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The success of machine learning solutions for reasoning about discrete structures has brought attention
to its adoption within combinatorial optimization algorithms. Such approaches generally rely on
supervised learning by leveraging datasets of the combinatorial structures of interest drawn from
some distribution of problem instances. Reinforcement learning has also been employed to find such
structures. In this paper, we propose a different approach in that no data is required for training
the neural networks that produce the solution. In this sense, what we present is not a machine
learning solution, but rather one that is dependent on neural networks and where backpropagation is
applied to a loss function defined by the structure of the neural network architecture as opposed
to a training dataset. In particular, we reduce the popular combinatorial optimization problem of
finding a maximum independent set to a neural network and employ a dataless training scheme
to refine the parameters of the network such that those parameters yield the structure of interest.
Additionally, we propose a universal graph reduction procedure to handle large-scale graphs. The
reduction exploits community detection for graph partitioning and is applicable to any graph type
and/or density. Experimental results on both real and synthetic graphs demonstrate that our proposed
method performs on par or outperforms state-of-the-art learning-based methods in terms of the size
of the found set without requiring any training data.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In his seminal work (Karp, 1972), Richard Karp demonstrated
he reducibility among combinatorial problems that are com-
lete for the complexity class NP. Combinatorial optimization

problems have since been frequently associated with the NP-
ard complexity class for which no efficient solutions are likely
o exist. Despite their apparent intractability, NP-hard problems
ave found ubiquitous application across many sectors (Bengio,
odi, & Prouvost, 2021). While there is not a known polynomial-
ime solver with respect to (w.r.t.) the size of the input for any
f these problems, there are many approximate and efficient
olvers (Lamm, Sanders, Schulz, Strash, & Werneck, 2016). In
eneral, these solvers are broadly categorized into heuristic al-
orithms (Akiba & Iwata, 2016), conventional branch-and-bound
ethods (San Segundo, Rodríguez-Losada, & Jiménez, 2011), and
pproximation algorithms (Boppana & Halldórsson, 1992).
One of the most well-studied NP-hard problems is the Maxi-

um Independent Set (MIS) problem which consists of finding a
et of maximum cardinality that contains vertices in a graph G =
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(V , E) such that no two vertices are connected by an edge (Tarjan
& Trojanowski, 1977). There exist powerful heuristic solvers for
the MIS problem. The state-of-the-art solver is the ReduMIS evo-
lutionary algorithm, which was developed in the pioneering work
of Lamm et al. (2016). Despite the notable success of ReduMIS and
related heuristic solvers, developing alternative learning-based
solutions to combinatorial optimization problems (He, Daume III,
& Eisner, 2014; Li, Chen, & Koltun, 2018) is premised on un-
ceasing advancement in our understanding of the theoretical and
computational foundations of machine learning. However, these
methods typically require extensive training of neural networks
(NNs) using large graph datasets for which solutions are known.
In this paper, we develop an altogether different NN-based ap-
proach to the MIS problem that rests on a dataless NN (dNN)
and a novel dataless training paradigm. In our approach, for each
graph G, we construct a NN with fixed and trainable parameters
that is specific to G and require no training dataset, hence the
appellation ‘dataless’. The connectivity structure of the dNN is
derived from the given graph G and its input is data-independent.
The output of the dNN is minimized upon finding a desired MIS
which can be constructed from the learned parameters of the NN.

The first contribution of this paper is the introduction of

dNNs for which no data is required during training. The second
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ontribution is the representation of the MIS problem as a single
ifferentiable function, thereby enabling the adoption of differen-
iable solutions. Third, we develop a graph reduction procedure
ased on community detection for large-scale graphs. Unlike
ost common reduction rules whose applicability is limited to
parse graphs, this procedure is universal in that it is applicable
o any graph type. Our fourth contribution is the introduction of
n iterative solution improvement procedure based on simulated
nnealing and dNNs. To evaluate success, we use the state-of-the-
rt solution size obtained by ReduMIS as a benchmark. We also
ompare to state-of-the-art learning-based methods, such as (Li
t al., 2018), where we show that our approach yields comparable
r better solutions while being dataless. As a future research
venue, we will explore extensions to other NP-hard problems
iven known reductions among problems from this complexity
lass.

. Related work

Exact algorithms for NP-hard problems are typically based on
numeration or branch-and-bound techniques. However, these
echniques are not applicable to large problem spaces (Dai, Dai,
Song, 2016). This motivated the development of efficient ap-

roximation algorithms and heuristics, such as the procedure
mplemented in the NetworkX library for solving MIS (Bop-
ana & Halldórsson, 1992). These polynomial-time algorithms
nd heuristics typically utilize a combination of various sub-
rocedures, including greedy algorithms, local search sub-
outines, and genetic procedures (Williamson & Shmoys, 2011).
uch heuristics cannot generally guarantee that the resulting
olution is within some small factor of optimality. In fact, for
he complementary problem of finding a Maximum Clique (MC),
n algorithm that provably guarantees an approximate solution
o MC within a factor of n1−ϵ , where n is the number of nodes
n the underlying graph, for any ϵ > 0 is not possible unless
= NP (Hastad, 1996). Similar inapproximability results have

een established for the MIS problem (Berman & Schnitger, 1992).
s such, heuristics without approximation guarantees have been
dopted for practical purposes for these problems.
The ReduMIS method (Lamm et al., 2016) is the state-of-the-

art solver for the MIS problem. It consists of two main compo-
nents: an iterative implementation of a series of graph reduction
techniques, followed by the use of an evolutionary algorithm. The
latter starts with a pool of independent sets, then evolves the
pool over several rounds. In each round, the algorithm uses a
selection procedure to select favorable nodes. This is achieved by
executing graph partitioning that clusters the graph nodes into
disjoint clusters and separators for solution improvement. Our
method, however, does not include solution combination oper-
ation. In contrast, we leverage a community detection method
prior to obtaining the initial solution(s) for the purpose of scaling
up to large graphs and not for solution improvement. Moreover,
we do not enforce the partitions and separators to be disjoint
(i.e., sharing no edges) (See Section 4.3).

Learning-based approaches which make use of RL algorithms
and ML architectures have been recently introduced to solve
NP-hard problems. RL-based methods train a deep Q-Network
(DQN) such that the obtained policy operates as a meta-algorithm
that incrementally yields a solution (Bengio et al., 2021). The
recent state-of-the-art work of Dai, Khalil, Zhang, Dilkina, and
Song (2017) combines a DQN with graph embeddings, allowing
discrimination between vertices based on their impact on the
solution, and enabling scalability to larger problem instances. By
contrast, our proposed method does not require training of a
DQN. The authors of Schuetz, Brubaker, and Katzgraber (2021)
developed a method to the MIS problem, which, similar to our
169
approach, does not require training data. However, different from
our approach, it uses a graph neural network (GNN) (its output
represents the probability of each node being in the solution)
whose parameters are tuned based on a loss function inspired
by quadratic binary unconstrained optimization that encodes the
graph of interest. In contrast, we construct a dNN with a simple
architecture that only has n trainable parameters, where n is
the number of nodes in the graph. This is significantly smaller
than the number of tunable parameters of the aforementioned
GNN, which has n parameters just in its last layer. In addition,
the approach in Schuetz et al. (2021) was only tested using d-
regular graphs (Steger & Wormald, 1999) and compared against
the approximate solver in Boppana and Halldórsson (1992). The
applicability of the former solver is limited to small size graphs
and its performance was surpassed by other existing methods.

The supervised learning method in Li et al. (2018) nearly
achieves the state-of-the-art performance for the MIS problem.
It integrates several graph reductions (Lamm et al., 2016), Graph
Convolutional Networks (GCN) (Defferrard, Bresson, & Van-
dergheynst, 2016), guided tree search, and a solution improve-
ment local search algorithm (Andrade, Resende, &Werneck, 2012)
The GCN is trained using benchmark graphs and their solutions as
the true labels to learn probability maps for each vertex being in
the optimal solution. The point of resemblance to our approach is
the use of an NN to derive solutions to combinatorial optimization
problems. However, a major difference is that our approach does
not rely on supervised learning; it uses an entirely different dNN
and obtains a solution via dataless training. More specifically,
the means by which we optimize the dNN consists of applying
backpropagation (Riedmiller & Braun, 1993) to a loss function
defined entirely in terms of the given graph and the structure of
the dNN without the need for a dataset as is standard in training
deep learning models.

3. Preliminaries

An undirected graph is denoted by G = (V , E), where V is its
vertex set and E ⊆ V × V is its edge set. The number of nodes
is |V | = n and the number of edges is |E| = m. We also use
the notation V (H) and E(H) to refer to the vertex and edge sets
of some graph H , respectively. The degree of a node v ∈ V is
denoted by d(v), and the maximum degree of the graph by ∆(G).
The neighborhood of node v ∈ V is N(v) = {u ∈ V | (u, v) ∈ E}.
For a subset of nodes U ⊆ V , G[U] = (U, E[U]) is used to
represent the subgraph induced by U , i.e., the graph on U whose
edge set E[U] = {(u, v) ∈ E | u, v ∈ U} consists of all edges of
G with both ends in U . The complement of graph G is the graph
G′ = (V , E ′) on V , where E ′ = V × V \ E, i.e., E ′ consists of all the
edges between nodes that are not adjacent in G, with |E ′| = m′.
Hence,m+m′ = n(n−1)/2 is the number of edges in the complete
graph on V . For any positive integer n, [n] := {1, . . . , n}. We use
| · | to denote the cardinality of a set, unless stated otherwise.

We consider the NP-hard problem of finding maximum inde-
pendent sets (MIS). We define the MIS problem and the related
maximum clique (MC) and minimum vertex cover (MVC) prob-
lems, then briefly describe how MC and MVC can be represented
as instances of MIS.

Definition 3.1 (MIS Problem). Given an undirected graph G =
(V , E), MIS is the problem of finding a subset of vertices I ⊆ V
such that E(G[I]) = ∅, and |I| is maximized.

Definition 3.2 (MC Problem). Given an undirected graph G =
(V , E), MC is the problem of finding a subset of vertices C ⊆ V
such that G[C] is a complete graph, and |C | is maximized.
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Fig. 1. Block diagram of the proposed dNN, f (θ ).

efinition 3.3 (MVC Problem). Given an undirected graph G =
V , E), MVC is the problem of finding a subset of vertices R ⊆ V
uch that, for every (u, v) ∈ E, either u ∈ R or v ∈ R, and |R| is
inimized.

For the MC problem, the MIS of a graph is an MC of the com-
lement graph (Karp, 1972). MVC and MIS are complementary,
.e, a vertex set is independent if and only if its complement is
vertex cover (Cook, Lovász, Seymour, et al., 1995). We exploit

hese properties in the development of our dNNs.

. Methodology

In this section, we describe the different components of our
roposed approach. To preface the discussion and distinguish our
ataless solution from learning-based methods, consider first the
onventional supervised learning setting. In this setting, there
s generally some set of data D = {(xi, yi)}i consisting of input
ensors xi ∈ Rn and their associated value, or label, yi ∈ Y . The
oal of learning is then to train a learning model f : Rn

→ Y
arameterized by θ so that f learns to predict the input–output
elationship of the underlying data distribution D′. This is given
y the objective below, in which L denotes the loss function.

min
θ

E(x,y)∼D′ [L(f (x; θ ), y)] (1)

ince a dataset D is used in lieu of the true underlying data
istribution D′, the objective function becomes

min
θ

1
|D|

∑
(x,y)∈D

L(f (x; θ ), y) (2)

The loss function is chosen to be a differentiable function, such
as the minimum square error, in order to leverage optimization
using backpropagation. In our approach, we leverage dNNs, which
we define as neural networks whose loss function L does not
depend on data. In this sense, what we present is a NN-based
technique, but not a learning method and is therefore different
from supervised, unsupervised, and reinforcement learning.

4.1. Dataless neural network construction

Given a graph G = (V , E), we construct a dNN f with trainable
arameters θ ∈ [0, 1]n whose single output is f (en; θ ) = f (θ ) ∈ R.

Note that the input to f is the all-ones vector en and thus does
not depend on any data. The network consists of an input layer,
two hidden layers, and an output layer. The trainable parameters
θ ∈ [0, 1]n connect the input layer en to the first hidden layer
through an elementwise product. All other parameters are fixed
during training and are presented next. The connectivity structure
from the first hidden layer to the second is given by the binary
matrix W ∈ {0, 1}n×(n+m) and will depend on G, the bias vector
at the second hidden layer is given by b ∈ {−1,−1/2}n+m, and
 n
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the fully-connected weight matrix from the second hidden layer
to the output layer is given by w ∈ {−1, n}n+m. These parameters
are defined as a function of G. The output of f is given by (3),
where ⊙ is the element-wise Hadamard product that represents
the operation of the first hidden layer of the constructed network.
The second hidden layer is a fully-connected layer with fixed
matrix W and bias vector b with a ReLU activation function
σ (x) = max(0, x), while the last layer is another fully-connected
layer expressed in vector w. See Fig. 1 for a block diagram of the
eneralized proposed network.

(en ; θ ) = f (θ ) = wTσ (W T (en ⊙ θ )+ b) (3)

In the sequel, we prove that f (θ ) is an equivalent differentiable
representation of the MIS problem G = (V , E) in that f achieves
its minimum value when an MIS U ⊆ V is found in G. Fur-
thermore, this is a constructive representation since U can be
obtained from θ as follows. Let θ∗ = argminθ∈[0,1]n f (θ ) denote
an optimal solution to f and let I : [0, 1]n → 2V denote the
corresponding independent set found by θ such that

I(θ ) = {v ∈ V | θ∗v ≥ α} , (4)

for any α > 0. We show that |I(θ∗)| = |U |. Intuitively, this
is tantamount to choosing the trained parameter indices in θ

whose values exceed some threshold and choosing the vertices
in V corresponding to those indices to be the MIS. The fixed
parameters of f are constructed from the given graph G = (V , E)
as follows. The first n×n submatrix of W represents the nodes V
in the graph and its weights are set equal to the identity matrix
In. The following m columns of W correspond to the edges E in
he graph. In particular, for the column associated with a given
dge, a value of 1 is assigned to the entries corresponding to
oth ends of that edge and 0 otherwise. For the bias vector b,
e assign a value of −1/2 to the entries corresponding to the

irst n nodes, and a value of −1 to the m entries corresponding
o the edges. Finally, these nodes are input to their corresponding
eLU activation functions. For the vector w connecting the second
idden layer to the output layer, values of −1 and n are assigned
o entries corresponding to nodes and edges in the second hidden
ayer, respectively. Hence, the parametersW , b, and w are defined
s

W (i, i) = 1, vi ∈ V , i ∈ [n] ,
(i, n+ l) = W (j, n+ l) = 1 ,∀el = (vi, vj) ∈ E, l ∈ [m] ,

(5)

(i) = −1/2, w(i) = −1, vi ∈ V , i ∈ [n] ,
b(n+ l) = −1, w(n+ l) = n, l ∈ [m] .

(6)

herefore, we can rewrite (3) as follows

(θ ) = −
∑
v∈V

σ (θv − 1/2)+ n
∑

(u,v)∈E

σ (θu + θv − 1) . (7)

ig. 2 presents an example. The following theorem establishes a
elation between the minimum value of (7) and the size of the
IS.

heorem 4.1. Given a graph G = (V , E) and its corresponding dNN
, an MIS U ⊆ V of G is of size |U | = k if and only if the minimum
alue of f is −k/2.

roof ( H⇒ ). Assume that |U | = k and let θvi = 1 for each vi ∈ U
nd θvi = 0 otherwise. For an arbitrary pair of nodes vi, vj ∈ U ,
onsider the output of f as visualized by Fig. 3, where edge values
enote the outputs of the preceding nodes in the network and
odes η1

i , η
2
i denote the ith neurons in the first and second hidden

ayers, respectively. We abuse notation to refer to both the output

euron and the output value as f (θ ).
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Fig. 3. Network f used in the proof of Theorem 4.1.

Note that vi and vj each contribute an output of −1/2 to
f (θ ). This follows from the fact that, by definition of MIS, these
vertices do not share an edge and so the output of η2

n+l is 0.
hus, for an MIS of size |U | = k, we have f (θ ) = −k/2. This
s the minimum value attainable by f . Indeed, consider, for the
ake of contradiction, that there exists θ ′ such that f (θ ′) < f (θ ).
s with θ , this θ ′ must be defined such that θvi = 1 for each
i ∈ U . Consider the addition of some other vk′ /∈ U . Then η2

k′ will
ontribute −σ (θk′ − 1/2) to f (θ ′) and η2

n+l will contribute at least
θk′ for every edge ek = (vk′ , v) ∈ E, where v ∈ U . By definition
f MIS, some such edge must exist. Therefore, we would have
(θ ′) > f (θ ), yielding a contradiction.
(⇐H ) Assume that the minimum value of f is f (θ ) = −k/2.

onsider an arbitrary edge el = (vi, vj) ∈ E. It follows from the
onstruction of f that θvi + θvj ≤ 1 must hold for f to achieve
ts minimum value. For the sake of contradiction, consider that
i+ θj > 1. In this case, neuron η2

n+l contributes n(θi+ θj−1) > 0
o the output f (θ ). This yields a contradiction since we can simply
hoose θi and θj to be 0, thereby contributing a value of 0 to f (θ ).
iven an arbitrary vertex v and its neighbors N(v), it must be the
ase that θi = 1 for some vi ∈ N(v) as this would contribute a
alue of −1/2 to f (θ ) through node η2

i and a value of 0 through
odes η2

n+l for all vertices u ∈ N(v) connected to v through
dge el. It follows that there must be k entries in θ with value
, each contributing a value of −1/2 to the output f (θ ) such that
one of them share a neuron in the second hidden layer. These
orrespond to k vertices in V that do not share edges. Therefore,
U | = k. □

From Theorem 4.1, it follows that the minimum value of f is
chieved when the maximum number of entries in θ have value
such that their corresponding nodes in G share no edges. This
ields an independent set I(θ ) = {vi ∈ V | θvi = 1} of maximum
ardinality.
Due to the non-linearity introduced by the ReLUs in the dNN

, we obtain a minimizer for f by leveraging the backpropagation
lgorithm along with the well-known ADAM optimizer (Kingma
Ba, 2015). This is applied only to optimize the adjustable

arameters θ . Hence, the ADAM optimizer updates θ depending
2
n the computation of only one gradient, that is, ∇θ |f (θ )− fd| .

171
iven that W , b, and w represent the graph structure, they do
ot need to be updated, thus computing gradients w.r.t. to these
arameters is not required.
As such, we iteratively minimize the loss function L(f (θ ), fd) =

f (θ )− fd|2 , where | · | denotes the absolute value and fd is the
inimum desired value used for parameter tuning. Per Theo-

em 4.1, the minimum achievable value of f (θ ) is a function of the
ize of the MIS. Therefore, during training we select fd = −n/2, a
value that is only attained by f (θ ) if G is a null graph.

4.2. On the duality of MIS and MC

Since the graph induced by the MIS is a null graph on G and
fully-connected on its complement G′, we propose to include the
edges of G′ in the construction of f to enhance the tuning of the
parameters θ . We term the resulting enhanced dataless neural
network as h with output value h(θ ). In this case, we extend
the definition of the fixed parameters W ∈ {0, 1}n×(n+m+m

′),
b ∈ {−1,−1/2}n+m+m

′

, and w ∈ {−1, n}n+m+m
′

, by defining
the mapping for the augmented portion of these parameters
representing the m′ edges of G′ as

W (i, n+m+ l) = W (j, n+m+ l) = 1,
∀el = (vi, vj) ∈ E(G′), l ∈ [m′] ,

(8)

b(n+m+ l) = w(n+m+ l) = −1, l ∈ [m′] . (9)

The construction of the graph-specific dNN h requires a total
of n2
+n(m+m′+3)+2m+2m′ parameters of which n2

+n(m+
m′ + 2) + 2m + 2m′ parameters are fixed and n parameters are
adjustable.

Given (7), (8), and (9), the output of h is

h(θ ) = f (θ )−
∑

(u,v)∈E(G′)

σ (θu + θv − 1) . (10)

Fig. 4 presents an example of the proposed construction from
a simple 5-node graph G to its corresponding dNN h. Our next
result is analogous to Theorem 4.1 and establishes a relation
between the minimum value of (10) and the size of an MIS in
G.

Theorem 4.2. Given a graph G = (V , E) and its corresponding
enhanced dNN h, an MIS U ⊆ V of G is of size |U | = k if and only if
the minimum value of h is −k2/2.

Proof. Per Theorem 4.1, the minimum value of the first term of
(10) is −k/2. Therefore, we consider the minimum value of the
remaining (second) term, which corresponds to the edges of G′.
Similar to Theorem 4.1, assume that θv = 1 for each v ∈ U and
θv = 0 otherwise. The graph induced by the MIS w.r.t. G′ is a fully-
connected graph, i.e., |E(G′[U])| = k(k− 1)/2. Given the −1 bias,
the outputs associated with the edges of G′ will be 1. Since the
subgraph induced on G′ is complete, we get −k(k − 1)/2 for the
second term. The combined output is thus−(k/2)−(k(k−1)/2) =

2

−k /2, which concludes the proof. □
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Algorithm 1 Finding MIS with dNN
Function: I = dNN(G, α)
: construct h from G using (5), (6), (8), and (9)

2: initialize θ as in (12), I(θ ) = ∅
3: while ∃v ∈ V \ I(θ ) s.t. E(G[I(θ ) ∪ {v}]) ̸= ∅
4: update θ ← argminθ∈[0,1]n |h(θ )− hd|

2

5: obtain I(θ ) = {v ∈ V | θv ≥ α}

Since the minimum value of h is −k2/2, we use hd = −n2/2
or training the dNN by minimizing the loss

(h(θ ), hd) = |h(θ )− hd|
2 . (11)

n the case of (11), the backpropagation is used to optimize the
adjustable parameters θ only. This is applied using the ADAM
ptimizer that updates θ depending on the computation of only
∇θ |h(θ )− hd|

2.
In general, the vertices with high degrees are less likely to be

part of an MIS than vertices with low degrees. Therefore, to speed
up the training of the parameters of h, we initialize every element
of θ with a probability that is decreasing in the node degree as

θv = 1−
d(v)
∆(G)

+ s , θ ←
θ

maxv∈V θv

, (12)

where we add a small value s drawn from a uniform distribution
over small positive bounds (≪ 0.1) as part of the ADAM stochas-
tic algorithm to improve performance when optimizing the loss
function of h (Goodfellow, Bengio, & Courville, 2017).

The complexity of optimizing over the proposed dNN depends
on the ADAM algorithm that solves a minimization problem with
a number of box-constrained variables equal to the number of
nodes in the graph. The ADAM optimizer is a stochastic gradient-
based method by which, in every iteration (update of parame-
ters), the complexity depends on the computation of the gradient
∇θL(h(θ ), fh). This is of the same computational complexity as
evaluating the objective in (11) (Kingma & Ba, 2015).

4.3. Scaling up: Community detection approach

To handle large-scale graphs for the MIS problem, many tech-
niques have been introduced in prior work, including the linear
programming (LP) reduction, removal of pendant vertices, and
other heuristics as presented in Akiba and Iwata (2016) and
dopted in some of the most recent state-of-the-art methods.
owever, these techniques are only applicable to sparse graphs
s pointed out in Lamm et al. (2016).
This motivates our work here on developing a reduction tech-

ique that is independent of the graph type and density. The
roposed procedure described next utilizes multiple dNNs to
andle large graphs, which is particularly useful when optimizing
172
the parameters of one dNN representing the entire graph requires
a large amount of storage and computation.

We perform community detection (Yang, Algesheimer, & Tes-
sone, 2016) to partition the graph into communities, which are
groups of nodes with dense connections internally and sparser
connections between groups. Then, using Algorithm 1, we obtain
a MIS for the subgraph induced by each community separately.
Subsequently, a MIS is obtained for the full graph by processing
the identified sets. More specifically, let Ci, i ∈ [r] denote the
set of nodes in community i, where r is the total number of
ommunities found by a community detection algorithm. The
nter-cluster edge set

= {(u, v) ∈ E | u ∈ Ci, v ∈ Cj, i ̸= j} , (13)

is the set of edges between nodes in different communities. For
every Ci, we construct a dNN hi and obtain an MIS Ii = dNN(Gi, α),
where Gi = G[Ci]. The union of these sets is the set B =

⋃
i∈[r] Ii.

Note that B is generally not an IS w.r.t. graph G since there could
exist edges between nodes in the solution sets of two different
communities. We call these the forbidden edges and define the
set

F = {(u, v) ∈ R | u ∈ Ii, v ∈ Ij, i ̸= j} . (14)

In order to obtain a MIS w.r.t. G, we need to handle all nodes
with edges in the set F . To this end, we develop the following
procedure which processes every pair in F until an IS is obtained
w.r.t. G. First, we select a pair (u, v) ∈ F , then for every node
q ∈ {u, v}, we check if it can be replaced by a node from its
neighborhood. A candidate replacement, w ∈ N(q), must be 1-
tight, that is |B ∩ N(w)| = 1. If no replacements are found for
either u or v, we remove the node with the larger number of
repetitions in F . This is repeated until the set F is empty. The
entire procedure is presented in Algorithm 2. In the case that the
resulting set I is only an IS w.r.t. G, we obtain a MIS by executing
Algorithm 1 on the subgraph induced by nodes that are neither
in the solution nor in its neighborhood. In particular, I is updated
as

I ← I ∪ dNN(G[V \ (I ∪ N(I))], α) . (15)

The complexity of the proposed CD approach depends on the
CD algorithm utilized, the post-processing step presented in Algo-
rithm 2, and Eq. (15). The complexity of the Algorithm depends on
the size of set F , and the number of removed and replaced nodes
in steps 6 and 10, respectively. If replacements and/or removals
result in a MIS, then (15) is not needed. In the case where the
output of the algorithm is an IS, the number of removed and
replaced nodes determine the size of graph G[V\(I∪N(I))]whose
nodes and edges determine the size of the dNN needed to obtain
a MIS from IS in (15).
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Algorithm 2 Handling Forbidden edges.
Input: Graph G = (V , E), B, F
Output: IS I on G
1: initialize I = B
2: while F ̸= ∅
3: select a pair (u, v) ∈ F , initialize ReplacementFlag = 0
4: for all q ∈ {u, v}
5: if ∃w ∈ N(q) s.t. |I ∩ N(w)| = 1
6: replace q by w, that is I ← I \ {q}, I ← I ∪ {w}
7: update F , ReplacementFlag = 1
8: break for
9: if ReplacementFlag = 0 (no replacement is found)
10: remove either u or v depending on their repetitions in F
11: update I and F

Algorithm 3 Solution improvement by dNNs
Input: Graph G = (V , E), Solution I, λ, IncreaseStep
utput: I∗

: initialize I∗ = I
: while stopping criteria is not satisfied
: obtain U ⊂ I : |U| = λ,∀u ∈ U, v ∈ I \ U, d(u) ≤ d(v)

4: obtain I ← I ∪ dNN(G[V \ (U ∪ N(U))], α)
5: if |I| > |I∗| (update the optimal if I is of higher cardinality)
6: update I∗ = I
7: if |I| ≤ |I∗| (restart from the current optimal)
8: update I = I∗

9: update λ← λ+ IncreaseStep

4.4. Solution improvement by dNNs

After applying the community detection algorithm and using
lgorithm 1 for every resulting subgraph, Algorithm 2 along with
possible use of (15) are used to obtain MIS I. Since high-degree
odes are less likely to be in a large IS, given graph G and solution
, we propose a solution improvement procedure that removes a
et of low-degree nodes U ⊂ I, such that |U | = λ, along with
heir neighbors N(U) from the graph. We then apply our dNN on
he reduced graph G[V \ (U ∪N(U))] with different initial seed for
as a form of simulated annealing (Van Laarhoven & Aarts, 1987).
his procedure is iteratively applied where we increase λ at every
teration. The best solution is maintained until some stopping
riteria is met. The procedure is given in Algorithm 3. While a
imilar criteria is used to select U in Lamm et al. (2016), their
ethod recursively tries all reduction techniques on the reduced
raph where λ is fixed.
The number of computations needed for Algorithm 3 depend

n λ and the rate by which it increases as this determines the size
f the subgraph on which the dNN procedure is applied at each
teration (step 4).

. Experimental evaluation

In this section, we evaluate the performance of our proposed
ethod and present comparisons to state-of-the-art methods
sing synthetic graphs and real-world benchmarks.

.1. Setup, benchmarks, and baselines

We process graphs using the NetworkX library (Hagberg,
chult, & Swart, 2008) and use Tensorflow (Abadi et al., 2016)
o construct the dNN h. The initial learning rate for the ADAM
ptimizer is set to 0.1. To tune the parameters θ of h, a set of
epeated samples of the pair (en,−n2/2) is used as the dataset.
e set the probability threshold α = 0.5 and use degree-based
173
nitialization. Experiments justifying our choice are presented in
ater subsections. For community detection, we use the Louvain
lgorithm (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008) with
resolution factor of 1.3 for large-scale low-density graphs and
.8 for high-density instances. For Algorithm 3, we choose λ =
and increase it by 1 in every iteration. The algorithm stops
hen the number of nodes in the reduced graph is below 20.
he experiments are run using Python 3 and Intel(R) Core(TM)
9-9940 CPU @ 3.30 GHz machine. The code for the experiments
onducted in our paper is available online.1
For low-density graphs, we incorporate the inexpensive and

on-recursive LP graph reduction presented in Nemhauser and
rotter (1975) prior to performing community detection and con-
tructing the enhanced dNN h. A half-integral solution (using
alues 0, 1/2, and 1), x∗ = argmax{

∑
v∈V xv s.t. xv ≥ 0,∀v ∈

, xv + xu ≤ 1,∀(u, v) ∈ E} is obtained using bipartite matching.
he vertices that are members of set T =: {v ∈ V | x∗v = 1}
ust be in the MIS and can thus be removed from G together
ith their neighbors in N(T ). The solution obtained from training
on G[V \ (T ∪N(T ))] is joined with nodes in T to obtain the MIS

or G. Furthermore, we implement the 2-improvement basic local
earch algorithm (Andrade et al., 2012). The foregoing techniques
re also used in most of the state-of-the-art solvers presented
n Lamm et al. (2016), Li et al. (2018) and Ahn, Seo, and Shin
2020).

As a benchmark, we use the social network graphs from
he Stanford Large Network Dataset Collection given in SNAP
Leskovec & Krevl, 2014). In these graphs, the vertices represent
eople and the edges reflect their interactions. We also use the
itation network graphs (Sen et al., 2008) for data collected
rom academic search engines. In these graphs, nodes represent
ocuments and edges reflect their citations. Using the afore-
entioned benchmarks, we compare the performance of our
roposed framework to multiple MIS solvers, including the GCN
ethod (Li et al., 2018), which is an ML-based approach, and

he RL-based method S2V-DQN (Dai et al., 2017). We also report
esults from the state-of-the-art MIS solver ReduMIS (Lamm et al.,
016). We use the size of the identified independent set to
easure the quality of the solution for every baseline considered.
urthermore, results from solving the MIS Integer Linear Program
ILP) in (16) using CPLEX are also reported.

ax
x

∑
v∈V (G)

xv subject to xv ∈ {0, 1} ,∀v ∈ V ,

xv + xu ≤ 1 ,∀(v, u) ∈ E .

(16)

he aforementioned benchmarks are considered sparse graphs.
herefore, we also test our proposed method on higher-density
raphs randomly generated from the Erdos–Renyi (ER) (Erdos,
ényi, et al., 1960), Barbosi–Albert (BA) (Albert & Barabási, 2002),
olme and Kim (HK) (Holme & Kim, 2002), and the Stochastic
lock (SBM) (Holland, Laskey, & Leinhardt, 1983) models.

.2. Results on SNAP and citation network benchmarks

In this subsection, we present the overall comparison results
ith the GCN, ReduMIS, and S2V-DQN methods along with the
esults from solving the MIS ILP in (16) using CPLEX. Columns 4
o 8 of Table 1 present the size of the found MIS. The results, other
han the CPLEX ILP, reported for the baselines are obtained from
able 5 of Li et al. (2018).
We briefly describe the reduction techniques utilized by these

aselines as they contribute significantly to their final results.
ll three methods remove pendent, unconfined, and twin ver-
ices and utilize vertex folding for degree-2 nodes. Additional

1 https://github.com/ialkhouri/MIS_dNNs.

https://github.com/ialkhouri/MIS_dNNs
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Table 1
Comparison to state-of-the-art baselines using real-world benchmarks in terms of the size of the identified MIS.
Dataset |V | |E| GCN ReduMIS S2V-DQN CPLEX dNNs

bitcoin-alpha 3783 14124 2718 2718 2705 2718 2718
bitcoin-otc 5881 21492 4346 4346 4334 4346 4347
wiki-Vote 7115 100762 4866 4866 4779 4866 4866
soc-slashdot0811 73399 497274 53314 53314 52719 53314 53314
soc-slashdot0922 82168 582533 56398 56398 55506 56398 56395
soc-Epinions1 75579 405740 53599 53599 53089 53599 53598
Citeseer 3327 4536 1867 1867 1705 1808 1866
Cora 2708 5429 1451 1451 1381 1451 1451
PubMed 19717 44327 15912 15912 15709 15912 15912
(
t
m
i

Table 2
Comparison to state-of-the-art baselines using synthetic graphs in terms of the
average size of the MIS.
Graph type |V | E(|E|) ReduMIS GCN CPLEX dNNs

ER 100 (p = 0.1) 496 30.5 30.5 30.5 30.5
ER 100 (p = 0.2) 975 20 19.5 20 20
ER 200 (p = 0.1) 1991.5 41 40 41 41
ER 200 (p = 0.2) 3983.5 25.5 24 25.5 25.5
SBM 250 (p = 0.1) 1857.5 61 60.5 60.5 61
SBM 250 (p = 0.2) 2431 51 50.5 51 51
SBM 350 (p = 0.1) 3614.5 68 68 66.5 68
SBM 350 (p = 0.2) 4826 55.5 55 53.5 55.5
BA 100 2450 45 45 45 45
BA 200 9950 95 95 95 95
HK 100 2500 30 30 30 30
HK 200 9900 60 60 60 60

reductions are also considered in ReduMIS, including finding node
alternatives, using packing constraints, and adopting the same
LP MIS relaxation reduction we adopt in this paper. We refer
the interested reader to Akiba and Iwata (2016) for a thorough
iscussion of these reductions.
In all datasets considered, our method outperforms S2V-DQN.

ur method performs mostly on par with ReduMIS and GCN, both
f which yield identical results. This is observed as exact MIS sizes
re obtained for bitcoin-alpha, Wiki-Vote, soc-slashdot0811, Cora,
nd PubMed. While scoring higher for bitcoin-otc, our method
cores lower for soc-slashdot0922, soc-Epinions1, and Citeseer.
hen compared to the ILP solver, our method outperforms CPLEX
n bitcoin-otc and Citeseer while performing on par for all the
ther instances other than soc-slashdot0922 and soc-Epinions.

.3. Results on synthetic graphs

In this subsection, we compare our proposed method to Re-
uMIS, GCN, and CPLEX using random graphs generated from the
R, BA, and HK models. Every size reported in Table 2 represents
he average of two random graphs from the model given in the
irst column. For ER, p represents the probability of an edge being
resent. For BA, we use ⌊0.5n⌋ and ⌊0.45n⌋ edges to attach a new
ode to existing nodes. For HK, we add ⌊0.3n⌋ random edges to
ach new node and set the probability of adding a triangle after
dding a random edge to 0.5. For SBM, we generate graphs with
clusters, where two nodes from the same cluster share an edge
ith probability p (intra-cluster density) and two nodes from
ifferent clusters share an edge with probability q = 0.05 (inter-
luster density). We set a 10-minute time limit for ReduMIS,
CN, and CPLEX and present the size of the largest independent
et found within that time. The random graph parameters are
elected to yield high-density graphs relative to the earlier bench-
arks. As shown, for all the considered random high-density
raphs, on average we attain the same MIS sizes of ReduMIS,
hile performing on par or outperforming the state-of-the-art

earning-based method GCN or CPLEX. This is achieved without

he use of labeled graphs for training.

174
Fig. 5. Comparison between the proposed degree-based initialization and the
initialization from a uniform random distribution in terms of the average size
of the found MIS (top) and the average execution time (bottom).

5.4. Advantage of degree-based initialization

This subsection highlights the positive impact of utilizing the
degree-based initialization, measured by the size of the MIS found
and the execution time required to obtain a solution. The results,
presented in Fig. 5, are compared to initializing θ from a uniform
distribution over the interval [0, 1]. Every point in Fig. 5 (top)
(bottom)) represents the average size of the found MIS (execution
ime) of 5 uniformly generated random graphs with n nodes and
= 2n edges. As observed, on average, our proposed method

n (12) outperforms random initialization in terms of the average
MIS size and also incurs shorter execution time.

5.5. Impact of the choice of α

In this experiment, we examine the impact of the probability
threshold α on the number of training steps required, the execu-
tion time, and the output value of the network. Fig. 6 shows the
results for graphs generated uniformly at random with n = 100
and m = 500. From top to bottom, the results show the average
number of tuning steps required (first), average execution time
(second), average normalized output values given by −2h(θ )/k2
(third), and the average obtained MIS size k (fourth). As observed,
when α increases, the output h(θ ) of the dNN also increases
along with the number of tuning steps and the required run-time.
However, beyond α ≈ 0.55, the average size k of the obtained MIS
does not change. Therefore, to increase the size of the MIS while
reducing the run-time and the number of steps, we set α = 0.5
in step 5 of Algorithm 1.

The re-scaled zoomed curves in the inset of Fig. 6 (third) shows
that the optimal normalized output value approaches 1 as α→ 1.
This verifies that the minimum value of h(θ ) occurs when θ ∈

{0, 1}n. This result was established in the proof of Theorems 4.1
and 4.2.
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Fig. 6. The impact of the probability threshold α w.r.t. the average number of
uning steps (first), average execution time (second), average normalized output
alue with re-scaled zoomed values (third), and average size k of the MIS found

(fourth).

6. Conclusion

We presented a dataless, differentiable methodology for solv-
ing the Maximum Independent Set (MIS) problem that is radically
different from existing techniques. The underpinning of our ap-
proach is a reduction from the MIS problem to an equivalent
dataless Neural Network (dNN) constructed from the given graph.
The parameters of this dNN are trained without requiring data,
thereby setting our approach apart from learning-based meth-
ods like supervised, unsupervised, and reinforcement learning.
In particular, training is conducted by applying backpropagation
to a loss function defined entirely based on the structure of
the given graph. We also presented an enhanced version of the
dNN by incorporating the edges from the complement graph
and exploiting the duality of the Maximum Clique (MC) and MIS
problems. Additionally, we developed a reduction procedure that
leverages a community detection algorithm to scale our approach
to larger and higher-density graphs. Unlike previous reductions,
the procedure is independent of the type of the graph and its
density. Experimental results on both real and synthetic bench-
marks demonstrate that our proposed method performs on par
with state-of-the-art learning-based methods in terms of the size
of the found MIS without requiring any training data.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is supported by Air Force Research Laboratory Con-
tract FA8750-20-3-1004, Air Force Office of Scientific Research
Award 20RICOR012, National Science Foundation CAREER Award
CCF-1552497, National Science Foundation Award CCF-2106339,
and Department of Energy Award DE-EE0009152.
175
References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016).
Tensorflow: A system for large-scale machine learning. In 12th {USENIX}
symposium on operating systems design and implementation ({OSDI} 16) (pp.
265–283).

Ahn, S., Seo, Y., & Shin, J. (2020). Learning what to defer for maximum inde-
pendent sets. In International conference on machine learning (pp. 134–144).
PMLR.

Akiba, T., & Iwata, Y. (2016). Branch-and-reduce exponential/FPT algorithms in
practice: A case study of vertex cover. Theoretical Computer Science, 609,
211–225.

Albert, R., & Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1), 47.

Andrade, D. V., Resende, M. G., & Werneck, R. F. (2012). Fast local search for the
maximum independent set problem. Journal of Heuristics, 18(4), 525–547.

Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial op-
timization: a methodological tour d’horizon. European Journal of Operational
Research, 290(2), 405–421.

Berman, P., & Schnitger, G. (1992). On the complexity of approximating the
independent set problem. Information and Computation, 96(1), 77–94.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and
Experiment, 2008(10), P10008.

Boppana, R., & Halldórsson, M. M. (1992). Approximating maximum independent
sets by excluding subgraphs. BIT Numerical Mathematics, 32(2), 180–196.

Cook, W., Lovász, L., Seymour, P. D., et al. (1995). Combinatorial optimization:
papers from the DIMACS Special Year, Vol. 20. American Mathematical Soc..

Dai, H., Dai, B., & Song, L. (2016). Discriminative embeddings of latent variable
models for structured data. In International conference on machine learning
(pp. 2702–2711). PMLR.

Dai, H., Khalil, E. B., Zhang, Y., Dilkina, B., & Song, L. 2017. Learning combinatorial
optimization algorithms over graphs. In Proceedings of the 31st international
conference on neural information processing systems. (pp. 6351–6361).

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural
networks on graphs with fast localized spectral filtering. Advances in Neural
Information Processing Systems, 29, 3844–3852.

Erdos, P., Rényi, A., et al. (1960). On the evolution of random graphs. Publications
of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1),
17–60.

Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep learning (adap-
tive computation and machine learning series). Cambridge Massachusetts,
321–359.

Hagberg, A. A., Schult, D. A., & Swart, P. J. 2008. Exploring network structure,
dynamics, and function using networkx. In Varoquaux, G. and Vaught, T.
and Millman, J. (Eds.), Proceedings of the 7th python in science conference.
(pp. 11–15). Pasadena, CA USA.

Hastad, J. (1996). Clique is hard to approximate within n/sup 1-/spl epsiv.
In Proceedings of 37th conference on foundations of computer science (pp.
627–636). IEEE.

He, H., Daume III, H., & Eisner, J. M. (2014). Learning to search in branch
and bound algorithms. Advances in Neural Information Processing Systems, 27,
3293–3301.

Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First
steps. Social Networks, 5(2), 109–137.

Holme, P., & Kim, B. J. (2002). Growing scale-free networks with tunable
clustering. Physical Review E, 65(2), Article 026107.

Karp, R. M. (1972). Reducibility among combinatorial problems. In Complexity of
computer computations (pp. 85–103). Springer.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
ICLR (Poster).

Lamm, S., Sanders, P., Schulz, C., Strash, D., & Werneck, R. F. (2016). Finding
near-optimal independent sets at scale. In 2016 Proceedings of the eighteenth
workshop on algorithm engineering and experiments (ALENEX) (pp. 138–150).
SIAM.

eskovec, J., & Krevl, A. (2014). SNAP datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data.

i, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph
convolutional networks and guided tree search. In NeurIPS.

emhauser, G. L., & Trotter, L. E. (1975). Vertex packings: Structural properties
and algorithms. Mathematical Programming, 8(1), 232–248.

iedmiller, M., & Braun, H. (1993). A direct adaptive method for faster back-
propagation learning: The rprop algorithm. In IEEE international conference
on neural networks (pp. 586–591).

an Segundo, P., Rodríguez-Losada, D., & Jiménez, A. (2011). An exact bit-
parallel algorithm for the maximum clique problem. Computers & Operations
Research, 38(2), 571–581.

chuetz, M. J., Brubaker, J. K., & Katzgraber, H. G. (2021). Combinatorial
optimization with physics-inspired graph neural networks. arXiv preprint
arXiv:2107.01188.

http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb1
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb2
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb2
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb2
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb2
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb2
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb3
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb3
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb3
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb3
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb3
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb4
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb4
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb4
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb5
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb5
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb5
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb6
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb6
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb6
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb6
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb6
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb7
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb8
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb8
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb8
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb8
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb8
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb9
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb9
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb9
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb10
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb10
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb10
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb11
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb13
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb13
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb13
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb13
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb13
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb14
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb14
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb14
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb14
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb14
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb15
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb15
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb15
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb15
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb15
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb17
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb17
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb17
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb17
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb17
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb18
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb19
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb20
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb20
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb20
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb21
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb21
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb21
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb22
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb23
http://snap.stanford.edu/data
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb25
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb25
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb25
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb26
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb27
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb27
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb27
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb27
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb27
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb28
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb28
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb28
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb28
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb28
http://arxiv.org/abs/2107.01188


I.R. Alkhouri, G.K. Atia and A. Velasquez Neural Networks 155 (2022) 168–176

S

S

T

en, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008).
Collective classification in network data. AI Magazine, 29(3), 93.

teger, A., & Wormald, N. C. (1999). Generating random regular graphs quickly.
Combinatorics, Probability and Computing, 8(4), 377–396.

arjan, R. E., & Trojanowski, A. E. (1977). Finding a maximum independent set.
SIAM Journal on Computing, 6(3), 537–546.
176
Van Laarhoven, P. J., & Aarts, E. H. (1987). Simulated annealing. In Simulated
annealing: theory and applications (pp. 7–15). Springer.

Williamson, D. P., & Shmoys, D. B. (2011). The design of approximation algorithms.
Cambridge University Press.

Yang, Z., Algesheimer, R., & Tessone, C. J. (2016). A comparative analysis of
community detection algorithms on artificial networks. Scientific Reports,
6(1), 1–18.

http://refhub.elsevier.com/S0893-6080(22)00308-2/sb30
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb30
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb30
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb31
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb31
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb31
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb32
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb33
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb33
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb33
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb34
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb34
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb34
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb35
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb35
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb35
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb35
http://refhub.elsevier.com/S0893-6080(22)00308-2/sb35

	A differentiable approach to the maximum independent set problem using dataless neural networks
	Introduction
	Related work
	Preliminaries
	Methodology
	Dataless neural network construction
	On the duality of MIS and MC
	Scaling up: Community detection approach
	Solution improvement by dNNs

	Experimental evaluation
	Setup, benchmarks, and baselines
	Results on SNAP and citation network benchmarks
	Results on synthetic graphs
	Advantage of degree-based initialization
	Impact of the choice of 

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References


