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Abstract: Non-Markovian open quantum systems represent the most general dynamics
when the quantum system is coupled with a bath environment. The quantum dynam-
ics arising from many important applications are non-Markovian. Although for special
cases, such as Hamiltonian evolution and Lindblad evolution, quantum simulation al-
gorithms have been extensively studied, efficient quantum simulations for the dynamics
of non-Markovian open quantum systems remain underexplored. The most immediate
obstacle for studying such systems is the lack of a universal succinct description of their
dynamics. In this work, we fulfill the gap of studying such dynamics by (1) providing a
succinct representation of the dynamics of non-Markovian open quantum systems with
quantifiable error, and (2) developing an efficient quantum algorithm for simulating such
dynamics with cost O(z polylog(t/€)) for evolution time ¢ and precision €. Our deriva-
tion of the succinct representation is based on stochastic Schrédinger equations, which
could lead to new alternatives to deal with open quantum systems as well.

1. Introduction

As the size of many modern-day electronic devices is continuously being reduced, quan-
tum mechanical properties start to become dominant. Many novel designs have emerged,
e.g., quantum wires, quantum dots, and molecular transistors, to take advantage of these
properties. What is common in these applications is that the quantum properties are vital.
However, these quantum dynamics do not evolve in isolation. Known as open quantum
systems [1], they are always interacting with their environment, which due to the large
dimension, can not be included explicitly in the computation. Another challenge comes
from the fact that the continuous interactions can give rise to non-Markovian behavior, for
which standard descriptions break down. The implication of non-Markovian dynamics
to the quantum properties has been analyzed through many model examples [2-8]. More
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importantly, there are important experimental observations of non-Markovian dynamics
[9,10], and such behavior has a strong impact on the electronic properties of molec-
ular devices. Furthermore, it has been discovered that non-Markovianity can enhance
quantum entanglement [11].

Generally speaking, the dynamics of a quantum system interacting with a bath envi-
ronment can be described by the von Neumann equation

10,0 = [Hior, pl, p(0) = ps(0) ® pp, (D

where the Hamiltonian Hy that couples the system to a bath is expressed as,

M
Hi=Hs ® Ip+Is® Hg+). ) Sy ® Ba. )

a=1

Here, X is typically referred to as the coupling parameter, and the integer M indicates
the number of interaction terms. To consider the problem in the context of quantum
simulations, we let 2" be the dimension of the system (S), i.e., Hs € C2'*2" is acting on
n qubits. A widely considered example is the spin Boson model, where Hg and S, are
Pauli matrices. One notable example in this category, which is also relevant to quantum
computers, is the dynamics of qubits coupled to a boson bath [12]. Other applications
include the Anderson-Holstein model [13] where Hg consists of the kinetic and potential
energy terms, and those from electronic transport problems, where the Hamiltonian is
expressed in terms of molecular or atomic orbitals [14].

When A = 0, the system is completely decoupled from the environment, and the
dynamics of the system reduces to Hamiltonian evolution, which can also occur for finite
A, but under more stringent assumptions on the operator S, and the initial state [15]. In
recent decades, the problem of simulating Hamiltonian evolution has been extensively
studied. A subset of notable works can be found in [16-23]. This line of research has
led to optimal Hamiltonian simulation algorithms [21,24].

In general, the continuous interactions with the bath conspire to a host of interesting
quantum dynamics. Known as open quantum systems [1], such problems have led to
a long-standing challenge in modeling the system dynamics without an explicit rep-
resentation of the bath. Due to such modeling difficulty, the progress of developing
fast simulation algorithms is much slower for open quantum systems. One exception is
Markovian open quantum systems, which arises when 0 < A < 1, and the dynamics
of the bath occurs at a much faster rate than the system. Intuitively, if an open quantum
system is Markovian, the bath Hamiltonian is fast enough to “forget” the disturbance
caused by the system-bath interaction, and therefore information only flows from system
to bath with no transfer of information back to the system. By computing the infinitesimal
generator, a complete description of the Markovian dynamics has been obtained [25],
which later is referred to as the Lindblad equation. In 2011, Kliesch, Barthel, Gogolin,
Kastoryano, and Eisert [26] gave the first quantum algorithm for simulating Marko-
vian open quantum systems with cost (¢ /¢) for evolution time ¢ and precision €. In
2017, Childs and Li [27] presented an algorithm that improves the cost to O(t'//€),
and Cleve and Wang [28] further improved the algorithm by reducing the complexity
to O(t polylog(t/€)), which is nearly optimal. All these algorithms are designed for
models with sparse Hamiltonian and jump operators. Another notable approach is by

! The von Neumann equation is a generalization of the Schrodinger equation to the context of density
matrices.
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Schlimgen et al. [29,30], where the coefficient matrices in the Kraus form associated
with the Lindblad evolution are assumed to be given inputs. Overall, the difficulty with
simulating Markovian open quantum systems lies in the observation that the advanced
algorithmic techniques for Hamiltonian simulation cannot be directly applied to open
quantum systems because of the presence of decoherence. In fact, Cleve and Wang [28]
have shown that it is impossible to achieve linear dependence on evolution time by a
direct reductionist approach.

In sharp contrast to quantum Markovian processes, there is no universal form for the
quantum master equation for non-Markovian dynamics. In the regime when the rate of
the bath dynamics is comparable to the rate of the system dynamics, the system becomes
non-Markovian. Loosely speaking, the non-Markovian dynamics can be interpreted as
the backflow of information for the environment to the open quantum system, and it can
be more precisely characterized using various metrics [31-33]. For such systems, many
approaches have been developed to describe such dynamics in a way that goes beyond the
Lindblad framework [4,34-50,50,51]. The earliest approach dates back to the projection
formalism of Nakajima and Zwanzig [52,53]. At the level of density matrices, the non-
Markovian property is reflected in a memory integral that involves the bath correlation
function, which can be approximated by a linear combination of Lorentzian terms [54].
This representation enables an embedding procedure, where the memory integral can
be replaced by the dynamics of additional density-matrices [39,51]. Although a unified
framework is not yet present, such a procedure embeds the density matrix of the system
in an extended system of equations involving additional density matrices, for which the
dynamics is Markovian. The coefficients in the extended dynamics are connected to the
spectral properties of the bath. Such a quantum master equation is often referred to as
the generalized quantum master equation (GQME).

1.1. Main results. In this work, we (1) provide a succinct GQME representation for the
dynamics of non-Markovian quantum systems, and (2) develop an efficient quantum
algorithm for simulating the dynamics of open quantum systems based on this new
representation. The derivation of the GQME is an important mathematical contribution
that provides the groundwork for algorithmic development. It is worth noting that we
only consider open quantum systems with coupling parameter A < 1. This is the scenario
when we have a priori bound on the model error, whereas in the strong coupling regime,
it is difficult to determine such an error in advance, and results can only be trusted with
a leap of faith.

1.1.1. Mathematical contribution In modeling open quantum systems, an important
property to retain is the positivity. Toward this end, we choose to work with one that can
be derived from an unraveling approach [1]. Namely, there exists an underlying stochastic
Schrodinger equation (SSE) and the state-matrix is automatically positive semidefinite.
In order to accurately incorporate the effect of the bath, let K be the number of Lorentzian
terms in representing the bath correlation function [54]. We consider an embedding of
the system state pg into an O (n log K)-qubit system (with dimension K2"). Let I" denote
the (unnormalized) state density matrix of this larger space. We derive from the SSE the
following quantum master equation to describe the dynamics of I":
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K
T = —i(HT —TH) + Y VIV, 3)
k=1

where H (in general non-Hermitian) is defined in Eq. (41) which involves Hg, Sy, and
the bath correlation function (assumed to be part of the input). V; will be defined later in
Eq. (39) which involves the bath correlation function. The initial state I"(0), as deduced
from the SSE, is given by,

K
I'(0) :=10){0] ® ps(0) + Z(|4k — 2)(4k — 2| + 3|4k) (4k]) @ ps(0). “4)
k=1

The system state is embedded in I' in the sense that the upper-left block of I'(f) —
the unnormalized state of the larger system at time r — approximates the exact system
state pg(¢) at time ¢ with error up to O (A3) (see Eq. (9)). This error is referred to
as the model error as it characterizes the accuracy of modelling the actual dynamics
determined by Eq. (1) as a succinct GQME. Our model error of O ()»3) improves the

model error O (A3 / a3) of the Lindblad equation with ¢ < 1 representing the time scale
separation between the system and the bath, which (surprisingly) had not been precisely
characterized until recently [13].

One quick illustrative example of the GQME is a two-qubit model coupled to a
common bosonic bath [12], where HEOM type of equations were derived. Specifically,

the system Hamiltonian is written as Hy = %(Jg + ogl), where I and II label the two

qubits and wy is the Zeeman energy. In addition, in the coupling term, S = o + a)'}.

Thus M = 1. Furthermore, the study in [12] considered the bath correlation function

C(t) = X+ n light of Eq. (5), we have that K = 1,6, = /2L, [Qx) = 1,
and d; = wo + i y. From the derivation in Eq. (36), we also have V| = 6;S. In this case,
the matrix " is a 5 x 5 block matrix with total dimension being 20.

1.1.2. The input model and simulation problem The computational problem we consider
is to simulate the dynamics generated by Eq. (3), which consists of an initial state prepa-
ration problem and a target state approximation problem. More formally, we formulate
the problem as follows.

Problem 1 (Simulating non-Markovian open quantum systems). Consider the dynamics
defined by Eq. (3). Suppose we are given access to some efficient descriptions of the
operators in Eq. (3). For any initial state ps(0) of the system, evolution time t, and
precision parameter €, we need to

1. Prepare the initial state I'(0) as in Eq. (4), and

2. Produce a quantum state pg(t) for the system so that the trace-distance between this
state and the upper-left block of T'(t), which is ps(t), is at most €, where I'(t) is the
(unnormalized) state of evolving Eq. (3) for time t with initial state " (0).

To solve this simulation problem, we need efficient descriptions of the operators in
Eq. (3). The most straightforward input model is to assume that we are given these
efficient descriptions directly. Such assumptions have been made in the literature of
simulating Markovian open quantum systems [26-28]. However, this straightforward
input model is often not physically feasible: In many cases, we only have low-level
information about the system, such as the system Hamiltonian and the system part of
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interaction Hamiltonians in Eq. (2), while high-level information such as descriptions
of the operators in Eq. (3) is not readily available. With this practical consideration in
mind, we work with a low-level input model, i.e., we only assume information that arises
in Eq. (2), which is more convenient in real-world applications.

In particular, for the operators Hg and S,, we use a widely-used input model that has
been recently introduced by Low and Chuang [22], and Chakraborty, Gilyén, and Jeffery
[23]—the block-encodings of Hamiltonians. Roughly speaking, a block-encoding with
normalizing factor o of a matrix A is a unitary U whose upper-left block is A/«. This
input model is general enough to include almost all efficient representations that arise in
physics applications, including linear combinations of tensor products of Paulis, sparse-
access oracles, and local Hamiltonians. More specifically, if a matrix is k-local, then it is
2K_sparse. If a matrix H is d-sparse, then it can be approximated as a linear combination
of unitaries with sum-of-coefficients (’)(d2 | H || max)> Where || H || hax 1 the largest entry
of H in absolute value. Moreover, if a matrix can be written as a linear combination
of matrices with the sum-of-coefficients s, then one can efficiently construct its block-
encoding with normalizing constant s. Note that the inverse directions of the above
implications are in general not true. Therefore, our algorithm also works when a Hg
and Sy are provided in a less general input model, such as a sum of local operators,
sparse-access oracles, or linear combinations of unitaries.

The BCF provides valuable information on how the bath influences the dynamics
of the quantum system. In this work, we consider a typical representation of the bath
correlation function (BCF), expressed as,

K
Cap(t) ==Y _ 07 (| Qi) (Qk|B) exp(—id;1), ©)

k=1

where |Qr) € CM 9, € R, and d; € C. Note that for all 7, Cq,pisan M x M matrix—a
size that is tractable for classical computers. The treatment of the BCF is at the heart
of modeling open quantum systems, and in practice, the specification of the BCF starts
with the spectral density (SD) Jy, g (@) that depends on the bath spectrum and interaction
strength. For bosonic environment, they are related as follows,

Cop(t) = % /_Z (coth(ZkC;T)cos(wt) —i sin(a)t))Ja’ﬁ(a))da), (6)

e.g., see [55], and [56] for more general cases. Depending on the application, e.g.,
solvent, biomolecules, and nano materials, the spectral density can be adjusted accord-
ingly. The pole expansion approach using Cauchy’s Residue Theorem has been applied
to various types of SD functions [54]. In particular, both the functions coth(ﬁ) and
J(w) can be treated this way. Such an expansion, after a truncation beyond a cut-off
frequency dmax for the poles, gives rise to a finite sum of complex exponential terms
[54]. The form of the coefficients in Eq. (5) is to ensure the positive definite property of
the BCF. Namely, after the Fourier transform, the BCF has to be a semi positive definite
function.

Our algorithm will take such approximation results as an input. We consider the poles
dy within a cut-off frequency dmax, i-€., |dk| < dmax-

With the weak coupling condition, and the explicit representation Eq. (5) of the
BCF, we will derive a generalized quantum master equation as in Eq. (3), with the
extended quantum state I'(¢) encoding the system density matrix pg(¢). In addition,
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we demonstrate how the new Hamiltonian operator H in Eq. (3), as well as the jump
operators Vj, can be obtained from the coefficients in the BCF Eq. (5).

In summary, in our quantum algorithm, we assume we are given the following quan-
tities, as an efficient description of Eq. (3):

1. A block-encoding Upg of Hg;

2. A block-encoding Ug, of S, for each o € [M];

3. The real numbers 6, vectors | Q) (all entries), and complex numbers dy, for k € [K]
as in Eq. (5), together with an upper bound dpp,x on |d]|.

1.1.3. Algorithmic contribution Our main algorithmic contribution is a quantum algo-
rithm that solves Problem 1. We informally state this result as follows.

Theorem 2 (Informal version of Theorem 17). Suppose that we are given a block-
encoding Uy, of Hg, block-encodings Us, of Sy (for a € [M]), Ok, |Qk) (all entries),
A, and dy for k € [K] as in Eq. (5). Then there exists a quantum algorithm that solves
Problem 1 using

O (t pOlylog(I/G)pOIY(Ha Mﬂ Kv )\'7 dmaX))7 (7)

queries to Uy, and U, and additional 1- and 2-qubit gates, where u is the normalizing
factor of the block-encodings, M is the number of interaction terms in Eq. (1), K is the
number of Lorentzian terms in Eq. (5), and dmax is an upper bound of |dy|.

Our algorithm follows the high-level idea of [28], but we have generalized their tech-
niques to work with block-encoded inputs. The building block of our algorithm is an im-
plementation of completely positive maps given block-encodings of the Kraus operators
(see Lemma 5 for more details). Suppose the normalizing factors of the block-encodings
of the Kraus operators are «y, . . . , &, then our construction gives the success probability
parameter 1/ Z?:l a%, while a straightforward construction using Stinespring dilation

yields a worse success probability parameter 1/ (Z;"zl o j)z, which does not permit the
desired dependence on ¢ and €.

Since the dynamics that Eq. (3) generates is completely positive, we consider an in-
finitesimal approximation map that approximates the first-order Taylor approximation of
the dynamics for a small enough evolution time. From the low-level input model, we can
construct the block-encodings of the Kraus operators of this infinitesimal approximation
map, and it can be implemented using our building block Lemma 5 with high success
probability parameter. We repeat this construction until the success probability param-
eter becomes a constant, and at that point, we have obtained a normalized version of
[ (¢) for ¢ proportional to a constant. Now, to extract the upper-left block of the resulting
(normalized) density matrix, we use oblivious amplitude amplification for isometries (
[28] and Lemma 16) to achieve this with an extra factor VK, as the trace of '(t)is
upper bounded by O(K) for all ¢ (see Eq. (11)).

For the problem of simulating Hamiltonian dynamics, high-order Taylor approxima-
tion yields simpler and faster quantum algorithms, e.g. [18]. However, for simulating
open quantum systems, it is not known how to take advantage of higher-order approx-
imations. This is because high powers of the superoperator defined in Eq. (3) are too
complicated to keep track of its completely positive structure, which is the key to im-
plementing such maps.
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1.2. Summary of contributions. We highlight our contributions as follows:

1. We provide a succinct representation of non-Markovian dynamics, where the density
matrix from the GQME is consistent with that from the full quantum dynamics with
provable O (A3) accuracy. A notable feature of our new succinct representation is
that the positivity is guaranteed, which is the key requirement for designing quantum
simulation algorithms.

2. We develop a quantum algorithm based on this representation. The cost of our algo-
rithm scales linearly in ¢, poly-logarithmically in €, and polynomially in M and K. To
the best of our knowledge, this algorithm is the first to achieve linear dependence on ¢
and poly-logarithmic dependence on € for simulating non-Markovian open quantum
systems. In addition, our algorithm works with low-level input models, which are
readily available in many real-world applications.

3. Other technical contributions: We have shown that the GQMEs can be unraveled
(see [1]) into stochastic Schrodinger equations, which provides another potential
alternative to obtain the density matrix as a statistical quantity. In addition, we prove
tha(t thle) extended density matrix from the GQME is bounded over the time scale
O((r7).

1.3. Related work. In the context of modeling open quantum systems [1], the hierarchi-
cal equations of motion (HEOM) approach [50,57] also yields an extended dynamics
for the density matrix, but without using the weak coupling assumption. Rather, the
equations are truncated based on numerical observations. In principle, the quantum al-
gorithms in this work can also be applied to those GQMEs from the HEOM approach,
provided that the approach can be proved to produce completely positive maps. Mean-
while, since no error bound is available, it is difficult to prescribe the level of truncation
in advance, which also makes it difficult to estimate the computational complexity.

Another interesting development is to embody the memory effect using a local form
of the GQME, where the generator consists of multiple Lindblad operators with time-
dependent coefficients. In fact, it has been proved [34] that any nonlocal form of the
non-Markovian dynamics can be rewritten in a local form with time-dependent genera-
tors. Due to the fact that the proof is non-constructive, the implementations of this type
of Lindblad operators are empirical. Sweke, Sanz, Sinayskiy, Petruccione, and Solano
[58] considered such time-local quantum master equations, and constructed quantum
algorithms. Their algorithms rely on Trotter splittings, by decomposing the entire gen-
erator into local operators. Since it is not yet clear how the GQMEs from the current
approach, or those from the HEOM approach, can be expressed in time-local forms, a
direct comparison of the computational complexity is not yet available.

1.4. Open questions. Modeling open quantum systems outside the weak coupling regime
is still an outstanding challenge. The HEOM approach [57] relies on a frequency cut-
off to achieve a Markovian embedding. Quantifying the error associated with such an
approximation, and ensuring the positivity are two of the remaining issues.

Another interesting scenario is when the open quantum system is subject to an external
potential. Quantum optimal control is one important example. Deriving a GQME in the
presence of a time-dependent external field while still maintaining the control properties
is still an open problem to the best of our knowledge.

The cost of our quantum algorithm is O(z polylog(z/€)). Is there a faster quantum
algorithm that achieves an additive cost, i.e., O(t + polylog(1/€))? This additive cost is
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the lower bound for Hamiltonian simulation [19,20,59], and it is hence a lower bound
for the non-Markovian simulation problem. The optimal Hamiltonian simulation was
achieved by quantum signal processing due to Low and Chuang [21], which has been
generalized to quantum singular value transformation by Gilyén, Su, Low, and Wiebe
[24]. Unfortunately, these techniques do not immediately generalize to open quantum
systems, as it is not clear what the correspondence of singular values and eigenvalues
should be for superoperators.

2. Preliminaries

2.1. Notation. In this paper, we use the ket-notation to denote a vector only when it is
normalized. For a vector v, we use ||v|| to denote its Euclidean norm. For a square matrix
M, we use || M || to denote its spectral norm and use || M ||; to denote its trace norm, i.e.,
|M||; = tr(v'MTM). The identity operator acting on a Hilbert space of dimension N
is denoted by Iy, e.g., I>» is the identity operator acting on n qubits. When the context
is clear, we drop the subscript and simply use /. We use calligraphic fonts, such as /C,
L, and M to denote superoperators, which maps matrices to matrices. We consider
superoperators of the form

M:CNXN%CMXM, (8)

and use T(CV, CM) to denote the set of all such superoperators. In particular, we use
7 to denote the identity map, which maps every matrix to itself. Whenever necessary,
we use the subscript N of Zy € T(CV, CV) to highlight the dimension of matrices it
acts on. For example, Z»» is acting on n-qubit operators. The induced trace norm of a
superoperator M € T(CN, CM), denoted by || M ||, is defined as

IMIly = max{[IM(A)]l; : A e CVN Al < 1) )

The diamond norm of a superoperator M € T(CV, CM), denoted by || M|, is defined
as

IMllo :=IMZIn; - (10)

For a positive integer m, we use [m] to denote the set {1, 2, ..., m}.

2.2. The block-encoding method. We use the notion of block-encoding as an efficient
description of input operators. To have access to an operator A, we assume we have
access to a unitary U whose upper-left block encodes A in the sense that

u=("). (an
which implies that A = «¢({(0| ® I)U|0) ® I). More precisely, we have the following

definition.

Definition 1. Let A be an n-qubit operator. For a positive real number o > 0 and natural
number m, we say that an (n + m)-qubit unitary U is an («, m, €)-block-encoding of A
if

A —a((0] ® I2)UI0) ® In)| < €. 12)



Non-Markovian Open Quantum Systems...

The following lemma shows how to construct a block-encoding for sparse matrices.

Lemma 3 ([24, Lemma 48]). Let A € C2'*?" be an n-qubit operator with at most
s nonzero entries in each row and column. Suppose A is specified by the following
sparse-access oracles:

O D) J)0) = 1) J)IAG, J)), and (13)

Os :[i)k) = 1i)|rik)s (14)
where r; i is the k-th nonzero entry of the i-th row of A. Suppose \A,-,J- | <1 fori e [m]
and j € [n]. Then for all € € (0,1), an (s,n + 3, €)-block-encoding of A can be
implemented using O(1) queries to O 4 and Og, along with O(n +polylog(1/€)) 1- and
2-qubit gates. Moreover, if A; j € {0, 1} foralli € [m] and j € [n], the block-encoding
of A can be implemented precisely, i.e., € = 0.2

A linear combination of block-encodings can be constructed using [24, Lemma 52].
Here, we slightly generalize their construction to achieve better performance when the
normalizing factors of each block-encoding are different.

Lemma 4. Suppose A := 2721 VjAj € C2' %" where Aj e C¥'*?" and yj > 0 for
all j € {1,...m}. Let Uj be an (aj, a, €)-block-encoding of A;, and B be a unitary
acting on b qubits (with m < 2° — 1) such that B|0) = 23]]:_01 Vajyj/slj), where
s =21y yjej. Thena (3 ; yjoj, a+b, Z yjej€)-block-encoding of 3 _ y;jAj can
be implemented with a single use on] o 17) (j|®U.,-+((I—Z7=_01 1) (G D®Ic2a @I can)
plus twice the cost for implementing B.

Proof. The proof is similar to that of [24, Lemma 52]. The difference is that, instead of
preparing the state " —| J), we use the state preparation gate B here. First
=1 \2oj=1Yj

note that
[((01%* @ LU (100®* @ L) — Aj o | < e. (15)

Let W = S0 1) jl ® Uj + (I = X720 1j)j) ® D ® Iy) and define W =
(B" ® Ina ® In)W(B Q Ira ® I»n). We have

Zy,A _s (<0|®b ® (0% ® Izn) % (|0>®b ®10)% ® 12,1) (16)

Jj=1

=Y _viAj Zajy, (0% ® I)U;(10)%* @ In)) (17)
Jj=1 Jj=1

<Y yjej A /ey = ((01% @ LU (10)% @ L)) (18)

—_

J

NE

< D vjaje. (19)

.
I

O

2 The case when A ij € {0, 1} was not explicitly stated in [24, Lemma 48]; however, the conclusion is not
hard to obtain as a special case of their proof.
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2.3. Technical tool for implementing completely positive maps. In this subsection, we
provide the technical primitives for developing a simulation algorithm. The following
lemma generalizes the technique of linear combination of unitaries for completely pos-
itive maps [28] to the context of block-encoding. This tool might be of independent
interest as well.

Lemma 5. Let Ay, ..., A, € C*' be the Kraus operators of a completely positive map
M [60],
m '
M(p) =) AjpA’.
LetUy,..., U, € C2"™ be their corresponding (s, n’, €)-block-encodings, i.e.,

|A; —s;0l® DU;I0)® D|| <€, foralll <j <m. (20)

Let |p) = 1 " silj). Then Q" 1j)(j1 @ Up|w)|0) ® I implements this
O EEH 215 2= !

completely positivé map M in the sense that

NE

me
ROl D INGI®U; | 10)y) — ZUA )| £ ———
j=1 \/Z} ls/ Jj=1 Z;(;l S.lz
@1)
for all |yr).
Proof. 1t is easy to verify that
ST 1 .
2@ U; |1 0y) = ———=3 /U0, (22)

j=1 Zj:l S

With a direct substitution into Eq. (21), one arrives at,

- 1
IO | YN U; | ImI0Y) — ———= DAl (23)

jIl ijlsj
1 1
= U@ 01® N—mme= D SNV (0] — === D Li)ASIY)
j=15j Jj =157 J
(24)
l .
= = | sl ® DU (10) ® DIY) - DJ VA1) 25)
2185 |
< me . 06)
ZT:lSJZ-
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3. Non-Markovian Quantum Master Equation

In this section, we present the derivation of the GQME [51]. Non-Markovian dynamics
has been extensively studied in the context of open quantum systems [1]. The starting
point for considering an open quantum system is a quantum dynamics that couples a
quantum system and a bath environment,

10,0 = [Hot, pl, p(0) = ps(0) ® pp, (27

where the coupled Hamiltonian is given by,

M
Hoi=Hs® Ig+Is® Hg +1 ) Sy ® Ba. (28)

a=l1

Here Hs € C2'*?" is acting on n qubits, and M refers to the number of interaction
terms.
We follow the standard setup by choosing pp according to a statistical ensemble,

e.g.,

exp(— kIZ_l;") H B
PB = Z , Z:.=tr (exp( kBT)> , 29)
with kp and T being respectively the Boltzmann constant and the temperature. As
a result, [Hp, pp] = 0. Without loss of generality, we can assume that tr(ppBy) =
0, « =1,2,---, M, which can be ensured by properly shifting of the operators [36].
This helps to eliminate O()) terms in the asymptotic expansion [36].

Of primary interest in the theory of open quantum systems is the density matrix of the
system, ps(¢), which in principle can be obtained with a partial trace: ps(t) = trp (p(¢)) .
To arrive at a quantum master equation that embodies non-Markovian properties, we start
with the non-Markovian stochastic Schrodinger equation (NMSSE), which was derived
from the wave function representation of Eq. (27) in [36], and later revisited in [61]. In
NMSSE, a stochastic realization of the quantum state follows a stochastic differential
equation,

M t R M
iy = Hsyr —i2> ) fo Cap(D)SLe ™ TSgyr(t — TydT + 1) np()Spyr(1).
o,f=1 B=1
(30)

Here i = /—1. The matrix C(r) : R — CM*M yith elements Cq,p () corresponding
to the correlation among the bath correlation {By }1<q<m-

Each noise term 7, (¢) : R — C is Gaussian with mean zero and correlation given
by [61],

Eln}ng(t')] = Capt —1), 1 <a,B <M. (31)

The stationarity of the process also implied that C(t) = C (=1)T. Thus, it suffices to
consider the correlation function for # > 0. This relation between a dissipation kernel
and the time correlation of the noise is well-known in non-equilibrium statistical physics,
and it is often labeled as the second fluctuation-dissipation theorem [62].
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3.1. The generalized quantum master equation (GOME). With a scale separation as-
sumption, the NMSSE can be reduced to the Lindblad equation [13,63]. In this regime,
the bath correlation behaves like a delta function [36],

M
C@t—1)y =Y 07IR;)(Rj18G —1), (32)
Jj=1

which simplifies the memory integrals to local terms. By defining operators L ;,

M
Lj=> 0;(R;|B)Ss. (33)
B=1

the NMSSE then implies the following Lindblad equation [61],

M
idips = [Hs, ps) = i22Y_ (LiLjps+psLiL; =2L;psL}). (34
j=1

However, in the non-Markovian regime, the assumption Eq. (32) breaks down, i.e., the
correlation length is finite, and a different approach is needed to derive a quantum master
equation that governs the dynamics of pg. In this paper, we follow the general unraveling
approach [1]. In Appendix A we show that the memory effect can be embedded in an
extended stochastic system by introducing auxiliary wave functions, x! to xV. The
dynamics can be summarized in the following form,

K

iy = Hey —id Y T xi —in Y Tixg
k=1 k

i xt = (Hs+d)xi+i Ty (1),

it = (Hs — dxf = inT g = T + iy (0 o), )
i3 = ixTix + (Hs — d — di) i + iy (1),
i X = iAT] X+ (Hs — 2d) x N + iy i (1),

fork =1,2,..., K. Due to the presence of the auxiliary wave functions, the dynamics

of ¥ is non-Markovian, and the additional equations induce a memory effect that imitates
the non-Markovian behavior. We have dropped O(A) terms in the last two equations,
which can be justified as follows, by a substitution into the third equation, one can see
that this truncation will contribute to an O(1?) error to the dynamics of XH, which, after
another substitution, leads to an O(A3) perturbation in the first equation in Eq. (35).
Namely, the accuracy is the same as the NMSSE Eq. (30). The operators T} are defined
in terms of the operators Sg in Eq. (2) and the coefficients in the BCF Eq. (5) as follows,

M
Te =) 6i(QxIB) S, (36)
p=1

From the definitions of the auxiliary functions, we can deduce their initial conditions,

x0) =0, x2O0) =iy ©), xM0)=0, xN(©0)=—&0)*y (),
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with ¢;’s being independent Gaussian random variables of zero mean and unit variance.

To derive the corresponding GQME of the stochastic model in Eq. (A12), we first
write it as a system of SDEs,

K
W = HW + Y VWi (37)
k=1

Here the function W includes the wave function ¥ and all the auxiliary wave func-
tions { X/L X;ll, X,?I, X;%V }le. One can arrange the wave functions and the operator V; as
follows,

W 0 0 0 000...
X 0 0 0 000...
XL 2 0 0 000...
val 0 Y2y 0 000...
X1 0 0 2421 000...
=1 d1.Vi=]1 o o 0 000...|®Is. (38)
xf‘ 0 0 0 000...
# 0 0 0 000...
o 0 0 0 000...
Similarly,
0 0000 0 0O O
0 0000 0 0O O
0 0000 0 O O
0 0000 0 O O...
0 0000 0 O O...
Va=| 0 0000 0 0O O ® Is.
V210000 0 0 0
0 00002, O O
0 0000 0 2210

Clearly, Vj’s are sparse and low rank. Consider the standard basis in R*K+1 here abbre-
viated simply into |0}, |1), ..., |4K). A careful inspection reveals the following closed-
form expressions,

Vi = \/E<|4k — 2)(0] + [4k — 1) (4k — 3| + 2|4k) (4k — 2|) ®Is, (39

fork=1,2,..., K. Here vy = Imdy, and they are nonnegative.
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The operator H in Eq. (37) can also be written in a block form,

[ Hy —i)T] —ixTy 0 0 —i)l, —iAT» 0 0
iZTi Hy+df 0 0 0 0 0 0 0
0 0 Hy—di —irI} —ixTi 0 0 0 0
0 0 ATy Hy=2iv; 0 0 0 0 0
0 0 ATy 0 Hy-2d O 0 0 0
ixh, 0 0 0 0  Hy+di 0 0 0
0 0 0 0 0 0 Hy—dy —i)T) —iAT»
0 0 0 0 0 0 x>, Hy=2iv, 0 -
0 0 0 0 0 0 ixl, 0 Hy—2d---

(40)

The extended stochastic dynamics Eq. (35) introduced an auxiliary space that mimics
the effect of the quantum bath. Recall Is € C?'*?" is the identity operator. Similarly,
we let I, € CUK+Dx@K+D) be the identify operator in an auxiliary space labelled by A.
Then the Hamiltonian in Eq. (40) can be expressed in terms of tensor products,

K K
H=14@Hs+Hy@Is+il Y D@ Ti+iry Ex®T,. (41)
k=1 k=1

Here Hy € CAK+DXEK+D g 3 diagonal matrix:
HA = diag {0, dik, —dl, dT - d], —2d1, d;, —dz, dik - dz, —2d2, .. } .
In addition, the matrices Dy, E; € CAK+Dx(AK+D are given by

Dy =|4k — 3)(0] — |0)(4k — 2| + |4k — 1)(4k — 2| — |4k — 2)(4k — 1|,

Er = —|0)(4k — 3| + |[4k) (4k — 2| — |4k — 2)(4k]. “2)

Assuming that the dimension of the original wave function is n, i.e., [{) € C", the

dimension of W is (4K + 1)n. Hence, the dimension of I" is [(4K + 1)n] x [(4K + 1)n].
Within the framework of quantum unravelling [1], the density matrix associated with

the combined wave functions W in Eq. (38) is defined as the entry-wise expectation,

Fop(t) = E[Wo (1) ¥p(1)"]. (43)

An application of the It6’s formula [64] yields the following close-form quantum master
equation,

K
8T = K(I) := —i(HT —=TH") + Y V,I'V/. (44)
k=1

The noise has been averaged out by the expectation. In fact, it has been shown in [65]
that for any linear SDEs, the first and second moments satisfy close-form equations.
Intuitively, the Lindblad description breaks down when the dynamics of pg(f) exhibits
strong memory effect, i.e., it depends on the past history of pgs(#), which can not be
captured by Eq. (34). On the other hand, the GQME Eq. (44) embodies the history
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dependence by embedding the dynamics of pg(¢) in a larger system. Conceptually, if
one solves other components of I'(¢) and substitutes those solutions to the first block,
one would get the memory dependence on pg(t).

We can deduce the initial condition of I" from the definitions of the auxiliary wave
functions. Since ¢ is Gaussian with mean zero and variance 1, we have

El(xelx01 = 0, ElEIxe)] = o50), EL 1 =0, E[Y 1x)] = 3p5(0).

All the cross-correlations are zero. Therefore, the initial density matrix I" is a block-
diagonal matrix,

I'(0) = diag{ps(0), 0, ps(0), 0, 3p5(0), 0, ps(0), 0, 3p5(0), - - - }. (45)
We notice that the trace of I'(0) is 4K + 1.

3.2. Properties of the GOME. We first provide some basic estimates on the extended
density matrix I". We begin by writing the Hamiltonian in Eq. (40) as,

H = Hy+\H,. (46)

Here we made the observation that Hy is block diagonal. On the other hand, H; only
contains nonzero blocks in the first row and the first column. To conveniently refer to
the block entries of the density matrix I', we write it in the following block form,

Foo To1 To2 -
o T Tz -

r = 47)
FagoTag1 Tago -
In particular, pg is embedded into I' as the first block: ps = I'g 9.
For such block matrices, we will use the following induced norm,
r = il 48
IPllog = max > [T “8)

~ 0<i<4K

Namely, for each entry, we use the spectral norm. But among the blocks, we use the co-
norm. One can verify that this norm still has the submultiplicative property. We choose
this norm merely because we will estimate the bound of each block, and the formula in
Eq. (48) can easily connect such estimates to the bound of the entire matrix. In principle,
since matrix norms are continuous with respect to the entries, one can also use other
norms among the blocks.

Lemma 6. The exponential operator U (t) := exp ( — ilHo) is bounded for all time:
U@ <1,Vt € R.

Here we used the spectral norm. This can be seen from the fact that Hy is block diagonal,
H; is Hermitian, and dj has non-negative imaginary parts.
By separating the O()) term in Eq. (46), we can write Eq. (44) in a perturbative form,

K
T = —i(Hol —TH{)+ Y Vil'V —in(HiT — THY). (49)
k=1
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In particular, we let I'?) be the solution of the “unperturbed” equation,

K
8T = —i(HoI' — TH{) + > VTV, (50)
k=1

To further simplify notations, let £y be the corresponding operator on the right hand
side of Eq. (50). Then one can express the solution concisely as,

rO) = exp(t L)' ?(0). (51)
The following Lemma provides a bound for the perturbation term in Eq. (49).
Lemma 7. Let A = maxi<k<x || Tk |1, and let
E = H —TH,, (52)

be the commutator for any Hermitian matrix T'. Then the trace of the first diagonal block
of B is bounded by,

|tr(20,0)| <4A > IToxll. (53)
k>0

For the remaining diagonal blocks, it holds that,

Yole(Ee) <4n Y0 ru. (54)

k>0 O<j<k=<4K

These estimates can be obtained by direct calculations. For instance, the first diagonal
is given by,

[1]

K
= Z (F0,4k73 T — TkTFszfS,o + F0,4k72TkT - Tkr4k72,0)‘ (55)
k=1

Thus the bound Eq. (53) follows from the triangle inequalities, together with the von
Neumann’s trace inequality. The important observation is that the trace of the pertur-
bation term in Eq. (49) is only controlled by the norms of the off-diagonal blocks of
I.

‘We now show that the “unperturbed part” in Eq. (49), i.e., the solution of the GQME
in Eq. (44) when A = 0, has bounded solutions. The A > 0 case can then be handled
using a perturbation technique.

Lemma 8. Assume that the imaginary parts of dy. are non-negative, i.e., vy > 0 for all
k. Assume A = 0. The solution of the GOME in Eq. (44) is denoted by 'O ) (also see
Eq. (50)). Then the following statements hold.

1. The first diagonal block is given by,
p(t) = Us@®psO)Us ()", Us(t) := exp(—it Hy).

2. If T O(0) is block diagonal, then T (¢) remains block diagonal.
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3.If ) is given by Eq. (45), then, the trace of O is

wr(PO@) =2K +1+2) e ", (56)
k

4. The solution T©O)(t) of Eq. (50) is bounded for general initial conditions. Namely,
the exists a constant c, independent of t, such that,

ITOM oo < clITP0) o, VYt € Ry

We included the proof in Eq. (A).
The GQME in Eq. (44) is considered as a route to obtain an approximation to the den-
sity matrix pg(¢) from Eq. (27). Assuming that the representation of the bath correlation

function in Eq. (5) is exact, we can show that the error associated with the approximation
of ps(t) by the GQME in Eq. (44) is O (13).

Theorem 9. Let ps(t) be the density matrix from the full quantum model in Eq. (27)
with bath correlation given by Eq. (5). In addition, let ps(t) be the first diagonal block
of the density matrix I (t) from the GOME in Eq. (44). Then,

ps(0) = ps(1) + O (). (57)

This asymptotic error is consistent with that of the NMSSE in Eq. (30).
In the computation, we work with the GQME in Eq. (44), and the next theorem
provides some bounds on the solution I'(#).

Theorem 10. For any t > 0, the density matrix T'(t) from the GOME in Eq. (44) is
positive semidefinite: I'(t) > 0, and it has the following properties.

(i) The norm of the density matrix follows the bound,
IT(Dlloo < [IT(0)[loo exp(2AC|| Hy 7). (58)

The constant C is the same as that in the Lemma 4.

(ii) The norms of the off-diagonal blocks of T (t) is of order A.

(iii) For any initial condition T"(0), not necessarily positive, the trace of T'(t) is bounded
as,

| tr(D () |< 3K | tr(T,1(0)) | +Z | tr(Txx (0)) | - (59)
k>1

Corollary 11. Fix T > 0. The trace of I'(t) from Eq. (44) for t € [0, T] is bounded as
follows,

K
tr (C(7)) =2K +1+2 Z e MK 1 O\, (60)
k=1

More importantly, the trace of ps(t), as the first block diagonal of T (t), is bounded
by,

tr (7s(0) = tr (Top() = 1+ 003, (61)
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4. Quantum Algorithm for Simulating Generalized Quantum Master Equations

Before presenting the quantum algorithm for this problem, we first prove some useful
technical results that will be used in the analysis of our quantum algorithm.

Lemma 12 (Initial state preparation). Given a copy of any initial state |\) of the system,
a normalized version of Ty, as defined in Eq. (45), can be prepared using O(K) 1- and
2-qubit gates.

Proof. Let K/ < 2K + 1 be the smallest integer larger than K such that (4K’ + 1) is
some power of 2. We initialize a log(4K' + 1)-qubit state which is a normalized version
of

K
0+ (|4k —2)+ |4k)>. (62)
k=1

This can be implemented using O(K) 1- and 2-qubit gates. Append an additional register
that is initialized to |0) and use CNOT gates to “copy” the basis states to the second
register. We have the normalized version of

K
|0)0) + Z <|4k —2)4k —2) + |4k)|4k)). (63)
k=1

Then, simply by appending the original state pgs of the system and tracing out the second
register, we obtain the normalized version of I'. o

4.1. Constructing block-encodings. In the next two lemmas, we show how to obtain
block-encodings of H and V; in Eq. (44) for j € [K] using block-encodings of Hg and
Sg for B € [M].

Lemma 13. Let H be defined in Eq. (41), and recall |0, = Zf: 1 Ok. Given the access
to an («, a, €)-block-encoding Uy of Hs, an («, a, €)-block-encoding U Sg for each
B € [M], an (o', a’, €)-block-encoding

of I —i8H, where

o <148 (a +dia + 4ha'M ||9||1) , (64)
d' = a+O®og(MK)), (65)
e =de. (66)

can be implemented with one invocation of Uy and 2K invocations to each of Us,
together with O(M K) 1- and 2-qubit gates.

Proof. Combining Egs. (41), (36), we can write H as

K M

H=1Iy®Hs+Ha®Is+ik ) > 6 (QxlB) Dk ® Sp
k=1 =1

K M
+ikY Y O(BIQWEr ® S}

k=1 p=1

(67)
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We first show that it is easy to construct a block-encoding of the tensor product
of two block-encodings. Let U4 be an («1, a, €)-block-encoding of A and Up be an
(a2, b, €)-encoding of B, then it is straightforward to see that the unitary Uy ® Up
together with O(a + b) swap gates is an («ja2, a + b, €)-block-encoding of A ® B.
As aresult, an («, a, €)-block-encoding of I4 ® Hg can be implemented. Since Hy is
diagonal, it is easy to implement a (dmax, O(log K), 0)-block-encoding of H4. Hence,
a (dmax, O(log K), 0)-block-encoding of H4 ® Is can be implemented.

Since Dy is 2-sparse, we use Lemma 3 to implement an (2, O(log(K)), 0)-block-
encoding Up, of Dy. Note that this is an exact block-encoding because each nonzero
entry of Dy is 1. We also need to implement the sparse-access oracles for Dy. Since it
only has constant nonzero entries, this can be done by a small classical circuit and turning
it into a quantum circuit with O(log K) 1- and 2-qubit gates. Using the observation on
tensor products of block-encodings, we can implement a (2«, a + O(log K), €)-block-
encoding of Dy ® Sg given an («, a, €)-block-encoding Us, of Sg. Ex ® S); can be
implemented similarly.

Note that / —i§ H contains 3+2 K M terms. They are [4 @[5, —614 Q@ Hs, —S HA QI s,
—16A0; (Qk|B)Dr®Sg, and —ic?k@k(QH,B)Ek@S; foreach k, 8. The linear combination
of normalizing factors is

K M

146 [+ dmax +20 ) > 6:1(Qk1B) 20 (68)
k=1 p=1

<1+8 (a + dmax +4Aam||9||1) , (69)

where we have used the Cauchy-Schwarz inequality. As a result, we can use Lemma 4
to construct a block-encoding of I —i§ H with the desired parameters. This construction
uses 2K invocations to each of Ug,, 2M invocations to the block-encodings of each Dy
and Ej (using O(M log K) total 1- and 2-qubit gates), and one invocation to Upgy. The
additional 1- and 2-qubit gates are used for the state preparation in Lemma 4 and this
cost is O(M K), which dominates the gate cost. |

Lemma 14. Given di’s as in Eq. (5), a (dmax, O(log(K)), €)-block-encoding for Vi, for
k € [K] can be constructed using O(log K + polylog(1/¢€)) 1- and 2-qubit gates.

Proof. Each Vj is 1-sparse, and it is straightforward to implement the sparse-access ora-
cles specified in Eqgs. (13) and (14). Then we use Lemma 3 to implement a
(1, O(log(K)), €)-block-encoding for Vi /dmax, which implies a (dmax, O(log(K)), €)-
block-encoding for V. O

4.2. Infinitesimal approximation by completely-positive maps. Animportant step of our
quantum algorithm is to use the following superoperator to approximate /% when § is
small.

K
Ms(X) = AgX AL+ AXA] (70)
k=1

where

Ao=1—iSH, and Ay =8V, forallk € [K]. (71)
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We use the following lemma, which is proved in Appendix F, to bound the error of
this approximation:

Lemma 15. Let M be a superoperator defined in Eq. (70), and let IC be as defined in
Eq. (44). Define A == | H|| + Zlf:l | Vi ||2. Then it holds that

Ms — 8| <50M)% (72)
| .

4.3. Oblivious amplitude amplification for isometries. In our algorithm, we need to ap-
ply amplitude amplification to boost the success probability. However, in our context, the
underlying operator is an isometry instead of a unitary (i.e., part of the input is restricted
to be some special state). We use oblivious amplitude amplification for isometries, which
was first introduced in [28] to achieve this. In [28], only a special case where the initial
success probability is exactly 1/4 was considered. Here, we give a more general version.

Lemma 16. For any a,b € N, let |6> :=/10)®“ and 1) = )% for an arbitrary
state | ). For any n-qubit state | V), define |) := |0)|&)|V). Let the target state |¢) be
defined as

o~

¢) = [0)¢), (73)

where |¢) is a (b + n)-qubit state. Let Py := [0)(0| ® Ly ® I and Py := [0)(0] ®
[2) (X| ® Ion be two projectors. Suppose there exists an operator W such that
W) = sin6¢) +cosOlpr), (74)
for some 6 € [0, /2] with |$L) satisfying P0|$L) = 0. Then it holds that
~W(I=2P) WH (I-2Py) (siny [$)+cos y [§7) =sin(y +20)[$) +cos(y +20)|61).  (75)
forall y € [0, m/2].
Proof. Let |1:0\J-) be a state satisfying
WIUt) = cos@|d) — sin0|pr). (76)
It is useful to have the following facts
W@) = sin6|9) + cos0|¢T) and (77)
Wlgh) = cosOly) —sin 8|y T), (78)

which can be obtained from Egs. (74) and (76).
We first show that Pj[y1) = 0. To see this, we define an operator

0 = (01l ® HWT PoW (J0)| ) ® I). (79)

For any |y), we have

(W|Qly) = | PoW (I/(T)Iﬁ)lw))ﬂ2
. “~ -~ 2 . -~ 112 .2 (80)
= H Py (sm9|¢) +cosf|¢p ))H = Hsm0|¢)” = sin“ 6.
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Hence, all the eigenvalues of Q are sin? 0, so we can write
0 =sin?01. (81)
Now, consider any state |1):
Qly) = (0@l @ DWW ([0)I7) ® [v)) = sin O (O] & HW|p)
—sin0((0|(71] ® I (sinem +cos9|$ﬂ) (82)
= sin? 0|yr) +sin 0 cos O ((O|(Z| ® D|Y+),

where the third equality follows from Eqs. (74) and (76). On the other hand, by Eq. (81),
we have

Oly) = sin” 0[y). (83)
In light of Egs. (82) and (83), we must have,
(0@l & 1) [9+) =0, (84)
which implies that P;|¢+) = 0.

We now proceed to analyze the result of applying W(I — 2P)WT(I — 2Py) on
siny |¢) +cos y|6™),

W(I —2P)W' (I —2Py) (sin V1) +cos y|$L)) (85)
= (1 —2Py—2WP W +4W P, WTP0> (sin Y1) +cos y|$ﬂ) (86)
= sin(y +26)|@) + cos(y +260)|p"). (87)

O

4.4. Proof of the main theorem. Now, we have all the tools for proving the quantum
algorithm for simulating Problem 1.

Theorem 17. Suppose we are given a block-encoding Uy of Hg, a block-encodings
Us, of S (for a € [M]), 0k, | Qk) (all entries), A, and dy for k € [K]as in Eq. (5). There
exists a quantum algorithm that solves Problem 1. Let t = t(a(1+Av M |10 || 1)+Kd2 ),

max

where ||0]]; = Z,le Ok. This quantum algorithm uses
1
O (rvEx 22 ) (88)
loglog(t/€)
queries to Uy, and Us,, and
K log®
o (KL | as , (89)
loglog(t/e€)

additional 1- and 2-qubit gates.
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We first use Lemma 12 to prepare a normalized version of I'g as in Eq. (45). To
simulate the dynamics in Eq. (44), first note that the solution to Eq. (44) is K We
use the superoperator M defined in Egs. (70) and (71) to approximate % for a small
step 8. By Lemma 15, we know that the approximation error is at most 5(8A)2, where
A=HI+ X Vil

To use Lemma 5 to implement M, we first need to implement the block-encoding
of Ajfor j €{0,..., K —1}. Using Lemma 13, a (¢, a’, €’)-block-encoding of A can
be implemented with &’ < 1+8(at +dmax +4rav/M ||0]1))), a’ = a+O(log(MK)), and
€ = de. Also, a (v/Sdmax, O(log(K)), €)-block-encoding of A; can be implemented
foreach j € [K]using O(log K +polylog(1/€)) 1- and 2-qubit gates by Lemma 3. Now
we use Lemma 5 to obtain the unnormalized state Z;": 1 1J)Aj1¥) with the “success
probability” parameter

> : (90)

(14 + dmax + 420/ 1011))” + £ 6y
_ ! 1)
(1+8Qa + 2dmax + 8aAVM [|01l] + KdAax) + 82 (a + dimax + 4aAvM [16]1)?
=1 —8Qa +2dmax + 8aAVM [|0]]] + Kd>2 ) + OG> (@ + dmax + 42 AVM [61D).  (92)

Setting the step size,

1
5=6 — ’ ©3)
<I"(20l+2dmax+80l)\ M0l + Kd, max))

and repeating the above procedure r times, this success probability parameter becomes
o).

Now for the approximation error, we observe that

HM(S _ ESIC

<&

e N
<552A2=0 50(—2).
220 + 2dmax + 8aAV/M |01 + Kd2,,)? r

By applying the approximation r times, we have

<0 (1> , 95)
& r

) The parameter r can be chosen

HMS _ ellC

1
2a+2dmax+8aAJM||9 l+Kd?
larger enough so that this error is at most €.

Further, conditioned on that we have obtained an approximation T, of Ty, we can
extract an approximation of |i) (1| by measuring the first log(4K + 1) qubits of I,
and post-select the outcome being 0. According to Eq. (11), this probability of the
outcome being 0is 2 (1/(2K + 1)). Now, the success probability is €2(1/K). It follows
from Lemma 16 that using O(+/K) iterations of oblivious amplitude amplification for
isometries, we obtain the desired state.

forevolutiont =ré = ® (

max
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Now, the total evolution time we have simulated so far is réd =
1
20+ 2dmax+8ai/M |0 | +K d2,
is O(r). In the following, we show how to achieve poly-logarithmic cost.

Note that when applying Lemma 4 to construct a block-encoding of Ag = I —ié H
and applying Lemma 5 to implement the superoperator specified by Kraus operators
Ao, A1, ..., Ak, the first register (containing O(log K) qubits) is used for the |u) state
in Lemma 5, and the second register (containing O(log K) qubits) is used for state
B|0) in Lemma 4. The coefficients of the state in the two registers are concentrated to
|0)]0), which corresponds to / (nothing to implement). More specifically, recall that the
parameter 5o in Lemma 5 is the block-encoding normalization factor for I —i§ H, which
can be written as 5o = Z?f {VI +3 viaj, where y;’s and «;’s are the parameters as used in
Lemma 4. For convenience, let @ be upper bounded by @ < « +dax + 4ar/M 6| 1> SO

) and the total cost in terms of queries to Uy and U Sg
max

we can write ZZK M3 yiaj = 1+8a according to Lemma 13. As a result, the amplitude
for |0)]0) is
> v,
2KM - K 2 96)
\/Z, 057 \/Z +3y]'<¥j 2 j=05]
1 +d8a
= - ©7)
(1+8a)? + Kd2,,8
B 1+68(@) 98)
T\ 14260 + K d2  +5%Q2
_\/1 — 8@+ Kd3,) +O©?Qa + Kd2,)?). (99)

Therefore, the probability that the first two registers are not measured 0, 0 is propor-
tional to®

5(a+ Kdﬁm> +0 (52(2a+ Kd2,)> ) =0 G) . (100)

We apply the techniques used in [28] (first introduced in [66]) to bypass the state prepara-
tion for |) in Lemma 4 and for B|0) in Lemma 4. Instead, we use a state with Hamming

weight at most
log(1
h=0O og(l/e) ’ (101)
loglog(1/¢€)

to approximate the state after the state preparation procedure while causing error at
most €. Following similar analysis as in [28], the number of 1- and 2-qubit gates for
implementing this compressed encoding procedure is O(log(1/€)h + K?). Now, the
number of queries to Uy, and Us, becomes

o (ﬁlog(l/@)

(102)
loglog(1/¢€)

3 Note that we use the term “proportional to” because the actual probability is normalized according to the
trace ratio of the first block and the whole matrix of I', which incurs a factor O(1/K).
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For arbitrary simulation time 7, we repeat this O(f Qa+2dmax+8aiv/ M |01 +K max)) =
O(a(l+AvM |01 + K ma,()) times where each segment has the error parameter
€/(t(a(l+AvM|0]) + K max)) which has total cost

log(z/€)

Here we have 7 = ¢t (a (1 + WM M0+ K max)

The additional 1- and 2-qubit gates are used in the compressed encoding proce-
dure and the reflections in the oblivious amplitude amplification for isometries. This is
bounded by

2
o (r«/? (log(t/e)h + K2)> —0 % +TK25). (104)

Acknowledgements. CW thanks Yudong Cao and Peter D. Johnson for helpful discussions on the HEOM
approach for modeling non-Markovian open quantum systems.

Funding XL's research is supported by the National Science Foundation Grants DMS-2111221.

Data Availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Appendix A The Derivation of the Extended Stochastic Dynamics Eq. (35)

As a building block to approximate stationary Gaussian processes in the NMSSE (Eq.
(30)), we consider the Ornstein-Uhlenbeck (OU) type of processes [67], expressed as
the solution of the following linear SDE:s,

il = —dile + v (1), (A1)

fork = 1,2,..., K, with K > M. Here yx > 0 and dj is a complex number with
positive imaginary part. In addition, each of these independent OU processes has an
initial variance 9,3,

E[2(0) ¢ (0)] = 67.

If we pick yx, such that yk2 = 2Im(dy), then ¢ (¢) is a stationary Gaussian process with
correlation,

El¢] (0 (t)] = 078 exp (—id}(t —1)). (A2)
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‘We now construct an ansatz for approximating the bath correlation function. The case
when M = 1 has been thoroughly investigated in [54]. As a time correlation function,
C(t) can be expressed in terms of its power spectrum, denoted here by c (w), as aFourier
integral,

C@t) = / - Cw)e “dw. (A3)

Known as the power spectrum, c (w) is Hermitian and positive semidefinite. Hence it
can be diagonalized using the transformation:

C@) =Y 2@ (@)Q;@).
J

Therefore, a direct numerical approximation of Eq. (A3) will certainly lead to an ansatz
like Eq. (5).

Another alternative is to use a contour integral in the upper half plane, and the Cauchy
residue theorem, reducing the Fourier integral in Eq. (A3) to a summation over poles
[54]. This approach will also lead to the ansatz like Eq. (5).

To ensure the approximation accuracy, in practice, the ansatz in Eq. (5) is often
obtained by a least-squares approach. In addition, we will consider the poles dj within
a cut-off frequency dmax, i.€., |dk| < dmax-

Next we show that we can find an approximation of 7(¢) that exactly satisfies the
relation in Eq. (31), where C(¢) is represented by Eq. (5). Specifically, we approximate
the noise 7 () using the OU processes ¢ (t) from Eq. (A1),

K

np(t) =Y (QkIB)Ok (1) (A4)

k=1

In light of Eq. (A2), the approximation in Eq. (A4) corresponds to an approximation of
the time correlation function in Eq. (5).

For the case of a single interaction term, where M = 1 and the matrix C(z) is
corresponding to a scalar function, this reduces to the standard approach using a sum
of exponentials [54]. But Eq. (5) provides a more general scheme to handle multiple
interaction terms.

Next we show how this can simplify the NMSSE in Eq. (30) when the bath correlation
functions are expressed as Eq. (5). We first define the operators T; according to Eq. (36).
This simplifies the NMSSE in Eq. (30) to,

0,y = st—MZZf T/ e —i(Hs+ddep, I//(I—T)df+)\.Z§J(I)T U (t). (A5)

j=1

Here the multiplication by d; represents the operator d;'Is, where Is is the identity
matrix.

Eq. (A5) still contains memory. But compared to the original NMSSE in Eq. (30), the
correlation C (¢) has been broken down to exponential functions, which can be combined

with the unitary operator ¢ ~//#s In addition, the noise is expressed as the OU process
¢j’s, which can be treated using It6 calculus.

Next, we demonstrate how to embed the dynamics in Eq. (A5) into an extended, but
Markovian, dynamics. The simple observation that motivated the Markovian embedding
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is that a convolution integral in time can be represented as the solution of a differential
equation:

t
£y = /0 exp(—alt — )g()dr —> f'= —af +g. fO) =0.  (A6)

Here f will be regarded as an auxiliary variable, introduced to reduce the memory
integral. Compared to computing the integral at every time step using direct quadrature
formulas, it is much more efficient to solve the differential equation.

We now show that we can use the same idea to define auxiliary orbitals. Specifically,
by inserting Eq. (5) in the SSE in Eq. (30), and by letting, fork = 1,2, ..., K,

t ~
W) = / STy — ),
0

we arrive at the equation,

i, x; = (Hs +di) xi + i Tipr (o). (A7)
This simplifies Eq. (A5) to,
K K
i0y = Hsy —in® Y T/ x}+2 )" Tjwr (¢ 0). (A8)
j=1 j=1

To incorporate the noise term, we define,

X (@) = iy (O (0). (A9)
This reduces Eq. (A8) to,
K K
iy = Hsy —i2>y T].TX} —ix Y Tixj ). (A10)
j=1 j=1

It remains to derive a closed-from equation for Eq. (A9). Using the 1t6’s formula, we
obtain,

10,0 = (Hs — d g + iy Ox + A OT g + 2O Tixd . (ALD
When the coupling parameter A is sufficiently small, one can add or drop O(}) terms,

which will contribute to an O (A2) error when substituted into Eq. (A10). If such an error
is acceptable, by collecting equations, we have extended Schrodinger equations,

K
0y = Hsy —ix Y T xt —in Y Tixf.
R k=1 k (A12)
100, = (Hs +d{)y +irTip (o), k=172 K
i3 = (Hs — do)xf + M0 () + iy (0. o
Rather than dropping O(A) terms in Eq. (A11), one can continue such a procedure

and incorporate the high-order terms. Specifically, noticing the similarity between the
O() terms in Eq. (A11) with Eq. (A9), we define,

xE=itOxt, 1 =ia®xl. (A13)

By repeating the above procedure, one can derive similar equations for these auxiliary
wave functions. These embedding steps yield the extended Schrodinger equations (ESE)
Eq. (35).
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A. The Proof of Lemma 8

Proof. Our proof will mainly target statement (4). The rest of the lemma will become
self-evident throughout the proof. In light of the structure of the GQME in Eq. (44), it
is enough to consider the case K = 1. In this case, I can be viewed as a 5 x 5 block
matrix. We first write V; in a block matrix form,

00
Vl:(RlO)’

where R is a 3 x 3 block matrix with diagonals «/2v;Is, v/2v1Ig and 24/2v; 5. With
direct calculations, we can show that the last term in Eq. (44) can be written as,

virvi = (° 0
P70 RiTo202R] )

Here I"o.2,0:2 refers to the first 3 x 3 sub-matrix of I.

We first look at the scenario when I'(0) is block diagonal. The zero blocks in V1T Vlh;',
along with the observation that Hy is block diagonal, imply that the off-diagonals do not
change. For the diagonal blocks of I'(¢), we first have,

To.0(t) =Us(t)ps(0)Us(t)",

B14
T11(1) =exp(—it(—d +d})Us(OT11(0)Us(t)". 1

As aresult, these two blocks have norms given respectively by,

ITo.0@Il = IT0.0O)l,  [ITL1@)] = [T11(0)]le>"".

The next three block diagonals will pick up non-homogeneous terms. For instance, we
have,

0o = —i[Hs — di, 2] +2v1Tg 0.

Using the variation-of-constant formula, we have,

t
Tao(t) = e M Us(1)T22(0)Us ()" + 20y / e TUs(T)To0(r — T)Us(t) dr.
0
(B15)

Also by noticing that [|T"; 1 (¢)|| is constant in time, the diagonal block I'3 3 can be
bounded directly as,

IT22()1| < IT2,2(0) [ exp(—2v1£) + [To,0(O)[[(1 — e™>"1"). (B16)

The right hand side remains bounded for all time. Similarly, the next diagonal block can
be expressed as,

33(1) = exp(—4v11)Us(1)['33(0)Us(1)’

' (B17)
+2v1/ exp(—4vi ) Us(1)T11(t — 1)Us (1) dx.
0
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Notice that ||I"1,1(¢) || is proportional to exp(—2v;¢). Essentially, what leads to the bound-
edness of the solution is the fact that there is no secular term, implying that ||I'3 3(#)||
follows a similar bound as ||z 2(¢) ||2. The estimate of ||T"4 4(¢) || follows the same steps.

We now turn to the off-diagonal blocks. By direct calculations, we have, for j = 0, 1,
k=1,2,3,4,and k > j

T jx =—i(HsTjx — Tjx(Hs +dy)),
which yields,

INTIOES exp(_idikt)US(l)Fj,k(O)U;(t) = ITj x| = IT; 1 (0)]| exp(—v12).
(B18)

For the remaining off-diagonal entries, we will check I'; 3 as an example. It follows the
equation,

OT23 =—i((Hy —d)T23 — Mo 3(Hy +dy +d})) + 20T 1.
This implies that,
IT3,4(0) ] < IT3.4(0)[le 731 + [T 2(0)]|2e 1 (1 — &™),

We also see from these calculations that these off-diagonal blocks will become zero if
the initial matrix I"(0) is block diagonal.

By examining the block entries of I'(¢), we have shown the boundedness of the solution
stated in Lemma 8 for all time. O

Appendix C The Proof of Eq. (9)

Proof. We will prove the asymptotic bound using an expansion of the Eq. (27). More
specifically, we write the total density matrix in terms of powers of A,

p@0) = p @ +ap V@) + 27D (1) + OO (C19)
By taking a partial trace over the bath space, we obtain a similar expansion for pg :
ps() = p§" (1) + 2§ (1) + 22 (1) + O(Y). (C20)

By inserting Eq. (C19) into Eq. (27) and separate terms of different order, we arrive
at

i3, = [Hs ® I + Is ® Hg, p 1, p@(0) = p(0),

M
i0,p" = [Hs ® Iy + Is ® Hg, p 1+ Y [S0 ® Bar p V1, pP(0) =0,

a=1

(C21)
M
i0,p® =[Hs ® Iy +Is ® Hg, pP1+ ) [S4 ® Bo, pM1, pP(0) = 0.
a=I
Within this expansion, the dynamics of p© contains no coupling. Let

U@) =Us(t) ® Up(t), Us=exp(—itHs), Up(t) =exp(—itHp),
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be the unitary operators. Then we have,
p V1) =Ump P OUM'. (€22)

Since all the operators on the right hand side are in tensor product forms, p©(¢) remains
a tensor product:

pO(t) = pg (1) ® ps. (€23)

Here péo) (1) = Us(t) ps(0)Us(¢)". Meanwhile, the matrix pg stays because it commutes
with Hp.
The term p!) can be expressed using the variation-of-constant formula,

t
oWy=—i Zf Ut —1')Sq ® Bep QUG —1))Tdr
0
o

t
+iy / Uit —t)p ("), @ BoU(t — ') dt’.
0
o

In light of Eq. (C23), we can make the same observation that pW(7) consists of terms
that are tensor products. By following standard notations [1], i.e.,

Se(t) = Us(t)' SqUs(t), Bu(t) = Up(t) By Up(1), (C24)

we can simplify p(V(¢) as follows,

t
p V() =—i Z/O So(t' = )p (1) @ By (t' — 1) ppdt’
o

t
+iZ/0 pfso)(t)Sa(t’ — 1) ® By(t' — t)ppdt’.
o

Since pp commutes with Hp, it commutes with Up. Therefore,

tr(By(t' — 1) pp) = tr(Bypp) = 0,

which shows that

trp (p(l)(t)> —0.
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Therefore, ,og)(t) = 0. The correction to ps comes from pgz) (t), which is similarly
expressed as,

t
oPt)=—i Z/O Ut —1)Sq ® Bep V(U — 1))Tdt
t
+iZ/ Ut -tV h)Sy ® B,U(t —t)Tdr,
a 0
t pt 0
:_ZZ/ f Sa(t' = 1)Sg(t = )pS ()@ By (1" — 1)Bg(t — 1) pgdrdr,
w570 Jo
t ot
+ZZ/ f Sg(t — (1) Su(t' — )@ Bg(t — 1)pp By (¢’ — t)ddr,
w5 Jo Jo
t pt
+ZZ/ / e’ =)oY (1)Sp(x — @By (t' — 1) pg Bs(x — dzdr,
« g JoJo
t pt 0
—22/ / PP (1)Sp(t — 1)Sa(t' — 1)@ pp By (t — 1) By (1 — 1)drdr'.
w570 Jo

Invoking the bath correlation function,

Co.p(t) = tr(By (1) Bgpp), (C25)

we arrive at an expansion of pg(t) up to O (kz),

t pt
o5 =" =22 3 [ [ 5u' =050 = 00 0Cupt = rrdvar
o« B
t pt
”222/0 /0 Sp(t — 1o (1) Su(t' = 1)Co (¢’ — T)dTdl
@ B
t pt
#2305 [ [ 8 =00 035 = Caatr ~ 0" avar
o G JoJo

t pt
XY [ [ o080 =080 =0Cupt’ — 0y dvar
« B

+0O0Y).

(C26)

Here we have used the property of the bath correlation function: Cy g(1) = Cg o (—1)*.
Now we incorporate the function form of the bath correlation function in Eq. (5). We

find that,
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t pt
ps(t) = pg (1) =27 ) / / Tt = DTe(r = Dpg” (e % drdr’
X 0 JO
t et 0 o
+22)° / / Ti(t — D (O Tt — He =D g gy’
— Jo Jo
topt o C27
+223° / / Tt = 1) ()T (x — el =% drar’ €27)
0 JO
k

t pt
_)LZZ./ / PP O Ti(x — DT — el "D drar’
— Jo Jo
+0O03).

Now we show that the GQME in Eq. (44) has an asymptotic expansion that is consistent
with Eq. (C26). Expanding I as,

r'@e)=TO0 +ar'V @) +2°r? @) + 0D,

and substituting it into Eq. (44), one gets,
r 1) = exp (1£0) T(0),

13
rey =—i /0 exp ((t — ) Lo) [H1, T O ()1ar, (28)

1
r®@) = —i/ exp ((t — 1) Lo) [Hy, TV (¢")1dr’.
0

The leading term I'?)(¢) has been shown to be a block diagonal matrix in the previous
section. The first diagonal block is precisely p§0) (1), which is consistent with the O (1)

term in Eq. (C26). To examine 'V (¢), we first notice that the commutator in the integral
has the following structure,

0 B ) EGHE) 0 0 T
%) 0 0 0 0
=0) =0) oy =(0)
B 0 0 E3,0) BEYL(t) -
=(0) 7\ Oy 2,l(t) 3.4 3,5
0 o g 0 0

(C29)

Here we highlighted the leading 5 x 5 submatrix and the zero blocks within it. This is
enough for the purpose of the proof.

By inspecting the solutions that correspond to exp (¢ L), we find that the first diagonal
block of [, exp ((t — t')Lo) E®(¢) is zero. Therefore, ") has no contribution to the
density matrix pg, i.e., there is no O (A) term. This is consistent with Eq. (C26).
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To proceed further, we have to identify the nonzero blocks in Eq. (C29). With direct
calculations, we have,

~(0 0 0
o3 () = =TI (OT) = —p (T,
=) (0
Bo.ak—2 () =TTy 45 0.
From Eq. (C28), we can extract the equation,
. 1 1 1
’atr((),z)tk—s = HSr((),z)Lk—3 - F((),é)lk—3(H5 +dy).
Combining the two equations above, we obtain,
[/
o3t = / Us(t' —1")pQ (" TUs(t' — 1) el @ gy”
0

/

t
— / P AT (" — 1)l gy
0

Again using the solution properties associated with the superoperator exp (L), we
have that the first block of I'") is given by,

t
—i / Us(t — Y ED Y Us(t — ') dr’
0
t
=Z/O Us(t — t')([To,4k—3("), Te] + [Toar—2(1), TkT])Us(t —Hldr'.
k

Similar to Eq. (C27), we have also obtained four terms after expanding the commutators.
Let us examine the first integral term,

t pt
> / / Us(t = 1)pg” (Tt = )T =4 Us(t — 1) )di”
0 JO
k

t pt
=) / / PV (" = DT’ — el ar"ay’.
0 JO
k

This is the same as the first last integral in Eq. (C27). The rest of the integrals can be
similarly verified. O

Appendix D The Proof of Eq. (10)

Proof. In Lemma 8, we have proved a bound for the case when A = 0. Denote the
solution by I'g(), and the solution operator by exp(¢Lg). Therefore, the GQME in Eq.
(44) can be written in a perturbation form,

8T = LoT — ix(HiT —TH)). (D30)

The solution can be recast in an integral form,

t

T(t) = To(t) — i/\/ exp ((t — 7)Lo) (H\T — T H, )dx. (D31)
0
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From Lemma 7, the super-operator exp(t L) is bounded. Therefore, we have,

t
IT(2) = ToIl < 2)»C||H1||/0 IT@)Ndr.

As a result, the bound can be obtained by directly using Gronwall’s inequality.

Since I'g(¢) is block diagonal, the above inequality also shows that the off-diagonal
blocks of I'(¢) are of order A. Finally, the bounds for the trace can be verified from Egs.
(B14), (B15) and (B17) in the proof of Lemma 8. |

Appendix E The Proof of Eq. (11)

Proof. From Eq. (D30), we may take the trace.
t
tr(C(1)) — tr(CQ1)) = —ix / tr(X(z, 7))d, (E32)
0

where,
(t, 1) =exp(tLo)E,

with E from Eq. (52). By the definition of exp(tLg), X (¢, t) is the solution of the
equation,

¥T =LoE, (r,7) = (HT —TH)).

Using the property in Eq. (59) of the super-operator exp(¢ L) in Eq. (10), we obtain the
bound,

| tr(E(t, l')) [<3K | tr(Eo,o(t, 1:)) | +Z | tr(Ek,k(r, r)) | .

k>0

‘We now invoke the estimate in Lemma 7. The trace of each diagonal block of X (z, 1)
is bounded by the off-diagonal blocks of I'(#), which is of order A. Namely, there exists
a constant, such that,

| tr(2(z, 1)) |< Ch.
Collecting terms, we have,
| tr(C (1)) — tr (T Q1)) |< CrA>.

Alternatively, one can start with Eq. (D30), and apply the formula again to replace
the I'(¢) in the integral:

t
re)—r9e =- mf exp (1 — D) Lo) (HiTO(x) — T O(0)H))dr
0
t T
- ,\2/ / exp ((t — 1)Lo) (H1 = (t, 5) — =(x, 5)H, )dsdt + O(L3).
0 JO

Here X (7, s) = exp ((t — 5)Lo) Eg, with

2@ = HTy(s) — To(s)H, . (E33)
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For the O()) term, we notice that I"(0) is block diagonal, and so in light of Lemma
7, the matrix 2O has zero trace. This implies that,

(T —TP0) =0n.

For the @ (A2) term, from Eq. (55), we have, the trace of the first block of H| X (7, s) —
3(z, s)HlT is given by,

K K
> tr(Soais = Za20)Ti) + YT (Foaez — Sus)). (E34)
k=1 k=1

Meanwhile, from the proof of Lemma 8, we see that the superoperator does not change
the off-diagonal blocks in the first row and column. Thus, X (7, s) = X, j(s,s) =

—~(0
gg,;@).

With direct matrix multiplications, we find that,

Eaj—3,0 = — Tk Tag—3 43 — Fo,oT{, Eak—2,0 = Tk Tag—2,4k—2.

From the proof of Lemma 8, we also have I'4x_3 4x—3(#) = 0. Combining these steps,
we find that the trace in Eq. (E34) is zero. Therefore, we have

tr(ps()) = 1+ OO3). O

Appendix F The Proof of Lemma 15

Proof. We use an intermediate superoperator Z + §/C. Assume the Hilbert space K is
acting on has dimension N. Consider a Hilbert space of arbitrary dimension N’. For any

operator Q acting on CV¥ ® CV" with | Q|l; = 1, we have

[(Ms ® Iy — (Zn +86K) @ In) (D)

=D (4,8 DOA;® DT - (Q+8(K®Iy)(Q)
/=0 ! (F35)
= |#Henow e I)H1
<|H®I|?
< (5A)%
Now, we have
[(Ms — Iy +8K) o < (BA)%. (F36)

To bound the distance between Z +8K and ¢°X, we assume 0 < § IK]l, < 1.Consider
any X such that || X||; < 1, we have

@ = @+ om0 H1 - Hi i—s‘IC“(X)
s=2

o0 (SS
< Z; S I ol (F37)
1 s=
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o 83‘
<D S IKCOI = GIKXOID® = GIIKID?, - (F38)
s=2

where the penultimate inequality follows from the fact that e — (1 +z) < z> when
0<z=<l

Now, we extend this bound to the diamond norm. Note that, for two Hilbert spaces
CN and CV',

(@ — @y +5K) ® Ty = SKEIN) (T + 8K @ Ty1)). (F39)
When N = N’, we have that | X ® Zn/||; = ||K||,. This implies that

H @K — Ty +5K) = H <e5’C — Iy + (SIC)) ®In|, (F40)
= [ RET) — @y +50C B Ty | (F41)
< GIK® Iy l)? (F42)
< B IKN)* (F43)

To see the relationship between || L||, and ||XC||;, first observe that | /C||; < 2A. Then
using the fact the | M ® I|| = || M|| for all M, it follows that |||, < 2A. Together with
Eq. (F43), we have

H (@ — (Ty +5K) HQ < (25M)2. (F44)

This result in the lemma now directly follows from Eqs. (F36) and (F44). m|
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