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Abstract

Small populations with limited range are often threatened by inbreeding and reduced genetic
diversity, which can reduce fitness and exacerbate population decline. One of the most extreme
natural examples is the Devil’s Hole pupfish (Cyprinodon diabolis), an iconic and critically
endangered species with the smallest known range of any vertebrate. This species has
experienced severe declines in population size over the last thirty years and suffered major
bottlenecks in 2007 and 2013, when the population shrunk to 38 and 35 individuals, respectively.
Here we analyzed 30 resequenced genomes of desert pupfishes from Death Valley, Ash
Meadows, and surrounding areas to examine the genomic consequences of small population size.
We found extremely high levels of inbreeding (Fzor=0.34-0.81) and an increased amount of
potentially deleterious genetic variation in the Devil’s Hole pupfish as compared to other species,
including unique, fixed loss-of-function alleles and deletions in genes associated with sperm
motility and hypoxia. Additionally, we successfully resequenced a formalin-fixed museum
specimen from 1980 and found that the population was already highly inbred prior to recent
known bottlenecks. We thus document severe inbreeding and increased mutation load in the
Devil’s Hole pupfish and identify candidate deleterious variants to inform management of this

conservation icon.
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Introduction

Due to declining population sizes and increasing isolation of many species from anthropogenic
habitat fragmentation and climate change, understanding the extent and nature of genetic threats
in small populations is essential for predicting and increasing population persistence and
resiliency [1]. Small and isolated populations often suffer from inbreeding depression, the
reduction in fitness caused by increased homozygosity of deleterious recessive alleles or
overdominant loci that occurs when closely related individuals breed together [2,3]. Prolonged
population decline can result in increased long-term extinction risk due to stochastic
demographic events [4], reduced genetic variation for adaptation [5], and decreased efficacy of
purifying selection to overpower drift and purge deleterious variants [6]. This reduced efficacy of
purifying selection leads deleterious mutations to accumulate more readily in small populations.
The burden of accumulated deleterious mutations is known as the mutation load, and can reduce
individual fitness [7,8].

Many examples of reduced genetic diversity and inbreeding depression have been
documented in the wild [9,10], including Florida panthers (Puma concolor) [11], Isle Royale
wolves (Canis lupus) [12], and mountain gorillas (Gorilla beringei) [13]. Severe inbreeding in
natural populations is increasingly being documented across a wide range of temporal scales,
from ancient bottlenecks [14,15] to recent timescales [12]. Recently, historical museum
specimens have been successfully leveraged to investigate temporal changes in inbreeding and
genetic diversity, highlighting their utility for investigating the historical dynamics of inbreeding
and mutation load in imperiled populations [16,17].

Traditionally, population health and extinction risk was assessed using putatively neutral

molecular markers and pedigrees owing to positive correlations between genome-wide
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heterozygosity and fitness [18]. Maintaining genome-wide genetic variation is crucial to
preserving adaptive potential and preventing inbreeding depression in populations of
conservation interest [ 19] because populations with higher levels of genetic diversity tend to
have higher mean fitness and reduced extinction risk [20]. However, several recent studies have
suggested that summary statistics of genetic variation do not necessarily accurately reflect
population size or extinction risk and that we should also use whole-genome sampling to assess
functional genetic diversity and genetic load [17,21]. Genomes enable more detailed
measurements of individual inbreeding depression and its genetic basis relative to pedigree-
based approaches [22]. Thus, a comprehensive understanding of the evolutionary dynamics of
small populations in the wild from a genomic perspective is key to understanding the fate of
endangered populations and to inform conservation management.

Here we leverage the unique evolutionary and demographic history of the iconic Devil’s
Hole pupfish (C. diabolis: Fig. 1A) to investigate how isolation and recent population decline
have shaped inbreeding and mutation load. Death Valley pupfishes evolved from a common
ancestor thousands of years ago when the climate was milder and the region was connected by
large inland seas. Populations are now relatively isolated in small desert spring systems and
several species are now considered critically endangered [23]. Devils Hole contains the most
extreme conditions, including a nearly constant temperature of 34°C [24], absence of direct
sunlight during the winter [25] which sharply limits primary production and nutrient availability
[26], and dissolved oxygen levels near lethal limits for most fishes (2 — 3 ppm) [25,27].
Surrounding pupfishes in neighboring springs occupy less hypoxic environments, such as

Cyprinodon nevadensis mionectes in Jackrabbit Spring, due to greater water movement [28].
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C. diabolis exists at one of the lowest long-term population sizes of any desert pupfish.
The population has steadily declined since the late 1990s before reaching lows of 38 and 35
individuals in the spring of 2007 and 2013, respectively (Fig. 1B). C. diabolis is restricted to the
upper 30 m of Devils Hole, a 3.5 x 22 m water-filled cavern widely believed to be the smallest
range of any vertebrate (3.5m x 22m) [29] (Fig. 1C). Population viability analyses in 2014
suggested that the median time to extinction was 26 years [30]. Although this species was
previously believed to be isolated in Devils Hole for 10-20 kya (Miller 1981), more recent
genome-wide estimates indicate that Devils Hole may have most recently experienced
substantial admixture approximately 1-2 kya and that gene flow among these desert oases is
surprisingly common [23,32,33].

The continued persistence of C. diabolis in the hottest desert on earth in one of the most
inhospitable habitats for fishes is extraordinary. Despite its status as one of the world’s most
endangered species, genetic analyses have so far been limited to delineating phylogenetic
relationships, assessing population structure, and measuring genetic diversity with reduced-
representation genetic markers [23]. Here we resequenced whole-genomes of C. diabolis and
several closely related Cyprinodon desert pupfishes to investigate how isolation and small
population size influence inbreeding and mutation load on a genome-wide scale in this

conservation icon.

Results
Geography and population structure
We sequenced 30 individuals (8 C. diabolis, 13 C. nevadensis, 4 C. salinus, and one individual

each of C. albivelis, C. eremus, C. fontinalis, C. macularius, and C. radiosus) for our analyses
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(Fig. 1D, Table S1, Table S2). After filtering for quality genotypes and exclusion of problematic
samples, we retained a total of 6,295,414 SNPs with a mean coverage of 12x. We investigated
genome-wide population genetic differentiation among Death Valley desert pupfishes using
principal components analyses, corroborating previous results [23] (Fig. 2A). Devils Hole
pupfish were substantially divergent from the most closely related neighboring desert pupfish
species for genome-wide mean F estimates (C. diabolis vs. C. nevadensis = 0.34). Inference of
evolutionary relationships among these populations using genome-wide SNP data under the
multi-species coalescent using SVDquartets [34,35] and concatenated SNP data across all
individuals using IQ-TREE v 1.6.12 [36] confirmed previous findings; C. diabolis is sister to C.
nevadensis and C. salinus is sister to both [23]. Our expanded sampling of outgroups also
confirmed that the Death Valley clade is most closely related to the geographically proximate
Owens pupfish (C. radiosus) [37]. ADMIXTURE analyses support C. diabolis, C. nevadensis,
and C. salinus as distinct populations. Interestingly, this analysis infers apparent admixture
within C. nevadensis from neighboring populations as more distantly related desert pupfishes
(Fig. 2D); this complex history of admixture may help to explain the lack of phylogenetic

resolution within this group.

Severe inbreeding in Devil’s Hole pupfish

Inbreeding can be identified and quantified through runs-of-homozygosity (ROHs), which are
long contiguous tracts of identical haplotypes inherited from a common ancestor [22]. We
calculated Fromn, an accurate measure of inbreeding, as the summed lengths of ROHs greater than
100 kb divided by the total genome size. We found that C. diabolis was highly inbred (mean

Fron = 0.58), significantly exceeding the degree of inbreeding observed in C. nevadensis (mean
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Fron = 0.14: Tukey’s HSD P = 8.38 x 107°: Fig. 3). In contrast, ROHs made up less than 10% of
the genome in the relatively undisturbed natural spring populations of C. nevadensis amargosae
and C. nevadensis nevadensis, whereas C. nevadensis shoshone and C. nevadensis pectoralis
tended to have a higher Fron than other C. nevadensis species (Fig. 3). These findings are
consistent with small census population sizes and intensive management histories as C.
nevadensis shoshone has experienced extirpation and captive breeding prior to reintroduction in
the 1990s and the habitat of C. nevadensis pectoralis has undergone extensive habitat
modification. [38—40].

We found that the degree of inbreeding in Devils Hole has remained high, from 1980
(Fron= 0.55; n = 1) to near-present day (2008 — 2012: mean Froun = 0.58). This suggests that C.
diabolis was already highly inbred prior to the population decline in the mid-1990s and severe
bottlenecks in 2007 and 2013, during which the population size plummeted to 38 and 35 fish,
respectively [30] (Fig. 1B).

Shorter ROHs indicate mating between distant relatives or longer-scale historical
processes, whereas longer ROHs are indicative of recent inbreeding due to reduced opportunity
for recombination [41]. We exploited this signature to estimate the mean number of generations
back to the common ancestor of these homologous sequences using the length of ROHs and an
assumed recombination rate. Populations with similar high levels of inbreeding can have ROHs
that nearly span entire chromosomes [42]. Surprisingly, given the recent severe bottlenecks, we
did not find many long ROHs (> 10 Mb) in our C. diabolis samples, barring a single exception
(Fig. 3D). Instead, much of the cumulative inbreeding is made up of ROHs that are 0.1 — 1 Mb
long (Fig. 3B), which corresponds to shared parental ancestry from 11 - 109 generations

previous. Our results illustrate that extreme isolation and prolonged small population size have
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driven C. diabolis to become highly inbred and that much of the inbreeding occurred prior to

recent bottlenecks over the course of the 20" century.

Higher mutation load in Devils Hole pupfish

Small, inbred populations are expected to have higher frequencies and homozygosity of
deleterious alleles. However, once deleterious recessive alleles are unmasked, purifying selection
can also purge portions of the mutation load [43]. To assess how severe inbreeding in Devil’s
Hole pupfish has affected mutation load, we calculated the relative proportions of homozygous
ancestral, heterozygous, and homozygous derived genotypes across synonymous (SYN), non-
synonymous (NSYN), and loss-of-function (LOF) mutations (Fig. 4, Fig. S1). The number of
homozygous derived genotypes for LOF variants quantifies load under a recessive model [8,44].
Because deleterious alleles tend to be recessive [45,46], LOF homozygous derived alleles are
more likely to have a phenotypic effect that leads to a reduction in fitness.

C. diabolis had significantly lower proportions of heterozygous genotypes than C.
nevadensis across all variant types (SYN: P=1.42x 10° NSYN: P=1x 10>, LOF: P=1.87 x
10, Tukey’s HSD tests), consistent with our findings of higher inbreeding in this species. C.
diabolis also had significantly higher proportions of homozygous derived LOF genotypes
compared to both C. nevadensis (P =6.61 x 10*) and C. salinus (P = 0.044). Similarly, C.
salinus also had significantly lower proportions of heterozygous genotypes than pooled C.
nevadensis samples across all variant types (SYN: P=2.74 x 10, NSYN: P=3.71 x 107, LOF:
P=5.36x 102, Tukey’s HSD tests), likely reflecting the larger population sizes of C. nevadensis
populations. There were no significant differences in the proportion of homozygous derived

genotypes for SYN and NSYN mutations among the three species.
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We also assessed whether there were allele frequency differences among the three species
across a comparable set of LOF alleles and found that there were no significant differences
among the three species (ANOVA P = 0.134), although C. diabolis tended to have a higher mean
frequency of LOF alleles at 0.63, compared to C. nevadensis = 0.54 and C. salinus = 0.49.
Finally, there was no enrichment of LOF variants in ROHs for most individuals except for three
C. diabolis individuals that had significantly greater proportions of LOF variants in ROHs than
their respective Fron values (DHP54903: P =1.92 x 10, DHP54913: P=4.29 x 1073,
DHP54918: P=4.71 x 10°%). One C. nevadensis amargosae individual had a significantly lower

proportion of LOF variants in ROHs (CNevAma: P =2.01 x 107).

Fixed variants unique to Devils Hole

Devils Hole pupfish clearly harbor a homozygous LOF mutation load greater than neighboring
desert pupfish. Thus, we focused on genetic variants most likely to be deleterious to help inform
future management of this species; specifically, homozygous derived LOF variants and deletions
unique to C. diabolis, which are expected to reduce fitness by disrupting gene function.

We identified 11 predicted LOF SNPs in the form of premature stop codons, including
several within genes that may affect fecundity or resistance to disease and stress (Table S3).
These include cfap43, a protein involved in the structure and function of the sperm flagellum
axoneme that has been implicated in male infertility [47]. Similarly, reduced sperm motility and
abnormal sperm morphology was observed in Florida panthers [11] and lions [48] due to
inbreeding.

We also identified 94 deletions unique to C. diabolis and focused on the 15 deletions

within 2 kb of any annotated genes. Surprisingly, five of the fifteen deletions were involved in
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cellular responses to hypoxia (Table S4), including shifts to anaerobic metabolism,
erythropoiesis, degradation of misfolded proteins, and regulation of nutrient use and cell fate
[49]. These hypoxia-related deletions included an 81 bp deletion in the promoter of redd!.
During hypoxia, reddl inhibits mTORCI1 [50,51] through the TSC1/TSC2 tumor suppressor
complex to conserve energy and prevent the accumulation of misfolded proteins. Upregulation of
a homolog of redd! (ddit4L/redd?) has been implicated in adaptation to hypoxia in shortfin
mollies (Poecilia mexicana) (Barts 2020) and high-altitude deer mice (Peromyscus maniculatus)
(Rochette 2021 pers. comm.). We also found deletions in apeh, an enzyme that destroys
oxidatively damaged proteins [53]; trim39, a tripartite motif involved in erythropoiesis [54]; and
slc25a42, a mitochondrial transporter of coenzyme A [55] associated with mitochondrial

myopathy and lactic acidosis in humans [56].

Discussion

We documented extensive inbreeding, gene loss, and mutation load in the critically endangered
Devil’s Hole pupfish and identified a set of candidate deleterious genetic variants that can
potentially inform future conservation management. We show that C. diabolis is significantly
more inbred than most neighboring desert pupfish populations. C. diabolis was not significantly
more inbred than C. salinus although our small sample size and high variability make it difficult
to infer accurate levels of inbreeding in C. salinus. High levels of inbreeding are associated with
elevated extinction risk [57,58] and the inbreeding in C. diabolis is equal to or more severe than
levels reported so far in other isolated natural populations such as Isle Royale wolves [12],
mountain gorillas [59], and Indian tigers [60]. Although we were unable to directly measure

fitness, the increased inbreeding in C. diabolis likely results in a substantial reduction in fitness.
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Previous studies have suggested that increases in Fror have strong negative effects on fitness.
For instance, in Soay sheep an increase in Frou by 10% was correlated with a 60% decline in
fitness [61], whereas in helmeted honeyeaters a 9% increase in homozygosity was associated
with a reduced lifetime reproductive success of 87-90% [62] . Surprisingly, C. salinus also
displayed high levels of inbreeding although increased sampling is necessary to obtain reliable
estimates of inbreeding.

By successfully sequencing a formalin-fixed historical museum specimen to 10x
coverage (out of 8 total attempts) we discovered that inbreeding was already extensive by 1980,
suggesting that C. diabolis may have an extended history of repeated population bottlenecks.
Indeed, the distribution of ROH sizes suggests that a large proportion of homozygous tracts were
due to inbreeding that occurred many generations prior to the recent population decline.
Furthermore, C. diabolis harbors a significantly greater mutation load than either C. nevadensis
or C. salinus (Fig. 4).

Our mutation load results support previous hypotheses that C. diabolis harbors a high
mutation load due to its relative isolation and small population size [29,63]. Additionally, they
are consistent with the observation of rapid allele frequency increases of C. nevadensis alleles in
a C. diabolis refuge population after the accidental introduction of a few individuals [64].
Although recent studies have suggested that small, bottlenecked populations may harbor a lower
mutation load due to purging [13,65,66], populations that have experienced recent severe
population bottlenecks are likely to maintain a high load, because deleterious variants may reach
fixation before purifying selection removes them [67]. Although our measure of mutation load
does not directly measure fitness, there is empirical support that LOF mutations are on average

deleterious [68].
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Degradation of hypoxia and reproductive pathways in C. diabolis
We found deleterious variants associated with reproduction and hypoxia genes. For example, we
found a fixed LOF variant unique to C. diabolis in cfap43, a gene associated with sperm
morphology and function. Deletions have thus far been rarely studied or quantified in
conservation genetics. However, analysis of woolly mammoth genomes from different time
points found that a sample dated closer to the time of extinction had accumulated more
homozygous deletions than earlier ones [15], suggesting that deletions may be an understudied
genetic threat to endangered populations [17].

We found numerous deletions that were unique to the Devil’s Hole pupfish. Of these, five
were associated with hypoxia, a known environmental stressor in the system, suggesting that C.
diabolis could be poorly equipped to physiologically deal with the stressful hypoxic environment
in Devils Hole. Indeed, previous studies have noted that C. diabolis has low fecundity [24,69],
low egg viability and juvenile survivorship [29], and lays more eggs at lower temperatures (28
°C) compared to the higher constant temperature of 33 °C in Devils Hole [70]. At present, we
cannot rule out the possibility that some of these fixed variants are potentially the result of local
adaptation; distinguishing between selection and genetic drift in small populations is extremely
difficult because both processes leave similar signatures in allele frequencies [71]. One
possibility is that these variants are adaptive in the unique selective environment of Devils Hole
and were swept to fixation during initial colonization. Moving forward, functional genetic and
eco-physiological tests will be key to understanding the full impacts of these variants. Our results
highlight the importance of investigating deletions and structural variants to better understand

unique genetic variation in endangered populations.
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Did severe inbreeding cause the recent population decline?
The Devils Hole pupfish population began to decline in the 1990s from historical population
sizes of 200 — 500 to less than 100 individuals for reasons still unknown (although in the most
recent census the population has rebounded to 175 fish). Ecological hypotheses include declines
in ostracod prey for juvenile pupfish [72,73] and changes in the dominant primary producers
from Spirogyra algae to diatoms and cyanobacterial mats [74]. Furthermore, climate change may
be shortening the seasonal period of optimal hatching conditions on the shallow shelf where C.
diabolis spawns [75]. The stressful environment of present-day Devils Hole may thus have
exacerbated inbreeding depression, which typically increases under environmental stress [76,77].
Alternatively, previous studies speculated that the population has a high genetic load
which led to “mutational meltdown” based on the discovery of a dramatic shift towards
predominantly C. nevadensis ancestry following introduction of a few C. nevadensis into a C.
diabolis refuge population [64]. We estimated effective population size of C. diabolis based on
the harmonic mean of biannual census data (N3P = 122, N.Fall = 209) and found that this
species has an effective population size far below the suggested minimum for the maintenance of

sufficient genetic variation for adaptive capacity [78,79].

Past and future management actions

Initial management of the species involved various attempts to create wild refuge populations in
the 1950s - 1970s prior to the landmark 1976 U.S. Supreme Court decision mandating a
minimum water level, which halted habitat reduction and population decline caused by

groundwater pumping[80]. Subsequent attempts to maintain refuge populations of C. diabolis in



323 aquaria and semi-natural outdoor pools largely failed to sustain captive breeding colonies for
324 long periods of time [29,64]. In response to the severe population bottlenecks in the early 2000s,
325  Ash Meadows Fish Conservation Facility was constructed in 2012 to establish a refuge

326  population that more closely mimicked the Devils Hole habitat and the refuge colony now

327  outnumbers the wild population. Although we relied on degraded tissue samples collected from
328  dead pupfish retrieved from Devils Hole for genetic analyses in this study, increasing population
329  numbers may soon allow for tissue-samples or functional genetic approaches in refuge live

330  specimens.

331

332 Conclusion

333 Our study adds to a growing number of studies that measure inbreeding and mutation load in
334  wild populations, with a novel focus on gene deletions in a wild highly inbred population

335  [60,66]. The demographic history and genome-wide measures of high inbreeding and mutation
336 load in the Devil’s Hole pupfish suggest that the population remains in danger. While

337  successfully sequencing formalin-fixed samples remains difficult, we were able to do so for a
338  single C. diabolis specimen from 1980 and found that the population was likely highly inbred
339  prior to the recent bottleneck. Increasing availability of genomic sampling spanning multiple
340  time points for endangered species such as the Devil’s Hole pupfish will better inform our

341  understanding of inbreeding, mutation load, and specific putatively deleterious variants in this
342  system, ultimately allowing for conservation management to monitor potentially harmful

343  wvariation in wild and captive populations over time. Finally, we caution that targeted genetic
344  management of deleterious variants should not be undertaken until candidates have been verified

345  to have fitness consequences.
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Methods

Samples and sequencing

We sequenced 44 whole genomes including C. diabolis (N = 23), C. nevadensis (N = 13) and C.
salinus (N = 4) spanning multiple independent springs, along with closely related desert pupfish
species from California, Arizona, and Mexico (Table S1). Of the 23 C. diabolis genomes, eight
were from historical museum samples, spanning 1937 — 1980, while the rest were non-
destructively sampled between 2008 and 2012. Given the critically endangered status of C.
diabolis, NPS and USFWS staff collected and preserved dead specimens found during routine
checks during this period. All other species were collected in the early 1990s [81]. Samples were
sequenced on 150 PE runs using an [llumina Novaseq. Historical and several degraded C.
diabolis samples were prepared using Swift 2S Turbo library kits (Swift Biosciences). All
sample metadata are reported in Table S1. Fourteen samples were excluded from downstream
analyses due to a low percentage of reads mapping to the reference genome (<70%), improperly
paired reads (<70%), or significant amounts of missing data per individual following SNP
calling (>80%), presumably due to degradation (Table S2: See supplement for additional details).
Following the filtering described above to identify high-quality samples, we retained for all
downstream analyses the following 30 samples: 8 C. diabolis, 13 C. nevadensis, 4 C. salinus,
and five closely related desert pupfish species (C. albivelis, C. eremus, C. fontinalis, C.

macularius, C. radiosus) (Fig. 2).

Alignment and filtering
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Raw reads were mapped from all 44 individuals to the Cyprinodon brontotheroides reference
genome (UCB_Cbro_1.0; total sequence length = 1,162,855,435 bp; scaffold N50 = 32 Mbp)
[82] with bwa-mem (v0.7.12; [83]). Duplicate reads were identified using MarkDuplicates and
BAM indices were created using BuildBamIndex in the Picard software package
(http://picard.sourceforge.net; v2.0.1). We followed the best practices guide recommended in the
Genome Analysis Toolkit (v3.5; [84]) to call and refine our single nucleotide polymorphism
(SNP) variant dataset using the program HaplotypeCaller. SNPs were filtered based on the
recommended hard filter criteria (QD < 2.0; FS > 60; MQ<40; MQRankSum < - 12.5;
ReadPosRankSum < —8) because we lacked high-quality known variants. See supplement for

additional details. Our final dataset contained 6,295,414 SNPs.

Population structure

We pruned SNPs in strong linkage disequilibrium using the LD pruning function (--indep-
pairwise 50 5 0.5) in PLINK (v1.9; [85]) leading to the retention of 1,653,597 variants. We then
characterized population structure with two approaches. First, we used PLINK to conduct
principal component analysis. Second, we used ADMIXTURE (v1.3.0; [86]) to assign
individuals to variable numbers of population clusters (K = 1-20). We used the subset parameter
in PLINK to randomly select 100,000 SNPs for analysis. We calculated genome-wide Fi:
between C. diabolis and C. nevadensis, based on the 6.3 million SNP dataset using the weir-fst-

pop function in vcftools (v.0.1.15; [87]).

Phylogenetic inference
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Phylogenies were inferred at the individual and species-level from 1,653,597 LD-pruned SNPs
using [Q-Tree (v1.6.12:[36]) and SVDquartets [34,35]. Full details are provided in the

supplemental methods.

Population size
Census data for 1972 — Spring 2013 was acquired from Beissinger (2014). Data for subsequent
counts was based on released NPS news reports. Variance effective population size was

calculated as the harmonic mean of spring (NeSP""8) and fall (Ne"!!) population counts over time.

Runs of homozygosity

Runs of homozygosity (ROHs) were identified in our Death Valley samples from the full filtered
set of 6,295,414 SNPs using the BCFtools/ROH command (v.1.14: [88]), which uses a hidden
Markov model to identify homozygous portions of the genome from genetic variation data. To
calculate the cumulative fraction of the genome consisting of ROHs (Fron) for each individual,
we summed the lengths of identified ROHs with length greater than 100 kb and divided by the
total size of the genome (1,162,855,435 bp). We also classified ROHs into various lengths of 0.1
— 1 Mb, 1 — 10 Mb, and greater than 10 Mb and calculated the proportion of the genome that
these classes of ROHs comprised in a similar fashion. Although the amount of missing data was
significantly associated with our measure of FROH across all samples (Fig. S2), we found no
significant association between FROH and depth of coverage or missing data for C. diabolis
samples alone. Furthermore, we were still able to detect low FROH in two C. nevadensis
samples with large amounts of missing data. The age of ROHs were estimated as g =100 /

2*ROH length (cM), where g is the number of generations to the most recent common ancestor
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[41]. We assumed a generation time of 1 year [29], and an average recombination of ~ 4.6

cM/MDb (genetic map length = 5330 cM [89]; C. brontotheroides genome size = 1.16 Gb [82]).

Measuring mutation load

We categorized variants in coding regions based on their putative effect on the amino acid
sequence [i.e. loss-of-function (LOF) or non-synonymous (NSYN)] and whether the alleles were
derived with respect to our reference (C. brontotheroides) genome using SnpEff [90]. LOF
variants were conservatively defined as SNPs that resulted in a premature stop codon [65,91],
which are expected to be less prone to misannotation [92]. Unique, putatively deleterious
variants were defined as being: (i) homozygous derived, (ii) a gained stop codon, and (iii)
present in all of our C. diabolis samples for which genotypic information was available and
absent in all other non-C. diabolis samples in our dataset. See supplement for additional details.
We did not rely on direct counts of variants or derived alleles as they are significantly positively
correlated with coverage (Fig. S3) and missing data (Fig. S4). Instead, we measured mutation
load in terms of the proportions of SYN, NSYN, and LOF genotypes that were homozygous
ancestral, heterozygous, or homozygous derived across species (e.g. [91]). This transformation
largely corrected for the confounding effect of coverage (Fig. S5) and missing data (Fig. S6) on
our estimates of mutation load. We assessed whether mutation loads differed among the three
species using an ANOVA in R and used Tukey’s HSD tests in R to test for pairwise differences
among species [93]. To compare allele frequencies of LOF alleles between our three species, we
first identified 62 LOF variants for which there was genotype information for at least four
individuals per species and for which the variant was present in at least two of the three species,

to control for differences in sampling number among species. We then calculated species-
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specific allele frequencies for each of these 62 LOF variants. Differences in average allele
frequency of LOF alleles was assessed using an ANOVA in R [93]. We assessed whether LOF
variants were enriched in ROHs for each individual by performing binomial tests where the
number of successes was defined as the number of LOF variants in ROHs, the number of trials
was defined as the total number of LOF variants, and the probability of success was defined as

the individual’s Fromn.

Unique deletions

We identified deletions that were unique to C. diabolis using DELLY (v0.8.3) [94]. We only
characterized deletions that were present in our five highest quality C. diabolis samples
(DHP1980-5, DHP54903, DHP54913, DHP54917, DIAB54919), but absent in other species.
Deletions that were exceptionally large and presumably artifacts were checked for accuracy in
IGV and subsequently removed (n = 4). We focused primarily on deletions within 2kb of an
annotated gene. Deletions were confirmed to be unique to C. diabolis by aligning BAM files
spanning the deletion and confirming their presence in C. diabolis and absence in non-C.
diabolis samples. We analyzed whether deletions spanned exons, introns, or regulatory regions
by BLASTing [95] deleted sequences against the C_variegatus-1.0 (GCF_000732505.1)

assembly on Ensembl (release 102; [96]).
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A) Photo of C. diabolis by Olin Feuerbacher. B) Biannual population census counts of C.
diabolis over time. Bottlenecks in 2007 and 2013 reached 38 and 35 individuals, respectively. C)
Photo of Devils Hole by USFWS. D) Map of Death Valley NP and Ash Meadows NWR

sampling locations.
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Figure 2. Population structure and evolutionary relationships among desert pupfishes

A). Principle component analysis of desert pupfishes revealing substantial population structure
among species and populations. B) Species tree estimated by SVDquartets; nonparametric
bootstrap support values indicate the percentage of bootstrap replicates supporting monophyly
for each clade. C) Maximum-likelihood tree of all 30 samples estimated by IQ-TREE. Two
internal branches were collapsed due to low support (ultrafast bootstrap < 95%, SH-aLRT <
80%); all other branch support was unequivocal (UFboot = 100%, SH-aLRT = 100%). D)
Ancestry proportions across individuals in Death Valley NP, Ash Meadows NWR, and outgroup
desert pupfishes (C. albivelis, C. eremus, C. fontinalis, C. macularius, C. radiosus) estimated
from a LD-pruned SNP dataset in ADMIXTURE with k = 4. Colors in PCA, trees, and
ADMIXTURE designate individuals from different species or populations and correspond to the

shared figure legend in A.
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Figure 3. Extreme inbreeding in the Devils Hole pupfish

A) Fron measured as the cumulative fraction of the genome made up of runs of homozygosity
(ROHs) at least 100 kb long. B) Proportion of the genome in ROHs of 0.1 — 1 Mb for each
individual. C) Proportion of the genome in ROHs of 1 — 10 Mb for each individual. D)
Proportion of the genome in ROHs greater than 10 Mb for each individual. E) Total proportion

of the genome within an ROH greater than 100 kb.
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Figure 4. Cyprinodon diabolis suffers from uniquely high mutation load

The mean proportion of homozygous ancestral, heterozygous, and homozygous derived
genotypes in C. diabolis, C. nevadensis, and C. salinus with respect to the C. brontotheroides
genome at segregating sites across all populations in coding regions. Variants were categorized
into mutation classes as synonymous (SYN), non-synonymous (NSYN), or loss-of-function

(LOF) with Snpeff. Loss-of-function mutations are defined as those that encode a premature stop
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