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Abstract

Change detection tasks are commonly used to measure and understand the nature of visual
working memory capacity. Across two experiments, we examine whether the nature of the
memory signals used to perform change detection are continuous or all-or-none, and consider
the implications for proper measurement of performance. In Experiment 1, we find evidence
from confidence reports that visual working memory is continuous in strength, with strong
support for an equal variance signal detection model with no guesses or lapses. Experiments 2
and 3 test an implication of this, which is that K should confound response criteria and memory.
We found K values increased by roughly 30% when criteria is shifted despite no change in the
underlying memory signals. Overall, our data call into question a large body of work using
threshold measures, like K, to analyze change detection data. This metric confounds response
bias with memory performance, and is inconsistent with the vast majority of visual working
memory models, which propose variations in precision or strength are present in working
memory. Instead, our data indicate an equal variance signal detection model (and thus, d') —
without need for lapses or guesses — is sufficient to explain change detection performance.

Keywords: visual working memory capacity, resources, discrete-slots, models of memory,
signal detection theory, proper measurement

Public Significance Statement: Visual working memory is an essential, capacity limited
system that has been linked to many cognitive abilities such as fluid intelligence and reading
comprehension. Because of its importance, researchers need valid measures of its capacity that
separate true differences in memory performance from other factors, like participants’ response
strategies. Here we show that the most common measure of visual working memory capacity
does not accurately separate response strategy from memory performance. We show this by
showing we can artificially inflate estimates of capacity using this metric with a simple instruction
change, which should have no effect on memory. We show an alternative metric is more
accurate and suggest it should be used instead. These findings call into question research that
has used this flawed metric to make connections between working memory capacity and other
cognitive functions.



Introduction

Working memory and its capacity constrains our cognitive abilities in a wide variety of domains
(Baddeley, 2000). Individual differences in capacity and control predict differences in fluid
intelligence, reading comprehension and academic achievement (Alloway & Alloway, 2010;
Daneman & Carpenter, 1980; Fukuda et al., 2010). These extensive links to various cognitive
abilities make the architecture and limits of working memory of particular interest to many fields
of study (e.g., Cowan, 2001; Miyake & Shah, 1999). One especially well studied component of
this system is visual working memory, which holds visual information in an active state, making
it available for further processing and protecting it against interference. This memory system
has an extremely limited capacity: We struggle to retain accurate information about even three
to four visual objects for just a few seconds (Luck & Vogel, 1997; Ma, Bays, Husain, 2014;
Schurgin, 2018; Schurgin et al. 2020).

Over the past 20 years, a vast number of studies have investigated important issues in visual
working memory. For example, many researchers have focused on how flexibly we can allocate
our working memory resources to different numbers of objects (e.g.,“slots” vs. “resources”;
Alvarez & Cavanagh, 2004; Awh, Barton, & Vogel, 2007) and whether different features of these
objects are “bound” or stored separately (e.g., Luck & Vogel, 1997; Baddeley, Allen & Hitch,
2011). Another major area of work has demonstrated that visual working memory capacity, even
for simple displays (Figure 1a), is predictive of fluid intelligence as well as a host of other
important cognitive abilities (Fukuda et al., 2010; Unsworth, Fukuda, Awh, & Vogel, 2014).
Overall, significant progress has been made in understanding the nature of this memory system
(e.g., Brady et al. 2011).

Change detection cannot unambiguously measure memory performance

However, many of the core conclusions about the nature of visual working memory come from
tasks known as change detection tasks. These tasks are a variant of an “old/new” recognition
memory paradigm in which participants are probed on their memory by being asked “Did you
previously see this item?” or are prompted to identify an item as either “old” or “new.” In a typical
visual working memory display (Figure 1), participants see several simple, isolated objects on a
solid color background and are asked to hold these items in mind before being asked to detect
whether a particular object changed after a brief delay (Luck & Vogel, 1997)". Despite their
ubiquity, change detection tasks cannot provide an unambiguous estimate of memory
performance because any measure of performance from this task relies on assumptions about
the distribution of memory signals which are often false and regularly unverified (see Brady et
al. 2021).

" In the current work we will not consider the more complicated scenario where all items reappear and all
could have changed, though the fundamental concern with threshold modes like K raised here applies
equally in such experiments.
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Figure 1. Change detection tasks have been critical to nearly all areas of the visual working
memory literature, from early work by Luck and Vogel (1997) arguing for object-based limits on
working memory capacity; to later work arguing for important effects of object complexity
(Alvarez & Cavanagh, 2004); to work investigating benefits of knowledge about real-world
objects to performance (e.g., Brady et al. 2009).

Since change detection tasks provide two relevant measures of performance: hit rate (calling
“same” items “same”) and false alarm rate (calling “different” items “same”), memory
researchers must combine them in order to get a unified measure of performance. This
introduces significant ambiguity into memory measurement since there are several choices for
how to combine hits and false alarms into a quantitative measure of performances (e.g., d, A’, K
values, percent correct, etc.), all of which rest on different, and sometimes incompatible
theoretical and/or parametric assumptions (for a review, see Brady et al. 2021).

One of the most common ways to combine hits with false alarms is to use “K” values [N * (hit
rate - false alarm rate)], where N is the number of objects shown (Cowan, 2001; see also
Pashler 1988, Rouder et al. 2011). This metric, which is technically based on double high-
threshold theory (Rouder et al., 2011), attempts to measure “how many objects” or “items”
people remember and, since this is a particularly intuitive concept, it has ended up being
extremely prevalent in the study of visual working memory (e.g., Alvarez & Cavanagh, 2004;
Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015; Chunharas, Rademaker, Sprague, Brady &
Serences, 2019; Endress & Potter, 2014; Eriksson, Vogel, Lansner, Bergstrom, & Nyberg, 2015;
Forsberg, Johnson & Logie, 2020; Fukuda & Vogel, 2019; Fukuda, Vogel, Mayr & Awh, 2010;
Fukuda, Woodman, & Vogel, 2015; Fukuda, Kang & Woodman, 2016; Hakim, Adam, Gunseli,
Awh & Vogel, 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam, Khaw, Holcombe, & Goodbourn,



2019; Norris, Hall, & Gathercole, 2019; Pailian, Simons, Wetherhold, & Halberda, 2020;
Schurgin, 2018; Schurgin & Brady, 2019; Shipstead, Lindsey, Marshall, & Engle, 2014; Sligte,
Scholte, & Lamme, 2008; Unsworth, Fukuda, Awh, & Vogel, 2014; Unsworth, Fukuda, Awh, &
Vogel, 2015; Vogel & Machizawa, 2004; Woodman & Vogel, 2008).

However, despite the seemingly straightforward nature of K values, they depend on strong
theoretical claims, just like any-and-all ways of combining hits and false alarms into a unified
measure (Brady et al. 2021). These foundational claims — which are in conflict with a wide
variety of accepted theories of working memory — deeply affect estimates of memory
performance and the conclusions made based on K values. K is a slight variation on adjusted hit
rate, percent correct and other measures that are all derived from a class of models called
threshold models (Swets, 1986). K values rest on the assumption that memories are all-or-none:
Items are either remembered in a way that is perfectly diagnostic, or not remembered at all.
Under such a view, false alarms arise when there is zero information about an item in memory
(i.e., they represent pure, informationless “guesses”) and, because false alarms tell you how
often a participant was “guessing,” they can be used to adjust the hit rate for “lucky guesses”
(hence the hits minus false alarms aspect of the K formula). Therefore, for K values to provide a
valid measure of performance it must be the case that memories are never weak or strong, but
are perfectly described by being either completely present or completely absent. This point
applies to all variants of K measures since they all rest on the same theoretical foundation
(Cowan, 2001; Pashler, 1988; Rouder, Morey, Morey, & Cowan, 2011).

The processing assumptions of such a threshold model is at odds with a variety of findings from
contemporary visual working memory studies and with nearly all visual working memory
theories. Indeed, mainstream working memory models based on continuous reproduction data,
rather than change detection data, accept the fact that memories vary in their precision: for
example, an item is remembered more precisely at set size 1 than set size 3 (Zhang & Luck,
2008; Bays et al. 2009; van den Berg et al. 2012; Schurgin et al. 2020). In addition, when
participants express levels of confidence in their memory, variation in confidence tracks both
how precisely an item is being remembered and how likely people are to make large errors
(Rademaker et al. 2012; Fougnie et al. 2012; Honig et al., 2020). The combination of a variation
in precision with a variation in confidence suggests that memories vary continuously in how
strongly they are represented and that participants are aware of this variation in memory
strength (see Schurgin et al. 2020). Theories where memories vary in precision or strength and
participants have access to this precision or strength to make their decision undermine the
foundational and irrevocable principles of the K metric and therefore make it an inappropriate
metric for estimating memory performance. That is, K as a metric is based on the idea that
memories either exist or do not exist, but variation in precision is critical to both models that do
(Zhang & Luck, 2008; Adam et al. 2017) and do not (Bays, 2015; van den Berg et al. 2012;
Schurgin et al. 2020) subscribe to “item limits” or some form of “slots”. Thus, while the use of K
as a measure is extremely common, it appears to be at odds with the theories of nearly all
visual working memory researchers.



In contrast to threshold metrics like K, variations in the precision of memory are naturally
accommodated by Bayesian and signal detection-based models of memory that assume some
axis of variation between memories that is used to make decisions about whether an item has
been seen before or not (e.g., Wilken & Ma, 2004; Schurgin et al. 2020). Under a signal
detection framework, memories are seen as continuously varying along an axis of strength of
some kind, with decisions about whether an item has been seen made by applying a criterion to
this axis. As a memory signal elicited by an item increases it becomes ever more
distinguishable from noise, and this gives rise to confidence—as memory signal increases so
too does confidence—and an observer’s decisions are based on criteria that they set based on
their own confidence (see Wixted, 2020). This view denies the notion that memories are all-or-
none, present or absent, instead seeing memories as varying in some way (for example, in
‘precision’ or ‘strength’). Variations on this signal detection framework have played a major role
in nearly all long-term recognition memory research for over fifty years (e.g., Benjamin, Diaz &
Wee, 2009; Kellen et al. 2021; Wixted, 2020; Wickelgren & Norman, 1966; Glanzer & Bowles,
1976; Shiffrin & Steyvers, 1997; McClelland & Chappell, 1998; Heathcote, 2003).

Once a model is used that is based on the idea that memories vary continuously and
participants use this variation (e.g., in precision or strength) to make their decisions, the most
natural decision is to simply apply this model to all trials without introducing any separate
processes (like lapses or guesses). Thus, while signal detection-based models that also include
lapses or guesses are possible (e.g., Xie & Zhang, 2017), in their most basic form, signal
detection models generally do not involve the extra assumption that ‘guesses’ are a discrete
and separate state of memory, instead postulating that decisions are always made based on the
same continuous signals, and that errors arise from the stochastic, noisy nature of these
signals.? Such signal detection-based views naturally accommodate the subjective feeling of
“guessing” as a state of very low confidence, with nearly no likelihood of correct discrimination
of signal from noise, but they do so purely based on variations along a single axis of memory
signals. That is, in a signal detection based account, people should often feel as though they
are guessing, even though there is no separate guess state (e.g., Schurgin et al. 2020).

Broadly speaking, then, signal detection-based accounts are necessary for accurate
measurement if items vary in some way (e.g., precision) and participants use this variation in
their decision process, rather than all memories being equally precise and exactly the same (as
assumed by threshold theories). However, in the visual working memory literature most specific
signal detection-based accounts that have been proposed are those without a separate guess
or lapse state — that is, most signal detection models in the literature presume memories just
vary continuously in a single axis that people use to make decisions (e.g., Wilken & Ma, 2004;
Schurgin et al. 2020; but see Xie & Zhang, 2017). An account based on this simplest signal
detection account with just a single axis and no added lapses or guesses has recently been

2 To be clear, this assumption applies to trials where the participant is “on task”. There could be a small
set of trials where participants’ eyes were genuinely closed or they clicked accidentally, which would
result in true guesses, but such true 0 signal trials are likely very rare (e.g., traditional psychophysical
curve fitting generally assumes approximately a 1% — and no more than a 5% — lapse rate:. Wichmann
and Hill, 2001).



shown to straightforwardly accommodate error distributions from not only change detection and
forced-choice tasks but also continuous reproduction tasks in visual working and visual long-
term memory tasks (Schurgin et al. 2020).

How does one measure performance in a signal detection-based view of memory, other than
model fitting? The most common signal detection measure of memory strength is d’, which rests
on the assumption that the distribution of memory signals for previously seen and previously
unseen items are both equal in variance and approximately normal (Macmillan & Creelman,
2005). This measure is appropriate only if there is no ‘guess’ or ‘lapse’ state, and all memories
are items are approximately equally well encoded. It is no more complex than K: rather than
subtracting hits and false alarms, d’ simply requires you subtract them after a simple
transformation (the inverse of the normal distribution). However, d’ only applies to the simplest
signal detection models without any variation in strength or lapses. More complex signal-
detection-based measures are also possible if these assumptions do not hold for a particular
situation (e.g., ds; Macmillan & Creelman, 2005), or if memory is a mixture of continuous
decisions and lapses or guesses (e.g., Xie & Zhang, 2017).

In summary, if memories vary in precision or strength, K values will confound response bias with
underlying memory, leading to spurious estimates of working memory capacity that vary with
changes in response strategy (i.e., criterion; how liberally or conservatively one responds to a
change). An alternative framework based in signal detection allows for a very broad set of
possibilities, including lapses/guesses in addition to precision variation (Xie & Zhang, 2017), or
variability in memory strength between items (e.g., ds; Macmillan & Creelman, 2005), but the
simplest form of this view simply postulates that all decisions are made based on a single set of
equal variance memory signals (which leads to the d’ metric). Thus, determining the nature of
memory signals in change detection, and the extent to which they are all-or-none, is deeply
related to the question of whether K or d’ or neither is a valid measure of change detection
performance that isolates memory from the decision making process and response bias.

ROC curves elucidate the appropriate way to measure performance

How then can these theories, and their associated metrics, be evaluated and compared? Is
memory all-or none? Is it more useful to think about “guessing” as a distinct state, or more
useful to think about a single continuum of memory strength and response bias? The critical test
that tells these models apart, and determines which model to embrace, is the shape of the
receiver operating characteristic (ROC) predicted by these models (Brady et al., 2021; Swets,
1986; Wickens, 2001). ROCs measure what happens to performance—in terms of hits, on the
y-axis, and false alarms, on the x-axis (Figure 2)—as an observer becomes more or less likely
to say “old” (or “no change” in change detection tasks), that is, as their response criterion
changes. If an individual’s true ROC could be perfectly measured, without measurement noise
or reliance on simplifying and auxiliary assumptions, it would provide a direct window into the
latent distribution of memory signals, and thus reveal which view of memory is correct. As a
result, the importance of measuring and comparing ROCs has been identified and embraced in
a wide range of fields including decision-making, healthcare, and artificial intelligence (Fawcett,
2006).
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Figure 2. ROC curves of memory performance predicted by the two models. A threshold model
of working memory (e.g., K) predicts that ROC curves should be linear, as remembered items
contribute only to hit rate, whereas forgotten items contribute to both hit rate (from lucky
guesses) and false alarm rate (from unlucky guesses). By contrast, the most straightforward
signal detection theories without lapses or guesses dictate that while, on average, previously
seen items feel more familiar than previously unseen items (by an amount denoted by d'), noise
corrupts the familiarity signal for both previously seen and previously unseen items, which leads
to an overlap of familiarity strengths. Thus, the ROC should be curvilinear if all items are
represented with approximately equal d', and so the variation in familiarity is the same for
previously seen and previously unseen items, the curves should also be symmetric, as shown
here.

In the current work, we seek to evaluate which of these views of latent memory signals
(continuous vs. discrete) is accurate and should be used to measure performance. To do so,
we first need to determine the shape of the ROC that each model would predict: All-or-none
threshold models (where memories cannot vary in precision or strength), like the one used to
calculate K values, predict a linear ROC (Figure 2) because guessing contributes to both hits
and false alarms equally (thus generating a linear slope as a function of changes in response
criterion) while remembered items only contribute to hits (which determines the function’s
intercept; Luce, 1963; Krantz, 1969; Swets, 1986). On the other hand, the simplest signal
detection-based models without any lapses or guesses predict a symmetric curvilinear ROC
because as criteria change to include weaker and weaker signals, some previously seen and
some never-before-seen items get included in the overall distribution in a non-linear fashion
(this nonlinearity follows from the standard parametric assumption that the latent distribution of
memory signals is continuous and non-rectangular; Macmillan & Creelman, 2005; Swets, 1986;
Wixted, 2020). More complex ROC curves are also possible for signal detection-based models
that do not treat all memories as arising from the same simple process with a fixed memory
strength across all items (e.g., unequal variance signal detection models; Wixted, 2007; models



with a subset of all-or-none memories: Yonelinas, 2002; models with all-or-none guessing: Xie &
Zhang, 2017, etc.).

To measure the full ROC we need some way to measure response criterion. Typically this is
done either by eliciting confidence from participants on each ftrial, or by manipulating response
bias across different blocks of an experiment, usually by changing how often items are
genuinely old vs. new. In the study of long-term recognition memory, when trying to characterize
the source of memory signals and their variability, confidence-based ROCs (e.g., where you
simply ask people the strength of their memory on a Likert scale) are ubiquitous and are
effectively standard practice when performing old/new memory tasks (e.g., Benjamin, Tullis, &
Lee, 2013; Hautus, Macmillan, & Rotello, 2008; Jang, Wixted, & Huber, 2009; Koen, Barrett,
Harlow, & Yonelinas, 2016; Yonelinas, 2002; Wixted, 2007). However, visual working memory
researchers have often avoided collecting confidence-based ROC data and instead look to
manipulate response bias by changing the prior probability of a “same” vs. “change” response
(Rouder et al. 2008; Donkin et al. 2014; Donkin et al. 2016; though see Robinson et al. 2020;
Xie & Zhang, 2017). While results from response bias manipulations used to measure ROCs
have varied—embracing both threshold and signal detection views at different times (e.qg.,
Rouder et al. 2008; Donkin et al. 2014; Donkin et al. 2016)—our own recent work suggests this
is largely because the data in those studies are not particularly diagnostic (e.g., being very
limited in their range of response bias values) and because the model comparison metrics used
by the studies were not validated to ensure that they adequately recover the correct model
when using simulated data (Robinson et al., 2022). By contrast, data from confidence-based
ROCs of change detection in working memory is unequivocal: ROCs have always been found to
be curvilinear and most consistent with equal variance signal detection models (Robinson et al.
2020; Wilken & Ma, 2004; see also Xie & Zhang, 2017, who find visually equal variance curves
but do not test this class of model directly).

Notably, identifying and characterizing the shape of these curves is critical for distinguishing all-
or-none and continuous memories, but also for proper measurement of memory in change
detection tasks. For example, the threshold-based model of memory predicts that all points on
the line in Figure 2A reflect the same estimate of capacity whereas the equal variance signal
detection model predicts that all points on the curve in Figure 2B reflect the same level of
memory strength. Although there are areas where these functions overlap (particularly in the
middle), they substantially diverge towards the extreme ends of the spectrum—and
consequently give very different senses of which combinations of hits and false alarms
correspond to the same levels of performance for subjects or conditions that happen to differ in
response bias.

Thus, independent of arguments about the nature of the underlying memory signals, a strong
understanding of the shape of ROCs in change detection tasks is critical to the simple act of
computing performance and comparing it across conditions. In fact, a common critique of
threshold models of long-term memory is that they may confound variations in response bias
with variations in memory states, as ROCs in long-term memory are nearly always curvilinear
(e.g., Rotello, Heit, & Dube, 2015). If K values confound response bias with performance, as



they would if memories genuinely vary in precision (e.g., Bays et al. 2009; Zhang & Luck, 2008)
and thus ROCs are curvilinear, then this would potentially undermine a large body of work that
even partially relies upon K to draw strong conclusions about the nature of visual working
memory (e.g., Alvarez & Cavanagh, 2004; Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015;
Chunharas, Rademaker, Sprague, Brady & Serences, 2019; Endress & Potter, 2014; Eriksson,
Vogel, Lansner, Bergstrom, & Nyberg, 2015; Forsberg, Johnson & Logie, 2020; Fukuda &
Vogel, 2019; Fukuda, Vogel, Mayr & Awh, 2010; Fukuda, Woodman, & Vogel, 2015; Fukuda,
Kang & Woodman, 2016; Hakim, Adam, Gunseli, Awh & Vogel, 2019; Irwin, 2014; Luria &
Vogel, 2011; Ngiam, Khaw, Holcombe, & Goodbourn, 2019; Norris, Hall, & Gathercole, 2019;
Pailian, Simons, Wetherhold, & Halberda, 2020; Schurgin & Brady, 2019; Shipstead, Lindsey,
Marshall, & Engle, 2014, Sligte, Scholte, & Lamme, 2008; Starr et al. 2020; Unsworth, Fukuda,
Awh, & Vogel, 2014; Unsworth, Fukuda, Awh, & Vogel, 2015; Vogel & Machizawa, 2004;
Woodman & Vogel, 2008).

The current work

In the current work we address the possibility that K confounds response bias with performance
in a novel way and with minimal reliance on model comparison or other assumptions. We also
test whether the simplest equal variance signal detection model (and thus, d’) is a valid metric of
performance in this task, or whether a more complex ROC must be assumed (e.g., with both
signal detection and lapses). In Experiment 1, we first measure confidence-based ROCs in a
typical visual working memory change detection task to provide a baseline for simulations and
for the core experiment, Experiment 2. We find that confidence-based ROCs are curvilinear and
extremely consistent with the prediction of an equal variance signal detection model (replicating
the results of Robinson et al. 2020). As part of our modeling and analysis, we also describe
evidence against views that challenge the interpretation of curvilinear ROC functions
constructed from confidence ratings. Next, in a simulation, we investigate how each metric
would vary if these curvilinear ROCs genuinely reflect the latent memory strength distribution of
participants, consistent with the most straightforward equal variance signal detection theory
model of working memory performance (Wilken & Ma, 2004; Schurgin et al., 2020). We find
that K should drastically misrepresent true memory in this scenario. For example, K wildly
underestimates performance for subjects with conservative response criteria (e.g., for
participants who rarely say "same" unless very confident) and such participants are quite
common in existing large-scale datasets at high set sizes (Balaban, Fukuda & Luria, 2019).

In Experiment 2, a novel and pre-registered study, we examined whether estimates of K
spuriously varied across manipulations of response bias in a way that does not depend on
model comparisons or confidence to assess latent memory strength. In particular, we compare
K and d’in a completely standard change detection experiment with performance in a different,
across-participant condition where participants are adaptively encouraged to shift their response
bias if it is excessively conservative. We find that these adaptive instructions increase estimates
of K by a large factor (e.g., they “improve” working memory capacity, as measured by K, by
30%) but produce no such effect when performance is measured with d'. This provides strong
evidence that the latent distribution of memory signals is best captured by the curvilinear ROC
that is implied by equal variance signal detection models and implores the use of d' (Figure 2).
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Furthermore, this result adds experimental evidence against the existence of all-or-none
memories and the use of K values. In Experiment 3, we replicate our critical result in another
pre-registered study with a different set size and with the addition of a visual mask. This
experiment demonstrates the generality of our results across memory load demands and rules
out the contribution of alternative memory processes (e.g., iconic memory). Overall, we suggest
that a major rethinking of conclusions based on K values or other threshold measures is
required for cumulative progress to be made in understanding visual working memory.
Furthermore, we by showing that d’ appears to be a reliable measure of memory even across
changes in response criterion, we provide evidence in favor of the simplest equal variance
signal detection model (e.g., Schurgin et al. 2020) and evidence against models based on a
mixture of signal detection and guesses/lapses.

Experiment 1: Receiver operating characteristics in change detection

While confidence-based ROCs are prevalent in long-term recognition memory experiments
using the old/new paradigm they are rarely examined in visual working memory, with few
exceptions (e.g., Robinson et al., 2020; Wilken & Ma, 2004; Xie and Zhang, 2017). This
experiment was designed to collect such data in a prototypical visual working memory task
using change-detection with a large number of confidence bins (Figure 3). This provides a
replication of previous work and serves as the basis for the simulations that motivated our
critical test of signal detection vs. threshold views in Experiment 2.

Methods
® @ @ Report old/new,
® O + + then confidence (1-6)
o
500ms 1000ms Until report

Figure 3. Experiment 1 Task. Participants completed a change detection task at set sizes 1, 3
and 6 with 180 degree changes on the color wheel. After reporting whether the test item was old
or new (i.e., same or different), participants then reported the confidence of their decisions on a
1-6 scale (1 = no confidence, 6 = extremely confident), giving an overall 12 point confidence
scale.

Participants. All studies were approved by the Institutional Review Board at the University of
California, San Diego, and all participants gave informed consent before beginning the
experiment. Experiment 1 tested 70 undergraduate volunteers in our lab at UC San Diego, in
exchange for course credit. Our final sample of 67 participants allowed us to detect a within
subject effect as small as d, = 0.18 with power = .8 and an alpha of .5.
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Stimuli. Both experiments used a circle in CIE L*a*b* color space, centered in the color space at
(L =54, a=21.5, b=11.5) with a radius of 49 (from Schurgin et al. 2020).

Procedure. Participants performed 300 trials of a change detection task, 100 at set size 1, 100
at set size 3, and 100 at set size 6. The display consisted of 6 placeholder circles. Colors were
then presented for 500ms, followed by an 1000ms ISI. For set sizes below 6, the colors
appeared at random locations with placeholders in place for any remaining locations (e.g. at set
size 3, the colors appeared at 3 random locations with placeholders remaining in the other 3
locations). Colors were constrained to be at least 15° apart along the response wheel. After the
ISI, a single color reappeared at one of the positions where an item had been presented. On
50% of trials each set size, this was the same color that had previously appeared at that
position. On 50% of trials, it was a color from the exact opposite side of the color wheel, 180°
along the color wheel from the shown color at that position.

Participants had to indicate whether the color that reappeared was the same or different than
the color that had initially been presented at that location. After indicating whether the color was
the same or different from the target in the previous array using a key response, participants
then reported their confidence. Participants were presented an interval from 1-6 and had been
instructed that 1 meant “very unsure” and 6 meant “very sure” and to report their confidence
using the entire scale. It is important to note that defining the signal in terms of detecting
“changes” (i.e., correctly calling different items “different”) or “no changes” (i.e., correctly calling
same items “same”, as we do throughout) would have no consequences for our results. The
results of the metric based analysis would be identical regardless of which was defined as a
“hit”.

Three participants were excluded for performing near chance (>2 standard deviations below the
mean, according to both K and d’), leaving a final sample of N=67.

Data. These data were made available previously to be used in a database that consisted of
data from confidence studies (Rahnev et al. 2020). However, except for being included in that

public dataset, the data have not been previously published or written up.

Results

12
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Figure 4. Results of Experiment 1. ROCs are curvilinear across all set sizes (including set
size 1), as predicted by signal-detection-based views. (A) Individual participant ROCs. (B)
Group average ROCs and best fit model. The data points (aggregated across participants) are
shown as red dots; the gray line shows the best fit model of the best class of models, an equal
variance signal detection model.

The ROC data are visually curvilinear, both at the individual subject level and the group level
(Figure 4). To assess the shape of the ROCs quantitatively, and thus ascertain the preferred
measurement metric, we performed model comparisons independently for each participant and
each set size®. We compared three scenarios: (1) a linear, threshold-based ROC, as needed for
K values to be a valid metric, (2) an equal variance signal detection model, as needed for d'to
be a valid metric, and (3) an unequal variance signal detection model, which would suggest no
single metric from a binary change detection task (“same”/’change” with no confidence) can
adequately correct for response bias (see Brady et al. 2021 for a tutorial). To compare models
we used AIC since model recovery simulations by Robinson et al. (2020) demonstrated that AIC
was best calibrated for recovering the generative model from similar ROC data. Note, however,
that since the threshold-based model (K) and the equal variance signal detection model (d")

3 Note that it is possible to test other aspects of the K model simultaneously with testing its shape, like
how fixed it is across set sizes (as done by Rouder et al. 2008). However, this confounds both aspects of
the model—whether ROCs are linear or curvilinear, and whether performance drops as expected across
set sizes (Robinson et al. in prep)—and what we are interested in is the shape of the ROC within a set
size, as this is what decides whether the K metric, the d’ metric or neither are valid.

13



have equal numbers of free parameters, comparing their AIC is the same as comparing their log
likelihood directly with no penalty for complexity, so the use of AIC is relevant only for
comparing the unequal variance signal detection model to the other two models.

Overall, we found strong evidence favoring signal detection-based models over the threshold
model, and further evidence in favor of the simplest equal variance signal detection model
underlying d’. A difference greater than 10—which provides 10 to 1 support for one model over
the other—is considered conclusive evidence in terms of AIC. Despite an equal number of
parameters, the equal variance signal detection model was strongly preferred to the threshold
model, with AIC differences favoring it by 244.8 at set size 1, 1479.2 at set size 3, and 1749.5 at
set size 6. These outcomes were also reliable per participant (1(66)=2.81, p = .007, d,= 0.34;
t(66) = 8.74, p < .001, d,=1.07; {(66)=11.96, p < .001, d, = 1.46). The AIC difference between
the threshold model and the unequal variance signal detection also favored the signal detection
model: 188.5, 1548.7, and 1694.4 across set sizes. Each of these was also reliable when
calculated per participant instead of summed over all participants ({(66) = 2.12, p = .038, d, =
0.26; {(66) = 8.75, p <.001, d, = 1.07; £{(66) = 11.61, p <.001, d, = 1.42). Finally, comparing
equal and unequal variance signal detection models provided support for the equal variance
model, validating d' as a valid metric of change detection performance. In particular, the AIC
preference for the equal variance model was 56.3, 30.5 and 55.2 across set sizes; and this
preference was largely reliable across participants as well (1(66) = 6.85, p <.001, d, = 0.84;
t(66) = 1.79, p = .077, d, = 0.22; 1(66)=4.57, p < .001, d.= 0.56).

Evidence for equal variance signal detection as the preferred model of the ROC data validates
the idea that change detection alone (without confidence ratings) can be used to measure visual
working memory, as long as d'is used as the dependent measure. Notably, this is unlike the
result typically found in long-term recognition, where unequal variance signal detection models
are nearly always preferred to equal variance models and thus d'is rarely a universally valid
metric (e.g., DeCarlo, 2010; Mickes, Wixted, & Wais, 2007; Starns, Ratcliff, & McKoon, 2012;
Yonelinas, 2002; Wixted, 2007). Symmetric, equal variance ROCs are consistent with the idea
that presented colors are strengthened to an approximately equal degree across trials, as one
would expect that heterogeneity in added memory strength for different old items should lead to
support for an unequal signal detection model (as there would be additional variance in
familiarity for seen items compared to unseen items; Wixted, 2007; Jang, Mickes & Wixted,
2012). It may be that asking participants to split attention equally between all items by making
them equally likely to be probed, using simple stimuli that are all approximately equally
attention-grabbing, and presenting them briefly, encourages a strategy of splitting memory
resources relatively equally. Thus, while d—and equal variance—are well supported in the
current task, the use of d' may not be valid in other conditions, like sequential encoding (Brady &
Stérmer, 2021; Robinson et al. 2020) or when items are differentially prioritized (Emrich et al.
2017), but has been validated as the appropriate measure here. Importantly, finding support for
an equal variance signal detection model also provides direct evidence against more
complicated mixture of signal detection theory and guesses or lapses (e.g., Xie & Zhang, 2017),
and provides evidence in favor of models that view all decisions as arising from a single signal
detection process with no separate guess state (e.g., Schurgin et al. 2020).
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Because of the theoretical importance of determining whether ROCs are symmetric vs.
asymmetric (for both determining whether d'is an appropriate metric and addressing the
conceptual question of whether there is heterogeneity across items in strength), we also used a
non-model-comparison-based test to examine whether there is evidence for equal variance
signal detection model. In particular, we computed z-ROCs by converting the hit and false alarm
rate to z-scores using a normal distribution. We then fit the z-ROCs with a linear model at set
sizes 3 and 6, where most participants were not at ceiling. Unequal memory strength between
items, as in an unequal variance signal detection model, results in z-ROC slopes below 1.0,
whereas an equal variance model predicts slopes of 1.0. We find these slopes are very close to
1.0 even at set size 6 (z-ROC slopes for set size 3: 1.06, SEM = 0.18 and set size 6: 0.96, SEM
= 0.04).

Using further descriptive analysis we examined whether the z-ROCs were consistent with
threshold or signal-detection models. Linear z-ROCs are predicted by signal detection theory
and curvilinear z-ROCs are predicted by threshold theories like K. Thus, threshold models, but
not signal detection models, predict a strong positive quadratic component when fitting a
polynomial model to the z-ROCs (Glanzer et al. 1999). As we had significant ceiling effects at
set size 1 and 3 in many participants when performing this analysis (which precludes our ability
to determine the z-ROC shape), we conducted this analysis only for the set size 6 data. We
found no evidence of the positive quadratic component predicted by high-threshold models (in
fact the mean z-ROC quadratic component trended negative, though not significantly: M= -0.13,
SEM 0.113,t(52)=1.28, p = .21).
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Figure 5. Confidence-accuracy curves, with error bars being across-subject standard errors of
the mean. These curves use a value for each participant only if that participant used that
confidence value on >=3 trials, and include only points where at least 25% of participants had
values assigned. Confidence closely tracks accuracy, and even at set size 6, the highest
confidence trials are quite accurate (89% overall for confidence level 6). However, as uniquely
predicted by signal detection models but not threshold models, there are high confidence false
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alarms and high confidence misses, and such trials are increasingly prevalent at high set sizes,
where memory gets weaker (0.67% at set size 1; 3.54% at set size 3; 12.1% at set size 6) .

Another prediction of signal detection models concerns high confidence misses and false
alarms. Signal detection models easily accommodate—and in many ways naturally predict*—
high confidence false alarms and high confidence misses; especially as the difference between
previously seen and previously unseen items in familiarity gets smaller (i.e., as memory strength
gets weaker). By contrast, threshold models do not make this prediction, and are most
consistent with a complete absence of high confidence false alarms. This is because in such
models, false alarms are typically purported to arise from a distinct process such as a “guessing
state” (Rouder et al., 2008), which participants are thought to be aware of® (e.g., Adam, Vogel &
Awh, 2017). We find data consistent with the signal detection view: there are high confidence
false alarms and high confidence misses, such frials are increasingly prevalent at high set sizes
as memory gets weaker (0.67% at set size 1; 3.54% at set size 3; 12.1% at set size 6), and this
difference is reliable across participants (set size 3>set size 1: 1(66)=6.37, p < .001, d,= 0.78;
set size 6 > set size 3: 1(66)=6.85, p < .001, d,= 0.84). While accommodations can be made to
account for high confidence false alarms in a single condition (e.g., by asserting signal-
detection-like noise that occurs after the memory read-out, at the confidence stage; Adam &
Vogel, 2017), it is hard to see how to parsimoniously accommodate the fact that such errors
occur only in some set sizes but not others within a threshold view.
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4t has been shown across many situations that participants’ criteria tend to be more stable across
conditions than expected by a strict likelihood ratio account (where a given confidence level always
matches a precise percent correct; e.g., Stretch & Wixted, 1998), and this is especially true with
interleaved trials, like the current experiment ( Rahnev, 2021). Signal detection models with this basic
property all predict high confidence false alarms and misses.

SThreshold accounts have alternatively attempted to explain high-confidence false alarms by assuming
that they reflect implicit demand characteristics to use the entire confidence scale; however, when tested
empirically, this assumption appears unsubstantiated (seen here, Figure 6, and in Delay & Wixted, 2021).
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Figure 6. Confidence values given by participants are spread more widely as set size
increases. Note that as in most change detection studies (see Simulation and Experiment 2),
participants have a response bias toward believing there was a change at high set sizes (e.g.,
being conservative in responding with confidence in "same"/"old").

A similar logic calls into question prominent accounts which have argued that it is possible to
explain curvilinear ROCs from confidence data with all-or-none, threshold memory models (e.g.,
Kellen & Klauer, 2015; Malmberg, 2002; Province & Rouder, 2012). Such models postulate that
even when participants are, in truth, infinitely certain of their response, they nevertheless give a
low confidence response sometimes, for instance, because the presentation of a confidence
scale makes “an implicit demand to distribute responses" across the scale (Province & Rouder,
2012). This account, however, does not predict the current data because participants do not, in
fact, spread their responses at all at set size 1; instead they do so only at the highest set sizes
(see Figure 6; nearly all responses cluster at the highest confidence at set size 1). To account
for this pattern, an account based on the idea that people seek to distribute their responses
despite truly infinitely diagnostic memories would have to postulate yet another factor that
explains why this response strategy varies across different set sizes; perhaps by incorporating
even more complex decision-based components. Our data implies that, for this to work,
participants would have to decide to add such response noise only for the set size 6 condition,
but not for the set size 1 condition. This seems extremely unlikely and far more complex than
simply presuming that participants have access to continuous strength memory signals that are
used to report confidence, which is an a priori prediction of signal detection accounts of memory
(see also Delay & Wixted, 2021).

Overall, we find clear evidence in favor of curvilinear ROCs and signal detection based models
which is wholly inconsistent with K as a valid metric of working memory performance. Model
comparison suggests the ROCs are best fit by an equal variance signal detection model,
consistent with d' as the appropriate measure of memory performance. The support for an equal
variance model goes beyond support for the general class of signal detection models (which
includes ones like mixture models, with additional guesses; Xie & Zhang, 2017). Instead, these
data support a view where all items are represented with noise, rather than a model where
some items are perfectly present in memory and others are completely absent in memory.
These findings also reveal the nearly symmetric (equal variance) nature of the ROC curves,
which provides tentative evidence that—in this task—all items are represented with
approximately the same memory strength, even at set size 6, given the nearly equal-variance
nature of the ROC curves (though this is only indirect evidence; see Spanton & Berry, 2020).

Simulation: Implications of confidence-based ROCs reflecting
underlying latent memory strength

We next turn to the potential implications of K values—and other threshold metrics, like percent
correct and hits minus false alarms—being mismatched with the empirical ROC. Then, in
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Experiment 2, we provide a critical test of whether the curvilinear ROCs we observe in
Experiment 1 truly reflect latent memory signals, as opposed to arising artifactually in
confidence-based ROCs.

First, what would happen if we took a binary change detection task and participants could only
respond “same” when their confidence was at, or above, a certain criterion? For illustration, here
we assume that a participant’s reported confidence is a direct readout of their memory states,
which we can use to track different levels of response criteria. Importantly, we do not make this
assumption in Experiment 2 (our core experiment) since it is not based on confidence
judgments. Using the empirical confidence data from Experiment 1, we can see how
performance, as measured by K or d', would change as the internal criterion were shifted in
Figure 7. Notably, d' remains constant as we measure criterion across possible confidence
values, whereas K incorrectly interprets different response criteria on the exact same data as
changes in true memory strength and thus alters the working memory “capacity.” In other words,
the K measure effectively conflates response bias with true memory strength. This occurs in
part because the ROC implied by d' effectively matches the actual ROCs observed in
Experiment 1. Thus, calculating d' using any possible confidence criterion as the cut-off for
saying “same” is the same as moving along the ROC predicted by the equal variance signal
detection model and, therefore, yields approximately the same d' for different levels of response
bias. By contrast, since the ROC implied by threshold models like K deviates from the shape of
the empirical confidence ROC, K values are much lower when criterions are extremely high or
extremely low compared to when they are less extreme and somewhere in the middle (except at
set size 1, where all models agree performance is essentially perfect). This is because the high-
threshold (linear) ROC approximates the empirically curvilinear ROC shape only in the center
and not for extreme criteria (see Figures 2 & 9).
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Figure 7. Metrics of visual working memory performance plotted for the group mean data from
Experiment 1, as a function of response criteria (applied to the confidence data). Because the
ROC implied by d' closely matches the actual ROCs observed in Experiment 1, calculating d'
using any possible confidence criteria as the cut-off for saying “same” gives approximately the
same d". By contrast, since the ROC implied by threshold models like K deviates from the shape
of the confidence ROC, K values are lower when the criteria are extremely high or extremely
low compared to the middle (except at set size 1, where all models agree performance is
essentially perfect). This is because the linear ROC predicted by K approximates the true
confidence-based ROC shape only in the center, and not for extreme criteria (see Figure 2).

A) 3,849 participants at set size4 B) 3,849 participants at set size 8
(from Balabanet al. 2019) (from Balabanet al.2019)
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Figure 8. Nearly all participants have low false alarm rates at both set size 4 and 8,
exacerbating the difference between d’ and K as metrics of performance. Response criteria are
particularly conservative at set size 8, where "misses” are quite common (i.e., hit rates are low)
but false alarms remain extremely rare.

Our simulation also makes clear that over a wide range of performance values and biases, K
and d' do not strongly diverge which is one reason that it has historically been difficult to tell
them apart (Figure 7). They do, however, diverge primarily at high set sizes and for conservative
response criteria (i.e., being reluctant to respond “same”). This divergence would not be
apparent unless such extreme response criteria extemporaneously occur in real data.
Unfortunately, they seem to be quite common. In fact, data from change detection tasks seem
to lead to extremely conservative responding in many situations. As an example, we reanalyzed
data from 3,849 people who completed a change detection task (Balaban, Fukuda & Luria,
2019) and found that at set size 4, 91% of participants had false alarm rates below .2, and at set
size 8, 68% of participants had a false alarm rate this low. By contrast, only 56% of participants
(at set size 4) and 12% of participants (at set size 8) had miss rates this low (see Figure 8).

As this is the exact situation where K values and curvilinear ROCs most strongly diverge, if the
ROCs implied by the confidence reports reflect true latent memory strengths, this is also the
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situation where K values would pick up largely on response criteria differences rather than
genuine differences in memory strength. Since many studies use a similar task design, this
raises the possibility that a large fraction of visual working memory results that rely on K values
may be incorrect, overestimating the cost of higher set sizes relative to low set sizes, and
particularly underestimating the performance of those participants with particularly conservative
response criteria. Even more troubling is the fact that in the Balaban et al. (2019) data, a full
20% of participants at set size 4, and 10% of participants at set size 8, had 0 false alarms in the
entire condition. This technically makes memory strength unknowable for these conditions and
while there are methods to correct for this problem, they each rely on assumptions that may not
always hold up (see Hautus, 1995).

How can we directly test whether the confidence-based ROCs reflect the true distribution of
latent memory strengths? While there are many possibilities, most depend on model fits that are
often opaque and that fundamentally depend on modeling assumptions (e.g., Rouder et al.
2008). Thus, in Experiment 2, we preregistered a novel and critical test of whether K or d' best
describes true latent memory strength distributions. Here, we use a simple manipulation that
takes advantage of the fact that participants tend to be very conservative at high set sizes (i.e.,
less likely to say “same”).

Experiment 2: A straightforward, confidence-free test of the nature of memory signals
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Figure 9. An exaggerated potential outcome of shifting a naturally conservative participant
(gray) to say "same" more often, in terms of the prediction of signal detection (d') and threshold
view (K). The more conservative the initial responding pattern is, the more the two models
dissociate in their prediction. By computing participants’ performance in the baseline condition—
the gray dot—in terms of K and d', and comparing it to their performance (again in K and d’)
when their decision criteria are shifted leftward, and thus their false alarm rates move rightward,
we can distinguish these models: an ideal metric would find the same level of performance
despite the shift, whereas a model that suggested memory had changed would be dispreferred.
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Experiment 2 takes advantage of the fact that participants are naturally conservative in
responding “same” at high set sizes and makes a critical prediction about how performance
should change when they are encouraged to say “same” more often. Consider a participant
(gray point in Figure 9) with very few false alarms. Such participants are typical in high set size
change detection experiments (see Figure 8). In signal detection terms, they are thought to
have a strong response bias. In threshold model terms, they are thought to nearly always say
“different” when they are “guessing”. If they could be encouraged to shift their criterion (i.e., to
say “same” more often), what would happen? Signal detection theory predicts a curvilinear
change in performance, such that saying “same” more often would proportionally add more hits
than false alarms, since it would involve shifting the criterion to allow for saying “same” to still
strong but overall slightly weaker memory signals, and strong memory signals are more likely to
be generated by items that were truly seen than by items that were not seen. The curvilinearity
is implied by the line of constant d' being curvilinear (Figure 9). Threshold models like K instead
predict that a shift in criterion (i.e., responding “same” more often) would change only the
responder’s guessing strategy; since participants have no idea what the answer is on such trials
(because they have no information about the probed item); therefore, saying “same” more often
would simply add an equal proportion of hits and false alarms to their responses (Figure 9).

This produces a strong potential dissociation: if the equal variance signal detection model
provides a better account of the underlying memory signals, encouraging more “same”
responses should result in the same d’, but considerably higher K values than the normal task.
This latter point can be inferred from our simulation (Figure 9); that is, if one were to fit the
threshold model (K) to the orange point in the plot, the predicted line (parallel to the diagonal
line of chance performance) would be well above the line projected from the gray point. By
contrast, if the threshold, guessing-based view is correct, encouraging “same” responses should
move along the linear K line, and should produce a large drop in d". This point can also be
inferred from Figure 9, because if the equal variance signal detection model were fit to the red
point, the corresponding projection for this model would be much lower than the original
projection from the gray point.

To test this, in Experiment 2 we compare performance in (1) a standard change detection task
at set size 8, with no special instructions and no requirement to report confidence with (2)
performance in a matched change detection task that involves an instructional modification
intended to discourage extremely conservative responding (adaptive instructions, where
participants are encouraged to respond “same” more often if they have fewer false alarms than
misses within a block of trials). Importantly, this design seeks to counterintuitively improve K,
rather than hurt K. While it is easy to imagine that unusual instructions could hurt performance
(e.g., by making the task more confusing or more difficult), there is no natural mechanism for
threshold models to predict that such instructions could improve performance relative to our
baseline of a standard change detection task.

Methods

The hypothesis, design, analysis plan and exclusion criteria for this study were preregistered:
https://aspredicted.org/blind.php?x=743fj8
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Participants. We preregistered a Bayesian analysis plan and a sequential sampling design
(following the recommendations of Schénbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017).
In particular, we planned to initially run N=50 non-excluded participants for each of the two
groups (Standard; Adaptive), and then calculate a Bayes factor comparing K values across the
two groups. We planned to continue iterating in batches of 10 per group until our Bayes factor
for the comparison of K was greater than 10 or less than 1/10th (e.g., provided 10:1 evidence
for or against the null). However, we achieved this Bayes factor in our first sample of N=50 per
group, so no sequential procedure was used in practice and N=50 per group was our final
sample size. The study was conducted online using participants from the UC San Diego
undergraduate pool. Our preregistered exclusion criteria were to exclude any trials where
reaction times were <200ms or >5000ms, and exclude and replace any participants who had
more than 10% of trials excluded; had a d'<0.5; or had K<1. This resulted in the exclusion of 41
participants. This is further explained and analyzed below.

Stimuli. The same color circle as Experiment 1 was used to generate stimuli, and the change
detection task was similar to that of Experiment 1, but with 8 placeholder circles rather than 6
and all trials at set size 8. Stimuli were shown for 1000ms with an 800ms delay. The shown
colors and the foil were again required to be 215 degrees apart on the color wheel.

Procedure. There were two between-subject experimental conditions, Normal and Adaptive.
Each group performed 450 trials of a set size 8 change detection task, with all changes being
maximally different colors (180 degrees on the color wheel). The trials were broken into 15
blocks of 30 trials, and after each block participants could take a short break. The entire task
took about 45 minutes.

In the standard-instructions group, participants simply performed this task in line with a
completely standard change detection task. Participants were not instructed to use any kind of
response policy, but simply told to respond "same" if they think no change occurred and
"different" if they think that a change did occur.

In contrast, in the adaptive-instructions condition, everything was the same at the beginning of
the experiment, with the standard instructions. However, participants were given an additional
set of instructions after each block if they had more "misses" than "false alarms" in that block (of
30 trials). These instructions encouraged them to shift their criterion (e.g., respond "same" more
often). In particular, they saw these instructions:

"You have been saying "different" more than "same," even though the trials are 50% same and
50% different. Focus on splitting your responses more evenly to improve your performance! To
do this, do not try to just say "same" all the time: instead, try to respond "different" only if you

"

are very sure it was different; otherwise respond "same".

Analysis. Based on the effect size in our pilot data, we estimated the effect size at
approximately a Cohen’s d of 0.5, and preregistered the scale of the alternative hypothesis in
the Bayes factor analysis with that in mind. Thus, our Bayes factors were calculated with our
preregistered Scaled-Information Bayes Factor with r=.5.
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Exclusions. 41 out of 141 participants were excluded using our preregistered criteria. These
participants were excluded because we preregistered a criteria of d'<0.5 or K<1 being
unsatisfactory, since such subjects are non-diagnostic of the difference in the models (the closer
a participant is to chance, the less distinction there is between a curvilinear and linear ROC). In
our experience, finding this level of poor performers is relatively typical of long online studies
with difficult tasks, such as the one shown here with a set size 8 memory task. However, a post-
hoc analysis of all participants, with no exclusions, gives a similar pattern to our main analysis
(a 16% gain in K from Normal to Adaptive and a -5% difference in d'). Notably, however, the
addition of many non-diagnostic participants at near chance performance level drags the effect
size for the difference in K down far enough (from d,= 0.64 in our preregistered sample to d, =
0.22 in the full sample) to make the evidence non-definitive. However, if we had planned to
analyze the data this way to begin with—uwithout exclusions of non-diagnostic participants—we
would not have preregistered such a large effect size for the alternative hypothesis in the Bayes
factor, nor stopped our iterated data collection plan with this number of participants. Therefore,
in our view the strength of evidence favoring d' over K is not affected in any meaningful way by
the exclusions.
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Figure 10. Results of Experiment 2. (A) The group average for normal and adaptive conditions
show that the adaptive condition was effective in getting participants to respond “same” more
often. The best fit d" and best fit K lines are shown for both conditions, though as their d' was
nearly identical, the orange d’ is obscured by the red one. (B) Violin plots of the distribution of K
and d' values for each participant in each condition. The median K value (black line) “improved”
by nearly 30% with the adaptive instructions, whereas the median d' was nearly identical
between conditions.

Overall we found that individuals can increase their “working memory capacity” (as measured by
K) simply by shifting their response criteria. In particular, we found a substantial gain in K values
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for the adaptive-instruction conditions (median gain: 29.04%) and almost no difference in d'
between groups (median gain: 1.01%; Figure 10). A Bayes factor greater than 10 is considered
strong and greater than 20 is considered to be decisive evidence. The Bayes factor that the K
value differed between the groups was favored by greater than 20 (BF 1o = 24.43) whereas the
null hypothesis of no difference between groups was favored for d' (BF 1o = 0.55). The same
results were found when using standard frequentist statistics, with a highly reliable difference in
K (t(98)=3.19, p = .002, d=0.64) and no difference in d' between groups (1(98)=0.96, p = .338,
d=0.19). We note here that these differences in memory estimates are based on the metrics of
each measure obtained from direct transformations of the data, with no model fitting.
Accordingly, these metrics are not subject to common criticisms regarding differential model
flexibility or overfitting (unlike the results of e.g., Rouder et al. 2008, which appear to arise from
the particular assumptions used in the model fits: Robinson et al. 2022).

This provides strong evidence that d', but not K, successfully adjusts for response bias changes.
It suggests that K systematically underestimates performance when responses are very
conservative, as they generally are at high set sizes. It also provides a strong validation of the
confidence-based ROC curves found in Experiment 1, which seem to truly reflect the latent
memory signals used to make “same”/"different” judgments. Notably, this large change in K
occurs even though we did not manipulate response criteria in the “Normal” group at all.
Nonetheless, the on-average conservativeness of the criteria used in standard change detection
was sufficient to create this strong dissociation between K and d'".

Overall then, Experiment 2 shows that K conflates response bias with memory, whereas d’ does
not. This provides evidence both against the threshold model underlying K, but also in favor of
the equal variance signal detection model (as opposed to more complex signal detection-based
models that allow for guesses or lapses).

Experiment 3: Excluding contributions from limitless memory storage

Some previous work has claimed that—even with delays that are longer than the commonly
accepted limitations of iconic memory (e.g., 800ms, in Experiment 2)—a residual perceptual
trace can contribute to performance thus adding to the computations and limitations of working
memory alone. In theory, this could cause memory to look more continuous when it is actually
discrete (e.g., Rouder et al. 2008). Thus, to test this hypothesis and to thoroughly explore the
dichotomy between discrete and continuous memories, in Experiment 3, we replicated
Experiment 2 but followed the methods of Rouder et al. (2008)—one of the few papers claiming
evidence for threshold-like performance (though see Robinson et al. 2022)—in adding a visual
mask before the change detection test.

Here, our logic was otherwise the same as in Experiment 2: We assessed the shape of the
ROC curve underlying memory performance without the need for model comparisons or
confidence. We used instructions that should improve performance relative to the baseline of a
standard change detection task, if and only if a measure implies the wrong ROC. Because the
task was harder with the masks, we used set size 6 instead of set size 8; which also allowed us
to assess the generality of our conclusions with regard to set size.
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Methods

The hypothesis, design, analysis plan and exclusion criteria for this study were preregistered:
https://aspredicted.org/DDL_SFP

Participants. This study was conducted online using participants from the UC San Diego
undergraduate pool. We expected a smaller effect size in comparing the conditions here since
we expect that, at set size 6, participants should have less extreme response criterion in the
standard condition, so K should underestimate their performance less-so than when working
memory is taxed with eight items. However, because we were using a sequential sampling
procedure, this expectation of reduced effect size also affected our sample size planning,
compared to Experiment 2. In particular, we again preregistered a Bayesian analysis plan and a
sequential sampling design. We again planned to initially run n=50 non-excluded participants for
each of the two groups (Standard; Adaptive), and then calculate a Bayes factor comparing K
values across the two groups. As in Experiment 2, our Bayes factors were calculated with our
preregistered Scaled-Information Bayes Factor with r=.5. We continued iterating in batches of
10 per group until our Bayes factor for the comparison of K was greater than 10 or less than
1/10th (e.g., provided 10:1 evidence for or against the null). In this case, we iterated until we
had n=80 participants per group (total sample size of 160), where we achieved the required
Bayes factor. Our preregistered exclusion criteria were to exclude any trials where reaction
times were <200ms or >5,000ms, and exclude and replace any participants who had more than
10% of trials excluded; had a d'<0.5; or had K<1. This resulted in the exclusion of 36
participants. This is further explained and analyzed below.

1000ms . ' . .

until response

Figure 11. Task in Experiment 3. Participants saw 6 colored circles, then after a brief delay a
visual mask appeared before the change detection test display appeared. Here, as in
Experiment 2, participants simply responded whether the probed item was the same or different;
compared to the item that was shown in that location (a “same” response would elicit a hit for
the above example).
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Stimuli. The change detection task was similar to that of Experiment 2, but with 6 placeholder
circles and all trials at set size 6. Stimuli were shown for 1000ms with a 500ms delay and then a
300ms visual mask (See Figure 11). The shown colors and the foil were again required to be
215 degrees apart on the color wheel.

Procedure. There were two between-subject experimental conditions, Normal and Adaptive.
Each group performed 450 trials of a set size 6 change detection task, with all changes being
maximally different colors (180 degrees on the color wheel). The trials were broken into 15
blocks of 30 trials, and after each block participants could take a short break. The entire task
took about 45 minutes.

In the standard-instructions group, participants simply performed this task in line with a
completely standard change detection task. Participants were not instructed to use any kind of
response strategy, and were simply told to respond "same" if they think no change occurred and
"different" if they think that a change did occur. In contrast, in the adaptive-instructions
condition, everything was the same at the beginning of the experiment, with the standard
instructions. Here, at the end of a particular block, participants were given an additional set of
instructions if they had more "misses" than "false alarms" in that block (30 trials). These
instructions encouraged them to shift their criterion from conservative to neutral (e.g., respond
"same" more often). In particular, they saw these instructions:

"You have been saying "different” more than "same," even though the trials are 50% same and
50% different. Focus on splitting your responses more evenly to improve your performance! To
do this, do not try to just say "same" all the time: instead, try to respond "different" only if you

"

are very sure it was different; otherwise respond "same".

Exclusions. 36 of 196 participants were excluded using our preregistered criteria. These
participants were excluded because we preregistered a criteria of d'<0.5 or K<1 being
unsatisfactory, since such subjects are non-diagnostic of the difference in the models (the closer
a participant is to chance, the less distinction there is between a curvilinear and linear ROC).
Once again, a post-hoc analysis of all participants, with no exclusions, produces a similar
pattern to our main analysis (a 13.6% gain in K from Normal to Adaptive and a decrease of -
5.8% in d').

Results
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Figure 12. Results of Experiment 3. (A) The group average for normal and adaptive conditions
show that the adaptive condition was effective in getting participants to respond “same” more
often. The best fit d’ and best fit K lines are shown for both conditions, though as their d’ was
nearly identical, the orange d’ is obscured by the red one. (B) Violin plots of the distribution of K
and d' values for each participant in each condition. The median K value (black line) “improved”
by nearly 30% with the adaptive instructions, whereas the median d’ was nearly identical
between conditions.

As in Experiment 2, we again found that individuals can increase their “working memory
capacity” (as measured by K) simply by shifting their response criteria. In particular, we found a
substantial gain in K values for the adaptive-instruction conditions (median gain: 14%) with no
reliable difference in d’ (median change: -4%). A Bayes factor greater than 10 is considered
strong and greater than 20 is considered to be decisive evidence. The Bayes factor that the K
value differed between the groups was favored by greater than 20 (BF 1, = 27.83) whereas the
null hypothesis of no difference between groups was favored for d' (BF1 = 0.31). The same
results were found when using standard frequentist statistics, with a highly reliable difference in
K (t(158)=-3.16, p=0.002, d=0.50) and no difference in d' between groups (t(158)=-0.30,
p=0.765, d=0.05).

While the results for the improvement in K were statistically significant in the frequentist test—
even with the original n=50 groups (1(98)=-2.60, p=0.011, d=0.52)—our sequential sampling
design led to much more decisive evidence as we increased the samples to meet our
preregistered Bayes criterion. At each sequential sampling step (n=50, 60, and 70 per group),
the Bayes factor was 6.3, 7.9, and 9.9, respectively; which is considerably lower than the
strength of evidence that we found in our final sample (n=80; 27.83 to 1). The Bayes factors for
d’ favored the null for all four sample steps 0.37, 0.34, 0.32, and 0.31, respectively.

Overall, we replicated Experiment 2 and found that visual masks do not obscure the continuous
nature of visual working memories. Once again, we found strong evidence that d', but not K,
successfully adjusts for response bias changes, and that K systematically underestimates
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performance when responses are very conservative, as they generally are at high set sizes.
Overall then, Experiment 3 again shows that K conflates response bias with memory, whereas
d’ does not. This again provides evidence both against the threshold model underlying K, but
also in favor of the equal variance signal detection model (as opposed to more complex signal
detection-based models that allow for guesses or lapses).

General Discussion

Across three experiments, we examined the nature of the latent memory signals used in change
detection tasks and the implications for proper measurement of performance in change
detection. We compared a theory that sees these signals as continuous in strength—signal
detection theory—uwith a threshold-based view, where memory signals are all-or-none. In
Experiment 1, we found evidence from confidence reports that memory was continuous in
strength, with support for equal variance signal detection models, suggesting not only that signal
detection theory was a more accurate measure of performance but also that there is no need for
additional assumptions about guesses or lapses to be added to the simplest instantiation of
signal detection theory. We then tested a critical implication of this result in Experiment 2: that,
while d’ should remain constant, K values should systematically underestimate performance in
standard change detection experiments for participants who rarely false alarm. We found strong
evidence for this hypothesis, with a Bayes factor of 24 to 1 in favor of the finding that K is not
fixed across simple instruction changes. This provides strong evidence against threshold-based
measures like K because, while it is possible to imagine that instructional changes could hurt
performance, there is no natural mechanism for threshold models to predict that such
instructions could increase memory capacity. Furthermore, d' was nearly constant, which
suggests that the confidence-based ROCs observed in Experiment 1 straightforwardly underlie
performance in Experiment 2, and that a single decision axis that applies to all trials is sufficient
to explain performance without added assumptions about guesses or lapses. We then
replicated Experiment 2 at a different set size and with a visual mask in Experiment 3 and again
found strong evidence that d'is fixed across response criterion changes whereas K, is not.
Thus, our findings suggest that visual working memories are best thought of as continuous in
strength and best analyzed in terms of signal detection measures, and that there is no need for
added guess or lapse parameters to account for change detection performance even at the
highest set sizes (see also Schurgin et al. 2020; Robinson et al. 2020; Brady et al., 2021).

In terms of proper measurement of performance, we find that K values are not a good match to
the actual shape of ROCs in change detection since ROCs are curvilinear and are thus best
characterized by d', not K. Unfortunately, this means nearly all conclusions based on K values
are potentially suspect, as they do not properly discount differences in response criteria, and
thus measure a combination of response criteria and memory performance. Furthermore,
Experiment 2 shows this effect is not subtle: comparing a completely typical response criteria to
one that is more symmetric (with respect to misses and false alarms) results in an
underestimate of performance when using K by 30%. Conditions that induce even more
conservative responding, or that include individual subjects with more conservative criteria, will
be even more influenced by the failure of K to correctly adjust performance for response criteria.
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How much of K is a measure of response bias rather than a memory measure under typical
conditions? A multiple regression, comparing K values computed in all subjects in Experiments
2 and 3’s normal, non-adaptive condition, with the true measure of memory strength that
matches the ROC (d’) and with response criterion (c), suggests that K values are about 1/3rd
measures of response bias and 2/3rds measures of memory strength (after centering and
scaling, a participant’s K is best predicted by a 0.77 weight on d’ and a -0.45 weight on ¢, both
p<0.001). Thus, under standard change detection conditions, a participant's K is extremely
strongly influenced by that participant's response bias, and K is nearly as much a measure of
response bias as it is a measure of memory performance.

Throughout the manuscript, we focus on K values because they have been, and continue to be,
extremely common in visual working memory experiments (see Alvarez & Cavanagh, 2004;
Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015; Endress & Potter, 2014; Forsberg, Johnson
& Logie, 2020; Fukuda & Vogel, 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam, Khaw,
Holcombe, & Goodbourn, 2019; Norris, Hall, & Gathercole, 2019; Pailian, Simons, Wetherhold,
& Halberda, 2020; Schurgin & Brady, 2019; Shipstead, Lindsey, Marshall, & Engle, 2014; Sligte,
Scholte, & Lamme, 2008; Unsworth, Fukuda, Awh, & Vogel, 2014; Vogel & Machizawa, 2004;
Woodman & Vogel, 2008). However, percent correct and corrected hit rate (i.e., hits minus false
alarms) also predict linear ROC curves (e.g., Swets, 1986) and thus are also invalid measures
of memory performance according to our data. Another popular metric of performance in related
tasks is A’ (e.g., Fisher & Sloutsky, 2005; Hudon, Belleville, & Gauthier, 2009; Lind & Bowler,
2009; MacLin & MacLin, 2004; Poon & Fozard, 1980; Potter, Staub, Raud, & O’Connor, 2002;
Reppa, Williams, Greville, & Saunders, 2020), and while this measure is claimed to be
“atheoretical” and non-parametric by its proponents (Hudon, Belleville, & Gauthier, 2009;
Snodgrass & Corwin, 1988; Pollack & Norman, 1964), in truth there exists no measure of
memory derived from a single hit and false alarm rate that is atheoretical and non-parametric
(Macmillan & Creelman,1996). Unlike K, A’ predicts ROC curves that are curvilinear, though
differently curvilinear than d' (Stanislaw & Todorov, 1999), and so may be less likely to confound
response bias and memory strength than K. Unlike d', however, which is based on theoretically
plausible assumptions (latent memory signals for old and new items are distributed as equal-
variance Gaussian distributions with different means), A’ embraces theoretical assumptions that
are implausible when made explicit (e.g., Macmillan & Creelman, 1996; Pastore, Crawley,
Berens & Skelly, 2003; Wixted, 2020).

Overall, our results suggest d' should be the preferred measurement metric for change detection
data, as d'was constant across changes in response bias (Exp. 2, 3) and matched the shape of
the ROC (in Exp. 1). This provided evidence not only in favor of signal detection models but also
in favor of the simplest kind of single-process signal detection model, without any additional
need for lapses or guesses.

However, even though the current studies find evidence for equal variance signal detection

models, and thus d', it may not be the case that an equal variance signal detection model is
always appropriate (see also Robinson et al. 2020). It may be that our experiments are ideal for
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finding equal variance because memory resources tend to be split relatively evenly between
items in this task: we ask participants to split attention equally between all items by making them
equally likely to be tested; by using simple stimuli that are all approximately equally attention-
grabbing and thus likely to be encoded and maintained with roughly equal resources; and by
presenting these stimuli only briefly.The use of d' may not be valid in other conditions, like
sequential encoding (Brady & Stoermer, 2021; Smith et al. 2016; Robinson et al. 2020) or when
items are differentially prioritized (Emrich et al. 2017). Thus, in general, 2-alternative forced-
choice, rather than change detection, is likely a better “default” method for a range of working
memory tasks (see Brady et al. 2021). Another possibility is that continuity in memory strength
is related to the stimulus space; that, by using categorical stimuli, instead of continuous spaces
(like we've done here with color), one might find evidence for discreteness in memory. However,
recent work which has used discrete, categorical stimuli in visual working memory has also
found curvilinearity in the ROC and rejected discrete models as adequately explaining the data
(e.g., Robinson et al., 2020 used 8 discrete colors). In general, the notion of discrete or
categorical stimuli and discrete or all-or-none memory strength are different notions of
discreteness: even for discrete stimuli, like words, memory strength is usually thought to be
continuous (e.g., Mickes, Wixted & Wais, 2007).

While we have found strong evidence in favor of curvilinear ROC curves here, previous work
that investigated ROC curves in change detection has found mixed results. Confidence-based
ROC curves have reliably been found to be curvilinear and approximately in line with equal
variance signal detection models (e.g., in Robinson et al. 2020; and visually in Xie & Zhang,
2017°) however, results from response bias manipulations across a small range of values have
provided data that were initially taken to support threshold views (Rouder et al. 2008).
Interestingly, when followed up on, other results have provided more mixed results, with less
certain support for threshold models of memory (Donkin et al. 2014; Donkin et al. 2016). Our
own reanalysis of the data from these studies suggest that when model comparisons are
properly calibrated to ensure accurate model recovery from simulated data, they all provide
support for signal-detection views and are largely in agreement with confidence ROCs
(Robinson et al., 2022). Experiments 2 and 3 are unique in taking an approach that is
independent of any model comparisons to ask whether changes in response bias are naturally
accounted for by threshold and/or signal detection views. The results from this experiment
provided strong support for the curvilinear nature of ROCs and thus for d'as the standard metric
of visual working memory performance when using change detection tasks.

Above and beyond the question of whether K measures (Cowan, 2001; Pashler, 1988; Rouder,
Morey, Morey, & Cowan, 2011) are valid, it is important to ask whether curvilinear ROCs—as
we observe in both confidence and response bias manipulations—sufficient to reject high-
threshold views altogether? There is substantial convergent evidence to suggest that they are.
When considering confidence based ROCs at a single level of performance at a time, it is
possible to construct high-threshold models of curvilinear ROCs. For example, Province and
Rouder (2012) propose that even when participants are, in truth, completely certain of their

6 Note that these authors do not attempt to fit an equal variance signal detection model, but their ROC is
visually consistent with such a model.
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response, they may nevertheless give a low confidence response because the experimenter, by
presenting a confidence scale, is making "an implicit demand to distribute responses" across
the provided scale. However, in the context of mixed set size trials like the current Experiment 1,
this account cannot predict the data we have observed here. This is because participants do
not, in fact, spread their responses at all at set size 1, and instead do so only at the highest set
sizes.

Even more compelling, however, is that if memories were truly high-threshold and it is only
confidence reports that are noisy and lead to biased estimates of memory, this account predicts
that in Experiment 2—where there is no confidence elicited—K, and not d’, would be fixed
across our response criteria manipulation. Instead, we again found strong evidence for d’, not K
as the measure which appropriately accounts for response bias. Altogether, our results are
deeply incompatible with threshold-based views in several ways. They are not only consistent
with explanations based on signal detection models, but are directly in line with a priori
predictions from such models (as evidenced by our pre-registration). For example, our results
align with recent work by Winiger, Singmann and Kellen (2021) who used a novel critical test
with minimal assumptions to test between discrete-slot and signal detection models in a change
detection paradigm. Like us, these researchers found evidence for pure resource models of
visual-working memory using a test that eschews the limitations of fitting models to empirical
ROCs. Our work adds to and extends these findings by directly underscoring the profound
practical limitations, as well as the detrimental consequences for theory building that arise when
researchers use K to quantify the capacity of visual working memory.

In this context, we also highlight a major misconception in the working memory literature, which
is that discrete-slot models are equivalent to, or can be used as “proxies” for mixture models of
working memory. The fact that pure discrete-slot models are implicitly endorsed in change
detection paradigms through the use of K metrics, likely reflects a heuristic assumption that
these metrics are “good enough” approximations of mixture models. Importantly, however, this
assumption is misguided, since one cannot choose which fundamental aspects of a model to
embrace, and ultimately leads to a situation where response bias is heavily conflated with
memory performance, as we have shown here. Although both threshold and mixture models are
consistent with item-limits in working memory, threshold models and mixture models that
postulate variations in precision differ fundamentally; they predict different ROC curves and they
predict different distributions of errors in delayed estimation tasks (Xie & Zhang, 2017). Indeed,
the observation that precision varies monotonically with set size is why threshold-based
discrete-slot models were ruled out over a decade ago in delayed estimation tasks in favor of, at
minimum, mixture models that treat memory as variable in strength up to a certain number of
items (e.g., Zhang & Luck, 2008; Pratte et al. 2017). More recently, these have been replaced in
favor of completely continuous models that do away with additional assumptions about
complete failures (e.g., van den Berg et al. 2012; Scheegans et al. 2020; Schurgin et al. 2020).

We suspect that most working memory researchers would endorse the view that working

memory representations do not vary in precision. Nevertheless, that is precisely the view they
implicitly endorse by using K, and this is one fundamental point of our paper: measures of
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unobservable cognitive processes are constrained by theory, and researchers must carefully
consider the theoretical assumptions on which their metrics are based before using them (for in-
depth discussion of this issue see: Falmagne & Doble, 2016; Falmagne & Narens, 1983; Irvine,
2021; Kellen et al., 2021; Narens, 2002, 2007; Roberts, 1985; Roberts & Rosenbaum, 1986;
van Frassen, 2008). We believe a failure to do so will only perpetuate invalid measurement
practices in the psychological and cognitive sciences, and perpetuate the “replication crisis” in
psychology (for similar points in recent articles see: e.g., Brady et al., 2021; Kellen et al., 2021;
Regenwetter & Robinson, 2017; Rotello et al., 2015; Schimmack, 2021).

In effect, our work highlights that a choice between these models and metrics, is not simply a
fickle theoretical concern; instead, the finding that K fails to dissociate variations in memory
strength from variations in response bias, while d' does not, entails that a choice between these
models can qualitatively change the inferences researchers draw regarding how memory
strength varies as a function of individual differences or experimental manipulations. Overall,
this suggests that, as in long-term recognition memory, visual working memory researchers
should consider memories as continuous in strength and use signal detection to measure
performance.

There are potentially broad implications for the fact that K values confound response bias with
memory performance, as K values underlie many critical conclusions about visual working
memory (Alvarez & Cavanagh, 2004; Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015;
Chunharas, Rademaker, Sprague, Brady & Serences, 2019; Endress & Potter, 2014; Eriksson,
Vogel, Lansner, Bergstrom, & Nyberg, 2015; Forsberg, Johnson & Logie, 2020; Fukuda &
Vogel, 2019; Fukuda, Vogel, Mayr & Awh, 2010; Fukuda, Woodman, & Vogel, 2015; Fukuda,
Kang & Woodman, 2016; Hakim, Adam, Gunseli, Awh & Vogel, 2019; Irwin, 2014; Luria &
Vogel, 2011; Ngiam, Khaw, Holcombe, & Goodbourn, 2019; Norris, Hall, & Gathercole, 2019;
Pailian, Simons, Wetherhold, & Halberda, 2020; Schurgin & Brady, 2019; Shipstead, Lindsey,
Marshall, & Engle, 2014; Sligte, Scholte, & Lamme, 2008; Unsworth, Fukuda, Awh, & Vogel,
2014; Unsworth, Fukuda, Awh, & Vogel, 2015; Vogel & Machizawa, 2004; Woodman & Vogel,
2008). For example, one major research domain for which our results could have profound
implications is the study of how visual working memory capacity relates to global indices of
cognitive function (Luck & Vogel, 2013; Vogel & Awh, 2008). As a case in point, much of the
foundational work that examines the relationship between visual working memory limits and
general intelligence has used K in change detection paradigms to quantify visual working
memory limits (e.g., Fukuda, et al., 2010). Such studies tend to use high memory loads with the
goal of placing sufficiently high memory demands in order to detect individual differences in
visual working memory capacity. Our simulations and empirical results reveal that these types of
memory demands are precisely the kind that can lead to changes in response bias, and that
variations in K estimates lead to spurious conclusions as to the source of these purported
correlations with intelligence. Given that much prior works suggests that there are substantial
individual differences in response bias (Aminoff et al., 2012; Kantner & Lindsay, 2012; Miller &
Kantner, 2020), it follows that a substantial part of the shared variance between intelligence and
VWM capacity in such studies could instead reflect an association between intelligence and
response bias. An analogous criticism has been repeatedly made in the study of the relationship
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between intelligence and cognitive control, where it remains unclear whether associations
between intelligence and performance on cognitive control (e.g., Eriksen Flanker tasks) reveal
shared variance between executive function and intelligence, or shared variance between
individual differences in third variables, such as response policies (e.g., speed/accuracy
tradeoffs in cognitive control tasks) and intelligence (e.g., Burgoyne & Engle, 2020; Frischkorn &
Schubert, 2018). We are not attempting to promote the view that all of the shared variance
between intelligence and visual working memory capacity is due to response bias. Instead, we
view this as an open empirical question that needs to be examined further with alternative
measures of visual working memory capacity. More broadly, we emphasize that much of the
work on individual differences and VWM capacity should be re-evaluated with a much heavier
focus on proper measurement.

Overall, we show that in change detection, K values substantially confound response bias with
memory performance, and should not be used. Instead, d’' should be the preferred metric of
change detection performance. More broadly, this work shows how using the proper metric to
understand memory performance is critical, since incorrect metrics can give extremely
misleading conclusions (e.g., underestimating performance by ~30%), with potentially broad
implications for the literature. Furthermore, our work suggests that an equal variance signal
detection model — with no additional guess or lapse processes — is sufficient to explain change
detection performance at high set sizes.
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Data Availability

Our data and code are available at https://osf.io/d5jw3/
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