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Near-field radiative heat transfer (NFRHT) between irregularly shaped dielectric particles made of SiO, and
morphology characterized by Gaussian random spheres is studied. Particles are modeled using the discrete
system Green’s function (DSGF) approach, which is a volume integral numerical method based on fluctuational
electrodynamics. This method is applicable to finite, three-dimensional objects, and all system interactions are
defined independent of thermal excitation by a generalized system Green’s function. The DSGF method is
deemed suitable to model NFRHT between irregularly shaped particles after verification against the analytical
solution for chains of two and three SiO, spheres. The NFRHT results reveal that geometric irregularity in
particles leads to a reduction of the total conductance from that of comparable perfect spheres at vacuum
separation distances smaller than the particle size, a regime in which NFRHT is a surface phenomenon. At
vacuum separation distances larger than the particle size, NFRHT becomes a volumetric process, and the total
conductance between irregularly shaped particles converges to that of comparable perfect spheres. Spectral
analysis reveals, however, that particle irregularity leads to damping and broadening of resonances at all
separation distances, thereby highlighting the importance of the DSGF method for spectral engineering in the
near field. The reduced spectral coherence when particle size is larger than the vacuum separation distance is
attributed to coupling of surface phonon-polaritons within the randomly generated, distorted particle features.
For particle size smaller than the vacuum separation distance, resonance broadening and damping are linked
with the multiple localized surface phonon modes supported by the composite spherical harmonic morphologies
of the Gaussian random spheres. This paper has direct implications for thermal management of packed particle
systems, with applications in radiative property control, electronics, energy conversion, and nanomanufacturing.
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I. INTRODUCTION

When objects are small or closely separated as compared
with the characteristic thermal wavelength, Planck’s classic
theory of thermal radiation is no longer valid. This regime of
small length scales is considered the thermal near field and is
distinguished from the far-field regime by wave interference
and the tunneling of evanescent electromagnetic modes [1-3]
that can lead to radiation transport exceeding Planck’s black-
body limit [4—14]. Surface phonon-polaritons (SPhPs), which
are coupled transverse optical phonons and electromagnetic
waves, provide additional pathways and tuning capability for
near-field radiative heat transfer (NFRHT) [15]. The use of
SPhPs to control NFRHT has received growing attention in
recent years. Researchers have focused on harnessing SPhPs
to increase the thermal conductivity of nanowires [16] and
thin films [17-20]; on coupling SPhPs with other resonances,
such as surface plasmon-polaritons [14,21-24], magnetoplas-
mon polaritons [25], and zone-folded longitudinal optical
phonons [26], to control dispersion relations and manipulate
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heat flux; and on exploiting SPhPs for design of thermal
circuit elements, such as switches [27] and diodes [28-30].
In each of these cases, the geometries and materials of mi-
cro/nanostructures are crucial in determining SPhP behavior
and the resulting NFRHT.

Notably, it has been shown that NFRHT between mi-
cro/nanoscale particles is affected by geometric variation,
especially around resonances [31]. While current NFRHT ex-
perimental techniques are limited to measurements of spheres
with microscale radii and probe tips with radii of curva-
ture 230 nm [6,32,33], models of heat exchange between
particles below these cutoffs are important for developing
a more complete understanding of particle near-field ther-
mal interactions that can be applied to design superstructures
with measurable heat exchanges. The need to understand
NFRHT between particles arises in diverse fields, from en-
ergy conversion to biomedical applications to meteorology.
Micro/nanoparticles are being investigated, for instance, to
control radiative properties via metamaterials [34,35], to build
biomimetic photovoltaic devices [36], and to treat cancer in
photothermal ablation therapies [37-39]. Naturally occurring
particles, such as dust and ash, are also gaining impor-
tance in meteorological models [40,41]. In these and related
applications, the particles under consideration are usually
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irregularly shaped and contain geometric defects. To accu-
rately account for NFRHT effects in such a diverse range of
particle systems, it is therefore necessary that models support
the complex three-dimensional structures emblematic of real-
world particles.

Within the field of NFRHT, a few different particlelike
structures have been studied that consider variations in par-
ticle arrangement and geometry. Researchers have modeled
the effects of stretching and flattening of perfect spheroids
[31,42], rotating one perfect cylinder [43,44] or spheroid
[42,45] with respect to another, and varying dipole array struc-
ture [46-51]. In those studies, however, individual particles
are modeled as geometrically regular and highly symmetric,
with random geometric deviations relegated to the system
level. As such, the effect of particle-level geometric irregular-
ity on NFRHT has not been addressed and remains unknown.

A large part of why NFRHT between irregularly shaped
particles remains underexplored is due to the difficulty in
modeling three-dimensional objects of arbitrary shape. While
analytical solutions exist for spheres [52-54] and point par-
ticles within the dipole limit [46,47,49,55,56], full-scale
numerical models that can account for arbitrary geome-
tries, such as finite difference time domain methods [57-62],
boundary element methods [63—65], and volume integral
approaches [66-72], are often computationally expensive.
Of these methods, the boundary element method in the
fluctuating-surface-current approach [43,44] is one of the
most efficient techniques for modeling NFRHT between
complex shaped objects. In this approach, computational ef-
ficiency is achieved through restriction of the solution space
to the surface of thermal objects. If resolving the internal heat
transfer physics of the thermal objects is desired, or if the
thermal objects are characterized by nonuniform temperature
and/or material, approaches other than the boundary ele-
ment method are necessary, such as volume integral methods.
However, thermal objects characterized by large dielectric
functions, such as metals, are generally difficult to model with
volume integral methods [67].

In this paper, we address the knowledge gap of NFRHT
between irregularly shaped particles by developing a numeri-
cal model based on fluctuational electrodynamics [73], called
the discrete system Green’s function (DSGF) approach. The
DSGF approach is a volume integral equation method that
can be applied to arbitrary three-dimensional geometries and
differs from previous volume integral approaches, such as the
thermal discrete dipole approximation (TDDA) [66,67,69], by
defining all system interactions generally and independent of
the physics distinct to thermal excitation. The DSGF method
is like the many-body method of NFRHT [55,56] in that inter-
actions are defined by a generalized system Green’s function.
However, the DSGF approach is derived for and applicable to
discretized objects, whereas the many-body method is limited
to collections of particles modeled as independent dipoles.
The DSGF method is an improvement over the other volume
integral approach, the TDDA, because the system Green’s
function found in the DSGF method can be postprocessed
to calculate many quantities of interest to NFRHT, such as
power dissipation and the local density of states. In contrast,
the TDDA is limited to solving for the autocorrelation of
total dipole moments, a more specialized parameter with less
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FIG. 1. System of thermal objects of arbitrary number, geometry,
size, and material occupying a total volume Vipem. The thermal
objects may be of nonuniform temperature 7'(r) and nonuniform
dielectric function &(r, ). The thermal objects are embedded in a
lossless background reference medium of volume V. that is charac-
terized by a real-valued dielectric function &.f(w).

X

postprocessing range. Additionally, the main matrix equation
in the DSGF method is amenable to solution by a wider vari-
ety of computational algorithms than the main matrix equation
in the TDDA.

We apply the DSGF method to irregularly shaped dielec-
tric particles made of SiO, and morphology characterized by
Gaussian random spheres. We find that geometric irregular-
ity significantly affects the spectrally integrated conductance
for closely spaced particles with size approximately equal
to or smaller than the vacuum separation distance, whereas
resonance damping and broadening arise for all modeled sep-
aration distances. Since resonance broadening and damping
appear for all the tested separation distances, this paper is
of particular interest for the design of thermal metamaterials
composed of complex-shaped, particlelike substructures or to
systems that deal with real-world particles containing defects.

The rest of the paper is organized as follows. First, we
introduce the DSGF method for predicting NFRHT between
three-dimensional objects of arbitrary shape (Sec. II). Next,
we verify the DSGF method against the analytical solution for
chains of two and three spheres (Sec. III). After verification,
we apply the DSGF approach to model NFRHT between ir-
regularly shaped dielectric particles with morphology defined
by Gaussian random spheres (Sec. IV). Concluding remarks
are presented in Sec. V.

II. DESCRIPTION OF DSGF FORMALISM

The DSGF method is based on fluctuational electrodynam-
ics [73,74] and is defined for a system of three-dimensional,
thermally emitting objects of arbitrary number, geometry,
size, and material embedded within a lossless background
reference medium (Fig. 1). The objects, occupying a total
combined volume Viyerm, are assumed to be in local ther-
modynamic equilibrium, lossy, nonmagnetic, and may have
nonuniform dielectric function &(r, w) and nonuniform tem-
perature 7' (r). Here, r is the position coordinate, and w is
the angular frequency. The lossless background reference
medium encompassing volume Vs may be vacuum or any
other material for which the dielectric function &.¢(w) is
strictly real valued. The dielectric functions of both the back-
ground reference medium and the thermal objects are assumed
to be isotropic and linear; however, the DSGF method may
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also be generalized to anisotropic materials with tensor dielec-
tric functions.

A. Definition of the system Green’s function

The DSGF method is derived from the stochastic Maxwell
equations of fluctuational electrodynamics [73]. Separate
wave equations are constructed for the thermal object domain
and the background reference medium:

VxVXE(r, ©) — Keei(@)ET, @) =0, 1€ Ve, (1)

VxVxE(r, o) — kje(r, )E(r, 0) = iopeJ P (r, ),
re Vlherm, (2)

where E is the total electric field, J®™ is the fluctuating thermal
source current density, o is the vacuum permeability, and
ko is the vacuum wave vector magnitude defined as ko =
w. /o€y with gy being the vacuum permittivity. In Egs. (1)
and (2), the fields are assumed to be time harmonic and vary
as exp(—iwt). Combining Eqgs. (1) and (2), a wave equation
that is valid over all real space i? is derived:

VxVxE(, w) — kg[sref(a)) + &.(r, w)]E(r, )

= iopupJV(r, w), re R, A3)

with an equivalent current density J©9 defined as

re Vref
re Vtherm ’

0
(eq) 1
J (l‘, CU) - {J(ﬂ)(l‘, 60), (4’)
where ¢,(r, ) is the relative dielectric function with respect
to the background reference medium:

0, T € Vier
8(1’, w) - 8ref(a))7 re Vtherm '

&(r, w) = { ®)

The electric field solution to the wave equation [Eq. (3)]
is determined using the volume integral technique. The total
electric field is the sum of the homogeneous and particular
solutions:

E(r, ) = Eo(r, o) + iopo / G ¥, ) JOT, w)dr,
\%4

ref, (6)

where E(r, w) is the homogeneous solution, the integral term

is the particular solution, and G(r, r’, ) is the system Green’s
function. The homogeneous solution Ey(r, w) is the field that
exists due to the objects and reference medium when fluctu-
ating thermal sources are not present and satisfies the wave
equation:

VxVxEg(r, w) — ki [eret (@) + &,(r, 0)]Eo(r, w) = 0,
r e R, 7

Specifically, Eq. (7) describes electromagnetic scattering
by imposed external fields, such as laser excitation or irradia-
tion by the surroundings, rather than imposed source current
densities. In this paper, we focus on the case where there are
no imposed fields, such that Ey(r, ) = 0. For application of

the DSGF method to systems with external field excitation,
the full solution to Eq. (7) is provided in Appendix A. In the
absence of imposed fields, Eq. (6) simplifies as

r e R,
(8

where the condition that J®9(r', w) = 0 for ' € Vs has been
used to restrict the integral to the thermal object domain. The

E(r, w) = iwjo G r, o), 0)dr,

Viherm

system Green’s function (_}(r, r’, w), relating the electric field
observed at point r due to a point source excitation at location
r’ for a given frequency w, completely and deterministically
defines the electromagnetic response of the system to any
imposed sources. Specifically, the system Green’s function
satisfies the original wave equation [Eq. (3)] for a point ex-

citation, I 8(r — r'):
VXVX G (F, ¥, ) — ke (@) + £.(r, 0)] G (¥, ¥, )

=18(r—7r), reR, )
where I is the unit dyadic, and § is the Dirac function.

Equation (8) is the typical starting point for analytical
derivations of NFRHT where closed-form expressions of the
system Green’s function may be attained through implemen-
tation of appropriate boundary conditions. Due to prohibitive
mathematical complexity, analytical solutions have been re-
stricted to simple geometries, such as layered media [75] and
spheres [52-54]. In the DSGF method, the system Green’s
function for arbitrarily shaped three-dimensional objects is
calculated numerically.

B. Derivation of self-consistent system
Green’s function equation

The system Green’s function can be expressed in terms

of the free-space Green’s function (_}O(r, r’, w), which has
a known analytical solution [76,77]. The free-space Green’s
function describes the response to excitation of an infinite,
lossless, homogeneous medium, such as the background refer-
ence medium presented here, and satisfies the wave equation:

VXVXGUE, ¥, 0) — Ko (@)GO(r, ¥, 0) = 18(r — 1),
re M. (10)

To facilitate clarity of mathematical procedures, the free-
space Green’s function wave equation [Eq. (10)] and the
system Green’s function wave equation [Eq. (9)] are trans-
formed from standard r representation into operator notation:

(L + eer)G’ =1, (11)

(]L + €rer + @r)G = ]I, (12)

where operators are defined as I L2yxv X, Cref 2 —késref(w),
= —kZe,(r,0), G = G(r.r, w), G = G(r,r', ), and

€, =
= ié(r —1'). This is like the method used in Ref. [78].
Combining Egs. (11) and (12), and recognizing that Eq. (11)
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can be rearranged as (IL + €rf) = (GO)_I, the system Green’s
function can be described as

G =G — GY%,G. (13)
This is a self-consistent equation for the system Green’s
function, analogous to the Dyson equation of quantum field
theory [77-80]. After slightly rearranging Eq. (13) and con-
verting back to standard r representation [81,82], we obtain

G'r.r o) =G r, o) -k G, v, )6 (r", )

Viherm

x GO, ¥, w)d . (14)

In this formulation, the response of the system is defined
independently of the physics of the imposed source, and the
parameters in Eq. (14) are all deterministic.

C. Discretization

To solve the self-consistent system Green’s function equa-
tion [Eq. (14)], the volume of the thermal objects Viperm 1S
discretized into a total of N cubic subvolumes along a cubic
lattice, where r; is the center point of each discretized sub-
volume AV;andi =1, 2, ..., N. Each subvolume is assumed
to have uniform dielectric function, electric field, Green’s
functions, and temperature. Determining the appropriate sub-
volume size for a given system is discussed in detail in
Ref. [67]. Two general rules for proper discretization are that
subvolume size should be smaller than the inverse magnitude

J

I 0 0 (:}(1)1 : (:}(l)N «” 0
0 o|-kK| + . 0 .
0 0 I GY, GoJLO O

where lattice locations r; and r; are represented by sub-

scripts i and j, and the bare polarizability is defined as a,ﬁm =
AVye,(ry, w). Equation (17) is a system of linear equations
0

of the form Z (:} = (:} , Where (:} represents the DSGF, and Z
is the interaction matrix defined by the term in curly brack-

ets. The full matrices, K, (_}, and (:}° each contain a total
of AN x3N terms, accounting for N subvolumes and three

Cartesian vector components. Each submatrix A;;, G?j, and
(_}i ;j1s a 3x3 matrix that describes the interaction between the
ith and jth subvolumes. The many-body approach for NFRHT
presented in Refs. [55,56] defines a similar self-consistent
Green’s function equation. However, the many-body approach
assumes that particles are within the dipole regime. Here, the
DSGF formulation is general and can be applied to thermal
objects of any size and shape, without restriction to their
separation distance, if proper discretization is heeded.

The advantage of the DSGF method over other volume in-
tegral methods, such as the TDDA, is that the matrix equation

presented in Eq. (17) is of the well-known form AX = B for
which there are a variety of solution algorithms and open-

of the wave vector in the thermal objects (AV)'/? « 1/k,
where k = w/e(r, w)eolo, and the size of the subvolumes
must be small compared with the vacuum separation distance
between the thermal objects (A3 « d.

Following the general procedure described in Ref. [67],
Eq. (14) is discretized as

/ f Gor, ¥, )3V dr
AV JAV;

= / G (r. ¥, 0)d’rd°r
AV JAv

—kS/ / G'r,r", 0)e(r", w)
A\/I AV;’ Vlherm

x G, v, 0)d’r"d* dr. (15)

Assuming that E is well behaved over the entire domain
and applying the principal value approximation for the singu-

larity in G at r = r’ [83,84], Eq. (15) is simplified as
= = N =
G'(r;, 1), ) = G (ri, 1}, w) — kZ ZGO(r,-, ry, ®)
k=1
(16)

The discretized version of the known free-space Green’s

X AVie, (X, ) G (5. T}, o).

function GO(r;, r;, w) is presented in Appendix B. The full
system of equations describing all interactions between sub-
volumes may be expanded in matrix form as

0 G Gy (:}(1)1 (:}?N

0 : : = N N A )]
a0 p p =0 =0

N (&1 GnN Gy 0 Gyy

(

source solvers available. The DSGF matrix equation defined
in Eq. (17) can be solved directly using LU decomposition to

invert 1& or it can be solved with iterative techniques, such
as the biconjugate gradient stabilized method, the conjugate
gradient squared method, or the perturbativelike technique
presented in Ref. [78]. Iterative techniques have the advan-
tage of reducing computational memory requirements, which
can become prohibitive for many subvolumes [67]. Con-
versely, the main matrix equation of the TDDA is of the

form A X A" = B and has fewer documented solution meth-
ods. More details on the comparison of the matrix equations
solved in the DSGF and TDDA methods can be found in
Appendix C. Another advantage of the DSGF method over
the TDDA is that the variable of interest in the DSGF method
is the system Green’s function, a general parameter that is
independent of the physics of thermal excitation and that can
be postprocessed to solve for a variety of other thermal param-

eters. The variable of interest X in the TDDA method is the
autocorrelation of the total dipole moment, a more restrictive
parameter that combines information of thermal excitation
and scattering.
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D. Radiative heat transfer

Once the system Green’s function is known via the solution
of the system of equations [Eq. (17)], the net radiative heat
transfer can be calculated. Using Poynting’s theorem, the net
power dissipated in the thermal objects is defined as [73,85]

(E,t) - {TM(x, 1)+ [6 * E, O])dr,
(18)

(O (1)) = f

Viherm

where ¢ is the time offset, & is the instantaneous material
conductivity, £(r, t) is the time-dependent instantaneous elec-
tric field, 7™ (r, ¢) is the time-dependent fluctuating thermal
current density, the % symbol represents the convolution oper-
ation, the - symbol represents the dot product, and { ) brackets
represent the ensemble average. The fluctuating thermal cur-
rent density J M(r, t) is defined as a wide-sense stationary
random process and embodies the statistical nature of thermal
excitation of charged microparticles [73,74]. For such pro-

J

cesses, the first moment (i.e., mean) of the stochastic signal
is zero, (7M™ (r, 7)) = 0, and the second moment (i.e., auto-
correlation) is nonzero, (J®(r, 1) (r, t—1)) # 0 [86].
The autocorrelation function of the fluctuating thermal cur-
rent density is defined by the fluctuation-dissipation theorem,
which relates equilibrium fluctuations in current density to
macroscale electromagnetic dissipation inside a thermal ob-
ject. In its spectral representation, the fluctuation-dissipation
theorem is expressed as [73,87]

IM e, ) IV (', "))

= 4 weplm[e(r, )]O(w, T)S(xr — r')8(w — a)/)i (19)

where the mean energy of an electromagnetic state is defined
as O(w, T) = hw[exp(,{i—“}) — 1]_1, K is the reduced Planck
constant, and kg is the Boltzmann constant.

Using Eq. (8) to describe the electric field in terms of the
system Green’s function and incorporating the fluctuation-
dissipation theorem, the net power dissipated given by
Eq. (18) becomes

2 [ _
(O (1)) = / = f ké(lm[e(r, )0, TIm{TH G (r. £, )]}
Vlherm O

+ k3 Tm[e(r, )]

Viherm

Im[e(r, ©)]O(w, THTIG(r, ¥, a))(z}T(r, Y, a))]d3r’> dod’r,  (20)

where Tr represents the trace. In Eq. (20), the inverse Fourier transform convention f(r) = % fj;o F(w)exp(—iwt)dw is
followed. Discretizing Eq. (20) along a cubic lattice, the net power dissipated in a subvolume AV, is defined as

(Qav, (1)) = —
T Jo :

j=1

J#i

o0 N = =
2 / kgAViIm[e(ri,a))] Z AVIm[e(r;, w)][O(w, T;) — O(w, T)|Tr[G (ri,rj,a))Gf(r,»,rj,a))] dw. (21)

In deriving Eq. (21), the condition of zero power dissipation at thermal equilibrium is implemented such that (Qay,(¢)) =0

when O(w, T;) = O(w, T)).

Rearranging into a Landauer-like form, the net power dissipated in a subvolume is simplified as

N

=1

1 o0
(Qav () = o /0 Z [O(w, Tj) — O, T)]Tij(®) tdo, (22)
J

J#i

where the transmission coefficient between subvolumes i and j is defined as

Tij(@) = 4kt AV, AV,Im[e(r;, o)]Im[e(r;, )] TE[G (r;, T, w)(z}-r(r,-, r;, o). (23)

The net power dissipated in a bulk thermal object occupying the closed volume V, is given by

1 o0
(0a(1)) = —/ i
27 0 g/; J#Va

From Eq. (23), the transmission coefficient between two
subvolumes is dependent on the trace of the product of the
DSGF and its conjugate transpose (i.e., the squared Frobenius
norm of the DSGF). In this framework, solving a NFRHT

Z [O(w, Tj) — O(w, T)]Tij(®) fdo. (24)

(

problem reduces to solving for the appropriate system Green’s
function, from which the net heat rate can be easily calculated.

Another quantity used in characterizing NFRHT is the
conductance. The spectral conductance is defined as the power
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FIG. 2. Schematics of (a) two SiO, spheres and (b) a linear chain
of three SiO, spheres embedded in vacuum. Two different sphere
sizes are considered: R = 50 and 500 nm. The vacuum separation
distance varies from 10 nm < d < 10 pm. The symbol d, represents
the center-of-mass separation distance.

transfer between two objects for a given frequency in the limit
that their temperature difference 67 goes to zero. Mathemati-
cally, this is expressed for bulk objects A and B as [54]

00(w, T
aT

Gasw.T) = Jim, (Qap(@)) _ [

ST ]T,TTAB(CO),

(25)

where the spectral transmission coefficient between the two
bulk objects enclosing volumes V, and Vj is calculated as

Tap(w)

= Z Z Tij(w).

ieVy jeVp

(26)

Reciprocity holds such that Typ(w) = Tpa(w). The total
conductance at a given temperature T between two bulk ob-
jects is then determined by integration over all frequencies
Gap(T) = % fooo Gap(w, T)dw. The spectral and total con-
ductance are used to characterize NFRHT between dielectric
particles in the following sections.

III. VERIFICATION OF THE DSGF METHOD AGAINST
THE ANALYTICAL SOLUTION FOR SPHERES

To determine the accuracy of the DSGF method in
modeling NFRHT between particles, we compare DSGF cal-
culations of conductance at room temperature (7 = 300 K)
against the analytical solution for chains of two and three
dielectric spheres made of SiO, embedded in vacuum. The
analytical solution is calculated using the technique from
Ref. [54]. The dielectric function of SiO,, taken from
Ref. [54], is provided in Sec. S1 of the Supplemental
Material [88]. The discretized spheres used in the DSGF
method are modeled to have the same volume and center-of-
mass separation distance as the corresponding perfect spheres
of the analytical solution. The accuracy of the DSGF method
is evaluated for vacuum separation distances d ranging from
10 nm to 10 um and for two different sphere radii R = 50 and
500 nm (Fig. 2).

A. Two spheres

The total conductance calculated by the DSGF method
shows good agreement with the analytical solution for two
spheres (Fig. 3). For vacuum separation distances in the
range R < d < 20R, the absolute value of the error between
the DSGF method and analytical solution is <3% for 50-
nm-radius spheres and <5% for 500-nm-radius spheres. The
slight increase in error at the closest and farthest vacuum
separation distances was expected from the TDDA literature
[67] since the DSGF method and TDDA have equivalent
convergence behavior and generate equivalent values of con-
ductance when the same discretization is used (see Sec. S2 of
the Supplemental Material [88]).

For the 50-nm-radius sphere case [Fig. 3(a)], increased
error at small vacuum separation distances d < R can be at-
tributed to shape error (i.e., error due to approximating curved

(a)
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FIG. 3. Comparison of the total conductance at 7 = 300 K between two SiO, spheres calculated analytically [54] and by the discrete
system Green’s function (DSGF) method. Spheres of radii (a) R = 50 nm and (b) R = 500 nm are modeled for variable vacuum separation
distance, 10 nm < d < 10 um. 50-nm-radius spheres are discretized into Nyphere = 2176 subvolumes per sphere for all vacuum separation dis-
tances. 500-nm-radius spheres are discretized into Nyphere = 5616 subvolumes per sphere for d < 100 nm and into Nyphere = 2176 subvolumes
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per sphere for d > 100 nm. The relative error between the DSGF and analytical solution is calculated as
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surfaces by cubic subvolumes). For the 500-nm-radius sphere
case at small vacuum separation distances d < R [Fig. 3(b)],
there is error due to approximating fields as uniform within
a subvolume in addition to the aforementioned shape er-
ror. Shape error dominates for R/10 <d < R (50 nm < d <
500 nm for R = 500 nm), and nonuniform field error domi-
nates cases for d < R/10 (d < 50 nm for R = 500 nm). As
the vacuum separation distance is reduced below the length
scale of the subvolumes [d < Lgp, where Ly = (AV)/3],
the fields within subvolumes at adjacent surfaces of the
spheres display nonnegligible variation and can no longer
be approximated as uniform. Since NFRHT between SiO;
surfaces is dominated by SPhPs with penetration depth ap-
proximately equal to the vacuum separation distance d [89],
accurate description of the exponentially decaying field within
the sphere requires that d < Lg,, [67]. The subvolume size
for the 500-nm-radius spheres is Lg, = 45.3 nm for cases
in which d < 100 nm, so the error trend changes when the
vacuum separation distance is < 45.3 nm. This can be seen
in Fig. 3(b) from the change in the error curve at the local
maximum around a d value of 42 nm. Note that, for 50-nm-
radius spheres, the vacuum separation distance never falls
below the subvolume size (Lgy, = 6.2 nm for all d values),
so this type of error does not arise in Fig. 3(a). The error in
the DSGF-calculated total conductance is still relatively low
at small vacuum separation distances d < R (< 8% and 13%
for R = 50 and 500 nm, respectively). If increased accuracy
is desired, both shape error and the error due to nonuniform
fields within a subvolume can be reduced by refining the
discretization with smaller subvolumes. Alternatively, when
d < R, the proximity approximation [90], in which NFRHT
is approximated as a summation of local conductance be-
tween two parallel surfaces with varying vacuum separation
distances, is applicable provided that the spheres are optically
thick [67]. When these conditions are satisfied, it may be sim-
pler to calculate NFRHT between spheres via the proximity
approximation than the DSGF method with refined discretiza-
tion.

In Fig. 3(a), the increase in error at large vacuum separation
distances d > 20R (d > 1000 nm) is due to additive numer-
ical error stemming from overdiscretization of the thermal
objects [67]. This error may be reduced to <1% by changing
the discretization from many subvolumes to one subvolume
per sphere (Fig. 4). The DSGF method with one subvolume
per object is equivalent to the many-body approach devel-
oped by Ben-Abdallah et al. [55,56] discussed in Sec. II. The
many-body approach is like analytical dipole approximations
of NFRHT [91] except that multiple scattering effects are
included. Both the many-body approximation and the DSGF
method with one subvolume per object are appropriate when
the vacuum separation distance between objects is sufficiently
large compared with the size of the objects and when the
object size is much smaller than the thermal wavelength. For
the 50-nm-radius spheres presented here, appropriate vacuum
separation distances for application of the many-body approx-
imation are d > 20R (d > 1000 nm) (Fig. 4).

In addition to the total conductance, we verified that the
DSGF method accurately captures the spectral behavior of
NFRHT. Plots of spectral conductance for spheres of radii
R =50 and 500 nm and vacuum separation distances d ~ R

N
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FIG. 4. Comparison of the total conductance at T = 300 K be-
tween two 50-nm-radius SiO, spheres calculated analytically [54]
and by the discrete system Green’s function (DSGF) method when
one subvolume per sphere is used in the discretization. Vacuum
separation distance is varied as 10 nm < d < 10 pm. The relative

error between the DSGF and analytical solution is calculated as
GDSGF _ Gi\l!alylical
1,12 .12

analytical
Gz 12

and d ~ 20R are provided in Sec. S3 of the Supplemental
Material [88].

B. Linear chain of three spheres

To verify that the DSGF method may be extended to sys-
tems which include more than two objects, we model a linear
chain of three dielectric spheres made of SiO,. The same
values of radius, vacuum separation distance, and subvolume
size are used as those in the two-sphere analysis. Like the
two-sphere cases, the DSGF method shows good agreement
with the analytical solution for three spheres when proper
discretization is applied (Fig. 5). The total conductance be-
tween neighboring spheres (G; ;) follows error trends like
the two-sphere cases at close vacuum separation distances
when overdiscretization error is negligible. For the two outer
spheres, the error in the total conductance (G;,;3) displays less
variation than that for the neighboring spheres. The three-
sphere error trends deviate from the two-sphere cases only at
large vacuum separation distances (d > 1000 nm). At large
vacuum separation distances, the overdiscretization error in
the three-sphere systems is greater than that for two spheres.
This is expected from the addition of the third discretized
sphere and increase in the total number of subvolumes. As be-
fore, this error at large vacuum separation distances can easily
be reduced to < 1% for both G, 1> and G, ;3 when spheres are
discretized into one subvolume per sphere (see Sec. S4 of the
Supplemental Material [88]). From these results, we conclude
that the DSGF method can accurately model NFRHT between
multiple three-dimensional objects.

From all the verification checks for two and three spheres
presented in Sec. III, the DSGF method is deemed suitable for
the study of NFRHT between irregularly shaped particles for
which no analytical solutions exist. NFRHT between irregu-
larly shaped dielectric particles is discussed next.

195417-7



WALTER, TERVO, AND FRANCOEUR PHYSICAL REVIEW B 106, 195417 (2022)

(a) (b)

108

108

10710
10-10

1012

1074

107
10-16

1078 -
-~ 10

1020

'
-

SRy -

e e e G, ,, Relative error

) . . [
=G, ;, Analytical solution e e e G, Relative error

elative error in total conductance (%)

Total conductance, G, ,, G, 5 (WK™)
Total conductance, G, ,, G5 (WK™
o o [$)]

Relative error in total conductance (%)

0
1022 6 =G, ;, Analytical solution
= G,;3 Analytical solution = = G, 5 Relative error [ -15 10 = G,y3 Analytical solution = = G, 5 Relative error 15
1024 O G,;, DSGF model (N, = 1) F 20 O G,y, DSGF model (N, = 1) F 20
O G,3 DSGF model (N, .. = 1) O G, 43 DSGF model (N, .= 1)
1024 - ; - ; 25 107 4 - ; ~ ; 25
10’ 102 103 10* 10' 102 10° 10*

Vacuum separation distance, d (nm) Vacuum separation distance, d (nm)
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IV. NFRHT BETWEEN IRREGULARLY SHAPED
DIELECTRIC PARTICLES

We apply the DSGF method to model NFRHT between
two irregularly shaped SiO, particles embedded in vacuum.
Particle dimensions, discretizations, and separation distances
are chosen to minimize numerical error in the DSGF model.
Based on verification results for 50-nm-radius spheres, mini-
mal numerical error is expected for subvolume lengths Ly, <
6 nm and vacuum separation distances in the range 4Lg, <
d < 20R. As such, all irregularly shaped particles are mod-
eled with subvolume lengths Ly, = 3.8 nm and equivalent
radii in the range 35 nm < R¢q < 50 nm. Equivalent radii
are defined as the radii of perfect spheres of equivalent vol-
ume as the irregularly shaped particles. Since the vacuum
separation distance d of irregularly shaped particles varies
with particle orientation, we use the center-of-mass separa-
tion distance d, to describe particle systems in this section.
The center-of-mass separation distance is independent of par-
ticle orientation and is therefore a more general parameter
for calculating NFRHT trends. We compare the conductance
calculated between spheres and irregularly shaped parti-
cles of equivalent center-of-mass separation distance d.. The
corresponding range of center-of-mass separation distances
that ensures minimal error is (4Lgp + Req,1 + Req2) S de S
[20 X min(Req,l > Req,Z) + Req,l + Req,Z]-

We model two types of irregularly shaped particles:
particles with mild distortion and particles with high
distortion from perfect spherical geometry. Particle dis-
tortion is quantified using the Gaussian random sphere
method [92-94]. In this approach, the particle surface
is defined with a randomly weighted linear combina-
tion of spherical harmonics. The radius and real-valued
logarithmic radius of the Gaussian random sphere are,

respectively,
aexp[s(@, p)]
r0.9) === @7)
and
o] 1
sO.9) =" sm¥" 0. 9), (28)

=0 m=—1

where 6 is the polar angle, ¢ is the azimuthal angle, a is the
mean radius, o is the relative standard deviation of the radius,
Sim are randomly generated spherical harmonic coefficients,
and Y;" are the orthonormal spherical harmonics. Deviation
from perfect spherical geometry is characterized by the rel-
ative standard deviation of the radius o and the correlation
length of angular change L. (see Refs. [92-94] for detailed
explanation). In this paper, the correlation length of angular
change is held constant at L, = 2 sin(g) with correlation an-
gle set at I' = 30°, and the relative standard deviation of the
radius is varied as 0 = 0.2 (mild distortion) and o = 0.8 (high
distortion). The spherical harmonic series defining the radius
vector of the Gaussian random particles is truncated at / = 10,
a value deemed sufficient by previous light scattering studies
[94,95].

Using this approach, we model systems of two SiO; parti-
cles of the same degree of distortion but unique morphology.
Individual particle morphology is maintained with increas-
ing level of distortion by implementing the same Gaussian
random variables for a given particle. Distortion can then be
amplified by increasing the standard deviation of the radius o
for the given set of Gaussian random variables (Fig. 6). This
approach ensures that particles are of completely irregular
shape and allows for direct comparison of conductance as a
function of the degree of particle distortion.
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Particle 1

Particle 2

FIG. 6. Gaussian random sphere representation of irregularly
shaped particles. The relative standard deviation of the radius is
varied to define mildly (¢ = 0.2) and highly (¢ = 0.8) distorted par-
ticles. Particle morphology is kept constant with increasing particle
distortion.

The total conductance between irregularly shaped parti-
cles, normalized with respect to the conductance of compara-
ble perfect spheres with equivalent volume and center-of-mass
separation distance, is calculated at room temperature (T =
300 K) and is shown in Fig. 7. Geometric irregularity most
strongly affects the total conductance at close separation dis-
tances. For center-of-mass separation distances d. < 300 nm,
increasing distortion is associated with lower total conduc-
tance with respect to that of comparable perfect spheres. At
the closest center-of-mass separation distance (d, = 110 nm),
the total conductance for mildly and highly distorted particles
is reduced to, respectively, 78 and 64% of the total conduc-
tance of comparable perfect spheres. At larger center-of-mass
separation distances (d. = 300 nm), the total conductance for

~

shere (arb. units)

Normalized total conductance,
i I
G;rregu ﬂr/G

T T T T T
100 200 300 400 500 600 700
Center-of-mass separation distance, d, (hm)

FIG. 7. Normalized total conductance as a function of the center-
of-mass separation distance for mildly distorted (o = 0.2, Req,1 =
49.3 nm, Ry, = 44.5 nm, N = 16 605 total subvolumes) and highly
distorted (0 = 0.8, Req,1 = 45.8 nm, Reqr =37.9 nm, N = 10948
total subvolumes) particles, where R.q is the equivalent radius of
a perfect sphere with the same volume as the irregularly shaped
particle. The total conductance between irregularly shaped particles
is normalized with respect to the conductance of comparable per-
fect spheres with equivalent volume and center-of-mass separation
distance.
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FIG. 8. Spatial distribution of power dissipation within each
subvolume for two highly distorted particles (o0 = 0.8, R.q =
45.8 nm, Req» = 37.9 nm, N = 10 948 total subvolumes) at center-
of-mass separation distances (a) d. = 110 nm and (b) d. = 337 nm
(arrows denote which particles are interacting). Negative values
represent heat loss, and positive values represent heat gain. The
high-temperature particle (blue color scheme since thermal energy
is lost) is set at 7 = 300 K, and the low-temperature particle (red
color scheme since thermal energy is gained) is set at 7 =0 K.
For d. = 110 nm, 80% of all power dissipation occurs at adjacent
surfaces within 34% of the volume of particle 1 and 53% of the
volume of particle 2. For d. = 337 nm, 80% of all power dissipation
occurs within 67% of the volume of particle 1 and 71% of the volume
of particle 2.

both mildly and highly distorted particles reaches a plateau of
95% of the total conductance of comparable perfect spheres.
Based on the analysis in Sec. I11, this 5% difference is close to
the numerical error in the DSGF model [<3%, see Fig. 3(a)].
As such, we conclude that distortion most significantly af-
fects the total conductance of R.q ~ 35-50 nm particles when
they are closely spaced (d. < 300 nm), and the total con-
ductance of these particles can be approximated by that of
perfect spheres at larger center-of-mass separation distances
(d. Z 300 nm).

The underlying physics driving NFRHT between irregu-
larly shaped particles can be revealed through further analysis
of the spatial distribution of power dissipation (Fig. 8) and
the spectral conductance (Fig. 9). In the following, we focus
on highly distorted particles (o = 0.8), though similar, albeit
less exaggerated, trends are observed for the mildly distorted
particles (o0 = 0.2). We first analyze particles at the closest
center-of-mass separation distance d. = 110 nm where parti-
cle size is larger than the vacuum separation distance between
the closest surfaces d = 31 nm. Next, we consider a larger
center-of-mass separation distance (d. = 337 nm) for which
the normalized total conductance has converged to 95%. For
this second case, particle size is smaller than the vacuum
separation distance between the closest surfaces d = 246 nm.
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FIG. 9. Spectral conductance at T = 300 K for two highly distorted particles (o0 = 0.8, Req1 = 45.8 nm, Req2 = 37.9 nm, N = 10948
total subvolumes) at center-of-mass separation distances (a) d. = 110 nm and (b) d. = 337 nm. Results are compared against the spectral
conductance for two perfect spheres with the same volume and center-of-mass separation distance as the irregularly shaped particles.

The spatial distribution of power dissipation illustrates that
heat transfer is confined to the nearest surfaces of closely
spaced particles [Fig. 8(a), d. = 110 nm]. In this regime,
NFRHT is mostly a surface process dominated by SPhPs
with penetration depth § approximately equal to the vacuum
separation distance (§ ~ d = 31 nm) [89]. From these results,
the decreased total conductance seen at small center-of-mass
separation distances in Fig. 7 can be attributed to the fact
that irregularly shaped particles have a smaller volume con-
tributing to NFRHT than do comparable perfect spheres. At
a farther center-of-mass separation distance, heat transfer is
spread more evenly across the entire volume of particles
[Fig. 8(b), d. = 337 nm]. In this regime, NFRHT is a volu-
metric process rather than a surface one and is dominated by
localized surface phonons (LSPhs) arising from the confine-
ment of SPhPs in subwavelength particles. Therefore, since
the volumes of irregularly shaped particles and comparable
perfect spheres are the same, the total conductance of irregu-
larly shaped particles at d. = 337 nm is effectively the same
as that of comparable perfect spheres, within the margin of
error of the DSGF method.

The spectral conductance at both small and large center-of-
mass separation distances exhibits low- and high-frequency
resonances in the Reststrahlen spectral bands of SiO,
(~8.691x10" to 9.656x10" rad/s and ~2.038x10' to
2.327x10' rad/s) where the real component of the dielectric
function is negative (Fig. 9). For d. = 110 nm, the resonances
are due to SPhPs, whereas the resonances for d. = 337 nm
are dominated by LSPhs. Across both separation distances,
the spectral conductance of irregularly shaped particles dis-
plays damping and broadening of resonances (i.e., reduced
spectral coherence) as compared with that of comparable per-
fect spheres. From the full width at half maximum values of
each resonance, we estimate that the low- and high-frequency
resonances at d. = 110 nm are, respectively, 57 and 90%
broader for irregularly shaped particles than resonances of
comparable perfect spheres. The corresponding broadening
values for the d. = 337 nm particle system increases to 64
and 174%, respectively. The spectral conductance at other

frequencies remains unchanged because NFRHT at these fre-
quencies is mediated by propagating and frustrated modes
(i.e., bulk modes) rather than resonant modes (i.e., SPhPs and
LSPhs).

At the closest center-of-mass separation distance of
110 nm where NFRHT is essentially a surface process, SPhP
resonances for the case of perfect spheres arise at frequen-
cies where the real component of the dielectric function of
Si0; is approximately equal to —1 (slight deviation from this
value occurs due to nonnegligible losses) [15]. For irregu-
larly shaped particles, damping and broadening of resonances
can be attributed to coupling of SPhPs within the random
distorted features of the particles at adjacent surfaces. This
effect is like the well-known phenomenon of SPhP coupling
in thin films that leads to resonance splitting into symmetric
and antisymmetric modes. For NFRHT between thin films,
resonance splitting is visible in the spectral conductance when
the film thickness is comparable with or smaller than the
vacuum separation distance [96,97]. This leads to SPhP res-
onance broadening and damping compared with the case of
thick materials since the resonant frequencies of the symmet-
ric and antisymmetric modes can take any values within the
Reststrahlen bands and depend on the film thickness and vac-
uum separation distance. For the irregularly shaped particles
presented here, the distorted features are on the order of or
smaller than the vacuum separation distance. As such, SPhPs
dominating NFRHT with penetration depth approximately
equal to or larger than the length scale of the distorted fea-
tures may couple within these features and alter the spectrum
of conductance, thus resulting in resonance broadening and
damping. In addition, owing to the randomness of the irreg-
ularly shaped particles, the resonant frequencies of particle
1 are unlikely to be the same as those of particle 2. These
nonmatching resonances reduce spectral coherence.

The increased resonance broadening at larger center-
of-mass separation distances stems from the transition of
NFRHT from a SPhP-mediated surface phenomenon to a
LSPh-mediated volumetric phenomenon. Since LSPhs arise
from the confinement of SPhPs in particles, their resonance
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frequencies depend strongly on the particle geometry [98,99].
The irregularly shaped particles presented here are defined
as Gaussian random spheres, such that the overall particle
geometry is the aggregate of many distinct spherical harmonic
morphologies (see Sec. S5 of the Supplemental Material [88]).
Each of the spherical harmonic morphologies support LSPhs
with resonances that depend on the shape. This claim can be
better understood by using the electric dipole approximation
(in vacuum) to determine LSPh resonance conditions of a few
spherical harmonic morphologies.

Power dissipation in an electric dipole is proportional to
Im(w;), where «; is the dipole polarizability tensor (i = x, y, z)
defined as [100]

4 e(w)—1
o = —&payayd; —————.
3 T+ Lile(w) — 1]

The physical dimensions of the dipole are given by ay,
ay, and a., whereas L; are factors determined from the dipole
geometry (see Refs. [100,101] for details). Since the spherical
harmonics are multiplied by randomly generated coefficients
sim [see Eq. (28)], the morphologies for particles 1 and 2 are
generally different. This implies that, in general, LSPh reso-
nances for particles 1 and 2 are different for a given spherical
harmonic morphology [. The spherical harmonic morphology
for I =0 is a sphere. For this case, L, =L, =L, = %, and
LSPh resonance occurs when |¢ 4+ 2| is minimum for both
particles 1 and 2. When losses are neglected, this corresponds
to Re(e¢) = —2, which is the Frohlich resonance condition
[101]. For I =1, the spherical harmonic morphology is a
slightly distorted sphere, such that the Frohlich resonance
condition can still be used as a reasonable approximation for
both particles 1 and 2. For [ = 2, the spherical harmonic mor-
phology can be approximated by an ellipsoid. Here, different
resonance conditions are obtained for particles 1 and 2 since
their dimensions are different. For particle 1, we estimate that
L, =0.195, L, = 0.300, and L, = 0.505. This results in three
distinct LSPh resonances that are satisfied when |e + 4.13],
le +2.33|, and |¢ + 0.98] are minimum. For particle 2, we
estimate that L, = 0.494, L, = 0.396, and L, = 0.110. LSPh
resonances for this case arise when |e + 1.02[, |¢ + 1.53|, and
le + 8.09| are minimum. We expect that a similar process
can be applied to higher-order spherical harmonic morpholo-
gies. Therefore, when all spherical harmonic morphologies
are summed to form one irregularly shaped particle, the final
particle should support all the individual LSPhs, thus lead-
ing to resonance damping and broadening. Similar damping
and broadening effects have been reported in electromagnetic
scattering studies of continuous distributions of ellipsoids that
support a range of distinct LSPh resonances [100,102]. Fi-
nally, in addition to irregularly shaped particles supporting
many LSPh modes, we expect that resonance mismatch fur-
ther reduces spectral coherence between particles 1 and 2
starting at the / = 2 spherical harmonic morphology.

(29)

V. CONCLUSIONS

We formulated the DSGF method, which is a volume in-
tegral approach based on fluctuational electrodynamics, for
predicting NFRHT between finite, three-dimensional objects.
The strengths of the DSGF method are that it defines all

system interactions independent of the physics of thermal
excitation and outputs a general system Green’s function pa-
rameter to define the system response. We verified the DSGF
method against the analytical solution for chains of two and
three SiO, spheres embedded in vacuum. Good agreement
was found between the DSGF calculations and analytical
solutions. For discretizations in the range of ~2000-6000
subvolumes per sphere, the error in the DSGF-calculated total
conductance was <3 and 5% in cases of two 50-nm-radius
spheres and two 500-nm-radius spheres, respectively, at vac-
uum separation distances in the range R < d < 20R.

After verification, we applied the DSGF method to study
NFRHT in the hitherto unstudied systems of irregularly
shaped SiO, particles, with geometric distortion modeled us-
ing the Gaussian random sphere technique. The DSGF results
illustrated that, at vacuum separation distances smaller than
the particle size (i.e., when NFRHT is essentially a surface
phenomenon), irregular geometry led to reduction in the total
conductance from that of comparable perfect spheres. We
showed that geometric effects are negligible when calculat-
ing total conductance values at vacuum separation distances
larger than the particle size (i.e., when NFRHT is a volumetric
phenomenon). In this regime, even highly distorted particles
may be approximated by comparable perfect spheres when the
total conductance is desired. For such cases, computationally
inexpensive analytical solutions for spheres can be used with
little loss of accuracy, and the high computational costs inher-
ent to full-scale numerical models can be avoided.

Particle irregularity resulted in reduced spectral coherence
(i.e., broadening and damping of resonances) regardless of
the separation distance. When particle size was larger than
the vacuum separation distance, the reduced spectral coher-
ence was attributed to coupling of SPhPs within the distorted
features of the particles. We showed that reduction of spatial
coherence was exacerbated by increasing the separation dis-
tance. For the case in which particle size was smaller than
the vacuum separation distance, we attribute further resonance
broadening to the existence of multiple, distinct LSPh modes
supported by the individual spherical harmonic morpholo-
gies that compose the Gaussian random spheres. From these
spectral analyses, we conclude that it is necessary to use a nu-
merical method like the DSGF to capture geometry-dependent
effects and accurately model the spectrum of NFRHT, espe-
cially around SPhP and LSPh resonances.

The results presented in this paper have important impli-
cations for thermal management in micro/nanoscale devices
composed of dielectric particles. These results highlight that
geometric defects in real manufactured particles may sig-
nificantly affect thermal transport and should be modeled
rigorously in closely spaced particle designs. Additionally,
when the goal is to engineer the spectrum of NFRHT via
metamaterials made of particles, it is crucial that full-scale
models such as the DSGF be used to account for the impact of
geometric irregularities on resonances. As this is the first time
in which NFRHT has been studied between irregularly shaped
particles, open questions remain. Future researchers should
identify effects of other distortion parameters (such as the
correlation length of angular change in the Gaussian random
sphere characterization), compare thermal radiation models to
real manufactured particle beds [103], and determine more
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general trends of particle irregularity on thermal radiation by
incorporating orientation averaging, although we expect that
orientation averaging will lead to qualitatively similar results.
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APPENDIX A: HOMOGENEOUS SOLUTION OF THE
WAVE EQUATION FOR THE TOTAL ELECTRIC FIELD

The homogeneous solution Ey(r, @) of Eq. (3) satisfies the
wave equation [Eq. (7)]. The wave equation [Eq. (7)] may be
rearranged into yet another nonhomogeneous wave equation
by moving the relative dielectric function &,(r, @) to the right-
hand side:

VxVxEy(r, o) — k(%gref(w)EO(r’ w)

= iopeJO(r, w), reR, (A1)

where J©4:0 is the equivalent (induced) current density acting
as a scattering source due to an external exciting field. Here,
J©2.0) jg defined as [104]

JCI(r, w) = —iwepe, (r, w)Eo(r, w), reN. (A2)

Equation (A1) may be solved as the summation of the

homogeneous and particular solutions:
Eo(r, w) = Ego(r, w) + Eg ,(r, w). (A3)

J

__ CXp [ikOV gref(w)rij]

=,
G'(ri,rj,w)=
dmrij

_ PN ¢ E D)
where ri; = |r; —rj|, §;; = [ri—r]|

The homogeneous solution Eg o(r, @) of Eq. (A1) satisfies
the following wave equation:

re R,
(A4)

VxVxEqo(r, ®) — ket (@)Eg o(r, ®) = 0,

Since this equation describes the electric field that would
exist in the lossless background reference medium without
any objects present, the solution is any externally imposed
exciting field (i.e., incident field) satisfying Eq. (A4).

The particular solution Eq ,(r, @) of Eq. (A1) is the scat-
tered electric field from the objects illuminated by an external
exciting field and may be solved for by using the volume
integral technique:

Eo ,(r, ») = iwpo / GO(r, v, ) JUO U, w)d’r, T e,
|4
(AS)

where GO(r, 1, w) is the free-space Green’s function with
known analytical form [76,77] and integration is over all
real space. Numerical solution of Eg(r,w) for scatter-
ing objects embedded in a lossless background reference
medium may be obtained by the well-established dis-
crete dipole approximation (DDA) method from the light-
scattering literature. Open-source DDA programs applicable
to three-dimensional arbitrary geometries are widely available
(e.g., ADDA [105,106] and DDSCAT [107,108]).

The complete solution to Eq. (3) in expanded form is thus

E(r, ©) = Eoo(r, ) + iojto / GO(r, ', ) IO, )
\%

+ iopo f G, v, ) JW, w)d, reR.
\%4
(A6)

Here, Eq. (A6) is general, and integration spans all real
space. In the case of a lossless background reference medium,
integration will be restricted to the domain of the thermal
objects Vinerm-

APPENDIX B: DISCRETIZED FREE-SPACE
GREEN’S FUNCTION

The discretized version of the free-space Green’s function
is [66,76,77]

_ 1 i =
[1 Erer (@) (kori ) + ko Ercf(w)rif] I
_[1 _

and f signifies the conjugate transpose. At the point r; = r;, the free-space Green’s function

for j # i, BD

|l

3 3i
eret (@) (korij)> ko/eret (w)rij

has a singularity. This singularity is circumvented by employing the principal value technique as presented by van Bladel [83]
and Yaghjian [84]. For a cubic mesh, the principal value solution of the singularity point is

éo ri’ r" a) P
(ri, 1), @) 3AVjeer(w)k?

) (Z{exp[iajkom][l - iajkom] —1}=1) for j=i

(B2)
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where a; is the equivalent radius of a subvolume defined as

3AV;\1/3
aj = ( 471]) :

APPENDIX C: COMPARISON OF DSGF
AND TDDA METHODS

In both the TDDA and DSGF methods, power dissipation is

proportional to the unknown quantity X that satisfies a matrix
equation of the form:

AXA' =B, )

where A and B are known matrices. In the TDDA, A is the
interaction matrix, X is the autocorrelation of the total dipole

moments (P@PaDt) “and B is the diagonal matrix rep-
resenting the autocorrelation of thermally fluctuating dipole
moments (PMWP®T) In this way, Eq. (C1) in the TDDA is
written as

A(])(IO{EI])P([O[&II)T)KT — (l_)(ﬂ)l_)(ﬂ)'f‘) (C2)

Mathematically, Eq. (C2) is the eigendecomposition of
the Hermitian matrix (P @DPt@hTy into its real eigenvalues
(PMPMT) and orthogonal eigenvectors A~

In the DSGF method, Z in Eq. (C1) is the same interaction
matrix as in the TDDA, the unknown ):( is the outer product of
the system Green’s function (:} (:}T, and ]:3 is the outer product

of the free-space Green’s function G°GY". Equation (C1) in
the DSGF method becomes

OéOT'

all

TATZ

>
@
Q

(C3)

In the TDDA approach, Eq. (C2) must be solved directly
for the unknown matrix (P(@DPeah?) The DSGF approach,
on the other hand, allows alternative solution methods for the

unknown (=} (Z;T matrix by first solving the simpler equation:

>l
Al
I

QOH

(C4)

where the system Green’s function is the unknown. The
TDDA cannot be simplified in this manner because of its
reliance on autocorrelation functions of stochastic dipole mo-
ments in Eq. (C2).

Setting up the system of equations as Eq. (C4) provides the
DSGF approach with two advantages over the TDDA. First,
the system Green’s function of the DSGF approach is a more
general parameter than the autocorrelation of total dipole mo-
ments found in the TDDA. By solving directly for the system
Green’s function in Eq. (C4), the DSGF method outputs the
general electromagnetic response of the system to any induced
source, whether it be generated thermally or otherwise. In
this way, the solution to the main system of equations in the
DSGEF approach may be postprocessed to solve for a variety
of quantities of interest. Conversely, the autocorrelation of
total dipole moments in the TDDA is a decisively thermal
quantity. The second advantage of the DSGF approach is that
the DSGF matrix equation provided in Eq. (C4) is of the

familiar A X = B form. This matrix form has more known
solution algorithms than the matrix Egs. (C1)—(C3) of form
AXAT = B. As such, well-known algorithms may be applied
directly in the DSGF approach to reduce computational loads.
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