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ABSTRACT

Standard measures of robustness, derived from the least
amount of adversarial perturbation, often fail to gauge the
ability of a classifier to recognize the coarse genres. It is de-
sirable to have a classifier with high coarse robustness with
respect to a grouping that is consistent with the class seman-
tics, so that semantically-plausible coarse categories remain
invariant to imperceptible perturbations.. In this work, we for-
malize a new notion of coarse robustness that is defined with
respect to a specified grouping of the class labels. We formu-
late an optimization problem to obtain the optimal grouping,
and develop an algorithm that is shown to perform on par with
brute force search. Moreover, we propose a training mecha-
nism that incorporates the coarse label information in addi-
tion to the finer ones. We empirically and theoretically show
that this mechanism improves the proposed coarse notion of
robustness while only requiring a relatively small additional
parameters and training time.

Index Terms— Coarse robustness, Adversarial attacks,
Best label groupings, Course training

1. INTRODUCTION

A common approach to gauge the robustness of a certain clas-
sifier to adversarial attacks revolves around determining the
least amount of perturbation capable of inducing a misclassi-
fication — e.g., see the CLEVER metric [1] and the work in
[2,3,4,5,6,7, 8] for some of the state-of-the-art attack and
robustness evaluation methods.

Given a trained classifier, most previous works have fo-
cused on metrics based on the standard notion of robustness
that make use of state-of-the-art adversarial attack methods
such as [2, 9, 3, 4, 5]. However, since this approach gener-
ally ignores the semantic relations among the classes, it falls
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short of capturing a measure of severity of the induced mis-
classifications, and in turn of the safety and brittleness of the
classifier design.For example, misclassifying ‘Can’ as ‘Cup’
is less drastic than classifying ‘Truck’ as ‘Cat’ (all distinct
categories in CIFAR-10 [10]).

In this paper we introduce a new notion of coarse robust-
ness which captures the susceptibility of a classifier to pertur-
bations inducing misclassifications of the coarse labels with
respect to (w.r.t.) a specified grouping of the class labels. A
clear advantage is that the derived measures could be used to
gauge the ability of a classifier to recognize the coarse genres
w.r.t. the grouping.

In addition to the proposed measures, a training approach
that integrates the coarse information is introduced. When
compared to conventional training, the introduced coarse
training approach is proven to obtain stronger classifiers as
leveraged by the introduced measures that evaluate the coarse
robustness w.r.t. consistent groupings of the class labels.

Contributions. First, this work introduces a new notion
of global coarse robustness of a classifier which captures
the hardness of confusing the coarse predictions induced
by a certain grouping of the class labels. Second, to find
suboptimal groupings, we propose measures of goodness of
class groupings and formulate a mathematical program to
optimize such measures. An algorithmic procedure is de-
veloped based on proposed measures, shown to perform on
par with combinatorial brute force search, while requiring a
considerably smaller number of iterations. The utility of the
introduced measures and the performance of the search algo-
rithm are demonstrated using image classification on known
benchmark datasets. Third is the coarse training approach for
obtaining improved coarse robustness models. In comparison
to Natural Training (NT), we prove that our approach obtains
stronger models in terms of the introduced coarse robustness
measure. While requiring the same training time and small
relative additional parameters, experiments show that our ap-
proach produces improved models when compared to models
trained using NT.



2. THE COARSE ROBUSTNESS MEASURE

In this section, we first define the classification model and the
conventional way of training a neural network based classifier.
Define the classifier 4 : R — [M], which maps an observa-
tion z € RY to one of M possible (fine) labels, where [M] :=
{1,2,..., M}. The predicted label is obtained as the index of
the maximizing discriminant probabilistic functional in vec-
tor f : RN — AM where AM is the probability simplex,
with entries f,,,, m € [M], as h(z) = argmax,,,c(ps] fin ()

Definition 1. Given classifier h, parameterized by 0, Natural
Training (NT) on dataset D with entries in the form (x,1,),
where y € [M] is the true label of x and 1,, is one hot encod-
ing vector representation of y, can be defined as the task of
minimizing the loss in
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Let T : [M] — [M,] be a grouping function that maps the
classifier’s output to a coarse label i € [M,], where M, < M
is the number of coarse classes. The function 7" induces the
coarse class sets S; := {m € [M]: T(m) =1i},i € [M,] .

A standard measure of robustness of classifier h w.r.t. a
feature vector x is the least amount of perturbation (relative to
some norm) 77 € RY, required to produce a false prediction.
Itis defined as n;,, () := argmin, {[|nl, : h(z+n) # h(z)},
where m is the true label.

Definition 2. We define a Global Standard Robustness (GSR)
measure in vector g, € RM whose entries represent the av-
erage of the l,, distances between examples x € RY and their
misclassified perturbed versions & = x + 1, i.e.,

1
gp(m) = B > @)l )
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where Dy, := {x € RN : h(z) = m}.

Given that h(x) = m with the predicted coarser set
S7(m)» one could define the minimum perturbation required
to induce misclassification of the coarse label (coarse mis-
classification) as n,, (z;T) = argmin, {[[n|l, : h(z +n) ¢
ST(m)} :

Definition 3. Let vector c,(T) € RM, whose entries

1
ep(m; T) i= o Z 7 (25 1)l (3)
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reflect the average minimum perturbations required to cause
coarse misclassification from predicted label m, used to de-
fine our global measure of coarse robustness, dubbed GCR.

3. FINDING BEST MAPPINGS

In this section, we use targeted perturbations from label m to
target n, Ny () 1= argmin, {|[n|l, : h(x) = m, h(z +n) =
n} , to find best mappings w.r.t. the notion of coarse ro-
bustness. As such, we first define the matrix G, € Rj\_/[ xM
with zero diagonal, whose entries represent the average of
the [, distances between examples z € R and their mis-
classified perturbed versions & = = + 7, i.e., Gp(m,n) =
1
D] Zmepm ”nmn(z)‘lp ,m#EN.

Given T, we define matrix C), € Rf“ *Me whose entries,

1
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represent the average of the minimum perturbations to induce
a misclassification of the coarse label from set S; to set 5.
The diagonal of C), is a measure of the average perturba-
tions required to induce misclassifications within the same
coarse set S;,4 € [M,]. In order to obtain the best group-
ing function T, for every coarse label i € [M.], it requires
on average a higher level of perturbation to misclassify the
coarse labels (inter-set misclassification) than to misclassify
the original prediction within the same coarse set (intra-set
misclassification). Further, it is desirable that the mapping
holds a semantic-based grouping of the labels. Therefore, for
each row i € [M,], we require that min ¢ az, )\ {5} Cp(4,7) =
Cyp(i,4) . In order to quantify the quality of the grouping of
labels, we seek a measure that captures the hardness of con-
fusing the coarse predictor induced by 7" relative to classifier
h, but also accounts for the variability between labels within
each coarse class which is captured in the diagonal of C,. To
this end, we introduce the following.

Definition 4. The Coarse Mapping Quality matrix (CMQ) is
the zero diagonal matrix I1,(T) € RM<*Me ggsociated with
the grouping induced by the mapping T, whose entries are
derived from matrix C, as

Hp(iaj§T) = Cp(ivj;T) - Cp(iai;T) NS [Mc] - (5)

This CMQ identifies features that best separate two or
more classes. A larger value in II,, captures the relative hard-
ness of moving coarse label ¢ to 7 under grouping function
T, measured by the difference of the mean minimum pertur-
bations for altering classifications between the coarse classes
and within the class.

To characterize the overall quality of a mapping 7" based
on the CMQ, we use a,(T) = 37, ¢ () 2jear Up(is 53 T),
Bp(i;T) = Zje[Mc] Hp(iuj§T) :

Favorable mappings — in the sense of inducing well-
separated coarse classes — will yield larger values of a,.
Therefore, to obtain the overall best mapping, we formulate
the optimization problem (BM) in (6).

mj@x{ap(T) cI0,(4,5;T) > 0,Vi,j € [Mc],i # 5} . (6)



Algorithm 1 Finding suboptimal mapping for (BM)
Input: Gp» Me, Q, Tini
Output: T*

1: Initialize T" = T,;, P = {.}, iteration =0
2: While iteration < @Q
30 getIIp(T), (is,iq) = argmin; jeipr, 1 {Hp(4, 55 T) ¢ [Si] > 1}

4: getms = argminmesiS nEs;, Gp(m,n)

5. re-locate ms from S;, to S;,. update 7', iteration < iteration + 1
6: ifT ¢ P,updateP <~ PU{T'}

7:  else, restart T" uniformly at random

8: get V= {T € P : Constrains. of (BM)}

9: return T* = argmaxpcy ap(T)
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Fig. 1: An example of the additional parameters required for the
AHCT method in a neural network classifier.

The program in (BM) searches for the best placement of
M distinct classes into M. non-empty groups. Therefore, the
brute force approach to finding the optimal mapping amounts
to a search over S(M, M,.) (the Stirling number of the second
kind [11]) groupings. Thus, the optimal solutions to (BM)
is Tgy = argmaxper{op(T) : (¢, 5;T) > 0,Vi,j €
[M.],i # j}, where L is the set of all possible mappings
with |L| = S(M, M_.). We develop the procedure described
in Algorithm 1 where we only consider Q < S(M, M.) pos-
sible groupings depending on the CMQ matrix.

4. IMPROVING THE COARSE ROBUSTNESS

We consider k : RN — AM+Me with entries k;,7 € [M +
M.], such that the fine and coarse predictions are given as
h(x) = argmax;c ) ki(z) , and

argmax
i€{M+1,....M+DM.}

T(x) = ki(x) — M . @)
We use 6, to denote the set of the augmented adjustable
parameters along with . Moreover, we introduce training
dataset D, with entries (z,p) where z is from D, and vector
p € AM+Me 5 obtained from y as follows. The true finer and
coarser labels are presented in vector p by stacking vectors
0.51,and 0.51;,ie.,p = 0.5[1, 1.]7 . See Fig. 1 for an
example.

Definition 5. Given classifier h'/, parameterized by 0,, we
define the Augmented Heads Coarse Training (AHCT) on
dataset D, as the task of minimizing the loss function in (8)
in order to obtain high classification accuracy w.r.t. to the
fine and coarse information.

Y. L(k(w:6a),p) - (8)
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Theorem 1. Given mapping T, NT classifier h with c;’T(m; T),
and AHCT classifier h' with c’gHCT(m; T), then

Eneimncy (m;T) < Epepun ey (m; T) . )

Proof. Given an observation vector x, we use 7™ (z) and
nAHCT (1) to denote the minimum perturbations needed to in-
duce coarse miss-classification for models trained by the NT
and AHCT methods, respectively. This means,

N («) = argmin{||n|l, : argmax fin (2 +1) ¢ Sr(,)}
n

me[M]
(10)
nAHCT(x) = argmin{||n]|, : argg\lf]tx ki(x +n) & Sty /\
n i€

ki(x+mn) #T(y)} -

argmax
ie{M+1,...M+M.}
Y
Given the definition of the GCR, if we prove that ||V (z)|],
< ||7AHCT (15)]|,,, then it follows that (9) is satisfied. The val-
ues of pNT(x) and nHCT(z) are obtained using targeted
attacks as follows. All target labels in the set outside the true
coarser set, t € Sp(y), are tried to get 7} () and 7HCT (2),
then the minimum is selected. Given a target ¢, the targeted
perturbations are obtained using the standard unrestricted
targeted attack formulation for the NT and AHCT models as

given in (12) and (13), respectively.
min s.t.
inllnl

fe(x+n) > fu(x+n),Ym € [M]\ {t}.

12)

min s.t.
il

ke(z +n) > ki(z +n),Vi € [M]\ {t},
knyry (T +mn) > kayi(z +n), Vi € [M ]\ {M +T(t)} .
(13)
Given the additional constraints in (13), the feasible set
of (13) is a subset of the feasible region of (12). Hence,
[T (@), < T (@), which yields to [N ()], <
[nAHCT (2)||,,, and that concludes the proof.

5. NUMERICAL RESULTS

We consider the CIFARI10 [10] (FMNIST [12]) dataset by
which class numbers 0-9 represent airplane (T-shirt), car
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Fig. 2: Results for the best mappiflg function 7" obtained as a solution to (BM) using the CMQ matrix TI, for CIFAR-10 (first and second)

and FMNIST (third and fourth).

Table 1: Performance of Algorithm 1 in obtaining the best overall mapping in comparison with the brute force method.

[ Dataset [S(10,3) o3 E(a2) E(Q) [S00,4) of E(xe) E(Q) [S(10,5) oF E(xe) E@Q) ]
CIFAR-10 | 9330 059 059 2139 | 34105 1.17 1.17 2017 | 42525 1.645 1.645 2369.8
FMNIST | 9330 258 258 13084 | 34105 444 444 18284 | 42525 7.11 24776 31986

(trouser), bird (dress), cat (coat), deer (sandal), dog (shirt),
frog (sneaker), horse (bag), ship (boot), and truck. We use
standard convolutional neural network classifiers. We use
the cross-entropy loss for £ in both NT and AHCT, and the
state-of-the-art targeted version of the Projected Gradient
Descent attack [13] method with p = 2 to generate the pertur-
bations. We use Intel(R) Core(TM) i9-9940 CPU @ 3.30GHz
machine.

For our first experiment, where the outcomes are given
in Fig. 2, we present results for the best mapping func-
tion 7' obtained as a solution to (BM) using the CMQ
matrix II,. The first (last) two plots show the results for
CIFAR-10 (FMNIST) with M. = 3 and M, = 4, respec-
tively. The positive non-diagonal entries show the exis-
tence of mappings for which the average minimum per-
turbations that cause inter-set misclassification are larger
than those causing intra-set misclassification. Under the
derived mapping, it is most hard to misclassify the coarse
class {‘Auto’,*Truck’} as {‘Bird’, ‘Cat’, ‘Deer’, ‘Frog’}
for CIFAR-10 and {‘Sandal’,‘Sneaker’,’Boot’ } as { ‘T-shirt’,
‘Pullover’, ‘Shirt’} for FMNIST. Moreover, irrespective of
M., we observe that the obtained mappings are consistent
with semantic-based groupings. For example, all animals
are grouped in two coarse sets for CIFAR-10 with M, = 4,
‘Auto’ and ‘Truck’ are grouped in CIFAR-10 for M, = 3 and
M. = 4, and all foot-wearable items {‘Sandal’,‘Sneaker’,
and ‘Boot’} are grouped in FMNIST for M, = 4. Further-
more, higher values in II, are associated with groupings that
are more semantically consistent. For example, in the first
CMQ, the grouping in the first row, which places instances of
‘Ship’ and ‘Cat’ in one set, returns a low S = 0.032, while
the semantic-based grouping of ‘Auto’ and ‘Truck’ returns
B2 = 0.3817. Interestingly, class separation is not always
in one-to-one correspondence with natural semantic-based
groupings as for the former example. Therefore, our analysis
also sheds some light on a source of vulnerability of clas-
sifiers to imperceptible adversarial attacks in that they may
not capture semantic similarities of classes. Specifically, the
long-observed vulnerability is not very surprising considering
the fact that certain labels could be close with regard to the

amount of perturbation causing their misclassification while
not being close semantically.

In Table 1, the performance of Algorithm 1 in obtaining
the best overall mapping in comparison with the brute force
method is demonstrated. We report the index of the optimal
mapping o (brute force), the index of the mapping obtained
by Algorithm 1 averaged over 5 random initial mappings Tiy;,
and the required number of iterations for both approaches. As
shown, Algorithm 1 succeeds in obtaining the exact optimal
mapping in all scenarios. The optimal values are obtained
by our algorithm are confirmed by the brute force method for
which all the S(10, M..) possibilities are tried. For all cases, in
general, Algorithm 1 requires a considerably smaller number
of iterations to converge than brute force search.

For our third experiment in Table 2, we present results
comparing the global standard and coarse robustness mea-
sures using natural training and the proposed augmented
heads coarse training. Table 2 presents CIFAR10 and FM-
NIST results using semantic based and random mappings.
For each dataset, the mapping that returns the highest CMQ
is also considered. The first column is used to reference
the experimental setting of each case. The last two columns
represent the average global standard and coarse robustness
measures which will be used as our evaluation of robustness
when we present the following observations.

In all the considered scenarios (trained models and group-
ings), the GCR is higher than GSR. This indicates that in-
ducing coarse miss-classification requires, on average, larger
amount of perturbations when compared to those needed to
induce any miss-classification. Furthermore, when we com-
pare NT and AHCT models for the amount of average per-
turbations needed to cause any miss-classification using the
GSR results, we observe that it is not necessary the AHCT
scores higher as seen in run ID 10 vs. run ID 11 for an exam-
ple. This reflects that inducing any miss-classification in the
AHCT models may became easier as we are not using one-
hot encoding for the finer label as in NT, and use a value of
0.5 to represent the true fine label as presented in the AHCT
method.



Table 2: Results for enhancing the coarse robustness evaluated using the GCR and GSR measures for models trained using NT and AHCT.

H RunID  Dataset Model Training # of Parameters Coarse Sets GSRE,,(g2(m)) GCRE,,(c2(m;T)) H
0 CIFAR-10 & NT 1211786 12,3.4,5,6,7}, 10,8}, {1,9} 0.149 0.2164
l CIFAR-10 I/ AHCT 1212170 12.3,4,5,6,7},10,8],{1,9} 0.192 0.396
2 CIFAR-10 & NT 1211786 10,1,2,3},{4,5,6}.{7,8,9} 0.149 0.171
3 CIFAR-10 I/ AHCT 1212170 10,1,2,3),{4,5,6],{7.8,0} 0.207 0.241
4 CIFAR-10 & NT 1211786 {0.2},{1,8,9}, (3,5}, {4,6,7} 0.149 0.182
5 CIFAR-10 I/ AHCT 1212302 10,21, {1,8,91, 3,5, {4,6,7} 0.194 0244
6 CIFAR-10 _ h NT 1211786 {0,1,2},{3.4},{5,6,75, (8,9} 0.149 0.168
7 CIFAR-10 I/ AHCT 1212302 10,1,2}, (3,4}, {5,6,7}, (8,9} 0.202 0.22
8 FMNIST h NT 26506 {0,1,2},{3,4,5},{6,7,8,9} 0.399 0.424
9 FMNIST AHCT 26605 10,1,27,{3.4,5},{6,7,8,0} 0415 0.71
10  EMNIST & NT 26506 (1.31.{5.7,95,{0,2,4,6,8} 0.399 0.588
1 FMNIST AHCT 26605 1,31.{5,7,91,1{0,2,4,6,8 0.385 1369
12 _FMNIST & NT 26506 10,1,2].{3.4},{5,6,75, (8,9} 0.399 0.421
3 FMNIST 7/ AHCT 26638 10,1,2}, (3,4}, {5,6,7}, {8, 9} 0.39 0.443
14 FMNIST & NT 26506 10,61, {1,4,85, {23}, (5,7,9} 0.399 0.467
15 FMNIST 7/ AHCT 26638 10,6}, 11,4,8},{2,3}, {5, 7,9} 0.467 0.545

6. CONCLUSION

In this paper, we first introduced global measures of the no-
tion of coarse robustness. An efficient algorithm to identify
robust groupings relative to the introduced measures was de-
veloped. Furthermore, we presented a method to improve the
coarse robustness using a modified structure that incorporates
the coarse information. Further, we proved the enhancement
theoretically and empirically. An intriguing observation of
our experiments on benchmark datasets for image classifica-
tion is that semantically plausible groupings of the class labels
are often consistent with large values of the measures intro-
duced.
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