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Abstract 

Change detection tasks are commonly used to measure and understand the nature of visual 

working memory capacity. Across two experiments, we examine whether the nature of the 

memory signals used to perform change detection are continuous or all-or-none, and consider 

the implications for proper measurement of performance. In Experiment 1, we find evidence 

from confidence reports that visual working memory is continuous in strength, with strong 

support for an equal variance signal detection model with no guesses or lapses. Experiments 2 

and 3 test an implication of this, which is that K should confound response criteria and memory. 

We found K values increased by roughly 30% when criteria is shifted despite no change in the 

underlying memory signals. Overall, our data call into question a large body of work using 

threshold measures, like K, to analyze change detection data. This metric confounds response 

bias with memory performance, and is inconsistent with the vast majority of visual working 

memory models, which propose variations in precision or strength are present in working 

memory. Instead, our data indicate an equal variance signal detection model (and thus, d') – 

without need for lapses or guesses – is sufficient to explain change detection performance. 

 

Keywords: visual working memory capacity, resources, discrete-slots, models of memory, 

signal detection theory, proper measurement 

 

Public Significance Statement: Visual working memory is an essential, capacity limited 

system that has been linked to many cognitive abilities such as fluid intelligence and reading 

comprehension. Because of its importance, researchers need valid measures of its capacity that 

separate true differences in memory performance from other factors, like participants’ response 

strategies. Here we show that the most common measure of visual working memory capacity 

does not accurately separate response strategy from memory performance. We show this by 

showing we can artificially inflate estimates of capacity using this metric with a simple instruction 

change, which should have no effect on memory. We show an alternative metric is more 

accurate and suggest it should be used instead. These findings call into question research that 

has used this flawed metric to make connections between working memory capacity and other 

cognitive functions. 
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Introduction 

Working memory and its capacity constrains our cognitive abilities in a wide variety of domains 

(Baddeley, 2000). Individual differences in capacity and control predict differences in fluid 

intelligence, reading comprehension and academic achievement (Alloway & Alloway, 2010; 

Daneman & Carpenter, 1980; Fukuda et al., 2010). These extensive links to various cognitive 

abilities make the architecture and limits of working memory of particular interest to many fields 

of study (e.g., Cowan, 2001; Miyake & Shah, 1999). One especially well studied component of 

this system is visual working memory, which holds visual information in an active state, making 

it available for further processing and protecting it against interference. This memory system 

has an extremely limited capacity: We struggle to retain accurate information about even three 

to four visual objects for just a few seconds (Luck & Vogel, 1997; Ma, Bays, Husain, 2014; 

Schurgin, 2018; Schurgin et al. 2020).  

 

Over the past 20 years, a vast number of studies have investigated important issues in visual 

working memory. For example, many researchers have focused on how flexibly we can allocate 

our working memory resources to different numbers of objects (e.g.,“slots” vs. “resources”; 

Alvarez & Cavanagh, 2004; Awh, Barton, & Vogel, 2007) and whether different features of these 

objects are “bound” or stored separately (e.g., Luck & Vogel, 1997; Baddeley, Allen & Hitch, 

2011). Another major area of work has demonstrated that visual working memory capacity, even 

for simple displays (Figure 1a), is predictive of fluid intelligence as well as a host of other 

important cognitive abilities (Fukuda et al., 2010; Unsworth, Fukuda, Awh, & Vogel, 2014). 

Overall, significant progress has been made in understanding the nature of this memory system 

(e.g., Brady et al. 2011). 

 

Change detection cannot unambiguously measure memory performance 

However, many of the core conclusions about the nature of visual working memory come from 

tasks known as change detection tasks. These tasks are a variant of an “old/new” recognition 

memory paradigm in which participants are probed on their memory by being asked “Did you 

previously see this item?” or are prompted to identify an item as either “old” or “new.” In a typical 

visual working memory display (Figure 1), participants see several simple, isolated objects on a 

solid color background and are asked to hold these items in mind before being asked to detect 

whether a particular object changed after a brief delay (Luck & Vogel, 1997)1. Despite their 

ubiquity, change detection tasks cannot provide an unambiguous estimate of memory 

performance because any measure of performance from this task relies on assumptions about 

the distribution of memory signals which are often false and regularly unverified (see Brady et 

al. 2021).  

 

 

 

 
1 In the current work we will not consider the more complicated scenario where all items reappear and all 
could have changed, though the fundamental concern with threshold modes like K raised here applies 
equally in such experiments. 
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Figure 1. Change detection tasks have been critical to nearly all areas of the visual working 

memory literature, from early work by Luck and Vogel (1997) arguing for object-based limits on 

working memory capacity; to later work arguing for important effects of object complexity 

(Alvarez & Cavanagh, 2004); to work investigating benefits of knowledge about real-world 

objects to performance (e.g., Brady et al. 2009).  

 

Since change detection tasks provide two relevant measures of performance: hit rate (calling 

“same” items “same”) and false alarm rate (calling “different” items “same”), memory 

researchers must combine them in order to get a unified measure of performance. This 

introduces significant ambiguity into memory measurement since there are several choices for 

how to combine hits and false alarms into a quantitative measure of performances (e.g., d, A’, K 

values, percent correct, etc.), all of which rest on different, and sometimes incompatible 

theoretical and/or parametric assumptions (for a review, see Brady et al. 2021).  

 

One of the most common ways to combine hits with false alarms is to use “K” values [N * (hit 

rate - false alarm rate)], where N is the number of objects shown (Cowan, 2001; see also 

Pashler 1988, Rouder et al. 2011). This metric, which is technically based on double high-

threshold theory (Rouder et al., 2011), attempts to measure “how many objects” or “items” 

people remember and, since this is a particularly intuitive concept, it has ended up being 

extremely prevalent in the study of visual working memory (e.g., Alvarez & Cavanagh, 2004; 

Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015; Chunharas, Rademaker, Sprague, Brady & 

Serences, 2019; Endress & Potter, 2014; Eriksson, Vogel, Lansner, Bergstrom, & Nyberg, 2015; 

Forsberg, Johnson & Logie, 2020; Fukuda & Vogel, 2019; Fukuda, Vogel, Mayr & Awh, 2010; 

Fukuda, Woodman, & Vogel, 2015; Fukuda, Kang & Woodman, 2016; Hakim, Adam, Gunseli, 

Awh & Vogel, 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam, Khaw, Holcombe, & Goodbourn, 
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2019; Norris, Hall, & Gathercole, 2019; Pailian, Simons, Wetherhold, & Halberda, 2020; 

Schurgin, 2018; Schurgin & Brady, 2019; Shipstead, Lindsey, Marshall, & Engle, 2014; Sligte, 

Scholte, & Lamme, 2008; Unsworth, Fukuda, Awh, & Vogel, 2014; Unsworth, Fukuda, Awh, & 

Vogel, 2015; Vogel & Machizawa, 2004; Woodman & Vogel, 2008).  

 

However, despite the seemingly straightforward nature of K values, they depend on strong 

theoretical claims, just like any-and-all ways of combining hits and false alarms into a unified 

measure (Brady et al. 2021). These foundational claims – which are in conflict with a wide 

variety of accepted theories of working memory – deeply affect estimates of memory 

performance and the conclusions made based on K values. K is a slight variation on adjusted hit 

rate, percent correct and other measures that are all derived from a class of models called 

threshold models (Swets, 1986). K values rest on the assumption that memories are all-or-none: 

Items are either remembered in a way that is perfectly diagnostic, or not remembered at all. 

Under such a view, false alarms arise when there is zero information about an item in memory 

(i.e., they represent pure, informationless “guesses”) and, because false alarms tell you how 

often a participant was “guessing,” they can be used to adjust the hit rate for “lucky guesses” 

(hence the hits minus false alarms aspect of the K formula). Therefore, for K values to provide a 

valid measure of performance it must be the case that memories are never weak or strong, but 

are perfectly described by being either completely present or completely absent. This point 

applies to all variants of K measures since they all rest on the same theoretical foundation 

(Cowan, 2001; Pashler, 1988; Rouder, Morey, Morey, & Cowan, 2011).  

 

The processing assumptions of such a threshold model is at odds with a variety of findings from 

contemporary visual working memory studies and with nearly all visual working memory 

theories. Indeed, mainstream working memory models based on continuous reproduction data, 

rather than change detection data, accept the fact that memories vary in their precision: for 

example, an item is remembered more precisely at set size 1 than set size 3 (Zhang & Luck, 

2008; Bays et al. 2009; van den Berg et al. 2012; Schurgin et al. 2020). In addition, when 

participants express levels of confidence in their memory, variation in confidence tracks both 

how precisely an item is being remembered and how likely people are to make large errors 

(Rademaker et al. 2012; Fougnie et al. 2012; Honig et al., 2020). The combination of a variation 

in precision with a variation in confidence suggests that memories vary continuously in how 

strongly they are represented and that participants are aware of this variation in memory 

strength (see Schurgin et al. 2020). Theories where memories vary in precision or strength and 

participants have access to this precision or strength to make their decision undermine the 

foundational and irrevocable principles of the K metric and therefore make it an inappropriate 

metric for estimating memory performance. That is, K as a metric is based on the idea that 

memories either exist or do not exist, but variation in precision is critical to both models that do 

(Zhang & Luck, 2008; Adam et al. 2017) and do not (Bays, 2015; van den Berg et al. 2012; 

Schurgin et al. 2020) subscribe to “item limits” or some form of “slots”. Thus, while the use of K 

as a measure is extremely common, it appears to be at odds with the theories of nearly all 

visual working memory researchers. 
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In contrast to threshold metrics like K, variations in the precision of memory are naturally 

accommodated by Bayesian and signal detection-based models of memory that assume some 

axis of variation between memories that is used to make decisions about whether an item has 

been seen before or not (e.g., Wilken & Ma, 2004; Schurgin et al. 2020). Under a signal 

detection framework, memories are seen as continuously varying along an axis of strength of 

some kind, with decisions about whether an item has been seen made by applying a criterion to 

this axis. As a memory signal elicited by an item increases it becomes ever more 

distinguishable from noise, and this gives rise to confidence—as memory signal increases so 

too does confidence—and an observer’s decisions are based on criteria that they set based on 

their own confidence (see Wixted, 2020). This view denies the notion that memories are all-or-

none, present or absent, instead seeing memories as varying in some way (for example, in 

‘precision’ or ‘strength’). Variations on this signal detection framework have played a major role 

in nearly all long-term recognition memory research for over fifty years (e.g., Benjamin, Diaz & 

Wee, 2009; Kellen et al. 2021; Wixted, 2020; Wickelgren & Norman, 1966; Glanzer & Bowles, 

1976; Shiffrin & Steyvers, 1997; McClelland & Chappell, 1998; Heathcote, 2003).  

 

Once a model is used that is based on the idea that memories vary continuously and 

participants use this variation (e.g., in precision or strength) to make their decisions, the most 

natural decision is to simply apply this model to all trials without introducing any separate 

processes (like lapses or guesses). Thus, while signal detection-based models that also include 

lapses or guesses are possible (e.g., Xie & Zhang, 2017), in their most basic form, signal 

detection models generally do not involve the extra assumption that ‘guesses’ are a discrete 

and separate state of memory, instead postulating that decisions are always made based on the 

same continuous signals, and that errors arise from the stochastic, noisy nature of these 

signals.2 Such signal detection-based views naturally accommodate the subjective feeling of 

“guessing” as a state of very low confidence, with nearly no likelihood of correct discrimination 

of signal from noise, but they do so purely based on variations along a single axis of memory 

signals. That is, in a signal detection based account, people should often feel as though they 

are guessing, even though there is no separate guess state (e.g., Schurgin et al. 2020). 

 

Broadly speaking, then, signal detection-based accounts are necessary for accurate 

measurement if items vary in some way (e.g., precision) and participants use this variation in 

their decision process, rather than all memories being equally precise and exactly the same (as 

assumed by threshold theories). However, in the visual working memory literature most specific 

signal detection-based accounts that have been proposed are those without a separate guess 

or lapse state – that is, most signal detection models in the literature presume memories just 

vary continuously in a single axis that people use to make decisions (e.g., Wilken & Ma, 2004; 

Schurgin et al. 2020; but see Xie & Zhang, 2017). An account based on this simplest signal 

detection account with just a single axis and no added lapses or guesses has recently been 

 
2 To be clear, this assumption applies to trials where the participant is “on task”. There could be a small 

set of trials where participants’ eyes were genuinely closed or they clicked accidentally, which would 
result in true guesses, but such true 0 signal trials are likely very rare (e.g., traditional psychophysical 
curve fitting generally assumes approximately a 1% – and no more than a 5% – lapse rate:. Wichmann 
and Hill, 2001). 
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shown to straightforwardly accommodate error distributions from not only change detection and 

forced-choice tasks but also continuous reproduction tasks in visual working and visual long-

term memory tasks (Schurgin et al. 2020).  

 

How does one measure performance in a signal detection-based view of memory, other than 

model fitting? The most common signal detection measure of memory strength is d′, which rests 

on the assumption that the distribution of memory signals for previously seen and previously 

unseen items are both equal in variance and approximately normal (Macmillan & Creelman, 

2005). This measure is appropriate only if there is no ‘guess’ or ‘lapse’ state, and all memories 

are items are approximately equally well encoded. It is no more complex than K: rather than 

subtracting hits and false alarms, d’ simply requires you subtract them after a simple 

transformation (the inverse of the normal distribution). However, d’ only applies to the simplest 

signal detection models without any variation in strength or lapses. More complex signal-

detection-based measures are also possible if these assumptions do not hold for a particular 

situation (e.g., da; Macmillan & Creelman, 2005), or if memory is a mixture of continuous 

decisions and lapses or guesses (e.g., Xie & Zhang, 2017).  

 

In summary, if memories vary in precision or strength, K values will confound response bias with 

underlying memory, leading to spurious estimates of working memory capacity that vary with 

changes in response strategy (i.e., criterion; how liberally or conservatively one responds to a 

change). An alternative framework based in signal detection allows for a very broad set of 

possibilities, including lapses/guesses in addition to precision variation (Xie & Zhang, 2017), or 

variability in memory strength between items (e.g., da; Macmillan & Creelman, 2005), but the 

simplest form of this view simply postulates that all decisions are made based on a single set of 

equal variance memory signals (which leads to the d’ metric). Thus, determining the nature of 

memory signals in change detection, and the extent to which they are all-or-none, is deeply 

related to the question of whether K or d’ or neither is a valid measure of change detection 

performance that isolates memory from the decision making process and response bias. 

 

ROC curves elucidate the appropriate way to measure performance 

How then can these theories, and their associated metrics, be evaluated and compared? Is 

memory all-or none? Is it more useful to think about “guessing” as a distinct state, or more 

useful to think about a single continuum of memory strength and response bias? The critical test 

that tells these models apart, and determines which model to embrace, is the shape of the 

receiver operating characteristic (ROC) predicted by these models (Brady et al., 2021; Swets, 

1986; Wickens, 2001). ROCs measure what happens to performance—in terms of hits, on the 

y-axis, and false alarms, on the x-axis (Figure 2)—as an observer becomes more or less likely 

to say “old” (or “no change” in change detection tasks), that is, as their response criterion 

changes. If an individual’s true ROC could be perfectly measured, without measurement noise 

or reliance on simplifying and auxiliary assumptions, it would provide a direct window into the 

latent distribution of memory signals, and thus reveal which view of memory is correct. As a 

result, the importance of measuring and comparing ROCs has been identified and embraced in 

a wide range of fields including decision-making, healthcare, and artificial intelligence (Fawcett, 

2006).  
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Figure 2. ROC curves of memory performance predicted by the two models. A threshold model 

of working memory (e.g., K) predicts that ROC curves should be linear, as remembered items 

contribute only to hit rate, whereas forgotten items contribute to both hit rate (from lucky 

guesses) and false alarm rate (from unlucky guesses). By contrast, the most straightforward 

signal detection theories without lapses or guesses dictate that while, on average, previously 

seen items feel more familiar than previously unseen items (by an amount denoted by d′), noise 

corrupts the familiarity signal for both previously seen and previously unseen items, which leads 

to an overlap of familiarity strengths. Thus, the ROC should be curvilinear if all items are 

represented with approximately equal d′, and so the variation in familiarity is the same for 

previously seen and previously unseen items, the curves should also be symmetric, as shown 

here. 

 

In the current work, we seek to evaluate which of these views of latent memory signals 

(continuous vs. discrete)  is accurate and should be used to measure performance. To do so, 

we first need to determine the shape of the ROC that each model would predict: All-or-none 

threshold models (where memories cannot vary in precision or strength), like the one used to 

calculate K values, predict a linear ROC (Figure 2) because guessing contributes to both hits 

and false alarms equally (thus generating a linear slope as a function of changes in response 

criterion) while remembered items only contribute to hits (which determines the function’s 

intercept; Luce, 1963; Krantz, 1969; Swets, 1986). On the other hand, the simplest signal 

detection-based models without any lapses or guesses predict a symmetric curvilinear ROC 

because as criteria change to include weaker and weaker signals, some previously seen and 

some never-before-seen items get included in the overall distribution in a non-linear fashion 

(this nonlinearity follows from the standard parametric assumption that the latent distribution of 

memory signals is continuous and non-rectangular;  Macmillan & Creelman, 2005; Swets, 1986; 

Wixted, 2020). More complex ROC curves are also possible for signal detection-based models 

that do not treat all memories as arising from the same simple process with a fixed memory 

strength across all items (e.g., unequal variance signal detection models; Wixted, 2007; models 
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with a subset of all-or-none memories: Yonelinas, 2002; models with all-or-none guessing: Xie & 

Zhang, 2017, etc.). 

 

To measure the full ROC we need some way to measure response criterion. Typically this is 

done either by eliciting confidence from participants on each trial, or by manipulating response 

bias across different blocks of an experiment, usually by changing how often items are 

genuinely old vs. new. In the study of long-term recognition memory, when trying to characterize 

the source of memory signals and their variability, confidence-based ROCs (e.g., where you 

simply ask people the strength of their memory on a Likert scale) are ubiquitous and are 

effectively standard practice when performing old/new memory tasks (e.g., Benjamin, Tullis, & 

Lee, 2013; Hautus, Macmillan, & Rotello, 2008; Jang, Wixted, & Huber, 2009; Koen, Barrett, 

Harlow, & Yonelinas, 2016; Yonelinas, 2002; Wixted, 2007). However, visual working memory 

researchers have often avoided collecting confidence-based ROC data and instead look to 

manipulate response bias by changing the prior probability of a “same” vs. “change” response 

(Rouder et al. 2008; Donkin et al. 2014; Donkin et al. 2016; though see Robinson et al. 2020; 

Xie & Zhang, 2017). While results from response bias manipulations used to measure ROCs 

have varied—embracing both threshold and signal detection views at different times (e.g., 

Rouder et al. 2008; Donkin et al. 2014; Donkin et al. 2016)—our own recent work suggests this 

is largely because the data in those studies are not particularly diagnostic (e.g., being very 

limited in their range of response bias values) and because the model comparison metrics used 

by the studies were not validated to ensure that they adequately recover the correct model 

when using simulated data (Robinson et al., 2022). By contrast, data from confidence-based 

ROCs of change detection in working memory is unequivocal: ROCs have always been found to 

be curvilinear and most consistent with equal variance signal detection models (Robinson et al. 

2020; Wilken & Ma, 2004; see also Xie & Zhang, 2017, who find visually equal variance curves 

but do not test this class of model directly). 

 

Notably, identifying and characterizing the shape of these curves is critical for distinguishing all-

or-none and continuous memories, but also for proper measurement of memory in change 

detection tasks. For example, the threshold-based model of memory predicts that all points on 

the line in Figure 2A reflect the same estimate of capacity whereas the equal variance signal 

detection model predicts that all points on the curve in Figure 2B reflect the same level of 

memory strength. Although there are areas where these functions overlap (particularly in the 

middle), they substantially diverge towards the extreme ends of the spectrum—and 

consequently give very different senses of which combinations of hits and false alarms 

correspond to the same levels of performance for subjects or conditions that happen to differ in 

response bias. 

 

Thus, independent of arguments about the nature of the underlying memory signals, a strong 

understanding of the shape of ROCs in change detection tasks is critical to the simple act of 

computing performance and comparing it across conditions. In fact, a common critique of 

threshold models of long-term memory is that they may confound variations in response bias 

with variations in memory states, as ROCs in long-term memory are nearly always curvilinear 

(e.g., Rotello, Heit, & Dube, 2015). If K values confound response bias with performance, as 
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they would if memories genuinely vary in precision (e.g., Bays et al. 2009; Zhang & Luck, 2008) 

and thus ROCs are curvilinear, then this would potentially undermine a large body of work that 

even partially relies upon K to draw strong conclusions about the nature of visual working 

memory (e.g., Alvarez & Cavanagh, 2004; Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015; 

Chunharas, Rademaker, Sprague, Brady & Serences, 2019; Endress & Potter, 2014; Eriksson, 

Vogel, Lansner, Bergstrom, & Nyberg, 2015; Forsberg, Johnson & Logie, 2020; Fukuda & 

Vogel, 2019; Fukuda, Vogel, Mayr & Awh, 2010; Fukuda, Woodman, & Vogel, 2015; Fukuda, 

Kang & Woodman, 2016; Hakim, Adam, Gunseli, Awh & Vogel, 2019; Irwin, 2014; Luria & 

Vogel, 2011; Ngiam, Khaw, Holcombe, & Goodbourn, 2019; Norris, Hall, & Gathercole, 2019; 

Pailian, Simons, Wetherhold, & Halberda, 2020; Schurgin & Brady, 2019; Shipstead, Lindsey, 

Marshall, & Engle, 2014; Sligte, Scholte, & Lamme, 2008; Starr et al. 2020; Unsworth, Fukuda, 

Awh, & Vogel, 2014; Unsworth, Fukuda, Awh, & Vogel, 2015; Vogel & Machizawa, 2004; 

Woodman & Vogel, 2008). 

 

The current work 

In the current work we address the possibility that K confounds response bias with performance  

in a novel way and with minimal reliance on model comparison or other assumptions. We also 

test whether the simplest equal variance signal detection model (and thus, d’) is a valid metric of 

performance in this task, or whether a more complex ROC must be assumed (e.g., with both 

signal detection and lapses).  In Experiment 1, we first measure confidence-based ROCs in a 

typical visual working memory change detection task to provide a baseline for simulations and 

for the core experiment, Experiment 2. We find that confidence-based ROCs are curvilinear and 

extremely consistent with the prediction of an equal variance signal detection model (replicating 

the results of Robinson et al. 2020). As part of our modeling and analysis, we also describe 

evidence against views  that challenge the interpretation of curvilinear ROC functions 

constructed from confidence ratings. Next, in a simulation, we investigate how each metric 

would vary if these curvilinear ROCs genuinely reflect the latent memory strength distribution of 

participants, consistent with the most straightforward equal variance signal detection theory 

model of working memory performance (Wilken & Ma, 2004; Schurgin et al., 2020).  We find 

that K should drastically misrepresent true memory in this scenario. For example, K wildly 

underestimates performance for subjects with conservative response criteria (e.g., for 

participants who rarely say "same" unless very confident) and such participants are quite 

common in existing large-scale datasets at high set sizes (Balaban, Fukuda & Luria, 2019). 

 

In Experiment 2, a novel and pre-registered study, we examined whether estimates of K 

spuriously varied across manipulations of response bias in a way that does not depend on 

model comparisons or confidence to assess latent memory strength. In particular, we compare 

K and d’ in a completely standard change detection experiment with performance in a different, 

across-participant condition where participants are adaptively encouraged to shift their response 

bias if it is excessively conservative. We find that these adaptive instructions increase estimates 

of K by a large factor (e.g., they “improve” working memory capacity, as measured by K, by 

30%) but produce no such effect when performance is measured with d′. This provides strong 

evidence that the latent distribution of memory signals is best captured by the curvilinear ROC 

that is implied by equal variance signal detection models and implores the use of d′ (Figure 2). 
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Furthermore, this result adds experimental evidence against the existence of all-or-none 

memories and the use of K values. In Experiment 3, we replicate our critical result in another 

pre-registered study with a different set size and with the addition of a visual mask. This 

experiment demonstrates the generality of our results across memory load demands and rules 

out the contribution of alternative memory processes (e.g., iconic memory). Overall, we suggest 

that a major rethinking of conclusions based on K values or other threshold measures is 

required for cumulative progress to be made in understanding visual working memory. 

Furthermore, we by showing that d’ appears to be a reliable measure of memory even across 

changes in response criterion, we provide evidence in favor of the simplest equal variance 

signal detection model (e.g., Schurgin et al. 2020) and evidence against models based on a 

mixture of signal detection and guesses/lapses.  

 

 

Experiment 1: Receiver operating characteristics in change detection 

 

While confidence-based ROCs are prevalent in long-term recognition memory experiments 

using the old/new paradigm they are rarely examined in visual working memory, with few 

exceptions (e.g., Robinson et al., 2020; Wilken & Ma, 2004; Xie and Zhang, 2017). This 

experiment was designed to collect such data in a prototypical visual working memory task 

using change-detection with a large number of confidence bins (Figure 3). This provides a 

replication of previous work and serves as the basis for the simulations that motivated our 

critical test of signal detection vs. threshold views in Experiment 2. 

 

Methods 

 

 
Figure 3. Experiment 1 Task. Participants completed a change detection task at set sizes 1, 3 

and 6 with 180 degree changes on the color wheel. After reporting whether the test item was old 

or new (i.e., same or different), participants then reported the confidence of their decisions on a 

1-6 scale (1 = no confidence, 6 = extremely confident), giving an overall 12 point confidence 

scale. 

 

Participants. All studies were approved by the Institutional Review Board at the University of 

California, San Diego, and all participants gave informed consent before beginning the 

experiment. Experiment 1 tested 70 undergraduate volunteers in our lab at UC San Diego, in 

exchange for course credit. Our final sample of 67 participants allowed us to detect a within 

subject effect as small as dz = 0.18 with power = .8 and an alpha of .5. 
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Stimuli. Both experiments used a circle in CIE L*a*b* color space, centered in the color space at 

(L = 54, a = 21.5, b = 11.5) with a radius of 49 (from Schurgin et al. 2020).  

 

Procedure. Participants performed 300 trials of a change detection task, 100 at set size 1, 100 

at set size 3, and 100 at set size 6. The display consisted of 6 placeholder circles. Colors were 

then presented for 500ms, followed by an 1000ms ISI. For set sizes below 6, the colors 

appeared at random locations with placeholders in place for any remaining locations (e.g. at set 

size 3, the colors appeared at 3 random locations with placeholders remaining in the other 3 

locations). Colors were constrained to be at least 15° apart along the response wheel. After the 

ISI, a single color reappeared at one of the positions where an item had been presented. On 

50% of trials each set size, this was the same color that had previously appeared at that 

position. On 50% of trials, it was a color from the exact opposite side of the color wheel, 180° 

along the color wheel from the shown color at that position.  

 

Participants had to indicate whether the color that reappeared was the same or different than 

the color that had initially been presented at that location. After indicating whether the color was 

the same or different from the target in the previous array using a key response, participants 

then reported their confidence. Participants were presented an interval from 1-6 and had been 

instructed that 1 meant “very unsure” and 6 meant “very sure” and to report their confidence 

using the entire scale. It is important to note that defining the signal in terms of detecting 

“changes” (i.e., correctly calling different items “different”) or “no changes” (i.e., correctly calling 

same items “same”, as we do throughout) would have no consequences for our results. The 

results of the metric based analysis would be identical regardless of which was defined as a 

“hit”. 

 

Three participants were excluded for performing near chance (>2 standard deviations below the 

mean, according to both K and d’), leaving a final sample of N=67. 

 

Data. These data were made available previously to be used in a database that consisted of 

data from confidence studies (Rahnev et al. 2020). However, except for being included in that 

public dataset, the data have not been previously published or written up. 

 

Results 
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Figure 4. Results of Experiment 1. ROCs are curvilinear across all set sizes (including set 

size 1), as predicted by signal-detection-based views. (A) Individual participant ROCs. (B) 

Group average ROCs and best fit model. The data points (aggregated across participants) are 

shown as red dots; the gray line shows the best fit model of the best class of models, an equal 

variance signal detection model. 

 

The ROC data are visually curvilinear, both at the individual subject level and the group level 

(Figure 4). To assess the shape of the ROCs quantitatively, and thus ascertain the preferred 

measurement metric, we performed model comparisons independently for each participant and 

each set size3. We compared three scenarios: (1) a linear, threshold-based ROC, as needed for 

K values to be a valid metric, (2) an equal variance signal detection model, as needed for d′ to 

be a valid metric, and (3) an unequal variance signal detection model, which would suggest no 

single metric from a binary change detection task (“same”/”change” with no confidence) can 

adequately correct for response bias (see Brady et al. 2021 for a tutorial). To compare models 

we used AIC since model recovery simulations by Robinson et al. (2020) demonstrated that AIC 

was best calibrated for recovering the generative model from similar ROC data. Note, however, 

that since the threshold-based model (K) and the equal variance signal detection model (d′) 

 
3 Note that it is possible to test other aspects of the K model simultaneously with testing its shape, like 

how fixed it is across set sizes (as done by Rouder et al. 2008). However, this confounds both aspects of 
the model—whether ROCs are linear or curvilinear, and whether performance drops as expected across 
set sizes (Robinson et al. in prep)—and what we are interested in is the shape of the ROC within a set 
size, as this is what decides whether the K metric, the d’ metric or neither are valid.  
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have equal numbers of free parameters, comparing their AIC is the same as comparing their log 

likelihood directly with no penalty for complexity, so the use of AIC is relevant only for 

comparing the unequal variance signal detection model to the other two models. 

 

Overall, we found strong evidence favoring signal detection-based models over the threshold 

model, and further evidence in favor of the simplest equal variance signal detection model 

underlying d’. A difference greater than 10—which provides 10 to 1 support for one model over 

the other—is considered conclusive evidence in terms of AIC. Despite an equal number of 

parameters, the equal variance signal detection model was strongly preferred to the threshold 

model, with AIC differences favoring it by 244.8 at set size 1, 1479.2 at set size 3, and 1749.5 at 

set size 6. These outcomes were also reliable per participant (t(66)=2.81, p = .007, dz = 0.34; 

t(66) = 8.74, p < .001, dz = 1.07; t(66)=11.96, p < .001, dz = 1.46). The AIC difference between 

the threshold model and the unequal variance signal detection also favored the signal detection 

model: 188.5, 1548.7, and 1694.4 across set sizes. Each of these was also reliable when 

calculated per participant instead of summed over all participants (t(66) = 2.12, p = .038, dz = 

0.26; t(66) = 8.75, p < .001, dz = 1.07; t(66) = 11.61, p < .001, dz = 1.42). Finally, comparing 

equal and unequal variance signal detection models provided support for the equal variance 

model, validating d′ as a valid metric of change detection performance. In particular, the AIC 

preference for the equal variance model was 56.3, 30.5 and 55.2 across set sizes; and this 

preference was largely reliable across participants as well (t(66) = 6.85, p < .001, dz = 0.84; 

t(66) = 1.79, p = .077, dz = 0.22; t(66)=4.57, p < .001, dz = 0.56). 

 

Evidence for equal variance signal detection as the preferred model of the ROC data validates 

the idea that change detection alone (without confidence ratings) can be used to measure visual 

working memory, as long as d′ is used as the dependent measure. Notably, this is unlike the 

result typically found in long-term recognition, where unequal variance signal detection models 

are nearly always preferred to equal variance models and thus d′ is rarely a universally valid 

metric (e.g., DeCarlo, 2010; Mickes, Wixted, & Wais, 2007; Starns, Ratcliff, & McKoon, 2012; 

Yonelinas, 2002; Wixted, 2007). Symmetric, equal variance ROCs are consistent with the idea 

that presented colors are strengthened to an  approximately equal degree across trials, as one 

would expect that heterogeneity in added memory strength for different old items should lead to 

support for an unequal signal detection model (as there would be additional variance in 

familiarity for seen items compared to unseen items; Wixted, 2007; Jang, Mickes & Wixted, 

2012). It may be that asking participants to split attention equally between all items by making 

them equally likely to be probed, using simple stimuli that are all approximately equally 

attention-grabbing, and presenting them briefly, encourages a strategy of splitting memory 

resources relatively equally. Thus, while d′—and equal variance—are well supported in the 

current task, the use of d′ may not be valid in other conditions, like sequential encoding (Brady & 

Störmer, 2021; Robinson et al. 2020) or when items are differentially prioritized (Emrich et al. 

2017), but has been validated as the appropriate measure here.  Importantly, finding support for 

an equal variance signal detection model also provides direct evidence against more 

complicated mixture of signal detection theory and guesses or lapses (e.g., Xie & Zhang, 2017), 

and provides evidence in favor of models that view all decisions as arising from a single signal 

detection process with no separate guess state (e.g., Schurgin et al. 2020). 
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Because of the theoretical importance of determining whether ROCs are symmetric vs. 

asymmetric (for both determining whether d′ is an appropriate metric and addressing the 

conceptual question of whether there is heterogeneity across items in strength), we also used a 

non-model-comparison-based test to examine whether there is evidence for equal variance 

signal detection model. In particular, we computed z-ROCs by converting the hit and false alarm 

rate to z-scores using a normal distribution. We then fit the z-ROCs with a linear model at set 

sizes 3 and 6, where most participants were not at ceiling. Unequal memory strength between 

items, as in an unequal variance signal detection model, results in z-ROC slopes below 1.0, 

whereas an equal variance model predicts slopes of 1.0. We find these slopes are very close to 

1.0 even at set size 6 (z-ROC slopes for set size 3: 1.06, SEM = 0.18 and set size 6: 0.96, SEM 

= 0.04).  

 

Using further descriptive analysis we examined whether the z-ROCs were consistent with 

threshold or signal-detection models. Linear z-ROCs are predicted by signal detection theory 

and curvilinear z-ROCs are predicted by threshold theories like K. Thus, threshold models, but 

not signal detection models, predict a strong positive quadratic component when fitting a 

polynomial model to the z-ROCs (Glanzer et al. 1999). As we had significant ceiling effects at 

set size 1 and 3 in many participants when performing this analysis (which precludes our ability 

to determine the z-ROC shape), we conducted this analysis only for the set size 6 data. We 

found no evidence of the positive quadratic component predicted by high-threshold models (in 

fact the mean z-ROC quadratic component trended negative, though not significantly: M= -0.13, 

SEM 0.113,t(52)=1.28, p = .21).  

 

 
Figure 5. Confidence-accuracy curves, with error bars being across-subject standard errors of 

the mean. These curves use a value for each participant only if that participant used that 

confidence value on >=3 trials, and include only points where at least 25% of participants had 

values assigned. Confidence closely tracks accuracy, and even at set size 6, the highest 

confidence trials are quite accurate (89% overall for confidence level 6). However, as uniquely 

predicted by signal detection models but not threshold models, there are high confidence false 



 

16 

alarms and high confidence misses, and such trials are increasingly prevalent at high set sizes, 

where memory gets weaker (0.67% at set size 1; 3.54% at set size 3; 12.1% at set size 6) .  

 

Another prediction of signal detection models concerns high confidence misses and false 

alarms. Signal detection models easily accommodate—and in many ways naturally predict4—

high confidence false alarms and high confidence misses; especially as the difference between 

previously seen and previously unseen items in familiarity gets smaller (i.e., as memory strength 

gets weaker). By contrast, threshold models do not make this prediction, and are most 

consistent with a complete absence of high confidence false alarms. This is because in such 

models, false alarms are typically purported to arise from a distinct process such as a “guessing 

state” (Rouder et al., 2008), which participants are thought to be aware of5 (e.g., Adam, Vogel & 

Awh, 2017). We find data consistent with the signal detection view: there are high confidence 

false alarms and high confidence misses, such trials are increasingly prevalent at high set sizes 

as memory gets weaker (0.67% at set size 1; 3.54% at set size 3; 12.1% at set size 6), and this 

difference is reliable across participants (set size 3>set size 1: t(66)=6.37, p < .001, dz = 0.78; 

set size 6 > set size 3: t(66)=6.85, p < .001, dz = 0.84). While accommodations can be made to 

account for high confidence false alarms in a single condition (e.g., by asserting signal-

detection-like noise that occurs after the memory read-out, at the confidence stage; Adam & 

Vogel, 2017), it is hard to see how to parsimoniously accommodate the fact that such errors 

occur only in some set sizes but not others within a threshold view.  

 

 

 
4 It has been shown across many situations that participants’ criteria tend to be more stable across 
conditions than expected by a strict likelihood ratio account (where a given confidence level always 
matches a precise percent correct; e.g., Stretch & Wixted, 1998), and this is especially true with 
interleaved trials, like the current experiment ( Rahnev, 2021). Signal detection models with this basic 
property all predict high confidence false alarms and misses. 
5Threshold accounts have alternatively attempted to explain high-confidence false alarms by assuming 
that they reflect implicit demand characteristics to use the entire confidence scale; however, when tested 
empirically, this assumption appears unsubstantiated (seen here, Figure 6, and in Delay & Wixted, 2021).  



 

17 

Figure 6. Confidence values given by participants are spread more widely as set size 

increases. Note that as in most change detection studies (see Simulation and Experiment 2), 

participants have a response bias toward believing there was a change at high set sizes (e.g., 

being conservative in responding with confidence in "same"/"old").  

 

A similar logic calls into question prominent accounts which have argued that it is possible to 

explain curvilinear ROCs from confidence data with all-or-none, threshold memory models (e.g., 

Kellen & Klauer, 2015; Malmberg, 2002; Province & Rouder, 2012). Such models postulate that 

even when participants are, in truth, infinitely certain of their response, they nevertheless give a 

low confidence response sometimes, for instance, because the presentation of a confidence 

scale makes “an implicit demand to distribute responses" across the scale (Province & Rouder, 

2012). This account, however, does not predict the current data because participants do not, in 

fact, spread their responses at all at set size 1; instead they do so only at the highest set sizes 

(see Figure 6; nearly all responses cluster at the highest confidence at set size 1). To account 

for this pattern, an account based on the idea that people seek to distribute their responses 

despite truly infinitely diagnostic memories would have to postulate yet another factor that 

explains why this response strategy varies across different set sizes; perhaps by incorporating 

even more complex decision-based components. Our data implies that, for this to work, 

participants would have to decide to add such response noise only for the set size 6 condition, 

but not for the set size 1 condition. This seems extremely unlikely and far more complex than 

simply presuming that participants have access to continuous strength memory signals that are 

used to report confidence, which is an a priori prediction of signal detection accounts of memory 

(see also Delay & Wixted, 2021).  

Overall, we find clear evidence in favor of curvilinear ROCs and signal detection based models 

which is wholly inconsistent with K as a valid metric of working memory performance. Model 

comparison suggests the ROCs are best fit by an equal variance signal detection model, 

consistent with d′ as the appropriate measure of memory performance. The support for an equal 

variance model goes beyond support for the general class of signal detection models (which 

includes ones like mixture models, with additional guesses; Xie & Zhang, 2017). Instead, these 

data support a view where all items are represented with noise, rather than a model where 

some items are perfectly present in memory and others are completely absent in memory. 

These findings also reveal the nearly symmetric (equal variance) nature of the ROC curves, 

which provides tentative evidence that—in this task—all items are represented with 

approximately the same memory strength, even at set size 6, given the nearly equal-variance 

nature of the ROC curves (though this is only indirect evidence; see Spanton & Berry, 2020).  

 

 

Simulation: Implications of confidence-based ROCs reflecting  

underlying latent memory strength 

 

We next turn to the potential implications of K values—and other threshold metrics, like percent 

correct and hits minus false alarms—being mismatched with the empirical ROC. Then, in 
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Experiment 2, we provide a critical test of whether the curvilinear ROCs we observe in 

Experiment 1 truly reflect latent memory signals, as opposed to arising artifactually in 

confidence-based ROCs.  

First, what would happen if we took a binary change detection task and participants could only 

respond “same” when their confidence was at, or above, a certain criterion? For illustration, here 

we assume that a participant’s reported confidence is a direct readout of their memory states, 

which we can use to track different levels of response criteria. Importantly, we do not make this 

assumption in Experiment 2 (our core experiment) since it is not based on confidence 

judgments. Using the empirical confidence data from Experiment 1, we can see how 

performance, as measured by K or d′, would change as the internal criterion were shifted in 

Figure 7. Notably, d′ remains constant as we measure criterion across possible confidence 

values, whereas K incorrectly interprets different response criteria on the exact same data as 

changes in true memory strength and thus alters the working memory “capacity.” In other words, 

the K measure effectively conflates response bias with true memory strength. This occurs in 

part because the ROC implied by d′ effectively matches the actual ROCs observed in 

Experiment 1. Thus, calculating d′ using any possible confidence criterion as the cut-off for 

saying “same” is the same as moving along the ROC predicted by the equal variance signal 

detection model and, therefore, yields approximately the same d′ for different levels of response 

bias. By contrast, since the ROC implied by threshold models like K deviates from the shape of 

the empirical confidence ROC, K values are much lower when criterions are extremely high or 

extremely low compared to when they are less extreme and somewhere in the middle (except at 

set size 1, where all models agree performance is essentially perfect). This is because the high-

threshold (linear) ROC approximates the empirically curvilinear ROC shape only in the center 

and not for extreme criteria (see Figures 2 & 9).  
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Figure 7. Metrics of visual working memory performance plotted for the group mean data from 

Experiment 1, as a function of response criteria (applied to the confidence data). Because the 

ROC implied by d′ closely matches the actual ROCs observed in Experiment 1, calculating d′ 

using any possible confidence criteria as the cut-off for saying “same” gives approximately the 

same d′. By contrast, since the ROC implied by threshold models like K deviates from the shape 

of the confidence ROC, K values are lower when the criteria are extremely high or extremely 

low compared to the middle (except at set size 1, where all models agree performance is 

essentially perfect). This is because the linear ROC predicted by K approximates the true 

confidence-based ROC shape only in the center, and not for extreme criteria (see Figure 2). 

 

 

Figure 8. Nearly all participants have low false alarm rates at both set size 4 and 8, 

exacerbating the difference between d’ and K as metrics of performance. Response criteria are 

particularly conservative at set size 8, where "misses" are quite common (i.e., hit rates are low) 

but false alarms remain extremely rare. 

Our simulation also makes clear that over a wide range of performance values and biases, K 

and d′ do not strongly diverge which is one reason that it has historically been difficult to tell 

them apart (Figure 7). They do, however, diverge primarily at high set sizes and for conservative 

response criteria (i.e., being reluctant to respond “same”). This divergence would not be 

apparent unless such extreme response criteria extemporaneously occur in real data. 

Unfortunately, they seem to be quite common. In fact, data from change detection tasks seem 

to lead to extremely conservative responding in many situations. As an example, we reanalyzed 

data from 3,849 people who completed a change detection task (Balaban, Fukuda & Luria, 

2019) and found that at set size 4, 91% of participants had false alarm rates below .2, and at set 

size 8, 68% of participants had a false alarm rate this low. By contrast, only 56% of participants 

(at set size 4) and 12% of participants (at set size 8) had miss rates this low (see Figure 8).  

As this is the exact situation where K values and curvilinear ROCs most strongly diverge, if the 

ROCs implied by the confidence reports reflect true latent memory strengths, this is also the 
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situation where K values would pick up largely on response criteria differences rather than 

genuine differences in memory strength. Since many studies use a similar task design, this 

raises the possibility that a large fraction of visual working memory results that rely on K values 

may be incorrect, overestimating the cost of higher set sizes relative to low set sizes, and 

particularly underestimating the performance of those participants with particularly conservative 

response criteria. Even more troubling is the fact that in the Balaban et al. (2019) data, a full 

20% of participants at set size 4, and 10% of participants at set size 8, had 0 false alarms in the 

entire condition. This technically makes memory strength unknowable for these conditions and 

while there are methods to correct for this problem, they each rely on assumptions that may not 

always hold up (see Hautus, 1995). 

How can we directly test whether the confidence-based ROCs reflect the true distribution of 

latent memory strengths? While there are many possibilities, most depend on model fits that are 

often opaque and that fundamentally depend on modeling assumptions (e.g., Rouder et al. 

2008). Thus, in Experiment 2, we preregistered a novel and critical test of whether K or d′ best 

describes true latent memory strength distributions. Here, we use a simple manipulation that 

takes advantage of the fact that participants tend to be very conservative at high set sizes (i.e., 

less likely to say “same”).  

 

Experiment 2: A straightforward, confidence-free test of the nature of memory signals 

 

 

Figure 9. An exaggerated potential outcome of shifting a naturally conservative participant 

(gray) to say "same" more often, in terms of the prediction of signal detection (d′) and threshold 

view (K). The more conservative the initial responding pattern is, the more the two models 

dissociate in their prediction. By computing participants’ performance in the baseline condition—

the gray dot—in terms of K and d′, and comparing it to their performance (again in K and d′) 

when their decision criteria are shifted leftward, and thus their false alarm rates move rightward, 

we can distinguish these models: an ideal metric would find the same level of performance 

despite the shift, whereas a model that suggested memory had changed would be dispreferred.  
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Experiment 2 takes advantage of the fact that participants are naturally conservative in 

responding “same” at high set sizes and makes a critical prediction about how performance 

should change when they are encouraged to say “same” more often. Consider a participant 

(gray point in Figure 9) with very few false alarms. Such participants are typical in high set size 

change detection experiments (see Figure 8). In signal detection terms, they are thought to 

have a strong response bias. In threshold model terms, they are thought to nearly always say 

“different” when they are “guessing”. If they could be encouraged to shift their criterion (i.e., to 

say “same” more often), what would happen? Signal detection theory predicts a curvilinear 

change in performance, such that saying “same” more often would proportionally add more hits 

than false alarms, since it would involve shifting the criterion to allow for saying “same” to still 

strong but overall slightly weaker memory signals, and strong memory signals are more likely to 

be generated by items that were truly seen than by items that were not seen. The curvilinearity 

is implied by the line of constant d′ being curvilinear (Figure 9). Threshold models like K instead 

predict that a shift in criterion (i.e., responding “same” more often)  would change only the 

responder’s guessing strategy; since participants have no idea what the answer is on such trials 

(because they have no information about the probed item); therefore, saying “same” more often 

would simply add an equal proportion of hits and false alarms to their responses (Figure 9).  

This produces a strong potential dissociation: if the equal variance signal detection model 

provides a better account of the underlying memory signals, encouraging more “same” 

responses should result in the same d′, but considerably higher K values than the normal task. 

This latter point can be inferred from our simulation (Figure 9); that is, if one were to fit the 

threshold model (K) to the orange point in the plot, the predicted line (parallel to the diagonal 

line of chance performance) would be well above the line projected from the gray point. By 

contrast, if the threshold, guessing-based view is correct, encouraging “same” responses should 

move along the linear K line, and should produce a large drop in d′. This point can also be 

inferred from Figure 9, because if the equal variance signal detection model were fit to the red 

point, the corresponding projection for this model would be much lower than the original 

projection from the gray point.  

To test this, in Experiment 2 we compare performance in (1) a standard change detection task 

at set size 8, with no special instructions and no requirement to report confidence with (2)  

performance in a matched change detection task that involves an instructional modification 

intended to discourage extremely conservative responding (adaptive instructions, where 

participants are encouraged to respond “same” more often if they have fewer false alarms than 

misses within a block of trials). Importantly, this design seeks to counterintuitively improve K, 

rather than hurt K. While it is easy to imagine that unusual instructions could hurt performance 

(e.g., by making the task more confusing or more difficult), there is no natural mechanism for 

threshold models to predict that such instructions could improve performance relative to our 

baseline of a standard change detection task. 

Methods 

The hypothesis, design, analysis plan and exclusion criteria for this study were preregistered: 

https://aspredicted.org/blind.php?x=743fj8 

https://aspredicted.org/blind.php?x=743fj8
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Participants. We preregistered a Bayesian analysis plan and a sequential sampling design 

(following the recommendations of Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, 2017). 

In particular, we planned to initially run N=50 non-excluded participants for each of the two 

groups (Standard; Adaptive), and then calculate a Bayes factor comparing K values across the 

two groups. We planned to continue iterating in batches of 10 per group until our Bayes factor 

for the comparison of K was greater than 10 or less than 1/10th (e.g., provided 10:1 evidence 

for or against the null). However, we achieved this Bayes factor in our first sample of N=50 per 

group, so no sequential procedure was used in practice and N=50 per group was our final 

sample size. The study was conducted online using participants from the UC San Diego 

undergraduate pool. Our preregistered exclusion criteria were to exclude any trials where 

reaction times were <200ms or >5000ms, and exclude and replace any participants who had 

more than 10% of trials excluded; had a d′<0.5; or had K<1. This resulted in the exclusion of 41 

participants. This is further explained and analyzed below.  

Stimuli. The same color circle as Experiment 1 was used to generate stimuli, and the change 

detection task was similar to that of Experiment 1, but with 8 placeholder circles rather than 6 

and all trials at set size 8. Stimuli were shown for 1000ms with an 800ms delay. The shown 

colors and the foil were again required to be ≥15 degrees apart on the color wheel. 

Procedure. There were two between-subject experimental conditions, Normal and Adaptive. 

Each group performed 450 trials of a set size 8 change detection task, with all changes being 

maximally different colors (180 degrees on the color wheel). The trials were broken into 15 

blocks of 30 trials, and after each block participants could take a short break. The entire task 

took about 45 minutes. 

In the standard-instructions group, participants simply performed this task in line with a 

completely standard change detection task. Participants were not instructed to use any kind of 

response policy, but simply told to respond "same" if they think no change occurred and 

"different" if they think that a change did occur. 

In contrast, in the adaptive-instructions condition, everything was the same at the beginning of 

the experiment, with the standard instructions. However, participants were given an additional 

set of instructions after each block if they had more "misses" than "false alarms" in that block (of 

30 trials). These instructions encouraged them to shift their criterion (e.g., respond "same" more 

often). In particular, they saw these instructions: 

"You have been saying "different" more than "same," even though the trials are 50% same and 

50% different. Focus on splitting your responses more evenly to improve your performance! To 

do this, do not try to just say "same" all the time: instead, try to respond "different" only if you 

are very sure it was different; otherwise respond "same".” 

Analysis. Based on the effect size in our pilot data, we estimated the effect size at 

approximately a Cohen’s d of 0.5, and preregistered the scale of the alternative hypothesis in 

the Bayes factor analysis with that in mind. Thus, our Bayes factors were calculated with our 

preregistered Scaled-Information Bayes Factor with r=.5. 
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Exclusions. 41 out of 141 participants were excluded using our preregistered criteria. These 

participants were excluded because we preregistered a criteria of d′<0.5 or K<1 being 

unsatisfactory, since such subjects are non-diagnostic of the difference in the models (the closer 

a participant is to chance, the less distinction there is between a curvilinear and linear ROC). In 

our experience, finding this level of poor performers is relatively typical of long online studies 

with difficult tasks, such as the one shown here with a set size 8 memory task. However, a post-

hoc analysis of all participants, with no exclusions, gives a similar pattern to our main analysis 

(a 16% gain in K from Normal to Adaptive and a -5% difference in d′). Notably, however, the 

addition of many non-diagnostic participants at near chance performance level drags the effect 

size for the difference in K down far enough (from dz = 0.64 in our preregistered sample to dz = 

0.22 in the full sample) to make the evidence non-definitive. However, if we had planned to 

analyze the data this way to begin with—without exclusions of non-diagnostic participants—we 

would not have preregistered such a large effect size for the alternative hypothesis in the Bayes 

factor, nor stopped our iterated data collection plan with this number of participants. Therefore, 

in our view the strength of evidence favoring d′ over K is not affected in any meaningful way by 

the exclusions. 

  

Results 

 

Figure 10. Results of Experiment 2. (A) The group average for normal and adaptive conditions 

show that the adaptive condition was effective in getting participants to respond “same” more 

often. The best fit d′ and best fit K lines are shown for both conditions, though as their d′ was 

nearly identical, the orange d’ is obscured by the red one. (B) Violin plots of the distribution of K 

and d′ values for each participant in each condition. The median K value (black line) “improved” 

by nearly 30% with the adaptive instructions, whereas the median d′ was nearly identical 

between conditions. 

Overall we found that individuals can increase their “working memory capacity” (as measured by 

K) simply by shifting their response criteria. In particular, we found a substantial gain in K values 
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for the adaptive-instruction conditions (median gain: 29.04%) and almost no difference in d′ 

between groups (median gain: 1.01%; Figure 10). A Bayes factor greater than 10 is considered 

strong and greater than 20 is considered to be decisive evidence. The Bayes factor that the K 

value differed between the groups was favored by greater than 20 (BF10 = 24.43) whereas the 

null hypothesis of no difference between groups was favored for d′ (BF10 = 0.55). The same 

results were found when using standard frequentist statistics, with a highly reliable difference in 

K (t(98)=3.19, p = .002, d=0.64) and no difference in d' between groups (t(98)=0.96, p = .338, 

d=0.19). We note here that these differences in memory estimates are based on the metrics of 

each measure obtained from direct transformations of the data, with no model fitting. 

Accordingly, these metrics are not subject to common criticisms regarding differential model 

flexibility or overfitting (unlike the results of e.g., Rouder et al. 2008, which appear to arise from 

the particular assumptions used in the model fits: Robinson et al. 2022). 

This provides strong evidence that d′, but not K, successfully adjusts for response bias changes. 

It suggests that K systematically underestimates performance when responses are very 

conservative, as they generally are at high set sizes. It also provides a strong validation of the 

confidence-based ROC curves found in Experiment 1, which seem to truly reflect the latent 

memory signals used to make “same”/”different” judgments. Notably, this large change in K 

occurs even though we did not manipulate response criteria in the “Normal” group at all. 

Nonetheless, the on-average conservativeness of the criteria used in standard change detection 

was sufficient to create this strong dissociation between K and d′. 

Overall then, Experiment 2 shows that K conflates response bias with memory, whereas d’ does 

not. This provides evidence both against the threshold model underlying K, but also in favor of 

the equal variance signal detection model (as opposed to more complex signal detection-based 

models that allow for guesses or lapses). 

 

Experiment 3: Excluding contributions from limitless memory storage 

Some previous work has claimed that—even with delays that are longer than the commonly 

accepted limitations of iconic memory (e.g., 800ms, in Experiment 2)—a residual perceptual 

trace can contribute to performance thus adding to the computations and limitations of working 

memory alone. In theory, this could cause memory to look more continuous when it is actually 

discrete (e.g., Rouder et al. 2008). Thus, to test this hypothesis and to thoroughly explore the 

dichotomy between discrete and continuous memories, in Experiment 3, we replicated 

Experiment 2 but followed the methods of Rouder et al. (2008)—one of the few papers claiming 

evidence for threshold-like performance (though see Robinson et al. 2022)—in adding a visual 

mask before the change detection test.  

Here, our logic was otherwise the same as in Experiment 2: We assessed the shape of the 

ROC curve underlying memory performance without the need for model comparisons or 

confidence. We used instructions that should improve performance relative to the baseline of a 

standard change detection task, if and only if a measure implies the wrong ROC. Because the 

task was harder with the masks, we used set size 6 instead of set size 8; which also allowed us 

to assess the generality of our conclusions with regard to set size. 
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Methods 

The hypothesis, design, analysis plan and exclusion criteria for this study were preregistered: 

https://aspredicted.org/DDL_5FP 

Participants. This study was conducted online using participants from the UC San Diego 

undergraduate pool. We expected a smaller effect size in comparing the conditions here since 

we expect that, at set size 6, participants should have less extreme response criterion in the 

standard condition, so K should underestimate their performance less-so than when working 

memory is taxed with eight items. However, because we were using a sequential sampling 

procedure, this expectation of reduced effect size also affected our sample size planning, 

compared to Experiment 2. In particular, we again preregistered a Bayesian analysis plan and a 

sequential sampling design. We again planned to initially run n=50 non-excluded participants for 

each of the two groups (Standard; Adaptive), and then calculate a Bayes factor comparing K 

values across the two groups. As in Experiment 2, our Bayes factors were calculated with our 

preregistered Scaled-Information Bayes Factor with r=.5. We continued iterating in batches of 

10 per group until our Bayes factor for the comparison of K was greater than 10 or less than 

1/10th (e.g., provided 10:1 evidence for or against the null). In this case, we iterated until we 

had n=80 participants per group (total sample size of 160), where we achieved the required 

Bayes factor. Our preregistered exclusion criteria were to exclude any trials where reaction 

times were <200ms or >5,000ms, and exclude and replace any participants who had more than 

10% of trials excluded; had a d′<0.5; or had K<1. This resulted in the exclusion of 36 

participants. This is further explained and analyzed below.  

 

Figure 11.  Task in Experiment 3. Participants saw 6 colored circles, then after a brief delay a 

visual mask appeared before the change detection test display appeared. Here, as in 

Experiment 2, participants simply responded whether the probed item was the same or different; 

compared to the item that was shown in that location (a “same” response would elicit a hit for 

the above example). 

https://aspredicted.org/DDL_5FP
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Stimuli. The change detection task was similar to that of Experiment 2, but with 6 placeholder 

circles and all trials at set size 6. Stimuli were shown for 1000ms with a 500ms delay and then a 

300ms visual mask (See Figure 11). The shown colors and the foil were again required to be 

≥15 degrees apart on the color wheel. 

Procedure. There were two between-subject experimental conditions, Normal and Adaptive. 

Each group performed 450 trials of a set size 6 change detection task, with all changes being 

maximally different colors (180 degrees on the color wheel). The trials were broken into 15 

blocks of 30 trials, and after each block participants could take a short break. The entire task 

took about 45 minutes. 

In the standard-instructions group, participants simply performed this task in line with a 

completely standard change detection task. Participants were not instructed to use any kind of 

response strategy, and were simply told to respond "same" if they think no change occurred and 

"different" if they think that a change did occur. In contrast, in the adaptive-instructions 

condition, everything was the same at the beginning of the experiment, with the standard 

instructions. Here, at the end of a particular block, participants were given an additional set of 

instructions if they had more "misses" than "false alarms" in that block (30 trials). These 

instructions encouraged them to shift their criterion from conservative to neutral (e.g., respond 

"same" more often). In particular, they saw these instructions: 

"You have been saying "different" more than "same," even though the trials are 50% same and 

50% different. Focus on splitting your responses more evenly to improve your performance! To 

do this, do not try to just say "same" all the time: instead, try to respond "different" only if you 

are very sure it was different; otherwise respond "same".” 

Exclusions. 36 of 196 participants were excluded using our preregistered criteria. These 

participants were excluded because we preregistered a criteria of d′<0.5 or K<1 being 

unsatisfactory, since such subjects are non-diagnostic of the difference in the models (the closer 

a participant is to chance, the less distinction there is between a curvilinear and linear ROC). 

Once again, a post-hoc analysis of all participants, with no exclusions, produces a similar 

pattern to our main analysis (a 13.6% gain in K from Normal to Adaptive and a decrease of -

5.8% in d′).  

Results 
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Figure 12. Results of Experiment 3. (A) The group average for normal and adaptive conditions 

show that the adaptive condition was effective in getting participants to respond “same” more 

often. The best fit d’ and best fit K lines are shown for both conditions, though as their d’ was 

nearly identical, the orange d’ is obscured by the red one. (B) Violin plots of the distribution of K 

and d′ values for each participant in each condition. The median K value (black line) “improved” 

by nearly 30% with the adaptive instructions, whereas the median d’ was nearly identical 

between conditions. 

As in Experiment 2, we again found that individuals can increase their “working memory 

capacity” (as measured by K) simply by shifting their response criteria. In particular, we found a 

substantial gain in K values for the adaptive-instruction conditions (median gain: 14%) with no 

reliable difference in d’ (median change: -4%). A Bayes factor greater than 10 is considered 

strong and greater than 20 is considered to be decisive evidence. The Bayes factor that the K 

value differed between the groups was favored by greater than 20 (BF10 = 27.83) whereas the 

null hypothesis of no difference between groups was favored for d′ (BF10 = 0.31). The same 

results were found when using standard frequentist statistics, with a highly reliable difference in 

K (t(158)=-3.16, p=0.002, d=0.50) and no difference in d′ between groups (t(158)=-0.30, 

p=0.765, d=0.05). 

While the results for the improvement in K were statistically significant in the frequentist test—

even with the original n=50 groups (t(98)=-2.60, p=0.011, d=0.52)—our sequential sampling 

design led to much more decisive evidence as we increased the samples to meet our 

preregistered Bayes criterion. At each sequential sampling step (n=50, 60, and 70 per group), 

the Bayes factor was 6.3, 7.9, and 9.9, respectively; which is considerably lower than the 

strength of evidence that we found in our final sample (n=80; 27.83 to 1). The Bayes factors for 

d’ favored the null for all four sample steps 0.37, 0.34, 0.32, and 0.31, respectively. 

Overall, we replicated Experiment 2 and found that visual masks do not obscure the continuous 

nature of visual working memories. Once again, we found strong evidence that d′, but not K, 

successfully adjusts for response bias changes, and that K systematically underestimates 



 

28 

performance when responses are very conservative, as they generally are at high set sizes. 

Overall then, Experiment 3 again shows that K conflates response bias with memory, whereas 

d’ does not. This again provides evidence both against the threshold model underlying K, but 

also in favor of the equal variance signal detection model (as opposed to more complex signal 

detection-based models that allow for guesses or lapses). 

 

General Discussion 

Across three experiments, we examined the nature of the latent memory signals used in change 

detection tasks and the implications for proper measurement of performance in change 

detection. We compared a theory that sees these signals as continuous in strength—signal 

detection theory—with a threshold-based view, where memory signals are all-or-none. In 

Experiment 1, we found evidence from confidence reports that memory was continuous in 

strength, with support for equal variance signal detection models, suggesting not only that signal 

detection theory was a more accurate measure of performance but also that there is no need for 

additional assumptions about guesses or lapses to be added to the simplest instantiation of 

signal detection theory. We then tested a critical implication of this result in Experiment 2: that, 

while d’ should remain constant, K values should systematically underestimate performance in 

standard change detection experiments for participants who rarely false alarm. We found strong 

evidence for this hypothesis, with a Bayes factor of 24 to 1 in favor of the finding that K is not 

fixed across simple instruction changes. This provides strong evidence against threshold-based 

measures like K because, while it is possible to imagine that instructional changes could hurt 

performance, there is no natural mechanism for threshold models to predict that such 

instructions could increase memory capacity. Furthermore, d′ was nearly constant, which 

suggests that the confidence-based ROCs observed in Experiment 1 straightforwardly underlie 

performance in Experiment 2, and that a single decision axis that applies to all trials is sufficient 

to explain performance without added assumptions about guesses or lapses. We then 

replicated Experiment 2 at a different set size and with a visual mask in Experiment 3 and again 

found strong evidence that d′ is fixed across response criterion changes whereas K, is not. 

Thus, our findings suggest that visual working memories are best thought of as continuous in 

strength and best analyzed in terms of signal detection measures, and that there is no need for 

added guess or lapse parameters to account for change detection performance even at the 

highest set sizes (see also Schurgin et al. 2020; Robinson et al. 2020; Brady et al., 2021). 

 

In terms of proper measurement of performance, we find that K values are not a good match to 

the actual shape of ROCs in change detection since ROCs are curvilinear and are thus best 

characterized by d′, not K. Unfortunately, this means nearly all conclusions based on K values 

are potentially suspect, as they do not properly discount differences in response criteria, and 

thus measure a combination of response criteria and memory performance. Furthermore, 

Experiment 2 shows this effect is not subtle: comparing a completely typical response criteria to 

one that is more symmetric (with respect to misses and false alarms) results in an 

underestimate of performance when using K by 30%. Conditions that induce even more 

conservative responding, or that include individual subjects with more conservative criteria, will 

be even more influenced by the failure of K to correctly adjust performance for response criteria.  
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How much of K is a measure of response bias rather than a memory measure under typical 

conditions? A multiple regression, comparing K values computed in all subjects in Experiments 

2 and 3’s normal, non-adaptive condition, with the true measure of memory strength that 

matches the ROC (d’) and with response criterion (c), suggests that K values are about 1/3rd 

measures of response bias and 2/3rds measures of memory strength (after centering and 

scaling, a participant’s K is best predicted by a 0.77 weight on d’ and a -0.45 weight on c, both 

p<0.001). Thus, under standard change detection conditions, a participant's K is extremely 

strongly influenced by that participant's response bias, and K is nearly as much a measure of 

response bias as it is a measure of memory performance.  

 

Throughout the manuscript, we focus on K values because they have been, and continue to be, 

extremely common in visual working memory experiments (see Alvarez & Cavanagh, 2004; 

Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015; Endress & Potter, 2014; Forsberg, Johnson 

& Logie, 2020; Fukuda & Vogel, 2019; Irwin, 2014; Luria & Vogel, 2011; Ngiam, Khaw, 

Holcombe, & Goodbourn, 2019; Norris, Hall, & Gathercole, 2019; Pailian, Simons, Wetherhold, 

& Halberda, 2020; Schurgin & Brady, 2019; Shipstead, Lindsey, Marshall, & Engle, 2014; Sligte, 

Scholte, & Lamme, 2008; Unsworth, Fukuda, Awh, & Vogel, 2014; Vogel & Machizawa, 2004; 

Woodman & Vogel, 2008). However, percent correct and corrected hit rate (i.e., hits minus false 

alarms) also predict linear ROC curves (e.g., Swets, 1986) and thus are also invalid measures 

of memory performance according to our data. Another popular metric of performance in related 

tasks is A’ (e.g., Fisher & Sloutsky, 2005; Hudon, Belleville, & Gauthier, 2009; Lind & Bowler, 

2009; MacLin & MacLin, 2004; Poon & Fozard, 1980; Potter, Staub, Raud, & O’Connor, 2002; 

Reppa, Williams, Greville, & Saunders, 2020), and while this measure is claimed to be 

“atheoretical” and non-parametric by its proponents (Hudon, Belleville, & Gauthier, 2009; 

Snodgrass & Corwin, 1988; Pollack & Norman, 1964), in truth there exists no measure of 

memory derived from a single hit and false alarm rate that is atheoretical and non-parametric 

(Macmillan & Creelman,1996). Unlike K, A’ predicts ROC curves that are curvilinear, though 

differently curvilinear than d′ (Stanislaw & Todorov, 1999), and so may be less likely to confound 

response bias and memory strength than K. Unlike d′, however, which is based on theoretically 

plausible assumptions (latent memory signals for old and new items are distributed as equal-

variance Gaussian distributions with different means), A’ embraces theoretical assumptions that 

are implausible when made explicit (e.g., Macmillan & Creelman, 1996; Pastore, Crawley, 

Berens & Skelly, 2003; Wixted, 2020).  

 

Overall, our results suggest d′ should be the preferred measurement metric for change detection 

data, as d′ was constant across changes in response bias (Exp. 2, 3) and matched the shape of 

the ROC (in Exp. 1). This provided evidence not only in favor of signal detection models but also 

in favor of the simplest kind of single-process signal detection model, without any additional 

need for lapses or guesses.  

 

However, even though the current studies find evidence for equal variance signal detection 

models, and thus d′, it may not be the case that an equal variance signal detection model is 

always appropriate (see also Robinson et al. 2020). It may be that our experiments are ideal for 
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finding equal variance because memory resources tend to be split relatively evenly between 

items in this task: we ask participants to split attention equally between all items by making them 

equally likely to be tested; by using simple stimuli that are all approximately equally attention-

grabbing and thus likely to be encoded and maintained with roughly equal resources; and by 

presenting these stimuli only briefly.The use of d′ may not be valid in other conditions, like 

sequential encoding (Brady & Stoermer, 2021; Smith et al. 2016; Robinson et al. 2020) or when 

items are differentially prioritized (Emrich et al. 2017). Thus, in general, 2-alternative forced-

choice, rather than change detection, is likely a better “default” method for a range of working 

memory tasks (see Brady et al. 2021). Another possibility is that continuity in memory strength 

is related to the stimulus space; that, by using categorical stimuli, instead of continuous spaces 

(like we’ve done here with color), one might find evidence for discreteness in memory. However, 

recent work which has used discrete, categorical stimuli in visual working memory has also 

found curvilinearity in the ROC and rejected discrete models as adequately explaining the data 

(e.g.,  Robinson et al., 2020 used 8 discrete colors). In general, the notion of discrete or 

categorical stimuli and discrete or all-or-none memory strength are different notions of 

discreteness: even for discrete stimuli, like words, memory strength is usually thought to be 

continuous (e.g., Mickes, Wixted & Wais, 2007).  

  

While we have found strong evidence in favor of curvilinear ROC curves here, previous work 

that investigated ROC curves in change detection has found mixed results. Confidence-based 

ROC curves have reliably been found to be curvilinear and approximately in line with equal 

variance signal detection models (e.g., in Robinson et al. 2020; and visually in Xie & Zhang, 

20176) however, results from response bias manipulations across a small range of values have 

provided data that were initially taken to support threshold views (Rouder et al. 2008). 

Interestingly, when followed up on, other results have provided more mixed results, with less 

certain support for threshold models of memory (Donkin et al. 2014; Donkin et al. 2016). Our 

own reanalysis of the data from these studies suggest that when model comparisons are 

properly calibrated to ensure accurate model recovery from simulated data, they all provide 

support for signal-detection views and are largely in agreement with confidence ROCs 

(Robinson et al., 2022). Experiments 2 and 3 are unique in taking an approach that is 

independent of any model comparisons to ask whether changes in response bias are naturally 

accounted for by threshold and/or signal detection views. The results from this experiment 

provided strong support for the curvilinear nature of ROCs and thus for d′ as the standard metric 

of visual working memory performance when using change detection tasks. 

 

Above and beyond the question of whether K measures (Cowan, 2001; Pashler, 1988; Rouder, 

Morey, Morey, & Cowan, 2011) are valid, it is important to ask whether curvilinear ROCs—as 

we observe in both confidence and response bias manipulations—sufficient to reject high-

threshold views altogether? There is substantial convergent evidence to suggest that they are. 

When considering confidence based ROCs at a single level of performance at a time, it is 

possible to construct high-threshold models of curvilinear ROCs. For example, Province and 

Rouder (2012) propose that even when participants are, in truth, completely certain of their 

 
6 Note that these authors do not attempt to fit an equal variance signal detection model, but their ROC is 
visually consistent with such a model. 
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response, they may nevertheless give a low confidence response because the experimenter, by 

presenting a confidence scale, is making "an implicit demand to distribute responses'' across 

the provided scale. However, in the context of mixed set size trials like the current Experiment 1, 

this account cannot predict the data we have observed here. This is because participants do 

not, in fact, spread their responses at all at set size 1, and instead do so only at the highest set 

sizes.  

 

Even more compelling, however, is that if memories were truly high-threshold and it is only 

confidence reports that are noisy and lead to biased estimates of memory, this account predicts 

that in Experiment 2—where there is no confidence elicited—K, and not d′, would be fixed 

across our response criteria manipulation. Instead, we again found strong evidence for d′, not K 

as the measure which appropriately accounts for response bias. Altogether, our results are 

deeply incompatible with threshold-based views in several ways. They are not only consistent 

with explanations based on signal detection models, but are directly in line with a priori 

predictions from such models (as evidenced by our pre-registration). For example, our results 

align with recent work by Winiger, Singmann and Kellen (2021) who used a novel critical test 

with minimal assumptions to test between discrete-slot and signal detection models in a change 

detection paradigm. Like us, these researchers found evidence for pure resource models of 

visual-working memory using a test that eschews the limitations of fitting models to empirical 

ROCs. Our work adds to and extends these findings by directly underscoring the profound 

practical limitations, as well as the detrimental consequences for theory building that arise when 

researchers use K to quantify the capacity of visual working memory. 

 

In this context, we also highlight a major misconception in the working memory literature, which 

is that discrete-slot models are equivalent to, or can be used as “proxies” for mixture models of 

working memory. The fact that pure discrete-slot models are implicitly endorsed in change 

detection paradigms through the use of K metrics, likely reflects a heuristic assumption that 

these metrics are “good enough” approximations of mixture models. Importantly, however, this 

assumption is misguided, since one cannot choose which fundamental aspects of a model to 

embrace, and ultimately leads to a situation where response bias is heavily conflated with 

memory performance, as we have shown here. Although both threshold and mixture models are 

consistent with item-limits in working memory, threshold models and mixture models that 

postulate variations in precision differ fundamentally; they predict different ROC curves and they 

predict different distributions of errors in delayed estimation tasks (Xie & Zhang, 2017). Indeed, 

the observation that precision varies monotonically with set size is why threshold-based 

discrete-slot models were ruled out over a decade ago in delayed estimation tasks in favor of, at 

minimum, mixture models that treat memory as variable in strength up to a certain number of 

items (e.g., Zhang & Luck, 2008; Pratte et al. 2017). More recently, these have been replaced in 

favor of completely continuous models that do away with additional assumptions about 

complete failures (e.g., van den Berg et al. 2012; Scheegans et al. 2020; Schurgin et al. 2020). 

 

We suspect that most working memory researchers would endorse the view that working 

memory representations do not vary in precision. Nevertheless, that is precisely the view they 

implicitly endorse by using K, and this is one fundamental point of our paper: measures of 
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unobservable cognitive processes are constrained by theory, and researchers must carefully 

consider the theoretical assumptions on which their metrics are based before using them (for in-

depth discussion of this issue see: Falmagne & Doble, 2016; Falmagne & Narens, 1983; Irvine, 

2021; Kellen et al., 2021; Narens, 2002, 2007; Roberts, 1985; Roberts & Rosenbaum, 1986; 

van Frassen, 2008). We believe a failure to do so will only perpetuate invalid measurement 

practices in the psychological and cognitive sciences, and perpetuate the “replication crisis” in 

psychology (for similar points in recent articles see: e.g., Brady et al., 2021; Kellen et al., 2021; 

Regenwetter & Robinson, 2017; Rotello et al., 2015; Schimmack, 2021). 

 

In effect, our work highlights that a choice between these models and metrics, is not simply a 

fickle theoretical concern; instead, the finding that K fails to dissociate variations in memory 

strength from variations in response bias, while d′ does not, entails that a choice between these 

models can qualitatively change the inferences researchers draw regarding how memory 

strength varies as a function of individual differences or experimental manipulations. Overall, 

this suggests that, as in long-term recognition memory, visual working memory researchers 

should consider memories as continuous in strength and use signal detection to measure 

performance. 

 

There are potentially broad implications for the fact that K values confound response bias with 

memory performance, as K values underlie many critical conclusions about visual working 

memory (Alvarez & Cavanagh, 2004; Alvarez & Cavanagh, 2008; Brady & Alvarez, 2015; 

Chunharas, Rademaker, Sprague, Brady & Serences, 2019; Endress & Potter, 2014; Eriksson, 

Vogel, Lansner, Bergstrom, & Nyberg, 2015; Forsberg, Johnson & Logie, 2020; Fukuda & 

Vogel, 2019; Fukuda, Vogel, Mayr & Awh, 2010; Fukuda, Woodman, & Vogel, 2015; Fukuda, 

Kang & Woodman, 2016; Hakim, Adam, Gunseli, Awh & Vogel, 2019; Irwin, 2014; Luria & 

Vogel, 2011; Ngiam, Khaw, Holcombe, & Goodbourn, 2019; Norris, Hall, & Gathercole, 2019; 

Pailian, Simons, Wetherhold, & Halberda, 2020; Schurgin & Brady, 2019; Shipstead, Lindsey, 

Marshall, & Engle, 2014; Sligte, Scholte, & Lamme, 2008; Unsworth, Fukuda, Awh, & Vogel, 

2014; Unsworth, Fukuda, Awh, & Vogel, 2015; Vogel & Machizawa, 2004; Woodman & Vogel, 

2008). For example, one major research domain for which our results could have profound 

implications is the study of how visual working memory capacity relates to global indices of 

cognitive function (Luck & Vogel, 2013; Vogel & Awh, 2008). As a case in point, much of the 

foundational work that examines the relationship between visual working memory limits and 

general intelligence has used K in change detection paradigms to quantify visual working 

memory limits (e.g., Fukuda, et al., 2010). Such studies tend to use high memory loads with the 

goal of placing sufficiently high memory demands in order to detect individual differences in 

visual working memory capacity. Our simulations and empirical results reveal that these types of 

memory demands are precisely the kind that can lead to changes in response bias, and that 

variations in K estimates lead to spurious conclusions as to the source of these purported 

correlations with intelligence. Given that much prior works suggests that there are substantial 

individual differences in response bias (Aminoff et al., 2012; Kantner & Lindsay, 2012; Miller & 

Kantner, 2020), it follows that a substantial part of the shared variance between intelligence and 

VWM capacity in such studies could instead reflect an association between intelligence and 

response bias. An analogous criticism has been repeatedly made in the study of the relationship 
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between intelligence and cognitive control, where it remains unclear whether associations 

between intelligence and performance on cognitive control (e.g., Eriksen Flanker tasks) reveal 

shared variance between executive function and intelligence, or shared variance between 

individual differences in third variables, such as response policies (e.g., speed/accuracy 

tradeoffs in cognitive control tasks) and intelligence (e.g., Burgoyne & Engle, 2020; Frischkorn & 

Schubert, 2018). We are not attempting to promote the view that all of the shared variance 

between intelligence and visual working memory capacity is due to response bias. Instead, we 

view this as an open empirical question that needs to be examined further with alternative 

measures of visual working memory capacity. More broadly, we emphasize that much of the 

work on individual differences and VWM capacity should be re-evaluated with a much heavier 

focus on proper measurement.  

 

Overall, we show that in change detection, K values substantially confound response bias with 

memory performance, and should not be used. Instead, d′ should be the preferred metric of 

change detection performance. More broadly, this work shows how using the proper metric to 

understand memory performance is critical, since incorrect metrics can give extremely 

misleading conclusions (e.g., underestimating performance by ~30%), with potentially broad 

implications for the literature. Furthermore, our work suggests that an equal variance signal 

detection model – with no additional guess or lapse processes – is sufficient to explain change 

detection performance at high set sizes.  
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Data Availability 

Our data and code are available at https://osf.io/d5jw3/ 
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