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Camera tracking is an essential building block in a myriad of HCI applications. For example, commercial VR devices are equipped
with dedicated hardware, such as laser-emitting beacon stations, to enable accurate tracking of VR headsets. However, this hardware
remains costly. On the other hand, low-cost solutions such as IMU sensors and visual markers exist, but they su�er from large tracking
errors. In this work, we bring high accuracy and low cost together to present MoiréBoard, a new 3-DOF camera position tracking
method that leverages a seemingly irrelevant visual phenomenon, the moiré e�ect. Based on a systematic analysis of the moiré e�ect
under camera projection, MoiréBoard requires no power nor camera calibration. It can be easily made at a low cost (e.g., through 3D
printing), ready to use with any stock mobile devices with a camera. Its tracking algorithm is computationally e�cient, able to run at a
high frame rate. Although it is simple to implement, it tracks devices at high accuracy, comparable to the state-of-the-art commercial
VR tracking systems.
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1 INTRODUCTION

Numerous HCI applications rely on a common building block: tracking a device’s spatial location in a fast and
accurate way. Perhaps the most demanding use of device tracking is Virtual Reality (VR) and Augmented/Mixed Reality
applications. Many commercial VR systems utilize dedicated hardware (e.g., Valve Index [9] and HTC Vive [11]), such
as laser and infrared beacon stations, to enable accurate device tracking, but often at high cost.

Other systems such as Google Cardboard aim to o�er the user VR experience at low cost. Often repurposing
the mobile phone as a VR headset without introducing additional hardware, these systems track the device using
the on-device inertial measurement unit (IMU). The IMU sensor provides su�cient accuracy to track the device’s
orientation [24]—some of the commercial VR devices even solely use IMU sensors to recover device orientation [25].
However, when it comes to position tracking, the IMU sensor falls short. This is because the sensor measures only the
device’s acceleration, and requires double time integration to recover its position. As the tracking period increases, the
time integration su�ers from an increasingly larger drifting error.

Another option is to use visual markers [16], such as a checkerboard pattern, displayed on a planar area in the
scene. When a camera captures the visual markers, camera location can be recovered from the pixel coordinates of the
detected markers. The markers are fully passive, require no power, and cost as little as a piece of paper. Yet, the tracking
accuracy is not on par with the active methods (such as the laser-emitting beacon-based solution [8, 9]). When the
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Fig. 1. MoiréBoard tracking. (a) A typical application scenario: in a low-cost VR system such as Google Cardboard, MoiréBoard
can be used to track camera position and provide tracking accuracy comparable to state-of-the-art VR tracking systems that are much
more expensive. (b) 3D printed prototype: The total dimension is 30cm⇥30cm, with a 20cm⇥20cm fringe pa�ern area in the center.
(c) We use an LED display (i.e., an iPad) to display the base layer of gratings, while the front layer is a 3D printed grating structure.
The use of LED display is merely for the convenience of experiments (e.g., to test di�erent design parameters). It can be replaced
with another 3D printed structure or a printed paper. (d, e) When the camera views at di�erent positions, the fringe pa�ern appears
di�erently, providing clues for accurate position tracking. (Note: This figure may have aliasing artifacts when viewed on a computer
screen due to PDF rendering and reduction of the image resolution. We recommend the reader to zoom-in the PDF and view it.)

distance between the camera and visual markers reaches a few meters, the tracking error is on the order of centimeters,
too large for many VR applications.

These solutions seem to suggest a performance-cost trade-o� that one must take reluctantly. In this work, we
challenge this trade-o�. We propose a simple visual marker, called MoiréBoard, that enables accurate camera tracking
at low cost. Our approach is as accurate as the beacon station system used in high-end VR devices, while maintaining
a low cost—the markers can be easily made (e.g., using a 3D printer), and the tracking algorithm is computationally
e�cient, allowing for tracking at high frame rate (e.g., at 120FPS).

Fig. 2. Moiré e�ect. A fringe pa�ern emerges when
two line gratings with di�erent periods overlap.

Our idea is to harness a seemingly irrelevant visual phenomenon,
the moiré e�ect [5]. When two repetitive line gratings with di�erent
periods overlap, a bright-and-dark fringe pattern emerges at a larger
period due to the interference of the two gratings (see Fig. 2). A
remarkable ability of this fringe pattern is the ampli�cation of position changes: a subtle shift of the relative position
of the two gratings will cause a notable change of the fringe pattern (see Fig. 1). In our MoiréBoard design, the two
gratings stay �xed, but their projections on the camera’s image plane change as the camera moves. As a result, the
camera captures a fringe pattern whose change can be easily discerned and measured.

Through a systematic analysis of this process, we derive a formula to recover the 3-DOF camera position from a
detected fringe pattern. The camera rotation, if needed by an application, can be recovered by an IMU or sensor fusion
algorithms with su�cient accuracy [24]. Unlike other visual-marker-based approaches which require camera calibration
to recover intrinsic parameters (such as focal length) before the tracking starts, our formula is calibration-free. Our
analysis further informs MoiréBoard’s design parameters—such as its physical size and grating periods. Our choice of
these parameters is well justi�ed by a theoretical accuracy analysis. Lastly, we prototype MoiréBoard using 3D printing,
by which we compare our method with existing tracking methods, and demonstrate its accuracy, performance, and
easiness to use.
Manuscript submitted to ACM
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2 RELATEDWORK

Position tracking of VR/AR headsets has been extensively studied in the past few decades. Here we review the most
relevant methods to MoiréBoard, namely optical tracking methods, while brie�y discussing other methods that emerged
recently.

Optical tracking. Currently, most commercial VR devices track headsets and controllers using optical signals. For
example, the Valve Index [9] and HTC Vive [11] use the Lighthouse tracking system, relying on multiple laser base
stations that emit infrared light beams. VR headsets and controllers then use the information of received IR signals to
estimate their 3D locations. According to Niehorster et al. [32], this is by far the most accurate tracking system used in
commercial VR devices. However, due to the need for dedicated laser hardware, this system is very expensive. Sony
PlayStation VR [27] adopts a di�erent solution; the VR headsets and controllers emit visible light, which is received by
a standalone camera at a �xed position; the camera then computes the device’s position. This approach reduces the cost
of the system but is not as accurate as the Lighthouse system. In addition, it may not work well in the -+*presence of
strong ambient light, which reduces the signal-to-noise ratio received by the camera.

To avoid the use of external beacon stations (and thereby reduce cost), some VR systems adopt Simultaneous
Localization and Mapping (SLAM) [6, 37, 38, 45] for camera tracking, including the Oculus Quest 2 [13], Microsoft
HoloLens [30], and Magic Leap One [28]. Relying only on the camera capturing images, the SLAM algorithm aims to
recover the scene structure and camera location simultaneously. However, the performance of SLAM largely depends
on the scene structure, surface texture, and light condition [38]. Thus, it is not as reliable as beacon-based methods, as
some recent studies suggested [21, 34].

Instead of using dedicated commercial VR devices, many projects in both industry [17, 36] and academia [1, 19, 23, 35]
aim to reuse existing mobile devices as VR headsets at low cost. The most notable example is Google’s Cardboard
platform [17]. On mobile devices, IMU [24, 25] sensors are often used to track the device’s orientation. But when it
comes to tracking the device position, IMU sensors su�er from drifting errors. Mobile VR systems can also use SLAM
for position tracking [31]. However, apart from the limitations of the SLAM technique in general, mobile devices often
have more restricted computational budget, that further limits the frame rate of SLAM algorithm.

Another potential solution for mobile VR tracking is to use visual markers [10, 14, 16, 33] displayed on an LED screen
or printed on a paper. Provided an image capturing visual markers, the tracking system �rst detects pixel coordinates of
the visual markers, whose layout in 3D space is prede�ned. With this information, the camera position and orientation
can be estimated using the Perspective-n-Point (PnP) [2, 26] algorithm. This algorithm requires full knowledge of the
intrinsic parameters (such as focal length) of a camera, and thus the camera must be pre-calibrated [47]. The estimated
camera position is sensitive to detected marker locations. Even a deviation of few pixels would result in centimeter-level
camera position error [22].

Our MoiréBoard can be viewed as a visual-marker-based tracking method in general. From this perspective, most
relevant to our method is the work by Armstrong et. al [3, 42] called Moiré Phase Tracking. The author introduced
a visual marker composed of a glass substrate with printed �lm artwork bonded to both sides. Similarly, Tanaka et.
al [39, 40] introduced a visual marker design based on a microlens array. Both methods used the moiré e�ect—as the
camera position changes, the captured marker pattern will also change, o�ering a clue for camera position estimation.
Yet, lacking a systematic analysis of the pattern formation, these methods relies on linear regression for position
estimation. Thus, its tracking accuracy is limited. Recently, Banks et. al [4] explored the connection between camera
position and its captured moiré pattern using a two-layer line grating design, but they assume the camera is always
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facing towards the pattern which is unrealistic in the real applications. There also exist some work using moiré-based
tracking method [12, 44]. Instead of using a �xed two-layer pattern, these methods project the second layer from the
tracked object itself. However, the resulting systems are much more complicated than the visual-marker-based tracking.

In contrast, while we follow the basic idea of treating MoiréBoard as a visual marker, we provide a full analysis of
the geometry of moiré pattern under camera projection, allowing di�erent applications to choose optimized moiré
parameters based on our theory. Our method is accurate, comparable to the commercially available Lighthouse tracking
system. Besides, it remains fully passive and low-cost. It is also computationally lightweight, allowing for tracking at a
high frame rate. All these traits render it suitable for mobile VR applications.

Other tracking methods. Recent years have also witnessed a signi�cant rise in research interests on device tracking
with other signal channels like acoustic signals or electromagnetic �eld. Although this is not directly related to our work,
we brie�y highlight several recent works in HCI, including CAT [29], SoundTrack [46], Aura [43] and Millisecond [41].
These methods achieves the tracking accuracy of several millimeters, promising for VR tracking. However, they require
additional hardware such as a microphone/speaker array or EM signal generator, and they may su�er from drifting
errors as the operating time increases [41]. Also, acoustic signals in general are prone to environment noise; they are
therefore less reliable than optical signals. So far, almost all commercial VR tracking systems still use optical tracking
solutions.

3 CAMERA TRACKING USING MOIRÉ EFFECT

We now present the core idea of MoiréBoard. Our approach is built on careful analysis of how moiré fringes are formed
under a camera view (Sec. 3.1⇠3.3). Gaining insight from the analysis, we propose the design of a moiré pattern and a
computational algorithm (Sec. 3.4). Together, they enable stable and accurate camera motion tracking.

3.1 The Geometry of Moiré Fringes

Moiré fringes from two superposed layers of repetitive structures have been well studied, and a general theory
exists [5, 20]. Here to pave the way toward our core analysis (in Sec. 3.2), we introduce the geometry of a special type
of moiré fringes.

The moiré fringes we consider here emerge from two superposed grid structures, which we refer to as grid A and grid
B, respectively. Each grid can be viewed as a combination of two perpendicular line gratings (along G- and ~-direction,
respectively), and let the grating periods of grid A and grid B be )a and )b (see Fig. 3). Here we assume )a > )b without
loss of generality. When the two grids superpose on each other, the interference between the gratings forms another
grid pattern, generally known as the moiré fringes. It has been shown that the period )m of the fringes (i.e., the grid cell
size in Fig. 3a) depends on )a and )b in the following way,

)m =
)a)b

)a �)b
. (1)

This relation reveals an interesting property of moiré fringes: when)a and)b are close,)a �)b is so small that the fringe
period )m is much larger than )a and )b (due to the division in (1)). Remarkably, this property leads to an ampli�cation
of the relative motion between grid A and B, described as follows.

Suppose grid B is translated by its period )b while grid A stays �xed. After the translation, grid B appears the same
as before due to its periodicity. Thus, the moiré fringes must be shifted by an entire period )m. Formally, a small shift
�Gb of grid B will cause a large movement of the moiré fringes by the amount �Gm, and the ampli�cation ratio of their
Manuscript submitted to ACM
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Fig. 3. Moiré fringes. (le�) Two grid pa�erns with grid size)a and)b are overlapped. The resulting moiré pa�ern is another grid
pa�ern with grid size )m. (right) Grid B is moved by �Gb while grid A stays fixed. This causes the moiré pa�ern to be shi�ed by
�Gm, an amount much larger than �Gb and thus much easier to detect robustly. Note that in this case the moiré fringes along the
~-direction stay unchanged. Thereby, we can track camera motion along G- and ~-directions separately.

motions is
�Gm
�Gb

=
)m
)b

=
)a

)a �)b
. (2)

Inspired by Eqs. (1) and (2), our idea is to harness moiré fringes as an ampli�er lens, from which we can track even
the subtle motion of grid B with high accuracy. The next step is to bridge the shift of grid B with camera motion so that
we can track the camera.

3.2 Moiré Pa�ern under Camera Projection

We now examine moiré fringes under camera projection and motion—an analysis that to our knowledge has not been
explored. The goal is to reveal how the camera motion can be recovered through the camera captured moiré fringes.

The camera projects a 3D point ^ onto a 2D point x on the image plane. In computer vision [2], this projection is
expressed as x = K [R|t] ^ , where ^ = (G,~, I, 1)) is a 3D point expressed by its homogeneous coordinate in the world
frame of reference; x = (G,~, 1)) is the 2D homogeneous coordinate of the projected point on the image plane. ^ is �rst
transformed into the camera’s local frame of reference by a 3⇥4 matrix [R|t], and then projected by a 3⇥3 matrix K. The
transformation matrix [R|t], known as the camera’s extrinsic matrix, depends on the camera’s orientation and location
in 3D space. The K matrix, known as the intrinsic matrix, encodes the camera’s focal lengths and optical center, namely,

K =

2666664

5G 0 2G

0 5~ 2~

0 0 1

3777775
, (3)

where 5G and 5~ are the focal lengths along G- and ~-direction of the image plane, respectively; and (2G , 2~) indicates
the camera’s optical center.

In this work, we aim to recover camera position t given a moiré fringe image, without the knowledge of camera
intrinsics (i.e., K). For recovering the rotation R, we use the IMU sensors equipped on mobile devices. This is because
IMU sensors o�er su�cient accuracy for orientation tracking [25].
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Fig. 4. Moiré fringes under camera projection. In each subfigure, the le� is a top-down view of the imaging se�ing, and the right
is the captured image. (a) The camera looks straight towards the MoiréBoard. The captured moiré fringes have the period )̃m. (b)
When the camera moves further away, the period of captured moiré fringes changes into )̃ 0

m. (c)When the camera moves horizontally
(starting from (a)), the captured moiré fringes are shi�ed by �G̃m, while their period remains unchanged.

To start our analysis, consider two moiré layers: the �rst one, grid A, is located on the plane I = 0, and the second one,
grid B, is placed on the plane I = ⌘ (see Fig. 4). Assume for now that the camera is located at (0, 0, CI), looking straight
toward the I = 0 plane (this assumption will be relaxed shortly). In this case, the camera’s rotation matrix remains
identity (i.e., R = I), and the grating period)a on grid A appears on the captured image with the length )̃a = )a

5
CI
, where

5 is the camera’s focal length (assuming 5G = 5~ = 5 for the simplicity of presentation). Similarly, the projected grating
period )̃b of grid B on the captured image is )̃b = )b

5
CI�⌘ . Applying Eq. (1), we obtain the period of moiré fringes on the

captured image (see Fig. 4), namely,

)̃m =
)a)b 5

)a⌘ �)aCI +)bCI
. (4)

Suppose the camera is translated along G-direction to (CG , 0, CI) (see Fig. 4c). Under the camera projection, grid A and
B will be translated by di�erent amounts, as they are at di�erent distances from the camera, namely �G̃a = �CG 5

CI
and

and �G̃b = �CG 5
CI�⌘ . This amounts to �xing grid A but shifting grid B by �G̃ 0b = �G̃b � �G̃a. According to Eq. (2), the

moiré fringes on the captured image will be displaced by

�G̃m =
CG)a 5

)a⌘ �)aCI +)bCI
. (5)

Note that depending on the camera position CI , the denominators in Eqs. (4) and (5) may be either positive or negative,
and so are )̃m and �G̃m. A positive �G̃m indicates that the fringes shift toward +G direction on the image plane as
the camera moves toward +G direction in space; a negative �G̃m indicates fringes moving opposite to the camera’s
displacement. Also at a certain CI , the denominators vanish. We will return to discuss this subtlety in Sec. 3.4.

Equations (4) and (5) lay the foundation of our camera tracking algorithm: in Eq. (4), )a, )b, and ⌘ are moiré grids’
parameters known a priori; )̃m can be measured on the captured image. If the focal length 5 is known, we can solve for
CI . Afterwards, we measure �G̃m from two captured images, and recover CG using Eq. (5). However, to fully materialize
this idea, two questions remain unanswered: (i) how to account for tilted camera (i.e., R < I)? (ii) how to eliminate the
need of the focal length 5 so that our camera tracking is calibration-free? We address both questions next.

3.3 Calibration-free Camera Tracking

Traditional camera tracking, whether marker-based [10, 14, 16] or markerless [7, 31], often require a calibration step to
recover camera intrinsics (i.e., K) before tracking starts [18, 47]. Not only does this calibration impose an additional
Manuscript submitted to ACM



MoiréBoard: A Stable, Accurate and Low-cost Camera Tracking Method 7

Z
X

Y

Camera

AB

(a)

(b) (c) (d)

L

Fig. 5. Steps of our tracking algorithm. (a) A MoiréBoard in 2D frontal view. (b) Coordinate system of our algorithm. Grid A is
located at plane I = 0. Grid B is at I = ⌘. (c) Top: An image of the MoiréBoard captured at a certain camera location. Inner corners of
the four visual markers are detected and labeled as red dots. Bo�om: We rectify perspective distortion based on the detected corner
positions to convert the image into a frontal view image. (d)We apply a Gaussian blur filter to the image of (c)-bo�om, and then
measure )̃m, G̃8 and ~̃8 on the resulting image.

step, it necessitates re-calibration whenever the camera’s intrinsic parameters change (such as refocus). Our approach,
at �rst glance, follows the same route, as both Eqs. (4) and (5) require the knowledge of the camera’s focal length 5 .

Elimination of 5 . A key observation to liberate our approach from calibration is that 5 simply scales )̃m and �G̃m in
Eqs. (4) and (5). Indeed, under camera projection, the physical distance between any two points (on a frontal plane) is
scaled by 5 . In particular, if we place four visual markers on grid A—which are needed anyway to locate moiré fringes
in a captured image (see Fig. 5a)—the physical distance ! between two markers has an image-plane length !̃ = 5 !

CI
.

Since we can easily measure )̃m, �G̃m, and !̃ from captured images, we take the ratios U = )̃m/!̃ and VG = �G̃m/!̃,
which eliminate 5 from Eqs. (4) and (5). As a result, the camera position coordinate CI and CG can be recovered using the
following formulas,

CI =
U!)a⌘

)a)b + U! ()a �)b)
and CG =

!

)a⌘
(VG + =U) ()a⌘ �)aCI +)bCI), (6)

where = is an integer arising from the moiré fringes’ periodicity: two displacements �G̃m and �G̃m + =)̃m lead to the
same fringe appearance on the image. In practice, we disambiguate the measurement of �G̃m by exploiting the camera
motion’s temporal coherence: choose an integer = such that the resulting CG is closest to CG from the last camera frame.
(for the very �rst frame, we simply use = = 0 and VG = 0, which lead to CG = 0). In short, no camera’s intrinsic parameters
appear in Eq. (6), and thus no camera calibration is needed to recover CG and CI . To recover the ~-coordinate C~ , we
follow the same process as the CG recovery but measure V~ along the image’s ~-direction.

Remark. The recovered camera position (CG , C~, CI) is in a world frame of reference, with the unit that we use to
measure ! (such as millimeter). The world frame of reference is de�ned as follows. Its G-~ plane is the plane of grid A;
its I-axis points toward grid B; and its origin is the camera’s initial position (at frame 0) projected on the plane of grid A.

Fringes under tilted camera. Our analysis so far assumes that the camera faces straight toward the MoiréBoard’s
grid plane. When the camera is tilted, the captured fringe pattern becomes distorted, not a square grid anymore.
Interestingly, our analysis shown in Fig. 6 suggests a simple way to factor out the e�ect of camera rotation:
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Camera

image plane 2
image plane 1

Grid A
Grid B

Rectified imageCaptured image

Fig. 6. Image rectification. (le�) Our key insight is that the moiré fringes
(e.g., the peak bands indicated by the red lines) depend only on the positions
of grid A and B and the camera location, but not the camera rotation. As
the camera tilts, while its image plane has varying orientation, it captures
the same set of fringe lines. This is a standard multi-view projection problem
in computer vision [2]. One can construct a homography matrix to convert
images across di�erent views. In our algorithm, we convert the image captured
by a tilted camera (middle) to the frontal view image (right). A mathematical
proof is provided in Appendix C.

From the captured image, we detect the posi-
tion of the four visual markers, which are physi-
cally located on grid A to indicate the corners of
a square region (Fig. 5a). On the image, however,
the region indicated by the markers may not be
a square due to the tilted camera distortion. But
given the image-planemarker positions (i.e., red
dots in Fig. 5c), we can construct a homography
matrix to rectify the maker positions, restoring
the marked region, including its image content,
back to a perfect square (see Fig. 5). Accord-
ing to our analysis in Fig. 6, the recti�ed image
is the same as the one captured by a camera
at the same location but facing straight to the
MoiréBoard’s grid plane.

From there, we can apply Eq. (6) to recover the camera location. To further validate the rotation-invariant properties
of MoiréBoard, we also provide a mathematical proof in Appendix C.

Note that the homography transformation can scale the marked region arbitrarily. But our algorithm is agnostic to
the image scale, as we only need the dimensionless ratios U and VG (and V~ ) in Eq. (6), not pixel lengths on the image
plane. In practice, we always scale the marked region to 1000px⇥1000px.

Outline of tracking algorithm. We now summarize our camera tracking algorithm:

(1) Capture an image from the camera (Fig. 5c-top).
(2) Detect the four corners of the visual markers (see red dots in Fig. 5c-middle) on the image. In practice, we use

ArUco [16] for locating the corners. The side length ! of the four corners in physical space is known a priori.
(3) Use the detected corners to rectify the captured image to a frontal view image (Fig. 5b-bottom); ensure the size

of the marked square region to have 1000⇥1000 pixels. We then measure !̃, the side length (in pixels) of the four
detected corners on the recti�ed image (Fig. 5d).

(4) Detect peak bands of the captured moiré fringes: First, we convert the recti�ed image to a grayscale image and
invert it (to detect moiré layers’ constructive interference bands), followed by applying a Gaussian �lter (see
Fig. 5d). The Gaussian �lter is using a 25x25 kernel with a standard deviation of 4.1 for both horizontal and
vertical direction. Next, we average the pixel intensities along G- and ~-directions, respectively, reducing the
image into two 1D images (see plots in Fig. 5d). From each 1D image, we locate its local peaks. There exist many
peak detection algorithms. In practice, we apply a threshold to each 1D image to identify short intervals around
the peaks, and then for each interval take the average (1D) pixel position (weighted by pixel intensities).

(5) We measure the following quantities on the 1D images: (i) )̃m, the averaged distance (in pixels) between two
consecutive peaks. (ii) G̃8 and ~̃ 9 : the peak locations on the horizontal and vertical 1D images, respectively. Here,
the subscripts 8 and 9 indicate individual peaks.

(6) For every peak 8 , compute the displacement of peak locations, namely �G̃m, with respect to frame 0. This is done
by subtracting G̃8 in frame 0 from its value in the current frame. We then use Eq. (6) to compute CI and CG of the
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ID )a (<<) )b (<<) ⌘(2<) Working range (<) Direction
1 3.1 3 10 0.9 to 2.1 S
2 3.1 3 16 1.5 to 3.5 S
3 3.2 3 10 0.6 to 1.3 or 2.1 to 4.0 S or O
4 3.2 3 16 1.0 to 1.7 or 3.3 to 4.0 S or O
5 2.6 2.5 10 0.8 to 1.9 S
6 2.6 2.5 16 1.4 to 3.1 S
7 3.0 2.5 10 0.6 to 1.0 O
8 2.7 2.5 10 0.7 to 1.2 or 1.6 to 4.0 S or O
9 2.7 2.5 20 1.4 to 2.3 or 3.2 to 4.0 S or O

Table 1. MoiréBoard design parameters.We list a set of MoiréBoard design parameters and their working ranges. Here we limit
the camera’s CI range up to 4m, as it su�ices for most VR applications. ‘O’ indicates that the captured moiré fringes will move in the
opposite direction to the camera (due to negative �G̃m in (5)), while ‘S’ indicates that the fringes will move in the same direction as
the camera. This table can serve as reference designs when we deploy MoiréBoard in specific applications.

camera location. In this process, we enumerate = in (6) from -5 to 5, and for all possible values of CG , we choose
the one closest to the CG value of the previous frame.

(7) Meanwhile, we take the detected peak locations ~̃ 9 along ~-direction, and apply the same process as step (6) to
recover C~ of the camera position.

3.4 MoiréBoard Design

The geometry of MoiréBoard is speci�ed by its parameters )a, )b, and ⌘. We justify the choice of these parameters
through closer analysis of Eqs. (4) and (5). First, when the camera is su�ciently far from the MoiréBoard (i.e., CI is large),
Equation (5) leads to a negative �G̃m, which indicates that the fringes move in a direction opposite to the camera’s
moving direction. On the contrary, a small CI leads to a positive �G̃m value, and the fringes moves in the same direction
as the camera’s moving direction. In between, when CI = )a⌘

)a�)b , the denominators of (4) and (5) vanish. This is the
point at which )a and )b appear to have the same length under camera projection, and therefore the fringe pattern
disappears, as indicated by the fringe period )̃m ! 1.

Figure 7 shows the relation of U = )̃m/!̃ (i.e., the dimensionless fringe period) with respect to CI . Although varying
widely, |U | must be smaller than 0.5 in practice. Otherwise, the MoiréBoard—which has a �nite size ! ⇥ !—may not be
large enough to display two peak bands at the same time, but we need at least two peaks for the measurement of )̃m
(recall Fig. 5d). Meanwhile, a peak band on the image has certain thickness. Formed by constructive interference of
grating lines and due to the use of Gaussian �lter (in step (4) of our algorithm), it will never appear as a sharp line. As a
result, the fringe period U can not be too small. In practice, we ensure |U | > 0.1 to allow for robust measurement of )̃m.

As illustrated in Fig. 7, when |U | is in the range [0.1, 0.5], the camera motion is restricted in either range 1 (blue) or
range 2 (orange). Speci�c values of these CI ranges depend on the MoiréBoard’s design parameters. In Table 1, we list
nine sets of design parameters (i.e.,)a,)b and ⌘), and their corresponding CI ranges (for U 2 [0.1, 0.5]). These parameters
are chosen for typical VR applications, wherein the headset moves within a few meters. In practice, one can choose a
speci�c set of parameters depending on their application needs.

3.5 Accuracy Analysis

MoiréBoard is an order of magnitude more accurate than the traditional marker-based tracking methods. We now
analyze our approach to understand its bene�ts, which we will also experimentally con�rm in Sec. 4.
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0.5

0.1

-0.1

-0.5

Working range 1 Working range 2

Fig. 7. The working range of MoiréBoard is de-
termined by U : (i) we need at least two peak fringes
to determine )̃m, and this requires |U | < 0.5; (ii)
|U | must be large enough so that two fringe bands
on the image plane can be clearly discerned, and
this requires |U | > 0.1. To satisfy these constraints,
the camera’s CI must locate in either range 1 (blue
region) or range 2 (orange region).

All vision-based tracking algorithms, including ours, are designed
to map camera displacement to certain measurable image-space
changes [2]. For instance, in traditional marker-based approaches (such
as [47]), if a camera facing straight to the marker plane undergoes a
lateral displacement CG , then the captured image features will be shifted
by 5 CGCI , where 5 is the camera focal length, and CI is the distance from
the marker to the camera. But using MoiréBoard under the same situ-
ation, the captured features (which are moiré fringes) will be shifted
by �G̃m de�ned in (5).

To increase the tracking sensitivity, one must enlarge the image-
space changes for a given camera displacement. In traditional methods,
this demands a larger focal length 5 (to increase 5 CGCI ), but a larger 5
narrows the camera’s �eld of view, thus limiting the camera’s tracking
range. In our approach, however, we can enlarge �G̃m by choosing
proper)a,)b and ⌘ without increasing 5 , and thereby keep the camera’s �eld of view open. Concretely, we can compare
the sensitivity of our method with the traditional methods: under the same CG , CI and 5 , the ratio [ of the moiré fringe
displacement to the image feature displacement in traditional methods is (according to our derivation in Appendix B)

[ = |�G̃m | CI
CG 5

=
|U |!
)b

, (7)

This sensitivity boost can be increased by using a larger MoiréBoard size !, and smaller grating period )b, and it is
independent from the distance between the camera and the MoiréBoard. To put it into context, consider a MoiréBoard
with ! = 300mm and )b = 2.5mm. Recall |U | 2 [0.1, 0.5] from Sec. 3.4. According to (7), this MoiréBoard is 12⇠60⇥
more sensitive than the traditional methods for tracking camera motion in G- and ~-directions. We also analyze the
accuracy for tracking in I-direction, and the details are presented in Appendix A.

4 EVALUATION

Prototyping details. There are many ways of making MoiréBoard. We prototype it in a simple way: 3D print the
grating structure of grid B with a grating period )b, and place it in front of an LED display (e.g., we use an iPad). The
LED display merely serves as a quick way to display the grating structure of grid A, and can be replaced with other
designs such as a piece of paper printed with the grating pattern. We use it for ease of experimenting with di�erent
grating structures (e.g., switch to a di�erent )a). Figure 1 demonstrates the setup and the resulting moiré fringes.

4.1 Synthetic Scene Evaluation
CI (m) Error (pixels)
1.0 0.23 ± 0.14
1.5 0.34 ± 0.17
2.0 0.52 ± 0.31
2.5 0.79 ± 0.44
3.0 0.94 ± 0.57
3.5 1.32 ± 0.61
4.0 2.78 ± 1.79

Table 2. Peak detection error in
pixels at di�erent CI .

Before evaluating MoiréBoard in real scenes, we test it in synthetic scenes, lever-
aging the full-�edged image rendering engine that can model camera and scene
accurately. We use Blender [15] to set up a MoiréBoard (300mm⇥300mm) together
with four visual markers, each of which has a size 50mm⇥50mm. We then use the
Cycle rendering engine in Blender to synthesize photo-realistic images captured
by a virtual camera (see Fig. 8). In this way, we know precisely where the camera
is and can compute the locations of the moiré bands on captured images. With this
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Fig. 8. Synthetic images rendered by Blender Cycle’s engine at four di�erent camera positions. We set up a virtual scene and render
camera captured images. In this way, we know the ground-truth camera locations, which allows us to evaluate our method’s tracking
accuracy and compare it with the classic checkerboard-based approach.

ground-truth information, we can evaluate the accuracy at various stages of our
algorithm.

Peak detection accuracy. Our algorithm tracks the camera position by measuring image-plane peak locations (recall
step (4) of our algorithm in Sec. 3.3). Thus, the tracking accuracy hinges on how accurately we detect the peaks. This
motivates us to �rst examine the peak detection accuracy. To this end, we set up a MoiréBoard with )a = 3.1mm,
)b = 3mm, and ⌘ = 100mm. We place the virtual camera at di�erent distances from the MoiréBoard, ranging from
(0, 0, 1)m to (0, 0, 4)m, sampled every 0.5m. At each camera location, we randomly rotate the camera 40 times, while
ensuring that from each rotation the visual markers are visible. The camera images are rendered at a resolution of
1920px⇥1080px. We then compare the detected peak locations with the ground-truth to evaluate the error.

Table 2 reports the peak detection errors at di�erent CI distances. For each CI , we compute the average error of
peak detection (in pixels) over all 40 camera rotations as well as the error deviation. The results show that the error
becomes larger as CI increases. This is because as the camera moves further away, the MoiréBoard appears in a smaller
region on the image. When CI < 3m, the detected peaks always have sub-pixel errors. This experiment suggests that a
300mm⇥300mm MoiréBoard is suitable for camera tracking within a ⇠ 4m range, su�cient for most VR applications.
For larger tracking ranges, one could use a larger size of MoiréBoard (e.g., a 500mm⇥500mm MoiréBoard).

Comparison with checkerboard-based tracking. With full knowledge of a scene setup, we can directly compare
our method with other vision-based tracking methods. In particular, we consider the checkerboard-based tracking [47],
which has become the standard tracking method in numerous applications, and has been implemented in many
computer-vision toolboxes such as Matlab and OpenCV.

In this comparison, we use the same MoiréBoard setup as in the previous experiment. In checkerboard-based tracking,
we use an 8⇥8 checkerboard with the physical size 400mm⇥400mm—the same size as ourMoiréBoard plus its optical mak-
ers. The tracking algorithm is readily o�ered in the popular OpenCV library: we usecv2.findChessboardCorners
to detect the pixel coordinates of checkerboard corners followed by cv2.solvePnP to obtain the camera position.
The camera’s intrinsic parameters (such as its focal length) are known from Blender con�guration.

We examine two scenarios: moving the camera along G- and I-directions. In the �rst scenario, we move the camera
along G-direction from CG = 0m to CG = 1.4m, while �xing C~ = 0m and CI = 2m. In this process, we sample camera
locations every 0.2m. In the second scenario, we move the camera from CI = 1m to CI = 3.1m and sample its position
every 0.3m. At every sampled location in both scenarios, we randomly choose 40 camera rotations and recover the
camera location from both our method and the checkerboard method. To compare these two methods, we also consider
two di�erent image resolutions: High-res (1920px⇥1080px) and Low-res (960px⇥720px).

Figure 9 shows the 3D position errors at each camera position (averaged over 40 random rotations) resulted from
both methods. This results indicate that (i) the tracking errors of MoiréBoard are an order of magnitude lower than the
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Fig. 9. Evaluation results on synthetic images. (Le�) Averaged 3D position error at di�erent CG (CI=2m). (Right) Averaged 3D
position error at di�erent CI . We compare MoiréBoard to the checkerboard-based camera tracking, and test two image resolutions at
high-res (1920px⇥1080px) and low-res (960px⇥720px). Thanks to the amplification e�ect of moiré fringes, our method is significantly
more accurate than checkerboard. Its performance is also less a�ected by the image resolution.
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Fig. 10. Setup of real-scene evaluation. The visual marker (i.e., MoiréBoard, checkerboard or Lighthouse base stations) is placed
at a fixed location. The experiment area is divided into four regions. We repeat the experiments in each region by placing a linear
slide that carries the camera moving along a random direction. Without knowing the camera’s ground-truth positions, we evaluate
the tracking methods by measuring how well they recover the camera’s linear motion.

widely used checkerboard-based tracking; and (ii)MoiréBoard is much more robust to decreased camera resolution,
thanks to its motion ampli�cation through moiré e�ects.

4.2 Real Scene Evaluation

Next, we conduct experiments in real scenes and compare MoiréBoard to Lighthouse 2.0 [9], the state-of-the-art
commercial VR tracking system. Lighthouse 2.0 uses laser-emitting base stations to track the positions of VR headset
and controllers. Unlike MoiréBoard, it is not a passive tracking system, and is much more expensive. We also compare
our method to the checkerboard tracking method [47], as both are vision-based passive tracking methods.

In real scenes, all tracking methods produce errors, and the ground-truth camera positions are lacking. To measure
the tracking errors, we leverage a motorized linear slide, which carries the camera (or VR headset) and translate it
linearly in a controlled way. We place the linear slide along di�erent directions. In each run, we collect a series of
recovered camera positions and apply linear regression to �t a linear path. The error is measured as the average distance
of all recovered position samples to the �tted linear path. In this way, no ground-truth camera positions are needed.

Our experiment setup is illustrated in Fig. 10. We �x the spatial location of MoiréBoard and checkerboard. When
using a single base station of Lighthouse 2.0, we place it at the same location as the MoiréBoard and checkerboard.
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0.2m 0.2m 0.01m 0.2m 0.2m 0.01m

Checkerboard Lighthouse (2 base) xMoireBoard

(a) (b)

Fig. 11. Visualization of motion reconstruction. Here we visualize the G- and I-coordinates of recovered camera positions in
several experiments. Individual positions resulted from checkerboard, Lighthouse (with two base stations), and MoiréBoard are
plo�ed in red, green, and blue, respectively, while the camera undergoes a linear motion. The cyan box shows a zoom-in view of the
visualization. (a) Comparison in the CI range of 1.0m to 1.5m. (b) Comparison in the CI range of 2.5m to 3.0m. It is evident that the
tracking results of MoiréBoard always stay closely to the state-of-the-art Lighthouse 2.0 system.

When using two base stations, we place the stations symmetrically: they are centered at the same location as the
MoiréBoard and separated by 1 meter. To understand the tracking accuracy at di�erent distances from the landmark
(i.e., MoiréBoard, checkerboard, or base stations), we divide the space into four regions (see Fig. 10). In each region,
we place the linear slide along a random direction and evaluate the tracking errors of di�erent methods (as described
above); we repeat this process 10 times, each with a di�erent slide direction.

The average tracking errors are reported in Table 4, where “MoiréBoard-1” and “MoiréBoard-6” indicate the use
of MoiréBoard designs in the 1st and 6th row of Table 1, respectively. The results con�rm that the tracking accuracy
of MoiréBoard is an order of magnitude higher than the classic checkerboard-based approach. Our method is also
much more accurate than Lighthouse 2.0 with a single base station. When Lighthouse 2.0 uses two base stations, both
methods have comparable accuracy, although Lighthouse 2.0 requires power input to actively emit laser, and is much
more costly. We also note that a single MoiréBoard has a more limited tracking range than Lighthouse 2.0 due to the
reason discussed in Fig. 7. However, its tracking range can be easily extended by using two or more MoiréBoard designs
(e.g., MoiréBoard-1 and MoiréBoard-6) in the same scene.

In terms of the computational cost, MoiréBoard only requires simple image processing operations before applying
the tracking formula (6). Thereby, the algorithm is computationally lightweight, able to track at a much higher frame
rate than the checkerboard approach (which needs to solve a PnP problem at every frame). The tracking frame rates are
also reported in Table 4. We note that the image processing operations in our algorithm can be further accelerated
using GPUs on mobile devices.

We also visualize the tracking errors of di�erent methods in Fig. 11. From the plots, it is evident that (i) MoiréBoard
tracking results match closely to the Lighthouse 2.0 with two base stations, and (ii) as the distance from the landmark
increases, checkerboard-based tracking deteriorates quickly, while MoiréBoard stays closely with Lighthouse 2.0.

VR application. In addition, we build a mobile VR application using an iPhone 11 Pro placed on a Head Mounted
Device (HMD). We use the mobile phone’s camera to capture MoiréBoard in realtime and recover the HMD’s position.
Together with the HMD’s orientation obtained from the phone’s IMU sensor, our VR application o�ers a full 6-DoF VR
experience. We refer the reader to the supplementary video for more details.
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Distance Range (m)
Tracking Method 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 FPS
CheckerBoard 8.24 12.62 17.89 23.71 15.7

Lighthouse (1 Base) 5.62 7.98 9.03 13.31 60
Lighthouse (2 Base) 1.79 1.84 2.32 2.56 60
MoiréBoard-1 1.54 2.05 - - 114.2
MoiréBoard-6 - 2.34 2.52 3.17 114.2

Table 3. Real-scene tracking results. We report the average tracking errors (in mm) of di�erent methods as well as their tracking
frame rate (in FPS). The checkerboard and MoiréBoard algorithms are implemented using iOS-OpenCV on an iPhone 11 Pro Max.
Lighthouse algorithm is encapsulated in the hardware of Valve Index VR kit (Thus, its FPS may not reflect its true computational
cost). Also note that our method can be further accelerated using the mobile device’s GPUs, since the performance bo�leneck of our
algorithm lays in the image processing tasks (such as applying the Gaussian filter), which are well suited for parallel processing.

Distance Range (m)
Tracking Method 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 FPS
CheckerBoard 8.24 12.62 17.89 23.71 15.7

Lighthouse (1 Base) 5.62 7.98 9.03 13.31 60
Lighthouse (2 Base) 1.79 1.84 2.32 2.56 60

MoiréBoard 1.54 2.05 2.52 3.17 114.2
Table 4. Real-scene tracking results. We report the average tracking errors (in mm) of di�erent methods as well as their tracking
frame rate (in FPS). The checkerboard and MoiréBoard algorithms are implemented using iOS-OpenCV on an iPhone 11 Pro Max.
Lighthouse algorithm is encapsulated in the hardware of Valve Index VR kit (Thus, its FPS may not reflect its true computational
cost). Also note that our method can be further accelerated using the mobile device’s GPUs, since the performance bo�leneck of our
algorithm lays in the image processing tasks (such as applying the Gaussian filter), which are well suited for parallel processing.

5 DISCUSSION AND CONCLUSION

Wepresent a new camera trackingmethod that ultilizesmoiré e�ects. Ourmethod has high tracking accuracy, comparable
to the state-of-the-art commercial VR tracking device. But our method is fully passive, requiring only two layers of
repetitive structures, which can be made at low cost (such as printing on paper and 3D-printed meshes). It is therefore
particularly suitable for low-cost VR systems such as Google Cardboard.

As a marker-based tracking method, MoiréBoard also shares some limitations with other marker-based approaches.
When the camera moves at a high speed, the captured images may su�er frommotion blur, which causes the image-plane
measurement to become less robust. One solution to this issue is to use high frame rate to capture images and thereby
reduce motion blur. Currently, most mobile devices can record video with a high FPS (usually up to 120FPS, with
high-end devices such as the iPhone 11 can record at 240FPS). When the camera captures at 120FPS, our experiments
show that the motion blur won’t a�ect tracking accuracy if the moving speed is below 30cm/s, which is indeed the case
for head motions in VR applications. Also, with su�cient lighting, the camera’s shutter can be much faster than 1/120s
regardless of its capture frame rate, further reducing the motion blur.

Another limitation of marker-based tracking stems from the camera’s limited �eld-of-view (FoV). The optical
landmark may not always be visible on the captured image. One possible solution is to use a wide angle camera (e.g., a
�sheye camera and 360� camera). But this demands a more sophisticated image processing algorithm to rectify images
due to wide-angle lens distortion.

Also related to the image recti�cation is the need of four visual markers at the corners of MoiréBoard. Currently, we
rely on the markers to convert captured moiré fringes into a frontal view. However, we know a priori that all the moiré
peak bands in the frontal view form square grids. Based on this prior, it is possible to rectify the images directly from
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the moiré fringes, without the need of visual markers. Thereby, we can reduce the form factor of the MoiréBoard. But
this will require additional attention to identify the region where MoiréBoard exists.

Lastly, di�erent MoiréBoard designs will have di�erent tracking ranges (recall Table 1). We can use multiple
MoiréBoard designs at the same time to extend the tracking range. Multiple boards also will easily help extend the
FoV and improve the robustness under occlusions. In addition, it is possible to use multiple MoiréBoard to recover the
camera’s orientation based on how the captured moiré patterns are distorted under a rotated camera (recall Fig. 6). This
requires future research on how to measure the moiré grid’s distortion on the image. Better yet we could use an LED
display (such as an iPad) to dynamically change the grating pattern (such as)a) on grid A, and thereby choose the most
suitable MoiréBoard designs based on the camera’s current position.
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A ERROR ANALYSIS OF CI RECOVERY

To understand the accuracy for tracking in I-direction, we analyze the sensitivity of recovered CI in Eq. (6) with respect
to the image space measurement U (recall U = )̃m/!̃). A small measurement error XU on U will cause an error of
recovered CI to be CI (U + XU) � CI (U) ⇡ C 0I (U)XU , where C 0I (U) is the derivative of CI expression in (6) with respect to U :

C 0I (U) =
!) 2

a)b⌘

[)a)b + U!()a �)b)]2
. (8)

Concretely, consider a MoiréBoard with ! = 300mm,)a = 2.6mm,)b = 2.5mm, and ⌘ = 100mm. Provided |U | 2 [0.1, 0.5],
we can compute a theoretical upper bound of C 0I : C 0I < 5617. Our measurement error of )̃m is about 1 pixel, leading to
XU ⇡ 0.1% (recall that we scale the image so that !̃ = 1000px). As a result, the theoretical upper bound of the CI error is
5.61mm. Note that our experiments show that in practice the error is much smaller than this upper bound.

B DERIVATION OF EQ. (7)

Equation (7) can be derived in the following way:

[ = |�G̃m | CI
CG 5

=
CI)a

|)a⌘ �)aCI +)bCI |
using (5)

= |)̃m | CI
)b 5

using (4)

(9)

Recall U is de�ned as

U =
)̃m

!̃
= )̃m

CI
!5

) |)̃m | CI
5

= |U |!. (10)

Substituting this result in (9), we arrive to Eq. (7).

C PROOF OF MOIRÉ FRINGES INVARIANT TO CAMERA ROTATION

Consider two grid pattern, grid A and grid B, and a camera C is located at⇠ = (G2 ,~2 , I2 ). Let %0 and %1 be points located
at grid A and grid B, respectively. The projected points %̃0 and %̃1 is de�ned by %̃0 = KR[I|�⇠]%0 and %̃1 = KR[I|�⇠]%1 .
Now let us assume %̃0 = %̃1 , namely %0 and %1 are located in the same point in the image space, which means %̃0 and %̃0
is located on the moiré peaks. Now we only need to prove that when R changes to a new value R0, %̃0 = %̃1 is still valid.
In this case, the moiré pattern will retain its appearance.

Assume R = I, if %0 = (G0,~0, I0), we have %̃0 = ( 5G (G0�G2 )I0�I2 + 2G ,
5~ (~0�~2 )
I0�I2 + 2~). Similarly, if %1 = (G1 ,~1 , I1 ), we

have %̃1 = ( 5G (G1�G2 )I1�I2 + 2G ,
5~ (~1�~2 )
I1�I2 + 2~). Since %̃0 = %̃1 , we can easily obtain following relation:

G0 � G2
G1 � G2

=
~0 � ~2
~1 � ~2

=
I0 � I2
I1 � I2

. (11)

Now assume the camera has rotated \ around the G�axis so that R =

2666664

1 0 0
0 cos\ � sin\
0 sin\ cos\

3777775
.
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In this case, we can derive that the G coordinate of %̃0 is 5G (G0�G2 )
(~0�~2 ) sin\+(I0�I2 ) cos\ + 2G . The G coordinate of %̃1 can be

derived in the same way by replacing G0 with G1 and ~0 with ~1 . Since %̃0 = %̃1 , we have
G0 � G2

(~0 � ~2 ) sin\ + (I0 � I2 ) cos\
=

G1 � G2
(~1 � ~2 ) sin\ + (I1 � I2 ) cos\

,

which is equivalent to

((G0 � G2 ) (~1 � ~2 ) � (G1 � G2 ) (~0 � ~2 )) sin\ = ((G1 � G2 ) (I0 � I2 ) � (G0 � G2 ) (I1 � I2 )) cos\ . (12)

According to Eq. (11), we know (G0 � G2 ) (~1 �~2 ) = (G1 � G2 ) (~0 �~2 ) and (G1 � G2 ) (I0 � I2 ) � (G0 � G2 ) (I1 � I2 ), so
Eq. (12) is always valid no matter the value of \ . The ~ coordinate of %̃0 and %̃1 also has the same property.

Similarly, we can prove that camera rotation along ~ and I axis will also not break the equality %̃0 = %̃1 , this indicates
camera rotation will not change the appearance of moiré fringes.
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