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ABSTRACT
Few-shot node classification aims at classifying nodes with lim-
ited labeled nodes as references. Recent few-shot node classifica-
tion methods typically learn from classes with abundant labeled
nodes (i.e., meta-training classes) and then generalize to classes
with limited labeled nodes (i.e., meta-test classes). Nevertheless,
on real-world graphs, it is usually difficult to obtain abundant la-
beled nodes for many classes. In practice, each meta-training class
can only consist of several labeled nodes, known as the extremely
weak supervision problem. In few-shot node classification, with ex-
tremely limited labeled nodes for meta-training, the generalization
gap between meta-training and meta-test will become larger and
thus lead to suboptimal performance. To tackle this issue, we study
a novel problem of few-shot node classification with extremely
weak supervision and propose a principled framework X-FNC un-
der the prevalent meta-learning framework. Specifically, our goal
is to accumulate meta-knowledge across different meta-training
tasks with extremely weak supervision and generalize such knowl-
edge to meta-test tasks. To address the challenges resulting from
extremely scarce labeled nodes, we propose two essential modules
to obtain pseudo-labeled nodes as extra references and effectively
learn from extremely limited supervision information. We further
conduct extensive experiments on four node classification datasets
with extremely weak supervision to validate the superiority of our
framework compared to the state-of-the-art baselines.
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1 INTRODUCTION

Node classification focuses on learning a model that can assign
labels for unlabeled nodes on a graph [4, 14, 15]. Many real-world
analytical tasks can be formulated as the node classification prob-
lem [7, 19]. For example, in disease diagnosis, the types of diseases
are regarded as class labels while patients are represented by nodes
on a patient similarity graph [20]. Recent studies mainly leverage
Graph Neural Networks (GNNs) [34, 41] to learn node represen-
tations and classify unlabeled nodes based on the learned presen-
tations. However, GNNs typically require a considerable number
of labeled nodes for all classes to learn effective node represen-
tations [6, 43]. In practice, it is often difficult to obtain sufficient
labeled nodes for each class as the labeling process requires a lot of
human efforts [5, 38]. Hence, there is a surge of research interests
aiming at performing node classification with limited labeled nodes
as references, known as few-shot node classification.

To effectively solve the few-shot node classification problem,
many recent works adopt a meta-learning strategy [4, 14, 19]. In
specific, these works learn transferable knowledge from classes
with abundant labeled nodes (i.e., meta-training classes) and then
generalize such knowledge to other classes with limited labeled
nodes (i.e., meta-test classes). The overall process is conducted on a
series of meta-tasks (i.e., meta-training tasks and meta-test tasks),
where each meta-task contains a small number of support nodes as
references and several query nodes to be classified. Despite their
empirical success, existing approaches [6, 14, 43] simply assume
that meta-training classes consist of abundant labeled nodes, i.e., all
the nodes in the meta-training classes are gold-labeled. However,
such an assumption is generally unrealistic in practice, since each
class may only consist of an extremely limited number of labeled
nodes on real-world graphs. For example, in molecular property
prediction, certain chemical properties (i.e., classes) only consist of
extremely limited labeled molecules due to the expensive cost of
the labeling process [11]. With extremely inadequate labeled nodes
for each meta-training class (i.e., extremely weak supervision [8]),
the effectiveness of the meta-learning paradigm for learning trans-
ferable meta-knowledge will be severely impacted. Thus, solving
the problem of few-shot node classification with extremely limited
labeled nodes for each meta-training class requires urgent research
efforts. In this regard, we investigate a novel problem of few-shot
node classification with extremely weak supervision in this paper.
Specifically, the goal is to perform few-shot node classification after
learning from extremely limited labeled nodes for each class.

However, it remains a challenging task to achieve this goal due
to two major reasons. First, with extremely weak supervision, the
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model performance will be deteriorated by the under-generalizing
problem due to extremely inadequate support nodes. Specifically,
given extremely limited labeled nodes for each meta-training class,
the support nodes in each meta-training task are only sampled from
a small set of labeled nodes. Therefore, the effectiveness of meta-
learning in extracting meta-knowledge from different classes will
be greatly weakened. As a result, the generalizability of the model
to meta-test classes will drop significantly (i.e., under-generalizing).
Second, with extremely weak supervision, the meta-training effi-
cacy will be severely impacted by the over-fitting problem due to
extremely inadequate query nodes. Recent few-shot node classifica-
tion studies [4, 6, 19, 43] generally require a large number of query
nodes during meta-training for model optimization. Nevertheless,
with extremely weak supervision from the meta-training classes,
the number of query nodes for optimization during meta-training is
significantly reduced. As a result, themodel will be easily over-fitted
and result in suboptimal performance.

To tackle the aforementioned challenges, we propose a novel
framework for few-shot node classification with extremely weak
supervision from the meta-training classes, named as X-FNC. Essen-
tially, our framework consists of two innovative modules to handle
the under-generalizing and over-fitting issues, respectively. First, to
compensate for the insufficient support nodes during meta-training,
we perform label propagation to obtain abundant pseudo-labeled
nodes based on Poisson Learning [3]. With the pseudo-labeled
nodes, we can expand the support set in each meta-task to better
extract discriminative meta-knowledge for each class. Second, to
alleviate the negative impact of over-fitting caused by inadequate
query nodes, we propose to optimize the model by both classifying
nodes and filtering out irrelevant information (e.g., decisive classi-
fication information for classes not used in a meta-task) based on
Information Bottleneck (IB) [33]. As a result, in addition to learning
with supervision information, the model will also learn to ignore
irrelevant information during the meta-learning process, which
relieves over-fitting caused by insufficient supervision information.
In summary, our main contributions are as follows:

• We investigate a novel research problem of few-shot node
classification with extremely weak supervision.
• We develop a novel few-shot node classification framework
under the extremely weak supervision scenario with two
essential modules: (1) a label propagation module based on
Poisson Learning to expand the support set in each meta-
task by obtaining pseudo-labeled nodes; (2) an optimization
strategy based on Information Bottleneck to learn from clas-
sifying query nodes while reducing irrelevant information.
• We conduct extensive experiments on four node classifica-
tion datasets with extremely weak supervision. Experimental
results demonstrate the superiority of our framework.

2 RELATED WORK
2.1 Few-shot Node Classification
Few-shot learning aims to achieve considerable classification per-
formance using limited labeled samples as references. The general
approach is to accumulate transferable knowledge from tasks with
abundant labeled samples and then generalize such knowledge to

novel tasks with few labeled samples. Generally, there are two main
categories of approaches for few-shot learning: (1) Metric-based
approaches focus on learning a metric function to match the query
set with the support set for classification [17, 28]. For example,
Prototypical Networks [27] learn prototypes for classes and classify
query samples based on the Euclidean distances between the query
set and the prototypes. (2) Optimization-based approaches aim to
optimize model parameters based on gradients on support samples
in each meta-task [22, 23, 25]. As a classic example, MAML [9]
learns the parameter initialization for different meta-tasks with
the proposed meta-optimization strategy. On graph data, many
research efforts have been devoted to studying few-shot learning
on graphs with limited labeled nodes [29, 30, 36, 39]. For example,
Meta-GNN [43] combines meta-learning [9] with GNNs to reduce
the requirement of labeled nodes. GPN [6] estimates node impor-
tance and leverages Prototypical Networks [27] for few-shot node
classification. TENT [37] proposes to reduce the variance among
tasks for generalization performance.

2.2 Semi-supervised Few-shot Learning
Several recent approaches aim to combine semi-supervised or self-
supervised learning with few-shot learning to improve the perfor-
mance on few-shot classification tasks with unlabeled data. Ren et
al. [26] extend Prototypical Networks with unlabeled data based
on the Soft k-Means method. TPN [18] propagates labels of given
data to unlabeled data, combined with a meta-learning strategy
for optimization. On the other hand, the Information Bottleneck
(IB) principle is also leveraged in self-supervised representation
learning. DVIB [1] first utilizes IB in neural networks for robust
representation learning. Moreover, GIB [40] develops information-
theoretic modeling of graph structures and node features on graph
representation learning.

3 PRELIMINARIES
3.1 Few-shot Node Classification
We denote an attributed graph as G = (V, E,X), whereV and E
denote the set of nodes and edges, respectively. X ∈ R |V |×𝑑 is the
node feature matrix, where 𝑑 is the feature dimension. Moreover,
we denote the set of node classes as C, which can be further di-
vided into two sets: C𝑡𝑟𝑎𝑖𝑛 and C𝑡𝑒𝑠𝑡 . Note that C = C𝑡𝑟𝑎𝑖𝑛 ∪ C𝑡𝑒𝑠𝑡
and C𝑡𝑟𝑎𝑖𝑛 ∩ C𝑡𝑒𝑠𝑡 = ∅, where C𝑡𝑟𝑎𝑖𝑛 and C𝑡𝑒𝑠𝑡 denote the set
of meta-training and meta-test classes, respectively. General few-
shot settings assume that labeled nodes in C𝑡𝑟𝑎𝑖𝑛 are abundant,
while labeled nodes in C𝑡𝑒𝑠𝑡 are generally scarce. However, it is
usually unrealistic in practice to obtain adequate labeled nodes for
all classes in C𝑡𝑟𝑎𝑖𝑛 . With extremely weak supervision, the number
of labeled nodes in C𝑡𝑟𝑎𝑖𝑛 is severely limited. Subsequently, our
goal is to develop a learning model such that after meta-training on
extremely limited labeled nodes, the model can accurately predict
labels for the nodes in C𝑡𝑒𝑠𝑡 with only 𝐾 labeled nodes for each
of 𝑁 randomly sampled classes as the reference. In this way, the
problem is called 𝑁 -way 𝐾-shot node classification.

3.2 𝑁 -way 𝐾-shot Meta-learning
We follow the prevalent episodic meta-learning paradigm, which
has demonstrated superior performance in few-shot learning [9, 27,
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35]. Particularly, we employ C𝑡𝑟𝑎𝑖𝑛 and C𝑡𝑒𝑠𝑡 for meta-training and
meta-test, respectively. Duringmeta-training, themodel learns from
a series of meta-training tasks. Each meta-training task consists of
a support set S as the reference and a query set Q to be classified.
Here S = {(𝑣1, 𝑦1), (𝑣2, 𝑦2), . . . , (𝑣𝑁×𝐾 , 𝑦𝑁×𝐾 )} contains 𝑁 classes
randomly sampled from C𝑡𝑟𝑎𝑖𝑛 and 𝐾 labeled nodes for each of
these 𝑁 classes (i.e., 𝑁 -way 𝐾-shot). 𝑣𝑖 ∈ V is a node in G and 𝑦𝑖 is
the class of 𝑣𝑖 . The query set Q = {(𝑣∗1, 𝑦

∗
1), (𝑣

∗
2, 𝑦
∗
2), . . . , (𝑣

∗
𝑄
, 𝑦∗
𝑄
)}

consists of totally 𝑄 different nodes from these 𝑁 classes. Note
that during the classification process in each meta-task, all nodes
on the graph other than nodes in this meta-task are considered
unlabeled and can be leveraged to advance the classification perfor-
mance. During meta-test, the model is evaluated on meta-test tasks,
which share a similar structure with meta-training tasks, except
that the classes are in C𝑡𝑒𝑠𝑡 . Under the meta-learning [9, 14, 43]
framework, we first fine-tune the model based on support nodes
and then conduct classification on query nodes.

4 THE PROPOSED FRAMEWORK
We first present an overview of our proposed framework X-FNC.
Specifically, we formulate the problem of few-shot node classification
with extremely weak supervision under the prevalent 𝑁 -way 𝐾-shot
meta-learning framework. In practice, we conduct meta-training
on a series of randomly sampled meta-tasks, where a meta-task
contains 𝐾 nodes for each of 𝑁 classes as the support set and
several query nodes to be classified. Due to the extremely limited
labeled nodes during meta-training, the model performance will be
severely deteriorated by two problems: under-generalizing (caused
by inadequate support nodes) and over-fitting (caused by inadequate
query nodes). Therefore, we propose two essential modules: Poisson
Label Propagation and Information Bottleneck Fine-tuning, which
solve these two problems by obtaining pseudo-labeled nodes and
maximally learning decisive information, respectively.

4.1 Poisson Label Propagation
To alleviate the problem of under-generalizing caused by extremely
limited support nodes during meta-training, we propose to obtain
pseudo-labeled nodes based on Poisson Learning [3]. Specifically,
Poisson Learning is recently proposed to propagate labels from rel-
atively limited labeled samples to unlabeled samples, based on the
assumption that samples that are close to each other can potentially
share similar classes. By recursively aggregating label information
from close samples, the unlabeled samples can be pseudo-labeled
based on label information propagated from labeled samples. Thus,
it is helpful for obtaining pseudo-labeled nodes under the extremely
weak supervision setting. However, it remains non-trivial to per-
form Poisson Learning on few-shot node classification with ex-
tremely weak supervision due to the following two reasons. First,
Poisson Learning cannot fully take advantage of structural informa-
tion on graph data when leveraged to obtain pseudo-labeled nodes.
Originally proposed for image classification, Poisson Learning con-
structs a graph solely based on the Euclidean distances between
images. However, on graph data, the graph structures encode cru-
cial information for node classification and thus cannot be ignored.
Second, Poisson Learning cannot effectively handle a varying class
set. Few-shot learning models are required to deal with various

classes across different meta-tasks, which contradicts the fact that
Poisson Learning is originally proposed to operate on a fixed class
set. Nevertheless, the ability to handle various classes is crucial for
few-shot node classification [6, 14].

To overcome these two difficulties, as illustrated in Fig. 1, we
propose to construct a subgraph in each meta-task based on graph
structures and node features, and such subgraph consists of sup-
port nodes and randomly sampled unlabeled nodes. In addition,
we include the neighbors of these nodes and the corresponding
edges in the subgraph to effectively leverage local structures of sup-
port nodes. Moreover, we utilize the constructed subgraph in each
meta-task instead of the entire graph, so that we can perform label
propagation regarding the varying classes in different meta-tasks.

Specifically, consider a meta-task T = (S,Q). We first aim to
sample a number of unlabeled nodes for label propagation based
on Poisson Learning. Basically, the neighbors of nodes in S bear a
higher chance of belonging to classes inS than other random nodes.
In addition, only using these neighboring nodes can be insufficient
when the average node degree is small. Therefore, we sample un-
labeled nodes via two strategies: neighbor sampling and random
sampling. For the neighbor sampling, we select 2-hop neighbors of
the labeled nodes in S, since neighboring nodes maintain explicit
connections to these labeled nodes and are thus more likely to share
the same classes. In particular, denoting the set of 2-hop neighbors
of node 𝑣𝑖 as N𝑖 , the node set obtained via neighbor sampling is
V𝑛 =

⋃𝑁𝐾
𝑖=1 N𝑖 . For the random sampling, we randomly select 𝑅

nodes from the remaining node setV\ (S ∪V𝑛) to form a random
node setV𝑟 , where |V𝑟 | = 𝑅. Then similarly, we extract the 2-hop
neighbors of nodes inV𝑟 asV𝑟𝑛 . In consequence, combining nodes
sampled from the two sampling strategies, we can obtain the final
node setV𝑠 = S ∪V𝑛 ∪V𝑟 ∪V𝑟𝑛 for the subgraph.

Nevertheless, the sampled nodes inV𝑠 can be distributed across
the entire graph and potentially unconnected, which greatly hin-
ders the process of label propagation. Therefore, we propose to
construct a subgraph with these nodes based on both the struc-
tural and feature information. More specifically, we first extract the
corresponding edge set E𝑠 from E according to V𝑠 . Then we de-
note A′ ∈ R |V𝑠 |× |V𝑠 | as the adjacency matrix obtained from graph
structures (i.e., E𝑠 ), where A′𝑖 𝑗 = 1 if the 𝑖-th node inV𝑠 connects
to the 𝑗-th node inV𝑠 , and A′

𝑖 𝑗
= 0, otherwise. In this way, we can

construct edges without losing the original structural information.
Furthermore, to incorporate feature information, we propose to
compute another edge weight matrix based on Euclidean distances
between node features [3] as follows:

A′′𝑖 𝑗 = exp
(
−𝜂∥x𝑖 − x𝑗 ∥

)
, (1)

where 𝜂 ∈ R is a hyper-parameter to control the scale of A′′ and
∥ · ∥ is the ℓ2-norm. In this way, all nodes inV𝑠 are also connected
according to their distances, which further advances the label prop-
agation. Finally, we combine the two matrices to form the final adja-
cency matrix: A = 𝜆A′ + (1− 𝜆)A′′ with a scaling hyper-parameter
𝜆 ∈ [0, 1]. As a result, the edges can absorb information from both
graph structures and node features, which effectively promotes the
label propagation process based on Poisson Learning on this sub-
graph. Then with the learned adjacency matrix A, we can perform
Poisson Learning on this subgraph to obtain pseudo-labeled nodes.
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Figure 1: The pseudo-labeling process with our Poisson Label Propagation module. For each meta-task, we construct a sub-
graph based on support nodes and randomly sampled unlabeled nodes, including their neighboring nodes. Then we perform
Poisson Label Propagation to obtain pseudo-labeled nodes. After that, we further select pseudo-labeled nodes with high con-
fidence to form the augmented support set. The augmented support set will be used for fine-tuning in this meta-task.

Denote u𝑖 ∈ R𝑁 as the label vector of the 𝑖-th node 𝑣𝑖 inV𝑠 to
be learned, where the index of the largest element in u𝑖 indicates
that 𝑣𝑖 belongs to this class. Intuitively, Poisson Learning [3] as-
sumes that the label vector of an unlabeled node is the weighted
average of its neighbors’ label vectors, where the weight is from
the corresponding entry in A. Moreover, the label vectors of given
labeled nodes are their corresponding classes minus the average
label vector of all labeled nodes. In this way, the objective of Poisson
Learning can be formulated as follows:

∑ |V𝑠 |
𝑗=1

A𝑖 𝑗
(
u𝑖 − u𝑗

)
= 0, if 𝑁𝐾 + 1 ≤ 𝑖 ≤ |V𝑠 |,

u𝑖 = y𝑖 − ȳ, if 1 ≤ 𝑖 ≤ 𝑁𝐾,
, (2)

satisfying
∑ |V𝑠 |
𝑖=1 𝑑𝑖u𝑖 = 0, where 𝑑𝑖 =

∑ |V𝑠 |
𝑗=1 A𝑖 𝑗 . y𝑖 ∈ R𝑁 , where

the 𝑗-th element is 1 if x𝑖 belongs to the 𝑗-th class, and other ele-
ments are 0. ȳ =

∑𝑁𝐾
𝑖=1 y𝑖/𝑁𝐾 is the average label vector. To solve

Eq. (2), we iteratively update the prediction matrix U ∈ RV𝑠×𝑁

based on [3] as follows:

U(𝑡 ) ← U(𝑡−1) + D−1
(
B⊤ − LU(𝑡−1)

)
, (3)

where 𝑡 ∈ {1, 2, . . . ,𝑇𝑙 } and 𝑇𝑙 is the number of label propagation
steps. D is a diagonal matrix and D𝑖𝑖 =

∑ |V𝑠 |
𝑗=1 A𝑖 𝑗 . L = D − A is

the unnormalized Laplacian matrix, and B = [F − ȳ,O], where
O ∈ R𝑁×( |V𝑠 |−𝑁𝐾) is a zero matrix. F ∈ R𝑁×𝑁𝐾 denotes the label
matrix of the 𝑁𝐾 labeled nodes, whose 𝑖-th column is y𝑖 . The 𝑖-th
row of the final result U(𝑇𝑙 ) is the obtained label vector of 𝑣𝑖 . The
iteration is achieved by replacing the label vector (i.e., u𝑖 ) with the
weighted average of label vectors from neighboring nodes of 𝑣𝑖 .

In this way, we can obtain a considerable number of pseudo-
labeled nodes to compensate for the lack of support nodes during
meta-training. Nevertheless, some of the pseudo-labeled nodes
could be incorrect and thus deteriorate the classification perfor-
mance if all pseudo-labeled nodes are used to expand the support
set. Therefore, we propose to select pseudo-labeled nodes with high
prediction confidence for fine-tuning in each meta-task. Specifi-
cally, we compute the confidence score for each pseudo-labeled
node according to the entropy of the prediction result as follows:

𝑐𝑖 = −
𝑁∑
𝑗=1

𝑢𝑖 𝑗 log𝑢𝑖 𝑗 , (4)

where 𝑢𝑖 𝑗 is the 𝑗-th element of u𝑖 after softmax. In this way, we
can select top𝑀 pseudo-labeled nodes with the highest confidence
scores. Note thatV𝑠 contains the 𝑁𝐾 support nodes, which will be
ignored during the selection since they are already labeled. Then
the support set can be augmented as S̃ = S ∪ S𝑝 , where S𝑝 is the
set of selected pseudo-labeled nodes and |S̃ | = 𝑁𝐾 +𝑀 .

4.2 Information Bottleneck Fine-tuning
With the augmented support set S̃, we can conduct fine-tuning
on S̃ for fast adaptations to the given meta-task T and then meta-
optimize the model on the query set Q. However, although the
support set is augmented, the query set Q could still be inadequate
for optimization with extremely weak supervision. In other words,
the model can be easily influenced by irrelevant information (e.g.,
decisive classification information for classes not in T ) and thus
leads to over-fitting. Therefore, we aim to fine-tune the model with
extremely limited query nodes while ignoring the irrelevant infor-
mation as much as possible. Particularly, the Information Bottleneck
(IB) [33] provides an essential principle to extract classification in-
formation while maximally reducing the negative impact of irrele-
vant information. Moreover, the IB principle can also encourage the
model to benefit from incorrect pseudo-labeled nodes by learning to
neglect irrelevant information. Nevertheless, it remains non-trivial
to utilize the IB principle on graph data, due to the fact that graph
data does not follow the i.i.d. assumption used in previous IB-based
models [40]. Thus, we further derive two variational bounds for IB
to fine-tune the model in a more tractable manner.

Specifically, the objective of the IB principle can be formulated
as follows:

min IB(𝐷,𝑌 ;𝑍 ) ≜ [−𝐼 (𝑌 ;𝑍 ) + 𝛽𝐼 (𝐷 ;𝑍 )], (5)

where 𝑌 denotes the class set of nodes in S̃ and |𝑌 | = 𝑁 . 𝑍 denotes
the node representations to be learned. 𝐷 denotes the structural
and feature information of nodes in S̃. 𝛽 is a positive scalar to
balance the trade-off between the desire to preserve classification
information and being invariant to irrelevant graph structures and
node features [42]. In particular, the IB aims to learn representations
that are maximally informative for classification (i.e., maximizing
𝐼 (𝑌 ;𝑍 )) while reducing irrelevant information (i.e., minimizing
𝐼 (𝐷 ;𝑍 )). Furthermore, it becomes more useful in few-shot learning
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Figure 2: The optimization processwith our IBfine-tuningmodule andmeta-learning strategy. For each node in the augmented
support set, we construct a 2-hop subgraph and a masked 2-hop subgraph. Then we utilize two GNN𝜃 and GNN𝜙 to perform
IB fine-tuning via 𝑇 steps. After that, we calculate the loss on the query set and meta-update model parameters.

since each meta-task is only conducted on 𝑁 classes, and thus the
irrelevant information 𝐷 can be more redundant.

Nevertheless, it is difficult to directly optimize the objective in
Eq. (5), since it is intractable [40]. Thus, we propose to derive an
upper bound for each of the two terms in Eq. (5) for optimization.
Specifically, the first term can be expressed using entropy as follows:

−𝐼 (𝑌 ;𝑍 ) = − [𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑍 )] , (6)

where 𝐻 is the entropy. Since we aim to optimize the model for bet-
ter 𝑍 , we can ignore the unrelated term 𝐻 (𝑌 ). Then we can obtain
the explicit form of 𝐻 (𝑌 |𝑍 ) based on the definition of entropy:

𝐻 (𝑌 |𝑍 ) = −
𝑁∑
𝑖=1

| S̃ |∑
𝑗=1

𝑝 (𝑦𝑖 , 𝑧 𝑗 ) log
𝑝 (𝑦𝑖 , 𝑧 𝑗 )
𝑝 (𝑧 𝑗 )

= −
𝑁∑
𝑖=1

| S̃ |∑
𝑗=1

𝑝 (𝑧 𝑗 |𝑦𝑖 )𝑝 (𝑦𝑖 ) log 𝑝 (𝑦𝑖 |𝑧 𝑗 ),

(7)

where 𝑦𝑖 and 𝑧𝑖 denote the label and the representation of the
𝑖-th node 𝑣𝑖 in S̃, respectively. Since each meta-task contains 𝐾
support nodes for each of 𝑁 classes, we can assume that the prior
distribution of 𝑌 is uniform, and thus 𝑝 (𝑦𝑖 ) is a constant. To further
estimate 𝑝 (𝑧 𝑗 |𝑦𝑖 ), we compute it via 𝑝 (𝑧 𝑗 |𝑦𝑖 ) = 1(𝑧 𝑗 ∈ 𝑦𝑖 ), where
1(𝑧 𝑗 ∈ 𝑦𝑖 ) = 1 if 𝑧 𝑗 belongs to 𝑦𝑖 ; otherwise 1(𝑧 𝑗 ∈ 𝑦𝑖 ) = 0. In this
way, the objective of −𝐼 (𝑌 ;𝑍 ) is formulated as a cross-entropy loss:

− 𝐼 (𝑌 ;𝑍 ) → L𝑌 = −
S̃∑
𝑖=1

log𝑝 (𝑦′𝑖 |𝑧𝑖 ), (8)

where 𝑦′
𝑖
denotes the specific label that the 𝑖-th node 𝑣𝑖 belongs to.

Then to estimate 𝑝 (𝑦′
𝑖
|𝑧𝑖 ), we further utilize a GNN𝜃 followed by

an MLP classifier MLP𝜃 . Specifically, for the 𝑖-th node 𝑣𝑖 in S̃, we
extract its 2-hop neighboring nodes to form a subgraph, represented
by (A𝑖 ,X𝑖 ). HereA𝑖 andX𝑖 denote the adjacency and featurematrix,
respectively. Then we compute the output prediction score as

s𝑖 = MLP𝜃 (GNN𝜃 (A𝑖 ,X𝑖 )) , (9)

where s𝑖 ∈ R𝑁 is the unnormalized prediction score of 𝑣𝑖 . With a
softmax function, we can normalize s𝑖 to finally obtain 𝑝 (𝑦′

𝑗
|𝑧 𝑗 ). In

this way, the model learns the crucial information for classification
of classes in 𝑌 via maximizing 𝐼 (𝑌 ;𝑍 ).

For another term 𝐼 (𝐷 ;𝑍 ), we first express it via the expectation:

𝐼 (𝐷 ;𝑍 ) = E

(
log

𝑝 (𝑍 |𝐷)
𝑝 (𝑍 )

)
, (10)

where 𝐷 denotes the structural and feature information of nodes
in S̃. It is noteworthy that nodes on graphs do not follow the i.i.d.
assumption and thus are inherently correlated. Hence, although the
fine-tuning is conducted on a specific meta-task, 𝐷 should incorpo-
rate the information from the entire graph due to the correlations
among nodes (i.e., 𝐷 = (E,X)). However, it is difficult to estimate
𝑝 (𝑍 |𝐷), since the only 𝐷 is represented by the entire graph. There-
fore, we introduce another distribution 𝑞(𝑍 ) to approximate the
true posterior 𝑝 (𝑍 |𝐷). In this way, we can further derive an upper
bound of 𝐼 (𝐷 ;𝑍 ) for optimization:

E

(
log

(
𝑝 (𝑍 |𝐷)
𝑞(𝑍 )

𝑞(𝑍 )
𝑝 (𝑍 )

))
= E

(
log

𝑝 (𝑍 |𝐷)
𝑞(𝑍 )

)
− KL (𝑝 (𝑍 ) | |𝑞(𝑍 ))

≤ E

(
log

𝑝 (𝑍 |𝐷)
𝑞(𝑍 )

)
,

(11)
where KL(·| |·) denotes the KL-divergence of distributions. In this
way, the final objective is to minimize the KL-divergence between
𝑝 (𝑍 |𝐷) and 𝑞(𝑍 ). In practice, to estimate 𝑝 (𝑍 |𝐷), we utilize GNN𝜃
to instantiate 𝑝 (𝑍 |𝐷). However, incorporating structural and fea-
ture information from the entire graph can be inefficient and re-
dundant for classification in a meta-task. Thus, we leverage the
local-dependence assumption [40] of graph data to define 𝐷 as the
specific structural and feature information of each node in S̃. In this
way, GNN𝜃 can learn to provide a comprehensive estimation for
𝑝 (𝑍 |𝐷) based on the specific 𝐷 in each meta-task, since 𝐷 changes
with S̃ in different meta-tasks. On the other hand, 𝑞(𝑍 ) is a prior
distribution for 𝑍 and is thus difficult to estimate. Therefore, we
propose to instantiate 𝑞(𝑍 ) with another GNN parameterized by 𝜙
(i.e., GNN𝜙 ). Meanwhile, since 𝑞(𝑍 ) is not conditioned on 𝐷 , it is
necessary to alleviate the inevitable influence of 𝐷 . Therefore, we
propose to randomly mask the corresponding graph structures and
node features in the subgraph (A𝑖 ,X𝑖 ) of each node in S̃. Specifi-
cally, for a subgraph represented by (A𝑖 ,X𝑖 ), each entry in A𝑖 and
X𝑖 has a probability of 𝛾 to be masked (i.e., becomes zero), and the
masked matrices are denoted as (Ã𝑖 , X̃𝑖 ). As a result, the model can
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learn to extract the decisive information for classification while
maximally ignoring irrelevant information in 𝐷 . Then for the 𝑖-
th node 𝑣𝑖 in S̃, as illustrated in Fig. 2, we can achieve the two
representations obtained by GNN𝜃 and GNN𝜙 as follows:

h𝑖 = GNN𝜃 (A𝑖 ,X𝑖 ), h̃𝑖 = GNN𝜙 (Ã𝑖 , X̃𝑖 ), (12)

where h𝑖 and h̃𝑖 denote the representations of 𝑣𝑖 from the twoGNNs,
respectively. To minimize the KL-divergence between 𝑝 (𝑍 |𝐷) and
𝑞(𝑍 ), we utilize a predictor [10, 32] 𝑝𝜃 (a two-layer MLP) that uses
h𝑖 to produce a prediction 𝑝𝜃 (h𝑖 ) for h̃𝑖 . After normalizing both
𝑝𝜃 (h𝑖 ) and h̃𝑖 , the mean squared error can be defined as follows:

MSE(𝑝𝜃 (h𝑖 ), h̃𝑖 ) =





 𝑝𝜃 (h𝑖 )
∥𝑝𝜃 (h𝑖 )∥

− h̃𝑖
∥h̃𝑖 ∥






2 = 2 − 2 · 𝑝𝜃 (h𝑖 ) · h̃𝑖
∥𝑝𝜃 (h𝑖 )∥∥h̃𝑖 ∥

,

(13)
where ∥ · ∥ denotes the ℓ2-norm. In this way, the loss becomes:

𝐼 (𝐷 ;𝑍 ) → L𝐷 = −
S̃∑
𝑖=1

𝑝𝜃 (h𝑖 ) · h̃𝑖
∥𝑝𝜃 (h𝑖 )∥∥h̃𝑖 ∥

, (14)

which is the cosine similarity between 𝑝𝜃 (h𝑖 ) and h̃𝑖 . Then the final
fine-tuning loss can be defined as L = L𝑌 + 𝛽L𝐷 , where 𝛽 is the
hyper-parameter in the IB principle to trade off the two mutual
information terms.

4.3 Meta Learning-based Optimization
In this part, we elaborate on the optimization process of X-FNC.
As illustrated in Fig. 2, our optimization process consists of two
main stages: fine-tuning and meta-optimization. Given a specific
meta-task T , we first obtain the augmented support set S̃ via the
proposed Poisson Label Propagation module introduced in Sec. 4.1.
Then we fine-tune our framework on S̃ for a fast adaptation to
this meta-task. Furthermore, to ensure adaptations to each meta-
task during evaluation, we utilize the prevalent strategy [9, 16],
which meta-optimizes model parameters according to loss on the
query set. The original strategy is proposed to optimize an entire
model with one meta-learning rate. However, X-FNC consists of
multiple modules with various purposes. Therefore, we propose to
separately optimize modules in X-FNC based on different losses.

Specifically, let 𝜃 denote the total parameters of GNN𝜃 , MLP𝜃 ,
and the predictor 𝑝𝜃 . For the fine-tuning process, we first initialize
the parameters for fine-tuning as 𝜃0 ← 𝜃 . Then we conduct𝑇 steps
of fine-tuning based on the loss L calculated on S̃ as follows:

𝜃𝑡 ← 𝜃𝑡−1 − 𝛼∇𝜃𝑡−1L
(
S̃;𝜃𝑡−1

)
, (15)

where 𝑡 ∈ {1, 2, . . . ,𝑇 } and L(S̃;𝜃𝑡−1) denotes that the loss is
calculated based on S̃ with the parameters 𝜃𝑡−1. 𝛼 is the learning
rate in each fine-tuning step.

It is noteworthy that during fine-tuning, other parameters of our
framework (i.e., GNN𝜙 parameterized by 𝜙) are kept unchanged,
since simultaneously optimizing GNN𝜃 and GNN𝜙 can result in
collapse (e.g., a constant representation) [10, 32]. After 𝑇 steps of
fine-tuning, we will meta-optimize GNN𝜙 with the loss calculated
on the query setQ. Meanwhile, since different modules bear various
purposes, we optimize them with two meta-learning rates and

losses. More specifically, on the query set Q, we meta-optimize 𝜃
and 𝜙 with the following update functions:

𝜃 =: 𝜃 − 𝛽1∇𝜃L(Q;𝜃𝑇 ), 𝜙 =: 𝜙 − 𝛽2∇𝜙L𝐷 (Q;𝜃𝑇 ), (16)

where 𝛽1 and 𝛽2 are meta-learning rates for 𝜃 and 𝜙 , respectively.
Note that GNN𝜙 is only used to calculate L𝐷 . Thus, GNN𝜙 will be
meta-optimized regardingL𝐷 instead ofL, while 𝜃 (i.e., parameters
of GNN𝜃 , MLP𝜃 , and 𝑝𝜃 ) is meta-optimized based on L.

Moreover, it is noteworthy that our framework does not ex-
plicitly prevent collapse with extra operations (e.g., the negative
samples used in contrastive learning [12, 24]) when minimizingL𝐷 .
Nevertheless, the loss design of our framework naturally avoids
converging to a minimum regarding both 𝜃 and 𝜙 (e.g., a trivial
constant representation). Different from BYOL [10] and BGRL [32],
which utilize a momentum strategy, we propose two different losses
(i.e., L𝑌 and L𝐷 ) for meta-optimization regarding 𝜃 and 𝜙 . As a
result, the meta-optimization targets are different for 𝜃 and 𝜙 and
thus will not cause collapse during meta-optimization. In addition,
the collapse will also not occur during fine-tuning since only 𝜃 is
updated while 𝜙 remains unchanged in this step.

After meta-training on a specific number of meta-training tasks,
we evaluate the performance of our framework X-FNC on the meta-
test tasks, which are sampled from C𝑡𝑒𝑠𝑡 .

5 EXPERIMENTAL EVALUATIONS
5.1 Datasets
To evaluate the performance of X-FNC on few-shot node classifica-
tion with extremely weak supervision, we conduct experiments on
four prevalent real-world graph datasets: Amazon-E [21], DBLP [31],
Cora-full [2], and ogbn-arxiv [13]. Each dataset is a graph and
consists of a considerable number of node classes to ensure that the
meta-test tasks contain a variety of classes for a more comprehen-
sive evaluation. Specifically, we obtain Amazon-E and DBLP datasets
from [6]. Cora-full and ogbn-arxiv are from the corresponding
source. Then we conduct experiments on these datasets under the
extremely weak supervision setting. In particular, we choose three
different settings: 5/10/20 labels per class. In other words, eachmeta-
training class only consists of 5/10/20 labeled nodes (50/100/200
for ogbn-arxiv due to the large size of the graph), where the total
labeled nodes are approximately 1%/2%/4% of nodes on the graph. It
is noteworthy that we randomly select these labeled nodes from the
training classes in the original datasets. The detailed statistics of
these datasets are summarized in Table 2, where the class split set-
ting denotes the number of classes used for training/validation/test.

5.2 Experimental Settings
To achieve a comparison of X-FNC with competitive baselines, we
conduct experiments with the state-of-the-art few-shot node classi-
ficationmethods.PrototypicalNetworks (PN) [27] andMAML [9]
are conventional few-shot methods, and we apply them on graph
data. G-Meta [14], GPN [6], and RALE [19] are recently proposed
studies on few-shot node classification.

During meta-training, we randomly sample T𝑡𝑟𝑎𝑖𝑛 meta-training
tasks from meta-training classes for model optimization. Here the
support set and the query set in eachmeta-task will only be sampled
from labeled nodes (i.e., 5/10/20 labeled nodes in each class). Then
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Table 1: The overall few-shot node classification results (accuracy in %) of X-FNC and baselines under different settings.

Dataset DBLP Amazon-E

Setting 5-way 3-shot 10-way 3-shot 5-way 3-shot 10-way 3-shot
# Labels per Class 5 10 20 5 10 20 5 10 20 5 10 20

PN 49.4±3.2 51.9±3.1 53.3±3.9 36.3±3.8 38.5±2.8 40.2±3.9 51.6±2.3 52.2±2.3 53.8±2.3 36.7±3.0 38.2±2.0 41.3±3.9
MAML 50.9±3.1 51.8±1.8 56.1±2.1 39.4±2.3 44.3±2.0 45.4±3.1 48.8±2.4 49.4±3.3 53.9±2.7 39.0±3.2 40.3±3.2 41.5±3.2
G-Meta 59.8±3.3 61.8±3.5 63.3±4.1 44.9±2.9 51.0±3.4 52.9±3.6 53.4±2.2 55.7±3.6 56.6±3.2 39.6±4.1 41.9±3.0 45.6±4.3
GPN 58.6±3.8 62.5±2.8 66.9±4.3 50.6±3.9 52.7±2.4 54.6±3.4 56.0±4.1 60.7±4.7 63.0±2.3 42.1±4.8 45.8±3.3 52.1±4.8
RALE 64.7±4.1 66.9±4.7 67.9±4.0 51.3±4.2 55.0±3.2 56.9±4.0 60.4±4.5 64.0±4.8 66.1±4.5 47.8±4.4 48.6±4.8 52.4±3.3
X-FNC 70.1±4.0 75.5±3.5 76.8±3.3 57.2±3.4 63.6±3.3 65.8±3.1 69.9±3.9 72.8±3.4 76.0±4.8 49.2±4.1 51.5±2.8 56.3±3.4

Dataset Cora-full ogbn-arxiv

Setting 5-way 3-shot 10-way 3-shot 5-way 3-shot 10-way 3-shot
# Labels per Class 5 10 20 5 10 20 50 100 200 50 100 200

PN 45.5±2.7 48.1±3.6 48.9±3.8 28.2±3.8 31.6±3.3 34.4±2.5 39.1±2.5 40.8±3.7 42.6±3.1 23.1±3.6 24.4±3.1 27.7±3.5
MAML 46.9±2.6 48.6±3.0 49.2±2.7 32.7±2.5 33.2±2.3 35.8±1.9 41.0±2.4 41.9±1.9 43.1±3.4 23.2±2.1 25.4±3.1 28.0±3.2
G-Meta 57.7±3.9 58.7±3.6 59.8±2.6 41.7±3.3 42.0±3.0 43.8±2.7 43.5±3.6 44.7±2.9 46.5±4.4 27.4±4.4 29.0±2.8 29.9±2.5
GPN 54.6±2.8 55.2±3.6 57.7±4.2 38.4±2.8 40.2±2.9 42.0±4.5 46.6±3.4 47.1±3.9 48.4±2.9 26.1±2.6 30.9±3.6 33.5±3.5
RALE 58.2±2.8 59.3±4.1 63.1±3.9 38.1±4.2 43.4±2.8 44.0±4.5 49.3±3.0 51.4±3.9 52.5±4.6 30.4±2.5 31.7±3.3 33.9±4.8
X-FNC 62.9±4.5 68.0±3.7 69.2±4.6 43.7±4.8 45.6±4.4 47.7±4.5 54.6±2.6 56.7±4.0 58.7±4.1 33.3±3.9 35.7±4.4 39.8±2.4

Table 2: Statistics of four node classification datasets.

Dataset # Nodes # Edges # Features Class Split
Amazon-E 42,318 43,556 8,669 90/37/40
DBLP 40,672 288,270 7,202 80/27/30

Cora-full 19,793 65,311 8,710 25/20/25
ogbn-arxiv 169,343 1,166,243 128 15/5/20

during meta-test, we evaluate the model on a series of randomly
sampledmeta-test tasks from the entire node set of meta-test classes.
The final averaged classification accuracy on meta-test tasks will
be used as the evaluation metric. For the Poisson Label Propagation
module, we set the number of label propagation steps 𝑇𝑙 as 10. The
number of randomly sampled nodes 𝑅 to construct the subgraph for
label propagation is set as 10. The scaling parameter of A′′ is set as
100, and the hyper-parameter 𝜆 is set as 0.5. The number of selected
pseudo-labeled nodes 𝑀 is 20. For IB fine-tuning, the number of
fine-tuning steps𝑇 is 40. The mask rate 𝛾 is set as 0.1. The learning
rate 𝛼 during fine-tuning is 0.1. The meta-learning rates 𝛽1 and
𝛽2 during meta-optimization are set as 0.005. The trade-off hyper-
parameter 𝛽 is set as 1. The hidden sizes of GNN𝜃 and GNN𝜙 are
both 64. The hidden size of MLP𝜃 is 64 while the hidden sizes of the
two MLP layers in 𝑝𝜃 are 128 and 64, respectively. The number of
training epochs 𝑇𝑡𝑟𝑎𝑖𝑛 is 5,000, and the number of meta-test tasks
𝑇𝑡𝑒𝑠𝑡 is 500. The dropout rate is 0.5. The query set size |Q| is 10.
Our code can be found at https://github.com/SongW-SW/X-FNC.

5.3 Performance Comparison
Table 1 presents the performance comparison of our framework
X-FNC and all baselines on few-shot node classification with ex-
tremely weak supervision. Specifically, we choose two different
few-shot settings to obtain a more comprehensive comparison: 5-
way 3-shot and 10-way 3-shot. We use the average classification
accuracy over 10 repetitions as the evaluation metric. From Table 1,
we can have the following observations: (1) Our framework X-FNC

achieves the best results compared with all other baselines in all
datasets. The performance also consistently outperforms other base-
lines under different settings, which validates the superiority of
X-FNC on few-shot node classification with extremely weak super-
vision. (2) When the number of labels per class decreases from 20 to
5, X-FNC has the least performance drop compared with other base-
lines. The main reason is that X-FNC obtains pseudo-labeled nodes
via Poisson Label Propagation to alleviate the under-generalizing
problem with extremely weak supervision. (3) The performance
improvement of X-FNC over other baselines is slightly larger on
DBLP. This is due to the fact that DBLP has a larger average node
degree, which helps improve the pseudo-labeling accuracy during
meta-training for better performance. (4) When the value of 𝑁 in-
creases (i.e., more classes in each meta-task), all methods encounter
a significant performance drop, since query nodes are classified
from a larger class set in each meta-task. Nevertheless, under the
extremely limited setting, X-FNC consistently outperforms other
baselines. It is because X-FNC can better extract decisive informa-
tion for classification with a larger value of 𝑁 via IB fine-tuning.

5.4 Ablation Study
We conduct an ablation study on Amazon-E and Cora-full to eval-
uate the effectiveness of different components in our framework
X-FNC (similar results on other datasets). Specifically, we compare
X-FNC with three degenerate versions: (a) X-FNC without pseudo-
labeling (X-FNC\P); (b) X-FNC without IB-based fine-tuning (X-
FNC\I); (c) without both (X-FNC\PI). More specifically, X-FNC\P
removes the pseudo-labeling process such that the support set only
consists of the given labeled nodes. X-FNC\I replaces the IB fine-
tuning process with a simple classifier during fine-tuning, while
X-FNC\PI combines the two variants. From Fig. 3, we can obtain
several observations. First, our framework outperforms all other
variants, which further validates that each module plays an im-
portant role in few-shot node classification with extremely weak

282

https://github.com/SongW-SW/X-FNC


WSDM ’23, February 27-March 3, 2023, Singapore, Singapore Song Wang, Yushun Dong, Kaize Ding, Chen Chen, and Jundong Li

(5,3) (5,5) (10,3) (10,5)
40

50

60

70

Te
st
…A
cc
ur
ac
y…

(%
) X-FNC

X-FNC\P
X-FNC\I
X-FNC\PI

(5,3) (5,5) (10,3) (10,5)30

40

50

60

70

Te
st
…A
cc
ur
ac
y…

(%
) X-FNC

X-FNC\P
X-FNC\I
X-FNC\PI

Figure 3: Ablation study on our framework on Amazon-E (left)
and Cora-full (right) in the 𝑁 -way 𝐾-shot setting (𝑁 , 𝐾).
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Figure 4: Results of our framework on Amazon-E (left) and
Cora-full (right) with different mask rates.

supervision. Second, removing the Poisson Learning module deteri-
orates the performance on Cora-fullmore than that on Amazon-E.
The reason is that Cora-full consists of significantly fewer meta-
training classes than Amazon-E, and obtaining pseudo-labeled nodes
becomes more crucial in this scenario. Third, without IB fine-tuning,
the performance drops more significantly on 10-way settings than
5-way settings. The result further indicates that IB fine-tuning is
critical for model generalization to meta-test classes, especially
when each meta-task includes more classes.

5.5 Effect of Loss L𝐷
In this part, we conduct experiments to study the effect of the loss
L𝐷 in IB fine-tuning, which is calculated according to Eq. (14) with
two hyper-parameters (i.e., the loss weight 𝛽 and the mask rate 𝛾 ).
Specifically, in X-FNC, 𝛽 represents the level of attention the model
pays to the irrelevant local structures for classification on a specific
node. According to the IB principle, with a higher loss weight 𝛽 ,
the model will focus more on filtering out irrelevant information
for classification while less on extracting decisive classification
information. On the other hand, the mask rate 𝛾 represents the
approximate ratio of irrelevant information in the local structure of
each node, which should be adjusted according to different datasets.
To demonstrate the joint impact of these two hyper-parameters, we
present the results with different values of 𝛽 and 𝛾 on Amazon-E
and Cora-full. From Fig. 4, we can observe that the mask rate of
0.1 generally provides better performance than other values. This is
mainly because a small mask rate can be insufficient to filter out ir-
relevant structural information, while a larger mask rate can result
in the loss of helpful information in local structures. Moreover, the
performance drop on Cora-full is slightly larger than Amazon-E.
The reason is that in Cora-full, the average node degree is sig-
nificantly larger than Amazon-E. As a result, the graph structure
encodes more decisive information for classification, which is more
easily impacted by a large mask rate.
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Figure 5: Results of pseudo-labeling accuracy (in %) on
Amazon-E (left) and Cora-full (right) with different 𝜆 and 𝑅.

5.6 Random Sampling in Pseudo-labeling
In this part, we study the impact of factors that affect the pseudo-
labeling accuracy during label propagation. Specifically, the sample
number 𝑅 controls the ratio of random unlabeled nodes in the con-
structed subgraph during pseudo-labeling. On the other hand, the
distance-based adjacency matrix A′′ acts as flexible connections
between randomly sampled nodes and the limited labeled nodes
(i.e., support nodes). Hence, we also adjust the values of 𝑅 and the
scaling hyper-parameter 𝜆 to evaluate their influence. From Fig. 5,
we observe that the two parameters affect the pseudo-labeling ac-
curacy differently. In particular, increasing the number of randomly
sampled nodes 𝑅 will first increase pseudo-labeling accuracy and
then keep it stable. It is because a more complex structure of the
constructed subgraph can help the label propagation process. In
addition, a higher 𝜆 (i.e., the scaling hyper-parameter for A′′) first
increases the pseudo-labeling accuracy while later deteriorating
the accuracy. The reason is that with a higher value of 𝜆, the model
will focus more on label propagation to random nodes instead of
neighbors of support nodes. As a result, a higher 𝜆 can help discover
more nodes that share the same classes with support nodes.

6 CONCLUSION
In this paper, we study the problem of few-shot node classification
with extremely weak supervision, which focuses on predicting la-
bels for nodes in meta-test classes while utilizing extremely limited
labeled nodes for meta-training. Furthermore, to tackle the chal-
lenges caused by extremely limited labeled nodes, we propose an
innovative framework X-FNC to obtain pseudo-labeled nodes via
Poisson Learning and conduct fine-tuning based on the IB principle.
As a result, our framework can expand the support set in each meta-
task to alleviate the problem of under-generalizing while filtering
out irrelevant information for classification to avoid over-fitting.We
conduct extensive experiments on four node classification datasets
with extremely weak supervision, and the results validate the supe-
riority of our framework over other state-of-the-art baselines.
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