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Abstract

A first-principles method is presented to calculate elastic constants up to the fourth order of crystals with the cubic and
hexagonal symmetries. The method relies on the numerical differentiation of the second Piola-Kirchhoff stress tensor
and a density functional theory approach to calculate the Cauchy stress tensor for a list of deformed configurations of
a reference state. The number of strained configurations required to calculate the independent elastic constants of the
second, third, and fourth order is 24 and 37 for crystals with the cubic and hexagonal symmetries, respectively. Here,
we present conceptual aspects of our method, we provide technical details of its implementation and use, we assess its
accuracy, and we discuss several applications. In particular, this method is applied to five crystalline materials with the
cubic symmetry (diamond, silicon, aluminum, silver, and gold) and two metals with the hexagonal close packing structure
(beryllium and magnesium). Our results are compared to available experimental data and previous computational
studies. Calculated linear and nonlinear elastic constants are also used in the context of nonlinear elasticity theory to
predict values of volume and bulk modulus over an interval of pressures. These predictions are compared to results
obtained from density functional theory calculations to assess the reliability of our method.

Keywords: Density functional theory; nonlinear elasticity; second Piola-Kirchhoff stress tensor; finite differentiation;
third-order elastic constants; fourth-order elastic constants; xPK2x program

1. Introduction

The elastic constants of a material define the relation-
ship between stress and applied strain [1]. The linear coef-
ficients in this relationship correspond to the second-order
elastic constants (SOECs) [1]. These linear coefficients
are related to the elastic moduli of a material and are im-
portant, for example, to quantify the linear response to a
deformation [1], and to calculate the speed of sound waves
[1]. The techniques to measure and calculate SOECs are
well established, and in fact these coefficients are known
for a broad class of materials [2]. Nonlinear elastic con-
stants characterize the anharmonic elastic behavior of a
material, and they are of both fundamental and practical
importance as they govern how thermoelastic properties
change with temperature and pressure [1, 3, 4]. The ex-
perimental determination of these nonlinear elastic coeffi-
cients is challenging [5, 6], and computational methods are
needed to predict the values of these materials parameters
[7–15]. In this work, we present a new method to calculate
from first principles elastic constants of a material up to
the fourth order.
The isothermal third-order elastic constants (TOECs)

correspond to the first-order anharmonic terms in the se-
ries expansion of the free energy density of the material
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with respect to the Green-Lagrangian strain [1]. These
elastic coefficients characterize the nonlinear elastic be-
havior of a material, and they are related to materi-
als properties such as the long-wavelength phonon an-
harmonicities [16], sound attenuation [17], the thermody-
namic Grüneisen parameter [3, 18], thermal expansion and
thermal conductivity [19–21], and the intrinsic mechani-
cal strength [1, 22]. TOECs are typically obtained from
acoustoelastic experiments [17], wherein sound velocities
are measured for a material under different stress condi-
tions [17, 23–25]. These experiments are challenging and
subjected to error margins [6], and for this reason, these
coefficients are known for a restricted class of materials
[10, 26–30].

The conventional approach to calculate TOECs relies on
the use of density functional theory (DFT) calculations to
construct either energy or stress versus strain curves along
a number of deformation modes (see Ref. [31] and refer-
ences therein). In this approach, the whole set of linear
and nonlinear coefficients are then deduced from a nonlin-
ear least-square fitting of the energy-strain or stress-strain
relationships [7, 8, 31–35]. The application of this method
to materials with the cubic symmetry is straightforward,
as the number of independent SOECs and TOECs to be
determined is only 3 and 6, respectively. However, for
materials with a lower symmetry, this method becomes
increasingly cumbersome and less attractive, as demon-
strated by the very few number of applications appeared
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so far in literature (see Ref. [31] and references therein).
An alternative approach to calculate TOECs was proposed
very recently by one of the authors [11]. In this method,
elastic constants are obtained by combining DFT calcula-
tions and a finite deformation approach [2], where each
TOEC is calculated independently by second-order nu-
merical differentiation of the second Piola-Kirchhoff (PK2)
stress tensor [11]. This method has general applicability,
and so far it has been applied to both 2D and 3D materi-
als, with the cubic, hexagonal, and orthorhombic symme-
tries [4, 11]. Furthermore, recently this method was used
in combination with the quasi-harmonic approximation to
calculate TOECs at finite temperature [4].
Fourth- and higher-order elastic constants govern the

anharmonic regime of a material subjected to large defor-
mations [8, 12, 14, 36, 37]. Knowledge of these higher-
order elastic coefficients allows to describe and predict
mechanical instability points of a material [13], as well
as to characterize the nature of elastic phase transitions
[8, 14]. The experimental determination of fourth-order
elastic constants (FOECs) is extremely challenging, as
large uniaxial stresses need to be applied in acoustoelastic
experiments to obtain reliable values of these high-order
elastic coefficients [5]. For this reason, to the best of our
knowledge, so far FOECs have been measured only for
very few materials [5]. DFT calculations have been em-
ployed to calculate FOECs [7–10, 12, 14, 15]. In these
computational studies, FOECs were obtained by using the
approach relying on fitting energy-strain or stress-strain
curves. Although straightforward and in principle general,
the computational workload and intricacy of this approach
increase significantly for low-symmetry materials. Indeed,
to the best of our knowledge, to date this approach has
been used to calculate FOECs of materials with only the
cubic symmetry [7–10, 12, 14].
In this work, we extend the new method developed to

calculate TOECs [11] based on finite deformations and nu-
merical differentiation of the PK2 stress tensor to the cal-
culation of FOECs. The most important advantage of the

present method over existing approaches is that each non-
linear elastic constant is calculated independently, by con-
sidering up to 8 deformed configurations of the reference
state. Thanks to this, our method can be easily applied
to any material, regardless of its symmetry. Here we ap-
ply the method to calculate SOECs, TOECs, and FOECs
of five crystalline materials with the cubic symmetry (dia-
mond, silicon, aluminum, silver, and gold), and two mate-
rials with the hcp structure (magnesium and beryllium).
This manuscript is organized as follows. In Sec. 2, we in-

troduce basic notions of nonlinear elasticity theory, we pro-
vide details about the finite difference formulas to calculate
SOECs, TOECs, and FOECs, and we discuss technical as-
pects of the numerical implementation of our methods. In
Sec. 3, we present results and discuss the application of
our method to the aforementioned materials. Conclusions
and outlook are provided in Sec. 4.

2. Methods

2.1. Notions of nonlinear elasticity theory

The Green-Lagrangian strain, µij , is defined as [1, 11,
38]:

µij =
1

2
(FkiFkj − δij), (1)

where subscript indices refer to Cartesian coordinates, δij
is the Kronecker delta function, and Fij are components
of the deformation gradient. This tensor is defined as:

Fij =
∂xi

∂Xj
(2)

where xi and Xi are the Cartesian coordinates of a
material point in the deformed and reference states,
respectively. The Helmholtz free energy density, A,
can be written as a series expansion in terms of
the Lagrangian strain as follows [1, 8, 11, 14, 38]:

A =
1

2

∂2A

∂µij∂µlm
µijµlm +

1

6

∂3A

∂µij∂µlm∂µpq
µijµlmµpq +

1

24

∂4A

∂µij∂µlm∂µpq∂µrs
µijµlmµpqµrs + · · ·

=
1

2
C(2)

ijlmµijµlm +
1

6
C(3)

ijlmpqµijµlmµpq +
1

24
C(4)

ijlmpqrsµijµlmµpqµrs + · · · , (3)

where C(2)
ijlm, C(3)

ijlmpq , and C(4)
ijlmpqrs are the isothermal

SOECs, TOECs, and FOECs of the material in the refer-
ence state, respectively. Given a reference state, the PK2
stress tensor, Pij , can be defined in terms of the Helmholtz
free energy density, A, as:

Pij =
∂A

∂µij
, (4)

whereas the relationship between PK2 and Cauchy stress,
σij , is [1, 4, 11, 38]:

σij =
V

V ′
FilPlmFjm, (5)

where V ′ and V are the volumes of the (same) material
points $x and $X in the deformed and reference states, re-
spectively. Equations 3 and 4 allow to define the relation-
ship between PK2 stress tensor and linear and nonlinear
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elastic constants. Adopting the Voigt notation, this rela-
tionship takes the following form:

Pα = C(2)
αβµβ +

1

2
C(3)

αβγµβµγ +
1

6
C(4)

αβγδµβµγµδ, (6)

where Greek indices run from 1 to 6, and are related to the
Cartesian indices pairs as follows: 1 → xx, 2 → yy, 3 →

zz, 4 → yz, 5 → zx, and 6 → xy. For sake of completeness,
here below we also express the linear and nonlinear elastic
constants in terms of the PK2 stress tensor:

C(2)
αβ =

∂Pα

∂µβ
, C(3)

αβγ =
∂2Pα

∂µβµγ
, and

C(4)
αβγδ =

∂3Pα

∂µβµγµδ
.

(7)

The present method relies on the definitions above to cal-
culate SOECs, TOECs, and FOECs of a material using
a periodic DFT approach. In this work, temperature ef-
fects are disregarded and all calculations are carried out
in static conditions.

2.2. Finite difference formulas to calculate elastic con-
stants

To calculate SOECs, we use the following central finite
difference formula (Eq. 7):

C(2)
αβ =

P (+β)
α − P (−β)

α

2ξ
, (8)

where ξ is a strain parameter, and P (±β)
α is the α-

component of the PK2 stress tensor of a deformed con-
figuration obtained by applying to the reference state a
six-dimensional strain vector, $µ, with the component β
equal to ±ξ, and the rest of the components equal to zero.
In case of TOECs, we have two different cases. TOECs
with at least two out of three indices equal to each other
can be calculated using the following second-order central
finite difference formula:

C(3)
αββ =

P (+β)
α + P (−β)

α − 2P (0)
α

ξ2
, (9)

where P (0)
α refers to the α-component of the PK2 stress

tensor of the reference state, which is equal to the Cauchy
stress tensor. In case of TOECs whose indices are all dif-
ferent, we use the following formula:

C(3)
αβγ =

P (+β,+γ)
α − P (−β,+γ)

α − P (+β,−γ)
α + P (−β,−γ)

α

4ξ2
, (10)

where P (±β,±γ)
α is the α-component of the PK2 stress

tensor of a deformed configuration obtained by ap-
plying to the reference state a six-dimensional strain
vector, $µ, with components β and γ equal to ±ξ, and
the rest of the components equal to zero. In case of
FOECs, we have derived the following finite difference
formulas to calculate the different types of coefficients:

C(4)
αβββ =

P (+2β)
α − 2P (+β)

α + 2P (−β)
α − P (−2β)

α

2ξ3

C(4)
αβγγ =

P (+β,+2γ)
α − P (−β,+2γ)

α + P (+β,−2γ)
α − P (−β,−2γ)

α − 2(P (+β)
α − P (−β)

α )

8ξ3

C(4)
αβγδ = (P (+β,+γ,+δ)

α − P (+β,+γ,−δ)
α − P (+β,−γ,+δ)

α + P (+β,−γ,−δ)
α − P (−β,+γ,+δ)

α +

+ P (−β,+γ,−δ)
α + P (−β,−γ,+δ)

α − P (−β,−γ,−δ)
α )/8ξ3,

(11)

where P (±β,±γ,±δ)
α is the α-component of the PK2 stress

tensor of a deformed configuration obtained by applying
to the reference state a six-dimensional strain vector, $µ,
with components β, γ, and δ equal to ±ξ, and the rest of
the components equal to zero. We remark that the last
formula in Eq. 11 has been derived and reported in Ref.
[15].
For sake of clarity, we consider the calculation of the two

nonlinear elastic constants, C(3)
123 and C(4)

1255, of a material

with an arbitrary symmetry. Thus, in case of C(3)
123, we

consider the following 4 strain vectors:

(0,+ξ,+ξ, 0, 0, 0), (0,−ξ,+ξ, 0, 0, 0),

(0,+ξ,−ξ, 0, 0, 0), (0,−ξ,−ξ, 0, 0, 0). (12)

Each strain vector is used to generate a deformed configu-

ration of the reference state, and the resulting P1 compo-
nents of the PK2 stress tensors are then used in Eq. 10 to

calculate C(3)
123. In case of C(4)

1255, we use the second formula
in Eq. 11, with the component P1 of the PK2 stress tensor
resulting from the following 6 deformations:

(0,+ξ, 0, 0,+2ξ, 0), (0,−ξ, 0, 0,+2ξ, 0),

(0,+ξ, 0, 0,−2ξ, 0), (0,−ξ, 0, 0,−2ξ, 0),

(0,+ξ, 0, 0, 0, 0), (0,−ξ, 0, 0, 0, 0). (13)

These two examples show that, in contrast to the con-
ventional approach [8, 12–15, 31], our method allows to
calculate each nonlinear elastic constant independently, re-
gardless of the symmetry of the material.
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2.2.1. SOECs, TOECs, and FOECs of crystals with the
cubic or hexagonal symmetry

In this work, we apply our method to materials with the
cubic and hexagonal symmetry. A material belonging to
the cubic system (point groups: 432, 43̄m, and m3̄m) has
3, 6, and 11 independent SOECs, TOECs, and FOECs,
respectively [1, 8, 36, 37]. To calculate the 3 independent
SOECs, we use the following 4 strain vectors:

(0, 0, 0, 0, 0, 0), (+ξ, 0, 0, 0, 0, 0),

(−ξ, 0, 0, 0, 0, 0), (0, 0, 0,+ξ, 0, 0, 0). (14)

We highlight that, due to the cubic symmetry, P (+4)

4 =
−P (−4)

4 , and therefore only one deformation is needed to

calculate C(2)
44 . To calculate the 6 independent TOECs, in

addition to the deformations in Eq. 14, we use the following
4 strain vectors:

(+ξ,+ξ, 0, 0, 0, 0), (+ξ,−ξ, 0, 0, 0, 0),

(−ξ,−ξ, 0, 0, 0, 0), (0, 0, 0,+ξ,+ξ, 0). (15)

Also in this case, the list above excludes strain vectors
that lead to redundant deformed states of a material with a
cubic symmetry. The 11 independent FOECs are obtained
by considering the following 16 additional strain vectors:

(+2ξ, 0, 0, 0, 0, 0), (−2ξ, 0, 0, 0, 0, 0),

(+2ξ,+ξ, 0, 0, 0, 0), (−2ξ,+ξ, 0, 0, 0, 0),

(+2ξ,−ξ, 0, 0, 0, 0), (−2ξ,−ξ, 0, 0, 0, 0),

(+ξ, 0, 0,+2ξ, 0, 0), (−ξ, 0, 0,+2ξ, 0, 0),

(+ξ, 0, 0, 0,+2ξ, 0), (−ξ, 0, 0, 0,+2ξ, 0),

(0, 0, 0,+ξ,+ξ,+ξ), (0, 0, 0,−ξ,+ξ,+ξ),

(0, 0, 0,+2ξ, 0, 0), (0, 0, 0,+ξ,+2ξ, 0),

(0,+ξ, 0, 0, 0, 0), (0,−ξ, 0, 0, 0, 0). (16)

In total, to calculate all the independent SOECs, TOECs,
and FOECs of a material with the cubic symmetry (point
groups: 432, 43̄m, and m3̄m), our method requires 24
strain vectors (including the null vector for the reference
state).
A material with the hexagonal symmetry (point groups:

622, 6mm, 6̄m2, and 6/mmm) has 5, 10, and 19 indepen-
dent SOECs, TOECs, and FOECs, respectively [1, 39]. To
calculate the 5 independent SOECs, we use the following
6 strain vectors:

(0, 0, 0, 0, 0, 0), (+ξ, 0, 0, 0, 0, 0),

(−ξ, 0, 0, 0, 0, 0), (0, 0, 0,+ξ, 0, 0),

(0, 0,+ξ, 0, 0, 0), (0, 0,−ξ, 0, 0, 0). (17)

To calculate the 10 independent TOECs, in addition to the
strain vectors above, we need to account for the following
6 strain vectors:

(0,+ξ,+ξ, 0, 0, 0), (0,−ξ,+ξ, 0, 0, 0),

(0,+ξ,−ξ, 0, 0, 0), (0,−ξ,−ξ, 0, 0, 0),

(0,+ξ, 0, 0, 0, 0), (0,−ξ, 0, 0, 0, 0). (18)

To obtain the 19 independent FOECs, we use the following
25 additional strain vectors:

(+2ξ, 0, 0, 0, 0, 0), (−2ξ, 0, 0, 0, 0, 0),

(+2ξ,+ξ, 0, 0, 0, 0), (+2ξ,−ξ, 0, 0, 0, 0),

(−2ξ,+ξ, 0, 0, 0, 0), (−2ξ,−ξ, 0, 0, 0, 0),

(+ξ, 0,+2ξ, 0, 0, 0), (−ξ, 0,+2ξ, 0, 0, 0),

(+ξ, 0,−2ξ, 0, 0, 0), (−ξ, 0,−2ξ, 0, 0, 0),

(+ξ, 0, 0,+2ξ, 0, 0), (−ξ, 0, 0,+2ξ, 0, 0),

(+ξ, 0, 0, 0,+2ξ, 0), (−ξ, 0, 0, 0,+2ξ, 0),

(+ξ, 0, 0, 0, 0,+2ξ), (−ξ, 0, 0, 0, 0,+2ξ),

(0,+2ξ,+ξ, 0, 0, 0), (0,+2ξ,−ξ, 0, 0, 0),

(0,−2ξ,+ξ, 0, 0, 0), (0,−2ξ,−ξ, 0, 0, 0),

(0, 0,+2ξ, 0, 0, 0), (0, 0,−2ξ, 0, 0, 0),

(0, 0,+ξ,+2ξ, 0, 0), (0, 0,−ξ,+2ξ, 0, 0),

(0, 0, 0,+2ξ, 0, 0). (19)

In total, our method requires 37 strain vectors to calcu-
late all the independent SOECs, TOECs, and FOECs of a
material belonging to the hexagonal crystal system (point
groups: 622, 6mm, 6̄m2, and 6/mmm).

2.3. Technical aspects of the method implementation

Our method to calculate linear and nonlinear elastic
constants is implemented in codes that are part of the soft-
ware package xPK2x, which is available under the GNU
General Public License (Version 3) on GitHub [40]. This
software package encompasses three Fortran modules, a
Bash script, several example applications, and relevant
documentation [40]. Our method relies on the availability
of an external periodic DFT approach to optimize geome-
tries and calculate the Cauchy stress tensor. To this end,
the current version of xPK2x is designed to be compati-
ble with the Quantum Espresso software package [41, 42].
For sake of clarity, here below we discuss the numerical
operations and tasks implemented and carried out by the
modules provided in xPK2x. We refer to the documenta-
tion available on GitHub [40] for additional information
regarding installation and use of the programs.
The calculation of a set of elastic constants of a material

requires, as a first step, to select a a periodic unit cell to
describe the material in a reference state. The unit cell
has a volume V and geometry V :

V =





a1,x a2,x a3,x
a1,y a2,y a3,y
a1,z a2,z a3,z



 , (20)

where $a1,$a2,$a3 are the unit cell vectors. We remark that
although the choice of the reference state and correspond-
ing supercell is arbitrary, in this work we reports results
obtained by considering primitive unit cells, and reference
states yielding a zero static pressure. Then, given the list
of elastic constants to be calculated, then next operation
consists in determining the finite difference formulas to be
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used, and therefore list of strain vectors required to gen-
erate the deformed configurations of the reference state.
Geometry of the reference state and corresponding super-
cell, fractional coordinates of the atoms included in the
supercell, list of six-dimensional strain vectors to gener-
ate the deformed configurations, and the strain parameter
multiplying the strain vectors, all these are input parame-
ters for the module str2pk of the software package xPK2x
[40]. In particular, the numerical tasks implemented in the
module str2pk are:

Importing the geometry of the reference state and
(fractional) coordinates of the atoms in the supercell
(not necessarily a primitive unit cell), and reading the
list of strain vectors. For each strain vector, which we
can express in both the Voigt and tensorial forms as

$µ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6)

µ =





ξ1 ξ6/2 ξ5/2
ξ6/2 ξ2 ξ4/2
ξ5/2 ξ4/2 ξ3



 , (21)

str2pk calculates the deformation gradient, F , as de-
scribed in Refs. [14, 31]. In particular, we first carry
out the Cholesky decomposition of the following 3×3
matrix (see Eq. 1):

2µ+ I = DDT . (22)

Then, a single value factorization of D is carried out,
to obtain D = WSV T , where W and V are unitary
matrices, and S is the diagonal matrix of singular
values. Finally, the rotation-free deformation gradient
(right stretch tensor) is defined as F = V SV T (R =
WV T is the rotation tensor).

Then, the deformation gradient, F , is used to gen-
erate the unit cell of the deformed configuration by
using Eq. 2. In particular, since we consider only ho-
mogeneous deformations of a material described by
the use of a periodic unit cell V , Eq. 2 assumes the
form:

F = V ′V −1, (23)

where V ′ is the 3×3 matrix defining the geometry of
the material in the deformed state,

V ′ =





a′1,x a′2,x a′3,x
a′1,y a′2,y a′3,y
a′1,z a′2,z a′3,z



 . (24)

Thus, from Eq. 23, the deformed configuration is ob-
tained as,

V ′ = FV . (25)

Geometry and dimensions of the unit cells describing
the deformed configurations, and (fractional) coordi-
nates of the atoms in the unit cells, are printed out in
text files.

The next step then consists in using a periodic DFT ap-
proach [41, 42] to optimize the geometry of each deformed
configuration of the reference state, and calculate the cor-
responding Cauchy stress tensors, σ. The list of Cauchy
stress tensors are then supplied to a second module, pk2ecs
[40], for the final calculation of the desired list of elastic
constants. In detail, the numerical tasks implemented in
this module are:

For each deformed configuration V ′, Eq. 5 is used to
calculate the PK2 stress tensor from the deformation
gradient, F , and the calculated Cauchy stress tensor,
as follows:

P =
V ′

V
F−1σF−T , (26)

where V ′ is the volume of the deformed configuration.

This operation is repeated for each strain vector, and
the corresponding list of PK2 stress tensors is finally
plugged into the finite difference formulas (Eqs. 8-11)
to calculate the selected SOECs, TOECs, and FOECs.

We remark that the xPK2x package provides the lists
of strain vectors required to calculate the independent
SOECs, TOECs, and FOECs of a material with the cubic
and hexagonal symmetry, and that the modules str2pk and
pk2ecs are designed to be user-friendly for these classes of
materials. In addition, we remark that the module str2pk
can be used to generate any list of strained configurations
for a reference state of a material with an arbitrary sym-
metry, and that the xPK2x package includes an additional
module (pk2open) that can be easily adapted to the calcu-
lation of any elastic constant of the second, third, or fourth
order. Instructions and examples about how to combine
the modules str2pk and pk2open can be found on GitHub
[40].

3. Results and discussion

3.1. Technical details of the DFT calculations

In this work, we use our method in combination with the
“pw.x” code of the Quantum Espresso package [41, 42] to
calculate the full set of independent SOECs, TOECs, and
FOECs of diamond, silicon, aluminum, silver, gold, beryl-
lium, and magnesium. In all DFT calculations, we use
primitive unit cells, stringent convergence criteria (10−14

Ry for selfconsistency and 10−6 a.u. for forces), and un-
less stated otherwise, plane-wave energy cutoffs of 150 and
600 Ry to represent wavefunctions and electronic charge
density, respectively. We underline that unless stated oth-
erwise, all the elastic constants reported in this work are
calculated using a strain parameter equal to 0.015.
For each material, we select a pseudopotential and an

approximation of the exchange and correlation energy
yielding SOECs in agreement with the experimental data.
In particular, in case of Au we use a local density approx-
imation [43], whereas for the rest of the materials we use
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the Perdew-Burke-Ernzerhof parametrization [44] of the
generalized gradient approximation.
To describe the diamond structure of C and Si, we

use a uniform grid of 10×10×10 k-points to sample the
Brillouin zone, and the ultrasoft psudopotentials C.pbe-
n-rrkjus psl.1.0.0.UPF and Si.pbe-nl-rrkjus psl.1.0.0.UPF
respectively. These pseudopotentials are part of the Quan-
tum Espresso library [45]. To describe the fcc struc-
ture of Ag and Au, we use the ultrasoft pseudopoten-
tials [45] Ag.pbe-spn-rrkjus psl.1.0.0.UPF and Au.pz-spn-
rrkjus psl.1.0.0.UPF), respectively. In case of fcc Al, we
use a norm-conserving psudopotential [46] generated by
using the fhi98PP software [47] that was tested and used in
a previous study [11]. To sample the Brillouin zone of the
primitive unit cell of these three metals, we use a uniform
grid of 25×25×25 k-points. In case of hcp Be and Mg, we
use an ultrasoft [45] (Be.pbe-n-rrkjus psl.1.0.0.UPF) and
a norm-conserving [46] psudopotential, respectively. The
latter psudopotential was generated by using the fhi98PP
software [47] and was tested and used in a previous study
[11]. To sample the Brillouin zones of Be and Mg, we
use a grid of 20×20×14 k-points. With these technical
details, we obtain the equilibrium lattice parameters at
zero temperature reported in Table 1. These results are in
agreement with experimental data.

Table 1: Lattice parameters (in Å) of the crystalline materials inves-
tigated in this study obtained from DFT calculations. Experimental
values are also reported for comparison.

Crystal Space group a c Exp. (a/c)
C Fd3̄m 3.57 - 3.57 [7]
Si Fd3̄m 5.47 - 5.43 [48, 49]
Al Fm3̄m 4.07 - 4.03 [50]
Ag Fm3̄m 4.16 - 4.07 [50]
Au Fm3̄m 4.05 - 4.08 [51]
Be P63/mmc 2.27 3.58 2.29/3.58 [52]
Mg P63/mmc 3.24 5.28 3.18/5.15 [53]

3.2. Second- and third-order elastic constants

The independent SOECs and TOECs of crystals with
the cubic and hcp structures calculated using our method
are listed in Tables 2 and 3, respectively. These tables re-
port also available experimental data and previous values
calculated by using the conventional approach relying on
fitting energy-strain or stress-strain curves [7–10, 12, 14].
Tables 2 and 3 show that our results are in overall good
agreement with both experimental data and previous com-
putational studies. It is to be noted that our elastic con-
stants are calculated for a perfect monocrystalline mate-
rial at zero temperature, whereas measurements of TOECs
are typically carried out at finite temperature, by consid-
ering polycrystalline samples containing defects, which are
known to affect the experimental data [8, 10]. These fac-
tors contribute to some extent to explain the small dif-
ferences between our results and the experimental data.

We also underline that, as discussed in Ref. [56], another
possible source of discrepancy between calculations and
experiments may stem from approximations in in the data
analysis. As shown in Ref. [56], this is certainly the case for

C(3)
123 of diamond, whose value after accounting for higher

order effects has been estimated to be 640 GPa, rather
than 2100 GPa as reported in Ref. [10].
As for the differences between our results and those of

previous computational studies, we argue that these stem
mainly from the following two reasons. One, the techni-
cal aspects of the DFT calculations, namely plane-wave
energy cutoffs, pseudopotentials, convergence thresholds,
and the exchange and correlation energy functional. Two,
the details of the fitting procedure used to deduce the full
set of independent linear and nonlinear elastic constants
[13]. To corroborate this last argument, and at the same
time, to demonstrate the validity of our method and re-
sults, we adopt the conventional approach based on fitting
an energy-strain curve to calculate the selected second-
and higher-order elastic constants of Si. In particular, we
consider the following three deformation vectors:

(+ξ, 0, 0, 0, 0, 0), (+ξ,+ξ, 0, 0, 0, 0),

(+ξ,−ξ, 0, 0, 0, 0), (27)

and we generate a set of deformed configurations by vary-
ing the strain parameter ξ from -0.2 to 0.3. We then
use fourth-order polynomial functions to fit the resulting
curves and obtain the set of second-, third-, and fourth-
order elastic constants governing the changes of the en-
ergy density versus the strain parameter [8]. In case of
the uniaxial deformation, we use a fifth-order polynomial

to also deduce the value of C(5)
11111. Calculated energies

and fitting functions are shown in Fig. 1, where for clar-
ity we report only the results obtained for the first two
deformation modes in Eq. 27. Overall, our fitting proce-

dure yields the following results: C(2)
11 =153 GPa, C(2)

12 =57

GPa, C(3)
111=-730 GPa, C(3)

112=-541 GPa, C(4)
1111=2555 GPa,

C(4)
1112=2157 GPa, C(4)

1122=1874 GPa, and C(5)
11111=-10493

GPa of Si (Fig. 1). These values are in overall good agree-
ment with the elastic constants computed by using the
present method reported in Tables 2 and 4. We remark
that, as thoroughly discussed in Ref. [56], the order of the
polynomials used to fit the energy curves influences the
results of this operation. In the present case, we find that
fifth- and sixth-order polynomial functions yield, for ex-

ample, values for C(3)
112 and C(4)

1122 equal to about -437 GPa
and 2114 GPa, respectively in better and worse agreement
with the values in Tables 2 and 4.

3.3. Fourth-order elastic constants

To assess the accuracy of our method, we carry out con-
vergence tests. In particular, we calculate the values of
selected FOECs of fcc Al for increasing values of the strain
parameter (ξ), as well as by considering DFT calculations
of increasing precision (Fig. 2). The results of these calcu-
lations show that FOECs converge rapidly for increasing
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Table 2: Independent SOECs and TOECs (in GPa) of cubic diamond, silicon, aluminum, silver, and gold calculated using the method
presented in this work. For each material, the first row shows our results, the second row reports experimental data, and the remaining rows
show previous results obtained by using the conventional approach based on fitting energy-strain or stress-strain data points.

Crystal C(2)
11 C(2)

12 C(2)
44 C(3)

111 C(3)
112 C(3)

123 C(3)
144 C(3)

155 C(3)
456

C This work 1054 124 559 -5942 -1621 614 -200 -2773 -1152
Exp. [10] 1082 125 579 -7750 -2220 2100 -1780 -2800 -30
Ref. [11] 1037 120 552 -5876 -1593 618 -197 -2739 -1111

Si This work 153 57 75 -751 -423 -78 16 -294 -59
Exp. [28] 166 64 80 -795 -445 -75 15 -310 -86
Ref. [11] 142 51 72 -744 -393 -59 4 -297 -59
Ref. [13] 152 59 78 -653 -456 -96 23 -304 -7

Al This work 103 55 31 -1095 -330 44 -35 -357 -14
Exp. [27] 107 60 28 -1076 -315 36 -23 -340 -30
Ref. [11] 108 59 33 -1100 -371 104 39 -421 -22

Ag This work 107 79 42 -962 -566 -89 -9 -444 19
Exp. [29, 30] 124 94 46 -843 -529 189 56 -637 83

Ref. [8] 161 119 58 -1012 -975 162 80 -759 53
Au This work 207 179 35 -1985 -1177 -373 -63 -749 63

Exp. [29, 30] 192 163 42 -1729 -922 -233 -13 -648 -12
Ref. [8] 202 174 38 -2023 -1266 -263 -63 -930 54
Ref. [15] 151 126 28 -1438 -875 -550 -66 -469 16

Table 3: Independent SOECs and TOECs (in GPa) of hcp beryllium and magnesium. For each crystal, the first row shows our results, the
second row reports experimental data, and the remaining rows show previous results obtained by using the conventional approach.

C(2)
11 C(2)

12 C(2)
13 C(2)

33 C(2)
44 C(3)

111 C(3)
112 C(3)

113 C(3)
123 C(3)

133 C(3)
144 C(3)

155 C(3)
222 C(3)

333 C(3)
344

Be
This work 275 40 30 309 141 -3160 211 33 -170 52 -139 -344 -2414 -3826 -948
Exp. [54] 294 27 14 357 162 – – – – – – – – – –
Ref. [55] 333 16 5 392 171 -5093 1187 707 -87 -838 -435 -475 -2845 -2048 -489

Mg
This work 54 23 17 58 15 -702 -31 -1 -43 -101 -21 -72 -546 -619 -155
Exp. [26] 59 26 – 62 16 -663 -178 30 -76 -86 -30 -58 -864 -726 -193
Ref. [11] 58 24 19 62 16 -602 -190 4 -55 -107 -60 -50 -762 -657 -163
Ref. [31] 68 28 20 70 18 -784 -241 97 -46 -116 -52 -29 -1081 -554 -154

-0.2 -0.1 0.0 0.1 0.2 0.3
0

1

2

3

4

5

ξ

Δ
E/

V 0
 (G

Pa
)

 

Figure 1: Energy density of cubic Si relative to that one of the ref-
erence state versus strain parameter. The solid black lines show the
higher order polynomial functions fitting the data (discs) calculated
from DFT. The red and blue discs show results obtained by de-
forming the reference state using strain vectors (+ξ, 0, 0, 0, 0, 0) and
(+ξ,+ξ, 0, 0, 0, 0), respectively.

values of both the k-points grid density and plane-wave
energy cutoff. Also, these calculations show that FOECs
are sensitive to the value of the strain parameter used to
generate the deformed configurations of a reference state.
In particular, Fig. 2 shows that although several FOECs
fluctuate significantly for strain parameters smaller than
0.0075, all the independent FOECs converge and plateau
for strain parameters larger than 0.01. We also carry out
similar convergence tests for all the independent SOECs
and TOECs of Al. These calculations show that similarly
to FOECs, SOECs and TOECs converge rapidly with both
the k-points grid density and plane-wave energy cutoff. In
contrast, these calculations show that SOECs and TOECs
are less sensitive than FOECs to the value of the strain
parameter, plateauing to the converged values for strain
parameters equal or larger than 0.005.

For completeness, we carry out calculations to assess
the impact of the accuracy of the finite difference formu-
las used to calculate elastic constants. In particular, we
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Figure 2: Selected FOECs of fcc Al calculated with the present
method by using DFT calculations of increasing precision and in-
creasing values of the strain parameter. Top panel, FOECs are ob-
tained from DFT calculations using uniform grids of k-points of in-
creasing density, and fixed values of 150 Ry and 0.015 for the plane-
wave energy cutoff and strain parameter, respectively. Middle panel,
FOECs are obtained from DFT calculations using increasing values
of the plane-wave energy cutoff to represent wavefunctions, and a
fixed 25×25×25 grid of k-points and a strain parameter of 0.015.
Bottom panel, FOECs are calculated by using Eq. 11 with increas-
ing values of the strain parameter, and DFT calculations using a
plane-wave energy cutoff of 150 Ry and a 25×25×25 grid of k-points.

Calculated FOECs are shown by using red filled triangles (C(4)
1112),

green filled squares (C
(4)
1122), blue filled circles (C

(4)
1155), magenta open

circles (C(4)
1266), and cyan open squares (C(4)

4444).

calculate all the SOECs and selected TOECs (C(3)
111, C

(3)
112,

and C(3)
144) and FOECs (C(4)

1111, C
(4)
1112, and C(4)

4444) of Al by
using central difference formulas with 4th-order accuracy.
The results of these calculations are compared to the val-
ues in Tables 2 and 4, which are obtained by using the
central difference formulas with 2th-order accuracy shown
in Eqs. 8, 9, and 11. These comparisons show that the two

sets of elastic constants are practically identical, thereby
demonstrating that the truncation errors resulting from
the use of the finite difference formulas in Eqs. 8-11 are
small, and hence that the results presented on our work
are accurate and reliable. Overall, we underline that all
our calculations to test accuracy and validity show that
the main source of inaccuracy of our method lies in the
numerical precision of the strain tensor computed by us-
ing a DFT approach employing plane-wave basis sets. To
reduce the impact of these errors, we adopt the following
solutions: using (i) values for the energy cutoffs that are
larger than the minimal suggested ones, and (ii) stringent
convergence criteria.
Table 4 reports calculated values of FOECs of diamond,

Si, Al, Ag, and Au. To the best of our knowledge, ex-
perimental data for these coefficients are missing from
literature. Values of FOECs obtained using the present
method are in reasonable agreement with previous results
obtained by employing the conventional approach. We re-
mark that our method yields results in excellent agree-
ment with FOECs obtained by fitting energy-strain curves.
In fact, as discussed above, these two methods yield val-

ues of C(4)
1111 for Si equal to 2586 and 2555 GPa, respec-

tively. Therefore, once again we are inclined to attribute
the differences between our results and previous calcula-
tions [8, 10, 13, 15] to both different technicalities of the
DFT calculations and/or details of the fitting procedure.
It is interesting to notice that Hiki et al. [30, 57]

suggested that “the contribution from the closed-shell
repulsive interaction between nearest-neighbor ions be-
comes predominant for determining the higher order elas-
tic constants for materials with markedly overlapped closed
shells”, and therefore that FOECs of metals such as Ag
and Au should obey the following approximate relation-
ships:

C(4)
1111 = 2C(4)

1112 = 2C(4)
1122 = 2C(4)

1155 = 2C(4)
1266 = 2C(4)

4444

C(4)
1123 = C(4)

1144 = C(4)
1255 = C(4)

1456 = C(4)
4455 = 0.

(28)

Using our calculated values for Ag in Table 4, we

find C(4)
1111/C

(4)
1112=1.9, C(4)

1111/C
(4)
1122=2.0, C(4)

1111/C
(4)
1155=2.2,

C(4)
1111/C

(4)
1266=2.2, and C(4)

1111/C
(4)
4444=2.3, i.e. all values

close to 2.0, whereas the remaining FOECs are much

smaller than C(4)
1111 and thus negligible. This result not

only corroborates the argument put forward by Hiki et
al. [30, 57], but it further validates the correctness of our
method.
Existing methods based on fitting energy-strain or

stress-strain curves become cumbersome and difficult to
apply in case of materials with a symmetry lower than
the cubic. In contrast, our method is easily applicable to
materials of any symmetry, and the computational work-
load increases only moderately as the symmetry of the
material decreases. Here, to demonstrate the potential of
the present method, we calculate the independent FOECs
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of hcp Be and Mg. The results of these calculations are
shown in Table 5. To the best of our knowledge, FOECs
of these two materials have so far neither been measured
nor calculated.

3.4. Potential application of our method

Fourth- and higher-order elastic constants describe the
elastic response of a material subjected to large deforma-
tions [8, 12, 14, 36, 37]. Knowledge of these higher-order
elastic coefficients can be thus used to predict, within the
context of a nonlinear elasticity theory treatment, both the
strain response and SOECs of a material subjected to an
external pressure (or stress). In this section, we show that
indeed SOECs, TOECs, and most importantly, FOECs,
can be used for this purpose, and that FOECs expand the
predictive power of the numerical framework relying on
nonlinear elasticity theory to larger intervals of strain and
pressures. Here we show the results obtained for fcc Si and
hcp Mg.
We use both DFT calculations and nonlinear elasticity

theory to calculate the volume, V (p), and bulk modulus,
B0(p), of Si and Mg at zero temperature over a finite in-
terval of pressures. First, we use variable-cell optimization
calculations [41, 42] and the finite difference formulas in
Eq. 8 to calculate from DFT, first the volume, and then the
SOECs of Si and Mg at a pressure p. To calculate B0(p)
of fcc Si and hcp Mg, we use the formulas [38, 58, 59]

B0(p) =
C(2)

11 + 2C(2)
12 + p

3
(29)

and

B0(p) =
2(C(2)

11 + C(2)
12 ) + C(2)

33 + 4C(2)
13 + 3p

9
, (30)

respectively. Second, we calculate the same quantities,
V (p) and B0(p), within the context of nonlinear elasticity
theory by employing elastic coefficients calculated with the
present method (Tables 2-5). We underline that these coef-
ficients are obtained by considering a reference state yield-
ing a zero static pressure at zero temperature, V0. Thus,
for each value of the pressure p, we use a self-consistent
variational approach to solve Eqs. 5 and 6 and find the
strain required to deform the reference state and obtain a
configuration for the material, V (p), yielding the selected
pressure [4]. After determining the geometry of the mate-
rial at p, we proceed to calculate the SOECs and therefore
the bulk modulus B0(p) using the same approach relying
on the finite difference formulas in Eq. 8. However, in
this case, the Cauchy and hence PK2 stress tensor result-
ing from a deformation of the state V (p) is not calculated
explicitly from DFT, but instead it is again derived from
Eqs. 5 and 6 as outlined in the following diagram:

V (p)
µ̃
−→F̃ , Ṽ

V0
−→ µ,F

Eq.[6]
−−−−→ P (µ)

F
−→ . . .

. . .
F
−→ σ(µ) = σ̃(µ̃)

F̃
−→ P̃ (µ̃),

(31)

where µ̃ and F̃ are the Lagrangian strain and correspond-
ing deformation gradient mapping V (p) to one of its de-
formed states, Ṽ , whereas µ and F are the strain and
deformation gradient mapping the reference state at zero
pressure, V0, to Ṽ . Thanks to this last correspondence, Eq.
6 can be used to extrapolate the value of the PK2 stress
tensor in Ṽ resulting from the deformation of V (p), and
Eq. 5 can be used to, first, calculate the Cauchy stress,
σ(µ) = σ̃(µ̃), and then the PK2 stress tensor resulting
from the deformation of V (p), which is needed to calcu-
late its SOECs.
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Figure 3: Volume (top) relative to that one at zero pressure and bulk
modulus (bottom) of cubic Si versus pressure. Black solid line shows
results obtained from DFT calculations, whereas discs and circles
show results obtained from nonlinear elasticity theory: green circles,
blue circles, and red discs show results obtained by considering only
SOECs, SOECS and TOECs, and all the elastic constants up to
FOECs, respectively.

The results of these two sets of calculations are com-
pared in Figs. 3 and 4 for Si and Mg, respectively. These
comparisons show, as expected, that the formalism relying
on nonlinear elasticity theory yields results that agree with
those obtained from DFT over larger intervals of pressure
for increasing the order of the truncation in Eq. 6, i.e. con-
sidering the higher-order elastic constants. In particular,
while in case of the equation of state V (p), a good agree-
ment is already reached by considering only SOECs and
TOECs, in case of B0(p), the inclusion of FOECs in Eq.
6 is necessary to achieve an excellent agreement over the
full intervals of pressures.

4. Conclusion

We presented a method to calculate second-, third-, and
fourth-order elastic constants of crystals with the cubic
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Table 4: Independent FOECs (in GPa) of cubic diamond, silicon, aluminum, silver, and gold obtained by using the present method. Our
results are compared to values calculated by employing the conventional approach relying on fitting energy-strain curves.

C(4)
1111 C(4)

1112 C(4)
1122 C(4)

1123 C(4)
1144 C(4)

1155 C(4)
1255 C(4)

1266 C(4)
1456 C(4)

4444 C(4)
4455

C This work 36057 9864 6768 -519 -1747 12628 284 9662 1236 12926 1169
Ref. [10] 26687 9459 6074 -425 -1385 10741 -264 8192 487 11328 528

Si This work 2586 2112 1885 576 -671 833 -422 742 -46 1268 -2
Ref. [13] 613 2401 1275 1053 5071 4050 -2728 -514 66 -2553 -577

Al This work 10102 2210 2441 -609 -68 3016 159 2553 224 2812 180
Ref. [8] 9916 2656 3708 -1000 -578 3554 -91 4309 148 3329 127

Ag This work 8346 4429 4204 333 99 3735 21 3813 -39 3638 -86
Ref. [8] 13694 7115 6652 -387 -154 5295 3 6718 -196 5416 -75

Au This work 17113 8114 8814 874 860 7462 -634 7372 -257 8258 -61
Ref. [8] 17951 8729 9033 416 691 7774 -752 9402 -170 8352 15
Ref. [15] 10094 8280 8402 1507 235 5549 -1534 8252 2 3640 -5763

Table 5: Independent FOECs (in GPa) of hcp beryllium and magnesium calculated by using the present method.

C(4)
1111 C(4)

1112 C(4)
1113 C(4)

1122 C(4)
1133 C(4)

1123 C(4)
1144 C(4)

1155 C(4)
1166 C(4)

1223

Be 32466 -3 358 -3529 -3721 881 -1902 -1342 -2880 1770
Mg 8638 -79 -243 119 -57 -47 -69 -40 -188 266

C(4)
1233 C(4)

1244 C(4)
1255 C(4)

1333 C(4)
1344 C(4)

1355 C(4)
3333 C(4)

3344 C(4)
4444

Be -2113 3838 18 9934 229 1629 9986 8380 -5202
Mg 347 353 -30 828 392 240 5684 1402 -1073
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Figure 4: Same as Fig. 3 for hcp Mg

and hexagonal symmetry. This first-principles method re-
lies on the numerical differentiation of the second Piola-
Kirchhoff stress tensor and a list of strained configurations
of a reference state for a material. In particular, the num-
ber of configurations required to calculate the independent
elastic constants up to the fourth order is 24 and 37 for
a crystal with the cubic and hexagonal symmetry, respec-
tively. Although here we have shown applications to mate-

rials with the cubic and hexagonal symmetry, our method
has general applicability as, regardless of symmetry, each
elastic constant of any order can be calculated indepen-
dently by carrying out several DFT calculations. This
important aspect is what differentiates our method from
conventional approaches based on fitting energy-strain or
stress-strain curves.

To validate our method, here we calculated the elastic
constants up to the fourth order of five and two materials
with the fcc and hcp structures, respectively. Compar-
isons of our results with available experimental data and
previous calculations show that our method is reliable and
accurate. We have also used a formalism based on nonlin-
ear elasticity theory to predict the equation of state and
elastic properties of a material over finite intervals of pres-
sure. This formalism requires as input parameters linear
and nonlinear elastic constants of a material in a reference
state, and its predictive power improves as higher-order
elastic constants are accounted for. Our method is flexi-
ble and can be extended to the calculation of elastic con-
stants of the fifth or higher order of a material with an
arbitrary symmetry. Therefore, the present method has
the potential to enhance the capabilities of the aforemen-
tioned formalism based on nonlinear elasticity theory to
predict, for example, thermoelastic behaviors [4], the oc-
currence of solid phase transitions [13], and values of ideal
yield strengths [13].
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