
8312 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

Patch Tracking-Based Streaming Tensor Ring
Completion for Visual Data Recovery

Yicong He and George K. Atia , Senior Member, IEEE

Abstract— Tensor completion aims to recover the missing
entries of a partially observed tensor by exploiting its low-
rank structure, and has been applied to visual data recovery.
In applications where the data arrives sequentially such as
streaming video completion, the missing entries of the tensor need
to be dynamically recovered in a streaming fashion. Traditional
streaming tensor completion algorithms treat the entire visual
data as a tensor, which may not work satisfactorily when there
is a big change in the tensor subspace along the temporal
dimension, such as due to strong motion across the video frames.
In this paper, we develop a novel patch tracking-based streaming
tensor ring completion framework for visual data recovery. Given
a newly incoming frame, small patches are tracked from the
previous frame. Meanwhile, for each tracked patch, a patch
tensor is constructed by stacking similar patches from the new
frame. Patch tensors are then completed using a streaming tensor
ring completion algorithm, and the incoming frame is recovered
using the completed patch tensors. We propose a new patch
tracking strategy that can accurately and efficiently track the
patches with missing data. Further, a new streaming tensor
ring completion algorithm is proposed which can efficiently
and accurately update the latent core tensors and complete
the missing entries of the patch tensors. Extensive experimental
results demonstrate the superior performance of the proposed
algorithms compared with both batch and streaming state-of-
the-art tensor completion methods.

Index Terms— Tensor completion, tensor ring decomposition,
streaming video processing.

I. INTRODUCTION

MULTI-WAY data analysis uses techniques that represent
data as multi-dimensional arrays known as tensors.

It has drawn increased attention in recent years given its ability
to reveal patterns intrinsic to high-order data undetected by
other methods by capturing correlations across its different
dimensions. Such techniques have found numerous applica-
tions in machine learning [1]–[5], signal processing [6]–[8]
and computer vision [9]–[13].

Manuscript received 3 March 2022; revised 15 June 2022; accepted 7 July
2022. Date of publication 13 July 2022; date of current version 6 December
2022. This work was supported in part by NSF CAREER Award
CCF-1552497 and in part by NSF Award CCF-2106339. This article was
recommended by Associate Editor V. Stankovic. (Corresponding author:
Yicong He.)

Yicong He is with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816 USA (e-mail:
yicong.he@ucf.edu).

George K. Atia is with the Department of Electrical and Computer Engi-
neering, University of Central Florida, Orlando, FL 32816 USA, and also with
the Department of Computer Science, University of Central Florida, Orlando,
FL 32816 USA (e-mail: george.atia@ucf.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSVT.2022.3190818.

Digital Object Identifier 10.1109/TCSVT.2022.3190818

Tensor completion, an extension to the matrix completion
problem, aims to fill in the missing entries of a partially
observed tensor by leveraging its low-rank structure, which
stems from the redundancy of the information it repre-
sents [14], [15]. For example, a natural multi-channel image
or a video sequence can be represented as tensors that
exhibit high correlations across the spatial and temporal
dimensions. Based on different tensor rank models, several
completion algorithms have been proposed, such as CP-based
algorithms [16], [17], tucker-based algorithms [18]–[20], tubal
(t-SVD)-based algorithms [21]–[23], tensor train-based algo-
rithms [10], [24] and tensor ring-based algorithms [25]–[27].
Extensive experimental results of these tensor completion
algorithms have shown their superior completion performance
compared to matrix completion.

Traditional batch tensor completion methods are of lim-
ited use in streaming applications wherein the data arrives
sequentially, since they are designed to work on the entire
tensor data. To mitigate this problem, several methods have
been proposed to complete the missing entries of data in a
streaming or online manner. In [28], the authors developed
an online tensor completion approach using the CP model
and stochastic gradient descent (SGD). The authors in [29]
proposed an online low-rank subspace tracking by tensor CP
decomposition (OLSTEC), which improves the efficiency and
accuracy of [28] by utilizing recursive least squares (RLS)
instead of SGD. Then, [30] developed a CP-based multi-aspect
streaming tensor completion considering the case that the
tensor grows along multiple modes. Further, a tensor rank-one
update on the complex Grassmannian (TOUCAN) algorithm is
proposed under the t-SVD model [31]. Also, a sequential ten-
sor completion (STC) approach was developed for the recovery
of internet traffic data under the Tucker tensor model [32].

Despite the success of these streaming methods in complet-
ing the missing entries of sequential data, there are important
limitations that remain to be addressed. In particular, all
existing methods require that the entire tensor subspace should
be stable, that is, the latent tensor factors should be invariant or
changing slowly along the temporal dimension. In the presence
of large motion between adjacent tensors, the subspace may
change considerably, resulting in degraded completion perfor-
mance. As shown in the first row of Fig.1, some objects (car,
road sign) move significantly across different frames. Such
large motions increase the rank of the mode-4 unfolding matrix
(see bottom right of Fig. 1), indicating a big change in the
tensor subspace. Thus, existing streaming tensor completion
algorithms may not accurately complete the objects with large
motion.

1051-8215 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3398-3376
https://orcid.org/0000-0001-7958-9855

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8313

Fig. 1. Illustration of the patch tracking-based method for the video sequence
in the top row. Starting from the first frame, the green patches are tracked
along the temporal dimension while the positions of red patches are kept
unchanged. The bottom row shows the extracted patches, and the normalized
singular values (i.e., each singular value divided by the largest singular
value) of the mode-4 unfolding matrix of the tensor formed by stacking
the full frames, fixed-location patches (tube), and tracked patches along the
fourth (temporal) dimension.

In this paper, we introduce a novel patch tracking-based
streaming tensor ring completion framework for visual data
recovery (see Fig. 2). Rather than performing completion on
the entire incoming frame, we complete small patch tensors
constructed from similar patches extracted and tracked from
the frame. As a new frame comes in, similar patches across
the temporal domain are tracked using patch matching. For
example, as shown in Fig. 1, the patches of ‘road sign’ are
tracked. Compared with fixed tube and full-frame tensors, the
normalized singular values of the mode-4 unfolding matrix
of the tracked patches are relatively small, indicating a more
stable tensor subspace along the temporal domain. Therefore,
the completion performance can be improved substantially
when applied to similar tracked patches.

Patch-based methods have been widely applied to visual
data processing, such as image and video denoising [33]–[36].
However, patch matching becomes more challenging when
the data has missing entries, due to insufficient matching
information. The authors of [37] address the problem of
patch matching with missing entries by interpolating images
whose missing pixels are filled using triangle interpolation.
An alternative approach is used in [38] where the missing
pixels are estimated by applying tensor completion before
matching. These interpolation or completion methods, how-
ever, incur more computational cost and may introduce addi-
tional errors to patch matching. The authors in [39] proposed
a tube matching approach by adding the information of the
temporal domain as an extra dimension. The tubes are matched
along the spatial domain and completion is performed on the
stacked tubes. However, tube matching is a batch method and
is not applicable to streaming tensor completion since the
information in the temporal domain is not available. Further,
as Fig.1 depicts, tube matching ignores the change in motion
along the temporal dimension. In this work, we develop a

novel efficient strategy for patch matching. We perform patch
matching on dilated tensor data by propagating the observed
pixels to unobserved neighboring pixels. Then, a new efficient
coarse-scale patch matching strategy is proposed to efficiently
match the patches with missing data.

To accurately complete the missing entries of a streaming
tensor formed from tracked patches, we develop a new stream-
ing tensor completion algorithm using the tensor ring model.
This model exploits a more compact expression for high-order
tensors, and has shown superior performance in tensor comple-
tion, especially with highly incomplete data [40]. Compared
to CP-based streaming tensor completion methods [28], which
are only designed for 3-way tensors, the proposed streaming
tensor ring completion algorithm can work with higher-order
tensors required by the proposed framework. Compared with
TOUCAN [31] and STC [32], the proposed method utilizes the
more compact latent core tensors to track the tensor subspace.
We propose a fast streaming completion algorithm for the
tensor ring model using a least-squares and one-step scaled
steepest descent method, which can efficiently update the
latent core tensors and complete the streaming tensor with
high accuracy.

The main contributions of the paper are summarized as
follows:

1. We develop a novel patch tracking-based streaming tensor
ring completion framework for visual data recovery. An effi-
cient coarse-scale patch matching strategy is proposed for
patch tracking with missing data. To the best of our knowledge,
this is the first patch-based framework that incorporates a
streaming tensor completion method.

2. We propose a new streaming tensor completion algo-
rithm using the tensor ring model. The algorithm utilizes
least-squares and one-step scaled steepest descent, and can
efficiently update the latent core tensors and complete the
tracked patch tensor.

3. We conduct extensive experiments that demonstrate the
superior performance of the proposed method over state-of-
the-art batch and streaming tensor completion algorithms.

The paper is organized as follows. In Section II, we briefly
introduce our notation and provide some preliminary back-
ground on the tensor ring and its properties. In Section III,
we propose the new patch-based streaming tensor ring com-
pletion framework. In Section IV, we develop the streaming
tensor ring completion algorithm. The complexity analysis
is given in Section V. Experimental results are presented
in Section VI to demonstrate the completion performance.
Finally, the conclusion is given in Section VII.

II. PRELIMINARIES

Uppercase script letters are used to denote tensors
(e.g., X), boldface uppercase letters to denote matrices
(e.g., X) and boldface lowercase letters to denote vectors
(e.g., x). An N-order tensor is defined as X ∈ RI1×...×IN ,
where Ii , i ∈ [N] := {1, . . . , N} is the dimension of the i -th
way of the tensor, and Xi1 ...iN denotes the (i1, i2, . . . , iN)-th
entry of tensor X . The vector x ∈ R

∏N
k=1 Ik denotes the vec-

torization of tensor X . For a 3-way order tensor (i.e., N = 3),

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8314 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

Fig. 2. Illustration of the proposed patch tracking-based streaming tensor ring completion framework. Given a newly incoming frame Y t , (a) an efficient patch
tracking method is firstly applied to track the patches from frame Y t−1. Specifically, for tracked patches of Y t−1 (shown as green and red solid rectangles),
Ko most similar patches in Y t are matched using the proposed ECPM method (the first similar patch with smallest distance is shown as a solid rectangle,
while the remaining Ko − 1 patches are shown as dotted rectangles). The blue solid rectangle designates a new patch for an uncovered region in Y t , and
the dotted blue rectangles around it denote its Kb − 1 most similar patches. (b) Patch tensors are created by stacking Ko (or Kb) nearest similar green (or
blue) patches. (c) Core tensors pool is updated using the corresponding patch tensors, and subsequently patch tensors are completed using the updated core
tensors pool. Here, we assume that the red tracked patch in Y t is mistracked or has large overlap with other tracked patches, and should be removed from
the tracking process. (d) Finally, the recovered new frame is obtained by aggregating the completed patch tensors.

the notation X (:, :, i),X (:, i, :),X (i, :, :) denotes the frontal,
lateral, horizontal slices of X , respectively. The Frobenius
norm of a tensor X is defined as ‖X‖F =

√∑
i1 ...iN

|Xi1...iN |2.
The product A ◦ B denotes the Hadamard (element-wise)
product of two tensors A and B. Next, we introduce some
definitions and theorems for tensor ring used throughout the
paper.

Definition 1 (TR Decomposition [41]): In TR decomposi-
tion, a high-order tensor X ∈ RI1×···×IN can be represented
using a sequence of circularly contracted 3-order core tensors
Zk ∈ Rrk×Ik ×rk+1 , k = 1, . . . , N, rN+1 = r1. Specifically, the
element-wise relation of tensor X and its TR core tensors
{Zk}N

k=1 is defined as

Xi1 ...iN = Tr

(
N∏

k=1

Zk(:, ik, :)
)

, (1)

where Tr(·) is the matrix trace operator. The relation of tensor
X and its TR decomposition core tensors {Zk}N

k=1 is written
as X = & (Z1,Z2, . . . ,ZN), where & is the function defined
through (1), and [r1, . . . , rN] is called TR rank.

Definition 2 (Mode-k Unfolding [40], [42]): The mode-k
unfolding matrix of tensor X is denoted by X[k] of size
nk × ∏

j '=k n j with its elements defined by

X[k]
(
ik, ik+1, . . . , iN i1, . . . , ik−1

)
= X (i1, i2, . . . , iN) .

Another classical mode-k unfolding matrix of X is denoted by
X(k) of size nk × ∏

j '=k n j and defined by

X(k)
(
ik, i1, . . . , ik−1ik+1, . . . , iN

)
= X (i1, i2, . . . , iN) .

Theorem 1 [41]: Given a TR decomposition X =
& (Z1, . . . ,ZN), its mode-k unfolding matrix X[k] can be
written as

X[k] = Zk(2)

(
Z'=k

[2]
)T

where Z'=k ∈ Rrk+1×∏N
j=1, j '=k I j ×rk is a subchain obtained by

merging all cores except Zk , whose slice matrices are defined
by

Z'=k(ik+1 · · · iN i1 . . . ik−1
)
=

N∏

j=k+1

Z j
(
:, i j , :

) k−1∏

j=1

Z j
(
:, i j , :

)
.

III. PATCH TRACKING-BASED STREAMING TENSOR

RING COMPLETION FRAMEWORK

In this section, we propose our patch tracking-based stream-
ing tensor ring completion (PTSTRC) framework for stream-
ing visual data recovery, which is illustrated in Fig. 2. First,
we start with a high-level description of the proposed frame-
work, followed by a detailed description of the different
procedures used.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8315

Assume we have a partially observed video sequence
{Y i }T

i=1, Y i ∈ RI1×I2×n , with corresponding observed pixel
index sets {!i }T

i=1. The number of frames T can be sufficiently
large such that the video is a streaming video. For gray-scale
and color frames, the value of n is 1 and 3, respectively. The
video frames are given sequentially, i.e., the video frame Y t

arrives at time t . To match the patches at the corners and
boundaries of the frames, the arriving frame Y t is first padded
by mirroring b pixels at all boundaries and corners, resulting in
a padded frame Ỹ t with frame size (I1 + 2b) × (I2 + 2b) × n
and corresponding observation index sets !̃t .

For the initial video frame Y1, after padding it to Ỹ1,
we divide it into overlapping patches of size m × m × n with
a number of overlap pixels o, and set each of these patches
as a ‘tracked patch’ of Ỹ1. For each tracked patch, we find
the Kb − 1 most similar patches within a search window of
size l × l centered at the location of the tracked patch. Then,
a patch tensor of size m × m × n × Kb is created by stacking
the tracked patch and its Kb − 1 similar patches.

At time t > 1, for each tracked patch of Ỹ t−1, a patch
matching method is used to find the Ko most similar patches
in Ỹ t within a search window of size l × l. Meanwhile, the
first similar patch (i.e., the one with the smallest distance) is
designated as a tracked patch of Ỹ t and will be utilized for
patch tracking of the next incoming frame. Then, a tracked
patch tensor of size m ×m ×n × Ko is formed by stacking the
Ko most similar patches. Further, patch refinement is invoked
to prune the mistracked or highly overlapping tracked patches,
as well as create new patches for uncovered regions.

After obtaining all the patch tensors required for completion
of Ỹ t , the relevant core tensors for each patch tensor are
updated (or created) using a streaming (or batch) tensor ring
completion algorithm. Then, the core tensors are stored in a
tensor pool for completion of the next frame. Finally, the frame
at time t is recovered as P t ◦ Y t + (1 − P t) ◦ Ŷ t , where the
observation mask P t is defined by

P t
i1,i2,i3 =

{
1, if (i1, i2, i3) ∈ !t

0, otherwise
(2)

and Ŷ t is obtained by aggregating all the recovered patches
belonging to Ỹ t and removing padded border pixels.

As shown in Fig. 2, the framework contains two main pro-
cedures, namely, patch tracking and patch tensor completion.
Next, we discuss the different components underlying our
patch tracking procedure. streaming tensor completion will be
discussed in the next section.

A. Image Dilation for Patch Tracking With Missing Data

Compared with traditional patch tracking methods [33]–[36]
where the data is fully observed, patch tracking with a portion
of observed data is more challenging, especially when the
number of observed pixels is relatively small. For example, for
a patch of size 20×20 and observation ratio 20%, the number
of observed pixels common between two patches will be about
16 in average. In this case, the matching accuracy may degrade
due to lack of enough common information. In this paper,
we address this problem using a simple but efficient image

dilation method. Specifically, the (i, j)-th entry of the dilated
frame Ȳ for the n-th channel is given by

Ȳi, j,n =






max
(p,q,n)∈Ni, j,n ,(p,q,n)∈!̃

Ỹp,q,n, Ni, j,n ∩ !̃ '= ∅

NaN, otherwise
(3)

where Ni, j,n is the index set formed by 9 neighbors of index
(i, j) in the n-th channel (including itself), and NaN denotes
that the corresponding entry is missing.

There are two advantages in using dilation. First, the
observed pixels are propagated to the unobserved neighboring
pixels, so the observation percentage is greatly improved.
Second, the maximization operation among adjacent observed
pixels brings larger positional margin to matching, which will
be useful for the next coarse-scale matching step. We remark
that using a dilated image for matching may yield patches that
are within a small offset from the true matching positions.
However, since it is a small offset, it does not affect the
completion performance significantly, which will be verified
in the experiments.

B. Efficient Coarse-Scale Patch Matching

Another bottleneck for the patch-based method is the com-
putational efficiency. Searching similar patches could take a
long time if the size of the search window is large. On the other
hand, a small search window size may decrease the matching
performance. To improve the efficiency of patch matching, one
could make use of a hierarchical or multi-resolution search
method [43], [44], which searches for similar patches on
different coarse to fine scales. However, due to the existence of
missing entries, the traditional interpolation-based downscale
method [45] cannot be applied to the partially observed frames,
which precludes direct use of the hierarchical search method
for our matching task.

To improve the matching efficiency, in this work we propose
a new efficient coarse-scale patch matching (ECPM) method,
illustrated in the bottom-left of Fig. 2. At time t , given a
sampling interval parameter s, both dilated new frame Ȳ t and
previous frame Ȳ t−1 are down-sampled by selecting pixels
with interval s. Then, the corresponding s2 down-sampled
frames {Ȳ t

d }s2

d=1 and {Ȳ t−1
d }s2

d=1 of size (I1+2b)/s×(I2+2b)/s
are obtained (here we assume that b is such that I1 + 2b and
I2 +2b are divisible by s). Patch matching is performed on the
down-sampled frames and finally the locations of the matched
patches in Ȳ t are obtained. The detailed steps of the proposed
ECPM method are described next. To simplify the expressions,
we use the coordinate of the top left pixel of the patch to
represent the patch location.

1) Build Pixel-Wise Coordinate Mapping Between Original
Frame and Down-Sampled Frames: The mapping function f :
R2 → R3 is defined as f : (x, y) *→ (x ′, y ′, c) where

x ′ =
⌊

x − 1
s

⌋
+ 1, y ′ =

⌊
y − 1

s

⌋
+ 1,

c = mod(x − 1, s) + mod(y − 1, s) × s + 1 (4)

with c ∈ [1, s2], such that the pixel location (x, y) in the
original image is mapped to location (x ′, y ′) in the c-th down-
sampled frame.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8316 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

2) Perform Patch Matching on Down-Sampled Frames:
Given the tracked patch located at (x0, y0) in the previous
frame Ȳ t−1, we obtain its location (x ′

0, y ′
0) in the c0-th down-

sampled frame Ȳ t−1
c0

using (4). Then, the patch with size
,m/s- × ,m/s- × n at (x ′

0, y ′
0) in Ȳ t−1

c0
is utilized as the

down-sampled tracked patch, and patch matching is performed
across all the s2 down-sampled frames {Ȳ t

d }s2

d=1 of Ȳ t within
a search region of size ,l/s- × ,l/s- centered at (x ′

0, y ′
0). In

particular, given two patches S1 and S2 with corresponding
observation masks P1 and P2, the distance (dissimilarity) is
measured as

d(S1,S2) = ‖P1 ◦ P2 ◦ (S1 − S2)‖2
F

‖P1 ◦ P2‖0
(5)

where the "0-norm ‖ · ‖0 counts the total number of non-zero
elements. A larger distance d indicates smaller similarity. The
Ko most similar patches of the tracked patch in {Ȳ t

d }s2

d=1 are
obtained with locations {(x ′

i , y ′
i , ci)}Ko

i=1.
3) Map the Matched Patches to Original Location: The

locations of the Ko most similar patches in the new frame Ȳ t

(and Ỹ t) can be computed using the following inverse mapping
f −1 : (x ′, y ′, c) *→ (x, y) where

x = (x ′ − 1)s + 1 + mod(c − 1, s)

y = (y ′ − 1)s + 1 +
⌊

c − 1
s

⌋
,

(6)

Note that patch matching on each down-sampled frame
is independent, so parallelization could be used to further
improve efficiency. Using the above ECPM method, for each
tracked patch in Ỹ t−1, the Ko most similar patches in the
new frame Ỹ t are obtained and stacked to construct a patch
tensor of size m × m × n × Ko. Specifically, patch matching
can be applied within the frame Ỹ t−1 itself by setting the
new frame as Ỹ t−1. We remark that the coarse-scale matching
may also introduce a small offset between the tracked position
and the true matching positions. However, as verified in the
experiments, such a method achieves significant speedup with
only slight degradation in recovery performance.

C. Patch Refinement

During the patch tracking process, there are three types of
patches to be processed at a given time t , marked in green,
red and blue in Fig. 2. In particular, correctly tracked patches
(solid green rectangle in Ỹ t) will be used for completion of
Ỹ t and tracking of the next frame Ỹ t+1. Some mistracked or
highly overlapping patches (solid red rectangle in Ỹ t) should
be removed from the tracking procedure. Further, new patches
(solid blue rectangle in Ỹ t) should be created to cover regions
that are not covered by the tracked patches. The specific
operations for the latter two types of patches are detailed next.

1) Pruning Mistracked or Highly Overlapping Patches:
Long video data may contain scene variations or abrupt
changes between adjacent frames. In this case, patch tracking
may result in tracking incorrect patches with low similarity.
Therefore, such mistracked patches should be removed from
the tracking procedure. To this end, we set a threshold τ f

to decide if the patch tracking is ‘success’ or ‘failure’. For
a tracked patch of Ỹ t , if its distance to the corresponding
tracked patch in Ỹ t−1 is larger than τ f , this patch tracking
process is deemed a failure and the tracked patch is removed.
The corresponding core tensors in the core tensors pool are
also removed.

It can be also observed that tracked patches may have
considerable overlap after several tracking iterations. Contin-
uing to track all such patches will result in no or marginal
improvement in the completion performance at the expense of
extra computational and storage cost. Thus, we stop tracking of
these patches by detecting their degree of overlap. Specifically,
the overlap degree of a tracked patch is obtained by firstly
counting the number of times each pixel is shared with other
tracked patches, and then picking the minimum number. If the
overlap degree is larger than a predefined threshold τc, the
corresponding tracked patch is removed.

2) Generating New Patches for Uncovered Regions: Some
regions in the new frame Ỹ t may not be covered by tracked
patches from Ỹ t−1 due to the emergence of new scenes or the
removal of mistracked patches. We create new overlapping
patches of size m × m × n with a number of overlap pixels
o to cover these regions. These new patches are added to the
tracked patches of Ỹ t . Then, for each new patch, the ECPM
method is applied to find the Kb−1 most similar patches in Ỹ t

around it within a search window of size l×l, and a new patch
tensor of size m × m × n × Kb is created by stacking the new
patch and its Kb − 1 similar patches. Finally, a batch tensor
completion algorithm is applied to the new patch tensors and
the obtained core tensors are added to the core tensors pool.

The entire process of the proposed PTSTRC method at time
t is summarized in Algorithm 1. It should also be noted that,
for tracked patch set IS , only the patch location information
need to be stored. Further, one can recover Y1 at t = 1 by
setting IS = IZ = ∅, i.e., treating Y1 as a frame with an
entirely uncovered region.

According to Algorithm 1, to complete the new frame
Y t , in practice one should store the previous frame Y t−1

with the corresponding observed pixel index set !t−1, the
coordinates of tracked patches of Ỹ t−1, and the core tensors
corresponding to the tracked patches. Taking advantage of the
TR decomposition model, the past information is fused into
the core tensors so the algorithm can run in a streaming fashion
without storage of frames before t − 1.

Remark 1: Algorithm 1 can be simplified to a patch match-
ing (PM)-based image completion algorithm, where only one
incoming frame (image) is given and needs to be completed.
In this case, step 2 to step 9 are removed (no tracking
needed). For step 13, the completion is no longer limited
to tensor-decomposition-based algorithms since there is no
need to construct or update core tensors. For example, Mt

i
can be completed using nuclear-norm-based algorithms such
as tensor ring nuclear norm (TRNN) [42] and tensor train
nuclear norm (TTNN) [10]. However, nuclear-norm-based
algorithms are not applicable to streaming tensor completion
with sequential incoming frames because they cannot construct
and update core tensors.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8317

Algorithm 1 Patch Tracking-Based streaming Tensor Ring
Completion (PTSTRC)
Input: New incoming frame Y t with corresponding observed

pixel set !t , previous frame Y t−1 with corresponding
!t−1, previous tracked patch set IS with corresponding
core tensors pool (set) IZ , patch matching parameters b,
m, o, s, l, Kb and Ko, thresholds τ f and τc.

1: Pad the frames and get Ỹ t−1 and Ỹ t .
2: for each patch Si in IS do
3: Search Ko nearest patches within search range l × l in

Ỹ t .
4: if Smallest distance > τ f or overlap degree > τc then
5: Remove Si from IS , remove corresponding core ten-

sors from IZ .
6: else
7: Replace Si in IS with its first similar patch in Ỹ t .

Construct patch tensor Mt
i using the obtained Ko most

similar patches. Update core tensors {Zi,k}N
k=1 related

to Si using Mt
i .

8: end if
9: end for

10: Create new tracked patches set I ′
S to cover the uncovered

region in Ỹt according to IS .
11: for each patch Si in I ′

S do
12: Search Kb nearest patches within search range l×l in Ỹt .

Add Si to IS . Construct patch tensor Mt
i using obtained

Kb nearest patches.
13: Compute core tensors {Zi,k}N

k=1 related to Si using Mt
i

and add them to IZ .
14: end for
15: Obtain Ŷ t by aggregating patches according to IZ and

remove padded border pixels.
16: Compute recovered frame as P t ◦ Y t + (1 − P t) ◦ Ŷ t .
Output: Recovered frame of Y t , new tracked patch set IS

with corresponding core tensors pool (set) IZ .

IV. STREAMING TENSOR RING COMPLETION ALGORITHM

In this section, we develop an efficient streaming tensor
completion algorithm for patch tensor completion. We adopt
a tensor ring model to formulate the streaming tensor com-
pletion, which is verified to achieve better completion perfor-
mance compared with the CP and Tucker model. To date, there
is no streaming version for tensor ring completion. Further,
we develop a new batch tensor ring completion algorithm to
complete the new patch tensors and create the corresponding
core tensors.

A. Tensor Ring Completion

First, let us revisit traditional tensor ring completion. Given
a tensor M ∈ RI1×I2×...×IN and its observed index set !,
the recovered full tensor X can be obtained by solving the
following minimization problem

min
X

rankt (X), s.t. P ◦ X = P ◦ M (7)

where rankt (X) is a tensor rank of X .

According to Definition 1, the cost function for the tensor
ring completion algorithm can be formulated as

min
Z1,...,ZN

‖P ◦ (M − &(Z1, . . . ,ZN))‖2
F . (8)

The above problem can be solved using alternating least
squares (ALS) [46]. Specifically, at each iteration, the core
tensor Zk is updated by fixing all core tensors except Zk , and
based on Theorem 1, the following problem is solved

min
Zk

∥∥∥∥P[k] ◦ (M[k] − Zk(2)

(
Z'=k

[2]
)T

)

∥∥∥∥
2

F
. (9)

The final estimated tensor X can be calculated by X =
&(Z1, . . . ,ZN).

B. Streaming Tensor Ring Completion

Specific to the proposed patch-based streaming tensor ring
completion framework, for a tracked patch in Ỹ t−1, Ko nearest
patches are found in Ỹ t and formed as a patch tensor Mt ∈
RI1×...×IN−1×Ko with corresponding mask tensor P t . Further,
it can be observed from (8) that only the last core tensor ZN
incorporates the temporal information of M (i.e., related to
the temporal dimension). Thus, denoting by V i ∈ RrN ×Ko×r1

the subtensor of ZN related to Mi , the tensor ring completion
problem at time t using (8) can be rewritten as

min
Z t

1,...,V t

t∑

i=1

∥∥∥P i ◦
(
Mi −&(Z t

1,. . .,Z
t
N−1,V

i)
)∥∥∥

2

F

+ γ
t∑

i=1

‖V i‖2
F (10)

where we also included a regularization term to constrain the
norm of each subtensor V i . γ is the regularization parameter.

For batch tensor ring completion (10) (or (8)), all tensors
{Mi }t

i=1 and {P i }t
i=1 must be accessible simultaneously for

the completion process. However, as described in Algorithm 1,
only the latest tensor Mt with the corresponding P t and
the previous core tensors {Z t−1

k }N
k=1 are available at time t ,

which precludes the use of the current batch-based tensor
ring completion methods. In this work, we develop a new
streaming tensor ring completion algorithm to solve (10). The
proposed method uses least-squares to get an estimate of V t

using {Z t−1
k }N−1

k=1 , followed by an approximation of {Z t
k}N−1

k=1
using a scaled steepest descent (SSD) method.

1) Computation of V t : Suppose that at time t we have the
tensor Mt and the previous estimated core tensors {Z t−1

k }N−1
k=1 .

The optimization problem in terms of V t in (10) becomes

V t = arg min
V

∥∥∥Pt
[N]◦(Mt

[N]−V(2)(Ut−1)T)
∥∥∥

2

F
+ γ ‖V‖2

F

(11)

where Ut−1 = (Zt−1)
'=N
[2] . Defining vk ∈ RrN r1 as the

vectorized form of the k-th lateral slice of V t , the solution
of (11) can be obtained by solving the following Ko sub-
problems:

vk =arg min
v∈RrN r1

∥∥∥pk ◦(mk −Ut−1v)
∥∥∥

2

2
+ γ ‖v‖2

2, k = 1, . . . , Ko

(12)

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8318 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

where pk and mk are the k-th rows of Pt
[N] and Mt

[N],
respectively. Further, (12) can be simplified as

vk = arg min
v∈RrN r1

∥∥∥[mk]Ik − [Ut−1]Ik v
∥∥∥

2

2
+ γ ‖v‖2

F (13)

where Ik denotes the index set of the non-zero entries of pk ,
and [mk]Ik ∈ R|Ik | denotes the vector of elements in mk
indexed by set Ik of cardinality |Ik |. The matrix [Ut−1]Ik ∈
R|Ik |×rN r1 is formed from the rows of Ut−1 with row index Ik .
Eq. (13) has a closed-form solution

vk =
(
[Ut−1]T

Ik
[Ut−1]Ik + γ I

)−1
[Ut−1]T

Ik
[mk]Ik . (14)

2) Update Z t
1, . . . ,Z t

N−1: Traditional streaming ten-
sor completion methods usually apply stochastic gradient
descent (SGD) or recursive least squares (RLS) to update the
relative tensors. However, as shown in [29], directly applying
SGD suffers from a low convergence rate, while the efficiency
of RLS is limited due to its high computational complex-
ity. In this work, we apply scaled steepest descent (SSD)
method [47] to solve Z t

1, . . . ,Z
t
N−1.

By only considering the data available at time t , we have
Z t

N = V t and the optimization problem in (10) at time t
reduces to

min
Z t

1,...,Z t
N−1

L :=
∥∥P t ◦

(
Mt −&(Z t

1, . . . ,Z
t
N−1,Z

t
N)

)∥∥2
F

(15)

Traditional tensor ring completion algorithms used for solving
(8) such as alternating least-squares (ALS) can be applied to
solve (15). However, alternating minimization may incur a
high computational cost, which is not computationally efficient
for streaming processing. In this work, based on the fact that
the tensor subspace within similar patches changes slowly (as
Fig. 1 shows), we put forth a one-step SSD method to obtain
the update of the core tensors.

First, Z t
k, k = 1, . . . , N − 1 are initialized with the corre-

sponding previous estimates Z t−1
k . Then, the scaled gradient

descent direction g(Zt
k(2)) in terms of Zt

k(2) is computed by
first obtaining the gradient

∇L(Zt
k(2)) = −

(
Pt

[k]◦(Mt
[k] − Zt

k(2)U
T
k)

)
Uk (16)

where Uk = (Zt) '=k
[2] , and then adding a scaled term UT

k Uk
such that

g(Zt
k(2)) = ∇L(Zt

k(2))(U
T
k Uk + εI)−1 . (17)

where ε is a sufficient small positive number (i.e., 10−10).
Therefore, Zt

k(2) can be updated as

Zt
k(2) = Zt

k(2) − µk g(Zt
k(2)) , (18)

where the step size µk is set by using exact line-search as

µk = arg min
µ

∥∥∥Pt
[k]◦

(
Mt

[k]−(Zt
k(2)−µg(Zt

k(2)))U
T
k

)∥∥∥
2

F

= −
〈∇L(Zt

k(2)), g(Zt
k(2))〉∥∥∥Pt

[k] ◦
(

g(Zt
k(2))U

T
k

)∥∥∥
2

F

. (19)

Compared with SGD, the SSD method increases the speed of
convergence by using the scaled term UT

k Uk and applying an
adaptive step size strategy. The above streaming tensor ring
completion (STRC) algorithm is summarized in Algorithm 2.

Algorithm 2 Streaming Tensor Ring Completion (STRC)
Input: Partially observed tensor Mt with corresponding

mask tensor P t and previous estimation Z t−1
k , k =

1, . . . , N − 1. Parameter γ .
1: Compute V t using (14) and set Z t

N = V t .
2: for k = 1, . . . , N − 1 do
3: Update Z t

k using (18).
4: end for
Output: Updated core tensors Z t

k, k = 1, . . . , N .

C. New Patch Tensor Rank Estimation and Completion

For a new patch tensor Mt ∈ RI1×...×IN−1×Kb with corre-
sponding mask tensor P t , there are no previous estimates of
core tensors Z t−1

k , k = 1, . . . , N . Therefore, one should apply
a batch completion algorithm for Mt and create core tensors
Z t

k . Inspired by the SSD method for STRC, we develop a new
batch tensor ring completion algorithm using scaled steepest
descent method (SSD). The method alternatively updates the
core tensors Z t

k, k = 1, . . . , N using (18).
Before completion and before obtaining the core tensors of a

new patch tensor, we should estimate the TR rank of the tensor.
Following [25]–[27], [40], we set all the elements of the TR
rank equal to the same value, i.e. r1 = · · · = rN = r . Then,
defining p = ‖P t‖0/(

∏N−1
i=1 Ii Kb) as the observation ratio of

the tensor Mt , according to [27, Theorem 1], we consider
setting r = C

√
p, where C is a free parameter. In practice,

if the patch is texture-less, the rank should be set to a relatively
small value for better completion performance. Therefore,
we propose the following adaptive strategy to estimate r :

r = min(,C1
√

pσ 2
M!

-, 2C2
√

p3 + ro) (20)

where σ 2
M!

denotes the variance of the observed entries
of Mt , p the observation ratio of Mt . C1, C2 and ro are
parameters to be set.

We term the method proposed above TRSSD, and the
pseudo code is summarized in Algorithm 3. The method
proposed can outperform least-square-based method for patch
tensor completion, which is verified in the experimental
results.

V. COMPLEXITY ANALYSIS

Without loss of generality, we assume that m and l are divis-
ible by s, and the observation ratio for all patch tensors is the
same value p. We first analyze the complexity of the proposed
ECPM method. In particular, according to Section IV.B.2, the
complexity of patch matching for each down-sampled patch
is O(m2nl2/s4). Therefore, the complexity of patch matching
for a patch on all s2 down-sampled frames is O(m2nl2/s2).
Suppose the total number of tracked patches for recovering
the frame is T , then the overall complexity for ECPM on

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8319

Algorithm 3 Tensor Ring Completion With Rank Estimation
and Scaled Steepest Descent (TRSSD)
Input: Partially observed tensor M with corresponding mask
P , maximum iteration number L and error tolerance ε.

1: Set r1 = · · · = rN = r and estimate r using (20).
2: Initialize Zk, k = 1, . . . , N . Set τ = 1.
3: repeat
4: for k = 1, . . . , N do
5: Update Zτ

k using (18).
6: τ = τ + 1.
7: end for
8: Compute X τ = &(Zτ

1 ,Zτ
2 , . . . ,Zτ

N).
9: until τ > L or ‖X τ − X τ−1‖F/‖X τ−1‖F < ε
Output: Core tensors Zk, k = 1, . . . , N .

all tracked patches is O(m2nl2/s2T). Compared with the
traditional patch matching method (i.e., s = 1), the proposed
ECPM method can reduce the computational complexity by a
factor of s2. Moreover, since both patch matching on T patches
and coarse-scale matching for each patch on s2 down-sampled
frames are independent, the complexity can be further reduced
by parallel computation.

Next we analyze the computational complexity of patch
tensor completion. The time complexity of STRC and for a
tracked patch tensor of size m ×m ×n× Ko is O(pm2nKor4),
while TRSSD for a new patch tensor of size m × m × n × Kb
requires time complexity of O(pm2nKbr4L). Define T1 and
T2 as the number of tracked patch tensors and new patch
tensors, respectively. Then, the overall complexity for ten-
sor completion step is O(pm2nKor4T1 + pm2nKbr4LT2).
Moreover, since tensor completion for each patch tensor is
independent, parallel computation can also be applied to
further improve the computational efficiency.

VI. EXPERIMENTAL RESULTS

In this section, we conduct experiments to verify the perfor-
mance of the proposed methods. We compare to both existing
batch and streaming tensor completion algorithms. The stream-
ing methods include the CP-based algorithm OLSTEC [29]
and the t-SVD-based algorithm TOUCAN [31]. For batch
methods, we compare to traditional algorithms including
the matrix factorization-based algorithm TMAC [20], tensor
ring-based algorithms TRNN [42] and PTRC [40], and t-SVD-
based algorithms TNN [21] and TCTF [22]. We also compare
two non-local (NL) patch-based batch methods including
NLTNN [37] and tensor train-based NLTTNN [39].

The completion performance is evaluated by the average
peak signal-to-noise ratio (PSNR) over 20 Monte Carlo runs
with different missing entries. For all patch-based algorithms
PTSTRC, NLTNN and NLTTNN, the patch size m and the
number of overlap pixels o are set to 36 and 12, respectively.
The number of nearest neighbors K for NLTNN and NLTTNN
is set to 20, while Kb and Ko for PTSTRC are set to 30 and 10,
respectively. The search size l for PTSTRC and NLTNN are
both set to 41. The interval sampling parameter s, padding
pixels b, threshold τ f and τc for PTSTRC are set to 3,

Fig. 3. Left: curves of average PSNR with different interval s. Right: average
time cost of patch tracking per frame.

20, 0.02 and 3 respectively. For the proposed STRC and
TRSSD, the parameters γ , L, C1, C2, ro and ε are set to
10−5, 10, 1000, 6, 4 and 10−2, respectively. For the other
algorithms, the parameters are adjusted so as to achieve their
best performance. Further, the parameters are fixed in each
simulation. All experiments were performed using MATLAB
R2022a on a desktop PC with an 8-core 2.5-GHz processor
i9-11900 and 32GB of RAM. Unless stated otherwise, parallel
computation is applied to all patch-based methods for both
patch tracking and tensor completion by using the MATLAB
parallel computing toolbox on 8 CPU cores.

A. Ablation Experiment

To verify the effectiveness of the proposed patch tracking
and tensor completion methods, in this section we carry out
ablation experiments with different algorithm settings. The
experiment is carried out on a ‘water sport’ video from the
Moments in Time Dataset1 [48]. Some representative frames
are shown in the first row of Fig. 7. The first 50 frames of the
video are selected, each frame with size 256×342×3, resulting
in a video tensor of size 256 × 342 × 3 × 50. The frames are
assumed to arrive sequentially in a streaming fashion. The
observation ratio is set to p = 0.2, i.e., the observed pixels
are selected uniformly at random with probability 0.2. For
fair comparison, parallel computation is not applied to patch
tracking in this experiment.

First, we verify the efficiency of the proposed ECPM
method. Fig. 3 depicts the PSNR of the recovered video
for different values of interval parameter s, along with the
computation time of patch matching for each frame. The
dilation is utilized as default. Note that s = 1 designates patch
matching on the full-scale. As can be seen, using the proposed
ECPM method (s > 1) achieves significant speedup compared
with full-scale matching. Further, as s increases, the matching
accuracy decreases, underscoring a tradeoff between matching
accuracy and efficiency.

Second, we evaluate the performance with different
pre-processing methods for patch matching with missing data,
i.e., dilation, interpolation and completion. Fig. 4 depicts the
PSNR and patch matching time cost under different pre-
processing methods. The prefix ‘+’ and ‘−’ mean ‘with’ and
‘without’, respectively. It should be noted that the result of

1http://moments.csail.mit.edu

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8320 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

Fig. 4. Left: curves of average PSNR with different pre-processing methods
(s is set to 3 as default); Right: average time cost of patch tracking per frame.

Fig. 5. Left: curves of average PSNR with different completion methods;
Right: average time cost of tensor completion per frame.

s = 1 without dilation corresponds to the traditional patch
tracking method [33]–[36]. One can observe that all methods
achieve comparable good completion performance except for
the one with s = 3 without dilation, while the proposed
dilation method with s = 3 incurs a smaller computational
cost for patch matching compared with interpolation and
completion. Further, compared with Fig. 3, dilation greatly
improves the patch matching accuracy, while increasing the
computational cost. On the other hand, the speedup achieved
due to coarse-scale patch matching counteracts the extra
computational cost for matching using dilation. Therefore, our
proposed patch tracking method can maintain both efficiency
and accuracy.

Third, we test performance using different tensor ring
completion methods. For comparison, we developed two
extra streaming tensor ring completion methods TR-SGD and
TR-LS. The TR-SGD method utilizes the gradient in (16)
with exact line-search for updating {Zi }N−1

i=1 . The least-squares
method TR-LS applies one-step LS to update {Zi }N−1

i=1 .
To compare with the CP-based algorithm, we also develop
two methods CP-SSD and CP-LS by introducing SSD and
LS to the CP model, respectively. The PSNR and completion
time cost with different completion methods are shown in
Fig. 5. As shown, the proposed SSD method using the tensor
ring model achieves the best completion performance, with
computational cost smaller than that of TR-LS.

Finally, we verify the effectiveness of pruning mistracked
or highly overlapping patches. The test video is constructed
by concatenating two videos (D1 and S3 in Fig. 7), thus
there exists a sudden scene change at the 51st frame. Similar
to the previous experiments, the observed pixels are selected

Fig. 6. Left: curves of average PSNR with different thresholds τc and τ f ;
Right: total number of patches for tensor completion per frame. Dotted blue
line: results of completion using τc = 3, τ f = 0.02 started from 51st frame.

uniformly at random with probability 0.2. The PSNR and the
total number of patches (sum of tracked patches and new
patches) for completion are shown in Fig. 6 for different
parameter settings. The τc = ∞ denotes the approach without
pruning overlapping patches, while τ f = ∞ is without pruning
mistracked patches. One can observe that pruning mistracked
and highly overlapping patches significantly improves the
completion performance when the scene changes. Specifi-
cally, pruning overlapping patches significantly suppresses the
growth of the number of patches, while pruning mistracked
patches greatly improves the completion performance and
reduces the number of patches when the scene changes. For
comparison, we also show the completion results on the second
video S3 alone (dotted blue line in Fig. 6), i.e., the completion
starts from the 51st frame. As shown, with the proposed
pruning strategies, the completion performance is not affected
when the scene changes.

B. Short Video Completion

In this part, we evaluate the completion performance using
50 short color videos from the Moments in Time Dataset [48].
The Moments in Time Dataset is a large-scale short video
dataset initially developed for recognizing and understanding
actions in videos. In our experiment, 50 videos from the
dataset are randomly selected for performance test. Specif-
ically, we randomly select 25 videos with dynamic camera
(i.e., the camera moves during the shoot) and 25 videos with
static camera (i.e., the camera does not move during the
shoot). The dynamic and static camera videos are marked
as D1-D25 and S1-S25, respectively. Representative frames
from selected videos are shown in Fig. 7. In general, dynamic
camera videos always contain large motion across the video
frames.

Considering the computational limit of the batch tensor
completion methods, for each video the first 50 frames are
selected such that the whole tensor is of size I1 × I2 ×3 ×50.
If the height is larger than 256, the video is scaled down
to a height of 256. Frames arrive sequentially for TOUCAN,
OLSTEC and PTSTRC, while for batch methods, the whole
video tensor with all 50 frames is given as the input tensor.
For PTRC and TRNN (which favor high order tensors for
better performance), we reshape the tensor to a 9/10/11-order
tensor according to the factorization of I1 and I2 [40]. For

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8321

Fig. 7. Representative frames of six videos. Frame number (from left to
right): 5, 15, 25, 35 and 45. Video indices (from top to bottom): D1, D5,
D18, S3, S18 and S30.

Fig. 8. Average PSNR for each video using different algorithms correspond-
ing to Table I under p = 0.2. Top: dynamic camera videos D1-D15; Bottom:
static camera videos S1-S15.

TNN and TCTF, which only afford 3-order tensor completion,
we reshape the tensor to a 3-order tensor of size I1 × I2 ×150.

First, we investigate the performance of all algorithms
on three missing data patterns commonly used in ten-
sor completion performance verification, namely, random
pixel/stripe/tube. In particular, in random pixel, the pixels
are observed uniformly at random with observation ratio
p×100%. For the random stripe missing pattern, the observed
columns and rows are randomly and uniformly selected with
probability p × 100%. For random tube, a time-invariant
random missing pattern with observation ratio p × 100% is
applied to each frame, i.e., the locations of the observed pixels
are the same for all 50 frames.

Table I shows the average PSNR of different algorithms
for dynamic and static camera videos. Each value of PSNR
is averaged over a group of five videos. More detailed PSNR
results for each video with p = 0.2 are shown in Fig. 8, and
the corresponding average running times are shown in Fig. 9.

Fig. 9. Average running time for each video corresponding to Fig.8 (p = 0.2).
Left: dynamic camera videos D1-D15; Right: static camera videos S1-S15.

For better visualization, examples of recovered frames using
different algorithms are shown in Fig. 10. It can be observed
that the proposed PTSTRC achieves the best performance for
dynamic cases and second best for static cases. The superior
performance of PTSTRC on dynamic videos confirms that
the completion performance can be improved by leveraging
temporal consistency within similar patches. Further, although
NLTTNN outperforms PTSTRC on S1-S10, its computational
cost is considerably larger than PTSTRC as shown in Fig. 9.
More importantly, NLTTNN is a batch method that needs to
access all 50 frames at one time, while our proposed PTSTRC
is a streaming method that can sequentially complete each
frame.

Second, we test the performance on two missing data pat-
terns that are more common in practical applications. The first
is the random block missing pattern, which could arise in video
recovery with packet loss [49]. In particular, for each frame,
a number N ∈ [50, 150] of blocks with height H ∈ [1, 10]
and width W ∈ [1, 100] are randomly generated and selected.
In each block, partial color channel or all color channels are
missing. The second is the watermark missing pattern which
is directly related to the application of watermark removal.
Specifically, in our experiment a fixed sentence is masked on
all frames. Examples of some observed frames are shown in
Fig. 11.

We also include two popular learning-based video inpainting
methods, Spatial-Temporal Transformer Network (STTN) [50]
and Video inpainting with Fuseformer (ViF) [51], for compari-
son. Table II shows the average PSNR for each video group for
all algorithms, and examples of recovered frames for partial
algorithms are shown in Fig. 11. TMAC, TCTF, TOUCAN
and OLSTEC are not shown due to limited space. It can be
observed that the proposed PTSTRC achieves the best overall
performance with better visualization on dynamic videos. TNN
or NLTTNN work better than PTSTRC on the random block
missing pattern under static videos (S16-S20). An example
of a recovered frame of S18 is shown in Fig. 11. It can be
observed that the smearing of PTSTRC on missing regions is
more obvious than TNN or NLTTNN.

C. Long Streaming Video Completion

In this section, we verify the completion performance
on a live basketball video downloaded from YouTube.2 We

2https://www.youtube.com/watch?v=I33o9UnUe1A&t=986s

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8322 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

TABLE I

AVERAGE PSNR ON SIX VIDEO GROUPS WITH DIFFERENT MISSING PATTERNS

Fig. 10. Examples of recovered 25th frames of six videos corresponding to Table I. Video indices with p settings (from top to bottom): D1 (p = 0.2), D6
(p = 0.1), D11 (p = 0.1), S2 (p = 0.1), S7 (p = 0.2), S12 (p = 0.3). For better view, frames may be cropped on both sides.

select 500 consecutive frames and resize each frame to size
360 × 640. The frames arrive sequentially in a streaming
manner. For each frame, the observed pixels are randomly
and uniformly selected with probability 20%. Since batch
completion methods cannot handle such a large tensor, we only
compare the performance to the streaming completion methods
OLSTEC and TOUCAN.

Fig. 12 depicts the PSNR of each recovered frame, along
with the sum of magnitude of the optical flow between
frames. Some sudden changes have been marked in the figure
including two camera switch events in which the whole scene
changes, and one flash overexposure where the frame is
almost entirely white. Some recovered frames using different

algorithms are also displayed in Fig. 13. As shown, the
proposed PTSTRC significantly outperforms OLSTEC and
TOUCAN.

D. Image (Single Frame) Completion

In this part, we verify the performance of the proposed
method on the task of image completion. As described in
Remark 1, image completion can be regarded as a special
case of streaming video completion where there is only one
incoming frame at t = 1. In this case, only the TRSSD algo-
rithm is utilized, and patch tensors are constructed using patch
matching (PM) within the image. To avoid ambiguity, we name

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8323

TABLE II

AVERAGE PSNR ON FOUR VIDEO GROUPS WITH
DIFFERENT MISSING PATTERNS

Fig. 11. Examples of recovered 25th frames of three videos corresponding
to Table II for partial algorithms. Video indices (from top to bottom): D19,
D25 and S18. Bottom-right window of each frame shows the enlarged view
of specific region (red rectangles in the groundtruth frames).

PTSTRC under this setting patch matching-based TRSSD
(PMTRSSD). According to Remark 1, we also develop two
new algorithms, namely, PMTTNN and PMTRNN, where
TRNN [42] and TTNN [10] are utilized for patch tensor com-
pletion, respectively. The algorithm settings for PMTRSSD,
PMTRNN and PMTTNN are the same as PTSTRC in the
previous experiment.

We use the Berkeley Segment Dataset [52] as our test data;
30 images are randomly selected from the dataset and reshaped
to a size of 320 × 480. For each image, p × 100% of the
pixels are randomly and uniformly selected as the observed
data. The image completion problem is then formulated as a
320 × 480 × 3 tensor completion task. For PTRC and TRNN,

Fig. 12. Top: curves of average PSNR for each frame using different algo-
rithms on basketball streaming video. Bottom: curves of average magnitude
of optical flow between frames of the original fully observed video.

Fig. 13. Example of recovered frames (middle part). From top to bottom:
frame 50, 200 and 450. Best viewed in ×2 sized color pdf file.

we reshape the tensor to an 9-order tensor of size 4 × 4 × 4 ×
5×4×4×5×6×3. In this experiment, the number of nearest
neighbors K for all patch-based method is set to 30.

First, we compare the completion performance of all algo-
rithms on all the 30 test images. Fig. 14 shows the average
PSNR for the test images with p = 0.2. As shown, our
proposed method achieves the best performance and PMTRNN
comes second. The results verify that the patch-based method
can improve performance upon methods that treat the entire
image as a tensor.

Second, we investigate the performance of the algorithms
with different observation ratio p. Fig. 15 shows the comple-
tion performance for each algorithm for different values of p
for the image ‘bamboo house’ (See Fig. 16). As can be seen,
patch-based tensor ring methods (PMTRSSD and PMTRNN)
achieve the overall best performance for all p compared with
other methods. Moreover, for the low observability regime
with p < 0.3, PMTRSSD outperforms PMTRNN in PSNR
with a significantly smaller computational cost. When the
number of observed pixels is relatively large (i.e., p > 0.3),
PMTRNN has better performance than PMTRSSD. An exam-
ple of recovered images under p = 0.05 is also provided in
Fig. 16. As shown, the completed images using the proposed
PMTRSSD and PMTRNN have better visual performance

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8324 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

Fig. 14. Comparison of the average PSNR for different algorithms on 30 selected test images with p = 0.2.

Fig. 15. Left: average PSNR with different observation ratio p. Right: average
time cost with different p.

Fig. 16. Example of recovered image in Fig. 15 with p = 0.05 using different
algorithms. Best viewed in ×2 sized color pdf file.

than other algorithms. It also shows that NLTNN suffers
from color inconsistencies in some pixels due to misguidance
from wrong interpolation. We should remark that although
PMTRNN outperforms PMTRSSD in some cases, as men-
tioned in Remark 1, PMTRNN cannot be adapted to a stream-
ing setting and its application is limited to image completion.

For streaming tensor completion where the frames arrive
sequentially, a batch method can be applied on a frame-by-
frame basis, i.e., each incoming frame Y t can be treated as
a single image and completed individually. We carry out an
experiment to investigate the performance when completion
is done frame-by-frame for the video data. In particular,
each 25th frame of the 50 short videos used in the previous
subsection is completed by image completion algorithms. The
missing patterns of these frames are the same as in the previous

Fig. 17. Solid bar: average PSNR for the 25th frame of videos using different
image completion algorithms. Dotted bar: the corresponding PSNR of the 25th

frame from previous video completion results. The dotted bar of PMTRSSD
denotes the PSNR of PTSTRC.

experiments (p = 0.2 for D1-D15 and S1-S15). Fig. 17
depicts the average PSNR for completion of the 10 groups
corresponding to previous video groups. The dotted bars
denote the corresponding average PSNR of the 25th frames
obtained from the previous video completion results. As can
be seen, most of the algorithms suffer from some performance
degradation with image completion (solid bars) compared to
the corresponding results using video completion (dotted bars)
where the adjacent frames were considered together. This
experiment verifies that it is beneficial to exploit the relation
between frames rather than treat each frame individually.

VII. CONCLUSION

In this paper, we proposed a new patch tracking-based
streaming tensor ring completion (PTSTRC) framework for
visual data recovery. The framework exploits the high correla-
tion between patches to improve the completion performance.
To improve the patch matching efficiency, an efficient coarse-
scale patch matching (ECPM) method is proposed. A new
streaming tensor ring completion (STRC) algorithm using
scaled steepest descent is developed, which can simultane-
ously achieve favorable completion performance and high
computational efficiency. Equipped with an efficient ECPM
method and a fast STRC algorithm, the proposed algorithm

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

HE AND ATIA: PATCH TRACKING-BASED STREAMING TENSOR RING COMPLETION FOR VISUAL DATA RECOVERY 8325

can obtain better performance than the state-of-the-art batch
and streaming tensor completion algorithms.

REFERENCES

[1] N. Cohen, O. Sharir, and A. Shashua, “On the expressive power of
deep learning: A tensor analysis,” in Proc. Conf. Learn. Theory, 2016,
pp. 698–728.

[2] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang,
E. E. Papalexakis, and C. Faloutsos, “Tensor decomposition for
signal processing and machine learning,” IEEE Trans. Signal Process.,
vol. 65, no. 13, pp. 3551–3582, Jan. 2017.

[3] K. Makantasis, A. D. Doulamis, N. D. Doulamis, and A. Nikitakis,
“Tensor-based classification models for hyperspectral data analysis,”
IEEE Trans. Geosci. Remote Sens., vol. 56, no. 12, pp. 6884–6898,
Dec. 2018.

[4] J. Kossaifi, Z. C. Lipton, A. Kolbeinsson, A. Khanna, T. Furlanello, and
A. Anandkumar, “Tensor regression networks,” J. Mach. Learn. Res.,
vol. 21, pp. 1–21, Jul. 2020.

[5] Y. Jia, H. Liu, J. Hou, S. Kwong, and Q. Zhang, “Multi-view spectral
clustering tailored tensor low-rank representation,” IEEE Trans. Circuits
Syst. Video Technol., vol. 31, no. 12, pp. 4784–4797, Dec. 2021.

[6] M. Rupp and S. Schwarz, “A tensor LMS algorithm,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 3347–3351.

[7] M. Bousse, O. Debals, and L. De Lathauwer, “Tensor-based large-scale
blind system identification using segmentation,” IEEE Trans. Signal
Process., vol. 65, no. 21, pp. 5770–5784, Nov. 2017.

[8] G. T. de Araujo, A. L. F. de Almeida, and R. Boyer, “Channel estimation
for intelligent reflecting surface assisted MIMO systems: A tensor
modeling approach,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3,
pp. 789–802, Apr. 2021.

[9] A. Sobral, S. Javed, S. K. Jung, T. Bouwmans, and E.-H. Zahzah,
“Online stochastic tensor decomposition for background subtraction in
multispectral video sequences,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshop (ICCVW), Dec. 2015, pp. 106–113.

[10] J. A. Bengua, H. N. Phien, H. D. Tuan, and M. N. Do, “Efficient tensor
completion for color image and video recovery: Low-rank tensor train,”
IEEE Trans. Image Process., vol. 26, no. 5, pp. 2466–2479, May 2017.

[11] T.-X. Jiang, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, and Y. Wang,
“A novel tensor-based video rain streaks removal approach via utilizing
discriminatively intrinsic priors,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4057–4066.

[12] W. Li, X. Zhu, and S. Gong, “Harmonious attention network for
person re-identification,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., Jun. 2018, pp. 2285–2294.

[13] Y. Liu, Z. Long, H. Huang, and C. Zhu, “Low CP rank and tucker rank
tensor completion for estimating missing components in image data,”
IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 4, pp. 944–954,
Apr. 2020.

[14] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27,
no. 2, 2011, Art. no. 025010.

[15] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 1, pp. 208–220, Jan. 2013.

[16] A. H. Kiers, “Towards a standardized notation and terminology in
multiway analysis,” J. Chemometrics, vol. 14, no. 3, pp. 105–122, 2000.

[17] P. Jain and S. Oh, “Provable tensor factorization with missing data,” in
Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1431–1439.

[18] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, Sep. 1966.

[19] H. Kasai and B. Mishra, “Low-rank tensor completion: A Riemannian
manifold preconditioning approach,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 1012–1021.

[20] Y. Xu, R. Hao, W. Yin, and Z. Su, “Parallel matrix factorization for
low-rank tensor completion,” Inverse Problems Imag., vol. 9, no. 2,
pp. 601–624, 2015.

[21] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE
Trans. Signal Process., vol. 65, no. 6, pp. 1511–1526, Mar. 2016.

[22] P. Zhou, C. Lu, Z. Lin, and C. Zhang, “Tensor factorization for low-
rank tensor completion,” IEEE Trans. Image Process., vol. 27, no. 3,
pp. 1152–1163, Mar. 2017.

[23] X.-Y. Liu, S. Aeron, V. Aggarwal, and X. Wang, “Low-tubal-rank tensor
completion using alternating minimization,” IEEE Trans. Inf. Theory,
vol. 66, no. 3, pp. 1714–1737, Mar. 2020.

[24] Q. Liu, X. Li, H. Cao, and Y. Wu, “From simulated to visual data:
A robust low-rank tensor completion approach using lp -regression for
outlier resistance,” IEEE Trans. Circuits Syst. Video Technol., vol. 32,
no. 6, pp. 3462–3474, Jun. 2022.

[25] W. Wang, V. Aggarwal, and S. Aeron, “Efficient low rank tensor ring
completion,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 5697–5705.

[26] L. Yuan, C. Li, D. Mandic, J. Cao, and Q. Zhao, “Tensor ring decompo-
sition with rank minimization on latent space: An efficient approach for
tensor completion,” in Proc. AAAI, 2019, vol. 33, no. 1, pp. 9151–9158.

[27] H. Huang, Y. Liu, J. Liu, and C. Zhu, “Provable tensor ring completion,”
Signal Process., vol. 171, Jun. 2020, Art. no. 107486.

[28] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and
imputation for streaming big data matrices and tensors,” IEEE Trans.
Signal Process., vol. 63, no. 10, pp. 2663–2677, May 2015.

[29] H. Kasai, “Online low-rank tensor subspace tracking from incomplete
data by CP decomposition using recursive least squares,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2016,
pp. 2519–2523.

[30] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect
streaming tensor completion,” in Proc. 23rd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, Aug. 2017, pp. 435–443.

[31] K. Gilman and L. Balzano, “Online tensor completion and free submod-
ule tracking with the T-SVD,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), May 2020, pp. 3282–3286.

[32] K. Xie et al., “Accurate recovery of internet traffic data: A sequential
tensor completion approach,” IEEE/ACM Trans. Netw., vol. 26, no. 2,
pp. 793–806, Apr. 2018.

[33] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising
by sparse 3-D transform-domain collaborative filtering,” IEEE Trans.
Image Process., vol. 16, no. 8, pp. 2080–2095, Aug. 2007.

[34] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using low
rank matrix completion,” in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit., Jun. 2010, pp. 1791–1798.

[35] M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlo-
cal transform-domain filter for volumetric data denoising and recon-
struction,” IEEE Trans. Image Process., vol. 22, no. 1, pp. 119–133,
Apr. 2013.

[36] B. Wen, Y. Li, L. Pfister, and Y. Bresler, “Joint adaptive sparsity and low-
rankness on the fly: An online tensor reconstruction scheme for video
denoising,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Oct. 2017,
pp. 241–250.

[37] L. Zhang, L. Song, B. Du, and Y. Zhang, “Nonlocal low-rank tensor
completion for visual data,” IEEE Trans. Cybern., vol. 51, no. 2,
pp. 673–685, Feb. 2021.

[38] M. K. Ng, X. Zhang, and X.-L. Zhao, “Patched-tube unitary transform
for robust tensor completion,” Pattern Recognit., vol. 100, Apr. 2020,
Art. no. 107181.

[39] M. Ding, T.-Z. Huang, X.-L. Zhao, M. K. Ng, and T.-H. Ma, “Tensor
train rank minimization with nonlocal self-similarity for tensor comple-
tion,” Inverse Problem Imag., vol. 15, no. 3, pp. 475–498, 2021.

[40] J. Yu, G. Zhou, C. Li, Q. Zhao, and S. Xie, “Low tensor-ring rank
completion by parallel matrix factorization,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 7, pp. 3020–3033, Jul. 2021.

[41] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki, “Tensor ring
decomposition,” 2016, arXiv:1606.05535.

[42] J. Yu, C. Li, Q. Zhao, and G. Zhao, “Tensor-ring nuclear norm
minimization and application for visual: Data completion,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), May 2019,
pp. 3142–3146.

[43] Y.-W. Huang, C.-Y. Chen, C.-H. Tsai, C.-F. Shen, and L.-G. Chen, “Sur-
vey on block matching motion estimation algorithms and architectures
with new results,” J. VLSI Signal Process. Syst. Signal, Image Video
Technol., vol. 42, no. 3, pp. 297–320, Mar. 2006.

[44] A. J. Hussain and Z. Ahmed, “A survey on video compression fast
block matching algorithms,” Neurocomputing, vol. 335, pp. 215–237,
Mar. 2019.

[45] C. Je and H.-M. Park, “Optimized hierarchical block matching for
fast and accurate image registration,” Signal Process., Image Commun.,
vol. 28, no. 7, pp. 779–791, Aug. 2013.

[46] L. Yuan, J. Cao, X. Zhao, Q. Wu, and Q. Zhao, “Higher-dimension
tensor completion via low-rank tensor ring decomposition,” in Proc.
Asia–Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA
ASC), Nov. 2018, pp. 1071–1076.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

8326 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 32, NO. 12, DECEMBER 2022

[47] J. Tanner and K. Wei, “Low rank matrix completion by alternating
steepest descent methods,” Appl. Comput. Harmon. Anal., vol. 40, no. 2,
pp. 417–429, Mar. 2016.

[48] M. Monfort et al., “Moments in time dataset: One million videos for
event understanding,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42,
no. 2, pp. 502–508, Feb. 2020.

[49] N. Feamster and H. Balakrishnan, “Packet loss recovery for streaming
video,” in Proc. 12th Int. Packet Video Workshop, Pittsburgh, PA, USA,
2002, pp. 9–16.

[50] Y. Zeng, J. Fu, and H. Chao, “Learning joint spatial-temporal transfor-
mations for video inpainting,” in Proc. Eur. Conf. Comput. Vis. Cham,
Switzerland: Springer, 2020, pp. 528–543.

[51] R. Liu et al., “FuseFormer: Fusing fine-grained information in trans-
formers for video inpainting,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 14040–14049.

[52] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th IEEE Int.
Conf. Comput. Vis. (ICCV), vol. 2, Jun. 2001, pp. 416–423.

Yicong He received the B.S. degree in automation
and the Ph.D. degree in control science and engineer-
ing from Xi’an Jiaotong University, Xi’an, China,
in 2012 and 2019, respectively. He is currently a
Post-Doctoral Researcher with the Department of
Electrical and Computer Engineering, University of
Central Florida, FL, USA. His current research inter-
ests include robust signal processing and machine
learning.

George K. Atia (Senior Member, IEEE) received the
B.Sc. and M.Sc. degrees from Alexandria University,
Egypt, in 2000 and 2003, respectively, and the Ph.D.
degree from Boston University, MA, USA, in 2009,
all in electrical and computer engineering. He joined
the University of Central Florida in Fall 2012, where
he is currently an Associate Professor with the
Department of Electrical and Computer Engineer-
ing. He was a Visiting Faculty at the Air Force
Research Laboratory (AFRL) from 2019 to 2020.
From 2009 to 2012, he was a Post-Doctoral Research

Associate at the Coordinated Science Laboratory (CSL), University of Illinois
at Urbana-Champaign (UIUC). His research interests include machine learning
and data analytics, explainable AI, statistical signal processing, detection
and estimation theory, and information theory. He was a recipient of many
awards, including the UCF Reach for the Stars Award and the CECS Research
Excellence Award in 2018, the Dean’s Advisory Board Fellowship and the
Inaugural UCF Luminary Award in 2017, the NSF CAREER Award in 2016,
and the Charles Millican Faculty Fellowship Award (2015–2017). He is an
Associate Editor of the IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:14:48 UTC from IEEE Xplore. Restrictions apply.

