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ABSTRACT

Robust tensor completion aims to recover a tensor from par-
tially observed noisy entries that may be contaminated with
large outliers by exploiting its low-rank property. While there
exist several robust tensor completion algorithms, their re-
liance on singular value decomposition (SVD) limits their
scalability. In this paper, we propose a new robust and par-
allelizable tensor completion method using the tubal rank
model. The proposed method rests on tensor factorization,
thus averts the costly SVD iterations, and leverages a dif-
ferentiable, robust correntropy error measure to mitigate the
effect of outliers. Leveraging a half-quadratic technique and
an alternating steepest descent method, we develop a new
SVD-free and parallelizable robust tensor completion algo-
rithm. Numerical results using both synthetic and real data
demonstrate the robustness and efficiency of the proposed
algorithm.

Index Terms— Robust tensor completion, tensor factor-
ization, correntropy

1. INTRODUCTION

Multi-way data processing has attracted much attention in re-
cent years given the variety and sheer amount of data cre-
ated from diverse sources at an unprecedented scale. Tensor
completion is a popular problem in multi-way data analysis in
which the aim is to estimate the missing information from par-
tially observed data. An essential characteristic of real-world
multi-way data (such as image and video data) is its low-rank
property since it often contains redundant information. This
property underlies the ability to successfully perform tensor
completion. To date, many tensor completion algorithms have
been proposed based on various notions of the tensor rank and
were shown to exhibit desirable performance in recovering
the missing entries of the tensor data [1, 2, 3, 4, 5, 6, 7].

In dealing with real-world applications, several challenges
emerge in tensor completion. One challenge is robustness; the
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observed data is often fraught with large outliers due to sys-
tem or human errors. In such settings, the traditional second-
order statistics-based algorithms may suffer from serious per-
formance degradation. To enhance robustness, several robust
tensor completion algorithms have been proposed to alleviate
the negative impact of outliers [8, 9, 10, 11].

Another problem is scalability through parallelism. Paral-
lel computation can greatly improve the algorithm efficiency.
Although existing robust tensor completion algorithms ex-
hibit robust performance in the presence of outliers, they
largely utilize the matrix nuclear norm for regularization,
which requires performing a singular value decomposition
(SVD) operation in every iteration. However, because of the
high computational burden of SVD on large matrices, these
algorithms are generally not amenable to parallel implemen-
tation on multi-core systems such as GPUs.

Motivated by these challenges, we propose a paralleliz-
able robust tensor completion method. The approach utilizes
tensor factorization [5, 6], so the SVD computation can be
avoided. Tensor factorization is theoretically underpinned on
the fact that a best tubal rank-r approximation can be obtained
from truncation of the tensor singular value decomposition (t-
SVD) [12]. Further, to improve the robustness, a correntropy
error measure is introduced for tensor completion. Corren-
tropy is a non-linear information-theoretic similarity measure
that can provably handle the negative effect of large outliers
[13, 14, 15]. Compared with the ¢;-norm, correntropy is ev-
erywhere differentiable [16]. By utilizing tensor factorization
and correntopy, we propose a novel objective function for ro-
bust tensor completion under the tubal rank (t-SVD) model.
Then, an SVD-free and parallelizable algorithm based on a
half-quadratic (HQ) optimization technique [17] and alternat-
ing steepest descent [18] is developed.

2. PRELIMINARIES

2.1. Definitions and Notation

In this paper, uppercase script letters are used to denote ten-
sors (e.g., X), and boldface letters to denote matrices (e.g.,
X). Unless stated otherwise, we focus on third order ten-



sors, i.e., X € CM*Xn2X"3 where nq,no,n3 are the dimen-
sions of each way of the tensor. The notation X'(i,:,:), X(:
,4,:), X (:,:,4) denotes the frontal, lateral, horizontal slices of
X, respectively. X;; denotes the (¢, j, k)-th entry of tensor
X. The Frobenius norm of tensor X is defined as | X||r =

\/Z 31Xkl X = fit(X,[],3) denotes the

Fourier transform along the third dimension. Similarly, X =
ifft(X, [], 3) denotes the inverse transform. The block diago-
nal matrix X € R"™1"3X"2"s jg obtained from tensor X' with
each diagonal block X ) := X (:,:,4).

Definition 1 (t-product [12]). The t-product A x B of A €
RMxn2Xns gpd B € R™*"4X"s g the tensor of size ny X
n4 X ng given by

A x B = fold(bcirc(.A) - unfold(B)) ,

where the operator unfold(-) maps the tensor X to a matrix
X = unfold(¥) = [XWT x@T ... X(”?’)T} " and its in-
verse operator fold(-) is defined as fold(X) = X.

The block circulant operator beirc(+) is defined as in [12].

Theorem 1 (t-SVD [12, 19]). The tensor A € Rt *"2X"s
can be factorized as A = U xS x V*, where U € R > %73
Y € R™X"2X"s qre orthogonal, and S € R™ *™2*"3 s an
f-diagonal tensor, i.e., each of the frontal slices of S is a di-
agonal matrix. The diagonal entries in S(:,:,1) are called
the singular values of A.

Definition 2 (Tensor tubal-rank and tensor multi-rank [20]).
For any tensor A € R™*"™2X"3 the tensor tubal-rank is the
number of non-zero singular tubes of S from the t-SVD, i.e.,

rank(A) = #{i : S(i,4,:) # 0}.

The multi-rank rank of A is a vector v € R™>L with -
th element r; = rank(A(l)). Specifically, rank;(A) =

max (ri, -+« ,Tng)-

2.2. Tensor Completion using Tensor Factorization

Given a partially observed tensor M € R™*"2X"3 ith ob-
served set of entries 2 C [n1] X [ng] X [ns], tensor com-
pletion solves the following minimization problem leveraging
the low-rank property of the tensor

rank;(Z),st. Po(Z—-M)=0, (1)

min
ZERn1Xn2xng
where o denotes the Hadamard (element-wise) product of two
tensors of the same size. For indicator tensor P, Py, is set to
1if (4,7, k) € €2 and 0 otherwise.

The problem in (1) is NP-hard. To address this problem,
several methods were proposed using convex relaxation [4].
Specifically, (1) is relaxed to obtain a nuclear norm-based
convex optimization problem. However, nuclear norm-based

algorithms need to compute an SVD in each iteration, which
may incur a high computational cost. Recently, a tensor fac-
torization based method was developed in [5, 6] under the
tubal rank (t-SVD) model. Specifically, the recovered tensor
M € R"*"2Xn3 can be factorized into the t-product of two
tensors X € R™MX"X"3 gnd ) € R"*"2X"3 where r is the
tubal rank of M [5]. The tensor factorization then solves ten-
sor completion by utilizing the objective function

min J(X,Y) = [P o (M — X Y)|5 . 2)

2.3. Correntropy

Correntropy is a local and non-linear similarity measure
between two random variables within a ‘window’ in the
joint space determined by the kernel width. Given two ran-
dom variables X and Y with a finite number of samples
{x;,y;},, and using the Gaussian kernel as the kernel func-
tion, the correntropy can be approximated by

2
NZH <22>, 3)

where e; = z; — y;. Compared with the /5-norm based
second-order statistic of the error, the correntropy involves
all the even moments of the difference between X and Y and
is insensitive to outliers [13].

3. PROPOSED ALGORITHM

In this section, we develop our robust and parallelizable algo-
rithm using tensor factorization and correntropy. By replac-
ing the /5 error measure in (2) with correntropy, we obtain the
maximum correntropy criterion-based optimization problem

ni N2 N3

=22 > Purlol

=1 j=1 k=1

maxJ X, V) X % V)ijk)
] 0)
where G, () = exp(—55z). In general, (4) is non-convex
and is difficult to be directly optimized. To tackle this diffi-
culty, we utilize a half-quadratic (HQ) optimization technique
and alternating steepest descent to solve the problem.

zyk_(

3.1. Optimization via Half-quadratic Minimization
According to the Proposition 1 in [14], we have

max oG, (e) = min (e*w + p(w)) , )
e e,w

where ¢ is a convex conjugated function of G, (e) and w is
an auxiliary variable. Specifically, for a fixed e, the minimum
of w is reached at w = G, (e). Thus, optimizing the non-
convex correntropy in terms of e is equivalent to minimizing
an augmented cost function in an enlarged parameter space
{e,w}. Therefore, by substituting (5) in (4), the correntropy-
based objective function in (4) can be transformed to



2 o .

where
JuQ(X, Y, W) = [[VWoPo(M—=XxY) [[3+8a(W) (7)

and @ (W) =312, 3702, D702 Pijk (Wij). Therefore,
the optimization is reformulated as a weighted tensor factor-
ization problem. Next, we develop a method based on alter-
nating steepest descent (ASD) [18] to efficiently solve (7).

3.2. Alternating Steepest Descent-based Algorithm

The algorithm is described as follows:

1. Optimizing W: According to [14, 17] and (5), given
the fixed factors X and ), the optimal solution of W;;, for
(4,4, k) € € can be obtained as

Wiji = Go(Mije — (X% Y);5), (4, 5,k) € 2. (8)

Since computing W, for (4,5, k) ¢ € does not affect the
solution of (4) due to the multiplication with P, in the fol-
lowing parts we use W, for all the entries to simplify the
expressions.

2. Update X and ): By fixing W, we solve the following
problem

1}(11§1|\\/W0P0(M—X*y)\|§. 9)

Then, according to Definition 1, (9) can be rewritten as

min |[VW o Po (M —bcirc(X)Y)||%2. (10

Using the block-circulant diagonalization [20], we obtain

beire(X)Y = (Fl © 1, )XY =UY , (11)

whereU = F'X,F~' = F,!®I,, and A = unfold(A).
F,, € C"*"s is the Discrete Fourier Transform (DFT) ma-
trix, ® is the Kronecker product and I,,, € R"**"™ is the
identity matrix. F;; can be computed as Fgal = F, /n3,
where X ™ denotes the Hermitian transpose of X. Finally,
(10) can be reformulated as

min J(U,Y) := %H\/VV oPo(M-UY)|%. (12

Here, a multiplicative factor of % is added for convenience.
The partial derivative of .J(U,Y") with respect to U can be
computed as

~ K

gy =0J/0U =W oPo(M-UY)Y . (13)

Note that X = FU is a block diagonal matrix with F' =
F~!x ns. Then, we follow the method in [7] and force X
to be block diagonal. In particular, by defining the operator
bdiagz(+), which sets the non-block-diagonal entries of a ma-
trix to zero, the updated gradient can be obtained as

gy = F~ ' bdiagz(Fgy;) - (14)

The steepest descent step size ug; for gy, can be obtained
using exact line-search

ny = llgulz/IVW o Po(gyY)|E (15
and the matrix U can be updated as
U™ =U' - utrgty - (16)

Similarly, by fixing U, the partial derivative of J w.r.t. Y and
the corresponding step size can be obtained as

gy =90J/0Y = -U*(WoPo(M-UY)),

— . a7
ny = llgy I3/IVW o Po (Ugy)|s.
The above update process could suffer from slow conver-

gence speed when directly applied to image and video com-

pletion tasks. To tackle this problem, following [18], we scale
the gradient descent direction for Y in (17) by (U*U)™!,

i.g., g/Y = (.U*U)—l 9y and the corresponding step size u’},

with exact line-search is

Wy = (93,95 /IVW o Po(Ugy )5, (18)

where (A, B) = >, ;, Aj;Bij. Therefore, the matrix
Y at the ¢-th iteration can be updated as

e R (P A VR AN ()
where 0 < A\ < 1is a free parameter to be chosen.

We call the above algorithm ‘Half-Quadratic based Ten-
sor Completion by Alternating Steepest Descent’” (HQ-
TCASD), and the pseudocode is summarized in Algorithm
1. We should remark that the matrices U (X) and Y have
a block structure, so the matrix computation can be pro-
cessed block-by-block in parallel. Also, for a tensor A we
have F'A = unfold(fft(A, [],3)), thus the conventional Fast
Fourier transform (FFT) operation can be used in (14) instead
of matrix multiplication to further speed up the computation.

Algorithm 1 HQ-TCASD

Input: Indicator tensor P, partially observed tensor P o M,
rank r and parameter o, \.

1: initial matrices U° and YO, t=20

2: repeat

3 compute Wt using (8).

4 compute U using (16).

5

6

compute Y’ "
t=t+1
7: until stopping criterion is satisfied
Output: Recovered tensor M = fold(Uf’Yt).

using (19).




4. EXPERIMENTS

In this section, we evaluate the performance of the proposed
HQ-TCASD algorithm. We compare to existing tensor com-
pletion algorithms, including TCTF [5] and TNN [4], and
robust tensor completion algorithms, including SNN-L1 [8],
SNN with Welsch loss (W-ST) [9], TRNN-L1 [10] and TNN-
L1 [11]. In the experiments, the adaptive kernel width selec-
tion method [15] is applied to HQ-TCASD and W-ST. The
run-time of the proposed methods on a GPU (designated with
suffix ’-P’) is reported by simply using the ‘gpuArray’ data
structure in MATLAB. All algorithms are implemented us-
ing MATLAB r2019b on a standard 16-GB memory PC with
a 2.6-GHz CPU and an NVIDIA RTX3070 GPU, and the
parameters for each algorithm are tuned to achieve the best
performance in each task. More experimental results are in-
cluded in an extended version of this work [21].

4.1. Synthetic Data

First, we compare the performance of tubal rank-based meth-
ods using synthetic data. The tensor M with tubal rank r
is obtained by the t-product of two tensors whose entries are
generated from a zero mean Gaussian distribution with unit
variance. The observed entries are randomly and uniformly
selected with sampling rate 0.5. The performance is evaluated
using the relative error | M — M| /|| M|| ., where M is the
recovered tensor. The tensor size is set such that n; = ny and
ng = 20. The observed entries are perturbed by noise gener-
ated from a Gaussian mixture model (GMM) with probability
density function (pdf) 0.9N(0,0.01) + 0.1N(0, 1). The rank
r is set to 0.05n;. We gradually increase n; from 100 to
1000 and average the relative error over 20 Monte Carlo runs.
The average relative error and running time are shown in Fig.
1. The proposed algorithm consistently yields significantly
lower relative error and smaller computation time than other
algorithms. Further, the parallel computation can speed up
the computation of HQ-TCASD by an order of magnitude.
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Fig. 1. Average relative error (left) and average run-time
(right) as function of n; under GMM noise.

4.2. Real Data

Second, we investigate the performance using real image and
video data. We evaluate the robust completion performance of

the different algorithms using two images ‘cow’ and ‘horse’
with resolution 1920 x 1080, and two 30-frame gray-scale
videos ‘flamingo’ and ‘scooter’ with resolution 1280 x 720
from the DAVIS 2016 dataset [22] . The observed pixels are
randomly and uniformly selected with sampling rate 0.5. For
‘cow’ and ‘flamingo’, GMM noise with pdf 0.8 N (0,0.001) 4+
0.2N(0,1) is added to the observed pixels. For ‘horse’ and
‘scooter’, 10% of the observed pixels are perturbed by Salt
and Pepper noise, while the remaining observed pixels are
contaminated with Gaussian noise with pdf N (0, 0.001).

The multi-rank for HQ-TCASD is set to [120, 20, 20] and
[80, 80, ...,80] for the image and video data, respectively.
The parameter A is set to 0.2. The average PSNR and run-
time over 20 Monte Carlo runs are shown in Fig. 2. HQ-
TCASD achieves the highest PSNR for all data, and the paral-
lel computation reduces the computational cost considerably
compared with non-parallel algorithms. Examples of the re-
covered images for ‘cow’ and ‘flamingo’ are shown in Fig. 3.
As shown, HQ-TCASD yields visually clearer texture than
the other methods.
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Fig. 3. Images/frames (cropped) using different algorithms.

5. CONCLUSION

We proposed a novel robust and parallelizable tensor com-
pletion method. The approach rests on tensor factorization,
thereby avoids the costly computation of SVD, and lever-
ages the robust correntropy measure to alleviate the negative
impact of large outliers. An efficient robust tensor comple-
tion algorithm, HQ-TCASD, is proposed based on a half-
quadratic minimization technique and an alternating steepest
descent method. Experiments with both synthetic and real
data demonstrate the efficiency and superior performance of
the proposed method compared to existing robust completion
algorithms.
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