
2022 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, AGU. 22–25, 2022, XI’AN, CHINA

THE MINIMUM VALUE STATE PROBLEM IN ACTOR-CRITIC NETWORKS

Alvaro Velasquez1 Ismail R. Alkhouri2 Brett Bissey3 Lior Barak2 George K. Atia2,4

1 Information Directorate, Air Force Research Laboratory, Rome NY, USA
2 Department of Electrical and Computer Engineering, University of Central Florida, Orlando FL, USA

3 MITRE Corporation, McLean VA, USA
4 Department of Computer Science, University of Central Florida, Orlando FL, USA

ABSTRACT
Deep reinforcement learning (RL) methods are vulnera-

ble to adversarially perturbed states. Though the nature of
such states is difficult to characterize, popular actor-critic ar-
chitectures provide a natural way to detect such pathologi-
cal states by determining whether their value head is below
some value. In this paper, we leverage this capacity of actor-
critic architectures to generate low-value states that can be
used to define a training regimen for RL algorithms, which we
call the Pathological Ensemble of Actions for RL (PEARL).
We pose the problem of synthesizing a low-value state for
a given architecture, prove that it is NP-hard, and present
a solution based on integer linear programming. The gener-
ated states can then be used to augment the training data with
these pathological states. We demonstrate the gains obtained
by PEARL when compared to standard Proximal Policy Op-
timization and Monte-Carlo Tree Search baselines on board
games such as Go and Checkers.

Index Terms— Deep Reinforcement Learning, Actor-
Critic, Minimum Value State, Adversarial Training

1. INTRODUCTION

Deep reinforcement learning has witnessed tremendous suc-
cess in recent years, beginning with the development of deep
Q-networks that can achieve superhuman performance in var-
ious Atari benchmarks [1] and more recently with the adop-
tion of actor-critic architectures within planning solutions like
Monte-Carlo Tree Search (MCTS) to defeat the world Go
champion at the time [2]. In particular, these actor-critic ar-
chitectures enabled the value prediction of an observed state
to be computed within the policy network. While this facil-
itated their adoption within novel MCTS algorithms [2, 3,
4, 5], we argue that these value predictors have other wide-
reaching implications with respect to the generation of ad-
versarial states for measuring policy robustness and for the
integration of these states within adversarial training regimes
for reinforcement learning models. To that end, this paper

This work was supported in part by NSF CAREER Award CCF-1552497
and NSF Award CCF-2106339, DOE Award DE-EE0009152, AFRL Con-
tract Number FA8750-20-3-1004, and AFOSR Award 20RICOR012.

explores the synthesis of adversarial low-value states for a
given actor-critic policy network via integer linear program-
ming. We call such states pathological in that they induce
the worst behavior of the agent in terms of the expected re-
ward output by the value head of vθ of the policy network
parameterized by θ. We call this the Minimum Value State
(MVS) problem and prove it belongs to the NP-hard com-
plexity class. Although this means that a polynomial-time
solution is not likely to exist, we present an integer linear pro-
gram (ILP) that can find effective solutions to the MVS prob-
lem for networks with over 100,000 parameters in under one
minute. The synthesized states are then used to train a sec-
ond actor-critic policy network to improve the performance
of the agent when observing low-value states. These two
networks form a Pathological Ensemble of Actions for Rein-
forcement Learning (PEARL). We demonstrate that PEARL
can yield significant gains in observed rewards in Go and
Checkers board games environments. Examples of generated
pathological states for a given actor-critic architecture using
our approach can be seen in Figure 1. We focus our atten-
tion on discrete-valued precisely-defined state spaces such as
those encountered in board games. In such settings, conven-
tional gradient-based approaches to adversarial state genera-
tion may not generate a valid state. Indeed, these state spaces
are defined by specific rules that are easily encoded by integer
linear programs, but may be violated by traditional adversar-
ial approaches. For example, a generated checkers board state
can have at most 12 black or white pieces.

The contributions of this paper are as follows. First, we
present the MVS problem. We include how different layers
are representable as linear functions for the adoption of lin-
ear programming. Second, we present the complexity results
of the MVS problem. Third, experiments are conducted on
Proximal Policy Optimization (PPO) and MCTS solutions to
the games of Go and Checkers with and without PEARL to
illustrate the gains obtained from utilizing our method.

1.1. Related Work

The idea of adversarial training has been explored in the liter-
ature as means of robustifying neural network classifiers [6]
[7] [8]. These methods typically utilize the Projected Gra-

978-1-6654-8547-0/22//$31.00 ©2022 IEEE

20
22

 IE
EE

 3
2n

d
In

te
rn

at
io

na
l W

or
ks

ho
p

on
 M

ac
hi

ne
 L

ea
rn

in
g

fo
r S

ig
na

l P
ro

ce
ss

in
g

(M
LS

P)
 |

 9
78

-1
-6

65
4-

85
47

-0
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I:
10

.1
10

9/
M

LS
P5

52
14

.2
02

2.
99

43
37

6

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Examples of the board games of Go (left) and Check-
ers (right), respectively, generated from our proposed method. In
the shown Black-to-play low-value checkers-state generated with re-
spect to Black, Black is at a clear disadvantage due to being behind
in the number of pieces, as well as that White has stabilized its pieces
along the main diagonal and the walls.

dient Descent (PGD) attack to generate adversarial samples
to improve the training performance of the underlying neural
network. Adversarial attacks on deep reinforcement learning
have also leveraged similar gradient-based attacks. For exam-
ple, the work in [9] presents three varieties of gradient-based
adversarial attacks, such as adding perturbations to the obser-
vation space with the goal of reducing the reward signals [10].
At the intersection of these areas lies adversarial training for
reinforcement learning. However, in this setting, a significant
challenge arises in how to generate a valid state. Indeed, the
games of precision often used as benchmarks for reinforce-
ment learning follow very specific rules. For example, one
cannot have more than 12 black pieces in a Checkers board
state and no more than two knights for either player in a valid
Chess board state. Indeed, these hard constraints pose a chal-
lenge to the use of popular gradient-based attack methods for
adversarial training. This is a challenge we resolve via the
use of integer linear programming, which provides a natural
platform for defining such constraints.

It is worth noting that the verification community has also
exploited the use of integer linear programming techniques to
great effect in order to ensure that, for a given bounded vol-
ume of data, some property holds within feedforward neural
networks. The approach proposed in [11] uses an ILP for-
mulation to encode constraints reflecting neural network lay-
ers to derive a point-wise robustness measure. Similarly, the
work in [12] studies reachability problems for feed-forward
neural networks with rectified linear unit (ReLU) activation
functions and dense layers by encoding these in an ILP for-
mulation. In [13], the number of non-linearities to be handled
by the ILP for verification can be significantly reduced since
there is a bounded input domain for which it is observed that
many of the ReLUs are always active or inactive. This, com-
bined with other techniques based on the bounded input do-
main, can greatly reduce the number of ReLUs to be consid-
ered by the ILP solution. Our paper differs from these efforts
in two key aspects. First is the implementation on reinforce-

ment learning systems. Specifically, our goal is to synthesize
inputs that minimize the value head representing the predicted
value of a state in a given actor-critic architecture. Second is
the utilization of game-related integer constraints that depend
on the type of the environment.

2. THE COMPLEXITY OF GENERATING STATES
OF MINIMUM VALUE

In order to establish the complexity of generating a state s
of lowest value vθ(s) for a given actor-critic architecture, we
will leverage a popular problem known as Maximum Inde-
pendent Set (MIS).

Definition 2.1 (Maximum Independent Set). Given an undi-
rected graph G = (V,E), the Maximum Independent Set
(MIS) problem consists of finding a subset of vertices V ′ ⊆ V
such that no two vertices in V ′ are connected by an edge and
|V ′| is maximized.

Definition 2.2 (Minimum Value State (MVS)). Given an
actor-critic architecture fθ parameterized by θ with ReLU
activation functions and value output vθ : S → R, find a state
s such that vθ(s) is minimized.

Theorem 2.3. MVS is NP-hard.

Proof. We prove that MVS is NP-hard by reducing an ar-
bitrary MIS instance to a corresponding MVS instance and
demonstrating that, if an efficient solution to the latter exists,
then it can be used to derive an efficient solution to the MIS
instance. Given an MIS instance G = (V,E) with n = |V |
vertices and m = |E| edges, we construct an actor-critic ar-
chitecture as follows. For each vi ∈ V , we have an entry
si ∈ [0, 1] in the input state vector. We assume these normal-
ized bounds of [0, 1] on the input for convenience and we do
not restrict the proof to only discrete values. Each of these si
is connected to a ReLU activation function ri with bias term
−1/2 via the weight parameter θii = 1. We call these vertex
ReLUs. The outputs of r1, . . . , rn are then connected to vθ
with weights θiv = −1. For each edge ek = (vi, vj) ∈ E,
we have two connections from inputs si and sj to ReLU rn+k

in the hidden layer. We call these edge ReLUs. In particular,
we have weights θi,n+k = 1 and θj,n+k = 1. Each of these
ReLUs rn+1, . . . , rn+m has a bias term of −1. The outputs
of these ReLUs are connected to vθ with weights θn+k,v = n.
See Figure 3 for a visual example of this reduction. We now
show that a solution V ′ ⊆ V to the given MIS instance is
of maximum cardinality if and only if the solution s to the
reduced MVS instance instance has minimum value vθ(s).

(=⇒) Assume that V ′ is an independent set of maxi-
mum cardinality. Let si = 1 for every vi ∈ V ′ and si = 0
otherwise. Since the vertices in V ′ do not share edges, the
inputs into edge ReLUs rn+1, . . . , rn+m will be of value at
most 1. Given the bias term of -1 for these ReLUs, it follows
that their outputs will be 0. For the vertex ReLUs r1, . . . , rn,

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

we have |V ′| inputs of value 1. This results in a combined
output of |V ′|/2 due to the bias terms of these ReLUs and a
corresponding input of −|V ′|/2 into vθ. This is the minimum
input value for vθ. Assuming that vθ is a monotonically non-
decreasing function, this yields the minimum value vθ(s).

(⇐=) Suppose s ∈ [0, 1]n is a state of minimum value
vθ(s). It must be the case that, for any given edge ek =
(vi, vj) ∈ E, we have si + sj ≤ 1. In this case, it must be
that either si = 1 or sj = 1 as this would yield a combined
ReLU output of 1/2, which minimizes the negative input into
vθ through the vertex ReLUs ri and rj with bias terms of
−1/2. However, for the sake of contradiction, consider the
case where si + sj > 1. Then, there would be an output of
((si+sj)−1) > 0 from the edge ReLU rn+k. This would re-
sult in an input of n((si+sj)−1) into vθ. It can be shown that
the combined output of edge ReLU rn+k and vertex ReLUs
ri and rj will be strictly greater than −1/2, yielding a contra-
diction since this would imply that a state of lower value than
s exists. The combined input of these three ReLUs into vθ is
n((si + sj)− 1)− (max(0, si − 1/2) +max(0, sj − 1/2)).
This can be seen in the network of Figure 2.

Fig. 2: Network used in the proof.

Let si + sj = 1 + δ for δ ∈ (0, 1]. The combined input
into vθ resulting from these three ReLU outputs then reduces
to nδ − (max(0, si − 1/2) + max(0, sj − 1/2)). Note that
this value is minimized as δ approaches 0. We have

lim
δ→0

(nδ − (max(0, si − 1/2) + max(0, sj − 1/2)) ≥

nδ − 1/2 > −1/2

We have thus shown that si + sj = 1 for every edge
ek = (vi, vj) ∈ E, with either si = 1 or sj = 1. It fol-
lows that the minimum value of vθ(s) is obtained when the
maximum number of entries in s have value 1 such that their
corresponding vertices in G share no edges. This yields an
independent set V ′ = {vi ∈ V |si = 1} of maximum cardi-
nality.

We have shown that generating states of minimum value
is NP-hard and, therefore, a polynomial-time solution is not
likely to exist. Nevertheless, we present an integer linear pro-
gramming solution that is efficient in practice.

Fig. 3: Given the MIS instance as an undirected graph G = (V,E)
(left), and its corresponding MVS instance (right).

3. METHODOLOGY

Modern CNN architectures such as Inception, AlexNet,
SqueezeNet, ResNet, and VGG, among others, consist of
an input image, followed by convolutional layers, followed
by batch normalization, followed by activation functions
(typically ReLU activations) and average of max pooling
layers in a cyclical fashion. At the end of the CNN are one
or more fully connected layers which take a flattened vector
representation of the tensor output by the last pooling layer
and connect each of the values in this flattened vector to a
softmax activation function for each of the output classes in
the learning problem. In the case of actor-critic architectures,
these classes correspond to the actions an agent can take and
there is also a value output vθ(s) denoting the predicted value
of playing a game from a given state s. We propose an in-
teger linear programming approach to generate input states
for which a given actor-critic architecture yields a low-value
output. We assume that this actor-critic architecture is a CNN
and proceed to demonstrate how the various facets of a CNN
can be encoded as linear constraints. That is, rather than
optimizing vθ(s) directly with respect to the input state s, we
instead optimize indirectly by encoding all the intermediate
layers as linear constraints.

Handling Convolutions: Let s = (x0
ijk) denote the state

representing the input data tensor to the CNN and let xl
ijk ∈

[0, 1] denote the normalized pixel value of the pixel in the ith

row and jth column of the kth channel of the data volume in
the lth layer, where l ≥ 1. For the input, we assume integer
values x0

ijk ∈ Z representing, say, pixel values or indicator
variables that are often used in reinforcement learning bench-
marks. Assume that the lth convolutional layer consists of nf

filters (clfijk) with height hlf , width wlf , and depth dlf , each
of which will be applied to the data volume output by the pre-
vious layer l − 1. The result of convolution in the lth layer
is given by

∑
i′j′k′ x

l−1
i′j′k′ · clki′j′k′ + blk , where blk is a bias

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

term. We have not included stride terms nor the specific in-
dexing schemes for i′, j′, k′ for ease of presentation.

Handling Batch Normalization: After each convolu-
tional layer, there is often a batch normalization layer [14]
which scales and shifts its inputs (xijk) using the learned
parameters γ and β as

γijk

∑
i′j′k′

xl−1
i′j′k′ · clki′j′k′ + blk

+ βijk . (1)

The results of convolutions are often normalized to miti-
gate the problem of covariate shift which arises in deep net-
works during training.

Handling ReLU Activations: After batch normal-
ization, non-linearities are applied. This is typically ac-
complished with ReLU activations given by the formula
rlijk = max{0, xl

ijk}. For an input volume (xl
ijk), note

that the solution to the following linear program (2) yields
rlijk = max{0, xl

ijk} for all height, width, depth, and layer
indices i, j, k, l, where Equation (1) is used as input.

min
∑
i,j,k,l

rlijk subject to

rlijk ≥ γijk

∑
i′j′k′

xl−1
i′j′k′ · clki′j′k′ + blk

+ βijk ∀i, j, k, l

rlijk ≥ 0 ∀i, j, k, l
(2)

It is worth noting that each ReLU function can also be en-
coded using four integer linear constraints and a binary vari-
able [13]. However, this introduction of integer linear con-
straints and binary variables makes solving such formulations
much more complex.

Handling Pooling: In order to downsample image vol-
umes to a lower-dimensional space while retaining the most
meaningful features, the use of max or average pooling op-
erations is commonly adopted. Unlike convolutional filters
which are applied to a 3D image volume, pooling filters are
applied to a 2D image. In particular, an h× w max (average)
pooling filter simply chooses the maximum (average) value
in an h × w sub-image. Given an h × w input (xl

ijk), the
max pooling filter value is given by x′

ijk = max(xl
i′j′k′). It

has been shown that each max pooling function over n =
h × w variables can be encoded using n + 1 integer lin-
ear constraints, n linear constraints, and n binary variables
[13]. Due to the complexity incurred by these max pooling
operations, we focus our attention on average pooling layers,
which can represented by the simple linear transformation in
xl
ijk = 1

hw

∑
i′,j′ r

l
i′j′k. For the remainder of this paper, we

adopt the use of average pooling layers for simplicity and to
mitigate the complexity of the synthesis procedure.

Handling Fully-Connected Layers: After the last pool-
ing layer, the resulting image volume is flattened into a vector

and one or more fully-connected layers (often with ReLU ac-
tivations) follow before reaching the final layer which yields
the policy and value vθ(s) for a given state s. Let L and LC

denote the number of layers and convolutional layers, respec-
tively, in the network of interest. Given a vector (xl−1

i) as in-
put from layer l−1, a neuron xl

j , l > LC in a fully-connected
layer with incoming weights (wl−1

ij) will output Equation (3).

xl
j =

∑
i

wl−1
ij xl−1

i + blj (3)

After the fully-connected layers comes the final layer, which
typically consists of fully-connected softmax activation func-
tions for the policy and value heads. However, we focus our
attention solely on the inputs to the value head since this is
the value we would like to minimize in generating low-value
inputs for reinforcement learning. Since this corresponds to
the outputs of the final fully-connected layer, we denote these
input values within the linear program as

∑
i x

L
i .

We can integrate the foregoing formulations into the ILP
in (4). Note that the inputs

∑
i x

L
i to the value head vθ are a

part of the objective function.

min
∑
i,j,k,l

rlijk +
∑
i

xL
i subject to

(i) rlijk ≥ γl
ijk

 ∑
i′,j′,k′

xl−1
i′j′k′ · clki′j′k′ + blk

+ βl
ijk

∀i, j, k, l ≤ LC

(ii) rlijk ≥ 0 ∀i, j, k, l ≤ LC

(iii) xl
ijk =

1

hw

∑
i′,j′

rli′j′k ∀i, j, k, l ≤ LC

(iv) rlj ≥ γl
j

(∑
i

wl−1
ij xl−1

i + blj

)
+ βl

j ∀j, l > LC

(v) xl
j = rlj ∀j, l > LC

x0
ijk ∈ Z, xl

ijk ∈ R, rlijk ≥ 0 ∀i, j, k, l
(4)

In this program, Constraint (i) encodes the convolutional fil-
ters, batch normalization, and part of the ReLU formulation.
Constraint (ii) completes the encoding of ReLU outputs. Con-
straint (iii) encodes the average pooling operations. Con-
straint (iv) encodes the outputs of fully-connected layers after
the ReLU operations in these layers. Constraints (v) explic-
itly states that the output of a ReLU activation in the fully
connected layers is itself the output of that layer. This differs
from the convolutional layers, where pooling operations are
performed after ReLU activations in order to determine the
outputs of that layer.

It is worth noting that the program (4) is an ILP since we
are restricting the input state s = (x0

ijk) to be composed of
integers. Therefore, the solution to this program may require

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

an exponential number of operations in the worst case. The
justification for adopting an ILP formulation follows from the
fact that we have proved MVS to be NP-hard and, therefore,
no polynomial-time solution is likely to exist. In order to in-
crease efficiency, we have modeled ReLU operations using
continuous variables and added these to the objective function
along with the original objective of minimizing the inputs into
vθ. In cases where the two objectives in the objective function
of the ILP may compete, there is no guarantee that a generated
state will be of minimum value. We adopt this formulation as
a point of practicality since an exact formulation would re-
quire the addition of a binary variable for each ReLU activa-
tion function [13] in order to remove the ReLUs from the ob-
jective function. This would make the problem intractable for
all but the smallest of networks. Indeed, for our experiments,
we define a network of modest size that includes over 100,000
ReLU activations. An exact ILP solution to the MVS problem
would require the addition of over 100,000 binary variables.
In the worst case, this leads to an exponential runtime propor-
tional to 2n, where n denotes the number of binary variables
[15], [16]. We therefore make this trade-off between preci-
sion and tractability and demonstrate that our proposed ILP
can yield low-value states in under one minute. These states
are used to train a second actor-critic architecture for a given
agent, enabling the agent to reason over a PEARL by arbitrat-
ing between using its conventional actor-critic architecture or
its secondary pathologically trained architecture.

4. EXPERIMENTAL RESULTS

We extend the ILP in (4) with domain-specific constraints in
order to generate a valid input state under which an actor-
critic network experiences a low-value output. The input ten-
sor is (x0

ijk) ∈ {0, 1}I×J×K , where I and J represent the
board dimensions, and K gives the number of channels/slices
that represent the pieces location and/or player turns. For
Go and Checkers, we use two common sets of constrains for
(x0

ijk). The purpose of the first constraint is to limit the num-
ber of each piece in the board. For an instance in the game of
Go, let the black team piece be represented by channel k = 1,
and maximum acceptable number at a given board setup be
NB , then the constraint

∑
i,j x

0
i,j,1 ≤ NB is added. The ob-

jective of the second set of constraints is to prevent the case
of having two pieces at the same board location. As the in-
stance of Checkers, let k equals to 1, 2, 3, 4 represent player 1
men, player 2 men, player 1 king, and player 2 king, respec-
tively, then the constraints

∑
k x

0
i,j,k ≤ 1, ∀i ∈ [I], j ∈ [J]

are included in the ILP.
Two sets of additional constraints are used in Checkers.

The purpose of the first is to enforce that all white entries of
all the pieces location slices are enforced to zero. The second
is for the rule for which pawns can not be placed at the last
row of the opposite team. This is not an exhaustive list and
other game-specific constraints are added. Our code along

with the NN structures are available online1.
In order to evaluate the efficacy of using ILP-generated

states throughout training, we will compare Actor-Critic
(A2C) models learning zero-sum board game baselines such
as 7 × 7 Go and Checkers. Specifically, we will train some
models using a PPO loss function and others using an MCTS
loss function and DeepMCTS architecture akin to AlphaZero
[17]. The environments are forked from the PettingZoo
API [18], with functions added to load board-states from
the ILP-generated state tensors and start games from these
board-states. We create unique ILP state generation modules
for each game based on each game’s unique integer con-
straints. We then start playing from the generated low-value
input states as part of the training process in order to learn
more effective policies.

For each learning architecture, we train one learner which
starts games from an ILP-generated state every three games,
and another traditional learner which starts all games from
the standard initial board-state, i.e., an empty Go board or
initial Checkers configuration. The post-training evaluation
stage evaluates a PEARL PPO agent against a conventional
PPO agent, and a PEARL Deep MCTS agent against a con-
ventional Deep MCTS agent.

Each learning architecture is trained using self-play for
one million play-steps. The Deep MCTS architecture sim-
ulates tree-steps between play-steps, but these tree-steps are
not counted towards the one million play-steps. At the end
of each self-play training game, the winning (losing) self-
play team is awarded a unit reward of 1 (-1), which is paired
with the winning (losing) state and discounted back through
the prior states in the winning (losing) trace. Each game
yields symmetric, zero-sum winning and losing traces, both
of which are stored in a replay buffer which holds the most
recent 100,000 states. Following each game, we add the two
traces to the replay buffer, and then the CNN is trained on
10 randomly selected traces from this replay buffer using the
given architecture’s loss function (either PPO or MCTS).

For the PEARL training architectures, each game’s unique
ILP generation module periodically fills a queue with 5 ILP-
generated low-value states at a time. The PEARL archi-
tectures pop states from this queue to use as their initial
board-state every 3 games during training, using standard
initial board-states every other training game. Once an ILP-
generated state has been used, it is removed from the queue.
When the queue is empty, the ILP generates a new pool of 5
low-value states and adds it to the queue. Each time a new
pool of states is generated, the ILP generation is run with
updated CNN weights. By generating a pool of only 5 states
at a time throughout training, we ensure the ILP-generated
low-value states are dynamically reflective of the CNN model
at that point in training.

We choose to use LP states every 3 games rather than
every game so that the model is still able to train on board-

1https://anonymous.4open.science/r/TheMVSinA2C-C12B/

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

0 20000 40000 60000 80000 100000
Play steps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

W
in

 ra
te

Go - PPO with LP
Go - PPO w/out LP

(a) Agents trained using PPO for the game of Go.

0 20000 40000 60000 80000 100000
Play steps

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

W
in

 ra
te

Checkers - PPO with LP
Checkers - PPO w/out LP

(b) Agents trained using PPO for the game of Checkers.

0 20000 40000 60000 80000 100000
Play steps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

W
in
 ra

te

Go - MCTS with LP
Go - MCTS w/out LP

(c) Agents trained using MCTS for the game of Go.

0 20000 40000 60000 80000 100000
Play steps

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

W
in

 ra
te

Checkers - MCTS with LP
Checkers - MCTS w/out LP

(d) Agents trained using MCTS for the game of Checkers.

Fig. 4: Evaluation curves of the A2C agents for the games of Go (left) and Checkers (right).

states within traces starting from the standard initial state,
given that evaluation runs will start from this standard initial
state. Hyper-parameters such as MCTS expansion leaf-count
(Go: 60, Checkers: 40) and learning rate (Go/Checkers-
MCTS: .003, Checkers-PPO: .03) are chosen manually based
on perceived game difficulty and observed loss curves. We
hold hyper-parameters constant when comparing PEARL
agents to their conventionally trained counterparts. We eval-
uate trained checkpoints through win-rate comparison when
running 100,000 play steps worth of games with traditional
architectures (PPO, MCTS) versus the same architecture
supported by ILP-generated states during training (MCTS
vs. MCTS-LP, PPO vs. PPO-LP). The architectures using
ILP-generated input states train a second LP-net to specifi-
cally learn from low-value states. During evaluation, agents
use the network policy of whichever network, LP-trained or
conventionally-trained, returns the highest value head for the
given evaluation state. This varies from training, where we
only use the ILP-trained network for games starting from a
low-value, ILP-generated state. The 100,000 evaluation steps
all consist of games starting from the initial board configura-
tion, and agents alternate taking the first turn.

Figure 4 presents the evaluation of the games of Go (Fig-
ures 4a and 4c) and Checkers (Figures 4b and 4d). The
PEARL agent used ILP-generated low-value board configu-

rations every 3 episodes during self-play training. We observe
that the PEARL agent wins 14.9% (15.9%) more games dur-
ing evaluation than the conventionally trained PPO (MCTS)
counterparts when averaged over 16 (9) evaluation rounds.
The area under curve (AUC) metric for Checkers is also
significantly greater for the PEARL agent using MCTS.

5. CONCLUSION

In this paper, we have presented an integer linear program-
ming formulation for the synthesis of low-value states given
an actor-critic policy network. We furthermore demonstrated
that the use of these pathological states within the training
procedure of reinforcement learning agents can lead to signif-
icant gains in performance, though the settings under which
this is possible are not well-understood and provide an in-
teresting direction for future work in adversarial training of
reinforcement learning architecture. In particular, we lever-
age an ensemble of two actor-critic architectures, with one
trained conventionally and the other exposed to the generated
pathological states. The agent can then decide which policy
to follow based on the value outputs of this ensemble. This
Pathological Ensemble of Actions for Reinforcement Learn-
ing (PEARL) can be integrated within off-the-shelf reinforce-
ment learning solutions.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

6. REFERENCES

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Ried-
miller, “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[2] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484, 2016.

[3] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis
Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lu-
cas Baker, Matthew Lai, Adrian Bolton, et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no.
7676, pp. 354, 2017.

[4] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Lau-
rent Sifre, Dharshan Kumaran, Thore Graepel, et al., “Master-
ing chess and shogi by self-play with a general reinforcement
learning algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[5] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert,
Karen Simonyan, Laurent Sifre, Simon Schmitt, Arthur Guez,
Edward Lockhart, Demis Hassabis, Thore Graepel, et al.,
“Mastering atari, go, chess and shogi by planning with a
learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

[6] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu, “Towards deep learning
models resistant to adversarial attacks,” in International Con-
ference on Learning Representations, 2018.

[7] F Tramèr, D Boneh, A Kurakin, I Goodfellow, N Papernot,
and P McDaniel, “Ensemble adversarial training: Attacks and
defenses,” in 6th International Conference on Learning Repre-
sentations, ICLR 2018-Conference Track Proceedings, 2018.

[8] Uri Shaham, Yutaro Yamada, and Sahand Negahban, “Un-
derstanding adversarial training: Increasing local stability of
supervised models through robust optimization,” Neurocom-
puting, vol. 307, pp. 195–204, 2018.

[9] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bom-
mannan, and Girish Chowdhary, “Robust deep reinforcement
learning with adversarial attacks,” in Proceedings of the 17th
International Conference on Autonomous Agents and MultiA-
gent Systems, 2018, pp. 2040–2042.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy,
“Explaining and harnessing adversarial examples,” arXiv
preprint arXiv:1412.6572, 2014.

[11] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dim-
itrios Vytiniotis, Aditya Nori, and Antonio Criminisi, “Mea-
suring neural net robustness with constraints,” in Advances in
neural information processing systems, 2016, pp. 2613–2621.

[12] Alessio Lomuscio and Lalit Maganti, “An approach to reach-
ability analysis for feed-forward relu neural networks,” arXiv
preprint arXiv:1706.07351, 2017.

[13] Vincent Tjeng, Kai Y Xiao, and Russ Tedrake, “Evaluating
robustness of neural networks with mixed integer program-
ming,” in International Conference on Learning Representa-
tions, 2018.

[14] Sergey Ioffe and Christian Szegedy, “Batch normalization: Ac-
celerating deep network training by reducing internal covari-
ate shift,” in International conference on machine learning.
PMLR, 2015, pp. 448–456.

[15] Schrage Linus, “Optimization modeling with lingo,” LINDO
Systems Inc, 2015.

[16] Michele Conforti, Gérard Cornuéjols, Giacomo Zambelli,
et al., Integer programming, vol. 271, Springer, 2014.

[17] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser,
Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[18] Justin K Terry, Benjamin Black, Mario Jayakumar, Ananth
Hari, Luis Santos, Clemens Dieffendahl, Niall L Williams,
Yashas Lokesh, Ryan Sullivan, Caroline Horsch, and Praveen
Ravi, “Pettingzoo: Gym for multi-agent reinforcement learn-
ing,” arXiv preprint arXiv:2009.14471, 2020.

Authorized licensed use limited to: University of Central Florida. Downloaded on May 18,2023 at 02:28:29 UTC from IEEE Xplore. Restrictions apply.

