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Abstract—The evaluation of classifiers’ robustness against
adversarial attacks is typically performed through metrics based
on the minimal perturbation required for misclassification. The
conventional method of generating these perturbations relies on
setting a limit on the maximum allowed perturbation (restricted
attack method) and a non-targeted attack formulation. This
approach, however, disregards any relationships between classes.
Our paper introduces a novel, non-targeted, bound-restricted
method for achieving coarse misclassification, so that the per-
turbed feature is classified outside its true coarse class. We
present an efficient, single-step solution to the coarse misclassifi-
cation problem and analyze its computational requirements. Our
experiments showcase the superiority of our method, surpassing
state-of-the-art in terms of both the perceptibility of adversarial
examples and runtime.

Index Terms—Adversarial Attacks, Coarse misclassification,
non-targeted formulation, bound-restricted attacks.

I. INTRODUCTION

Machine Learning (ML) models for classification have
gained widespread adoption, playing critical roles in various
domains, including safety- and mission-critical applications
[1]1-[3] due to their remarkable performance. However, numer-
ous studies over the past decade have revealed that ML models
can be easily deceived by well-designed additive perturbations
[4]-[7], making them highly vulnerable to adversarial attacks
and significantly lacking in robustness.

Adversarial Training (AT), first introduced in [5] and later
advanced in [8], is widely considered as the most effective
defense mechanism for ML models against adversarial attacks.
It uses a minimax formulation, which balances the trade-
off between the model’s accuracy on clean examples and
robustness against adversarial examples. The method trains
ML classifiers by exposing them to adversarial examples
generated through an attack method, instead of relying solely
on clean feature vectors. This allows the model to learn to
recognize and defend against the worst-case scenarios during
training, resulting in a more robust classifier. The use of the
minimax formulation in AT has inspired researchers to develop
new attack methods that aim to enhance the robustness of ML
models against adversarial attacks.

Conventional attack methods used in AT aim to generate
adversarial examples that lead to misclassification, regardless
of the relationships between classes. However, the severity
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of misclassification can vary greatly depending on the rela-
tionship between the true and predicted labels. For instance,
misclassifying a ‘cup’ as a ‘can’ is clearly less severe than
misclassifying a ‘stop sign’ as a ‘truck’, which could have
serious consequences. To address this issue, this paper presents
a novel approach, following the work of [9], that considers the
relationships between classes. The approach defines a mapping
function for each example that returns a coarse prediction
based on the fine classification.

Adversarial perturbation attacks in AT can be categorized
into non-targeted and targeted attacks, based on the goal of
the attacker. Non-targeted attacks aim to induce any mis-
classification, without consideration for the predicted label
[10]. On the other hand, targeted attacks seek to alter the
prediction to a specified target class [11]. Depending on the
attack formulation, adversarial examples are categorized into
three main categories: maximum allowable attacks (bound-
restricted attack formulation), minimum norm attacks, and
regularization-based attacks [5]. In the maximum allowable
attack, the perturbation is constrained within a defined bound
€, such as an [, bound [4], [5], [12], [13]. The minimum
norm attack seeks to generate the minimum perturbations that
induce misclassification [10], [14], while the regularization-
based formulation aims to generate adversarial examples by
adding a perturbation to the input that minimizes a regular-
ization term subject to a constraint on the adversarial loss
[11]. [15]. Previous studies have found that the maximum
allowable attack formulation is the most efficient in generating
adversarial examples [S]. It can also be used to produce the
minimum perturbations by iteratively adjusting the bound. In
AT, a bound e is set to represent the level of imperceptibility
for each dataset. If an attack requires a higher perturbation
than e, it is considered detectable. The e value is set to 0.3 for
MNIST and 8/255 for CIFAR-10 in the original AT work [5].
This standard has been followed by subsequent AT methods,
including [8], [16], [17]. This paper focuses on non-targeted
and bound-restricted adversarial attacks to address the issue of
coarse misclassification, with the long-term goal of improving
the robustness of ML classifiers.

Next, we summarize the contributions of this work. First,
we formulate an optimization problem for generating bound-
restricted, non-targeted adversarial examples for coarse mis-
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classification. Second, inspired by [8], we present a fast single-
step approach extending the gradient descent based method to
solve the formulated problem. Using the commonly used cross
entropy loss, we quantify the number of additional gradients
needed, compared to standard misclassification formulations.
Third, using a Neural Network (NN)-based image classifica-
tion model, we demonstrate the effectiveness of our approach
in obtaining minimum coarse perturbations compared to [10],
which explores all targets outside the true coarse class. Our
approach demonstrates a reduction in both the amount of
required perturbations and runtime.

II. RELATED WORK

Evaluating the robustness of classifiers involves using attack
methods to determine minimum perturbations that cause mis-
classification. The literature is abundant with gradient-based
approaches in white-box settings [18]. The most well-known
is the Fast Gradient Sign Method (FGSM) [4], which computes
the gradient of the loss function w.r.t the input feature vector
using back-propagation [19] to generate perturbations. The
Projected Gradient Descent (PGD), an iterative version of
FGSM [20], was proposed to improve the likelihood of induc-
ing misclassification by taking iterative steps in the direction
of the negative gradient of the loss function. Existing state-of-
the-art methods, including Automatic PGD [13], Momentum-
based FGSM [21], and FGSM with random initialization [8],
are variants of the FGSM and PGD methods and do not
consider the relationship between labels of interest. In contrast,
we introduce a new formulation focused on inducing coarse
misclassifications, using a mapping function from finer to
coarser classes.

The authors in [9] and [10] focus on inducing coarse
misclassification in classifiers, similar to this paper. However,
their method uses a minimum norm attack formulation, which
has limitations in terms of adversarial example imperceptibil-
ity and computational cost compared to the bound-restricted
formulation we use [5]. Additionally, they use a targeted attack
approach, which requires exploring all possible targets outside
the true coarse class, making it impractical for large datasets
such as CIFAR-100 (100 classes) and Imagenet (1000 classes)
[22], [23].

ITI. CLASSIFICATION MODEL AND THE MAPPING OF
LABELS

We model the classifier as a function k : RN — [M], which
maps a feature vector = € R" to one of M possible (fine)
classes, where [M] := {1,2,..., M}. The predicted fine class
is obtained by finding the maximum of the functional f :
RY — AM_ where AM is the probability simplex over M
dimensions, with entries f,,, m € [M], according to:

h(z) = argmax fi,(z) . (1)

me[M]
For mapping the labels, we use a grouping function T : [M] —
[M,] to transform fine labels into coarser representations (also
referred to as super labels), where M, < M is the number of
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Fig. 1: Classification model and the coarse prediction.

coarse classes. The function T allows us to define the coarse
class sets as:

Sii={m € [M] : T(m) =i},: € [M,], (2)

where S; is a group of fine labels that belong to the i-th
super class. The relationship between the fine prediction, the
classifier, and the coarse class is illustrated in Figure 1.

IV. COARSE MISCLASSIFICATION ATTACKS

Given example z, the goal of a standard white-box additive
attack is to obtain the minimum perturbation vector, § € RV,
such that h(z) # h(z +4). Given some input feature vector =
and its true label y, the maximum allowable attack formulation
(bound-restricted) maximizes a loss function, £ : AM x
AM s R, between the true label vector representation and the
output f(z+4§) of the perturbed vector, subject to a constraint
on the perturbation norm [4],

max L(f(z+4),1,) subjectto [ <e, (3)

where 1, € {0,1}* is the 1-to-M encoding of the true
class, commonly known as the one-hot representation. This
formulation can be extended to targeted attacks as

méinﬁ(f(:r +46),1;) subjectto ||d|l, <e, (€]

where ¢ € [M] is the target class. The minimum norm
approach, as described in [5], seeks to find the minimum
perturbations that cause non-targeted and targeted misclassifi-
cation. This is achieved by solving the following optimization
problems:

main |0]|, subject to h(z) # h(z +4), (5)

and
msiﬂ [|6]lp subject to h(zr+d)=t. (6)

The approach finds a solution by solving Egs. (3) and (4)
incrementally, for larger values of e, until misclassification
occurs. The process is outlined in Algorithm 1.

Equation (3) is designed to cause misclassification without
regard to any relationships between classes. In this paper,
the goal is to generate non-targeted perturbations that cause
a misclassification in the coarse label. To achieve this, a
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Algorithm 1 The minimum non-targeted (targeted) perturba-
tions using bound-restricted formulation [5].

Algorithm 3 The minimum non-targeted perturbations for the
coarse misclassification using (9) (Our approach).

Input: z, h, initial bound ¢, bound increase step e, (target £).
Output: Approximate solution of (5) ((6)), &*

1: While h(z) = h(z + ) (h(z + 8) # 1)

2: Increase bound € + €+ €5

3:  Find ¢ as the solution of (3) ((4)) using €

4: Obtain §* + ¢

Input: =, h, T, initial bound €, bound increase step €.
Output: Approximate solution of (10), 87
1: While h(z + 8) € Sr(n)
2:  Increase bound € +— €+ €
3:  Find 4. as the solution of (9) using e
4: Obtain &7 + 6,

Algorithm 2 The minimum perturbation for the coarse mis-
classification using targeted attacks [10].

Input: =, h, mapping T".
Output: Non-targeted coarse perturbations, .

1: For all t € St (44,

2:  Find &; as the solution of (6) with target ¢ using Algorithm 1

3: Find t. := argmin, g [[6¢]l,, Obtain 8. + ;.

T(h(z})

perturbation vector 6. € RY is found such that the super-
class set Sz (p(e)) is not equal to the result of the perturbed
input h(z + 6,), i.e.,

h(z + 6c) & St(n(z)) - @)

An approach to extend the maximum allowable attack
formulation for non-targeted coarse misclassification is to use
the targeted attack formulation in (6). As described in [9],
[10], this involves exploring all labels in the complement set
S&"(n(::) := [M] \ Sp(n(z)) as targets in (6) and selecting the
target that results in the minimum perturbation with respect
to (w.r.t.) a distance measure, commonly the I, norm. This
process is summarized in Algorithm 2.

Finding the minimum perturbation for coarse misclassifi-
cation using Algorithm 2 requires solving the optimization
problem in (6) |S}. h(I))| times, where | - | denotes the
cardinality of a set. This leads to an increase in the number
of optimization problems to be solved as the number of labels
grows, making the approach computationally expensive. In this
paper, we present a more efficient formulation in the following
subsection.

A. Cost-Efficient Coarse Misclassification

Given the effectiveness of AT as a defense mechanism, it is
crucial to develop attack approaches that are computationally
efficient. This is because AT involves training with adversarial
examples (AEs) instead of clean representations. Our proposed
formulation reduces the number of optimization problems
needed to find the coarse perturbation 4. by seeking to obtain a
discriminant coarse probabilistic representation from the fine
prediction vector f(z). This representation is defined using
the discriminant score of each set S; in the coarse prediction,
which is calculated as the sum of the fine prediction scores
for all classes in that set. This is expressed in Equation (8).

QEZ(I) == Z fm(I); RS [Mc] . (8)

meSs;

These entries are then combined into vector g(z) € AMe,
As an example, consider M = 6 and M, = 3 such that
S; ={1,2}, S2 = {3,4}, and S5 = {5, 6}. Given observation
vector = and its label representation 1, = [0 0 0 0 1 0],
if the output probabilities of the classifier are f(z) =
[0.10.10.200.60]", then, based on (8), the coarse represen-
tative scores are g(z) = [0.2 0.2 0.6] " with 17,y =[00 1] .

Our proposed approach uses a coarse loss function, L. :
AMe x AMe 4 R, and vector g to formulate a bound-
restricted, non-targeted coarse attack, given some ¢, as follows:

:rr(ls_in Le(q(z +6c),IT(y)) subjectto bl <e. (9

The minimum coarse perturbations can be found by solving

E%_Z.ELH(SCHP subject to  h(z +9d.) ¢ St@y),  (10)
using a bound-restricted approach, similar to Algorithm 1
for standard misclassification. Algorithm 3 presents the non-
targeted coarse misclassification procedure, which starts with
an initial bound and uses (9) to generate disturbances de.
At each iteration, the bound is increased until the coarse
prediction changes. The minimum coarse perturbations are
defined as the solution of (10).

Consider that the number of bound values to be tried in
order to obtain the minimum coarse perturbations is L. The
work in [10] requires solving L|S}(h($))| optimization prob-
lems, whereas our approach only requires solving L problems.

B. Proposed Solution

In this section, we present an efficient, single-step solution
to the coarse misclassification problem in (9). Our approach
is inspired by the solution to the standard misclassification
problem outlined in (3).

The FGSM method, as described in [4], uses a single-
step approach to generate non-targeted perturbations for any
misclassification with respect to a bound e. The method utilizes
the I, norm to produce the perturbation, calculated as

8 = e sign (VL (f(z +6),1y)) , (11

where sign(.) represents the signum function and V is the
gradient operator. The gradient is taken with respect to the
perturbation, §, and the loss function, £, is evaluated for the
altered input, f(z+4), and the true label, 1,. In a recent work
[8], known as random FGSM (rFGSM), the authors propose
an alternative approach to generate perturbations. Instead of
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starting with a zero vector, the perturbation vector is initialized
randomly, as follows:

6+ U(—¢,€)
d + 6+ € sign (Vaﬁ(f(ii +4), “y))

4 + max(min(é, €), —¢) ,

(12)

where U(—e, €) generates a uniform random vector for which
each entry is within the interval [—e,€]. Despite the random
initialization of the perturbation vector, rFGSM remains a
single-step method as it only requires computing the gradient
once for each input x. In [8], it is shown that rfFGSM (12)
outperforms the conventional FGSM in (11). In addition, for
the task of AT, it performs on par with the well-known
iterative FGSM (iFGSM) [12], also referred to as the Projected
Gradient Descent attack [S], while being less computation-
ally intensive. The reason for the reduction in computational
requirements is that in rFGSM, the gradients are calculated
only once, whereas in iFGSM, multiple gradient calculations
are necessary.

Therefore, in this paper, we extend the solution in (12) for
the standard bound-restricted attacks to our proposed coarse
misclassification optimization problem in (9) to generate the
coarse perturbations 4,. Given a mapping function T, we
generate the coarse perturbations . by using the coarse
prediction vector ¢ instead of the fine prediction vector f.
We present the fFGSM for coarse misclassification (fFGSMc)
as follows:

8e +— U(—¢,¢)
8, < 6.+ € sign (vgc Lo(q(z+52), nm,)))

d. + max(min(§,, €), —€) .

13)

The computational cost of the proposed solution in (13) is
largely determined by the calculation of the gradients of the
loss functions £ and £, with respect to ¢ and 4., respectively.
It requires computing additional gradients when compared
to the standard solution in (12). We provide a theoretical
specification of these additional gradients using the cross
entropy loss in the following theorem.

Theorem 1. Given a mapping function T, cross entropy losses
L and L.wrt. M and M. entries, respectively, an observation
vector = and its true fine class y, using (13) to generate
coarse perturbations é. for the goal of coarse misclassification
requires an additional |St(y)| — 1 discriminant functionals
gradient computations when compared to generating standard
perturbations for any misclassification using (12).

Proof. By the definition of the one-hot encoding representa-
tion of the true class and the cross entropy loss, the standard
loss is

L(f(z+6),1y) == Y Ty(m)logfm(z+6). (14)
me[M]
which reduces to
L(f(z+6),1y) = —log fy(z +9) . (15)

The gradient of (15) w.r.t. 4 is

VsL(f(z +6),1,) = %(i;)&

Next, we use the one-hot encoding coarse representation of
the true class obtained using mapping 7', and the cross entropy
loss w.r.t. M, entries for the coarse case. We have

EC(Q(I+5C):HT(y)) = Z ﬂT(y)(i)logQ§(I+5c): (17)
i€[M.]

(16)

which can be reduced to

-CC(Q(I+68):1]T(y)) = _IUgQT(y)(I+5C) . (18)
Using (8), (18) can be rewritten as
Le(q(z + de), Ip(y)) = —log Z filz+6:). (19
1€S7(y)
The gradient of (19) w.r.t. 4, is obtained as
—Vs. Yicsp, filz +6c)
Vs.Lo(g(z480), Ir(y)) = SR (20)

Ziesﬂy) fi(z +6.)

Given the distributive property of gradients, the calculation
of gradients in (20) requires |Sz(y)| discriminant functionals.
However, for the standard case in (16), only one discriminant
functional representing the true fine label needs to be calcu-
lated. Thus, our proof is complete. H

V. EXPERIMENTAL RESULTS

In this section, we present an image classification example
to demonstrate the superiority of our proposed approach, as
compared to the approach in [10] (Algorithm 2), in terms of
the minimum perturbations required to cause coarse misclassi-
fication. Although Algorithm 1 has a different goal of inducing
any misclassification, we compare its performance with our
proposed algorithm in terms of imperceptibility and runtime,
using it as a baseline. This comparison allows us to assess the
additional resources required w.r.t. different mappings.

For imperceptibility, we use two evaluation metrics. First,
we use the I, norm for p € {0, 00}, defined for 6 or J, as

[6llsc = maxnepny[6(n)], and [[d]lz = /3, cny 16(n)[%,

respectively, where d(n) is the n™ entry of vector 4. Second,
we use the Structural Similarity Index (SSIM) presented in
[24]. The SSIM metric is a measure of the structural similarity
between two images and its values lie in the interval [0,1]. A
value of 1 indicates that the two images are identical, taking
into account luminance, contrast, structural measurements, and
pixel differences.

‘We utilize the Fashion MNIST (FMNIST) datatset [25] in
which each feature vector is a grayscale image of 28 x 28
pixels. The labels, from O to 9, are defined as: “Top’ (or “T-
shirt™), “Trouser’, ‘Pullover’, ‘Dress’, ‘Coat’, ‘Sandal’, ‘Shirt’,
‘Sneaker’, ‘Bag’, and ‘Boot’ (short for ‘Ankle Boot’). We use
a standard NN-based ML classifier. The architecture of the
neural network and further details regarding the experimental
settings, as well as the code used, have been made available
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TABLE I:

The mapping functions considered in our experiments with M, = 3 (M, = 4) for the first (last) three rows.

|| Mapping | Coarse Sets | Labels Grouping ||
T S1=1{0,1,3},5, =1{7,9},53 = {2,4,5,6,8 [Top, Trouser,Dress}, [ Sneaker, Boot], [Pullover,Coat,Sandal,Shirt,Bag]
T 51 ={0,1,2}, 5 = {3,4,5},53 = {6,7,8,9} {Top, Trouser,Pullover}, [ Dress,Coat,Sandal}, {Shirt, Sneaker,Bag, Boot ]
T S1=1{1,3},5, ={5,7,9},53 = {0,2,4,6,8 [Trouser,Dress}, [ Sandal,Sneaker,Boot ], { Top, Pullover,Coat,Shirt,Bag |
Ta S1=1{1,3},52 ={4,8},53 = {5,7,9},54 = {0,2,6} | [Trouser,Dress},{Coat,Bag},[Sandal Sneaker,Boot},{Top,Pullover,Shirt
Ty S1=1{0,1,2},5; = {3,4},53 = {5,6,7},53s = {8,9} | {Top,Trouser,Pullover},[Dress,Coat},{Sandal,Shirt,Sneaker},{Bag,Boot]
Te S1={0,6}, 52 = {1,4,8}, 53 = {2, 3}, Sy = {5,7,9} | [Top,Shirt},[Trouser,Coat,Bag},{Pullover,Dress},{Sandal Sneaker,Boot}
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Fig. 3: Imperceptibility results of the considered algorithms for the first 50 samples in the test set of FMNIST using T and

T5. The metrics are SSIM (left) and the Iy norm (right).

online!. We use a standard Intel(R) Core(TM) i9-9940 CPU
@ 3.30GHz machine. The initial value for the bound in
Algorithms 1 and 3 is chosen as 0.01, with a step €, = 0.01.

Also, we present our results using various mappings of
the labels. These mappings are defined in Table 1 as Tj,
for ¢ € [6]. We refer to mappings that result in super sets
with semantic meaning as semantic-based mappings. These
include T3,T5,Ty, and Ts. The semantic meaning is largely
determined by the positioning of the wearable item. The other
mappings, 75 and Ts, are non-semantic based. These are
formed by selecting 2, 3, or 4 items per super set from the set
[0]:=-A1, 2, ;5 5, 10L

!https://github.com/ialkhouri/CoarseMisClassification

We generate AEs using Algorithm 1 for the goal of causing
any misclassification. Then, we use Algorithm 2 and Algo-
rithm 3 to generate AEs to induce coarse misclassification
w.r.t. the mappings in Table L

Figure 2 presents runtime results of the first 50 samples
in the test set of FMNIST using T and T5 of Algorithm 2
(left) and Algorithms 1 and 3 (right). Our proposed approach
requires considerably less time to generate coarse AEs when
compared to Algorithm 2, regardless of the mapping function
used. From the considered set, the minimum runtime for
Algorithm 2 to produce a coarse AE is recorded at about 0.85
seconds, while the maximum runtime for Algorithm 3 was
around 0.155 seconds. In comparison, our method requires
only a few extra tens of milliseconds. The difference in
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TABLE II: Average results for [, imperceptibility and run-rime (in seconds) to obtain the minimum required perturbations
to induce coarse misclassification using (i) Algorithm 2 [10] (columns 2 and 3) and (ii) our proposed method in Algorithm 3
(columns 4 and 5). Results for obtaining the minimum perturbations for any misclassification using Algorithm 1 are shown in

the last two columns. The values after the + sign represent the variance.

|| Mapping | Avg. [ (Alg.2)

Avg. Run-time (Alg.2) | Avg. 1 (Alg.3)

Avg. Run-time (Alg.3) |

Avg. 1 (Alg.1)

Avg. Run-time (Alg.T) ||

Ly
=
<
<
o
S0
<
i}
-

Fig. 4: Sample for each coarser set of the FMNIST dataset obtained from using the semantics-based mapping T} (left) and the
non semantic-based mapping T3 (right). The second and third rows show minimum perturbations coarse adversarial examples
generated against the considered NN classifier using the approach in [10] and our method, respectively. For each sample, the
coarse prediction is on the right of each image. The [, value posted on the right of each coarse AE represents the distance
between the original example and perturbed one. The coarse prediction colored in red represents the fooled super set.

runtime is in line with the predictions made in Theorem 1.

Figure 3 showcases the imperceptibility results, using the
same AEs and mapping functions as in Figure 2, in terms of
the SSIM measure (left) and the Iz norm (right). The results
indicate that the approach in [10] requires a greater amount
of perturbation to induce coarse misclassification compared
to our approach, as indicated by the lower (higher) values of
SSIM (l3-norm). Algorithm 1 results in the least amount of
perturbations, as its goal is to induce any misclassification,
rather than inducing a misclassification that is restricted by a
mapping function and grouping of labels.

Table II presents the average results of imperceptibility (I.o-
norm) and runtime (in seconds) using the mappings in Table 1.
Our approach is more efficient, requiring lower perturbations
and less runtime compared to [10]. The greatest difference in
perturbation occurs when mappings have semantic meaning.
For T} and T3 (semantic-based), nearly twice or thrice the
amount of perturbation is required to fool the coarse class
using the method in [10]. For T3, the average scores of
Algorithm 2 and Algorithm 3 are 0.049 and 0.033, respec-
tively. Remarkably, our approach shows closer performance to
Algorithm 1, where the goal is to cause any misclassification.
This highlights the significant gain of using our formulation
versus the approach of Algorithm 2. As expected, Algorithm 1
requires less perturbation and runtime than those required by

T1 0.104 £0.01 1.748 £0.36 0.057 £0.003 0.055 £0.003 0.023 £0.0003 0.014 £0.0001

! 0.049 £0.004 1.642 £0.24 0.033 £0.001 0.032 £0.013 0.023 £0.0003 0.014 £0.0001

T3 0.15 £0.011 1.913 £0.032 0.045 £0.001 0.044 £0.001 0.023 £0.0003 0.014 £0.0001

Ty 0.086 £0.008 2.05 £0.302 0.034 £0.007 0.033 £0.007 0.023 £0.0003 0.014 £0.0001

T 0.043 £0.003 1.862 £0.025 0.033 £0.001 0.034 £0.002 0.023 £0.0003 0.014 £0.0001

Ts 0.071 £0.007 1.939 +0.267 0.0312 £0.007 0.031 £0.007 0.023 £0.0003 0.014 £0.0001
Results for mapping Ty Results for mapping T,

our method to cause coarse misclassification. The results also
indicate that it is easier to fool the coarse class when label
mappings have no semantic meaning (e.g., T5 vs T} or T5).

Figure 4 displays clean examples (first row) and their
coarse AEs, generated using Algorithm 2 (second row) and
our Algorithm 3 (third row). The coarse AEs use semantic
based mapping T4 (left) and non-semantic mapping 15 (right).
From the coarse prediction of each AE, we observe that
both Algorithms 2 and 3 are successful at inducing coarse
misclassification. Similar to the observations made earlier for
Table II, we first note that perturbation required to fool the
coarse class is higher for Algorithm 2 when compared to our
approach. Second, we observe that it is easier to fool the
coarse class when the grouping of labels is not semantic-based,
regardless of the method used. This is seen by comparing the
o values. Additionally, it is evident that the AEs generated
using our approach are visually more similar to the original
examples than those generated using Algorithm 2.

VI. CONCLUSION AND FUTURE WORK

This paper introduced a new approach to generating adver-
sarial examples that aim to induce coarse misclassification.
A non-targeted, bound-restricted optimization problem is for-
mulated based on a grouping function of labels. Introducing
a probabilistic score for each super class set allowed us
to extend the solution for the standard attack formulation.
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The required gradient computations are theoretically specified
using the cross entropy loss. Our experimental results show
improved efficiency in terms of required perturbations and
runtime compared to current state-of-the-art.

Future plans include validation with larger Neural Network
structures and datasets, and integration with Adversarial Train-
ing for the design of stronger ML classifiers with respect to
coarse predictions.
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