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Synopsis Biologists are drawn to the most extraordinary
adaptations in the natural world, often referred to as evo-
lutionary novelties, yet rarely do we understand the mi-
croevolutionary context underlying the origins of novel
traits, behaviors, or ecological niches. Here we discuss
insights gained into the origins of novelty from a research
program spanning biological levels of organization from
genotype to fitness in Caribbean pupfishes. We focus on
a case study of the origins of novel trophic specialists on
San Salvador Island, Bahamas and place this radiation in
the context of other rapid radiations. We highlight ques-
tions that can be addressed about the origins of novelty at
different biological levels, such as measuring the isolation
of novel phenotypes on the fitness landscape, locating the
spatial and temporal origins of adaptive variation contrib-
uting to novelty, detecting dysfunctional gene regulation
due to adaptive divergence, and connecting behaviors with
novel traits. Evolutionary novelties are rare, almost by def-
inition, and we conclude that integrative case studies can
provide insights into this rarity relative to the dynamics of
adaptation to more common ecological niches and re-
peated parallel speciation, such as the relative isolation
of novel phenotypes on fitness landscapes and the tran-
sient availability of ecological, genetic, and behavioral
opportunities.

Synopsis Como Investigar as Origens da Novidade: Ideias
Obtidas a Partir de Perspectivas da Genética, do
Comportamento e de Fitness (How to Investigate the
Origins of Novelty: Insights Gained from Genetic,
Behavioral, and Fitness Perspectives)

Bidlogos sao atraidos pelas adaptacoes mais extraordindrias
do mundo natural, muitas vezes chamdas de novidades
evolutivas, mas raramente entendemos o contexto micro-
evolutivo subjacente as origens de novas caracteristicas,
novos comportamentos ou nichos ecoldgicos. Aqui discu-
timos ideias obtidas sobre as origens da novidade evolutiva
a partir de um programa de pesquisa abrangendo niveis
bioldgicos de organizacao de gendtipo para fitness em
pupas do Caribe. Nés nos concentramos em um estudo
de caso sobre as origens de novos especialistas tréficos na
ilha de Sao Salvador, Bahamas, e colocamos essa radiacao
no contexto de outras radiacoes rapidas. Destacamos ques-
toes que podem ser abordadas sobre as origens da novi-
dade evolutiva em diferentes niveis biolégicos, como medir
o isolamento de novos fendtipos no cenario adaptativo,
localizando as origens espaciais e temporais da variacao
adaptativa que contribuem para a novidade evolutiva,
detectando a regulacao génica disfuncional devido a
divergéncia adaptativa, e conectando comportamentos
com novas caracteristicas. As novidades evolutivas sao
raras, quase por definicao, e concluimos que estudos de
caso integrativos podem fornecer ideias sobre essa raridade
em relacao a dindmica de adaptacao a nichos ecoldgicos
mais comuns e especiacao paralela repetitiva, como o rel-
ativo isolamento de novos fendtipos em cenarios adapta-
tivos e a disponibilidade transitéria de oportunidades
ecoldgicas, genéticas, e comportamentais.

Translated to Portuguese by G. Sobral (gabisobral@gmail.
com)
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Introduction

One of the most fundamental biodiversity patterns
across the tree of life is the highly uneven distribu-
tion of evolutionary novelty (Alfaro et al. 2009;
Rabosky and Alfaro 2010; Wagner et al. 2012;
Wellborn and Langerhans 2015), i.e., new structures
or modifications of existing structures taking on new
adaptive functions or new ecological roles (Mayr
1960; Muller and Wagner 1991; Moczek 2008).
This pattern is well-known at the macroevolutionary
level and is traditionally understood as a direct result
of ecological opportunities during adaptive radiation
in the form of new environments, key innovations,
or mass extinctions (Simpson 1944; Schluter 2000;
Losos 2009; Stroud and Losos 2016). However, ex-
perimental evolution studies demonstrate that the
evolution of novelty is often contingent on pre-
existing genetic variation that may steer populations
down alternate evolutionary trajectories (Thornton
et al. 2003; Blount et al. 2008, 2012; Lozovsky
et al. 2009). Macroevolutionary patterns also suggest
that ecological opportunity is only weakly associated
with the evolution of novel niche specialists (Givnish
et al. 1997; Roderick and Gillespie 1998; Erwin 2015;
Harmon and Harrison 2015). For example, adaptive
radiations sometimes occur long before the existence
of ecological opportunity (Schuettpelz and Pryer
2009; Wilson et al. 2012) and often do not exhibit
an early burst of trait diversification as predicted by
the ecological opportunity hypothesis (Harmon et al.
2010; Landis and Schraiber 2017). Thus, there is a
major gap in our understanding of how eco-
evolutionary dynamics and microevolutionary pro-
cesses in nature translate into macroevolutionary
patterns of novelty during adaptive radiation
(Arnold et al. 2001; Erwin 2015; Higham et al
2016; Martin and Richards 2019).

Evolutionary novelty is difficult to define and in-
deed some authors conclude only that “you know it
when you see it” (Moczek 2008). Here we broadly
define novelty as a new structure (resulting from
modification of an existing gene regulatory network)
or modification of an existing structure for a new
function or ecological role (Moczek 2008; Shubin
et al. 2009; Martin and Wainwright 2013a).
However, novelty is recognized even more broadly
across all levels of biological organization, from de
novo genes (Ding et al. 2012) to gene expression
patterns (Pasquier et al. 2017), morphological traits
(Prud’homme et al. 2011; Allf et al. 2016; Hernandez
et al. 2017; Davis et al. 2019), behaviors (Sol and
Lefebvre 2000; Arnegard and Carlson 2005), and
ecological niches (Mckaye and Kocher 1983;
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Givnish et al. 1997; Burress et al. 2013; Martin and
Wainwright 2013a). Novelties can also be decon-
structed into their underlying biological processes,
encompassing not just environmental factors such
as  ecological  opportunity  (Wellborn  and
Langerhans 2015; Stroud and Losos 2016), but the
spatiotemporal origins and sources of adaptive ge-
netic variation contributing to novelties (Most
et al. 2018; Nelson and Cresko 2018), gene expres-
sion networks contributing to novel traits (Monteiro
and Podlaha 2009), behaviors associated with novel
ecological niches (Janovetz 2005; Whitford et al.
2019), and the fitness landscape selecting for novel
phenotypes (Arnold et al. 2001). Here we apply this
deconstruction approach to our case study of the
origins of novelty during adaptive radiation in San
Salvador pupfishes and discuss how investigation of
these various levels of biological organization can
provide insights into the origins of novelty. We
also place our case study in the context of other
rapid radiations for these various biological pro-
cesses. We specifically distinguish insights about
novel traits, behaviors, and ecological niches as a
separate line of inquiry from the large literature in-
vestigating more common examples of adaptive
traits, behavioral ecology, repeated parallel specia-
tion, and niche diversity, while acknowledging that
the definition of evolutionary novelty is often blurry
and may be defined, in part, by rarity (Moczek 2008;
Wagner and Lynch 2010; Hallgrimsson et al. 2012).

Why study rare radiations?

If we imagine the ideal natural experiment for study-
ing the evolution of novelty, we would want many
replicated, identical environments all colonized by
our lineage of interest in which our focal novel trait,
behavior, or niche has only evolved in some places.
This would provide a large sample of experimental
and control environments and populations to test
the historical conditions and evolutionary trajectories
that give rise to novelty. Indeed, this setup is star-
tlingly close to Lenski’s long-term evolution experi-
ment (LTEE) which provides a landmark study of
the evolution of novel citrate-feeding in Escherichia
coli despite identical starting conditions across 12
replicate laboratory cultures (Lenski and Travisano
1994; Blount et al. 2008; Meyer et al. 2012). This
setup also comes close to describing natural systems
that contain what we call “microendemic” radiations
of novel ecological specialists. Microendemic radia-
tions occur when a widely distributed species, fre-
quently an omnivore or generalist, has radiated in
sympatry in only one or a few locations across its
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Orrigins of novelty

range (Richards and Martin 2017). Examples include
Cyprinodon pupfishes which diversified in sympatry
in only two lakes throughout their entire Caribbean
and Atlantic range (Humphries and Miller 1981;
Holtmeier 2001; Martin and Wainwright 2011), idi-
osyncratic patterns of sympatric cichlid radiation
across isolated crater lakes and among different cich-
lid lineages (Seehausen 2006; Wagner et al. 2012;
Martin et al. 2015; Kautt et al. 2018), multi-trophic
level communities of Pristionchus nematodes across
different species of fig trees (Susoy et al. 2016),
highly restricted patterns of endemism in axolotl sal-
amanders in the Mexican highlands (Shaffer and
McKnight 1996), novel ecological specialist pygopo-
did lizards in Australia (Patchell and Shine 1986),
and arctic charr radiations containing up to four
ecomorphs in only some glacial lakes (Jonsson and
Jonsson 2001). In contrast to many classic adaptive
radiations which have radiated within a single
unique environment (such as the Galapagos or
Hawaiian archipelagos [Roderick and Gillespie
1998; Parent and Crespi 2009]) or repeatedly radi-
ated across similar unique environments (such as
Anolis lizards across the Greater Antilles [Losos
2009] or haplochromine cichlids across East
African rift lakes [Kocher 2004]), microendemic
radiations are highly spatially restricted despite the
apparent suitability and colonization of many similar
habitats by closely related outgroups or a single
widely distributed species.

Microendemic adaptive radiations of novel spe-
cialists are rare because novelty is rare and most
isolated environments containing sufficient levels of
ecological opportunity for adaptive radiation to oc-
cur are large and unique, rather than highly repli-
cated. Most examples of novel ecological specialists
are either ancient taxa (Hoving and Robison 2012)
or species restricted to unique environments (Reddy
et al. 2012), confounding the ability to separate the
effects of environment from organismal traits and
phylogenetic history. In contrast, microendemic radi-
ations are nested within a larger set of seemingly
comparable environments in which radiation and
the evolution of novelty did not occur (Martin
2016a), providing the opportunity to investigate
how ecological, genetic, and behavioral traits affect
the origins of novelty in action in a systematic and
relatively controlled manner rather than millions of
years after the fact. In addition, useful features in any
system for dissecting the evolutionary origins of nov-
elty include a) young taxa with short generation
times suitable for crossing in a laboratory environ-
ment, b) large and abundant populations in the field
suitable for rapid collection of large sample sizes,

and ¢) hardy taxa suitable for large-scale mark-
recapture or pedigree studies of fitness in their
natural field environment.

The pattern of trophic novelty and
microendemic adaptive radiation in San
Salvador pupfishes

The San Salvador pupfish radiation contains two tro-
phic specialist species, a scale-eater (Cyprinodon des-
quamator; Martin and Wainwright 2013) and a
molluscivore (C.  brontotheroides; Martin and
Wainwright 2013), and a third generalist species,
C. wvariegatus, which feeds on macroinvertebrates
and algae (Martin and Wainwright 2011). All three
species occur and breed within centimeters of each
other in the littoral benthic habitats within some
hypersaline lakes on San Salvador Island, Bahamas
but remain largely reproductively isolated with low
levels of gene flow (within-lake interspecific
F, = 0.1-0.3; Turner et al. 2008; Martin and
Feinstein 2014) and substantial pre-mating isolation
(Kodric-Brown and West 2014; West and Kodric-
Brown 2015). This clade is nested within all out-
group Caribbean generalist populations, indicating
that these specialists evolved from a generalist ances-
tor on San Salvador Island (Martin and Feinstein
2014; Martin 2016a; Lencer et al. 2017).

Over 50% of the diet of the scale-eating pupfish
results from high-speed (10-15ms) strikes biting
scales and protein-rich mucus from other fishes,
usually generalist pupfish which make up 95% of
the fish community (Martin and Wainwright
2013a; McLean and Lonzarich 2017; St. John and
Martin 2019). This specialized niche has evolved
more than 19 times in fishes across diverse environ-
ments from the deep sea (Nakae and Sasaki 2002) to
the Amazon basin (Evans et al. 2017), but to our
knowledge scale-eating evolved only once among
over 1500 species of atherinomorph and cyprinodon-
tiform fishes (Sazima et al. 1983; Martin and
Wainwright 2013a; Kolmann et al. 2018). Thus, the
scale-eating pupfish is separated by 168 million years
from the most closely related scale-eating specialists
(within the East African cichlid radiations), provid-
ing a quantitative phylogenetic index of the novelty
of this ecological niche relative to other ecological
niches (Martin and Wainwright 2013a). Similarly,
the molluscivore pupfish displays a unique nasal
protrusion consisting of an anterodorsal extension
of the head of the maxilla and nasal bones which
may function to leverage Cerithium snails loose
from their hard shells (Hernandez et al. 2017;
St. John et al. in preparation). This nasal protrusion
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and ecological niche are also unique among cyprino-
dontiforms which rarely specialize on hard-shelled
prey (Martin and Wainwright 2013a).

The San Salvador radiation exhibits oral jaw di-
versification rates over 1400 times faster than gener-
alist pupfish populations on neighboring Bahamian
islands (Martin 2016a), similar to classic adaptive
radiations, yet it is less than 15,000years old
(Turner et al. 2008; Martin and Wainwright 2011),
the most recent drying of San Salvador’s hypersaline
lakes during the last glacial maximum (Hagey and
Mylroie 1995). Generalist pupfish populations on
seven neighboring islands showed no increased var-
iance in craniofacial skeletal traits or dietary stable
isotopes of carbon and nitrogen, despite colonizing
nearly identical hypersaline lake habitats lacking
predatory and competitive fish species (except for
Gambusia hubbsi and Atherinomorus stipes as on
San Salvador [Martin 2016a]). Lake areas, depths,
carbonate geology, and genetic diversity of generalist
populations in these neighboring hypersaline lakes
were also comparable to San Salvador. The only eco-
logical difference was an increase in macroalgal spe-
cies richness in a few lakes containing trophic
specialists on San Salvador; however, these few addi-
tional species comprised <1% of the total macro-
algal biomass (Martin 2016a). Thus, despite
exceptional trait diversification rates and ecological
novelty, any differences in ecological opportunity on
San Salvador relative to neighboring islands without
microendemic radiations appear to be either subtle
or nonexistent. Examination of a microendemic ra-
diation at this microevolutionary scale provides a
surprising counterexample to the assumptions of
the ecological theory of adaptive radiation (Schluter
2000; Losos 2010).

There is a second sympatric radiation of
Cyprinodon trophic specialists endemic to Laguna
Chichancanab in the central Yucatin, Mexico.
Similarly, this saline lake contains at least five en-
demic pupfish species but a different set of trophic
specialists, including a large piscivore C. maya and a
small open-water zooplanktivore C.simus (Hump
hries and Miller 1981; Horstkotte and Strecker
2005; Strecker 2006a), and exhibits exceptional di-
versification rates over 100 times faster than allopat-
ric generalist species in a different set of traits
(Martin and Wainwright 2011). Similar to the San
Salvador Island lake system, Laguna Chichancanab is
20km long with only a single macroalgae species
(Chara spp.) and one competing fish species,
Gambusia sexradiata (Humphries and Miller 1981).
Unfortunately, this radiation has collapsed due to
invasive oreochromine cichlids and Mexican tetra
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(Astyanax sp.) and all trophic specialists may now
be extinct in the wild (Schmitter-Soto 1999;
Strecker 2006b; Martin 2016a).

In conclusion, ecological opportunity in the form
of isolated lakes with few competing fish species is
clearly necessary for adaptive radiation but does not
appear to fully explain the microendemic distribu-
tion of novel ecological specialists among Caribbean
pupfishes. Despite many replicated hypersaline lakes
of comparable size and ecology colonized by gener-
alist pupfish, sympatric radiations of specialists are
known from only two locations. These two radia-
tions exhibit exceptional rates of trait diversification
outside the ordinary adaptive continuum of
Cyprinodontidae pupfishes (Fig. 1) and have adapted
to unique trophic niches among all cyprinodonti-
form and atherinomorph fishes, a pattern character-
istic of ecological novelty. This presents an
outstanding opportunity to investigate additional
factors contributing to the origins of novel trophic
specialists during adaptive radiation beyond ecolog-
ical opportunity.

How can fitness measurements inform the
study of novelty?

The complex mapping between fitness and pheno-
type or genotype, known as the adaptive landscape,
provides a foundational bridge connecting micro-
and macroevolution (Arnold et al. 2001). Indeed,
we conceptualize novelty as accessing novel fitness
peaks or new adaptive zones, collections of similar
ecological niches in new regions of phenotypic space
(Simpson  1944; Hallgrimsson et al. 2012).
Theoretical simulations and models for the evolution
of new species are frequently based on the idea of
divergent or disruptive selection driving phenotypic
divergence; however, there are few models for the
origins of ecologically novel species (Gavrilets and
Losos 2009; Gavrilets 2014; Kagawa and Takimoto
2017). Measurements of the adaptive landscape can
be used to predict when and where novelty will oc-
cur; however, direct measurements of this surface are
rare—particularly for intermediate phenotypes of
more than two species (Schluter 1994; Schemske
and Bradshaw 1999; McBride and Singer 2010;
Martin and Wainwright 2013¢c; Arnegard et al.
2014; Keagy et al. 2016).

We can gain insights into the fitness landscape for
novelty by returning to a landmark study on the
LTEE (Korona et al. 1994; Blount et al. 2008;
Meyer et al. 2012). Each clonal population of
E. coli initially climbed one or more similar fitness
peaks for adapting to a uniform suspension
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Fig. 1 The San Salvador (blue dot) and Laguna Chichancanab
(red dot) sympatric radiations of trophic specialists are outliers in
trait diversification rates among all Cyprinodontidae clades.
Relative rates of trait diversification across all sampled clades of
Cyprinodon pupfishes and closely related outgroups on the first
and second principal component axes for 16 functional traits are
shown. All clades with allopatric distributions are shown in black;
neutral rates of trait diversification simulated under a Brownian
motion model on the Cyprinodontidae tree are shown as open
gray circles. Error bars indicate 95% confidence intervals for rate
estimates estimated from a random sample of trees from the
posterior distribution of the ultrametric phylogeny. Modified from
Martin and Wainwright (2011).

environment in the laboratory. However, a duplica-
tion event enabled one strain to cross a fitness valley
and access a new higher fitness peak for citrate me-
tabolism (Blount et al. 2012). Thus, even within such
a simple environment, different resources corre-
sponding to different fitness peaks exhibit varying
degrees of accessibility and isolation relative to dif-
ferent genetic backgrounds descended from the ini-
tial founding population of E. coli. Similar laboratory
experiments have also demonstrated the repeatability
of adaptation to various ecological niches (Rainey
and Travisano 1998; Jasmin and Kassen 2007;
Melnyk and Kassen 2011) whereas field experiments
rarely focus on more than two closely related pop-
ulations occupying similar ecological niches such as
different habitats or different color morphs (Schluter
et al. 2003; Bolnick 2004; Barrett et al. 2008, 2019).

The pattern in San Salvador pupfishes

We use empirical field measurements of the fitness
landscape to study the evolution of novelty in San
Salvador pupfishes (Fig. 2). Relative to the gold stan-
dard of experimental evolution studies measuring

population mean fitness by directly competing de-
rived and ancestral populations (Blount et al. 2012;
Wiser and Lenski 2015), our estimates of fitness in
pupfishes are substantially restricted, covering only
survival and growth rates over a partial generation
and not directly measuring lifetime reproductive suc-
cess. However, even with limited fitness proxies,
these landscapes appear to be complex and vary sub-
stantially among different phenotypes corresponding
to the generalist and specialist phenotypes in each
lake (Martin and Wainwright 2013¢c; Martin
2016b). Our key advantage here is to test the fitness
of not only the parental phenotypes, but also the
hybrids of each parental type to sample intermediate
phenotypes rarely found in natural populations and
across a much wider morphospace due to transgres-
sive hybrid phenotypes, following the approach of
classic early studies (e.g., Schemske and Bradshaw
1999; Schluter 1994). We so far have avoided com-
paring hybrid fitness to parental fitness to avoid any
unforeseen consequences of hybrid genetic incom-
patibilities (see later sections).

The magnitude of stabilizing and disruptive selec-
tion gradients within the fitness landscape driving
adaptive radiation in San Salvador pupfishes
(—0.15 to 0.43; Table 1 in Martin and Wainwright
2013c) falls within the range of standardized non-
linear selection gradients estimated in other systems
(all taxa: —2.2 to 2.5; vertebrates only: —0.8 to 0.7;
Kingsolver et al. 2001, following Fig. 5 in Martin
2012). This suggests that the local strength of dis-
ruptive or stabilizing selection on novel trophic spe-
cialist phenotypes does not stand out from studies of
local adaptation or habitat divergence in other sys-
tems (Kingsolver et al. 2001). However, three key
results about the broader topography of the complex
fitness landscape for novel trophic specialists have
emerged from these experiments. First, hybrids re-
sembling the generalist appear to be isolated on a
fitness peak for both survival and growth rates
(Fig. 2; Martin and Wainwright 2013c). This indi-
cates that strong stabilizing selection is limiting phe-
notypic diversification of generalist populations in
hypersaline lakes on San Salvador Island. Stabilizing
selection may also be widespread across Caribbean
generalist populations given the similar hypersaline
lakes across neighboring islands, providing an expla-
nation for the rare evolution of ecological novelty in
this system due to this classic problem of isolation
on a local fitness optimum (Gavrilets 2004;
Weinreich and Chao 2005). Second, hybrids resem-
bling the molluscivore occupy a higher fitness peak
for survival, separated by a small fitness valley from
the generalist peak (Fig. 2). This explains the rapid
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Fig. 2 Empirical fitness landscape for San Salvador pupfishes.
Heat map in 3-D and 2-D shows probability of F2 hybrid survival
in a high-density field enclosure for 3 months. The surface is
estimated using generalized cross-validation of a thin-plate spline
fit to the raw survival data using the Fields package (Fields
Development Team 2006) in R (R Development Core Team
2011). Each F2 hybrid (survivor: black; death: gray)) is plotted
within a linear discriminant morphospace for 16 traits separating
the lab-reared phenotypes of the three parental species, indi-
cated by 95% confidence ellipses and photographs/arrow, on two
discriminant axes with dominant loadings of lower jaw length on
the x-axis and nasal protrusion distance and angle on the y-axis.
Modified from Martin and Wainwright (2013c).

trait diversification rates observed in this system: if a
population escapes an isolated fitness peak, trait di-
vergence can occur rapidly on a neighboring peak
which may be even higher. Again, this is a classic
problem in navigating complex fitness landscapes: a
local optimum may not be the highest optima in the
surrounding region (Kauffman and Levin 1987;
Burch and Chao 1999). Third, hybrids resembling
the scale-eaters showed the lowest fitness for both
survival and growth rates across different densities
and frequencies of hybrid phenotypes, two different
lake environments, and two different time periods
and seasons (Martin 2016b; Martin  and
Wainwright 2013¢; Martin and Gould in prepara-
tion). All evidence gathered so far from two
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independent field experiments indicates that scale-
eater phenotypes are isolated by a large fitness valley
from generalist and molluscivore phenotypes and are
not connected by fitness ridges in any trait dimen-
sion examined, as hypothesized by Gavrilets (1997,
1999). This suggests that the rare evolution of the
scale-eating trophic niche within cyprinodontiforms
is reflected in the isolation of this fitness peak across
a large, multivariate fitness valley. Large fitness val-
leys isolating the novel feeding niche of scale-eating
are also consistent with biomechanical constraints
given the high performance demands and low caloric
benefits of repeatedly performing high-speed scale-
biting strikes on evasive fish prey for only a mouth-
ful of scales and mucus (Sazima 1983; Janovetz 2005;
Kolmann et al. 2018).

Insights gained about novelty

Field measurements of fitness provide an estimate of
direct and indirect selection gradients for a suite of
traits given a particular environment, performance,
or manipulation (Lande and Arnold 1983). These
estimates can be used to reconstruct a fitness land-
scape for a particular environment and project phe-
notypes observed in nature onto this complex
nonlinear space. Thus, fitness measurements of novel
phenotypes can provide insights into 1) the selective
environment driving trait divergence and may help
to 2) quantify the relative isolation of novel pheno-
types on the fitness landscape. This can traditionally
help to pinpoint the agents of selection and major
axes of selection on traits within a radiation (Brodie
1995; Benkman et al. 2001; Calsbeek and Irschick
2007; Svensson and Calsbeek 2012). However, mea-
suring the broader topography of fitness landscapes,
particularly using phenotypic manipulations, is a
powerful yet highly challenging approach to under-
standing the relative isolation and rarity of different
fitness peaks corresponding to novel phenotypes.

How can investigating the genetic basis of
traits inform the evolution of novelty?

Novel traits are often either temporally or spatially
rare, but is the genetic variation underlying such
traits also rare? One approach to studying the evo-
lution of novelty is to identify which loci are asso-
ciated with a novel trait of interest and reconstruct
the spatial and temporal origins of the genetic diver-
sity within those regions. One might intuitively think
that novel traits are constrained in their evolution
across time and space because of the need for de
novo mutations, which will be 1) spatially rare be-
cause they arise in a single population/location and
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2) temporally rare because the waiting times for rel-
evant de novo mutations are expected to be long
(Kimura 1983; Hermisson and Pennings 2005;
Barrett and Schluter 2008). However, if novel traits
depended solely on de novo mutations it would be
difficult to explain the rapid evolution of novel eco-
logical specialist species. Microendemic radiations
are particularly tractable for investigating the genetic
basis of novel adaptive traits because they are nested
within a larger set of outgroup populations with on-
going gene flow, which enables divergent genomic
regions to be located with high precision, frequently
centering on only a single gene (McGirr and Martin
20165 Richards et al. 2018). They are also generally
young enough for controlled crosses between species
enabling quantitative genetic mapping (Shaw and
Lesnick 2009; Martin et al. 2017).

Standing genetic variation present across a group’s
range or introduced through hybridization with a
divergent lineage via introgression might provide a
better source of variation for the rapid evolution of
novel traits. Older standing variation that has already
been filtered and shaped by selection in its native
genetic and ecological backgrounds might allow for
the evolution of novel traits more quickly than de
novo mutations. Variation derived from recent hy-
bridization might also be more potent than standing
genetic variation in facilitating rapid evolution of
novelty because hybridization between several dis-
tinct lineages may result in new combinations of
alleles from the parental genomes that lead to trans-
gressive phenotypes in the offspring (Sechausen
2004; Marques et al. 2019). Evidence is mounting
in many classic examples of adaptive radiation, in-
cluding African cichlids (Genner and Turner 2012;
Meier et al. 2017; Meyer et al. 2017; Irissari et al.
2018; Poelstra et al. 2018), Darwin’s finches
(Lamichhaney et al. 2015, 2016), Heliconius butter-
flies (Heliconius Genome Consortium 2012; Enciso-
Romero et al. 2017), and stickleback (Colosimo et al.
2005; Nelson and Cresko 2018) that alleles contrib-
uting to ecological divergence and/or reproductive
isolation are often older than the actual divergence
events. Thus, sympatric radiations of ecological spe-
cialists may frequently adapt to their new niches us-
ing standing genetic variation, which may be left
over from previous cycles of radiation and species
collapse (Turner 2002; Taylor et al. 2006; Martin
et al. 2016; Nelson and Cresko 2018).

The pattern in San Salvador pupfishes

The novel traits of the scale-eating and molluscivore
pupfishes are endemic to San Salvador Island, but

intriguingly we find evidence that nearly all genetic
variation underlying these traits exists in other parts
of the Caribbean. At the genome-wide level, we see
extensive evidence of gene flow among Caribbean
lineages of pupfish (Martin 2016a); 3.1% and 3.7%
of the scale-eater and molluscivore genomes, respec-
tively, appear to be derived from introgression
(Richards et al. 2018). This level of introgression is
similar to cichlid radiations in which hybridization
has also been investigated as a source of genetic var-
iation underlying diversification (e.g., 1-4%;
reviewed in Richards et al. [2019]; also see
Malinsky et al. 2015; Kautt et al. 2016; Meier et al.
2017; Richards et al. 2018; Poelstra et al. 2018).
Furthermore, some of these introgressed regions
may have played an important role in this radiation
as they are strongly diverged between the specialists,
show signatures of a hard selective sweep, and are
centered on genes with known craniofacial effects in
model organisms (Richards et al. 2018). For exam-
ple, we found a signature of adaptive introgression
from C. laciniatus, a generalist population 200 km
away on New Providence Island, into the mollusci-
vore in a regulatory region of the gene ski. Ski is a
proto-oncogene that causes depressed nasal bridges
and shorter, thicker mandibles in knockout mice
(Berk et al. 1997; Colmenares et al. 2002), traits
that phenocopy the nasal protrusion and shorter
and thicker dentary bone in molluscivore pupfish
(Lencer et al. 2016; Hernandez et al. 2017). We
found similar signatures of adaptive introgression
of other craniofacial genes into the scale-eater from
the same C. laciniatus population (Richards et al.
2018). Thus, ancient reservoirs of standing genetic
variation in distant generalist populations contrib-
uted different sets of adaptive alleles to the trophic
specialists on San Salvador Island (Richards et al.
2018, in preparation).

Insights gained about novelty

An emerging consensus in the study of rapid radia-
tion and speciation is that adaptive alleles involved
in species divergence are often far older than the
radiation itself (Nelson and Cresko 2018; Marques
et al. 2019). These alleles may also be traced to a
particular point in space with sufficient sampling of
outgroups and dated to a particular point in time
using various levels of sophistication, from simply
counting point mutations within the region to joint
inference of selection and timing of hard selective
sweeps (Laurent et al. 2015; Oziolor et al. 2019).
Thus, investigating the genetic basis of novel
adaptive traits can provide strong inferences
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regarding 1) selection on the trait of interest, and
2) evolutionary history of the trait in space and
time. For example, existing radiations may be rem-
nants of past radiations (Joyce et al. 2005) or re-
peated parallel speciation may result from repeated
selection on standing genetic variation (Colosimo
et al. 2005; Schluter and Conte 2009; Conte et al.
2015). Using only genetic data, these classic case
studies inform our understanding of the environ-
mental context of novelty.

How can gene expression inform studies of
novel traits and behaviors?

Changes in gene expression are an important source
of phenotypic variation during the evolution of
novel traits (Carroll 2008). RNAseq is now routinely
used to identify expression patterns that are unique
to populations with novel traits (Monteiro and
Podlaha 2009; Renaut et al. 2009; Manousaki et al.
2013; McGirr and Martin 2016). The most common
approach is to sample from developing tissues that
give rise to a particular trait of interest and search
for genes that show unique expression patterns in
the focal species relative to closely related species
or populations without the trait.

However, the number of genes differentially
expressed between species with similar divergence
times varies widely across gene expression studies
in fishes (Fig. 3a). The different methods used to
quantify gene expression across studies explain
some of this range, but even studies using similar
methods show significant variation. For example,
22% of genes in adult tissues were significantly dif-
ferentially expressed between marine and freshwater
stickleback populations (Jones et al. 2012). In lake
whitefish, 11% of genes in whole-body juvenile tis-
sues were differentially expressed between species
(Renaut et al. 2009). In San Salvador pupfishes, be-
tween 4% and 29% of genes were differentially
expressed in generalists versus molluscivores and
molluscivores versus scale-eaters, respectively, in
whole larvae sampled 8days post-fertilization (8
dpf; McGirr and Martin 2017).

Clearly, in nearly all cases, other methods need to
be implemented alongside differential expression
comparisons to identify individual genes influencing
new traits. A standard approach now is to cross-
reference lists of differentially expressed genes with
differentiated genomic regions showing both relative
and absolute divergence between species or popula-
tions (Nachman and Payseur 2012; Cruickshank and
Hahn 2014), followed by description of statistically
over-represented (enriched) gene ontology categories
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within the final list of genes. Ultimately, the elusive
goal of locating causative genetic variation will re-
quire a suite of complementary genomic approaches
(such as genome-wide selection scans, differential ex-
pression between species, allele-specific expression in
F1 hybrids, and genome-wide association mapping)
and functional experiments manipulating expression
or candidate genetic variants in vivo (Hoekstra et al.
2006; Miller et al. 2007; Linnen et al. 2009; Chan
et al. 2010). It is important to also recognize that
most novel traits are probably controlled by many
small-effect loci. This makes identifying causal alleles
contributing to novel polygenic traits (quantitative
trait nucleotides: QTNs) virtually impossible.
Instead, studying higher levels of biological organi-
zation such as gene expression networks or simply
focusing on the quantitative genetics of novel phe-
notypes may be more productive research directions
(Rockman 2012); however, given the initial successes
of the “QTN” program in finding moderate- and
large-effect loci, it is very difficult to abandon.

Nonetheless, gene expression studies also offer a
tool to detect potential genetic incompatibilities due
to the adaptive divergence of novel traits. If closely
related species can be crossed to generate F1 hybrids,
then RNAseq of developing tissues relevant to the
novel trait of interest can be used to identify genes
that are misregulated in hybrids relative to both pa-
rental populations. Identifying genes that are differ-
entially expressed in hybrids relative to both sets of
parents can point to potential (Bateson)—
Dobzhanksy—Muller incompatibilities (DMIs) within
the genetic regulatory networks shaping novel traits
(Renaut and Bernatchez 2011; Mack and Nachman
2017). For example, the same study of lake whitefish
mentioned above found that 9% of genes were mis-
regulated in whole-body juvenile tissues resulting
from interspecific F1 hybrids and 54% of genes
were misexpressed in F2 hybrids (Renaut et al
2009). Hybrid gene misexpression has been linked
to higher levels of male sterility in adult mice
(Mack et al. 2016) and may be an underappreciated
feature of compensatory evolution and divergent se-
lection in different populations, contributing to
growing evidence of widespread genetic incompati-
bilities even between recently diverged species (Ortiz-
Barrientos et al. 2007; Renaut and Bernatchez 2011;
Schumer et al. 2014; Mack et al. 2016).

The pattern in San Salvador pupfishes

We found high levels of F1 hybrid gene misexpres-
sion in the craniofacial tissues of San Salvador
pupfishes from late-stage larvae (17 dpf), reaching
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Fig. 3 Comparison of a) differential gene expression and b) hybrid gene misexpression among recent radiations and San Salvador
pupfishes. a) The percentage of differentially expressed gene transcripts ranges from 1% to 30% among recent radiations, but the San
Salvador trophic specialists with novel traits (blue, green, and pink triangles) do not stand out. b) Few studies have examined hybrid
gene misexpression in non-model systems; however, molluscivore xgeneralist F1 hybrids exhibit substantial gene misexpression in their
craniofacial tissues, including their unique nasal protrusion (green circle), relative to lake whitefish F1 hybrids (yellow triangle; but not
F2 whitefish hybrids (orange triangle) which may be expected to exhibit transgressive expression patterns). Data from McGirr and
Martin (2017, 2019); Jones et al. (2012); Ahi et al. (2014); Renaut et al. (2009); and Manousaki et al. (2013).

approximately 19% of genes (McGirr and Martin
2019). This was much higher misexpression than
F1 lake whitefish hybrids which showed 9% of genes
misexpressed, but lower than F2 whitefish hybrids
which showed 54% of genes misexpressed (Renaut
et al. 2009). In a second independent study, this
high level of misexpression within the San Salvador
radiation between trophic specialists equals or exceeds
misexpression in crosses between more highly di-
verged generalist populations across the Caribbean
(McGirr and Martin 2019). Many of these genes
show evidence of hard selective sweeps in regulatory
regions and were involved in skeletal development,
brain development, and metabolism, key axes of eco-
logical divergence within the San Salvador radiation
(McGirr and Martin 2019). Genes may be misregu-
lated in F1 hybrids as a result of compensatory evo-
lution of cis- and trans-acting elements in different
species of pupfish, even those coexisting within the

same environment. Indeed, this has broad implica-
tions for ecological speciation in general if divergent
selection on adaptive traits may also result in repro-
ductive isolation due to gene misexpression in
hybrids. Interestingly, the high level of hybrid misex-
pression observed between our novel trophic special-
ists appears to stand out relative to other speciation
systems of similar age (e.g., Renaut et al. 2009), sug-
gesting that highly novel phenotypes may be more
likely to lead to regulatory incompatibilities.
However, more studies are needed to understand
how hybrid gene misexpression relates to the evolu-
tion of novel phenotypes.

Insights gained about novelty

Gene regulation is one of the fundamental ways that
evolution shapes existing structures for new func-
tions. However, studies of differential expression
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between species or novel tissue types rarely result in
a tractable list of candidate genes. Furthermore,
existing studies of rapid radiations and speciation
show a large range of differential gene expression
and no clear associations with novelty (Fig. 3a).
Conversely, the few studies of gene misexpression
in hybrids suggest that novel traits may stand out
in displaying higher amounts of misexpression
among recently diverged sympatric  species
(Fig. 3b). Studies of hybrid misexpression can high-
light potential genetic incompatibilities resulting
from ecological or sexual divergence between species,
even within rapidly diverging sympatric radiations.
Thus, 1) gene expression studies can help refine
the list of candidate regions underlying the novel
trait of interest but must be combined with genome
scans, genome-wide association studies, and func-
tional studies. 2) Gene misexpression studies in
hybrids can identify potential genetic incompatibili-
ties due to the evolution of novel traits. These stud-
ies may highlight genetic networks that lead to lower
hybrid fitness as a result of selection for novel traits,
but require the ability to cross species and generate
F1 hybrids. Nonetheless, quantifying gene expression
and misexpression in hybrids may be one of the
most tractable ways to link novel traits to reproduc-
tive isolating barriers at the genetic level in the form
of DMIs.

How can behavioral studies inform the
origins of novel ecological niches?

Behavior plays a fundamental role in adaptation to
new ecological niches, the origins of evolutionary
innovations, and novel traits. There is still debate
about the relative roles of behavior and morphology
in driving the origins of novel ecological niches and
ecological speciation, i.e., behavior-first or morphology-
first adaptation to novel resources (Sol and Lefebvre
2000; Duckworth 2009; Zuk et al. 2014). This has
been tested at macroevolutionary scales and through
microevolutionary comparisons among populations
(Todd Streelman et al. 2003; Losos et al. 2004;
Munoz and Losos 2018). Here we discuss insights
gained in testing the behavior-first hypothesis for the
novel behavior and ecological niche of scale-eating
within the San Salvador radiation.

The origins of scale-eating are still unknown; how-
ever, there is no shortage of hypotheses, all of which
involve behavior-first explanations. The three main
hypotheses are 1) the algae-grazer hypothesis, 2) the
cleaner hypothesis, and 3) the aggression
hypothesis. The algae-grazer hypothesis proposes
that scale-eating arose due to incidental ingestion
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of scales while foraging on algae (Fryer et al. 1955;
Greenwood 1965; Sazima 1983). This hypothesis is
supported by the fact that many scale-eating species
are most closely related to species that primarily for-
age on algae (Trewavas 1947; Greenwood 1965; Fryer
and Tles 1972). While this hypothesis provides a
plausible explanation for how scale-eating species be-
gan consuming scales, it does not provide a clear
explanation for why they began seeking scales from
the bodies of other fish. The cleaner hypothesis pro-
poses that the incidental ingestion of scales arose
while foraging for ectoparasites on the surface of
other fish (Trewavas 1947; Greenwood 1965; Fryer
and Iles 1972). Scales have been found in the diges-
tive tracks of some cleaner fish (e.g., Losey 1972;
Demartini and Coyer 1981; Sazima 1983).
However, there are few examples of primarily
scale-eating species that also consume ectoparasites.
Finally, the aggression hypothesis suggests that scale-
eating arose due to the incidental ingestion of scales
during inter- or intra-specific fighting (Sazima
1983). The fact that many scale-eating specialists
are characterized as being aggressive provides sup-
port for this hypothesis (Peterson and Winemiller
1997; Janovetz 2005). While any of these hypotheses
may be plausible, they each provide unique, testable
predictions that can be wused to decipher the
behavior-first origins of scale-eating.

The pattern in San Salvador pupfishes

The scale-eating pupfish is an excellent species to
investigate the potential behavioral origins of scale-
eating for two reasons. First, it is the youngest
known scale-eating specialist at 10,000years old
(Martin and Wainwright 2011; St. John et al
2018), providing a window into the microevolution-
ary origins of scale-eating. Second, previous studies
have documented various aspects of pupfish ecology
and evolution allowing us to determine which hy-
potheses were most likely in this system. For exam-
ple, previous dietary studies and observations of
scale-eaters in the wild offer no evidence that scale-
eating pupfish consume ectoparasites. Although all
San Salvador pupfishes consume macroalgae, the
algae-grazer hypothesis does not provide a mecha-
nism for why fish would seek scales from the bodies
of other fish. Finally, observations of scale-eating in
the wild indicate strong aggression in scale-eaters
during foraging and directed at conspecifics—
supporting aggression as a possible behavioral origin
for scale-eating in this system.

The aggression hypothesis makes a clear and easily
testable prediction: scale-eating pupfish should be
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more aggressive than generalist or molluscivore pup-
fish. We tested this using behavioral assays to mea-
sure aggressive behaviors (e.g., number of attacks
performed) toward a mirror image for generalist,
scale-eater, and molluscivore pupfishes. This simple
and widely used assay may not always elicit the same
response as a live opponent (Li et al. 2018a, 2018b),
thus we also measured aggression toward conspecific
and heterospecific fish in live paired trials. We un-
expectedly found increased levels of aggression in
both scale- and snail-eating pupfish across multiple
contexts. This is particularly striking given that scale-
eating involves high-speed ramming strikes on pup-
fish prey, an escalation of typical aggressive behavior,
whereas consuming snails does not require high-
speed strikes nor conspecific aggression, only in-
creased stability of oral and pharyngeal jaws
(Hernandez et al. 2017; St. John and Martin 2019).
These results do not support the aggression hypoth-
esis and indicate that both specialists may exhibit
high levels of aggression due to trophic specialization
or due to the indirect effects of selection on other
traits (St. John et al. 2018).

Gene expression studies can also lend context to
the study of behavior-first hypotheses. For example,
we found that only seven genes were differentially
expressed in aggression-related ontologies between
specialist pupfish and generalist pupfish and only
two genes (rnfl4 and crebrf) were differentially
expressed in both specialists compared with general-
ists. However, all seven genes have pleiotropic effects
on other divergent traits in this system, including
craniofacial morphology, protein degradation path-
ways, and melanin pigmentation (St. John et al
2018). Thus, consideration of differentially expressed
genes provides many possible avenues for indirect
selection for increased aggression due to divergent
ecological selection on morphological or physiologi-
cal traits or sexual selection for divergent mating
coloration through reproductive character displace-
ment (Pfennig and Pfennig 2012).

Insights gained about novelty

Behavior is central to any investigation of novelty;
however, it often remains unclear whether novel be-
havior is the ultimate driver of novel resource use or
whether the evolution of a new morphological struc-
ture or physiological process enables access to new
resources through existing behaviors. Studies of be-
havioral ecology in the context of novelty can pro-
vide insights into this longstanding question by
1) helping to reconstruct the origins of behaviors
associated  with  novelty using phylogenetic

"

comparative methods. For example, novel behaviors,
such as increased aggression during scale-eating, are
present in a non-sister trophic specialist species (i.e.,
the molluscivore pupfish), thus shifting the role of
aggression in scale-eating to an association with tro-
phic specialization in general. Conversely, 2) consid-
eration of pleiotropy in candidate genes for observed
behavioral differences can suggest whether behavioral
phenotypes may be an indirect effect of selection on
other adaptive phenotypes. Testing the causal effects
of behavior on the origins of novelty remains a for-
midable challenge, but behavioral ecology studies
coupled with an understanding of the pleiotropic
effects of gene function on behavior and other phe-
notypes are necessary components of these
investigations.

Future directions and predictions for the
study of evolutionary novelty

In this review, we examined processes underlying the
origins of novelty at the level of fitness, genetic var-
iation, gene expression, and behavior. These perspec-
tives and emerging results suggest distinct
predictions for investigations of novelty in other sys-
tems. Here we speculate about general patterns un-
derlying the origins of evolutionary novelties based
on the unusual features and biological processes ob-
served in our case study of the origins of novel tro-
phic specialists in San Salvador pupfishes.

First, we predict that novel traits, behaviors, and
ecological niches may be more isolated on the fitness
landscape, i.e., these phenotypes may be separated by
wider and deeper fitness valleys from other pheno-
types occupying more common ecological niches.
Further investigation of the relative isolation of per-
formance optima through biomechanical and kine-
matic models (Holzman et al. 2012; Tseng 2013;
Stayton 2019; St. John and Martin 2019) and fitness
optima, particularly in natural field environments
(Keagy et al. 2016; Pfaender et al. 2016), will help
to characterize the rich diversity of organismal per-
formances and ecological niches. We also neglected
discussion of how mate preferences may shape phe-
notypic optima and constrain/accelerate speciation
through processes such as sensory drive and magic
traits (Martin 2013; Ryan and Cummings 2013;
Servedio and Boughman 2017). Ultimately, we think
that estimation of the topography of fitness and per-
formance landscapes may predict some of the variation
in existing distributions of organismal morphological,
ecological, and behavioral diversity. For example, only
three performance metrics of turtle shells (strength,
righting ability, and hydrodynamics) can largely
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explain the extant distribution of shell shapes and this
joint performance landscape outperforms phylogenetic
models (Stayton 2019).

Second, ancient balancing selection is now fre-
quently associated with ecological divergence be-
tween populations and repeated parallel speciation
(Guerrero and Hahn 2017). However, we predict
that novel phenotypes may result from a greater con-
tribution of de novo variation or adaptive introgres-
sion from specific source populations rather than
widespread standing genetic variation. This is expected
if larger fitness valleys isolate novel phenotypes, select-
ing for alleles of larger effect size to cross these valleys
which may also exhibit strong negative sign epistasis
(Orr 2005; Weinreich et al. 2005). Indeed, there is
evidence of larger-effect quantitative trait loci (QTL)
for increasing the oral jaw size of the scale-eater,
which we interpret as a result of adaptation to a
more distant fitness peak across a larger fitness valley
than the molluscivore (McGirr and Martin 2016;
Martin et al. 2017). The relative contribution of
standing genetic variation, introgression, and de novo
mutation to adaptive phenotypes is an empirical ques-
tion (Pease et al. 2016) that will vary from one envi-
ronmental context and ecological niche to another,
but may also contain information about the underly-
ing adaptive landscape (Korona et al. 1994; Orr 2005;
Carneiro and Hartl 2010). Thus, understanding the
relative contributions of standing genetic variation
and their effect sizes to an adaptive walk toward a
fitness optimum for novel traits can complement in-
vestigation of the topography of fitness landscapes and
contribute to evidence for the relative isolation of dif-
ferent ecological niches and novel phenotypes.

Third, we predict that adaptive divergence of
novel traits may result in more dysfunction in ge-
netic regulatory networks in hybrids, detected as
gene misexpression in F1 hybrids, than more typical
ecological and morphological divergence observed
during local adaptation or repeated parallel specia-
tion. This prediction is related to the snowball effect
for genetic incompatibilities with increasing genetic
divergence between populations (Matute et al. 2010;
Moyle and Nakazato 2010): as the complexity of
adaptive divergence between two novel ecological
niches increases, the complexity of the underlying
genetic regulatory networks should also increase
resulting in increased opportunities for genetic con-
flicts to arise between these diverging populations
compared with adaptive divergence between more
similar ecological niches, such as habitat divergence
or color polymorphism (Linnen et al. 2009; Poelstra
et al. 2014). Thus, we predict that more divergent
traits or ecological niches should result in more
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DMIs, greater reproductive isolation due to these
DMIs, and more gene misexpression in F1 hybrids.

Fourth, we predict that behaviors often associated
with the origins of novel traits and ecological niches
may be incidental effects of selection on highly pleio-
tropic genetic networks. Thus, causality is difficult to
establish without fitness, performance, and behav-
ioral ecology studies to understand the direct and
indirect targets of selection. The numerous pathways
with indirect effects on behavior (and the omnigenic
model in general: Boyle et al. 2017) provide impor-
tant context for considering the scope of potential
targets of selection during adaptive divergence.

Clearly, much work remains to establish general
patterns about the origins of evolutionary novelties
at genomic, gene regulation, behavioral, and fitness
landscape scales. The persistence of ecological spe-
cialist species across temporal scales is also currently
unknown. Although some ecological specialists may
be viewed as ephemeral due to stochastically shifting
environments (Rosenblum et al. 2012) and incom-
plete reproductive isolation (Turner 2002; Taylor
et al. 2006; Keagy et al. 2016), the relevant adaptive
alleles may persist long before and after such cycles
of speciation and collapse (Meier et al. 2017;
Richards and Martin 2017; Nelson and Cresko
2018; Marques et al. 2019). Moreover, some “classic”
adaptive radiations, such as East African cichlids,
display similar recent spatiotemporal dynamics and
minimal genetic structure underlying extraordinary
differences in ecology (Malinsky et al. 2015), thus
it is not clear how evolutionary novelty scales with
ecological transience or species diversity across the
diverse volume of adaptive radiation space (Martin
and Richards 2019). However, we think that distin-
guishing and quantifying the novelty of adaptations
and ecological niches within recent microendemic
radiations is worthwhile to discover potentially
unique biological processes and features of adaptive
landscapes which contribute to the extraordinary
adaptations and organismal functions that we value
as integrative biologists.
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