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Abstract—Tensor completion is the problem of estimating the
missing values of high-order data from partially observed entries.
Data corruption due to prevailing outliers poses major challenges
to traditional tensor completion algorithms, which catalyzed the
development of robust algorithms that alleviate the effect of out-
liers. However, existing robust methods largely presume that
the corruption is sparse, which may not hold in practice. In
this article, we develop a two-stage robust tensor completion
approach to deal with tensor completion of visual data with a
large amount of gross corruption. A novel coarse-to-fine frame-
work is proposed which uses a global coarse completion result
to guide a local patch refinement process. To efficiently mitigate
the effect of a large number of outliers on tensor recovery, we
develop a new M-estimator-based robust tensor ring recovery
method which can adaptively identify the outliers and alleviate
their negative effect in the optimization. The experimental results
demonstrate the superior performance of the proposed approach
over state-of-the-art robust algorithms for tensor completion.

Index Terms—Half-quadratic (HQ), robust method, tensor
completion.

I. INTRODUCTION

PREDICTING missing information from partially observed
data is an emerging topic in modern data science due to

unprecedented growth in data volume and dimensionality [1].
In multiway data analysis, where the data can be represented
as a high-order tensor, this problem can be formulated in
the lens of tensor completion with the goal of recovering
the missing entries of a partially observed tensor. While the
tensor completion problem is ill-posed without further model
assumptions, actual formulations exploit the low-rank structure
intrinsic to much of the real-world data. To date, numerous
tensor completion algorithms have been proposed based on
different tensor decomposition models [2], [3], [4], [5], [6],
[7], [8], [9], [10], [11], and have been successfully applied to
a wide range of problems in computer vision [12], [13], pattern
recognition [14], [15], and signal processing [16], [17].
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In real applications, data may be corrupted by outliers
due to human error or signal interference, making some of
the observed data unreliable [18], [19]. Traditional tensor
completion algorithms are largely based on a second-order
measure of the error residuals, thus their performance degrades
in the presence of outliers. In recent years, many works have
focused on robust tensor completion and proposed several
algorithms that were shown to outperform traditional com-
pletion algorithms in the presence of sparse outliers [20],
[21], [22], [23], [24], [25]. Despite their robust performance
with outlier-corrupted data compared with traditional meth-
ods, the usefulness of these algorithms is limited to settings
with a small fraction of outliers. When the number of outliers
increases, there are primarily two interrelated difficulties. First,
the large number of outliers could overwhelm their underlying
outlier rejection mechanism, leading to the severe performance
degradation. For example, when the corruption is nonsparse,
the !1-norm, which is at the heart of !1-norm-based robust
tensor completion methods, falls short of accurately capturing
the error residual. Second, the percentage of data entries to
be relied on for completion of the missing entries decreases
accordingly. For example, if 50% of the entries of a given
tensor is observed, of which 60% is perturbed with outliers,
then only 20% of the entries of the whole tensor is correctly
observed. The reduced amount of reliable information for com-
pletion renders the tensor completion task more challenging,
necessitating different means of completion.

To deal with tensor completion in the presence of a large
number of outliers, we develop a novel two-stage coarse-to-
fine framework for robust tensor completion. At the global
coarse stage, a robust tensor completion algorithm is applied
to the entire tensor to get a coarse completion result and
identify a large number of outliers. At the local refinement
stage, for each patch of the given tensor, a novel patch jitter
procedure is proposed and used to construct a patch tensor
using neighboring patches. Subsequently, robust tensor recov-
ery incorporating the global coarse completion information is
performed on the patch tensor, resulting in refined patch tensor
recovery. In sharp contrast to existing nonlocal patch-based
tensor completion algorithms [26], [27], [28], the proposed
patch-based method does not perform block-matching, which
greatly saves the computational cost and also avoids biased
matching caused by outliers.

Further, to improve both the robustness and comple-
tion/refinement performance, we propose a new robust tensor
ring (TR) recovery algorithm utilizing an M-estimator as
the error measure. TR rank model has shown the desirable
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performance in many tensor completion tasks owing to its
flexibility [8], [29]. M-estimators rooted in robust statistics
are generalizations of maximum likelihood (ML) estimators
for which the objective function is a sample average [30].
The selection of a proper loss function for M-estimators
can greatly enhance robustness against large outliers. In
order to handle the complex objective resulting from the use
of an M-estimator, we leverage a half-quadratic (HQ) [31]
minimization approach whereby the problem is reformulated
as a reweighted TR completion program. Then, based on a TR
unfolding scheme [9], [10], we develop a robust TR comple-
tion algorithm utilizing truncated singular value decomposition
(SVD) to capture the low-rank structure. The proposed robust
algorithms are efficient and have a simple structure owing to
the use of an HQ-based method and a TR unfolding scheme,
and can be applied to both the global tensor completion and
local patch refinement stages. Further, the convergence of the
proposed algorithm is analyzed. The following summarizes the
main contributions of this article.

1) We propose a novel two-stage coarse-to-fine framework
for robust tensor completion of visual data. First, we
perform global coarse completion. Then, local patch
refinement is applied to patch tensors created using patch
jitter, where prior information from the global coarse
completion result is incorporated.

2) We propose a new M-estimator-based TR recovery
method for both global tensor completion and local
patch refinement. An HQ approach is introduced to
transform the nonconvex optimization problem to a
reweighted tensor completion problem. Then, a new
algorithm is developed based on a TR unfolding scheme
and truncated SVD, and its convergence is analyzed.

3) We perform experiments on real data for image
and video completion, demonstrating the superior
performance of the proposed algorithm compared with
existing robust tensor completion algorithms.

This article is organized as follows. In Section II, we
present the related work in matrix and tensor completion.
In Section III, we briefly introduce our notation and pro-
vide some preliminary background on TR decomposition and
completion. In Section IV, we present our two-stage coarse-to-
fine tensor completion framework, along with the formulation
of the objective function for each stage. In Section V, we
propose our new HQ-based robust TR recovery algorithm.
Experimental results are presented in Section VI to demon-
strate the completion performance. Finally, the conclusion is
given in Section VII.

II. RELATED WORK

Low-Rank Matrix and Tensor Completion: Matrix or ten-
sor completion aim to fill the missing entries of a partially
observed matrix or tensor data. The key idea underlying the
ability to estimate their unknown entries is the low-rank prop-
erty inherent in many machine learning problems [32], [33],
[34], [35], which captures the redundancy and correlation
within a matrix or tensor [36].

Different from the matrix domain where the rank is
uniquely defined, the rank of a tensor has various definitions
corresponding to different tensor factorization (decomposi-
tion) models, such as CANDECOMP/PARAFAC (CP) [37],
Tucker [38], tensor SVD (t-SVD) [39], TR [29], and ten-
sor train (TT) [40]. Based on different tensor decomposition
models, a large number of tensor completion algorithms was
developed [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] and
achieve the desirable performance in noiseless environments
and Gaussian noise with small variance. However, when the
data are contaminated with large outliers, the performance
of these traditional algorithms is unsatisfactory in general.
This spurred further research on robust matrix and tensor
completion, which is the main focus of our work.

Robust Matrix and Tensor Completion: In robust matrix and
tensor completion, the goal is to recover the low-rank matrix
or tensor from corrupted partial observations. Following the
method of robust principal component analysis (RPCA) [41],
[42], a matrix or tensor can be completed by decomposing it
into the sum of low-rank and sparse components. The low-rank
component represents the actual noise-free low-rank matrix or
tensor and the sparse component models the sparse outliers.

The !1-norm is widely utilized to constrain the sparse com-
ponent [32], [43], and a number of !1-norm-based robust com-
pletion algorithms has been proposed for different decomposi-
tion (factorization) models, such as matrix factorization [44],
Tucker [20], TR [22], and t-SVD [23]. Other algorithms
impose more flexible !p-norm and !p,ε-norm constraints on
the sparse component instead of the !1-norm [24], [25].

The success of the aforementioned existing robust meth-
ods is largely dependent on the assumption that the outliers
are sparse—otherwise, their performance may greatly degrade.
In this article, we develop a new two-stage framework with
a new robust tensor completion algorithm to improve the
performance under heavy noise and data corruption.

Patch-Based Matrix and Tensor Completion: To further
improve the completion performance on visual data, the patch-
based method has been recently introduced to matrix and
tensor completion. Similar to patch-based image and video
denoising methods [45], [46], these methods apply block-
matching 3-D (BM3D) [45] or BM4D [46] to find similar
patches across the spatial domain. Then, the completion is
applied to matrices or tensors constructed from similar patches.
A variety of patch-based completion algorithms incorporat-
ing different matrix and tensor completion methods has been
developed, such as [27], [28], [47]. Also, in [48], a tensor
completion algorithm is proposed utilizing local and nonlo-
cal patch completion as the regularization terms of the global
tensor completion.

Similar to the traditional completion algorithms, current
patch-based methods also suffer from the performance degra-
dation in the presence of outliers. One idea would be to
replace the completion methods in a path-based framework
with robust ones. However, directly applying block-matching
to robust tensor completion tasks may result in inaccurate
matching results due to missing entries and outliers, which
in turn affects the completion performance. In this article, we
propose an efficient method called “patch jitter” to directly
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bypass the block-matching procedure. Further, the global com-
pletion result is incorporated into local patch refinement to
further improve the performance.

III. PRELIMINARY

Notation: In this article, we adopt tensor notation simi-
lar to [9], [10]. Uppercase calligraphic letters are used to
denote tensors (e.g., X ), uppercase boldface letters for matri-
ces (e.g., X), lowercase boldface letters for vectors (e.g., x)

and lowercase letters for scalars (e.g., x). An N-order ten-
sor is defined as X ∈ RI1×···×IN , where Ii, i = 1, . . . , N is
the dimension of the ith way of the tensor. Xi1...iN denotes
the (i1, i2, . . . , iN)-th entry of tensor X , and Xi,j denotes the
(i, j)th entry of matrix X. The Frobenius norm of a tensor is
defined as ‖X‖F =

√∑
i1...iN |Xi1...iN |2. The product A ◦ B

denotes the Hadamard (element-wise) product of tensors A
and B. For a scalar n, [n] := {1, . . . , n}.

A. Tensor Ring Model

We briefly review the definition of TR decomposition.
Definition 1 ([29, Sec. 2] TR Decomposition): Given TR

rank [r1, . . . , rN], in TR decomposition a high-order tensor
X ∈ RI1×···×IN is represented as a sequence of circularly con-
tracted 3-order core tensors Uk ∈ Rrk×Ik×rk+1 , k = 1, . . . , N,
with rN+1 = r1. Specifically, the element-wise relation of
tensor X and its TR core tensors {Uk}N

k=1 is defined as

Xi1...iN = Tr

(
N∏

k=1

Uk(:, ik, :)

)

where Uk(:, ik, :) ∈ Rrk×rk+1 is the ik-th slice matrix of Uk
along mode-2, and Tr(·) is the matrix trace operator.

Based on the definition above, Huang et al. [9] and
Yu et al. [10] proposed a new circular TR unfolding scheme,
defined below.

Definition 2 ([9, Sec. 2.2] Tensor Ring Unfolding): Given
an N-order tensor X ∈ RI1×···×IN , its TR unfolding X〈k,d〉 ∈
R
∏k+d−1

i=k Ii×
∏k+N−1

j=k+d Ij , k, d ∈ {1, . . . , N}, is a matrix whose
entries are defined through the relation (X〈k,d〉)s,t = Xi1...iN
with

s = 1 +
k+d−1∑

c=k

(ic − 1)

c−1∏

j=k

Ij, t = 1 +
k+N−1∑

c=k+d

(ic − 1)

c−1∏

j=k+d

Ij

where Ik+N = Ik, ik+N = ik for 1 ≤ k ≤ N. In prac-
tice, X〈k,d〉 can be generated by first permuting X with order
[k, . . . , N, 1, . . . , k − 1], then performing unfolding along the
first d modes.

Theorem 1 [10, Sec. 2]: Assume X ∈ RI1×···×IN is Nth-
order tensor with TR rank [r1, r2, . . . , rN], then for each
unfolding matrix X〈k,d〉

rank(X〈k,d〉) ≤ rkrk+d (1)

with ri+N = ri, i = 1, . . . , N, where rank(X) denotes the rank
of matrix X.

B. Tensor Ring Completion

Given an N-order tensor M ∈ RI1×···×IN , and index set
# ⊆ [I1] × · · · × [IN], TR completion is the problem of filling
in the missing entries of tensor M using the observed entries
indexed by set # and the low-rank property. This problem can
be formulated as

min
X

ranktr(X ), s.t. P ◦ X = P ◦ M (2)

where the mask tensor P ∈ RI1×···×IN is set as

Pi1...iN =
{

1, (i1, . . . , iN) ∈ #

0, otherwise
(3)

and ranktr(X ) denotes the TR rank of tensor X . According
to (1), one can further solve the TR completion task using the
following optimization problem [9], [22]:

min
X

N∑

k=1

βk rank(X〈k,d〉), s.t. P ◦ X = P ◦ M (4)

where {βk}N
k=1 are weight parameters.

IV. TWO-STAGE COARSE-TO-FINE ROBUST TENSOR

COMPLETION FRAMEWORK

Our goal is to perform robust tensor completion of visual
data with a large number of outliers. To this end, we develop
a two-stage coarse-to-fine tensor completion framework, illus-
trated in Fig. 1. Given a noisy, partially observed image tensor
M ∈ RI1×I2×n (n is 1 and 3 for gray and color images, respec-
tively), in the first (global) stage, a robust TR completion
algorithm is applied to the entire tensor, yielding a coarse com-
pletion result. In the second (local) stage, we first divide the
tensor into overlapping patches of size m × m × n with over-
lap pixels o. Then, with the guidance of the global completion
result, we perform local patch-based robust TR refinement on
each patch tensor constructed using a patch jitter. The final
completion result is obtained by aggregating the refined local
patches. In the following, we describe each stage. The details
of the robust recovery algorithms are discussed in Section V.

A. Global Robust Tensor Completion With M-Estimator and
Tensor Ring Rank

In robust tensor completion, the predominant measure of
error is the !1-norm of the error residual [20], [22], [23]. The
!1-norm-based tensor completion algorithms aim to solve

min
X

rankt(X ) + λ‖E‖1, s.t. P ◦ (X + E) = P ◦ M (5)

where rankt(X ) denotes the rank of tensor X , which varies
depending on different definitions of the tensor rank. For the
optimization problem (5), it is always assumed that the error
term E is sparse, that is, there are only a few outliers. In the
case, where a large number of observed entries is perturbed
by outliers, E is no longer sparse in general, and a solution
to (5) is unreliable.

The M-estimator has been widely used in robust statis-
tics due to its robustness to outliers. Given a tensor X , its
M-estimator F(X ) can be formed as a sum of functions
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Fig. 1. Proposed two-stage coarse-to-fine robust tensor completion framework for visual data. In the coarse stage (blue region), the robust tensor completion
algorithm is applied to the entire image. In the fine stage (yellow region), for each patch in the divided image, local patch refinement guided by the global
completion result is applied to a corresponding patch tensor obtained from the patch jitter.

Fig. 2. Illustration of loss functions of M-estimators (top) and corresponding
weight function (bottom) with different shape parameter c (Blue: c = 0.2, red:
c = 0.5, yellow: c = 1).

of the data, that is, F(X ) = ∑
i1...iN f (Xi1...iN ), where f (.)

is a function with certain properties [30]. Compared with
the !1-norm, the M-estimator is differentiable at 0, and is
more flexible with different choices of a shape parameter
(see Fig. 2). In this work, we introduce an M-estimator with
adaptive parameter selection to the robust TR completion task.

By introducing the M-estimator in (4), we obtain the uncon-
strained M-estimator-based robust TR completion optimization
problem

min
X

N∑

k=1

βk rank(X〈k,d〉) + λ
∑

i1...iN

Pi1...iN f (Ei1...iN ) (6)

where Ei1...iN = Xi1...iN − Mi1...iN .
In our work, we use three functions for M-estimators:

Huber function, Welsch function [49], and Cauchy function
shown in Fig. 2. The Welsch and Cauchy functions yield a
type of redescending M-estimators, which also satisfy that
limx→+∞ f ′(x) = 0. In [50], a redescending M-estimator is
introduced for low-Tucker-rank tensor completion, solved using

a block coordinate descent method. However, the Tucker-rank-
based method is not applicable to TR-based methods due to the
difference in the rank model. Also, its performance is limited
by the low convergence speed of the gradient-based method. In
the next section, we will develop a more general and efficient
solution using an HQ method for the TR model.

The global completion can identify most of the reliable
observed entries, that is, the clean unperturbed observed entries
and the observed entries with small perturbation. However,
the global completion performance may still be limited due
to insufficient reliable information for completion or distur-
bance by a small number of unrecognized noisy entries. On the
other hand, patch-based methods can yield the better comple-
tion performance than global ones by performing completion
on similar patches [27], [28]. To further improve the com-
pletion performance, we propose a new refinement process
on local patches which incorporates both global and local
information. In the following parts, we will introduce our
proposed local-based method.

B. Local Patch Tensor Construction Using Patch Jitter

Patch-based methods have been widely used in visual data
processing [45], [46]. In tensor completion, a patch tensor is
created using block-matching across the spatial domain [26],
[27], [28]. Existing block-matching methods presume that the
data entries are not perturbed by outliers, such that similar
patches can be accurately matched. Similar patches are then
stacked to a patch tensor, on which completion can be applied.
However, in our setting, the distance between patches will be
biased due to the existence of outliers, which would deteriorate
the results of block-matching.

By contrast, instead of using block-matching to find similar
patches, in this work, we directly apply patch jitter on each
patch to generate a patch tensor. Specifically, given a patch of
size m × m × n, we generate its neighboring patches with jitter
length l, that is, the (2l + 1)2 number of patches in a window
of size (2l + 1) × (2l + 1) centered at the original patch. Note
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Fig. 3. Left: image “flower” from Berkeley Segmentation Dataset [51],
rectangles: five selected patches with size 36 × 36 × 3. Right: normalized
singular values of TR unfolding matrices of the five patch tensors obtained
using patch jitter with l = 2. Top-left: k = 1, d = 2, top-right: k = 2, d = 2,
bottom-left: k = 3, d = 2, and bottom-right: k = 4, d = 2.

that the original patch is also included in the neighboring patch
set. Then, the (2l + 1)2 patches are stacked in a patch tensor
S ∈ Rm×m×n×(2l+1)2

. To match the patches at the corners and
boundaries of the frames, the tensor M is first padded by
mirroring l pixels at all boundaries and corners, resulting in a
padded tensor Mp of size (I1 + 2l) × (I2 + 2l) × n.

We briefly give insight into the patch jitter procedure. An
example of a patch jitter with a fully observed image without
outliers is shown in Fig. 3. We pick five patches at differ-
ent locations (marked by green rectangles). For each patch,
the patch tensor is created using patch jitter with l = 2. The
normalized singular values (with respect to maximum singu-
lar value) of TR unfolding matrices of the patch tensors are
shown in the right of Fig. 3. As can be seen, with a small
offset around the original patch, the obtained patch tensor can
be well approximated by a low TR rank tensor. Therefore, for
a partially observed image, the patch tensor generated using
a patch jitter can be well completed using a TR completion
algorithm. Moreover, compared with traditional patch-based
methods, the jitter operation does not require block-matching,
thereby avoiding incorrect matching due to outliers and greatly
reducing the computational cost.

C. Global Completion Guided Local Patch
Tensor Refinement

After constructing patch tensors using the patch jitter, we
apply a local patch refinement process to each patch tensor. We
utilize the global coarse completion result to help identify the
outliers in the patch tensor, as well as give a good initialization
to the missing entries of the patch tensor.

Assume we have obtained the (coarsely) completed tensor
(denoted M̂) from the tensor M using (6). Given a patch
tensor So ∈ Rm×m×n×(2l+1)2

from Mp, we extract the patches
from the same locations in the padded completed tensor M̂p
and stack them to a reference patch tensor Sr. Then, the miss-
ing entries in So are filled with corresponding entries in Sr,
resulting in a combined tensor Sc with entries

(Sc)i1...iN =
{

(So)i1...iN , (i1, . . . , iN) ∈ #s
(Sr)i1...iN , otherwise

(7)

where #s denotes the observation index set of So.

In order to represent the different confidence levels of each
entry, we use a soft weighting strategy [52] in which we assign
different weights to each entry of the combined patch tensor
Sc. In particular, defining a weight tensor W with the same
size as Sc, each element of W is obtained as

Wi1...iN =





exp

(

−
(
(Sc)i1 ...iN −(Sr)i1 ...iN

)2

2σ 2

)

, (i1, . . . , iN) ∈ #s

v, otherwise
(8)

where σ is a parameter controlling the similarity. Specifically,
for entries of Sc that are originally observed (i.e.,
(i1, . . . , iN) ∈ #s), the weight is assigned in terms of its
distance from the corresponding entry in the reference patch
tensor Sr. For the entries of Sc that were filled from Sr, the
weights are all set to some value v.

Inspired by adaptive parameter selection for the M-estimator
which will be presented in Section V-B, we adaptively deter-
mine σmin and vmax using

σ = max
{
ησ

(
max{(d#s)(0.25), (d#s)(0.75)}

)−1
, σmin

}

v = min
{
ηvmax{(d#s)(0.25), (d#s)(0.75)}, vmax

}
(9)

where d#s ∈ R|#s|×1 denotes the vector composed of entries
Di1...iN = (Sc)i1...iN −(Sr)i1...iN , (i1, . . . , iN) ∈ #s, y(q) denotes
the qth quantile of y, ησ and ηv are free parameters to be
chosen, σmin is a lower bound on σ , and vmax is an upper
bound on v.

We can readily formulate the local patch refinement as a
weighted robust tensor recovery problem

min
X

N∑

k=1

βk rank(X〈k,d〉) + λ
∑

i1...iN

Wi1...iN f
(
(Ec)i1...iN

)
(10)

where (Ec)i1...iN = Xi1...iN − (Sc)i1...iN .
Note that (10) can be obtained by replacing the binary indi-

cator tensor P in (6) with a weight tensor W with entries
from [0, 1]. Therefore, (6) can be viewed as a special case
of (10) with binary weights. In Section V, we propose a half
quadratic-based algorithm that can solve both (6) and (10).

The completion and refinement processes of the proposed
framework are summarized in Algorithm 1. We remark that
the framework can also be extended to video data, where an
additional temporal dimension is added. In this case, for a
video with f frames, the patch will be of size m × m × n × f
and the corresponding patch tensor is a 5th-order tensor of
size m × m × n × f × (2l + 1)2.

V. HALF-QUADRATIC APPROACH TO WEIGHTED ROBUST

TENSOR RECOVERY

In this section, we aim to solve the following optimization
problem, which combines both (6) and (10):

min
X

((X ) + λ
∑

i1...iN

Wi1...iN f (Ei1...iN ) (11)

where ((X ) = ∑N
k=1 βk rank(X〈k,d〉), and the entries

of Wi1...iN are in the range [0, 1] with Wi1...iN = 0,
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Algorithm 1 Coarse-to-Fine Robust Tensor Ring Completion
(C2FRTRC)
Input: Partially observed image tensor M ∈ RI1×I2×n, patch gen-

eration parameters m, o, patch jitter parameter l, parameters ησ ,
ηv, σmin and vmax.

1: Complete M using (6) and obtain the completed tensor M̂.
2: Pad the tensors M and M̂ to Mp and M̂p.
3: Divide Mp into patches according to size m and overlap pixels

o and create patch set I.
4: for each patch in I do
5: Construct patch tensor So using (2l + 1)2 neighbor patches

around the location in Mp.
6: Construct reference patch tensor Sr using (2l + 1)2 neighbor

patches around the location in M̂p.
7: Construct combined tensor Sc using So and Sr , and obtain

refined patch tensor Ŝc by solving (10).
8: end for
9: Obtain refined completed image tensor M̄ by aggregating

patches from all patch tensors Ŝc according to I and removing
padded border pixels.

Output: Completed image tensor M̄.

(i1, . . . , iN) /∈ #. We develop an HQ-based approach to effi-
ciently solve (11). We also propose an adaptive parameter
selection strategy and discuss the property of the HQ-based
solution.

A. Half-Quadratic Approach to the Non-Convex Program

We present an HQ method to solve the M-estimator-based
optimization problem in (11). HQ methods have been broadly
applied in nonquadratic optimization [53]. Instead of directly
optimizing a complex nonquadratic objective, HQ transforms
the nonquadratic loss function to an HQ one. Specifically, there
exists a strictly convex and decreasing dual function ϕ(.) such
that minimizing the loss function f (t) with respect to (w.r.t.) t
is equivalent to minimizing an augmented cost function in an
enlarged parameter space {t, q}, that is, [53], [54]

min
t

f (t) = min
t,q

1
2

qt2 + ϕ(q). (12)

Therefore, by substituting (12) in the M-estimator, the
minimization of function

∑
i1...iN Wi1...iN f (Ei1...iN ) becomes

min
X

∑

i1...iN

Wi1...iN f (Ei1...iN )

= min
X ,Q

∑

i1...iN

(
1
2
Wi1...iNQi1...iNE

2
i1...iN + Wi1...iN ϕ(Qi1...iN )

)
.

(13)

Hence, (10) is equivalent to the following problem:

min
X ,Q

((X ) + λ

2

∥∥∥
√
W ◦

√
Q ◦ (X − M)

∥∥∥
2

F
+ λ*W (Q) (14)

where *W (Q) = ∑
i1...iN Wi1...iN ϕ(Qi1...iN ).

The problem above is a reweighted TR completion problem,
and one could use alternating minimization to solve it.
Specifically, by fixing tensor X , tensor Q can be found by
solving (14) with fixed residual E . According to [54, Th. 1],
the optimal solution q∗ in the right hand side (RHS) of (12)

can be obtained as q∗ = ([f ′(t)]/t). Thus, we obtain each entry
Qi1...iN as

Qi1...iN = f ′(Ei1...iN )

Ei1...iN
. (15)

Subsequently, given a fixed Q, (14) becomes the double-
weighted tensor completion problem

min
X

((X ) + λ

2

∥∥∥
√
W ◦

√
Q ◦ (X − M)

∥∥∥
2

F
. (16)

The weighting tensor Q assigns different weights to each
observed entry based on the error residual tensor E . Fig. 2
depicts the weights in terms of the error, x, for different loss
functions. One can observe that given a proper shape param-
eter c, a large error may lead to a small weight, so that the
error statistics will not be unduly affected by large outliers.
Specifically, when c → +∞, all entries of Q will be equal to
1 and (14) reduces to a traditional second-order statistics-based
completion method. In this case, the algorithm cannot allevi-
ate the effect of outliers since all error residuals are treated
equally.

B. Adaptive Parameter Selection for M-Estimator

Most M-estimators, such as Huber, Cauchy, and Welsch
have a parameter c to control the shape of the loss. Per the
previous discussion, the weights Q based on the error residual
play an important role in recognizing the outliers. As Fig. 2
shows a relatively smaller c can better reduce the effect of
outliers. However, in practice convergence will be slower if c
is set to a small fixed value. Therefore, to improve both effi-
ciency and accuracy, we use an adaptive kernel width selection
method for the M-estimator. Specifically, the shape parameter
is determined by

c = max
{
ηcmax{(e#)(0.25), (e#)(0.75)}, cmin

}
(17)

where e# ∈ R|#|×1 denotes the vector composed of entries
Ei1...iN , i1 . . . iN ∈ #. The parameter ηc controls the range of
outliers, and cmin is a lower bound on c. Using the adap-
tive method above, c is set to a relatively large value in the
beginning to speed up convergence. As the convergence speed
reduces, c is decreased correspondingly and the effect of the
outliers is gradually reduced.

C. Truncated SVD-Based Algorithm

To solve (14), we define the indicator function for
X〈k,d〉, k = 1, . . . , N as [50]

δ(X〈k,d〉) =
{

0, if rank(X〈k,d〉) ≤ rkd
+∞, otherwise

(18)

where rkd = rkrk+d. Thus, the minimization is expressed as

min
X ,Q

N∑

k=1

βkδ
(
X〈k,d〉

)
+ λ

2

∥∥∥
√
W ◦

√
Q ◦ (M−X )

∥∥∥
2

F
+λ*W (Q).

(19)

We devise an alternating direction method of multipliers
(ADMMs) method to solve (19). In particular, we introduce
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the dual variables {Z(k)}N
k=1 and rewrite (19) as

min
X ,Q,Z(k)

N∑

k=1

βkδ
(

Z(k)
〈k,d〉

)
+ λ

2

∥∥∥
√
W ◦

√
Q ◦ (M − X )

∥∥∥
2

F

+ λ*W (Q) s.t.Z(k) = X , k = 1, . . . , N. (20)

The augmented Lagrangian function can be written as

L µ(X ,Q,Z(1), . . . ,Z(N),G(1), . . . ,G(N))

=
N∑

k=1

(
βkδ(Z

(k)
〈k,d〉) + 〈G(k),Z(k) − X 〉 + µ

2

∥∥∥Z(k) − X
∥∥∥

2

F

)

+ λ

2

∥∥∥
√
W ◦

√
Q ◦ (M − X )

∥∥∥
2

F
+ λ*W (Q) (21)

where {G(k)}N
k=1 is the dual variables and µ is the step size.

One can alternatively update each variable while fixing the
others.

1) Update c and Q: First, c is estimated using (17). Then,
for each element Qi1...iN , the optimal solution can be
directly obtained using (15).

2) Update Z (k): For each Z(k), k = 1, . . . , N, the optimal
solution can be obtained by solving

Z(k) = arg min
Z

(∥∥∥∥Z −
(
X − 1

µ
G(k)

)∥∥∥∥
2

F

)

s.t. rank(Z〈k,d〉) ≤ rkd. (22)

This is a low-rank approximation problem which has an
optimal solution [55]

Z(k) = fold〈k,d〉

(
,rkd

(
X〈k,d〉 − 1

µ
G(k)

〈k,d〉

))
(23)

where ,r(.) is the truncated SVD (or hard threshold-
ing) operator with rank r, and fold〈k,d〉(.) is the reverse
operation of TR unfolding.

3) Update X : Tensor X can be obtained as

X = arg min
X

(
λ

µ

∥∥∥
√
W ◦

√
Q ◦ (M − X )

∥∥∥
2

F

+
N∑

k=1

∥∥∥∥X − (Z(k) + 1
µ
G(k))

∥∥∥∥
2

F

)

. (24)

By taking the derivative of X and setting it to be the
zero tensor, we obtain the optimal solution

X = L + λW ◦ Q
λW ◦ Q + µN

◦ (M − L) (25)

where the division of tensors is computed element-wise
and L = (1/N)

∑N
k=1(Z(k) + (1/µ)G(k)).

4) Update G(k): For each k, G(k) can be updated as

G(k) = G(k) + µ(Z(k) − X ). (26)

We name this algorithm HQ-based weighted TR recov-
ery (HQWTRR), and its pseudocode is summarized in
Algorithm 2. For global coarse completion, {G(k),0}N

k=1
and X 1 are initialized as zero tensors, and W is set
according to (3), that is, entries (i1, . . . , iN) ∈ # are set
to 1 and 0 otherwise. While in the global-completion-
guided local patch refinement, for each patch S , all

Algorithm 2 HQWTRR for Weighted Robust Tensor Recovery
Input: Partially observed M with observation set #, W , d, µ, α,

{rk}N
k=1, λ, ηc and ε

1: initial tensors {G(k),0}N
k=1, X 1, set Wi1...iN = 0 for

(i1, . . . , iN) /∈ #, t = 1
2: repeat
3: estimate ct+1 using (17).
4: compute Qt+1 using (15).
5: compute Z(k),t+1 for k = 1, . . . , N using (23).
6: compute X t+1 using (25).
7: compute G(k),t+1 for k = 1, . . . , N using (26).
8: update µt+1 = αµt

9: t = t + 1
10: until |‖X t−1 − X t−2‖F/‖X t−2‖F − ‖X t − X t−1‖F/

‖X t−1‖F| < ε
Output: M̂ = X t.

entries of {G(k),0}N
k=1 and X 1 are initialized as the aver-

age value of entries of the corresponding reference patch
Sr, and M is a fully observed tensor with W obtained
from (8).

D. Relation to Prior Tensor Ring Completion Algorithms

To better understand the relationship between the proposed
algorithm and existing !2-norm-based TR completion algo-
rithms, we first rewrite (25) element-wise as

Xi1...iN = .i1...iNMi1...iN + (1 − .i1...iN )Li1...iN (27)

with . = ([λW ◦ Q]/[λW ◦ Q + µN]). When the regulariza-
tion parameter λ is set to a sufficiently large value compared
with µN, (27) reduces to

X =
{
Mi1...iN , (i1, . . . , iN) ∈ #

Li1...iN , (i1, . . . , iN) /∈ #.
(28)

Again, by replacing hard thresholding using {rkd}N
k,d=1 in (22)

with a soft thresholding method, Algorithm 2 reduces to
the traditional TR nuclear norm minimization (TRNNM)
method [10] solving

min
X

N∑

k=1

βk
∥∥X〈k,d〉

∥∥
∗ + λ‖W ◦ (X − M)‖2

F . (29)

Thus, TRNNM can be seen as a special case of HQWTRR.
When the regularization parameter λ is properly chosen,

the elements of Q will assign different weights to different
values of the error residuals. It can be observed from Fig. 2,
that a large error residual Ei1...iN caused by an outlier may
result in a small Qi1...iN (consequently a small .i1...iN ). In this
case, the values of the entries with large error residuals will
be dominated by the predicted value Q rather than M. If the
error residual is large enough, θ will be zero so the corre-
sponding entry will be set to the corresponding entry in Q,
which amounts to treating it as a missing entry. In general, by
assigning different weights to observed entries, the proposed
algorithm can automatically identify the outliers.
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E. Convergence Analysis

The following theorem characterizes the convergence of the
proposed algorithm. For simplicity, we define Za = {Z(k)}N

k=1
and Ga = {G(k)}N

k=1.
Theorem 2 (HQWTRR Convergence): Let {(X t,Qt,

Z t
a,Gt

a)} be a sequence generated by Algorithm 2 using the
M-estimators defined in Fig. 2. If ‖X t+1 − X t‖2

F < ∞ for
any t ≥ 1, and {G(k),t} converges to some constant tensor
C for all k = 1, . . . , N, then, {X t} will converge for an
M-estimator parameter c decreasing to 0.

The proof is deferred to the Appendix. In the theorem,
a sequence {ct} with limt→∞ ct = 0 is sufficient to ensure
convergence of HQWTRR. In practice, adaptive parameter
selection using (17) yields a sequence {ct} that approaches
a small cmin, albeit not monotonically decreasing. Still, it
yields the desirable performance as shown in the experimental
results. Since HQWTRR is a nonconvex optimization problem
due to the use of a truncated SVD, the convergence analysis
of ADMM is very challenging in general without additional
assumptions [56]. Hence, similar to [57], [58], the assumption
of the convergence of {G(k),t} is used in Theorem 2. In prac-
tice, HQWTRR using Algorithm 2 works very well without
this assumption, which is verified in Section VI.

F. Complexity Analysis

We first analyze the complexity of the global coarse com-
pletion step. Given an N-order tensor X ∈ RI1×I2×···×IN , for
simplicity we assume the TR rank r1 = · · · = rN = r and the
tensor size I1 = · · · = IN = I. Then, the time complexity of
updating {Z(k)}N

k=1 in (23) using truncated SVD is O(INr2N).
The update of Q incurs a complexity of O(IN), and the com-
plexity of updating {Gk}N

k=1 or X is O(INN). Therefore the
total time complexity of the coarse stage is O(IN(r2 + 2)N).

For the local patch refinement step, assume the total number
of patch tensors is Tp. The dimension of the tensor is Np,
the length of each dimension is Ip, and the elements of the
TR rank are all set to rp. Then, the total time complexity of
the fine stage is O(I

Np
p (r2

p + 2)TpNp). We should remark that
tensor completion is independent for each patch tensor, hence
parallel computation can be applied to further improve the
computational efficiency.

VI. EXPERIMENTAL RESULTS

We conduct experiments using both image and video data
to verify the performance of the proposed algorithm. We
compare with existing tensor completion algorithms using
different tensor rank models, including !1-regularized sum
of nuclear norm (!1-SNN)1 [20], soft thresholding using
Welsch loss (W-ST) [50], tensor nuclear norm (TNN) [6],
!1-regularized TNN (!1-TNN) [23], transformed nuclear
norm-based total variation (TNTV)2 [59], !p-regularized TT
completion (!p-TTC)3 [24], TR nuclear norm (TRNN) [10],

1https://tonyzqin.wordpress.com/research
2https://github.com/xjzhang008/TNTV
3https://github.com/LI-X-P/CodeofRobustTensorCompletion

!1 regularized TRNN (!1-TRNN)4 [22], and !p,ε-regularized
TR completion (!p,ε-TRC) [25]. All these algorithms are
robust tensor completion algorithms except TRNN and TNN.
For the proposed algorithm, we use C2FRTRC to designate
the two-stage algorithm described in Algorithm 1, which uses
HQWTRR for both global completion and local refinement.
For comparison, we also include the results of global comple-
tion alone (without the local refinement) obtained at the coarse
stage using HQWTRR, and local patch-only completion results
without the global completion prior (i.e., setting vmax = 0 and
σmin = +∞). To distinguish these two single-stage methods
from the two-stage C2FRTRC, in the experiments we name
the global-only completion procedure HQ TR Completion
(HQTRC), and the local patch-only completion algorithm local
patch-based robust TR completion (LPRTRC). For HQTRC,
LPRTRC, and C2FRTRC, we use the Cauchy loss function as
the default.

Two visual data quality metrics are used, including peak
signal-to-noise ratio (PSNR) and structural similarity (SSIM).
For each experiment, the average PSNR/SSIM values are
obtained over 20 Monte Carlo runs with different missing
entries and noise realizations. For the proposed C2FRTRC
framework in Algorithm 1, the patch size m is set to 36 and
20 for image and video data, respectively. The pixel overlap
o is set to o = 1m/52, and the jitter parameter l is set to 2.
For HQTRC in Algorithm 2, we set µ = 10−4, λ = 2µN,
α = 1.1, d = 1N/22, and ε = 10−3. For adaptive selec-
tion of σ , v, and c in (9) and (17), the parameters are set to
ησ = 0.02, ηv = ηc = 4, σmin = 0.3, vmax = 0.2, cmin = 0.15.
For rank selection, we set al. the elements of the rank to
be the same, that is, r1 = · · · = rN = r. Then, inspired
by [50], the parameter r is determined as (0.04pI1I2)

1/4 and
(0.25 pm2)1/4f 1/6 for global tensor completion and local patch
refinement, respectively, where p is the observation rate and
f is the number of frames. For !p-TTC and !p,ε-TRC, p is
set to 1. For the other algorithms, the parameters are adjusted
so as to achieve the best performance. Further, the parameters
are fixed during each simulation. All algorithms are imple-
mented using MATLAB r2021a on a standard 16-GB memory
PC with a 2.6-GHz CPU. The algorithms are run without any
acceleration from (e.g., parallel computation).

A. Color Image Inpainting

In this section, we verify the robust completion performance
on an image inpainting task using the proposed framework, in
comparison to other existing TR completion algorithms. Image
inpainting takes advantage of the fact that most natural images
can be well approximated with their low-rank components,
such that filling missing parts of an incomplete image can be
regarded as a tensor completion problem.

Test images of size 320 × 480 × 3 are selected from
the Berkeley segmentation dataset [51]. For each image, the
pixel value is first normalized to [0, 1]. Then, pI1I2n pix-
els are selected uniformly at random and set as observed
pixels, and the observed pixels are further perturbed with

4https://github.com/HuyanHuang/Robust-Low-rank-Tensor-Ring-
Completion

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 00:26:09 UTC from IEEE Xplore.  Restrictions apply. 



HE AND ATIA: COARSE TO FINE TWO-STAGE APPROACH TO ROBUST TENSOR COMPLETION OF VISUAL DATA 9

Fig. 4. Curves of average PSNR versus different parameters. Solid lines:
C2FRTRC, dotted lines: HQTRC.

i.i.d. additive noise generated from a given distribution. The
image inpainting task is then formulated as a 320 × 480 × 3
robust tensor completion problem with an observation rate p.
For TRNN, which favors high-order tensors for the better
performance [10], we reshape the tensor to a 9-order tensor of
size 4×4×4×5×4×4×5×6×3. For the proposed HQTRC,
we reshape the tensor to the same size used for TRNN, while
for local patch tensor refinement with HQWTRR, the tensor
size is not changed.

1) Ablation Experiment and Parameter Sensitivity Analysis:
We first carry out an ablation experiment and parameter sen-
sitivity analysis on the proposed coarse-to-fine framework
and robust TR algorithm. The experiment is carried out
on the flower image (see Fig. 6). The observed pixels are
perturbed with additive noise generated from the standard
two-component Gaussian mixture model (GMM) with proba-
bility density function (1−γ )N(0, σ 2

A)+γ N(0, σ 2
B). N(0, σ 2

A)

represents the general Gaussian noise disturbance with vari-
ance σ 2

A , and N(0, σ 2
B) with a large variance σ 2

B captures
the outliers. The variable γ controls the occurrence proba-
bility of outliers. Unless specified otherwise, the observation
rate is set to p = 0.5, and the GMM noise parameters
σ 2

A = 0.001, σ 2
B = 0.25, γ = 0.5.

First, we investigate the parameter sensitivity of the adaptive
strategy in (9) and (17), along with the patch size m and pixel
overlap o. Fig. 4 depicts the average PSNR of the recovered
image versus ηc, ηv, ησ , vmax, σmin, and cmin under different
outlier noise variance σ 2

B using HQTRC and C2FRTRC. As
shown, C2FRTRC outperforms HQTRC over a wide range of

Fig. 5. Left: average PSNR versus outlier occurrence probability γ under dif-
ferent parameters vmax and σmin. Right: average PSNR versus p for different
M-estimators.

parameters. Specifically, for C2FRTRC, a small value of ηc,
ησ , cmin, σmin, and m can result in a relatively higher PSNR,
while a larger value of ηv, vmax, and o can yield a higher
PSNR. One can also observe that when ηc and cmin increase to
relatively large values, the algorithm cannot properly alleviate
the effect of the outliers and the performance degrades.

Second, we evaluate the performance of the weighted strat-
egy on local tensor refinement using the global completion
result. Apart from LPRTRC which corresponds to the set-
ting vmax = 0 and σmin = +∞, we also test the results of
completion with nonsoft weight (vmax = 0.2, σmin = +∞)

and without missing entry filling from the global completion
result (vmax = 0, σmin = 0.3). The average PSNR for differ-
ent outlier occurrence probability γ is shown in Fig. 5 (left).
One can observe that compared with local-only LPRTRC, the
completion performance is greatly improved by incorporat-
ing the global completion information. The best performance
of C2FRTRC verifies that both filling the missing entries
with the result of global completion and assigning weights
using the soft weighting strategy can improve the completion
performance.

Third, we test the performance using different M-estimators.
The parameter settings for the Welsch loss function are the
same as the Cauchy loss function. For the Huber estimator, the
parameters ηc and cmin are set to 2 and 0.05, respectively. The
curves of average PSNR with different M-estimators are shown
in Fig. 5 (right). As shown, the M-estimators yield similar
performance, showing the flexibility of the proposed robust
method with different selections of M-estimators.

To better illustrate the performance improvement with
the proposed framework, we show a visual example of
the recovered image using different weight parameters and
M-estimators in Fig. 6. As can be seen, compared with global
tensor completion using HQTRC, the proposed coarse-to-fine
framework can improve the texture details, especially in the
heavy outlier scenario (2nd and 3rd rows). Further, the global
information can also help local patch tensor refinement for
accurate estimation of the missing pixels.

2) Performance Comparison With Other Algorithms: In
this part, we compare with existing tensor completion algo-
rithms for different noise environments. We use four images
(shown in Fig. 7) and add different noise to each image.
Specifically, for image flower, all observed pixels are perturbed
with Gaussian noise with zero mean and variance σ 2

G. For
image cruise, GMM noise with outlier occurrence probability
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Fig. 6. Example of the recovered images (partially enlarged) using different parameters. From top to bottom row: c = 0.2, 0.5, 0.8. (a) Original partially
enlarged image. (b) Noiseless images with missing entries. (c) Noisy image with missing entries (final observed image). (d) and (e) Recovered images from
HQTRC and LPRTRC. (f) and (g) Recovered images from C2FRTRC for different pairs vmax and σmin: {vmax = 0, σmin = 0.3} and {vmax = 0.2, σmin = +∞}.
(h)–(j) Recovered images from C2FRTRC using different M-estimators: Huber, Welsch, and Cauchy.

Fig. 7. From top to bottom: “flower”, “cruise”, “girls” and “house”. For each image, (left) Average PSNR versus noise parameter γ /σ 2
G for different

observation rates p = 0.3, 0.5, 0.7. (Right) example of the recovered images (p = 0.5, γ = 0.4/σ 2
G = −20 dB). Best viewed in ×2 sized color pdf file.

γ is added to the observed pixels. For image girls, γ × 100%
of the observed pixels is perturbed with salt and pepper noise.
While for image house, γ × 100% of the observed pixels is
replaced with random values in the range [0, 1].

We investigate the performance on the four images for
different settings of the noise parameter γ and observation
rate p. The average PSNR for different algorithms is shown
in Fig. 7 (left), and an example of the recovered images is
shown in Fig. 7 (right). It can be observed that the proposed
C2FRTRC obtains the overall best performance for different
noisy environments. Specifically, LPRTRC can achieve the
similar performance to C2FRTRC in Gaussian noise and non-
Gaussian noise with small number of outliers (γ ≤ 0.2). While
in heavy noise, C2FRTRC is guided by the global prior which

can further enhance the performance, resulting in the better
performance than LPRTRC. One should also notice that when
p = 0.7 and γ = 0 (i.e., noise-free case), TNTV, TRNN, and
TNN may outperform the proposed method. However, these
algorithms suffer from the severe performance degradation
with a small number of outliers (i.e., γ = 0.1).

B. Video Completion

In this part, we compare the performance of the proposed
method with existing robust tensor completion algorithms in a
video completion task. The completion performance is evalu-
ated using four color video fragments from the YUV dataset.5

5http://trace.eas.asu.edu/yuv/
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TABLE I
COMPLETION PERFORMANCE COMPARISON FOR DIFFERENT ALGORITHMS ON FOUR VIDEO SEQUENCES WITH DIFFERENT MISSING PATTERNS

Some frames of the original videos are shown in Fig. 8.
For each video, a sequence of 30 frames is selected, and
each frame is resized to 144 × 180 to obtain a tensor of
size 144 × 180 × 3 × 30. Similar to the previous section,
a tensor with noisy and missing (partially observed) entries
is generated by selecting a fraction of pixels as observed
pixels and then adding i.i.d. noise from a given distribu-
tion to the observed pixels. For TRNN and HQTRC, the
observed tensor is reshaped to an 11-order tensor of size
3 × 3 × 4 × 4 × 3 × 3 × 4 × 5 × 3 × 5 × 6. For !1-SNN,
W-ST !1-TNN and TNTV, we reshape the tensor to a 3-order
tensor of size 144 × 180 × 90.

We apply different types of missing patterns and noise dis-
tributions to each video fragment. In particular, for video
“tempete”, a fixed sentence is masked on all frames so
that the video contains a “watermark”, and γ × 100% of
the rows in each frame is perturbed with outliers generated
from a Gaussian distribution with zero mean and variance
0.25. For video “Stefan”, 60% of the rows is randomly and
uniformly selected as the observed rows, and the observed
data is perturbed with salt and pepper noise with probability
γ × 100%. For video “foreman”, a watermark moving from
the top-left to the bottom right of the video is added as the
missing pattern, then GMM noise with σ 2

A = 0.001, σ 2
B = 0.25

and outlier occurrence probability γ is added to the observed
pixels. Finally, for video “bus”, we use a time-variant missing
pattern to simulate the effect of the raindrop, and a Gaussian
noise with zero mean and variance σ 2

G is added to the observed
data. Representatives of the observed noisy frames are shown
in Fig. 8.

Table I shows the average PSNR and SSIM for differ-
ent algorithms on four video fragments in different noise

environments. The SSIM of a video is computed as the
average SSIM across frames. As shown, C2FRTRC achieves
the overall best performance, and LPRTRC yields the second-
best performance. Specifically, C2FRTRC achieves the highest
PSNR/SSIM in most cases. In Gaussian noise environments
with σ 2

G ≤ −15 dB, LPRTRC outperforms C2FRTRC. Fig. 8
shows an example of the recovered frames from the four frag-
ments in heavy noise environments. As can be seen, only
the proposed C2FRTRC successfully recovers the frames of
all videos. Further, similar to image completion, C2FRTRC
yields the best visual results having the most clean and detailed
texture.

Fig. 9 reports the average running time of all algorithms
on the four videos in Table I. It can be seen that the coarse
completion HQTRC incurs a time cost similar to !1-based
algorithms !1-SNN, !1-TNN, and !-TRNN. For C2FRTRC,
the time cost is higher due to the extra refinement step for
local patch tensors. As refinement for each patch tensor is
independent, the time cost of C2FRTRC could be reduced
using parallel computation. Although the local fine stage incurs
the additional time cost, the performance improvement is
significant.

VII. CONCLUSION

We proposed a novel two-stage coarse-to-fine tensor com-
pletion framework for the robust visual data completion. A
global coarse completion stage is first performed, whereby
most of the outliers are identified. Then, guided by the result of
global completion, a local patch refinement process is applied
by performing robust tensor recovery incorporating both local
and global information. Further, a new M-estimator-based TR
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Fig. 8. From top to bottom: video tempete, stefan, foreman, and bus. For each video: (left) the original frames (frame number: 1, 10, 20) and corresponding
observed noisy frames with missing pixels (γ = 0.5/σ 2

G = −15 dB) and (right) recovered 20th frame using different algorithms. Best viewed in ×2 sized
color pdf file.

Fig. 9. Average running times of four videos corresponding to Table I.

recovery algorithm using HQ approach is proposed, which can
accurately complete and recover the tensor in the presence of
a large number of outliers. Numerical experiments on image
and video completion in various noise environments demon-
strate the advantage of incorporating global coarse completion
with local patch refinement. The results also demonstrate that

the proposed method can outperform existing state-of-the-art
robust tensor completion algorithms, especially in heavy noise
settings.

APPENDIX

PROOF OF THEOREM 2

From (25) and (26), we have

Lt+1 = 1
N

N∑

k=1

(
Z(k),t+1 + 1

µ
G(k),t

)

= 1
N

N∑

k=1

(
Z(k),t+1 + 1

µ

(
G(k),t+1 − µ

(
Z(k),t+1 − X t+1

)))

= X t+1 + 1
µN

N∑

k=1

G(k),t+1. (30)

Substituting (30) into (25) we get

Gt+1
s = λV t+1 ◦

(
X t+1 − M

)
(31)
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where Gt+1
s = ∑N

k=1 G(k),t+1 and V t+1 = W ◦ Qt+1.
Since Wi1...iN = 0 for (i1, . . . , iN) /∈ #, we get that
(Gt+1

s )i1...iN = 0 for (i1, . . . , iN) /∈ #. Next, we will show
that limc→0(Gt+1

s )i1,...,iN = 0 for (i1, . . . , iN) ∈ #.
Here, we use the Welsch function as an example. By apply-

ing the Welsch function to the second term on the RHS of (25),
we have that for all (i1 . . . iN) ∈ #

Qt+1
i1...iN (Mi1...iN − Lt+1

i1...iN )

= exp

(

−
(Mi1...iN − X t

i1...iN )2

2c2

)

×
(
Mi1...iN − X t+1

i1...iN − 1
µN

(Gt+1
s )i1...iN

)
. (32)

Based on the assumption that ‖X t+1 −X t‖2
F < ∞, we get that

|X t+1
i1...iN −X t

i1...iN | ≤ P, where P is some finite value. Thus, we
have

a ≤ Qt+1
i1...iN (Mi1...iN − Lt+1

i1...iN ) ≤ b (33)

where

a = exp



−

(
E t

i1...iN

)2

2c2




(
E t

i1...iN − 1
µN

(
Gt+1

s

)

i1...iN
− P

)

b = exp



−

(
E t

i1...iN

)2

2c2




(
E t

i1...iN − 1
µN

(
Gt+1

s

)

i1...iN
+ P

)

where E t
i1...iN = Mi1...iN − X t

i1...iN . For the Welsch func-
tion f (x) = c2(1 − exp(−x2/(2c2))), x ∈ R, f ′(x) =
x exp(−x2/[2c2]) ∈ [ − ce−0.5, ce−0.5], hence a and b are
bounded for any values of X t

i1...iN . It can be also observed that
both a and b are 0 when c → 0 and E t

i1...iN 3= 0. Therefore, for
E t

i1...iN 3= 0, from (33) we have that limc→0 Qt+1
i1...iN (Mi1...iN −

Lt+1
i1...iN ) = 0. Then, using (31) one can further obtain that

limc→0(Gt+1
s )i1...iN = 0.

The key point of the above analysis is the boundedness of
f ′(x). Since f ′(x) is also bounded for the Cauchy and Huber
functions, a similar result can be derived.

Combining the results above, we conclude that
limc→0(Gt+1

s )i1...iN = 0 for {(i1, . . . , iN) : E t
i1...iN 3=

0}. Further, since {G(k),t} converges to C, we
get that limt→∞ limc→0(G(k),t)i1,...,iN = 0 for
{(i1, . . . , iN) : lim supt→∞E t

i1...iN 3= 0}. Moreover, for
the indices (i1, . . . , iN) for which limt→∞ E t

i1...iN = 0, we
have limt→∞ X t

i1...iN = Mi1...iN , and from (31) one can
obtain limt→∞(G(k),t)i1,...,iN = 0. Therefore, we get that
limt→∞ limc→0 G(k),t = 0.

We also conclude from (26) that {Z(k),t −X t} converges to
0 for all k = 1, . . . , N. Therefore, from (23) we have

lim
t→∞ lim

c→0
Xt+1

〈k,d〉 = lim
t→∞ lim

c→0
,rkd

(
Xt

〈k,d〉 − 1
µ

G(k),t
〈k,d〉

)

= lim
t→∞ lim

c→0
,rkd

(
Xt

〈k,d〉
)
. (34)

From the property of the truncated SVD, we have that,
limt→∞ limc→0 X t+1 = limt→∞ limc→0 X t. Therefore, we
conclude that as c decreases to 0, {X t} converges.
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