Eng., 2020, pp. 419-426.

L. Song, L. L. Minku, and X. Yao, “Software effort interval predic-
tion via Bayesian inference and synthetic bootstrap resampling,”
ACM Trans. Softw. Eng. Methodol., vol. 28, no. 1, pp. 1-46,
Jan. 2019.

X. Yu, J. Liu, Z. Yang, X. Jia, Q. Ling, and S. Ye, “Learning from
imbalanced data for predicting the number of software defects,”
in Proc. IEEE 28th Int. Symp. Softw. Rel. Eng., 2017, pp. 78-89.

H. Zhang, L. Gong, and S. Versteeg, “Predicting bug-fixing time:
An empirical study of commercial software projects,” in Proc.
35th Int. Conf. Softw. Eng., 2013, pp. 1042-1051.

H. Wang, L. Wang, Q. Yu, Z. Zheng, A. Bouguettaya, and M. R.
Lyu, “Online reliability prediction via motifs-based dynamic
Bayesian networks for service-oriented systems,” IEEE Trans.
Softw. Eng., vol. 43, no. 6, pp. 556-579, Jun. 2017.

S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R.
Greiner, “Deep green: Modelling time-series of software energy
consumption,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2017, pp. 273-283.

Y. Wan et al., “Improving automatic source code summarization
via deep reinforcement learning,” in Proc. 33rd ACM/IEEE Int.
Conf. Automated Softw. Eng., 2018, pp. 397—407.

P.Yin and G. Neubig, “A syntactic neural model for general-pur-
pose code generation,” in Proc. 55th Annu. Meeting Assoc. Comput.
Linguistics, 2017, pp. 440-450. [Online]. Available: https:/ /www.
aclweb.org/anthology/P17-1041

Y. Liang and K. Q. Zhu, “Automatic generation of text descrip-
tive comments for code blocks,” in Proc. 32nd AAAI Conf. Artif.
Intell., 2018, pp. 5229-5236.

A. L. Samuel, Some Studies in Machine Learning Using the Game of
Checkers. II—Recent Progress, D. N. L. Levy, Ed., Berlin, Germany:
Springer, 1988.

T. M. Mitchell et al., “Machine learning. 1997,” New York, NY,
USA: McGraw-Hill, 1997, pp. 870-877.

C. M. Bishop, Pattern Recognition and Machine Learning. Berlin,
Germany: Springer, 2006.

Jason Brownlee, “Difference between classification and regres-
sion in machine learning,” 2021, [Accessed: Aug. 08, 2021].
[Online]. Available: https://machinelearningmastery.com/
classification-versus-regression-in-machine-learning /

Y. Zou, T. Ye, Y. Lu, J. Mylopoulos, and L. Zhang, “Learning to
rank for question-oriented software text retrieval (t),” in Proc.
IEEE/ACM 30th Int. Conf. Automated Softw. Eng., 2015, pp. 1-11.
T. G. Dietterich, “Ensemble methods in machine learning,” in
Proc. Int. Workshop Mult. Classifier Syst., 2000, pp. 1-15.

E. Kocaguneli, T. Menzies, and]. W. Keung, “On the value of
ensemble effort estimation,” IEEE Trans. Softw. Eng., vol. 38,
no. 6, pp. 1403-1416, Nov./Dec. 2012.

F. Thung, X.-B. D. Le, and D. Lo, “Active semi-supervised defect
categorization,” in Proc. IEEE 23rd Int. Conf. Prog. Comprehension,
2015, pp. 60-70.

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

1221

D. A. Cohn, L. E. Atlas, and R. E. Ladner, “Improving generaliza-
tion with active learning,” Mach. Learn., vol. 15, no. 2, pp. 201-221,
1994.

M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based soft-
ware defect prediction with active and semi-supervised
learning,” Automated Softw. Eng., vol. 19, no. 2, pp. 201-230, 2012.
P. Jamshidi, N. Siegmund, M. Velez, C. Kastner, A. Patel, and Y.
Agarwal, “Transfer learning for performance modeling of con-
figurable systems: An exploratory analysis,” in Proc. IEEE/ACM
32nd Int. Conf. Automated Softw. Eng., 2017, pp. 497-508.

R. Krishna, T. Menzies, and W. Fu, “Too much automation?
The bellwether effect and its implications for transfer learning,”
in Proc. IEEE/ACM 31st Int. Conf. Automated Softw. Eng., 2016,
pp- 122-131.

F. Rahman, D. Posnett, and P. Devanbu, “Recalling the
“imprecision” of cross-project defect prediction,” in Proc. ACM
SIGSOFT 20th Int. Symp. Found. Softw. Eng., 2012, pp. 1-11.

K.-X. Xue, L. Su, Y.-F. Jia, and K.-Y. Cai, “A neural network
approach to forecasting computing-resource exhaustion with
workload,” in Proc. 9th Int. Conf. Qual. Softw., 2009, pp. 315-324.
Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, 2015, Art. no. 436.

A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen,
“Bug localization with combination of deep learning and infor-
mation retrieval,” in Proc. IEEE[ACM 25th Int. Conf. Prog. Compre-
hension, 2017, pp. 218-229.

S. Wang, T. Liu, and L. Tan, “Automatically learning semantic
features for defect prediction,” in Proc. IEEE[ACM 38th Int. Conf.
Softw. Eng., 2016, pp. 297-308.

C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design
image to GUI skeleton: A neural machine translator to bootstrap
mobile GUI implementation,” in Proc. 40th Int. Conf. Softw. Eng.,
2018, pp. 665-676.

J. Guo, J. Cheng, and]. Cleland-Huang, “Semantically enhanced
software traceability using deep learning techniques,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng., 2017, pp. 3-14.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

M. Wen, R. Wy, and S.-C. Cheung, “How well do change sequen-
ces predict defects? sequence learning from software changes,”
IEEE Trans. Softw. Eng., vol. 46, no. 11, pp. 1155-1175, Nov. 2020.
K. Cho et al., “Learning phrase representations using RNN
encoder-decoder for statistical machine translation,” 2014,
arXiv:1406.1078.

Y. Wu et al., “SCDetector: Software functional clone detection
based on semantic tokens analysis,” in Proc. 35th IEEE/ACM Int.
Conf. Automated Softw. Eng., 2020, pp. 821-833.

B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering (version 2.3),”
Keele Univ. Univ. Durham, Durham, UK, Tech. Rep., 2007.

H. Zhang, M. A. Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Informat. Softw. Technol., vol. 53, no. 6,
pp- 625-637, 2011. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0950584910002260

R. Parloff, “Why deep learning is suddenly changing your life,”
2016. [Online]. Available: http://fortune.com/ai-artificial-
intelligence-deep-machine-learning/

T. Xie, S. Thummalapenta, D. Lo, and C. Liu, “Data mining for soft-
ware engineering,” Comput., vol. 42, no. 8, pp. 55-62, Aug. 2009.

D. Gonzalez, T. Zimmermann, and N. Nagappan, “The state of
the ML-universe: 10 years of artificial intelligence & machine
learning software development on github,” in Proc. 17th Int.
Conf. Mining Softw. Repositories, 2020, pp. 431-442. [Online].
Available: https://doi.org/10.1145/3379597.3387473

E. d. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted techni-
cal debt,” IEEE Trans. Softw. Eng., vol. 43, no. 11, pp. 1044-1062,
Nov. 2017.

X.Xia, D. Lo, S.]. Pan, N. Nagappan, and X. Wang, “HYDRA: Mas-
sively compositional model for cross-project defect prediction,”
IEEE Trans. Softw. Eng., vol. 42, no. 10, pp. 977-998, Oct. 2016.

M. Mirakhorli and J. Cleland-Huang, “Detecting, tracing, and
monitoring architectural tactics in code,” IEEE Trans. Softw. Eng.,
vol. 42, no. 3, pp. 205-220, Mar. 2016.

lIeee standard glossary of software engineering terminology,
IEEE Std 610.12-1990, pp. 1-84, Dec. 1990.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1222

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

X. Xie,]. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen,
“Testing and validating machine learning classifiers by meta-
morphic testing,” . Syst. Softw., vol. 84, no. 4, pp. 544-558, 2011.
[Online]. Available: http:/ /www.sciencedirect.com/science/
article/pii/S0164121210003213

M. Unterkalmsteiner, T. Gorschek, A. K. M. M. Islam, C. K.
Cheng, R. B. Permadi, and R. Feldt, “Evaluation and measure-
ment of software process improvement—A systematic literature
review,” IEEE Trans. Softw. Eng., vol. 38, no. 2, pp. 398424,
Mar./Apr. 2012.

J. Cohen, “A coefficient of agreement for nominal scales,” Educ.
Psychol. Meas., vol. 20, no. 1, pp. 37-46, 1960.

J. R. Landis and G. G. Koch, “The measurement of observer
agreement for categorical data,” Biometrics, vol. 33, pp. 159-174,
1977.

B. Kitchenham, “Procedures for performing systematic reviews,”
Keele, UK, Keele University, vol. 33, no. 2004, pp. 1-26, 2004.

L. Yang ef al, “Quality assessment in systematic literature
reviews: A software engineering perspective,” Informat. Softw.
Technol., vol. 130, 2021, Art. no. 106397. [Online]. Available:
https:/ /www.sciencedirect.com/science/article/ pii/S09505849
20301610

X. Huang, H. Zhang, X. Zhou, M. Ali Babar, and S. Yang,
“Synthesizing qualitative research in software engineering: A
critical review,” in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng.,
2018, pp. 1207-1218.

J. M. Gonzalez-Barahona and G. Robles, “On the reproducibility of
empirical software engineering studies based on data retrieved
from development repositories,” Empir. Softw. Eng., vol. 17, no. 1,
pp- 75-89, 2012.

S. Amershi et al., “Software engineering for machine learning: A
case study,” in Proc. 41st Int. Conf. Softw. Eng. Softw. Eng. Pract.,
2019, pp- 291-300. [Online]. Available: https://doi.org/10.1109/
ICSE-SEIP.2019.00042

J. Saldana, Fundamentals of Qualitative Research. New York, NY,
USA: Oxford Univ. Press, 2011.

S. Wang, “Supplemental data for TSE paper,” Apr. 2022. [Online].
Available: https:/ /doi.org/10.5281/zenod0.5977109

M. White, C. Vendome, M. Linares-Vasquez, and D. Poshyva-
nyk, “Toward deep learning software repositories,” in Proc. 12th
Work. Conf. Mining Softw. Repositories, 2015, pp. 334-345. [Online].
Available: http:/ /dl.acm.org/ citation.cfm?id=2820518.2820559
L. Bao, Z. Xing, X. Xia, D. Lo, and A. E. Hassan, “Inference of
development activities from interaction with uninstrumented
applications,” Empir. Softw. Eng., vol. 23, no. 3, pp. 1313-1351,
Jun. 2018. [Online]. Available: https://doi.org/10.1007 /s10664—
017-9547-8

D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing
developers’ emotions while programming,” in Proc. IEEE/ACM
42nd Int. Conf. Softw. Eng., 2020, pp. 666—677. [Online]. Available:
https://doi.org/10.1145/3377811.3380374

K. Blincoe, G. Valetto, and D. Damian, “Facilitating coordination
between software developers: A study and techniques for timely
and efficient recommendations,” IEEE Trans. Softw. Eng., vol. 41,
no. 10, pp. 969-985, Oct. 2015.

L. Bao, Z. Xing, X. Xia, D. Lo, and S. Li, “Who will leave the com-
pany?: A large-scale industry study of developer turnover by
mining monthly work report,” in Proc. IEEE/ACM 14th Int. Conf.
Mining Softw. Repositories, 2017, pp. 170-181.

M. Bhat, K. Shumaiev, K. Koch, U. Hohenstein, A. Biesdorf, and
F. Matthes, “An expert recommendation system for design deci-
sion making: Who should be involved in making a design deci-
sion?,” in Proc. IEEE Int. Conf. Softw. Archit., 2018, pp. 85-8509.

X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information
retrieval in software engineering,” in Proc. 38th Int. Conf. Softw.
Eng., 2016, pp. 404-415. [Online]. Available: https://doi.org/
10.1145/2884781.2884862

J. Wang, M. Li, S. Wang, T. Menzies, and Q. Wang, “Images don’t
lie: Duplicate crowdtesting reports detection with screenshot
information,” Informat. Softw. Technol., vol. 110, pp. 139-155,
2019. [Online]. Available: https://www.sciencedirect.com/
science/article/ pii/S0950584919300503

Y. Wahba, N. H. Madhavji, and]. Steinbacher, Evaluating the
Effectiveness of Static Word Embeddings on the Classification of
IT Support Tickets. Armonk, NY, USA: IBM Corp., 2020,
pp- 198-206.

[75]

[76]

[771

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Z. Liy, X. Xia, D. Lo, and J. Grundy, “Automatic, highly accurate
app permission recommendation,” Automated Softw. Eng., vol. 26,
no. 2, pp. 241-274, 2019.

T. Mikolov, 1. Sutskever, K. Chen, G. Corrado, and]. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
2013, pp. 3111-3119.

J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vec-
tors for word representation,” in Proc. Conf. Empir. Methods Natu-
ral Lang. Process., 2014, pp. 1532-1543.

D. Ye, Z. Xing, C. Y. Foo, J. Li, and N. Kapre, “Learning to extract
API mentions from informal natural language discussions,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2016, pp. 389-399.
Z.Han, X. Li, H. Liu, Z. Xing, and Z. Feng, “Deepweak: Reasoning
common software weaknesses via knowledge graph embedding,”
in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reengineering, 2018,
pp- 456—466.

S. Reddy, C. Lemieux, R. Padhye, and K. Sen, “Quickly generat-
ing diverse valid test inputs with reinforcement learning,” in
Proc. IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 1410-1421.
S. S. Emam and J. Miller, “Test case prioritization using extended
digraphs,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 1, pp. 141,
Dec. 2015. [Online]. Available: https:/ /doi.org/10.1145 /2789209

S. Carino and J. H. Andrews, “Dynamically testing GUIs using
ant colony optimization (t),” in Proc. IEEE/ACM 30th Int. Conf.
Automated Softw. Eng., 2015, pp. 138-148.

A. Barriga, R. Heldal, L. Iovino, M. Marthinsen, and A. Rutle,
“An extensible framework for customizable model repair,” in
Proc. IEEE/ACM 23rd Int. Conf. Model Driven Eng. Lang. Syst.,
2020, pp. 24-34. [Online]. Available: https://doi.org/10.1145/
3365438.3410957

Z. Wu et al., “REINAM: Reinforcement learning for input-gram-
mar inference,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2019, pp. 488-498. [Online]. Avail-
able: https:/ /doi.org/10.1145/3338906.3338958

S. Honel, M. Ericsson, W. Lowe, and A. Wingkvist, “Using
source code density to improve the accuracy of automatic com-
mit classification into maintenance activities,” J. Syst. Softw.,
vol. 168, 2020, Art. no. 110673. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S0164121220301291
X. Chen et al.,, “A systemic framework for crowdsourced test
report quality assessment,” Empir. Softw. Eng., vol. 25, no. 2,
pp- 1382-1418, 2020.

Z. Zhang, H. Sun, and H. Zhang, “Developer recommendation
for topcoder through a meta-learning based policy model,”
Empir. Softw. Eng., vol. 25, no. 1, pp. 859-889, 2020.

T. Hey,]. Keim, A. Koziolek, and W. F. Tichy, “Norbert: Transfer
learning for requirements classification,” in Proc. IEEE 28th Int.
Requirements Eng. Conf., 2020, pp. 169-179.

A. Sainani, P. R. Anish, V. Joshi, and S. Ghaisas, “Extracting and
classifying requirements from software engineering contracts,”
in Proc. IEEE 28th Int. Requirements Eng. Conf., 2020, pp. 147-157.
L. Shi, M. Xing, M. Li, Y. Wang, S. Li, and Q. Wang, “Detection of
hidden feature requests from massive chat messages via deep
siamese network,” in Proc. IEEEJACM 42nd Int. Conf. Softw. Eng.,
2020, pp. 641-653.

M. Li, L. Shi, Y. Yang, and Q. Wang, “A deep multitask learning
approach for requirements discovery and annotation from open
forum,” in Proc. IEEE/ACM 35th Int. Conf. Automated Softw. Eng.,
2020, pp. 336-348.

S. Fakhoury, V. Arnaoudova, C. Noiseux, F. Khomh, and G.
Antoniol, “Keep it simple: Is deep learning good for linguistic
smell detection?,” in Proc. IEEE 25th Int. Conf. Softw. Anal., Evol.
ReEng., 2018, pp. 602-611.

M. Hadj-Kacem and N. Bouassida, “Deep representation learn-
ing for code smells detection using variational auto-encoder,” in
Proc. Int. Joint Conf. Neural Netw., 2019, pp. 1-8.

F. Zampetti, A. Serebrenik, and M. Di Penta, “Automatically learn-
ing patterns for self-admitted technical debt removal,” in Proc.
IEEE 27th Int. Conf. Softw. Anal., Evol. Reeng., 2020, pp. 355-366.

Y. Chen, C. M. Poskitt, J. Sun, S. Adepu, and F. Zhang,
“Learning-guided network fuzzing for testing cyber-physical
system defences,” in Proc. IEEEJACM 34th Int. Conf. Automated
Softw. Eng., 2019, pp. 962-973.

T. T. Chekam, M. Papadakis, T. F. Bissyandé, Y. Le Traon, and
K. Sen, “Selecting fault revealing mutants,” Empir. Softw. Eng.,
vol. 25, no. 1, pp. 434487, 2020.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

[971

[98]

[991

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

D. Mao, L. Chen, and L. Zhang, “An extensive study on cross-
project predictive mutation testing,” in Proc. IEEE 12th Conf.
Softw. Testing Validation Verification, 2019, pp. 160-171.

Y. Zheng et al., “Wuji: Automatic online combat game testing
using evolutionary deep reinforcement learning,” in Proc. 34th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2019, pp. 772-784.

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D.
Poshyvanyk, “Learning how to mutate source code from bug-
fixes,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2019,
pp- 301-312.

M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect predic-
tion for imbalanced data,” in Proc. IEEE/ACM 37th Int. Conf.
Softw. Eng., 2015, pp. 99-108.

F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou, “The use of
summation to aggregate software metrics hinders the perfor-
mance of defect prediction models,” IEEE Trans. Softw. Eng.,
vol. 43, no. 5, pp. 476-491, May 2017.

J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proc.
35th Int. Conf. Softw. Eng., 2013, pp. 382-391.

J. Chen et al., “Software visualization and deep transfer learning
for effective software defect prediction,” in Proc. ACM/IEEE 42nd
Int. Conf. Softw. Eng., 2020, pp. 578-589. [Online]. Available:
https://doi.org/10.1145/3377811.3380389

S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature
learning for software defect prediction,” IEEE Trans. Softw. Eng.,
vol. 46, no. 12, pp. 1267-1293, Dec. 2020.

Z.Xuet al., “LDFR: Learning deep feature representation for soft-
ware defect prediction,” . of Syst. Softw., vol. 158, 2019,
Art. no. 110402. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/50164121219301761

K. Zhu, “ Within-project and cross-project just-in-time defect pre-
diction based on denoising autoencoder and convolutional neu-
ral network,” IET Softw., vol. 14, pp. 185-195, Jun. 2020. [Online].
Available: https://digital-library.theiet.org/content/journals/
10.1049/iet-sen.2019.0278

T. Zhou, X. Sun, X. Xia, B. Li, and X. Chen, “Improving defect
prediction with deep forest,” Informat. Softw. Technol., vol. 114,
pp. 204216, 2019. [Online]. Available: https://www.science
direct.com/science/article/pii/S0950584919301466

J. Xu, F. Wang, and J. Ai, “Defect prediction with semantics and
context features of codes based on graph representation
learning,” IEEE Trans. Rel., vol. 70, no. 2, pp. 613-625, Jun. 2021.
K. Heo, H. Oh, and K. Yi, “Machine-learning-guided selectively
unsound static analysis,” in Proc. IEEE/ACM 39th Int. Conf. Softw.
Eng., 2017, pp. 519-529.

R. Natella, D. Cotroneo, J. A. Duraes, and H. S. Madeira, “On
fault representativeness of software fault injection,” IEEE Trans.
Softw. Eng., vol. 39, no. 1, pp. 80-96, Jan. 2013.

D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this
bug? a two-phase recommendation model,” IEEE Trans. Softw.
Eng., vol. 39, no. 11, pp. 1597-1610, Nov. 2013.

D. Mu et al., “Renn: Efficient reverse execution with neural-net-
work-assisted alias analysis,” in Proc. IEEE[ACM 34th Int. Conf.
Automated Softw. Eng., 2019, pp. 924-935.

Z. Zhang, Y. Lei, X. Mao, and P. Li, “CNN-FL: An effective
approach for localizing faults using convolutional neural
networks,” in Proc. IEEE 26th Int. Conf. Softw. Anal., Evol. Reengin-
eering, 2019, pp. 445-455.

R. Kapur and B. Sodhi, “A defect estimator for source code: Link-
ing defect reports with programming constructs usage metrics,”
ACM Trans. Softw. Eng. Methodol., vol. 29, no. 2, pp. 1-35, Apr.
2020. [Online]. Available: https://doi.org/10.1145/3384517

Y. Lin, J. Sun, L. Tran, G. Bai, H. Wang, and J. Dong, “Break the
dead end of dynamic slicing: Localizing data and control omis-
sion bug,” in Proc. IEEE/ACM 33rd Int. Conf. Automated Softw.
Eng., 2018, pp. 509-519. [Online]. Available: https://doi.org/
10.1145/3238147.3238163

Y. Li, S. Wang, T. N. Nguyen, and S. Van Nguyen, “Improving
bug detection via context-based code representation learning
and attention-based neural networks,” Proc. ACM Prog.. Lang.,
vol. 3, no. OOPSLA, pp. 1-30, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360588

J. Zhang, R. Xie, W. Ye, Y. Zhang, and S. Zhang, Exploiting Code
Knowl. Graph for Bug Localization via Bi-Directional Attention. New
York, NY, USA: Association for Computing Machinery, 2020,
pp. 219-229. [Online]. Available: https://doi.org/10.1145/
3387904.3389281

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

1223

J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu,
“Learning to handle exceptions,” in Proc. IEEE/ACM 35th Int.
Conf. Automated Softw. Eng., 2020, pp. 29-41.

H. Liang, L. Sun, M. Wang, and Y. Yang, “Deep learning with
customized abstract syntax tree for bug localization,” IEEE
Access, vol. 7, pp. 116 309-116 320, 2019.

J. Chen, H. Ma, and L. Zhang, Enhanced Compiler Bug Isolation via
Memoized Search. New York, NY, USA: Association for Comput-
ing Machinery, 2020, pp. 78-89. [Online]. Available: https://doi.
org/10.1145/3324884.3416570

Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi, “Improving bug local-
ization with word embedding and enhanced convolutional neu-
ral networks,” Informat. Softw. Technol., vol. 105, pp. 17-29, 2019.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584918301654

Z. Kurtanovi¢ and W. Maalej, “Mining user rationale from soft-
ware reviews,” in Proc. IEEE 25th Int. Requirements Eng. Conf.,
2017, pp. 61-70.

B. Lin, F. Zampetti, G. Bavota, M. Di Penta, M. Lanza, and R. Oli-
veto, “Sentiment analysis for software engineering: How far can
we go?,” in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 94-104.
[Online]. Available: https:/ /doi.org/10.1145/3180155.3180195

Z. Qian, B. Shen, W. Mo, and Y. Chen, “Satiindicator: Leveraging
user reviews to evaluate user satisfaction of sourceforge projects,”
in Proc. IEEE 40th Annu. Comput. Softw. Appl. Conf., 2016, pp. 93-102.
C. Gao, J. Zeng, X. Xia, D. Lo, M. R. Lyu, and I. King,
“Automating app review response generation,” in Proc. 34th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2019, pp. 163-175.

Y. Gu, K. Yang, S. Fu, S. Chen, X. Li, and I. Marsic, “Multimodal
affective analysis using hierarchical attention strategy with
word-level alignment,” in Proc. 56th Annu. Meeting Assoc. Com-
put. Linguistics, 2018, pp. 2225-2235. [Online]. Available: https://
www.aclweb.org/anthology /P18-1207

F. Pecorelli, F. Palomba, D. Di Nucci, and A. De Lucia,
“Comparing heuristic and machine learning approaches for met-
ric-based code smell detection,” in Proc. IEEE/ACM 27th Int.
Conf. Prog. Comprehension, 2019, pp. 93-104.

M. White, M. Tufano, C. Vendome, and D. Poshyvanyk, “Deep
learning code fragments for code clone detection,” in Proc. 31st
IEEE/ACM Int. Conf. Automated Softw. Eng., 2016, pp. 87-98.
[Online]. Available: http://doi.acm.org/10.1145/2970276.
2970326

B. Liu et al., “DIFF: Cross-version binary code similarity detec-
tion with dnn,” in Proc. IEEE/ACM 33rd Int. Conf. Automated
Softw. Eng., 2018, pp. 667-678. [Online]. Available: https://doi.
org/10.1145/3238147.3238199

V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, and C. V. Lopes,
“Oreo: Detection of clones in the twilight zone,” in Proc. 26th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2018, Art. no. 354365. [Online]. Available: https://doi.org/
10.1145/3236024.3236026

M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, and D.
Poshyvanyk, “Deep learning similarities from different represen-
tations of source code,” in Proc. IEEE/ACM 15th Int. Conf. Mining
Softw. Repositories, 2018, pp. 542-553.

W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones
with graph neural network and flow-augmented abstract syntax
tree,” in Proc. IEEE 27th Int. Conf. Softw. Anal., Evol. Reengineering,
2020, pp. 261-271.

R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen,
“Predicting vulnerable software components via text mining,”
IEEE Trans. Softw. Eng., vol. 40, no. 10, pp. 993-1006, Oct. 2014.
W. Zheng et al., “The impact factors on the performance of
machine learning-based vulnerability detection: A comparative
study,” J. Syst. Softw., vol. 168, 2020, Art. no. 110659. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
50164121220301229

Z. Han, X. Li, Z. Xing, H. Liu, and Z. Feng, “Learning to predict
severity of software vulnerability using only vulnerability
description,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2017,
pp- 125-136.

Z. Chen, H. Wang, C. Xu, X. Ma, and C. Cao, “Vision: Evaluating
scenario suitableness for DNN models by mirror synthesis,” in
Proc. 26th Asia-Pacific Softw. Eng. Conf., 2019, pp. 78-85.

M. J. Mashhadi and H. Hemmati, “Hybrid deep neural networks
to infer state models of black-box systems,” in Proc. IEEEJACM
35th Int. Conf. Automated Softw. Eng., 2020, pp. 299-311.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1224

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

H.J. Kang, T. F. Bissyand, and D. Lo, “Assessing the generaliz-
ability of code2vec token embeddings,” in Proc. IEEE/ACM 34th
Int. Conf. Automated Softw. Eng., 2019, pp. 1-12.

T. Le et al., “Maximal divergence sequential autoencoder for
binary software vulnerability detection,” in Proc. Int. Conf. Learn.
Representations, 2019, p. 15. [Online]. Available: https://
openreview.net/forum?id=ByloliCqYQ

G. Tang et al., “A comparative study of neural network techni-
ques for automatic software vulnerability detection,” in Proc. Int.
Symp. Theor. Aspects Softw. Eng., 2020, pp. 1-8.

Y. Fan, X. Xia, D. Lo, and A. E. Hassan, “Chaff from the wheat:
Characterizing and determining valid bug reports,” IEEE Trans.
Softw. Eng., vol. 46, no. 5, pp. 495-525, May 2020.

X. Ye, F. Fang, J. Wu, R. Bunescu, and C. Liu, “Bug report classifica-
tion using LSTM architecture for more accurate software defect
locating,” in Proc. IEEE 17th Int. Conf. Mach. Learn. Appl., 2018,
pp. 1438-1445.

J. He, L. Xu, M. Yan, X. Xia, and Y. Lei, “Duplicate bug
report detection using dual-channel convolutional neural
networks,” in Proc. 28th Int. Conf. Prog. Comprehension, 2020,
Art. no. 117127. [Online]. Available: https://doi.org/10.1145/
3387904.3389263

B. Soleimani Neysiani, S. M. Babamir, and M. Aritsugi, “Efficient
feature extraction model for validation performance improve-
ment of duplicate bug report detection in software bug triage
systems,” Informat. Softw. Technol., vol. 126, 2020, Art. no. 106344.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/50950584920301117

U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter, “An
empirical assessment of machine learning approaches for triag-
ing reports of a java static analysis tool,” in Proc. IEEE 12th Conf.
Softw. Testing, Validation Verification, 2019, pp. 288-299.

O. Chaparro et al., “Assessing the quality of the steps to repro-
duce in bug reports,” in Proc. 27th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., 2019, Art. no. 8696. [Online].
Available: https://doi.org/10.1145/3338906.3338947

I. M. Rodrigues, D. Aloise, E. R. Fernandes, and M. Dagenais, A
Soft Alignment Model for Bug Deduplication. New York, NY, USA:
Association for Computing Machinery, 2020, Art. no. 4353.
[Online]. Available: https://doi.org/10.1145/3379597.3387470

J. Anvik and G. C. Murphy, “Reducing the effort of bug report
triage: Recommenders for development-oriented decisions,”
ACM Trans. Softw. Eng. Methodol., vol. 20, no. 3, pp. 1-35, Aug.
2011. [Online]. Available: https://doi.org/10.1145/2000791.
2000794

S. F. A. Zaidi, F. M. Awan, M. Lee, H. Woo, and C.-G. Lee,
“Applying convolutional neural networks with different word
representation techniques to recommend bug fixers,” IEEE
Access, vol. 8, pp. 213 729-213 747, 2020.

W. Zhang, “Efficient bug triage for industrial environments,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2020, pp. 727-735.
C. Vendome, M. Linares-Vésquez, G. Bavota, M. Di Penta, D.
German, and D. Poshyvanyk, “Machine learning-based detection
of open source license exceptions,” in Proc. IEEE/ACM 39th Int.
Conf. Softw. Eng., 2017, pp. 118-129.

X. Zhang et al., “Robust log-based anomaly detection on unstable
log data,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng. Conf.
Symp. Found. Softw. Eng., 2019, pp. 807-817. [Online]. Available:
https://doi.org/10.1145/3338906.3338931

Z. Liu, C. Chen, J. Wang, Y. Huang, J. Hu, and Q. Wang,
“Owl eyes: Spotting ui display issues via visual understanding,”
in Proc. IEEE/ACM 35th Int. Conf. Automated Softw. Eng., 2020,
pp. 398-409.

R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, “New deep learning
method to detect code injection attacks on hybrid applications,”
J. Syst. Softw., vol. 137, pp. 67-77, 2018. [Online]. Available:
http:/ /www.sciencedirect.com/science/article/pii/S016412121
7302571

H. Xia et al., “How android developers handle evolution-induced
API compatibility issues: A large-scale study,” in Proc. IEEE/
ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 886-898.

Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing, and X. Wang,
“Neural-machine-translation-based commit message generation:
How far are we?,” in Proc. IEEE/ACM 33rd Int. Conf. Automated
Softw. Eng., 2018, pp. 373-384. [Online]. Available: http://doi.
acm.org/10.1145/3238147.3238190

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing
source code using a neural attention model,” in Proc. 54th Annu.
Meeting Assoc. Comput. Linguistics, 2016, pp. 2073-2083. [Online].
Available: https://www.aclweb.org/anthology/P16-1195
S.Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,”
in Proc. IEEE[ACM 32nd Int. Conf. Automated Softw. Eng., 2017,
pp- 135-146. [Online]. Available: http://dl.acm.org/citation.
cfm?id=3155562.3155583

A. LeClair, S. Haque, L. Wu, and C. McMillan, Improved Code
Summarization via a Graph Neural Network. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 184-195.
[Online]. Available: https://doi.org/10.1145/3387904.3389268
W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A trans-
former-based approach for source code summarization,” in Proc.
58th Annu. Meeting Assoc. Comput. Linguistics, 2020, pp. 4998-5007.
[Online]. Available: https://aclanthology.org/2020.acl-main.449
Z. Zhou, H. Yu, and G. Fan, “Effective approaches to combining
lexical and syntactical information for code summarization,”
Softw. Pract. Experience, vol. 50, no. 12, pp. 2313-2336, 2020.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/spe.2893

M. Allamanis, H. Peng, and C. Sutton, “A convolutional atten-
tion network for extreme summarization of source code,” in
Proc. 33rd Int. Conf. Mach. Learn., 2016, pp. 2091-2100. [Online].
Available: http:/ /proceedings.mlr.press/v48/allamanis16.html
P. Bielik, V. Raychev, and M. Vechev, “PHOG: Probabilistic
model for code,” in Proc. 33rd Int. Conf. Mach. Learn., 2016,
pp. 2933-2942. [Online]. Available: https://proceedings.mlr.
press/v48/bielik16.html

S. Han, D. R. Wallace, and R. C. Miller, “Code completion from
abbreviated input,” in Proc. IEEEJACM Int. Conf. Automated
Softw. Eng., 2009, pp. 332-343.

V.]. Hellendoorn, S. Proksch, H. C. Gall, and A. Bacchelli, “When
code completion fails: A case study on real-world completions,”
in Proc. IEEE[ACM 41st Int. Conf. Softw. Eng., 2019, pp. 960-970.
F. Liu, G. Li, Y. Zhao, and Z. Jin, Multi-Task Learning Based Pre-
Trained Language Model for Code Completion. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 473-485.
[Online]. Available: https://doi.org/10.1145/3324884.3416591
W. Ling et al., “Latent predictor networks for code generation,”
in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics, 2016,
pp. 599-609. [Online]. Available: https://www.aclweb.org/
anthology /P16-1057

Z.Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A gram-
mar-based structural CNN decoder for code generation,” in Proc.
AAAI Conf. Artif. Intell., 2019, pp. 7055-7062. [Online]. Available:
https:/ /ojs.aaai.org/index.php/AAAl/article/view /4686

J. Lacomis et al., “Dire: A neural approach to decompiled identi-
fier naming,” in Proc. IEEE[ACM 34th Int. Conf. Automated Softw.
Eng., 2019, pp. 628-639.

Y. Jia, M. B. Cohen, M. Harman, and]. Petke, “Learning combi-
natorial interaction test generation strategies using hyperheuris-
tic search,” in Proc. IEEE/ACM 37th IEEE Int. Conf. Softw. Eng.,
2015, pp. 540-550.

P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine
learning for input fuzzing,” in Proc. IEEEJACM 32nd Int. Conf.
Automated Softw. Eng., 2017, pp. 50-59.

X. Liu, X. Li, R. Prajapati, and D. Wu, “DeepFuzz: Automatic
generation of syntax valid C programs for fuzz testing,” in Proc.
AAAI Conf. Artif. Intell., 2019, pp. 1044-1051. [Online]. Available:
https:/ /ojs.aaai.org/index.php/AAAl/article/view /3895

M. Liu, K. Li, and T. Chen, “DeepSQLi: Deep semantic learning
for testing SQL injection,” in Proc. 29th ACM SIGSOFT Int. Symp.
Softw. Testing Anal., 2020, pp. 286-297. [Online]. Available:
https://doi.org/10.1145/3395363.3397375

Z. Li, H. Zhao, J. Shi, Y. Huang, and J. Xiong, “An intelligent
fuzzing data generation method based on deep adversarial
learning,” IEEE Access, vol. 7, pp. 49 327-49 340, 2019.

T. Ahmad, A. Ashraf, D. Truscan, A. Domi, and I. Porres, “Using
deep reinforcement learning for exploratory performance testing
of software systems with multi-dimensional input spaces,” IEEE
Access, vol. 8, pp. 195 000-195 020, 2020.

S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program cor-
rector for introductory programming assignments,” in Proc.
IEEE/ACM 40th Int. Conf. Softw. Eng., 2018, pp. 60-70.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyva-
nyk, and M. Monperrus, “Sequencer: Sequence-to-sequence
learning for end-to-end program repair,” IEEE Trans. Softw. Eng.,
vol. 47, no. 9, pp. 1943-1959, Sep. 2021.

L. Wu, F. Li, Y. Wu, and T. Zheng, GGF: A Graph-Based Method for
Program. Lang. Syntax Error Correction. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 139-148.
[Online]. Available: https://doi.org/10.1145/3387904.3389252

Y. Li, S. Wang, and T. N. Nguyen, “DLFix: Context-based code
transformation learning for automated program repair,” in Proc.
IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 602-614. [Online].
Available: https://doi.org/10.1145/3377811.3380345

M. White, M. Tufano, M. Martinez, M. Monperrus, and D. Poshy-
vanyk, “Sorting and transforming program repair ingredients
via deep learning code similarities,” in Proc. IEEE 26th Int. Conf.
Softw. Anal., Evol. ReEng., 2019, pp. 479-490.

H. Tian et al., “Evaluating representation learning of code
changes for predicting patch correctness in program repair,” in
Proc. IEEE/ACM 35th Int. Conf. Automated Softw. Eng., 2020,
pp- 981-992.

T. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308-320, Dec. 1976.

B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of
classification techniques on the performance of defect prediction
models,” in Proc. 37th Int. Conf. Softw. Eng., 2015, pp. 789-800.
[Online]. Available: http://dl.acm.org/ citation.cfm?id=2818754.
2818850

X. Yang, D. Lo, X. Xia, Y. Zhang, and J. Sun, “Deep learning for
just-in-time defect prediction,” in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur., 2015, pp. 17-26.

J.Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur., 2017, pp. 318-328.

J.Li, P.He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in Proc. IEEE Int. Conf. Softw.
Qual., Rel. Secur., 2017, pp. 318-328.

L. Li, H. Feng, W. Zhuang, N. Meng, and B. Ryder, “Cclearner: A
deep learning-based clone detection approach,” in Proc. IEEE Int.
Conf. Softw. Maintenance Evol., 2017, pp. 249-260.

A. Viet Phan, M. Le Nguyen, and L. Thu Bui, “Convolutional
neural networks over control flow graphs for software defect
prediction,” in Proc. IEEE 29th Int. Conf. Tools Artif. Intell., 2017,
pp- 45-52.

Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, “Bug localization with
semantic and structural features using convolutional neural net-
work and cascade forest,” in Proc. 22nd Int. Conf. Eval. Assessment
Softw. Eng., 2018, pp. 101-111. [Online]. Available: https://doi.
org/10.1145/3210459.3210469

Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, “Improving bug local-
ization with an enhanced convolutional neural network,” in
Proc. 24th Asia-Pacific Softw. Eng. Conf., 2017, pp. 338-347.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estima-
tion of word representations in vector space,” 2013, arXiv:
1301.3781.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching
word vectors with subword information,” Trans. Assoc. Comput.
Linguistics, vol. 5, pp. 135-146, 2017.

X.Wang, J. Liu, L. Li, X. Chen, X. Liu, and H. Wu, “Detecting and
explaining self-admitted technical debts with attention-based
neural networks,” in Proc. IEEE/ACM 35th Int. Conf. Automated
Softw. Eng., 2020, pp. 871-882.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec:
Learning distributed representations of code,” Proc. ACM Prog.
Lang., vol. 3, no. POPL, pp. 1-29, Jan. 2019. [Online]. Available:
https://doi.org/10.1145/3290353

Q. Le and T. Mikolov, “Distributed representations of sentences
and documents,” in Proc. 31st Int. Conf. Mach. Learn., 2014,
pp. 1188-1196. [Online]. Available: http://proceedings.mlr.
press/v32/le14.html

T. Hoang, H. J. Kang, D. Lo, and]. Lawall, “Cc2vec: Distributed
representations of code changes,” in Proc. IEEEJACM 42nd Int.
Conf. Softw. Eng., 2020, pp. 518-529. [Online]. Available: https://
doi.org/10.1145/3377811.3380361

Y. Wang, L. Shi, M. Li, Q. Wang, and Y. Yang, “A deep context-
wise method for coreference detection in natural language
requirements,” in Proc. IEEE 28th Int. Requirements Eng. Conf.,
2020, pp. 180-191.

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

1225

M. Alahmadi, A. Khormi, B. Parajuli,]. Hassel, S. Haiduc, and P.
Kumar, “Code localization in programming screencasts,” Empir.
Softw. Eng., vol. 25, no. 2, pp. 1536-1572, 2020.

J. Ott, A. Atchison, P. Harnack, A. Bergh, and E. Linstead, “A
deep learning approach to identifying source code in images and
video,” in Proc. IEEE/ACM 15th Int. Conf. Mining Softw. Reposito-
ries, 2018, pp. 376-386.

L. Bao, Z. Xing, X. Xia, D. Lo, M. Wu, and X. Yang, “Psc2code:
Denoising code extraction from programming screencasts,”
ACM Trans. Softw. Eng. Methodol., vol. 29, no. 3, pp. 1-38,
Jun. 2020. [Online]. Available: https://doi.org/10.1145/3392093

J. Chen et al., “Object detection for graphical user interface: Old
fashioned or deep learning or a combination?,” in Proc. 28th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2020, pp. 1202-1214. [Online]. Available: https://doi.org/
10.1145/3368089.3409691

C. Bernal-Cardenas, N. Cooper, K. Moran, O. Chaparro, A. Mar-
cus, and D. Poshyvanyk, “Translating video recordings of mobile
app usages into replayable scenarios,” in Proc. IEEEJACM 42nd
Int. Conf. Softw. Eng., 2020, pp. 309-321. [Online]. Available:
https://doi.org/10.1145/3377811.3380328

T. D. White, G. Fraser, and G. J. Brown, “Improving random GUI
testing with image-based widget detection,” in Proc. 28th ACM
SIGSOFT Int. Symp. Softw. Testing Anal., 2019, pp. 307-317.
[Online]. Available: https:/ /doi.org/10.1145/3293882.3330551

D. Zhao et al., “Seenomaly: Vision-based linting of GUI anima-
tion effects against design-don’t guidelines,” in Proc. IEEE/ACM
42nd Int. Conf. Softw. Eng., 2020, pp. 1286-1297.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149,
Jun. 2017.

S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” 2015. [Online]. Available:
https:/ /www.aaai.org/ocs/index.php/AAAI/AAAIL5/paper/

view /9745/9552

X. Fu, H. Cai, W. Lj, and L. Li, “SEADS: Scalable and cost-effec-
tive dynamic dependence analysis of distributed systems via
reinforcement learning,” ACM Trans. Softw. Eng. Methodol.,
vol. 30, no. 1, pp. 1-45, Dec. 2021. [Online]. Available: https://
doi.org/10.1145/3379345

T. Lutellier, H. V. Pham, L. Pang, Y. Li, M. Wei, and L. Tan,
“Coconut: Combining context-aware neural translation models
using ensemble for program repair,” in Proc. 29th ACM SIGSOFT
Int. Symp. Softw. Testing Anal., 2020, pp. 101-114. [Online]. Avail-
able: https:/ /doi.org/10.1145/3395363.3397369

V. Saini et al., “Towards automating precision studies of clone
detectors,” in Proc. IEEEJACM 41st Int. Conf. Softw. Eng., 2019,
pp. 49-59.

J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta, and N.
Dubash, “Towards accurate duplicate bug retrieval using deep
learning techniques,” in Proc. IEEE Int. Conf. Softw. Maintenance
Evol., 2017, pp. 115-124.

D.Ma, Y.Bai, Z. Xing, L. Sun, and X. Li, “A knowledge graph-based
sensitive feature selection for android malware classification,” in
Proc. 27th Asia-Pacific Softw. Eng. Conf., 2020, pp. 188-197.

T. Zhang, Q. Du, J. Xu, J. Li, and X. Li, “Software defect prediction
and localization with attention-based models and ensemble
learning,” in Proc. 27th Asia-Pacific Softw. Eng. Conf., 2020, pp. 81-90.

H. Yu, W. Lam, L. Chen, G. Li, T. Xie, and Q. Wang, “Neural detec-
tion of semantic code clones via tree-based convolution,” in Proc.
IEEE/ACM 27th Int. Conf. Prog. Comprehension, 2019, pp. 70-80.

J. Zhao, A. Albarghouthi, V. Rastogi, S. Jha, and D. Octeau,
“Neural-augmented static analysis of android communication,”
in Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp.
Found. Softw. Eng., 2018, pp. 342-353. [Online]. Available:
https://doi.org/10.1145/3236024.3236066

Y. Shu, Y. Sui, H. Zhang, and G. Xu, “Perf-AL: Performance pre-
diction for configurable software through adversarial learning,”
in Proc. IEEE[ACM 14th Int. Symp. Empir. Softw. Eng. Meas.,
2020, pp. 1-11. [Online]. Available: https://doi.org/10.1145/
3382494.3410677

J. Harer et al., “Learning to repair software vulnerabilities with
generative adversarial networks,” in Proc. Adv. Neural Informat.
Process. Syst., 2018, pp. 7944-7954. [Online]. Available: https://
proceedings.neurips.cc/paper/2018/file / 68abef8eelac9b664a90

bObbaff4f770-Paper.pdf

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1226

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

D. Zhao, Z. Xing, C. Chen, X. Xia, and G. Li, “ActionNet: Vision-
based workflow action recognition from programming screen-
casts,” in Proc. IEEEJACM 41st Int. Conf. Softw. Eng., 2019,
pp- 350-361.

L. Bao, Z. Xing, X. Xia, and D. Lo, “VT-Revolution: Interactive
programming video tutorial authoring and watching system,”
IEEE Trans. Softw. Eng., vol. 45, no. 8, pp. 823-838, Aug. 2019.

T. Fritz, A. Begel, S. C. Miiller, S. Yigit-Elliott, and M. Ziiger,
“Using psycho-physiological measures to assess task difficulty
in software development,” in Proc. 36th Int. Conf. Softw. Eng.,
2014, pp. 402—413. [Online]. Available: https://doi.org/10.1145/
2568225.2568266

S. C. Miiller and T. Fritz, “Using (bio)metrics to predict code
quality online,” in Proc. IEEE[ACM 38th Int. Conf. Softw. Eng.,
2016, pp. 452-463.

D. Fucci, D. Girardi, N. Novielli, L. Quaranta, and F. Lanubile,
“A replication study on code comprehension and expertise using
lightweight biometric sensors,” in Proc. IEEE/ACM 27th Int. Conf.
Prog. Comprehension, 2019, pp. 311-322.

D. Girardi, A. Ferrari, N. Novielli, P. Spoletini, D. Fucci, and T.
Huichapa, “The way it makes you feel predicting users’ engage-
ment during interviews with biofeedback and supervised
learning,” in Proc. IEEE 28th Int. Requirements Eng. Conf., 2020,
pp- 32-43.

A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, IntelliCode
Compose: Code Generation Using Transformer. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 1433-1443.
[Online]. Available: https://doi.org/10.1145/3368089.3417058

X. Lu, Y. Cao, Z. Chen, and X. Liu, “A first look at emoji usage on
github: An empirical study,” 2018, arXiv:1812.04863.

Z.Chen, Y. Cao, X. Lu, Q. Mei, and X. Liu, “SEntiMoji: An emoji-
powered learning approach for sentiment analysis in software
engineering,” in Proc. 27th ACM Joint Meeting Eur. Softw. Eng.
Conf. Symp. Found. Softw. Eng., 2019, pp. 841-852. [Online]. Avail-
able: https://doi.org/10.1145/3338906.3338977

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra:
Pre-training text encoders as discriminators rather than gener-
ators,” 2020, arXiv:2003.10555.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proc. Conf. North Amer. Chapter Assoc. Comput.
Linguistics Hum. Lang. Technol., 2019, pp. 4171-4186. [Online].
Available: https:/ /aclanthology.org/N19-1423

J. Devlin, M.-W. Chang, and K. L. an Kristina Toutanova, “BERT:
Pre-training of deep bidirectional transformers for language
understanding,” in Proc. Conf. North Amer. Chapter Assoc. Comput.
Linguistics Hum. Lang. Technol., 2019, pp. 4171-4186.

K. Ethayarajh, “How contextual are contextualized word repre-
sentations? comparing the geometry of BERT, ELMO, and GPT-2
embeddings,” 2019, arXiv:1909.00512.

N. S. Rao, N. Imam, J. Hanley, and S. Oral, “Wide-area lustre file
system using LNet routers,” in Proc. IEEE Annu. Int. Syst. Conf.,
2018, pp. 1-6.

Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining
approach,” 2019, arXiv:1907.11692.

C. Raffel et al., “Exploring the limits of transfer learning with a
unified text-to-text transformer,” J. Mach. Learn. Res., vol. 21,
no. 140, pp. 1-67, 2020. [Online]. Available: http://jmlr.org/
papers/v21/20-074.html

M. Lewis et al., “BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension,”
2019, arXiv:1910.13461.

R.-M. Karampatsis and C. Sutton, “SCELMo: Source code
embeddings from language models,” 2020, arXiv:2004.13214.

J. Zhang, H. Hong, Y. Zhang, Y. Wan, Y. Liu, and Y. Suij,
“Disentangled code representation learning for multiple pro-
gramming languages,” in Proc. Findings Assoc. Comput. Linguis-
tics, 2021, pp. 4454-4466.

A. Kanade, P. Maniatis, G. Balakrishnan, and K. Shi, “Learning
and evaluating contextual embedding of source code,” in Proc.
Int. Conf. Mach. Learn., 2020, pp. 5110-5121.

L. Buratti ef al., “Exploring software naturalness through neural
language models,” 2020, arXiv:2006.12641.

N. T. de Sousa and W. Hasselbring, “JavaBERT: Training a trans-
former-based model for the java programming language,”
2021, arXiv:2110.10404.

[239]

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

[261]

F. Liu, G. Li, Y. Zhao, and Z. Jin, “Multi-task learning based pre-
trained language model for code completion,” in Proc. IEEE[ACM
35th Int. Conf. Automated Softw. Eng., 2020, pp. 473-485.

Z. Feng et al., “CodeBERT: A pre-trained model for program-
ming and natural languages,” in Proc. Conf. Empir. Methods Natu-
ral Lang. Process. Findings, 2020, pp. 1536-1547.

D. Peng, S. Zheng, Y. Li, G. Ke, D. He, and T.-Y. Liu, “How could
neural networks understand programs?,” in Proc. Int. Conf.
Mach. Learn., 2021, pp. 8476-8486.

D. Guo et al., “GraphcodeBERT: Pre-training code representa-
tions with data flow,” in Proc. Int. Conf. Learn. Representations,
2021, p. 18.

X. Wang et al., “SyncoBERT: Syntax-guided multi-modal contras-
tive pre-training for code representation,” 2021, arXiv:2108.04556.
A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan,
“IntelliCode compose: Code generation using transformer,” in
Proc. 28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2020, pp. 1433-1443.

B. Roziere, M.-A. Lachaux, M. Szafraniec, and G. Lample,
“DOBF: A deobfuscation pre-training objective for programming
languages,” 2021, arXiv:2102.07492.

D. Drain, C. Wu, A. Svyatkovskiy, and N. Sundaresan,
“Generating bug-fixes using pretrained transformers,” in Proc.
5th ACM SIGPLAN Int. Symp. Mach. Program., 2021, pp. 1-8.

A. Mastropaolo ef al., “Studying the usage of text-to-text transfer
transformer to support code-related tasks,” in Proc. Int. Conf.
Softw. Eng., 2021, pp. 336-347.

W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified
pre-training for program understanding and generation,” in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics - Hum.
Lang. Technol., 2021, pp. 2655-2668.

L. Phan et al., “Cotext: Multi-task learning with code-text trans-
former,” 2021, arXiv:2105.08645.

W. Qi et al., “ProphetNet-x: Large-scale pre-training models for
english, chinese, multi-lingual, dialog, and code generation,”
2021, arXiv:2104.08006.

Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code
understanding and generation,” in Proc. Conf. Empir. Methods
Natural Lang. Process., 2021, pp. 8696-8708.

X. Jiang, Z. Zheng, C. Lyu, L. Li, and L. Lyu, “TreeBERT: A tree-
based pre-trained model for programming language,” in Proc.
Uncertainty Artif. Intell., 2021, pp. 54-63.

C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “SPT-code:
Sequence-to-sequence pre-training for learning source code rep-
resentations,” 2022, arXiv:2201.01549.

S. Ao, T. Zhou, G. Long, Q. Lu, L. Zhu, and J. Jiang, “CO-PILOT:
Collaborative planning and reinforcement learning on sub-task
curriculum,” in Proc. Adv. Neural Informat. Process. Syst., 2021,
pp- 10444-10456.

S.-T. Shi, M. Li, D. Lo, F. Thung, and X. Huo, “Automatic code
review by learning the revision of source code,” in Proc. AAAI
Conf. Artif. Intell., pp. 4910-4917, 2019. [Online]. Available:
https:/ /ojs.aaai.org/index.php/AAAl/article/view /4420

R. Cai, Z. Liang, B. Xu, Z. Li, Y. Hao, and Y. Chen, “TAG : Type
auxiliary guiding for code comment generation,” in Proc. 58th
Annu. Meeting Assoc. Comput. Linguistics, 2020, pp. 291-301.
[Online]. Available: https:/ /aclanthology.org/2020.acl-main.27
E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K. Wang, “Hoppity:
Learning graph transformations to detect and fix bugs in programs,”
in Proc. Int. Conf. Learn. Representations, 2020, p. 17. [Online]. Avail-
able: https:/ /openreview.net/forum?id=SJeqs6EFvB

J. Zhang, L. Zhang, M. Harman, D. Hao, Y. Jia, and L. Zhang,
“Predictive mutation testing,” IEEE Trans. Softw. Eng., vol. 45,
no. 9, pp. 898-918, Sep. 2019.

M. Golagha, A. Pretschner, and L. C. Briand, “Can we predict
the quality of spectrum-based fault localization?,” in Proc.
IEEE 13th Int. Conf. Softw. Testing, Validation Verification, 2020,
pp- 4-15.

A. LeClair, Z. Eberhart, and C. McMillan, “Adapting neural text
classification for improved software categorization,” in Proc.
IEEE Int. Conf. Softw. Maintenance Evol., 2018, pp. 461-472.

Y. Zou, B. Ban, Y. Xue, and Y. Xu, “CCGraph: A PDG-based
code clone detector with approximate graph matching,” in
Proc. 35th IEEE[ACM Int. Conf. Automated Softw. Eng., 2020,
pp. 931-942.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

[275]

[276]

[277]

[278]

[279]

[280]

[281]

K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic repre-
sentations from tree-structured long short-term memory networks,”
in Proc. 53rd Annu. Meeting Assoc. Comput. Linguistics 7th Int. Joint
Conf. Natural Lang. Process., 2015, pp. 1556-1566. [Online]. Available:
https:/ /www.aclweb.org/anthology /P15-1150

J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral net-
works and locally connected networks on graphs,” in Proc. 2nd
Int. Conf. Learn. Representations, 2014, p. 14.

H. Liu, Y. Yu, S. Li, Y. Guo, D. Wang, and X. Mao, “BugSum:
Deep context understanding for bug report summarization,” in
Proc. 28th Int. Conf. Prog. Comprehension, 2020, pp. 94-105.
[Online]. Available: https://doi.org/10.1145/3387904.3389272

I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Proc. Adv. Neural Informat.
Process. Syst., 2014, pp. 3104-3112.

S. Jiang, A. Armaly, and C. McMillan, “Neural machine transla-
tion by jointly learning to align and translate,” in Proc. 3rd Int.
Conf. Learn. Representations, 2015, p. 15.

J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra, “When
deep learning met code search,” in Proc. 27th ACM Joint Meeting
Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng., 2019, pp. 964-974.
[Online]. Available: https://doi.org/10.1145/3338906.3340458

L. Shi et al., “Learning to extract transaction function from
requirements: An industrial case on financial software,” in Proc.
28th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2020, pp. 1444-1454. [Online]. Available: https:/ /doi.org/
10.1145/3368089.3417053

Z. Mahmood, D. Bowes, T. Hall, P. C. Lane, and J. Petri¢,
“Reproducibility and replicability of software defect prediction
studies,” Informat. Softw. Technol., vol. 99, pp. 148-163, 2018.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0950584917304202

S. Akbarinasaji, B. Caglayan, and A. Bener, “Predicting bug-fix-
ing time: A replication study using an open source software proj-
ect” J. Syst. Softw. vol. 136, pp. 173-186, 2018. [Online].
Available: https:/ /www.sciencedirect.com/science/article/pii/
50164121217300365

W. Zhang, L. Ziqiang,W. Qing, and L. Juan, “Finelocator: A novel
approach to method-level fine-grained bug localization by query
expansion,” Informat. Softw. Technol., vol. 110, pp. 121-135, 2019.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S50950584919300436

M. Habayeb, S. S. Murtaza, A. Miranskyy, and A. B. Bener, “On
the use of hidden Markov model to predict the time to fix bugs,”
IEEE Trans. Softw. Eng., vol. 44, no. 12, pp. 1224-1244, Dec. 2018.
C. Nj, X. Xia, D. Lo, X. Chen, and Q. Gu, “Revisiting supervised
and unsupervised methods for effort-aware cross-project defect
prediction,” IEEE Trans. Softw. Eng., vol. 48, no. 3, pp. 786-802,
Mar. 2020.

S. Garcia, J. Luengo, and F. Herrera, “Tutorial on practical tips of the
most influential data preprocessing algorithms in data mining,”
Knowl -Based Syst., vol. 98, pp. 1-29, 2016. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0950705115004785

D. Bowes, T. Hall, and J. Petri¢, “Software defect prediction: Do
different classifiers find the same defects?,” Softw. Qual.].,
vol. 26, no. 2, pp. 525-552, 2018.

D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson,
“Reflections on the NASA MDP data sets,” IET Softw., vol. 6,
no. 6, pp. 549-558, 2012.

Z.-W. Zhang, X.-Y. Jing, and F. Wu, “Low-rank representation
for semi-supervised software defect prediction,” IET Softw.,
vol. 12, no. 6, pp. 527-535, 2018.

K. K. Sabor, M. Hamdaqa, and A. Hamou-Lhadj, “Automatic pre-
diction of the severity of bugs using stack traces and categorical
features,” Informat. Softw. Technol., vol. 123, 2020, Art. no. 106205.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584919302137

S. Wold, K. Esbensen, and P. Geladi, “Principal component ana-
lysis,” Chemometrics Intell. Lab. Syst., vol. 2, no. 1-3, pp. 37-52,
1987.

Wikipedia contributors, “Feature scaling — Wikipedia, the free
encyclopedia,” 2021, Accessed: Aug. 08, 2021. [Online]. Available:
https:/ /en.wikipedia.org/w/index.php?title=Feature_scaling
&oldid=1031633529

F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-project defect
prediction using a connectivity-based unsupervised classifier,” in
Proc. IEEE[ACM 38th Int. Conf. Softw. Eng., 2016, pp. 309-320.

[282]

[283]

[284]

[285]

[286]

[287]

[288]

[289]

[290]

[291]

[292]

[293]

[294]

[295]

[296]

[297]

[298]

[299]

1227

X.-Y. Jing, F. Qi, F. Wu, and B. Xu, “Missing data imputation
based on low-rank recovery and semi-supervised regression for
software effort estimation,” in Proc. IEEE/ACM 38th Int. Conf.
Softw. Eng., 2016, pp. 607-618.

W. Zhang, Y. Yang, and Q. Wang, “Using Bayesian regression
and EM algorithm with missing handling for software effort
prediction,” Informat. Softw. Technol., vol. 58, pp. 58-70, 2015.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S095058491400216X

N. Mittas, E. Papatheocharous, L. Angelis, and A. S. Andreou,
“Integrating non-parametric models with linear components for
producing software cost estimations,” J. Syst. Softw., vol. 99,
pp- 120-134, 2015. [Online]. Available: https:/ /www.sciencedirect.
com/science/article/pii/S0164121214002088

A. Mockus, “Missing data in software engineering,” Guide to
Advanced Empirical Software Engineering. Berlin, Germany:
Springer, 2008, pp. 185-200.

Y. Zhou, B. Xu, H. Leung, and L. Chen, “An in-depth study
of the potentially confounding effect of class size in fault pre-
diction,” ACM Trans. Softw. Eng. Methodol., vol. 23, no. 1,
pp- 1-51, Feb. 2014. [Online]. Available: https://doi.org/
10.1145/2556777

Y. Yang et al., “Effort-aware just-in-time defect prediction: Sim-
ple unsupervised models could be better than supervised mod-
els,” in Proc. 24th ACM SIGSOFT Int. Symp. on Found. Softw. Eng.,
2016, pp. 157-168. [Online]. Available: https://doi.org/10.1145/
2950290.2950353

J. Jiarpakdee, C. Tantithamthavorn, and C. Treude, “The impact of
automated feature selection techniques on the interpretation of
defect models,” Empir. Softw. Eng., vol. 25, no. 5, pp. 3590-3638,
2020.

S. Mensah, J. Keung, M. F. Bosu, and K. E. Bennin, “Duplex out-
put software effort estimation model with self-guided inter-
pretation,” Informat. Softw. Technol., vol. 94, pp. 1-13, 2018.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0950584916304025

J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, “Heterogeneous
defect prediction,” IEEE Trans. Softw. Eng., vol. 44, no. 9,
pp- 874-896, Sep. 2018.

P.R. Anish et al., “Probing for requirements knowledge to stimu-
late architectural thinking,” in Proc. 38th Int. Conf. Softw. Eng.,
2016, pp. 843-854. [Online]. Available: https://doi.org/10.1145/
2884781.2884801

R. Malhotra and M. Khanna, “An empirical study for software
change prediction using imbalanced data,” Empir. Softw. Eng.,
vol. 22, no. 6, pp. 28062851, 2017.

P. Phannachitta, “On an optimal analogy-based software effort
estimation,” Informat. Softw. Technol., vol. 125, 2020, Art. no. 106330.
[Online]. Available: https:/ /www.sciencedirect.com/science/
article/pii/S0950584920300872

G. Carrozza, D. Cotroneo, R. Natella, R. Pietrantuono, and S.
Russo, “Analysis and prediction of mandelbugs in an industrial
software system,” in Proc. IEEE 6th Int. Conf. Softw. Testing, Verifi-
cation Validation, 2013, pp. 262-271.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A
novel neural source code representation based on abstract syntax
tree,” in Proc. IEEEJACM 41st Int. Conf. Softw. Eng., 2019, pp. 783—
794.

A. S. Andreou and S. P. Chatzis, “Software defect prediction
using doubly stochastic poisson processes driven by stochastic
belief networks,”]. Syst. Softw., vol. 122, pp. 72-82, 2016.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121216301601

C. Lépez-Martin, Y. Villuendas-Rey, M. Azzeh, A. Bou Nassif,
and S. Banitaan, “Transformed k-nearest neighborhood output
distance minimization for predicting the defect density of soft-
ware projects,” J. Syst. Softw., vol. 167, 2020, Art. no. 110592.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121220300728

S. Mensah, J. Keung, S. G. MacDonell, M. F. Bosu, and K. E. Ben-
nin, “Investigating the significance of bellwether effect to
improve software effort estimation,” in Proc. IEEE Int. Conf.
Softw. Qual., Rel. Secur., 2017, pp. 340-351.

X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2016,
pp. 631-642. [Online]. Available: https://doi.org/10.1145/
2950290.2950334

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1228

[300]

[301]

[302]

[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]

[312]

[313]

[314]

[315]

[316]

[317]

[318]

[319]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

K. Moran, C. Bernal-Cardenas, M. Curcio, R. Bonett, and D.
Poshyvanyk, “Machine learning-based prototyping of graphical
user interfaces for mobile apps,” IEEE Trans. Softw. Eng., vol. 46,
no. 2, pp. 196-221, Feb. 2020.

M. H. Osman, M. R. Chaudron, and P. V. D. Putten, “An analysis
of machine learning algorithms for condensing reverse engi-
neered class diagrams,” in Proc. IEEE Int. Conf. Softw. Mainte-
nance, 2013, pp. 140-149.

Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Informat. Softw. Tech-
nol., vol. 54, no. 3, pp. 248-256, 2012. [Online]. Available:
https:/ /www.sciencedirect.com/science/article/ pii/S09505849

11001996

I. H. Witten and E. Frank, “Data mining: Practical machine learn-
ing tools and techniques with Java implementations,” ACM SIG-
MOD Rec., vol. 31, no. 1, pp. 76-77, 2002.

P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng,
“Automatic text input generation for mobile testing,” in Proc.
IEEE/ACM 39th Int. Conf. Softw. Eng., 2017, pp. 643-653.

J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, no. Feb, pp. 281-305, 2012.

W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?,” Informat. Softw. Technol., vol. 76, pp. 135-146,
2016. [Online]. Available: http://www.sciencedirect.com/
science/ article/ pii/50950584916300738

C. Stanik, L. Montgomery, D. Martens, D. Fucci, and W. Maalej,
“A simple NLP-based approach to support onboarding and
retention in open source communities,” in Proc. IEEE Int. Conf.
Softw. Maintenance Evol., 2018, pp. 172-182.

G. Uddin and F. Khomh, “Automatic summarization of API
reviews,” in Proc. IEEEJACM 32nd Int. Conf. Automated Softw.
Eng., 2017, pp. 159-170.

J. Shimagaki, Y. Kamei, N. Ubayashi, and A. Hindle, “Automatic
topic classification of test cases using text mining at an Android
smartphone vendor,” in Proc. IEEE/ACM 12th Int. Symp. Empir.
Softw. Eng. Meas., 2018, pp. 1-10. [Online]. Available: https://
doi.org/10.1145/3239235.3268927

A. L. Oliveira, P. L. Braga, R. M. Lima, and M. L. Cornélio, “GA-
based method for feature selection and parameters optimization
for machine learning regression applied to software effort
estimation,” Informat. Softw. Technol., vol. 52, no. 11, pp. 1155-1166,
2010. [Online]. Available: https://www.sciencedirect.com/
science/ article/ pii/S$0950584910000984

C. Theisen and L. Williams, “Better together: Comparing vulner-
ability prediction models,” Informat. Softw. Technol., vol. 119,
2020, Art. no. 106204. [Online]. Available: https://www.
sciencedirect.com/science/article/ pii/S50950584919302125

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsu-
moto, “The impact of automated parameter optimization on
defect prediction models,” IEEE Trans. Softw. Eng., vol. 45, no. 7,
pp- 683-711, Jul. 2019.

H. Ha and H. Zhang, “DeepPerf: Performance prediction for con-
figurable software with deep sparse neural network,” in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng., 2019, pp. 1095-1106.

W. Fu and T. Menzies, “Easy over hard: A case study on deep
learning,” in Proc. 11th Joint Meeting Found. Softw. Eng., 2017,
pp. 49-60. [Online]. Available: http://doi.acm.org/10.1145/
3106237.3106256

Y. Tian and Y. Zhang, “A comprehensive survey on regularization
strategies in machine learning,” Informat. Fusion, vol. 80, pp. 146—
166, 2022. [Online]. Available: https:/ /www.sciencedirect.com/
science/article/ pii/5156625352100230X

D. Pizzolotto and K. Inoue, “Identifying compiler and optimiza-
tion options from binary code using deep learning approaches,” in
Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2020, pp. 232-242.

Y. Wan et al,, “Multi-modal attention network learning for
semantic source code retrieval,” in Proc. IEEE/ACM 34th Int.
Conf. Automated Softw. Eng., 2019, pp. 13-25.

N. Srivastava, G. Hinton, A. Krizhevsky, 1. Sutskever, and R. Sala-
khutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 56, pp. 1929-1958,
2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava
14a.html

X. Glorot and Y. Bengio, “Understanding the difficulty of train-
ing deep feedforward neural networks,” in Proc. 13th Int. Conf.
Artif. Intell. Statist., 2010, pp. 249-256. [Online]. Available:
https:/ /proceedings.mlr.press/v9/glorot10a.html

[320]

[321]

[322]

[323]

[324]

[325]

[326]

[327]

[328]

[329]

[330]

[331]

[332]

[333]

[334]

[335]

[336]

[337]

[338]

L. Duong, H. Afshar, D. Estival, G. Pink, P. R. Cohen, and M.
Johnson, “Multilingual semantic parsing and code-switch-
ing,” in Proc. 21st Conf. Comput. Natural Lang. Learn., 2017,
pp- 379-389.

S. Tabassum, L. L. Minku, D. Feng, G. G. Cabral, and L. Song,
“An investigation of cross-project learning in online just-in-time
software defect prediction,” in Proc. IEEE/ACM 42nd Int. Conf.
Softw. Eng., 2020, pp. 554-565.

K. Zhu, N. Zhang, S. Ying, and D. Zhu, “Within-project and
cross-project just-in-time defect prediction based on denoising
autoencoder and convolutional neural network,” IET Softw.,
vol. 14, no. 3, pp. 185-195, 2020.

A. Podgurski and Y. Kiiciik, “Counterfault: Value-based fault
localization by modeling and predicting counterfactual out-
comes,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2020,
pp- 382-393.

P. Ma, H. Cheng, J. Zhang, and]. Xuan, “Can this fault be
detected: A study on fault detection via automated test gener-
ation,” J. Syst. Softw., vol. 170, 2020, Art. no. 110769. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
50164121220301862

Z. Zhang, Y. Lei, X. Mao, M. Yan, L. Xu, and J. Wen, “Improving
deep-learning-based fault localization with resampling,” J. Softw.
Evol. Process, vol. 33, no. 3,2021, Art. no. €2312. [Online]. Available:
https:/ /onlinelibrary.wiley.com/doi/abs/10.1002 /smr.2312

J. Chen, P. K. Kudjo, S. Mensah, S. A. Brown, and G. Akorfu, “An
automatic software vulnerability classification framework using
term frequency-inverse gravity moment and feature selection,” J.
Syst. Softw., vol. 167, 2020, Art. no. 110616. [Online]. Available:
https:/ /www.sciencedirect.com/science/article/pii/S01641212
20300947

K. Z. Sultana, V. Anu, and T.-Y. Chong, “Using software metrics
for predicting vulnerable classes and methods in Java projects: A
machine learning approach,” . Softw. Evol. Process, vol. 33, no. 3,
2021, Art. no. €2303. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1002/smr.2303

A. Agrawal, W. Fu, D. Chen, X. Shen, and T. Menzies, “How to
“DODGE,” complex software analytics,” IEEE Trans. Softw. Eng.,
vol. 47, no. 10, pp- 2182-2194, Oct. 2021.

D. J. Hand and R. J. Till, “A simple generalisation of the area
under the ROC curve for multiple class classification problems,”
Mach. Learn., vol. 45, no. 2, pp. 171-186, 2001.

M. Hossin and M. N. Sulaiman, “A review on evaluation metrics
for data classification evaluations,” Int. |. Data Mining Knowl.
Manage. Process, vol. 5, no. 2, 2015, Art. no. 1.

L. Minku, F. Sarro, E. Mendes, and F. Ferrucci, “How to make
best use of cross-company data for web effort estimation?,” in
Proc. IEEE/ACM Int. Symp. Empir. Softw. Eng. Meas., 2015,
pp. 1-10.

T. Nguyen et al., “Complementing global and local contexts in
representing API descriptions to improve API retrieval tasks,” in
Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018, pp. 551-562. [Online]. Available: https://doi.
org/10.1145/3236024.3236036

P. W. McBurney et al., “Towards prioritizing documentation
effort” IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 897-913,
Sep. 2018.

B. Wei, Y. Li, G. Li, X. Xia, and Z. Jin, “Retrieve and refine: Exem-
plar-based neural comment generation,” in Proc. IEEE/ACM 35th
Int. Conf. Automated Softw. Eng., 2020, pp. 349-360.

W. Chan, S. Cheung, J. C. Ho, and T. Tse, “PAT: A pattern
classification approach to automatic reference oracles for the test-
ing of mesh simplification programs,” J. Syst. Softw., vol. 82,
no. 3, pp. 422-434, 2009. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0164121208001817

N. Yefet, U. Alon, and E. Yahav, “Adversarial examples for
models of code,” Proc. ACM Prog. Lang., vol. 4, no. OOPSLA,
pp- 1-30, Nov. 2020. [Online]. Available: https://doi.org/
10.1145/3428230

X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, and J. Grundy, “Neural
network-based detection of self-admitted technical debt: From
performance to explainability,” ACM Trans. Softw. Eng. Meth-
odol., vol. 28, no. 3, pp. 1-45, Jul. 2019. [Online]. Available:
https:/ /doi.org/10.1145/3324916

X. Liu, L. Huang, C. Li, and V. Ng, “Linking source code to
untangled change intents,” in Proc. IEEE Int. Conf. Softw. Mainte-
nance Evol., 2018, pp. 393—-403.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW

[339]

[340]

[341]

[342]

[343]

[344]
[345]

[346]

[347]

[348]

[349]

[350]

[351]

[352]

[353]

[354]

[355]

[356]

[357]

[358]

[359]

A. Result, “Artifact review and badging,” 2017. [Online]. Available:
https://www.acm.org/publications/policies/artifact-review-
badging

L. Pascarella, F. Palomba, and A. Bacchelli, “Re-evaluating
method-level bug prediction,” in Proc. IEEE 25th Int. Conf. Softw.
Anal., Evol. Reengineering, 2018, pp. 592-601.

K. Broman et al., “Recommendations to funding agencies for sup-
porting reproducible research,” Amer. Statist. Assoc., vol. 2,
pp- 1-4,2017.

Y. Fan, C. Lv, X. Zhang, G. Zhou, and Y. Zhou, “The utility chal-
lenge of privacy-preserving data-sharing in cross-company
defect prediction: An empirical study of the cliff amp;morph
algorithm,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2017,
pp- 80-90.

Beautiful soup, 2022. [Online]. Available: https://www.crummy.
com/software/BeautifulSoup/

Scrapy, 2022. [Online]. Available: https://scrapy.org/

J. undefinedliwerski, T. Zimmermann, and A. Zeller, “When do
changes induce fixes?,” in Proc. Int. Workshop Mining Softw.
Repositories, 2005, pp. 1-5. [Online]. Available: https://doi.org/
10.1145/1083142.1083147

C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard,
and D. McClosky, “The Stanford coreNLP natural language
processing toolkit,” in Proc. 52nd Annu. Meeting Assoc. Comput.
Linguistics Syst. Demonstrations, 2014, pp. 55-60.

M. Porter, “The Porter stemming algorithm,” 2022. [Online].
Available: https:/ /tartarus.org/martin/PorterStemmer/

S. Wang et al., Automated Patch Correctness Assessment: How Far
Are We? New York, NY, USA: Association for Computing
Machinery, 2020, pp. 968-980. [Online]. Available: https://doi.
org/10.1145/3324884.3416590

T. Menzies, S. Majumder, N. Balaji, K. Brey, and W. Fu, “500
+ times faster than deep learning: (A case study exploring
faster methods for text mining stackoverflow),” in Proc.
IEEE/ACM 15th Int. Conf. Mining Softw. Repositories, 2018,
pp. 554-563.

B. Xu, A. Shirani, D. Lo, and M. A. Alipour, “Prediction of relat-
edness in stack overflow: Deep learning versus SVM: A repro-
ducibility study,” in Proc. 12th ACMJ/IEEE Int. Symp. Empir.
Softw. Eng. Meas., 2018, pp. 21:1-21:10. [Online]. Available:
http://doi.acm.org/10.1145/3239235.3240503

Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan, “What are the
characteristics of high-rated apps? A case study on free android
applications,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2015, pp. 301-310.

Y. Kamei, T. Fukushima, S. McIntosh, K. Yamashita, N. Ubaya-
shi, and A. E. Hassan, “Studying just-in-time defect prediction
using cross-project models,” Empir. Softw. Eng., vol. 21, no. 5,
pp- 2072-2106, 2016.

I. H. Laradji, M. Alshayeb, and L. Ghouti, “Software defect pre-
diction using ensemble learning on selected features,” Informat.
Softw. Technol., vol. 58, pp. 388—402, 2015. [Online]. Available:
https:/ /www.sciencedirect.com/science/article/pii/S09505849

14001591

M. Owhadi-Kareshk, S. Nadi, and]. Rubin, “Predicting merge
conflicts in collaborative software development,” in Proc. IEEE/
ACM Int. Symp. Empir. Softw. Eng. Meas., 2019, pp. 1-11.

Y. Bai, Z. Xing, X. Li, Z. Feng, and D. Ma, “Unsuccessful story
about few shot malware family classification and siamese net-
work to the rescue,” in Proc. IEEE/ACM 42nd Int. Conf. Softw.
Eng., 2020, pp. 1560-1571.

Y. Nagashima and Y. He, “Pamper: Proof method recommenda-
tion system for Isabelle/HOL,” in Proc. IEEE/ACM 33rd Int. Conf.
Automated Softw. Eng., 2018, pp. 362-372. [Online]. Available:
https://doi.org/10.1145/3238147.3238210

L. Song, L. L. Minku, and X. Yao, “A novel automated approach
for software effort estimation based on data augmentation,” in
Proc. 26th ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found.
Softw. Eng., 2018, pp. 468-479. [Online]. Available: https://doi.
org/10.1145/3236024.3236052

N. Medeiros, N. Ivaki, P. Costa, and M. Vieira, “Software metrics
as indicators of security vulnerabilities,” in Proc. IEEE 28th Int.
Symp. on Softw. Rel. Eng., 2017, pp. 216-227.

J. L. Dargan, J. S. Wasek, and E. Campos-Nanez, “Systems per-
formance prediction using requirements quality attributes classi-
fication,” Requirements Eng., vol. 21, no. 4, pp. 553-572, 2016.

[360]

[361]

[362]

[363]

[364]

[365]

[366]

[3671]

[368]

[369]

[370]

[371]

[372]

[373]

[374]

[375]

[376]

[377]

[378]

[379]

1229

Z. Xu, C. Wen, and S. Qin, “Type learning for binaries and its
applications,” IEEE Trans. Rel., vol. 68, no. 3, pp. 893-912, Sep. 2019.
X. Larrucea and I. Santamaria, “Correlations study and cluster-
ing from SPI experiences in small settings,” . Softw. Evol. Process,
vol. 31, no. 1, 2019, Art. no. e1989. [Online]. Available: https://
onlinelibrary.wiley.com/doi/abs/10.1002/smr.1989

M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, and D. Yang,
“Automated change-prone class prediction on unlabeled dataset
using unsupervised method,” Informat. Softw. Technol., vol. 92,
pp. 1-16, 2017. [Online]. Available: https://www .sciencedirect.
com/science/article/pii/S095058491630163X

E. Parra, C. Dimou, J. Llorens, V. Moreno, and A. Fraga, “A
methodology for the classification of quality of requirements
using machine learning techniques,” Informat. Softw. Technol.,
vol. 67, pp. 180-195, 2015. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0950584915001299

Y. Liu, L. Liu, H. Liu, and X. Wang, “Analyzing reviews guided by
app descriptions for the software development and evolution,” J.
Softw. Evol. Process, vol. 30, no. 12, 2018, Art. no. e2112. [Online].
Available: https:/ /onlinelibrary.wiley.com/doi/abs/10.1002/
smr.2112

F. Dalpiaz, D. Dell’Anna, F. B. Aydemir, and S. Cevikol,
“Requirements classification with interpretable machine learning
and dependency parsing,” in Proc. IEEE 27th Int. Requirements
Eng. Conf., 2019, pp. 142-152.

M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why should i trust
you?”: Explaining the predictions of any classifier,” in Proc. 22nd
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 1135-1144. [Online]. Available: https://doi.org/10.1145/
2939672.2939778

C. Tantithamthavorn and]. Jiarpakdee, “Monash University,”
2021, retrieved 2021-05-17. [Online]. Available: http://xaidse.
github.io/

R. Ben Abdessalem, S. Nejati, L. C. Briand, and T. Stifter,
“Testing vision-based control systems using learnable evolution-
ary algorithms,” in Proc. IEEE/ACM 40th Int. Conf. Softw. Eng.,
2018, pp. 1016-1026.

G. Dong et al., “Towards interpreting recurrent neural networks
through probabilistic abstraction,” in Proc. IEEEJACM 35th Int.
Conf. Automated Softw. Eng., 2020, pp. 499-510.

B. Wang, R. Ma, J. Kuang, and Y. Zhang, “How decisions are
made in brains: Unpack “black box” of CNN with Ms. Pac-
Man video game,” IEEE Access, vol. 8, pp. 142 446-142 458,
2020.

T. Mori and N. Uchihira, “Balancing the trade-off between accu-
racy and interpretability in software defect prediction,” Empir.
Softw. Eng., vol. 24, no. 2, pp. 779-825, 2019.

L. Ma et al., “DeepMutation: Mutation testing of deep learning
systems,” in Proc. IEEE 29th Int. Symp. Softw. Rel. Eng., 2018,
pp- 100-111.

Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and D.
Kroening, “Concolic testing for deep neural networks,” in Proc.
IEEE/ACM 33rd Int. Conf. Automated Softw. Eng., 2018, pp. 109—
119. [Online]. Available: http://doi.acm.org/10.1145/3238147.
3238172

J. Jiarpakdee, C. K. Tantithamthavorn, H. K. Dam, and]. Grundy,
“An empirical study of model-agnostic techniques for defect pre-
diction models,” IEEE Trans. Softw. Eng., vol. 48, no. 1, pp. 166-185,
Jan. 2022.

X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei,
“Predicting consistency-maintenance requirement of code clone-
sat copy-and-paste time,” IEEE Trans. Softw. Eng., vol. 40, no. 8,
pp- 773-794, Aug. 2014.

S. Stapleton et al., “A human study of comprehension and code
summarization,” in Proc. 28th Int. Conf. Prog. Comprehension,
2020, pp. 2-13. [Online]. Available: https://doi.org/10.1145/
3387904.3389258

Y. Bengio, A. Courville, and P. Vincent, “Representation learn-
ing: A review and new perspectives,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 8, pp. 1798-1828, Aug. 2013.

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth,
“Occam’s razor,” Informat. Process. Lett., vol. 24, no. 6, pp. 377-380,
1987. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0020019087901141

P. Domingos, “The role of Occam'’s razor in knowledge discov-
ery,” Data Mining Knowl. Discov., vol. 3, no. 4, pp. 409-425, 1999.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

1230

[380]

[381]

[382]

[383]

[384]

[385]

[386]

[3871]

[388]

[389]

[390]

[391]

[392]

[393]

[394]

[395]

[396]

[397]

[398]

[399]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 49, NO. 3, MARCH 2023

B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting
semantically linkable knowledge in developer online forums via
convolutional neural network,” in Proc. IEEE/ACM 31st Int. Conf.
Automated Softw. Eng., 2016, pp. 51-62. [Online]. Available:
http://doi.acm.org/10.1145/2970276.2970357

Q. Song et al., “A machine learning based software process model
recommendation method,” . Syst. Softw., vol. 118, pp. 85-100, 2016.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0164121216300425

J. Kahles, J. Torronen, T. Huuhtanen, and A. Jung, “Automating
root cause analysis via machine learning in agile software testing
environments,” in Proc. IEEE 12th Conf. Softw. Testing, Validation
Verification, 2019, pp. 379-390.

C. Tantithamthavorn, J. Jiarpakdee, and J. Grundy, “Actionable
analytics: Stop telling me what it is; please tell me what to do,”
IEEE Softw., vol. 38, no. 4, pp. 115-120, Jul./ Aug. 2021.

D. Chen, W. Fu, R. Krishna, and T. Menzies, “Applications of
psychological science for actionable analytics,” in Proc. 26th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw.
Eng., 2018, pp. 456-467. [Online]. Available: https://doi.org/
10.1145/3236024.3236050

C. Kastner and E. Kang, “Teaching software engineering for AL-
enabled systems,” in Proc. IEEEJACM 42nd Int. Conf. Softw. Eng.
Softw. Eng. Educ. Training, 2020, pp. 45-48.

M. J. Islam, R. Pan, G. Nguyen, and H. Rajan, “Repairing deep
neural networks: Fix patterns and challenges,” in Proc. IEEE/
ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 1135-1146.

S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-
driven deep learning system testing,” in Proc. IEEE/ACM 42nd
Int. Conf. Softw. Eng., 2020, pp. 702-713.

R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, and M. Yang, “An
empirical study on program failures of deep learning jobs,” in Proc.
IEEE/ACM 42nd Int. Conf. Softw. Eng., 2020, pp. 1159-1170.

J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learning
testing: Survey, landscapes and horizons,” IEEE Trans. Softw.
Eng., vol. 48, no. 1, pp. 1-36, Jan. 2022.

S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed
fairness testing,” in Proc. IEEE/JACM 33rd Int. Conf. Automated
Softw. Eng., 2018, pp. 98-108. [Online]. Available: https://doi.
org/10.1145/3238147.3238165

Y. Feng, Q. Shi, X. Gao,]. Wan, C. Fang, and Z. Chen, “DeepGini:
Prioritizing massive tests to enhance the robustness of deep neu-
ral networks,” in Proc. 29th ACM SIGSOFT Int. Symp. Softw. Test-
ing Anal., 2020, pp. 177-188. [Online]. Available: https://doi.
org/10.1145/3395363.3397357

Y. Dang, D. Zhang, S. Ge, R. Huang, C. Chu, and T. Xie,
“Transferring code-clone detection and analysis to practice,” in
Proc. IEEE/ACM 39th Int. Conf. Softw. Eng.: Softw. Eng. Pract.
Track, 2017, pp. 53-62.

J. S. Di Stefano and T. Menzies, “Machine learning for software
engineering: Case studies in software reuse,” in Proc. IEEE 14th
Int. Conf. Tools Artif. Intell., 2002, pp. 246-251.

Y. Zhou et al., “How far we have progressed in the journey? An
examination of cross-project defect prediction,” ACM Trans.
Softw. Eng. Methodol., vol. 27, no. 1, pp. 1:1-1:51, Apr. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3183339

C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsu-
moto, “An empirical comparison of model validation techniques
for defect prediction models,” IEEE Trans. Softw. Eng., vol. 43,
no. 1, pp. 1-18, Jan. 2017.

S. Herbold, A. Trautsch, and J. Grabowski, “Global versus local
models for cross-project defect prediction,” Empir. Softw. Eng.,
vol. 22, no. 4, pp. 1866-1902, Aug. 2017. [Online]. Available:
https://doi.org/10.1007 /s10664-016-9468-y

M. Yan, Y. Fang, D. Lo, X. Xia, and X. Zhang, “File-level defect pre-
diction: Unsupervised versus supervised models,” in Proc. IEEE/
ACM Int. Symp. Empir. Softw. Eng. Meas., 2017, pp. 344-353.

T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, “A sys-
tematic literature review on fault prediction performance in
software engineering,” IEEE Trans. Softw. Eng., vol. 38, no. 6,
pp- 1276-1304, Nov./Dec. 2012.

M. Shepperd, D. Bowes, and T. Hall, “Researcher bias: The use of
machine learning in software defect prediction,” IEEE Trans.
Softw. Eng., vol. 40, no. 6, pp. 603616, Jun. 2014.

[400]

[401]

[402]

E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic
and comprehensive investigation of methods to build and evalu-
ate fault prediction models,” . Syst. Softw., vol. 83, no. 1,
pp. 2-17, 2010. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0164121209001605

J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic literature
review of machine learning based software development effort
estimation models,” Informat. Softw. Technol., vol. 54, no. 1,
pp. 41-59, 2012. [Online]. Available: http://www.sciencedirect.
com/science/article/ pii/S0950584911001832

F. Arcelli Fontana, M. V. Mantyld, M. Zanoni, and A. Marino,
“Comparing and experimenting machine learning techniques
for code smell detection,” Empir. Softw. Eng., vol. 21, no. 3,
pp. 1143-1191, Jun. 2016. [Online]. Available: https://doi.org/
10.1007/510664-015-9378-4

Simin Wang is currently working toward the PhD
degree in computer science with the Southern
Methodist University (SMU), Dallas, TX, USA. His
research focuses on synergy of machine/deep
learning, natural language processing and soft-
ware engineering. He is advised by Prof. LiGuo
Huang.

Liguo Huang received the MS and PhD degrees
from the Computer Science Department and Cen-
ter for Systems and Software Engineering (CSSE),
the University of Southern California (USC). She is
an Associate Professor with Computer Science
Department, the Southern Methodist University
(SMU), Dallas, TX, USA. Her primary research
centers around synergy of machine/deep learning,
natural language processing and software engi-
neering, software quality assurance, process
modeling and improvement, stakeholder/value-
based software engineering.

Amiao Gao is currently working toward the PhD
degree in computer science with the Southern
Methodist University (SMU), Dallas, TX, USA.
Her research focuses on machine learning and
deep learning in software engineering. She is
advised by Prof. LiGuo Huang.

Jidong Ge received the PhD degree in computer
science from Nanjing University in 2007. He is an
Associate Professor with Software Institute, Nanj-
ing University. He is also a member of the State
Key Laboratory for Novel Software Technology.
His current research interests include NLP and
intelligent software engineering.

Tengfei Zhang received the ME degree in soft-
ware engineering from Nanjing University, China,
in 2020. He is currently a software engineer with
Huawei, and was working toward the master’s
degree under supervision by Professor Jidong
Ge. His research interests include software engi-
neering and machine learning.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

Haitao Feng received the ME Degree in software
engineering from Nanjing University, China, in
2020. He is currently a software engineer with
Xiaomi, and was working toward the master’s
degree under supervision by Professor Jidong
Ge. His research interests include software engi-
neering and machine learning.

Ishna Satyarth is currently working toward the
PhD degree in computer science with the Lyle
School of Engineering, Southern Methodist Uni-
versity. Her research focuses on machine learn-
ing and software engineering application. She is
advised by Prof. LiGuo Huang.

Ming Li is currently a professor with Nanjing Uni-
versity. His major research interests include
machine learning and data mining, especially on
software mining. He has served as the area chair
of IJCAI, IEEE ICDM, senior PC member of the
premium conferences in artificial intelligence
such as AAAI. He is the founding chair of the
International Workshop on Software Mining. He
has been granted various awards including
PAKDD Early Career Award, etc.

WANG ETAL.: MACHINE/DEEP LEARNING FOR SOFTWARE ENGINEERING: A SYSTEMATIC LITERATURE REVIEW 1231

He Zhang is a professor with Software Engineering
and the director with DevOps+ Research Labora-
tory, Nanjing University, China, also a principal sci-
entist with CSIRO, Australia. He joined academia
after many years working in software industry. He
undertakes research in software engineering, in
particular software process, software architecture,
DevOps, software security, empirical and evi-
dence-based software engineering. He has pub-
lished more than 160 peer-reviewed papers in
prestigious international conferences and journals.

Vincent Ng received the BS degree from Carnegie
Mellon University and the PhD degree from Cornell
University. He is a professor with Computer Sci-
ence and a member of the Human Language Tech-
nology Research Institute, the University of Texas
at Dallas. His primary research is in the areas of
natural language processing and Al-based soft-
ware engineering.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Southern Methodist University. Downloaded on May 17,2023 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

