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Abstract—Periodic signals were shown to admit sparse rep-
resentations in Nested periodic dictionaries (NPDs). Therefore,
sparse recovery frameworks have been employed to estimate the
periodicity in signals by finding their sparse representations in
such dictionaries. However, existing sparse recovery algorithms
such as Orthogonal Matching Pursuit (OMP) are oblivious to
the structure of the dictionary, and as a result their performance
degrade in settings involving periodic mixtures. In this work, we
propose new algorithms for structured model selection, termed
nested periodic subspace OMP and nested periodic subspace
regularized OMP, that leverage the well-known Euler structure
and LCM property of NPDs. We evaluate the performance of
these methods using both synthesized and real data and show
that they can yield better performance than generic recovery
algorithms while also saving in computation time.

Index Terms—Nested periodic dictionaries, Nested periodic
subspace orthogonal matching pursuit, Periodic mixtures

I. INTRODUCTION

Robust period estimation of periodic signals is at the heart of
many applications ranging from medicine [1] and healthcare
[2], [3] to astrophysics [4]. In many such applications, it is
essential to obtain an accurate estimate of the period in real-
time. Many of the existing techniques for period estimation
are based on the discrete Fourier transform [5], [6]. While the
exact fundamental frequency of a periodic signal can be re-
covered using DFT-based methods when the data length L is a
multiple of its period, these methods yield inaccurate estimates
in short data length regimes and with arbitrary L [7]. Also, a
periodic signal could be the combination of multiple periodic
signals. As a result, the resulting period could be larger than
the data length. In this case, identifying all the hidden periods
in the signal with a short data length could be even more
challenging, and methods such as recursive differencing often
fail [7]. Furthermore, in real world applications, signals may
be quasi-periodic due to the presence of noise, which degrades
the performance of spectral-based techniques.

Given these limitations, Tenneti and Vaidyanathan revisited
the problem of periodicity estimation in [7], where they intro-
duced a family of matrices called nested periodic dictionaries
(NPDs), an instance of which is the so-called Ramanujan
periodicity transform (RPT). They have shown that periodic
signals admit sparse representation in NPDs. Therefore, one
can express a periodic signal using the model

y = Kx, &)
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where K € CE*N is an NPD, y is the periodic vector
of length L, and x € CV is its sparse representation. The
underlying period of a periodic signal can be estimated by
recovering the support set of its sparse representation in an
NPD, which motivated the use of sparse recovery frameworks
for period estimation [7]-[9]. For instance, [7] proposed an
optimization program based on /s-norm regularization that
gives a closed-form solution to recover the sparse vector. The
authors in [8] employ a sparse recovery framework based
on f1-norm regularization, and guarantees for sparse recovery
using the basis pursuit program were established in [10].

Generic sparse recovery guarantees do not hold for NPDs,
which exhibit specific structures, as was shown in [10].
Therefore, [11] established improved support recovery guar-
antees for periodic signals that incorporate the well-known
Euler structure of such dictionaries using basis pursuit and
Orthogonal Matching Pursuit (OMP) [12], [13]. While these
conditions improve significantly upon the generic sparse re-
covery conditions (in the sense that they hold over a wider
range of the sparsity level), from an algorithmic standpoint,
OMP and related algorithms are oblivious to the structure of
these dictionaries. In addition, OMP selects only one atom in
each iteration, which leads to a large computation time. There
have been extensions to the OMP algorithm that select more
than one atom in each iteration. For instance, in regularized
OMP (ROMP) [14], one can select multiple atoms at once
if the magnitude of the inner products between the atoms of
the dictionary and the residual of the sparse approximation
induced by the model selection meets a pre-defined criteria.
Also, the Subspace Pursuit algorithm [15] selects the atoms
with the k largest projections followed by a pruning step.

Motivated by the aforementioned limitations, in this work,
we develop algorithms that leverage the structural properties
of NPDs in their design to enhance the recovery of periodic
mixtures, while also reducing the computation time. To the
best of our knowledge, this is done here for the first time. In
particular, we propose two methods that account for the Euler
structure and LCM property of NPDs by enforcing a block-
structured representation in our model selection, defined over
the union of the support sets of the divisors of the periods in
the periodic mixture.

The paper is organized as follows. In Section II, we
briefly review necessary background on important properties
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of NPDs, and the OMP algorithm. In Section III, we present
the proposed methods. The numerical results are provided in
Section IV. We conclude the paper in Section V.

A. Notation

We use lowercase letters for scalars, bold lowercase letters

for vectors, and bold uppercase letters for matrices. For a
1/2
! 2

i=1Y )
denotes its £ norm. For an L x N matrix A with entries a; j,
AH s its conjugate-transpose. The set P := {1,..., Ppax} is
the set of all integers between 1 and P,,ax, Where Py is the
largest possible period. For each p € P, we use ¢|p to indicate
that ¢ is a divisor of p. The Euler totient function ¢ (p) of
p is the number of positive integers smaller than p that are
co-prime to p. Given a set .S, |S| denotes its cardinality. The
matrix Kg is the matrix K restricted to the atoms indexed by
set S.

vector v of size [ with entries v;, ||v]]s = (Z

II. BACKGROUND

A. Nested Periodic Dictionaries

We briefly review the construction and properties of the
RPT dictionary as an instance of NPDs. RPT dictionaries are
constructed from Ramanujan sums, defined as

p

S exp (j2mkn/p),

k=1
(k,p)=1

2

cp(n) =

where (k, p) is the greatest common divisor (gcd) of & and p.
In (2), ¢, (n) is an all integer, periodic sequence with period
p. From these sums, one can build a p x ¢ (p) submatrix C,

Cole ) .. ]

3
where c,, is the vector form of ¢, (n) and cz(,i) is the circularly
shifted version of ¢, with step-size ¢. The columns of C,, are
linearly independent [16]. Then, the RPT dictionary K can be
built by first constructing the submatrices C,, for all p € P,
then periodically extending them to length L to obtain matrices
R,, and finally concatenating the matrices R, as

Rp

n)ax} °

K=[R: R, )
Euler structure and LCM property: Each of the submatrices
of the RPT matrix K contains exactly ¢ (p) atoms that are
periodic with period p. This is known as the Euler structure
of NPDs. Also, given a sufficiently large number of measure-
ments L, a linear combination of atoms of an NPD give rise
to a periodic signal with period equal to the least common
multiplier (Icm) of the periods of the atoms, which is known
as the LCM property [17]. Given these two properties, one can
recover the hidden periods of a periodic signal by recovering
the exact support of its sparse representation in an NPD [7].

B. Periodic Mixtures

A periodic mixture is a periodic signal formed by combining
multiple periodic signals [9]

y(m)=y1(n) +y2(n) +... +ym (n), 6)

with distinct period p1,p2,...,pm. The periods p; for j =
1,2,...,m are known as the hidden periods of the mixture.
They should not be divisors of one another, and each of the
periodic signals y; (n) cannot be further decomposed into
signals of smaller periodicities.

C. Orthogonal Matching Pursuit (OMP)

Given the model in (1), one can use the well-known OMP
algorithm [12], [13], [18] to recover the sparse vector x
iteratively. OMP first selects the atom of the dictionary that
has the maximum projection with the observation vector y.
Subsequently, the process is repeated by iteratively selecting
the atom that maximizes the projection with the residual r of
the approximation induced by the set of selected atoms, until
the residual is sufficiently small.

III. METHODS

In this section, we propose two new algorithms, dubbed
nested periodic subspace orthogonal matching pursuit (NS-
OMP) and nested periodic subspace regularized OMP (NS-
ROMP), to recover the support set of the sparse representation
of a periodic mixture in NPDs. NS-OMP and NS-ROMP are
presented in Algorithm 1 and Algorithm 2, respectively. The
underpinning of these methods is exploiting the Euler structure
and LCM property of NPDs. To describe our algorithms, we
elaborate on the main components that underlie our approach.

A. Enforcing a Block Structure

The LCM property of the NPDs indicate that the sparse
vector x in (1) is supported on the divisors of the hidden
periods. Therefore, because of the Euler structure of the NPDs,
we deduce that the sparse representations of the periodic
mixtures in an NPD exhibit a block structure. We can express
the vector x and the NPD K in block forms as

T
X:@a T2 , X3,T4y ., xN_,i,(pmm)_‘_l,...,xN]
(0)
S o
and
K:[\ki/ k2,k3,k4,...,k]\],¢p_ +l7---7kN]
N~ S~ ( lndx) . (7)
o R Rs RPmax

If p is one of the hidden periods of the given periodic
mixture, then all entries x4 for ¢|p could be nonzero. We
seek to exploit this prior knowledge to improve the support
recovery performance for large sparsity levels, as well as the
computational efficiency (e.g., number of iterations). To the
best of our knowledge, the proposed algorithms are the first to
account for structural information of NPDs for sparse recovery.
First, we need the following definition, which defines the
support set of the submatrices R,, in the NPD for p € P.
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Definition 1 (Support set). The index set I, = {Zf;ll (J)+
1,..., 5.’:1 @ (j)} denotes the indices of the ¢ (p) atoms of
an NPD K that have period p, i.e., submatrix R, in (7).

Let 7 = {p1,p2,...,pm} be the set of hidden periods
of a periodic mixture. Per the LCM property, the nonzero
coefficients of the sparse vector x in (1) are supported on the
union of index sets corresponding to the submatrices R, for
every q|p; and p; € T, given sufficiently many measurements.
Thus, ST =J geDr 1, contains the support set, where D is
the set of all divisors of the hidden periods in 7. Hence, in
Step 3 of the proposed methods, we enforce the block structure
by always selecting atoms from the index sets [, given in
Definition 1.

B. Adaptive Model Selection

The standard OMP algorithm discussed in Section II-C
selects one atom in each iteration, and ignores any prior
information about the structure of the dictionary. Instead, we
propose to select an adaptive number of atoms in each iteration
following the Euler structure of NPDs. In particular, in Step
3 (item 1) of NS-OMP and NS-ROMP, we find the maximum
projection between the residual vector and the atoms in the
dictionary, then select all the atoms of the submatrix R,, that
comprises the atom with the largest projection. As shown in
(7), these matrices are of different sizes depending on p.

Algorithm 1 NS-OMP

1: Input: Observation vector y, NPD K, Py .x.
2: Initialization: Let index set Jy = ), and residual vector
at iteration t = 0, to be rg = y.
3: While ||ri||a > eor |J| <k, t+t+1
o At iteration ¢, find ¢* = argmax;c(;  ny Ki'rio1.
Select the index set I, which contains ¢* (See Defi-
nition 1).
« Update the support set: J; = J;_1 | L.
o Let P, = K, (K_I]{tKJt)i1 K'!. Update the resid-
vab v, = (I-Py)y
4: Output: The index set J;.

C. Regularization and Refinement

While the sparse representation of periodic mixtures exhibit
a block structure following the Euler structure of NPDs as
described above, this does not imply that all the coefficients
within the blocks that correspond to the support set must be
nonzero. Techniques that select more than one atom in each
iteration are prone to over selecting atoms in each iteration.
Erroneous selections could propagate to subsequent iterations
leading to false model selection. To remedy this, we include
a regularization step to limit the number of atoms selected, as
well as a refinement step to remove unwanted atoms that were
selected in previous iterations. The additional regularization
and refinement steps are only included in NS-ROMP, as
described in Step 3 (items 2,3) and (item 5) in Algorithm 2,
respectively. In the regularization step, we only select a subset

of the atoms in R, with the largest projections. Specifically,
in iteration t, we select the first consecutive indices of V;
that are also in I,, where V; is the sorted set of indices
corresponding to the largest |I,| projections and I, is the
support set of submatrix R,,. For refinement, after selecting
the atoms in each iteration, we find the estimated sparse
vector £ and only keep those atoms whose coefficients in &
are greater than a certain threshold in absolute value. Hence,
similar to NS-OMP, the NS-ROMP algorithm enforces a block
structure and performs adaptive model selection following the
Euler structure, but it also continually revisits the selections
and removes the unwanted atoms. We remark that a related
approach to refinement is used in Subspace Pursuit [15] with
the main difference that NS-ROMP is tailored to NPDs as it
accounts for their Euler structure. Therefore, the number of
atoms it selects before the refinement step is not fixed, and
a regularization step ensures that the projection of the atoms
on the residual are amongst the largest. Hence, we anticipate
a higher success rate for NS-ROMP for periodic mixtures
with sparse representations in NPDs, which is verified in our
numerical results.

Algorithm 2 NS-ROMP

1: Input: Observation vector y, NPD K, P,,.x and threshold
T..
2: Initialization: Let index set Jy = (), and residual vector
at iteration t = 0, to be rg = y.
3: While |rlo > eor |J| <k, tt+1
o At iteration ¢, find i* = argmax,c  ny k/ri1.
Select the index set I, where i* € Ip,.
o Let V; = {v1,v2,...vj1,} be the set that contains
the |I,| indices with largest projections kr;_; in a
descending order.
o Select the subset I,, C V; that consists of the first
consecutive indices of V; that are also in I,.
« Update the support set: J; = J,_1 J I,.
« Refinement

~ Find x; = (Kgft,KJ;)*1 Ky
- Jo={lte J, |z >T.}.
o Let P, = K, (KﬁKJt)_l K. Update the resid-
val r; = (I—-Py)y
4: Output: The index set J;.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of NS-OMP
and NS-ROMP algorithms using numerical experiments with
both synthesized and real data. Also, we compare the per-
formance of these methods to the OMP algorithm [18] and
subspace pursuit (SP) [15]. Here, we limit our evaluation to
the RPT dictionary, which is an all integer dictionary and
allows for faster computations. Note that the values of the
hidden periods p;’s and their number m induce signals with
different sparsity levels. Hence, to validate the performance
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of the proposed methods with respect to a sparsity level, we
define the set

Qr (m):={T € 2P| T =m,|Sr| < k}

which contains all combinations of m elements of P that
induce a sparsity level k. For example, if Pyax = 20, m = 2
and k = 6, then Qg (2) = {{2,3},{2,5},{3,4},{3,7}}.

- OMP
- NS-ROMP
-~ NS-OMP »

sp e
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Fig. 1: Evaluation of NS-ROMP and NS-OMP for Experiment
1 using periodic mixtures from the set Q (m) in comparison
to OMP and SP, (a) success rate, (b) number of iterations.
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Experiment 1: We start off with periodic mixtures that contain
exactly 2 hidden periods. We generate periodic mixtures for
each member 7 of the set Q (2). To this end, we generate
random sequences of length p; € 7, extend them periodically
to length L, and add them to construct the periodic mixture.
We evaluate the performance of the proposed methods by
reporting the success rate and the average number of iterations.
We choose Pax = 40 and L = 200. As shown in Fig. 1, NS-
ROMP outperforms the OMP and SP algorithms maintaining
a higher success rate at larger sparsity levels. Also, it does so
with a significantly smaller number of iterations than OMP.

Experiment 2: In the second experiment, we highlight the
importance of the regularization step in NS-ROMP. We gen-
erate sparse vectors with k nonzero coefficients, and use
the model in (1) to construct the periodic mixtures. The
locations of the k nonzero entries of x are randomly selected
and the nonzero values are drawn from a standard normal
distribution. In this case, some of the entries of the sparse
vector indexed by set S7 could be zero. For each x, we
compare the recovered support set with the known support
set and count it as successful support recovery if the two

1 sy - 80 -
- OMP o, f&f B (I\)Ig/E;OMP e
0.8 * NS-ROMP N i Z .|+ NS-OMP
-~ NS-OMP b £ 60 -
2 SP e : £
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Fig. 2: Evaluation of NS-OMP and NS-ROMP for Experiment
2 in comparison to OMP and SP, (a) success rate, (b) average
number of iterations. The dictionary has Pp,.x = 40.

sets are equal. In addition, we report the average number of
iterations to reach the solution for each method. We choose
Pax = 40 and L = 200. As shown in Fig. 2a, NS-ROMP
maintains a very high success rate for larger sparsity levels k
in comparison to OMP and SP. The performance of NS-OMP
degrades drastically due to oversampling from each of the
submatrices R,. The performance of NS-ROMP is superior to
SP in terms of reaching higher success rate for larger sparsity
levels. However, SP required a smaller number of iterations.

Real data: We examine the ability of the proposed methods
to determine the underlying period of ECGs. We use the MIT-
BIH normal sinus rhythm database [19] that includes long-
term ECG recordings. We extract 10 seconds of ECG record-
ings and utilize the proposed algorithms and standard OMP to
recover the sparse representations of the ECG signals in the
RPT dictionary. We expect to observe non-zero coefficients at
indices outside the set ST that we consider to be the exact
support set. We compute the energy of the subvectors in x,
where each subvector corresponds to one submatrix R,, in the
NPD as follows [7]

K+¢(d;)
E(d)= Y le®), K=Y 6. (8)
k=K+1 p|P
p<d;

We use the greatest energy value to determine the un-
derlying period. Given the sampling frequency of 128 Hz,
we compute the heart rate for each 10 seconds window as
HR = 10 x 128/p, where p is the recovered period and
HR denotes the heart rate per 10 seconds. To validate the
results, we manually extract the rate by counting the number of
heartbeats in each 10-second window. Fig. 3 shows the results
for two ECG trials. Fig. 3a shows a 10-second window of an
ECG trial, and Fig. 3b and Fig. 3c show the corresponding
energy vs. period plots where the sparse vector is recovered
using OMP and NS-ROMP, respectively. Both graphs suggest
that the underlying period is 80, and we can compute the
HR = 16 beats in each 10 seconds, which can be verified by
examining the original ECG signal in Fig. 3a. The computation
time to recover the sparse vector using OMP was 3.07 seconds
versus 1.42 seconds for NS-ROMP. Fig. 3d shows a 10-second
window from another trial. Fig. 3e and 3f show the energies
in each period, suggesting that the period p = 99, hence
HR = 12.92 beats in 10 seconds. The computation times to
recover the sparse vectors are 2.26 and 1.32 seconds using
OMP and NS-ROMP, respectively.

V. CONCLUSION

We proposed two algorithms to recover the sparse rep-
resentations of periodic mixtures in NPDs. These methods
sample an adaptive number of atoms in each iteration by
leveraging the properties of NPDs, namely, the Euler structure
and the LCM property. The NS-OMP algorithm is superior
in comparison to other methods when the actual support set
is exactly equal to Sy, the union of the support sets of the
divisors of the hidden periods. However, the performance of
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Fig. 3: Numerical results with real data. (a) An ECG trial with 16 beats in 10 seconds. (d) An ECG trial with 13 beats in 10
seconds. (b),(e) The energy vs. period plots based on the recovered sparse vector using OMP and (c),(f) NS-ROMP.

the algorithm deteriorates when the support set is a proper
subset of Sy . Our numerical results on synthesized data
show that NS-ROMP can achieve higher success rate than the
OMP algorithm while using a smaller number of iterations.
Furthermore, experiments with real ECG data show that the
NS-ROMP method can successfully estimate the heart rate.
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