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Learner-Private Convex Optimization

Jiaming Xu , Kuang Xu, and Dana Yang

Abstract— Convex optimization with feedback is a framework
where a learner relies on iterative queries and feedback to arrive
at the minimizer of a convex function. It has gained considerable
popularity thanks to its scalability in large-scale optimization
and machine learning. The repeated interactions, however, expose
the learner to privacy risks from eavesdropping adversaries that
observe the submitted queries. In this paper, we study how to
optimally obfuscate the learner’s queries in convex optimization
with first-order feedback, so that their learned optimal value is
provably difficult to estimate for an eavesdropping adversary.
We consider two formulations of learner privacy: a Bayesian
formulation in which the convex function is drawn randomly,
and a maximin formulation in which the function is fixed and
the adversary’s probability of error is measured with respect to
a minimax criterion. Suppose that the learner wishes to ensure
the adversary cannot estimate accurately with probability greater
than 1/L for some L > 0. Our main results show that the query
complexity overhead is additive in L in the maximin formulation,
but multiplicative in L in the Bayesian formulation. Compared
to existing learner-private sequential learning models with binary
feedback, our results apply to the significantly richer family of
general convex functions with full-gradient feedback. Our proofs
rely on tools from the theory of Dirichlet processes, as well as a
novel strategy designed for measuring information leakage under
a full-gradient oracle.

Index Terms— First-order convex optimization, privacy,
sequential learning, Dirichlet process.

I. INTRODUCTION

CONVEX optimization with feedback is a framework

in which a learner repeatedly queries an external data

source in order to identify the minimizer of a convex func-

tion. This interactive nature of the framework, however, is a

double-edged sword. On the one hand, iterative optimization

methods offer inherent scalability since the learner is not

required to access or store the entire function. As such,

it has found applications in large-scale distributed machine

learning systems, such as Federated Learning [1], [2], where

a learner interacts with millions of individual users (data
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providers) in order to perform training. On the other hand, the

repeated interactions with external entities exposes the learner

to potential adversaries who may steal the learned model by

eavesdropping on the queries exchanged during the training

process, a woe especially poignant when the system involves

a large number of data providers, many of which could be

eavesdroppers in disguise ( [3], [4, Section 4.3]).

To formulate the model stealing attacks and quantify the

learner’s privacy, we adopt the framework of Private Sequen-

tial Learning proposed in a recent line of research, aimed at

quantifying the extra query complexities the learner has to suf-

fer in order to ensure the submitted queries provably conceal

the learned value [5], [6], [7]. The model is centered around

a binary search problem where a learner tries to estimate an

unknown value X∗ ∈ [0, 1] by sequentially submitting queries

and receiving binary responses, indicating the position of X∗

relative to the queries. Meanwhile, an adversary observes all

of the learner’s queries but not responses, and tries to use this

information to estimate X∗. The learner’s goal is to design

a querying strategy with a minimal number of queries so

that she can accurately estimate X∗ while ensuring that the

eavesdropping adversary cannot reliably estimate X∗. Progress

has been made towards understanding the optimal querying

strategies in this problem, and upper and lower bounds on

the query complexity have been developed that differ by

additive constants in the case where the learner’s queries are

noiseless [5], [7], and are order-wise optimal in the case of

noisy queries [7].

While the original binary search formulation provides valu-

able insights, its assumption that the learner only has access to

binary feedback is a severe restriction when it comes to model-

ing convex optimization. Indeed, most real-world applications

provide the learner access to significantly richer feedback such

as a full gradient (e.g., model training in machine learning).

We elaborate further on the potential applications of our model

in Section I-A.

The main purpose of the present paper is to take a step

towards closing this gap by studying learner-private optimiza-

tion with general convex functions and a full-gradient oracle.

In a nutshell, our results demonstrate that the most prominent

features of the query complexity in the binary search model

extend gracefully to the general convex optimization setting.

However, to establish that this is the case is far from triv-

ial. A major difficulty stems from the significantly enriched

functional class: unlike in a binary search problem where the

ground truth is fully described by a scalar (location of X∗),

we will see that the private query complexity crucially depends

on the shapes of the convex functions in a family, and not just

the locations of their minimizers.
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This added richness necessitates the development of both

new problem formulations and analytical techniques. We pro-

pose in this paper two new learner-privacy frameworks: a new

maximin formulation, as well as a Bayesian formulation that

generalizes earlier Bayesian private sequential learning to a

full-gradient oracle. A number of new techniques are devel-

oped to analyze query complexity under these formulations:

we introduce tools from the theory of Dirichlet processes to

construct priors that convey the richness of the model. Tools

from nonparametric Bayes theory are deployed for the analysis

under such prior distributions. In addition to an enriched

functional class, another fundamental challenge lies in the

richness of the feedback. Unlike the binary search model, the

responses align with the location of the query and the shape of

the unobserved convex function to a great extent. In the face of

a more powerful learner equipped with a full-gradient oracle,

we rely on a more sophisticated line of analysis to gauge the

amount of information the responses reveal. We will discuss

in more detail these ramifications in Section IV.

A. Motivating Examples

A learner naturally suffers from privacy breaches if the

learning process involves interactions with third-party users.

1) Federated Learning: Federated Learning (FL) is an

emerging model training paradigm, wherein the parameter

server (viewed as learner) trains a model by communicating

with distributed users while keeping the training data stored

locally at the users. Suppose there are M users and each

user u has access to a local dataset {Zj, j ∈ Su}. The

learner aims to minimize the global empirical risk function

L(θ) = 1
M

∑M
u=1 `u(θ) where θ is the model parameter and

`u(θ) =
∑

j∈Su
`(Zj, θ) is the local empirical risk function

of user u. The learner trains a model through sequential

interactions with the users. For example in the FederatedSGD

algorithm [1], in the i’th iteration of training, the learner

broadcasts the current model parameter θi to users. The user

then computes the local gradient ∇`u(θi) at the broadcasted

model parameter θi and transmits it back to the learner.

By taking an average of the received local gradients, the

learner generates the next iteration of model parameter θi+1.

In typical FL systems, when training with thousands of

users, the learner lacks enough administrative power over those

external users. Thus, an adversary can participate in the train-

ing stage by pretending to be an authentic user and eavesdrop

the sequence of broadcasted model iterates. By taking the last

iteration of model parameters, the adversary can easily steal

the trained model. Sophisticated models can be worth millions.

The eavesdropper can use the stolen model to make money or

even leverage them for illicit purposes [3]. Therefore, it is of

paramount importance to protect the learner’s privacy from

the model stealing attacks [4], [8]. For example, when Google

trains the Gboard for next-word prediction in FL systems, it is

critical to prevent adversaries from stealing the Gboard model.

There are several potential techniques to conceal the model

parameters from the users in Federated Learning, such as

restricting each user to run the local computation inside a

Trusted Executation Envrionments (TEE) [9] or encrypting the

Fig. 1. An abstraction of a Federated Learning system with an eavesdropper.
The end devices represent the entire population of the distributed users.

model parameters under a homomorphic encryption scheme

before broadcasting it to the users [10]. Unfortunately,

as pointed out by the recent survey [4, Section 4.3.3], TEEs

and homomorphic encryption are often costly to implement

and incur large overhead, especially when these users represent

end-devices such as smartphones. This consideration prompts

us to investigate whether we can offer provable privacy guar-

antees on the learner’s model in FL.

Our model can be viewed as an abstraction of the FL system,

as illustrated in Fig. 1. The model iterates {θi} (viewed as

queries) are observed by all users, including the eavesdropping

adversaries. The response gi corresponds to the average of the

local gradients which is equal to the global gradient ∇L(θi).
It is reasonable to assume that the response is only observed

by the learner but not the adversary. This is because the

size of the adversarial users’ local data is often negligible

compared to the entire population. Thus in order to observe

the response, the adversary would have to access the updates

generated by all users in the system, which is not realistic

for an adversary that only controls up to a small subset of the

users. Since the communication bandwidth is a scarce resource

in many FL applications, determining the minimum number

of iterations needed is of fundamental importance in both

theory and practice, which we will address by investigating

the optimal query complexity.

In our current formulation, we assume that the learner is

trusted by the users and that the users transmit honest, noise-

less responses to the learner. A more realistic representation

of FL would allow for noisy or even adversarial responses.

We leave that for future investigations. We also note that

private FL has been studied in the context of protecting each

individual user’s local data privacy by adding randomization or

noises to local gradient responses and/or model iterates [11],

[12]. In sharp contrast, our work focuses on preventing the

adversary inferring the learned model by carefully designing

the querying strategy with obsfusction.

2) Additional Applications in Medicine and Business:

Given the close connection between convex and monotone

functions, our work can also be applied to learning monotone

functions, for example to clinical dose-response studies [13],

[14]. In dose-response analysis, the potency curve µ(x) is a

monotone function that models the treatment effectiveness as

a function of the dosage. An incredily important problem is

to estimate the minimum effective dose (MED)

MED = min
x

{x : µ(x) > µ(0) + ∆}

for some threshold ∆. Note that the MED is the min-

imizer X∗ of some unknown convex function f∗ (e.g.

f∗(x) =
∫ t

0 µ(t)dt− [µ(0)+ ∆]x). In new drug development,
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a pharmaceutical company (viewed as learner) often estimates

MED of a drug via running adpative clinical trials. In particu-

lar, the recruiting participants will take the drug according to a

given dosage (viewed as query). Based on their responses, the

company then measures the treatment effectiveness and deter-

mines the next dosage to query. The adversary, who may be a

competing company, can pretend to a participant and hearby

eavesdrop the queried dosage. Due to the critical importance

of MED, it is of great interest for the company to design

an adaptive querying scheme to estimate the MED, while

preventing the adversary from gaining information on the

MED. We also remark that the Dirichlet process is widely used

in isotonic regression for modeling monotone functions [14],

[15], as we will do when modeling the gradient of the convex

function under the Bayesian framework.

Another potential application is pricing optimization, where

the goal is to learn the optimal release price of a product by

conducting market experiments at test price points (queries).

See [5], [7] for more detailed discussions on the pricing

optimization example.

B. Related Work

Private information retrieval (PIR) and private function

retrieval (PFR) Our model formulation bears some similar-

ities with the PIR [16], [17], [18] and PFR [19] frame-

work. However, there are major distinctions which result in

completely different dynamics between the learner and the

adversary. In PIR, the database is assumed to contain a vector

(xi)i≤N . The learner’s goal is to learn the evaluation xi at

some index i by querying the database, while preventing the

database (adversary) from learning the value of i. The PFR

problem is formulated similarly, except that the database is

indexed by functions. Note that in PIR/PFC, the private index

is assumed to be known to the learner a priori. In contrast,

in our framework, the private information X∗ is something

the learner herself is in the process of discovering. As a

result, our problem is posed as a sequential learning problem.

It has natural applications in model stealing attack prevention,

where eavesdropping adversaries attempt to steal the model

parameters by participating in the model training process. The

fundamental difference between the two settings also leads to

completely different techniques for analysis. For us, privacy

is ensured by utilizing the adversary’s lack of knowledge on

the responses, which is not the case in PIR/PFC.

Data-owner privacy models Similar to Private Sequential

Learning, the private convex optimization problem we consider

diverges significantly from the existing literature on differen-

tially private (DP) iterative learning [20], [21], [22], [23], [24],

a key difference being that the latter focuses on protecting data

owners’ privacy rather than learner’s privacy. To protect data

owners’ privacy, the notion of differential privacy [25] is often

adopted and privacy is often achieved by injecting calibrated

noise at each iteration of the learning algorithms. In contrast,

our work focuses on preventing the adversary inferring the

learned model, which is conceptually closer to recent studies

of information-theoretically sound obfuscation in sequential

decision-making problems [26], [27], [28], [29], [30]. See [7]

for a comprehensive discussion on the distinction between

data-owner privacy models and this line of work.

More recently, variants of differential privacy, such as local

differential privacy (LDP) [11], [12], [31], have been applied to

a learning context, in ways that are closer to the spirit of mod-

els considered here. However, we should note that in addition

to the aforementioned distinction between a learner- vs. data-

owner-centric focus, the formulation of private sequential

learning also diverges from that of DP and its variants in

other important aspects. The approach here tends to have

a more limited privacy scope, aiming to protect the learner

against a specific inferential goal of the adversary, whereas the

more conservative differential privacy aims to protect against

a much wider range of possible attacks. As a result, more

randomization and obfuscation is generally required under

a DP setup than the one considered here, and possibly at

the cost of more efficiency loss. For instance, Appendix B

of [32] includes an example showing that while a certain

Replicated Bisection search strategy is provably private under

the Private Sequential Learning framework, it is in fact never

differentially private, thus showing that differential privacy is

a strictly more restrictive notion. We also refer the reader to a

discussion on the comparison of scope with DP in [5]. Another

consideration is that, as mentioned in the Introduction, we are

generally concerned with settings where the learner’s actions

can be observed exactly by the adversary, in contrast to typical

applications of DP and LDP where the decision maker has the

extra degree of freedom of adding additional noise to the data

or summary statistic before releasing it for public scrutiny

(cf. [11]). While the learner in our model can also obfuscate

by injecting randomness into their actions, such obfuscation

has more immediate consequences, because it would directly

impact the resulting information the learner collects. The same

consideration also arises in other models of privacy where

the agent’s actions are observable and therefore she can only

obfuscate by “doing” rather than “hiding” [26], [28], [29]; we

refer the reader to [28] for a more elaborate discussion on

this distinction and the references therein.

Strategic learning In aiming to prevent modeling steal-

ing, our work aligns with a growing literature on strategic

learning and prediction [33], [34], [35], [36], [37]. These

papers consider strategic learners who have gained access to

their competitor’s predicted samples, or even the competitor’s

entire predictive model. Then, they artificially adjust their

own predictive model in order to outperform those of their

competitors. In general, in equilibrium such competition could

not only harm utilities for the learners involved, but also lead

to lower overall social welfare, as defined by the prediction

quality experienced by end consumers. Our work thus helps

to preempt such pitfalls by providing a theft-proof framework

for models training and adaptive data collection.

II. THE MODEL: LEARNER-PRIVATE

CONVEX OPTIMIZATION

We now introduce our model, dubbed Learner-Private Con-

vex Optimization. The emphasis on the learner’s privacy

here is to distinguish our model from other forms of private
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sequential learning, especially those that focus on protecting

the privacy of data owners (See preceding discussion in the

Introduction).

A. Learner

Let F be a family of R-valued convex functions with

domain [0, 1], such that all elements in F admit a unique

minimizer. Suppose there is an unknown truth f∗ ∈ F with the

minimizer X∗ := arg minx f∗(x). Fix n ∈ N. Our decision

maker is a learner who wants to identify X∗ by sequentially

submitting a total of n queries in [0, 1] to an oracle. For the

ith query, qi, the oracle returns a response ri that is equal to

the gradient of f∗ at qi:

ri = (f∗)0(qi). (1)

If f∗ is not differentiable at qi, then ri is an arbitrary

subgradient of f∗ at qi. We assume that the learner is allowed

to introduce outside randomness, in the form of a random

seed Y that takes value in a finite discrete alphabet. Formally,

we denote by φ the learner’s strategy, which consists of a

sequence of mappings φ0, φ1, . . . , φn−1 such that the ith query

is generated as a function of all previous responses and the

random seed:

qi = φi−1(r1, . . . , ri−1, Y ). (2)

Once the querying process is terminated, the learner constructs

an estimator of the optimizer X∗, X̂ = X̂(q, r, Y ). We say

that the learner strategy φ is �-accurate, if

P

{∣∣∣X̂ − X∗
∣∣∣ ≤ �/2

}
= 1, ∀f∗ ∈ F , (3)

where X∗ is the minimizer of f∗ and the probability averages

over the randomness in the random seed, Y .

B. Adversary

Meanwhile, an adversary is trying to learn X∗ by eavesdrop-

ping on the learner’s queries: we assume that the adversary

observes all n queries submitted by the learner, but not their

responses. Denote by X̃ = X̃(q) the adversary’s estimator,

which is a (possibly random) function of (qi)i=1,...,n. Wary of

such an adversary, the high-level objective of the learner are to

(1) generate a query sequence that is largely “uninformative”

towards X∗, and (2) at the same time minimizing the number

of queries needed, n.

We next formalize in what sense a learner’s strategy can be

private. Generally speaking, a learner strategy is private if we

can ensure that the adversary’s estimator X̃ is not accurate.

Importantly, different definitions of the adversary’s accuracy

will lead to drastically different definitions of privacy, and

consequently, distinct algorithms, guarantees and domains of

applications. In this paper, we will analyze two privacy met-

rics, Bayesian and maximin, that parallel the two paradigms

in the statistics literature. The Bayesian formulation extends

the Bayesian private learning model in [5], while the maximin

formulation is new.

C. Maximin

The truth f∗ is a deterministic but unknown function in F .

We say that a learner strategy φ is (δ, L)-private if

sup
�X

inf
f∗∈F

P

{∣∣∣X̃ − X∗
∣∣∣ ≤ δ/2

}
≤ 1/L, (4)

where the probability is measured with respect to the inter-

nal randomness employed by the learner’s querying strategy

and that used in the adversary’s estimator. In other words,

the learner strategy is considered private if the adversary’s

minimax accuracy is low.

D. Bayesian

The truth f∗ is drawn from a prior distribution π, a proba-

bility distribution over F . We say that a learner strategy φ is

(δ, L)-private if

sup
�X

P

{∣∣∣X̃ − X∗
∣∣∣ ≤ δ/2

}
≤ 1/L, (5)

where the probability is measured with respect to all random-

ness in the system, including the prior π and any internal

randomness employed by the learner’s querying strategy and

the adversary’s estimator. We note that our Bayesian notion of

privacy bears some similarity with the reconstruction privacy

proposed in [11, Definition 2.3]. One notable difference is that

the probability in (5) is conditional on the query sequence q
and thus the reconstruction privacy is more stringent, requiring

the adeversary to fail for every possible realization of query

sequence q. Moreover, despite the similarity in definitions, the

reconstruction privacy is adopted to protect the data owner’s

privacy as opposed to the learner’s privacy.

E. Private Query Complexity

Finally, we have come to the main metric of interest. In both

the maximin and the Bayesian formulations, we define the

optimal query complexity, N(�, δ, L), as the least number

of queries necessary for there to exist an �-accurate learner

strategy that is also (δ, L)-private:

N(�, δ, L) =min{n : ∃φ with at most n queries,

that is �-accurate and (δ, L)-private}.
The Bayesian and maximin formulations translate to lower

bounds on the adversary’s Bayes risk and minimax risk respec-

tively. To break the maximin privacy, the adversary needs to

perform well in the worst case. Thus the maximin privacy

criteria is a lot harder on the adversary and easier on the

learner. Hence, the optimal query complexity is significantly

lower under the minimax formulation than the Bayesian one,

as our results will show next.

The Bayesian formulation is more intuitive and we include

the maximin formulation primarily for completeness to pro-

vide results for both estimation frameworks. The maximin

formulation is much more stringent on the adversary. One

possible interpretation is that the adversary is very risk-

averse. A potential application is autonomous driving [38],

where the goal is to protect the privacy of a flagship man-

ufacturer (learner) from model stealing attacks of competing
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companies (eavesdropping adversary). The risk-averse nature

of autonomous driving algorithms forces the adversary to

ensure that the stolen model performs reliably under all cir-

cumstances, or, minimax-accurate in the traditional statistical

sense. Without a worst-case guarantee, the adversary cannot

act upon the stolen model. Thus a maximin-private learner’s

strategy renders the adversary powerless.

III. MAIN RESULTS

A. Maximin Formulation

We will assume that the function class F satisfies the

following assumption:

Assumption 1 (Complexity of F ): Fix f ∈ F and interval

I ⊂ [0, 1] that contains the minimizer of f . Then, for every

x ∈ I , there exists g ∈ F such that g is minimized at x, and

the gradient of f and g coincide outside of I .

Assumption 1 is needed to rule out trivial cases where a

learner may exactly pinpoint the location of the minimizer

solely by looking at far-away gradients. We show in Section V

that this richness assumption on F is in some sense necessary.

Examples of function classes that satisfy Assumption 1 include

the set of all convex functions on [0, 1], the set of all convex

functions in C1([0, 1]), and the set of all piecewise-linear

convex functions on [0, 1]. The next theorem is our main result

for the maximin formulation:

Theorem 1 (Maximin Query Complexity): Assume that F
satisfies Assumption 1. If 2� ≤ δ ≤ 1/L, then1

N(�, δ, L) ≤
{

2L + log δ
ε if L ≥ log 1

δ

L + log 1
ε o.w.

.

Furthermore, if all functions in F are differentiable on [0, 1],
then

N(�, δ, L) ≥ 2L + log
δ

�
− 2.

Note that if there were no privacy consideration, the max-

imin optimal query complexity would be log(1/�). Thus under

the maximin formulation, a higher level of privacy L leads to

an additive overhead in the optimal query complexity, that is

at most about 2L.

Remark 1: In the proof of Theorem 1, we only use con-

vexity of the functions to ensure that the sign of the gradient

is consistent with the direction of X∗. Therefore assuming F
satisfies Assumption 1, the results of Theorem 1 hold true for

more general classes of unimodal (but not necessarily convex)

functions, i.e. for all f∗ ∈ F , (f∗)0(x) < 0 for x < X∗ and

(f∗)0(x) > 0 for x > X∗.

Remark 2 (Multidimensional Extensions): By considering

a separable class of functions, and using the `∞ norm to

measure the error of the learner and the adversary’s estimators,

Theorem 1 can be extended to d dimensions. The upper and

lower bounds of the query complexity take the same form,

with L replaced with L1/d. See the supplementary material

for the precise statement and proof.

1Here and subsequently log refers to logarithm with base 2.

Fig. 2. The left figure exemplifies realizations of F following the Dirichlet
Process with base function λ[0,1] and different concentration parameters α.
The right figure shows the corresponding convex functions f∗, with γ+ =
0.5 and γ− = −0.5.

B. Bayesian Formulation

In the Bayesian formulation, we seek a function class and

prior distribution that are sufficiently rich to capture real-world

data, while at the same time amenable to analysis. A good

candidate in this respect is the so-called Dirichlet process,

a family of measures over non-decreasing functions, which

we will use to model the gradient function of f∗. Dirichlet

processes are fundamental objects in nonparametric Bayes

theory and widely used in Bayesian isotonic regression for

modeling monotone functions [14], [15], [39]. We begin by

defining a Dirichlet process:

Definition 1 (Dirichlet Process): Given a base probability

measure µ0 on X and a concentration parameter α > 0,

a random probability measure µ over X is said to follow

the Dirichlet process DP(µ0, α), if for any finite partition of

X = ∪i≤nXi,

(µ(X1), . . . , µ(Xn)) ∼ Dir((αµ0(X1), . . . , αµ0(Xn))),

where Dir(c) denotes the Dirichlet distribution over the n-

dimensional simplex ∆n−1 with density

gDir(c)(x1, . . . , xn) ∝
n∏

i=1

xci−1
i , x ∈ ∆n−1. (6)

We now construct the prior distribution of f∗ using a Dirichlet

process. The prior is parameterized by two quantities:

1) a concentration parameter α > 0, which controls the

dispersion of the distribution of the minimizer;

2) a probability distribution η on R+, which captures the

range of gradients of f∗. We assume that η({0}) = 0 to

ensure uniqueness of the minimizer X∗.

Definition 2 (Bayesian Prior using Dirichlet Process): Fix

α and η. Denote by λ[0,1] the Lebesgue measure restricted

to [0, 1]. Then, the prior π corresponds to the following

procedure for generating f∗:2

1) Sample γ+ from η. Set γ− = −γ+.

2) Sample µ from the Dirichlet process with concentration

parameter α and base distribution λ[0,1]. Let F be the

cumulative distribution function of µ.

3) Set f∗(x) = γ−x +
∫ x

0
(γ+ − γ−)F (t)dt, for x ∈ [0, 1].

2Note that in this definition we have restricted the function f∗ to have zero
intercept. This restriction is without loss of generality, since any constant
offset will not change the location of a minimizer and similarly our results
will carry through if one wishes to incorporate a different intercept.
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Note that (f∗(x))
0

= γ+ (2F (x) − 1) and thus the mini-

mizer X∗ of f∗ corresponds to the median of F , or more pre-

cisely the smallest x for which F (x) ≥ 1/2. By construction,

F is a monotone simple function that consists of countably

many points of discontinuity that are dense on [0, 1]. Its level

of discreteness is modeled through the concentration parameter

α. For a small α, the increase of F from 0 to 1 is mostly from

a few abrupt jumps, and the convex function f∗ resembles

a piece-wise linear function with finitely many pieces; as

α grows, the increase of F becomes more gradual, and f∗

starts to concentrate around a smooth quadratic function. See

Figure 2 for some realizations of the distribution function F
and the corresponding convex function f∗ for different value

of α.3

The following theorem is our main result for the Bayesian

formulation.

Theorem 2 (Bayesian Query Complexity): Fix α > 0. Sup-

pose that 2� ≤ δ < 1
2LHα

, with Hα = (3 + 2e−1)α + 14.

Then

c1L log
δ

�
≤ N(�, δ, L) ≤ L log

δ

�
+ c2L + log

1

δL
,

where c1,c2 are positive constants that only depend on α such

that c1 → 1 as α → 0.

The above theorem shows that, in the Bayesian formulation,

the query complexity overhead due to privacy constraints

scales multiplicatively with respect to the privacy level L.

Note that this is substantially higher than the maximin setting

where such overhead is only additive in L. When α → 0, F
converges to a step function and our query complexity bounds

recover the existing ones in the binary search problem [6],

showing that N(�, δ, L) ∼ L log 1
ε as � → 0 for fixed δ, L.

IV. DISCUSSION

In this section, we discuss some of the most salient features

of our main results and modeling assumptions.

A. Applying the Bayesian and Maximin Privacy Criteria

Our results show that the two privacy criteria lead to

distinct query complexity scalings, so it would be instructive

to understand in what application domain each metric is most

applicable. The Bayesian formulation is more straightforward:

both the adversary and the learner are assumed to have access

to the historical data that forms the prior distribution, and all

probabilities in various guarantees are measured with respect

to such shared common knowledge. The emphasis of this

paper is on the Bayesian formulation: it requires more novel

analysis techniques, and we expect the Bayesian formulation

to be most relevant in data-driven machine learning and

online optimization such as in Federated Learning and pricing

optimization; the aforementioned dose-response analysis is

also a natural application of the Bayesian formulation due

to the close connection between potency curves and convex

functions.

3To plot the convex functions together, we shift them by some constants on
the y-axis. This shift is irrelevant to the optimization task since the response
only contains gradient information.

The maximin formulation is a new metric proposed in this

paper, and we discuss here some nuances with this definition.

Note that minimax guarantees in traditional statistical learning

are typically the strongest, since they hold over any adversary

choice of problem parameter. However, in our setting, the

maximin formulation provides arguably the weakest privacy

guarantee due to the negation inherent in its definition: a

learner strategy is maximin-private as long as there does not

exist a minimax-accurate adversary estimator. For instance,

even if an adversary is able to accurately predict X∗ under the

majority of functions in F , failing only over a small subset,

the learner can still proclaim its strategy to be private under

the maximin formulation.

We tend to believe that the maximin formulation is more

applicable when the adversary is very risk-averse. One interest-

ing example is in law and criminal justice. Here, a prosecutor

should have to prove that the accuracy of any conclusion

drawn from evidence holds up regardless of the value of a

certain hidden parameter. Indeed, many legal systems currently

require that criminal convictions be reached only if the evi-

dence can prove guilt “beyond reasonable doubt” (cf. [40],

[41], [42]). Any supposed prior on crucial, unobserved para-

meters can be ill-defined and potentially discriminatory. Other

potential applications include the aforementioned autonomous

driving [38] application, where the performance guarantee of

an estimator needs to be valid in the worst case, for the sake

of public safety. In these examples, a maximin-private learner

strategy will effectively prevent the adversary from coming up

with any viable estimator, thus render the adversary powerless.

B. Comparisons With Private Sequential Learning

As mentioned in the Introduction, our convex optimization

framework generalizes the Private Sequential Learning (PSL)

model. As such, the two settings share similarities (as one

would expect), as well as some marked differences. Recall

that in the PSL framework, the responses are binary and only

indicate whether the minimizer is to the left or right of a

given query; this is equivalent, in our setting, to returning

only the sign of the gradient. The maximin and Bayesian

formulations proposed in this paper parallel the deterministic

and Bayesian formulations in PSL, respectively. Our maximin

formulation is new, but it does have a fundamental connection

to the deterministic formulation of PSL, where a learner

strategy is considered private if its queries are guaranteed to

generate a large set of “plausible” targets (information set),

with a large covering number4; we explore this formally in

Section V-B. Our Bayesian formulation is a natural general-

ization of the Bayesian PSL model: we now assign a prior over

the entire function, as opposed to only the location of the mini-

mizer. Notably, our Bayesian formulation recovers the original

Bayesian PSL problem in the limit where the concentration

parameter α in the Dirichlet prior approaches 0. As such,

our Bayesian formulation includes the original Bayesian PSL

model as a special case.

4The δ-covering number of a set A ⊂ R is the size of the smallest set N ,
such that ∪r∈N [r − δ/2, r + δ/2] ⊇ A.
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Our main results recover similar dependencies on the level

of privacy, with overheads that are additive and multiplicative

in L in the maximin and Bayesian formulations, respectively.

The upshot in our setting is that the results are established in

a substantially more general setting of convex optimization.

There are several major differences that distinguish our

private convex optimization framework from the PSL model.

First and foremost, the learner now has access to the entire

gradient instead of only its sign. A most direct implication

of this enriched information structure is that, when analyzing

the amount of information leakage of a learner strategy,

we will have to keep track of the distributions over target

functions, as opposed to only the minimizers, as was the

case in PSL. Moreover, when the learner has access to full

gradients, it is in principle possible for the learner to gather

information about the minimizer’s precise location even from

queries that are submitted far away from the minimizer,

which was not possible within bisection search. For instance,

if the underlying target function is known to be quadratic,

then two queries placed anywhere are sufficient to uncover

the minimizer. To address these complexities, our goal is

to precisely measure the amount of information about the

minimizer that the learner and adversary may obtain from a

given sequence of queries. We will do so both by developing

more sophisticated information theoretic arguments, and by

exploiting structural properties of the Dirichlet process.

C. Open Questions

Our results leave open a number of questions. For the

Bayesian query complexity in one dimension, there remains

a gap between the leading constants in the upper and lower

bounds, in the regime where α is bounded away from zero.

Generalizing the main theorems to a multi-dimensional set-

ting, where x ∈ R
d, d ≥ 2, is also interesting and prac-

tically relevant. We take a first step in this direction by

extending our results to multi-dimensional separable functions

(see supplementary material), while the general case with

non-separable objective functions remains open and appears to

be challenging. Our problem formulation only considers first-

order feedback. An interesting direction is to consider convex

optimization with more general types of feedback, e.g., bandit

feedback [43].

D. A Different Notion of Privacy in [44]

A recent work [44] also aims to extend the private sequential

learning model of [5] to convex optimization. They use a

different notion of privacy criteria that bear some superficial

similarities to ours. However, the definition of privacy in [44]

contains crucial errors that render it vacuous, in the sense

that there cannot exist any private learner strategy satisfying

that definition. To be precise, here is Definition 2 of [44]: fix

�, δ ∈ (0, 1). A learner strategy is said to be (�, δ)-private if

for any adversary estimator X̃ and any truth f ∈ F ,

P(err(X̃, f) ≤ �) ≤ δ, (7)

where err(·, ·) is a certain error function which measures

the discrepancy between the adversary estimator and the true

minimizer. For instance, in our example err(X̃, f) = |X̃ −
argmin f(x)|.

The problem with this privacy definition is that it can

never be satisfied by any learner strategy. Indeed, consider

an adversary that simply sets X̃ = x∗ for some fixed x∗

without even taking into account the queries. Under this

trivial estimator, we automatically have P(err(X̃, f) = 0) =
1 for any f ∈ F that is minimized at x∗. So (7) cannot

possibly hold uniformly across all adversary estimators and

all f .

This faulty formulation should lead to an infinite optimal

query complexity, suggesting that the upper bound proof

contains error. Upon a closer look, we find that in the upper

bound analysis, the authors make the following assumption:

“Without loss of generality, assume the adversary is endowed

with an uniform prior knowledge on where X∗ is and assume

the maximum uncertainty for X∗” [44, p19]. This assump-

tion specifies the behavior of the adversary, and is therefore

inconsistent with the minimax formulation which requires the

adversary to fail for any adversary’s estimator.

V. PROOF OF MAIN RESULTS

We present in this section the proofs of our main results.

We begin by giving an overview of the key steps.

A. Overview of Main Ideas

1) Maximin Setting: Since the response contains the full

gradient information, the key challenge in the analysis is to

track the amount of information available to the learner. Note

that aside from the directional information 1{X∗ ≥ qi}, the

response for a query qi contains additional information on

(f∗)0(qi). The key message in the proof under the maximin

setting, is that under the Assumption 1 on the richness of the

family of functions, only the directional information is relevant

to the learning task. Therefore, it suffices to only track the

learner’s knowledge with the directional information from the

responses.

Starting with the upper bound, we design a querying strat-

egy that is �-accurate, (δ, L)-private, and submits at most

max{2L + log(δ/�), L + log(1/�)} queries. In particular, our

querying strategy only utilizes the directional information

of the gradient responses. Firstly, note that since the gra-

dient responses contain the binary directional information,

the learner can always check whether an interval contains

X∗ by querying the two endpoints: X∗ ∈ [a, b] if and

only if (f∗)0(a) ≤ 0 and (f∗)0(b) ≥ 0. All intervals refer

to closed intervals unless otherwise specified. We refer to

a pair of queries at q and q + � as a guess. The key

privacy-ensuring mechanism is to check L guesses that are

δ apart from each other. By doing so, the learner manually

plants L possible locations for X∗ that an adversary cannot

rule out without observing the responses, thus achieving

(δ, L)-privacy.

To prove the lower bound, we need to show that a querying

strategy that only utilizes the directional information can be

optimal. Firstly, let us give a heuristic argument of why only

the gradient information is relevant to learning X∗ under
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Assumption 1. Given (f∗)0(a) < 0 and (f∗)0(b) > 0,

under Assumption 1, X∗ can be anywhere between a and

b regardless of the value of the gradients (f∗)0(a), (f∗)0(b).
We should point out that the richness assumption is necessary.

For example suppose F is the family of convex polynomial

functions with fixed degree d. Then the learner can solve for

the X∗ by submitting d distinct queries at arbitrary locations,

making both learning and obfuscation trivial.

The lower bound proof contains two main ingredients.

(a) Step 1: Rigorously justify the claim that under Assump-

tion 1, the learner does not benefit from the additional

gradient information aside from the one-bit directional

response. In particular, we show that the learner cannot

search faster than the bisection method on any interval

I ⊂ [0, 1]. Therefore, for each interval of length δ, it takes

at least log(δ/�) queries in I to achieve �-accuracy, in the

worst case.

(b) Step 2: Relate the adversary’s statistical performance to

the size of the information set [5] of a query sequence q,

defined as

I(q) = {x ∈ [0, 1] : ∃f ∈ F and y,

s.t. x = arg min f, and q(f, y) = q},

where q(f, y) refers to the realization of the query

sequence when f∗ = f, Y = y. The information set

contains all possible values of X∗ that could lead to the

query sequence q. We show that to ensure the adversary

achieves δ-accuracy with probability at most 1/L, there

must be some q for which the δ-covering number of I(q)
is at least L. Note that from the �-accuracy requirement,

each member of I(q) is sandwiched between a pair of

queries in q that are at most �-apart. Therefore, q contains

at least L such pairs of queries, contributing a total of 2L
queries.

After performing these two steps, some challenges remain.

The functions associated with q (in step 2) may not coincide

with the worst-case instances that arise from step 1. Therefore,

the remaining task is to combine the two lower bounds

log(δ/�) and 2L. For this step, we show the existence of

some interval I , such that for some f minimized in I , the

learner must pay not only the log(δ/�) queries for accuracy,

but also the 2L queries for privacy. The high-level idea behind

the proof is to divide q into two sub-sequences qbefore, qafter,

before and after the 2L queries (in step 2) are submitted. The

key observation is that qbefore is shared by a large class of

functions whose minimizers lie in some δ-length interval I .

For all these functions, the cost of 2L queries would have

been committed in qbefore. For at least one of them, an extra

cost of log(δ/�) queries must be paid in qafter.

2) Bayesian Setting: Similar to the maximin setting, the

upper bound here is also established by analyzing a con-

structive algorithm. The key challenge in designing a private

learning algorithm in the Bayesian setting arises from the fact

that the prior distribution on X∗ is always non-uniform under

the Dirichlet process model. In particular, we can no longer

simply apply the replicated search strategy from [7], since the

non-uniform distribution of X∗ provides the adversary with

additional prior information.

To address this difficulty, our key algorithmic idea is to

find L intervals that occupy the same prior mass, while at

the same time are at least δ-separated from each other. One

of these intervals contains the true value X∗. On each of the

other L− 1 intervals, we sample a proxy for X∗ according to

the conditional distribution of X∗ restricted to the interval. Via

a genie-aided reduction argument, we show that the adversary

cannot perform better than a random guess among the L
candidates: the truth and the L−1 proxies. By construction of

the intervals, the L candidates are at least δ apart. Therefore

the adversary cannot achieve an additive error of δ/2 with

probability higher than 1/L.

For the lower bound, the challenge again lies in tracking

and quantifying the amount of information the learner gains

from the responses. Compared to the binary search model,

the full gradient responses can potentially reveal too much

information to the learner. To tackle this challenge, our key

proof strategy is to find a event on which the learner cannot

gather information on X∗ too rapidly. The proof follows the

following main steps.

(a) Step 1: quantify the learner’s information. We adopt the

notion of “learner’s intervals”, I0, I1, . . .. Here, I0 = [0, 1]
and Ii is the smallest interval that the learner knows to

contain X∗ after the first i queries.

(b) Step 2: analyze the conditional distribution of X∗ over

the learner’s interval. This is the key step of the proof.

We want to find a “good” event on which the learner does

not possess too much information on the location of X∗.

In this step, we construct an event B, such that

X∗ | B ∼ Unif[Ii ∩ J ], (8)

where J is an arbitrary subinterval of [0, 1]. Here, B
is an event that encodes all the information available

to the learner up to time i, the assumption that X∗ ∈
J , and some other desirable feature of the unknown

convex function f∗. The construction of B crucially

utilizes the stick-breaking characterization of the Dirich-

let Process, and the proof of (8) heavily relies on the

self-similarity property of the Dirichlet Process. We dis-

cuss the self-similarity property in detail in Section A.

It helps control the amount of information about the shape

of f∗ inside the learner’s interval, given all the queries and

responses outside.

(c) Step 3: control the speed at which the learner’s interval

shrinks. Divide [0, 1] into 2/δ subintervals J1, . . . , J2/δ of

length δ/2, and let J∗ denote the subinterval that contains

X∗. In this step, from (8), by integrating over instances of

B, and letting J range over the 2/δ subintervals, we show

that for some suitably-defined event A,

E

(
log

|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A
)

≥− P {qi+1 ∈ Ii ∩ J∗ | A}
≥ − P {qi+1 ∈ J∗ | A} . (9)
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(d) Step 4: from (9), via a simple telescoping sum and an

application of Jensen’s inequality, we can deduce that

E (number of queries in J∗ | A)

≥ log
δ

2
− log P (|In ∩ J∗| | A) ≥ log

δ

�
,

where the second inequality follows from the �-accuracy

requirement. By considering an adversary who adopts

the proportional-sampling strategy [6], we have for any

querying strategy that is (δ, L)-private,

n =total number of queries

≥LE [total number of queries in J∗]

≥P (A) · L log
δ

�
.

B. Proof Under the Maximin Setting

Proof of the Upper Bound in Theorem 1: Define a guess at

q as a pair of queries placed at q and q + �. The guess allows

the learner to test whether X∗ is contained in the �-length

interval [q, q + �]. To ensure privacy, we create L potential

locations for X∗ that are at least δ-separated but induce

the same querying sequence. That is achieved by submitting

L guesses that are δ-separated. Once guessed correctly, the

learner’s accuracy requirement is automatically fulfilled and

the remaining queries can be used to conceal X∗ from the

adversary. We consider the cases δ ≤ 2−L and δ > 2−L

separately. The querying strategy is contained in Algorithm 1.

We first prove the upper bound in the case δ ≤ 2−L. In the

first stage, the learner submits L guesses, each consisting of

two queries. In the second stage, the learner runs a bisection

on an interval of length 2−L up to accuracy �. In total, 2L +
log(2−L/�) = L+log(1/�) queries are submitted. The strategy

is clearly �-accurate. To see that it is also (δ, L)-private, note

that all f∗ whose minimizer lies in one of the L intervals

[1/2, 1/2+ �], [3/4, 3/4+ �], …, [1− 2−L, 1− 2−L + �] share

exactly the same query sequence. Under Assumption 1, for

each i there exists at least one function fi minimized at some

xi ∈ [1−2−i, 1−2−i+�]. When δ ≤ 2−L, the xi’s are at least

δ apart from each other. Therefore no adversary can achieve

inff∈{f1,...,fL} P{|X̃ − X∗| ≤ δ/2} > 1/L.

When δ > 2−L, the learner again submits L guesses in the

first stage, totaling up to 2L queries. In the second stage, the

length of I is at most 2δ. Thus bisection on I takes at most

log(δ/�) + 1 queries. Note that the first guess at 0 always

contains a trivial query at 0. Removing the trivial query

yields a total query complexity of log(δ/�) + 2L. To prove

(δ, L)-privacy, note that for if f∗ is minimized in one of

the L intervals [0, �], [1 − 2−i, 1 − 2−i + �] for i ≤ K ,

or [1 − 2−K + i`K , 1 − 2−K + i`K + �] for i ≤ L − K − 1,

then they induce the same query sequence. This completes the

proof of the upper bound. �

We now turn to the lower bound. As a first step, we prove

that if F satisfies Assumption 1, then the learner cannot search

faster than the bisection method on any interval I ⊂ [0, 1]. The

lemma below contains a formal statement of this claim. Note

Algorithm 1 Querying Strategy Under the Maximin Setting

1: Let I = [0, 1].
2: if δ ≤ 2−L then

3: Submit the first guess at 1/2.

4: Recursively submit the remaining L − 1 guesses via

bisection: if none of the submitted guesses is correct,

update I = [a, b] according the gradient (f∗)0(q) at the

previous guess q. If (f∗)0(q) ≤ 0, then X∗ ≥ q, so we

let the updated I be [q, b]; otherwise update I to be [a, q].
Submit the next guess at the midpoint of the updated I .

5: Once a guess is found to be correct, always (do this also

for all the remaining guesses) update I to be the right

half of I , and submit the next guess at the midpoint of

the updated I .

6: else

7: Submit the first guess at 0.

8: Let K be an integer solution in {0, 1, . . . , L − 1} such

that `K := 2−K/(L − K) ∈ [δ, 2δ]. When δ > 2−L,

a solution always exists.

9: Submit the next K guesses via bisection. Update I
accordingly. As in the δ ≤ 2−L case, once any guess

is found to be correct, always update I to its right half.

10: Divide I into L−K equal length subintervals. Submit the

next L−K−1 guesses at the endpoints of the subintervals

(excluding the 2 endpoints of I).

11: if none of the guesses is correct then

12: Run bisection search on I until reaching �-accuracy.

13: else

14: If the total number of queries is below n = max{2L +
log(δ/�), L+log(1/�)}, fill the remaining query sequence

with trivial queries at 1.

that by taking I = [0, 1], Lemma 1 immediately implies a

lower bound of log(1/�) on the optimal query complexity.

Lemma 1: Suppose F satisfies Assumption 1. Let φ be

an �-accurate querying strategy. Then for each f ∈ F , each

interval I ⊂ [0, 1] that contains the minimizer of f , and each

realization of the random seed y, there exists f̃ ∈ F , such that

(1) under φ, the query sequence q(f̃ , y) contains at least

log(|I|/�) queries in I;

(2) the gradient of f̃ and f coincide outside of I .
Next, we prove the lower bound in Theorem 1 assuming

correctness of Lemma 1. The proof of Lemma 1 is deferred

to the end of this subsection.

Proof of the Lower Bound in Theorem 1: A key step in

this proof is to connect definition of (δ, L)-privacy with the

covering numbers of the information sets. We claim that for a

strategy to be (δ, L)-private in the maximin sense, there must

be one information set with a large covering number.

Let φ be a querying strategy that is both �-accurate and

(δ, L)-private. Define the information set of a query sequence

q as

I(q) = {x ∈ [0, 1] : ∃f ∈ F and y,

s.t. x = arg min f, and q(f, y) = q}.
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Denote the δ/2-covering number of I(q) as Nc(I(q), δ/2).
Fix the adversary’s strategy to be one that samples uniformly

from a δ-covering set of I(q). Since φ is (δ, L)-private, there

must exist some f minimized at x, for which

1/L >P

{∣∣∣X̃ − x
∣∣∣ ≤ δ/2

}

=E

[
P

{∣∣∣X̃ − x
∣∣∣ ≤ δ/2

∣∣∣ q
}]

,

where the first integration is over q and the second is over

the randomness from the adversary’s estimation scheme con-

ditional on q. Since x is in I(q), it must be δ/2-close to at

least one of the points in the covering set. Therefore for all q,

P

{∣∣∣X̃ − x
∣∣∣ ≤ δ/2

∣∣∣ q
}
≥ 1

Nc(I(q), δ/2)
.

Taking expected value over q on both sides, we have

E(1/Nc(I(q), δ/2)) < 1/L. Hence there must exist some

query sequence q̄ for which Nc(I(q̄), δ/2) > L. As a result,

I(q̄) contains L points x1, . . . , xL that are at least δ/2-apart.

By definition of the information set, there exist f1, . . . , fL ∈
F and y1, . . . , yL ∈ [0, 1], such that fi is minimized at xi, and

q(fi, yi) = q̄ for all i. Notice that for each i, q̄ must contain a

pair of queries at most �-apart that sandwiches xi. Otherwise

suppose the closest pair of queries in q̄ that contains xi forms

an interval I of size larger than �. Under Assumption 1, for

each x ∈ I , there exists f ∈ F for which f is minimized at

x and q(f, yi) is also q̄. By taking x to be arbitrarily close

to the endpoints of I , the �-accuracy requirement is violated

since no estimator X̂ can ensure |X̂ − x| ≤ �/2 for all x ∈ I .

Therefore, the length of I is at most �. Combined with the fact

that x1, . . . , xL are δ-separated, and the assumption δ ≥ 2�,

we have shown that q̄ contains L pairs of distinct queries.

Thus the optimal query complexity is lower bounded by 2L.

To improve the lower bound to the desired 2L + log(δ/�),
we would like to argue that aside from the L pairs queries

in q̄, the learner must submit enough queries elsewhere to

search for X∗ in order to fulfill the accuracy requirement.

Indeed, the worst-case query complexity is lower bounded

by log(1/�) for any strategy that is �-accurate. However, the

worst-case instance may not be one of f1, . . . , fL. To combine

the 2L queries used to ensure privacy with the queries used to

ensure accuracy therefore becomes the main challenge of the

lower bound proof. To address this difficulty, we will again

utilize Assumption 1 on the richness of F . On a high level,

Assumption 1 allows us to find a large class of functions

in F which can also lead to the query sequence q̄. Out of

these functions, we show that for at least one of them it takes

log(δ/�) extra queries to search for its minimizer. Next we

give the rigorous proof of the existence of such a function.

Firstly, note that q̄ contains L pairs of �-close queries that

sandwich x1, . . . , xL. Since δ ≥ �, we have that for all i, q̄
contains at least one query in [xi − δ/2], and one query in

[xi + δ/2]. Once at least one query has appeared in each of

[xi − δ/2, xi] and [xi, xi + δ/2], we say xi is “δ/2-localized”.

Let xj be the last one to be δ/2-localized out of x1, . . . , xL,

and suppose it is δ/2-localized at time T . Without loss of

generality, assume a query in [xj − δ/2, xj ] appears first,

so that q̄T ∈ [xj , xj + δ/2]. Let I = [a, b] with a defined

Fig. 3. An illustration of the lower bound argument with L = 3. The
ticks represent all queries in q̄. The L pairs of ε-close queries that sandwich
x1, . . . , xL are colored red. Suppose x2 is the last one out of x1, . . . , xL to
be δ/2-localized, and the query in [x2 − δ/2, x2] appears before the one in
[x2, x2 + δ/2], then I is defined as the shaded interval. Note that until all of
x1, . . . , xL are δ/2-localized, no query is submitted in I .

as the query in q̄1, . . . , q̄T to the left of xj that is the closest

to xj , and b = xj + δ/2. See Figure 3 for an illustration.

Apply Lemma 1 with I = [a, b], f = fj and y = yj .

We can find some f̃ ∈ F that satisfies the two criteria in the

statement of Lemma 1. Criterion (2) ensures that the gradient

of f̃ and fj coincide outside of I . Since all functions in F
are assumed to be differentiable, any query outside of I leads

to identical responses for the two functions f̃ and fj . Since

xj is δ/2-localized at time T , q̄1, . . . , q̄T−1 do not contain

any queries between a and b. Thus q(f̃ , yj) and q(fj, yj) = q̄
agree completely up to time T − 1, and contain at least the

2L−1 queries outside of I used to sandwich x1, . . . , xL. The

reason we need to subtract 1 is because the T ’th queries in q̄
is in I .

By criterion (1) in the statement of Lemma 1, q(f̃ , yj)
contains at least log(|I|/�) ≥ log(δ/(2�)) queries in I .

Combined with the 2L − 1 queries outside of I , we arrive

at the desired lower bound 2L + log(δ/�) − 2. �

Proof of Lemma 1: The lemma is proved by constructing

an f̃ that satisfies both criteria. Our construction scheme is

inspired by that of Nemirovski’s (See Lemma 1.1.1 in lecture

notes by Nemirovski [45]). With the querying strategy φ fixed,

we will construct a sequence of functions (g1, . . . , gK) in F
adapted to the queries and the responses and set f̃ = gK . The

value of K will be specified later. The construction ensures

that for each i ≥ 0, there is an interval ∆i ⊂ I with |∆i| ≥
|I|/2i, such that

1) gi is minimized at the midpoint of ∆i;

2) in the query sequence q(gi, y), the first i queries in I are

outside of ∆i.

By Assumption 1, there exists a function in F whose

gradient of f agrees with that of f outside of I , and is

minimized at the midpoint of I . Let this function be g0 and

let ∆0 = I .

Inductively construct the rest of {gi}. Given g0, . . . , gi,

by the induction hypothesis in q(gi, y), the first i queries in I
are all outside of ∆i = [ai, bi]. Let q be the (i + 1)’th query

of q(gi, y) in I . If q is not in ∆i, then we can simply let

gi+1 = gi and ∆i+1 = ∆i to complete the (i + 1)’th step

of the induction. If q ∈ ∆i, depending on whether q lands

to the left or right of the midpoint of ∆i, let ∆i+1 be either

[q, bi] or [ai, q], so that |∆i+1| ≥ |∆i|/2. Let gi+1 ∈ F be a

function whose gradient agrees with gi outside of ∆i, and is

minimized at the midpoint of ∆i+1. By Assumption 1 such

a gi+1 always exists.

The construction can be carried out until for some inte-

ger K , we cannot find the (K + 1)’th query of q(gK , y) in I .
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Fig. 4. Example of phases 2 to 4 of the querying strategy under the Bayesian
setting with L = 3. In phase 2, the learner queries the 1/3 and 2/3 quantile
of νI (represented by the dashed lines), and learns that X∗ ∈ I2. In phase 3,
she queries the medians m1, . . . mL, and learns that X∗ is to the left of m2.
Therefore J1, . . . , JL are defined to be the shaded intervals. In phase 4,
X1 and X3 are sampled from νJ1

and νJ3
respectively and X2 is defined

to be X∗. Note that the separation of X1, . . . , XL are guaranteed by the
separation of J1, . . . , JL.

That is, q(gK , y) contains only K queries in I . By construc-

tion, q(gK , y) does not contain any queries in ∆K . Therefore

under Assumption 1, the learner cannot rule out any member of

∆K being X∗. For the strategy to be �-accurate, we must have

|∆K | < �; hence K > log(|I|/�). Taking f̃ = gK finishes the

proof of the lemma. �

C. Proof Under the Bayesian Setting

Proof of the Upper Bound in Theorem 2: Let ν denote the

distribution of X∗. For an interval I ⊂ [0, 1], write νI for the

probability distribution of ν conditioned on I , i.e., dνI

dν (x) =
1{x ∈ I}/ν(I). We design the following multi-phase querying

strategy to attain the desired upper bound.

Algorithm 2 Querying Strategy Under the Bayesian Setting

1: Recursively query the median of the posterior distribution

of X∗, until it is supported on an interval I with ν(I) ∈
[2δLHα, 4δLHα].

2: Let κj be the j/L quantile of νI for j = 0, 1, . . . , L and

let Ij = [κj−1, κj ] for j ∈ [L]. Query κ1, . . . , κL−1 and

identify j∗ for f 0(κj∗−1) ≤ 0 and f 0(κj∗) > 0 so that Ij∗

contains X∗.

3: Query the median mj of νIj for j ∈ [L]. If f 0(mj∗) > 0,

let Jj = [κj−1, mj] for all j; otherwise let Jj = [mj , κj ].
4: For all j 6= j∗, sample Xj ∼ νJj independently. Denote

Xj∗ = X∗. For j = 1, . . . , L, run the regular bisection

search on Jj to locate Xj up to �-accuracy.

Phase 1 runs the median-based bisection search, which is

equivalent to the regular bisection search on U = Fν(X∗) ∼
Unif[0, 1], where Fν is the CDF of ν. Note that this step

is always possible under the assumption 2δLHα ≤ 1.

Phase 2 divides I into L subintervals I1, . . . , IL with equal ν-

probability and determines Ij∗ containing X∗. Phase 3 is the

key to ensure adequate separation between the subintervals

{Jj}j∈[L]. Phase 4 serves to achieve the �-accuracy while

obfuscating the adversary. See Figure 4 for an illustration of

phases 2 to 4.

The querying strategy outlined in Algorithm 2 is clearly

�-accurate by design. We now show that it is also (δ, L)-
private. The high-level proof idea is to consider an adversary

who has access to X1, . . . , XL. Using a genie-aided argument,

we argue that this adversary is stronger than the one who only

has access to the query sequence. We then establish that the

conditional distribution of X∗ given X1, . . . , XL is uniform on

the Xj’s. Moreover, phase 3 of the querying strategy ensures

that the Xj’s are all δ-separated. Therefore even with the

additional knowledge of X1, . . . , XL, the adversary cannot

estimate X∗ accurately with probability higher than 1/L.

Proof of Privacy: Since the adversary only has access to

the query sequence q, any adversary’s estimator X̃ must be a

(random) function of q, that is X̃ ≡ X̃(q). Meanwhile by the

design of our querying strategy, q can be completely recon-

structed from X1, . . . , XL. To see that, note that I, {Ij}, {Jj}
and all the queries in phase 4 are deterministic functions

of X1, . . . , XL. Therefore there is a mapping ψ̃ such that

X̃(q) = ψ̃(X1, . . . , XL). Thus,

P

{∣∣∣X̃ − X∗
∣∣∣ ≤ δ

2

}
(10)

=E

[
P

{∣∣∣X̃(q) − X∗
∣∣∣ ≤ δ

2

∣∣∣ q

}]

≤E

[
sup
�ψ

P

{∣∣∣ψ̃(X1, . . . , XL) − X∗
∣∣∣ ≤ δ

2

∣∣∣ X1, . . . , XL

}]

≤E

[
sup

x̃∈[0,1]

P

{
|x̃ − X∗| ≤ δ

2

∣∣∣ X1, . . . , XL

}]
. (11)

We claim that

(i) X∗ | X1, . . . , XL ∼ Unif{X1, . . . , XL}.

(ii) With probability 1, |Xi − Xj | > δ for all i 6= j.

Assuming the two claims hold,

sup
x̃∈[0,1]

P

{
|x̃ − X∗| ≤ δ

2

∣∣∣ X1, . . . , XL

}

= sup
x̃∈[0,1]

1

L

∑

j≤L

1

{
|x̃ − Xj | ≤

δ

2

}
≤ 1

L
,

where the equality is from (i) and the inequality is from (ii).

Continuing (11), we have P{|X̃ − X∗| ≤ δ/2} ≤ 1/L.

Thus our strategy is (δ, L)-private. It remains to prove

claims (i), (ii).

Proof of (i): Recall that the index of the subinterval con-

taining X∗ is j∗. Since ν(Ij) are equal for all j, j∗ is

distributed uniformly in {1, . . . , L}. Therefore the desired

claim X∗ | X1, . . . , XL ∼ Unif{X1, . . . , XL} is equivalent

to j∗ and (X1, . . . , XL) being independent.

To show j∗ |= (X1, . . . , XL), first note that

j∗ |= (J1, . . . , JL), because conditional on j∗, either

Jj = [κj−1, mj ] for all j or Jj = [mj , κj ] for all j,

with equal probability. Second, for any fixed j0, conditional

on j∗ = j0 and (J1, . . . , JL), the Xj’s are independent

and Xj is distributed νJj . Thus j∗ |= (X1, . . . , XL) given

J1, . . . , JL. Combined with j∗ |= (J1, . . . , JL), we arrive at

the conclusion j∗ |= (X1, . . . , XL).
Proof of (ii): It suffices to show that the intervals J1, . . . , JL

are δ-separated, or equivalently, |Ij\Jj| ≥ δ for all j ≤ L.

Since phase 2 of the querying strategies queries all the medians

of I1, . . . , IL, we have ν(Ij\Jj) = ν(Ij)/2 = ν(I)/(2L) ≥
δHα. Let m = dν/dλ be the density of ν. Then

|Ij\Jj | ≥
ν (Ij\Jj)

supt m(t)
≥ δHα

supt m(t)
. (12)

To finish the proof of this claim, we only need to bound the

density of ν from above. Recall that ν is the distribution of
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X∗, which is the median of F . Thus the distribution function

of ν has the form

ν([0, t]) = P {X∗ ≤ t} = P {F (t) ≥ 1/2} .

Since F ∼ DP(α, λ[0,1]), we have (F (t), 1 − F (t)) ∼
Dir(αt, α(1 − t)). Therefore F (t) ∼ Beta(αt, α(1 − t)).
We will use the following Lemma 2 to bound the density

of ν. The proof of Lemma 2 is deferred to the end of this

subsection.

Lemma 2: Suppose X ∼ Beta(αt, α(1 − t)) for some

α > 0, then for all t ∈ (0, 1),

hα ≤ d

dt
P {X ≥ 1/2} ≤ Hα,

where hα = 1
32−α−2 and Hα = (3 + 2e−1)α + 14.

By Lemma 2,

m(t) =
d

dt
P {F (t) ≥ 1/2} ≤ Hα, (13)

for all t ∈ [0, 1]. Combining (12) and (13) yields that

|Ij\Jj | ≥
δHα

Hα
≥ δ.

We have shown that νj1 , …νjL are continuous distributions

supported on L intervals that are δ-separated from each other.

Therefore |Xi − Xj | > δ for all i 6= j with probability 1.

Query Complexity: The number of queries submitted in

phase 1 is at most log(1/(2δLHα)). Phase 2 and phase 3

involve L − 1 and L queries respectively. The number of

queries submitted in phase 4 equals

∑

j≤L

⌈
log

|Jj |
�

⌉

≤L +
∑

j≤L

log
|Jj |
�

=L + log

⎛
⎝
∏

j≤L

|Jj |

⎞
⎠+ L log

1

�
,

To bound the above, note that from Lemma 2 we have

∑

j≤L

|Jj | ≤
ν(∪j≤LJj)

hα
≤ 2δLHα

hα
.

Therefore
∏

j≤L |Jj | ≤ (2δHα/hα)L. Thus the total number

of queries submitted by the learner is at most

log
1

2δLHα
+ (L − 1) + L + L

(
log

δ

�
+ log

4Hα

hα

)

=L

(
log

δ

�
+ log

16Hα

hα

)
+ log

1

δL
+ log

1

4Hα

≤L

(
log

δ

�
+ c2

)
+ log

1

δL

for c2 = log(16Hα/hα). The inequality is from Hα > 14 for

all α > 0. �

Proof of the Lower Bound in Theorem 2: Let φ be a

querying strategy that is both �-accurate and (δ, L)-private.

By definition of (δ, L)-privacy, we must have for any adver-

sary’s estimator X̃ ,

1

L
≥ P

{
X̃ ∈ [X∗ − δ/2, X∗ + δ/2]

}
.

For the purpose of the lower bound, we can assume without

loss of generality that the learner always submits a fixed n
number of queries under strategy φ. If the lengths of the

query sequences q(f∗, Y ) depend on f∗ and Y , the learner

can always fill the short sequences with n− |q(f∗, Y )| trivial

queries at 0 without hurting the accuracy or the privacy of

learning.

Next we complete the lower bound proof following the

outline given in Section V-A.

Step 1: Quantify the learner’s information using learner’s

intervals. Recall that the i’th learner’s interval Ii denotes the

smallest interval that the learner knows to contain X∗.

Step 2: Analyze the conditional distribution of X∗ over

the learner’s interval. To find a “good” event B on which

the conditional distribution is uniform, we heavily rely on

the stick-breaking characterization of the Dirichlet Process.

Namely, the event B is associated with the length of the longest

stick in the stick-breaking process. For completeness, we shall

include a brief description of the stick-breaking process here.

Given base distribution µ0 and scaling parameter α > 0,

draw {Xk}∞k=1 i.i.d. from µ0, and independently draw

{Vk}∞k=1 i.i.d. from Beta(1, α). From a stick of unit length,

break off the first stick of length V1; break off V2 fraction of

the remaining stick and repeat. In other words, denote by βk

the length of the k’th stick. We have

βk = Vk ·
∏

j≤k−1

(1 − Vk)

and
∑∞

k=1 βk = 1. Let µ =
∑

k≥1 βkδXk
be the discrete

distribution supported on {Xk}∞k=1, where δXk
denotes the

point mass distribution at Xk. Then the distribution µ which

corresponds to a cumulative distribution function of F follows

the Dirichlet process DP(µ0, α).
Here is a heuristic argument on how the stick-breaking

process helps us prove the uniformity of the conditional

distribution of X∗. Under our prior construction, X∗ is at

the median of F ∼ DP(λ[0,1], α), where we recall that λ[0,1]

is the Lebesgue measure on [0, 1]. Therefore, X∗ occurs

at one of the stick-breaking locations Xk. Even though the

Xk’s are distributed i.i.d. uniformly in [0, 1], X∗ itself does

not follow the uniform distribution since the index i that

corresponds to X∗ is random. The key observation is that

the conditional distribution of X∗ is uniform conditional on

the event A where the length of the longest stick is at least

1/2. To prove uniformity, we first show that on the event A,

the median X∗ must occur at the Xk that corresponds to the

longest stick. Moreover, by independence of the stick lengths

{βk}k≥1 and the locations {Xk}k≥1, the distribution of the

location corresponding to the longest stick is uniform in [0, 1].
Furthermore, the posterior distribution of X∗ remains uniform

as queries are sequentially submitted. The following Lemma 3

contains the precise statement on uniformity.

Some notation is necessary before stating Lemma 3. Firstly,

denote by β(1), β(2), . . . the order statistics of the lengths of
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Fig. 5. An illustration of the quantities in (14). Conditional on X∗ ∈ J
and the responses to the first i queries, the range of X∗ is narrowed down to
Ii ∩J = [q−, q+]. Further conditioning on F (q−) = ρ− and F (q+) = ρ+,
we show that F restricted to [q−, q+] also follows a Dirichlet process after
appropriate scaling.

the sticks in the stick-breaking process corresponding to F .

Let

A =
{
β(1) ≥ 1/2

}
= ∪z≥1/2Az ,

where Az = {β(1) = z}. Let J ⊂ [0, 1] be an arbitrary

fixed interval. Write [q−, q+] = Ii ∩ J . Let the event B =
B(z, J, y, i, ρ(i), ρ−, ρ+) encode the random instances of F ,

Y and the first i responses, defined as

B = {Az , X∗ ∈ J, Y = y, r(i) = ρ(i),

F (q−) = ρ−, F (q+) = ρ+}. (14)

See Figure 5 for an example of F and the quantities in (14).

Lemma 3: For all z ≥ 1/2, J, y, i, ρ(i), ρ− < 1/2, ρ+ >
1/2, we have for B defined in (14),

L (X∗ | B) = Unif[q−, q+],

where L(·) denotes the (conditional) distribution.

The proof of Lemma 3 is deferred to the end of this sub-

section. It utilizes the self-similarity property of the Dirichlet

process. See Section A in the appendix for a description and

proof of the self-similarity property. In short, it ensures that

the values of F inside of [q−, q+] conditional on information

outside of [q−, q+] also follows a scaled Dirichlet process.

Thus the learner cannot gain too much information about the

location of X∗ in [q−, q+].
Step 3: Control the speed at which the learner’s interval

shrinks. Heuristically, since the conditional distribution of X∗

stays uniform over the learner’s interval in view of Lemma 3,

the learner cannot search faster than the bisection method, and

the learner’s interval cannot shrink faster than 1/2 each time

a query is submitted.

Recall that [0, 1] is divided into 2/δ subintervals

J1, . . . , J2/δ of length δ/2, and J∗ denotes the subinterval

that contains X∗. In this step, by integrating over instances

of B, and letting J range over the 2/δ subintervals, we prove

the following lemma.

Lemma 4: For all i, we have that

E

(
log

|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A
)

≥ −P {qi+1 ∈ J∗ | A} . (15)

The proof of Lemma 4 is deferred to the end of this subsection.

Step 4: In this step, we apply Lemma 4 to obtain the desired

lower bound on the optimal query complexity. By writing

log |In ∩ J∗| as a telescoping sum, we have that

E (log |In ∩ J∗| | A)

= log |I0 ∩ J∗| +
n−1∑

i=0

E

(
log

|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A
)

= log
δ

2
+

n−1∑

i=0

E

(
log

|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A
)

≥ log
δ

2
− E (number of queries in J∗ | A) .

Therefore, on the one hand, by Jensen’s inequality,

log E(|In ∩ J∗| | A)

≥E (log |In ∩ J∗| | A)

≥ log
δ

2
− E (number of queries in J∗ | A) . (16)

On the other hand, from the accuracy requirement, we must

have |In| ≤ � with probability 1. Therefore

E

(
|In ∩ J∗|

∣∣∣ A
)
≤ E

(
|In|

∣∣∣ A
)
≤ �/2. (17)

Combining (16), (17) yields

E (number of queries in J∗ | A) ≥ log
δ

�
. (18)

Consider an adversary who adopts the proportional-

sampling strategy [6]. That is, suppose the adversary’s esti-

mator X̃ is sampled from the empirical distribution of the

queries. For this particular X̃ ,

P

{
X̃ ∈ [X∗ − δ/2, X∗ + δ/2]

}

=
E(number of queries in [X∗ − δ/2, X∗ + δ/2])

n
,

which gives a lower bound on the total number of queries:

n ≥ LE(number of queries in [X∗ − δ/2, X∗ + δ/2]). (19)

Since J∗ ⊂ [X∗−δ/2, X∗+δ/2], it follows from (19) and (18)

that

N(�, δ, L) ≥LE(number of queries in J∗)

≥P (A) L log
δ

�
. (20)

We have thus arrived at the desired query complexity lower

bound with

c1 = P(A) = P
{
β(1) > 1/2

}
≥ P {β1 > 1/2} ,

where β1 ∼ Beta(1, α) is the length of the first stick fom the

stick-breaking characterization of the Dirichlet process. That

completes the proof of the Bayesian lower bound. �
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Proof of Lemma 3: Since the gradient of the convex

function f∗ is defined with (f∗)0 = γ− + (γ − γ−)F , the

minimizer of f∗ is at the median of F , i.e.,

X∗ = inf

{
x : F (x) ≥ −γ−

γ+ − γ−
=

1

2

}
.

Under our prior construction, the distribution of F follows a

Dirichlet process with the uniform base distribution on [0, 1]
and scale parameter α. Therefore with probability 1, F is a

distribution function with countably many points of discon-

tinuity, which we will refer to as jumps. If we characterize

F with the stick breaking process, then the locations of the

jumps are at X1, X2, . . . where the Xk’s are independently

and uniformly distributed on [0, 1]. The sizes of the jumps

β1, β2, . . . correspond to the lengths of the sticks from the

stick-breaking process. We have
∑

βk = 1, and the two

sequences {Xk}k≥1 and {βk}k≥1 are independent.

To proceed, we first show that if the size of the largest jumps

is larger than 1/2, then X∗ must occur at the largest jump.

That is,

A ⊂ ∪k≥1

{
X∗ = Xk, β(1) = βk

}
. (21)

To see why, recall that X∗ is the median of F . Thus

F (X∗) ≥ 1/2 and supx<X∗ F (x) ≤ 1/2. Suppose β(1) = βk.

We consider two cases:

1) if X∗ < Xk, then F (Xk) ≥ F (X∗) + β(1) > 1;

2) if, on the other hand, X∗ > Xk, then F (Xk) ≤
supx<X∗ F (x) − β(1) ≤ 1/2 − β(1) < 0.

In neither case can F be a distribution function. Therefore we

must have X∗ = Xk is the location of the largest jump.

For z ≥ 1/2, conditional on Az and X∗ ∈ [q−, q+],
we know that X∗ is at the largest jump in [q−, q+]. More-

over, since the learner would not have submitted any queries

between q− and q+ at time i, the events conditioned on do

not contain any information on the location of the largest

jump. Therefore the conditional distribution of X∗ is uni-

form. To prove the claim rigorously, we need to invoke the

self-similarity property of the Dirichlet process.

Recall that F follows a Dirichlet Process is supported on

[0, 1] with base distribution λ[0,1]. The self-similarity property

asserts that for any finite partition 0 = x0 ≤ x1 ≤ . . . ≤
xn−1 ≤ xn = 1 of [0, 1], conditional on the realization of F
on x1, . . . , xn, the restriction of F onto each subinterval is

also a Dirichlet process scaled. In particular, for each j ≤ n,

we have

L
(

[F ][xj,xj+1] − tj

tj+1 − tj

∣∣∣ F (x1) = t1, . . . , F (xn−1) = tn−1

)

= DP
(
λ[xj ,xj+1], αλ ([xj , xj+1])

)
,

where [F ]I denotes the function F restricted to interval I ,

λI denotes the uniform probability measure on I , and λ(I)
denotes the Lebesgue measure of I . This property follows from

the definition of the Dirichlet process. See Section A in the

appendix for a proof.

Importantly, the following is a direct consequence of the

self-similarity property. For each interval [a, b] ⊂ [0, 1],
conditional on the value of F (a) and F (b), the distribution

of F restricted to [a, b] is independent of the realization of F

outside of [a, b]. As a result, for each interval I ⊂ [0, 1], given

X∗ ∈ I , the learner cannot gain any additional information

on X∗ without querying in I . This property ensures that

the posterior distribution of X∗ conditional on A and the

responses is uniform between the two closest queries that

sandwich X∗. Therefore, the learner cannot beat the bisection

search on the event A.

By definition of the learner’s interval Ii, none of the first

i queries q1, . . . , qi can be in Ii ∩ J = [q−, q+]. Since X∗

is determined by the values of F inside [q−, q+], by the self-

similarity property of the Dirichlet process, X∗ is independent

of the responses to the first i queries conditioning on the values

of F (q−) and F (q+). Therefore the event {r(i) = ρ(i)} can be

dropped from B without changing the conditional distribution

of X∗. The indicator 1{X∗ ∈ J} is completely determined by

whether ρ− and ρ+ are above or below 1/2; and the outside

randomness Y is independent of F . Therefore we can drop

both events {X∗ ∈ J} and {Y = y}, and obtain

L (X∗ | B) = L (X∗ | Az, F (q−) = ρ−, F (q+) = ρ+) .

By the self-similarity property of the Dirichlet process,

given F (q−) = ρ− and F (q+) = ρ+,the conditional

distribution of (F − ρ−)/(ρ+ − ρ−) restricted to [q−, q+]
is also a Dirichlet process with the uniform base distribu-

tion on [q−, q+] and scaling parameter α0 = α(q+ − q−).
In other words, there exist ancillary random vectors {X 0

k}k≥1,

{β0
k}k≥1 generated from a stick-breaking process that charac-

terize the distribution function

F̃ = (F − ρ−)/(ρ+ − ρ−)

on [q−, q+]. In addition, X 0
k

i.i.d.∼ Unif[q−, q+], and

({X 0
k}k≥1, {β0

k}k≥1) is independent of (F (q−), F (q+)).
We claim that for all z ≥ 1/2, the event Az = {β(1) = z}

is equivalent to {β0
(1) = z/(ρ+ − ρ−)}. Suppose Az holds,

and say β(1) = βj . Then by (21), X∗ = Xj . Thus [q−, q+]

contains the largest jump in F . Since F̃ is a scaled version

of F restricted to [q−, q+], the largest jump of F̃ must be of

size z/(ρ+ − ρ−). Conversely, if β0
(1) = z/(ρ+ − ρ−), then

F contains a jump of size z. When z ≥ 1/2, this must be the

largest jump in F , i.e. β(1) = z.

Note that conditional on Az for z ≥ 1/2, X∗ can be written

as the location of the largest jump in F̃ . We have shown

that X∗ and Az can both be expressed as functions that only

depend on {X 0
k, β0

k}. As a result,

L(X∗ | Az, F (q−) = ρ−, F (q+) = ρ+)

=L
(

location of the largest jump in F̃

∣∣∣∣

β0
(1) =

z

ρ+ − ρ−
, F (q−) = ρ−, F (q+) = ρ+

)

(a)
=L

(
location of the largest jump in F̃

∣∣∣∣

β0
(1) =

z

ρ+ − ρ−

)

(b)
=L

(
location of the largest jump in F̃

)

(c)
=L(X 0

1) = Unif[q−, q+],
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where (a) is from the independence between

({X 0
k}k≥1, {β0

k}k≥1) and (F (q−), F (q+)); (b) holds

because by the stick-breaking characterization of the Dirichlet

process, the locations of the jumps {βk}k≥1 and the sizes of

the jumps {Xk}k≥1 are independent. More specifically, let

j be the index of the largest jump, i.e., β0
(1) = β0

j . Then j

is only a function of {βk}k≥1 and is therefore independent

of {X 0
k}k≥1. We have X 0

j is independent of {β0
k}k≥1, thus

we can drop the conditional event which only depends

on {β0
k}k≥1; (c) is again from the independence of j and

{β0
k}k≤1. Since {X 0

k}k≥1 are distributed i.i.d. Unif q−, q+,

we have L(X 0
j) = L(X 0

1) = Unif[q−, q+]. �

Proof of Lemma 4: From Lemma 3, we have L(X∗ | B) =
Unif[Ii ∩ J ]. We first claim that as a consequence,

E

(
log

|Ii+1 ∩ J |
|Ii ∩ J |

∣∣∣B
)

≥− 1

{
qi+1 = φi(ρ

(i), y) ∈ Ii ∩ J
}

. (22)

The inequality (22) can be interpreted as follows. Firstly, the

interval Ii∩J∗ is only shortened when querying within Ii∩J∗.

Secondly, conditional on all instances of the behavior of F
outside of Ii ∩J∗, on average, no query can reduce the length

of Ii ∩ J∗ by more than a half.

By taking the union of the events B over all the variables

z > 1/2, y ∈ [0, 1], ρ− < 1/2, ρ+ > 1/2, ρ(i), and J
ranging over J1, . . . , J2/δ, we arrive at the event A. Therefore,

integrating (22) over these variables yields that

E

(
log

|Ii+1 ∩ J∗|
|Ii ∩ J∗|

∣∣∣A
)

≥− P {qi+1 ∈ Ii ∩ J∗ | A}
≥ − P {qi+1 ∈ J∗ | A} .

It remains to verify (22). If qi+1 /∈ Ii ∩ J , then Ii+1 ∩ J =
Ii ∩ J and the claim (22) trivially holds. If qi+1 ∈ Ii ∩ J ,

we have

log
|Ii+1 ∩ J |
|Ii ∩ J |

=1{X∗ ≤ qi+1} log
qi+1 − q−
q+ − q−

+

1{X∗ > qi+1} log
q+ − qi+1

q+ − q−
.

Since the conditional distribution of X∗ is uniform, we have

E

(
log

|Ii+1 ∩ J |
|Ii ∩ J |

∣∣∣B
)

≥ inf
t∈[0,1]

[t log t + (1 − t) log(1 − t)] = −1.

We have finished the proof of (22) and, by consequence,

Lemma 4. �

VI. EXTENSION TO MULTIDIMENSIONS

In this section we extend our results under the maximin

setting to optimization of convex separable functions in R
d.

Separable convex optimization arises in a variety applications

such as inventory control in operation research, resource

allocation in networking, and distributed optimization in multi-

agent networks [46], [47], [48], when the global objection

function is a sum of the local objective functions and each

local objective function depends only on one component of

the decision variable. Here, separability ensures that there is

no cross-coordinate information leakage. Further generalizing

our result to allow for general (non-separable) functions in R
d

is left as future work.

Suppose the true function f∗ : [0, 1]d → R belongs to a

family of convex separable functions

F =

{
f : f(x) =

d∑

i=1

fi(xi), fi ∈ Fi

}
,

where each Fi is a family of one-dimensional convex func-

tions. For each query qj ∈ [0, 1]d submitted, the learner

receives the gradient vector ∇f(qj) = (f 0
1(qj,1), . . . , f

0
d(qj,d))

as the response. We say a querying strategy is �-accurate if

inf
f∗∈F

P

{∥∥∥X̂ − X∗
∥∥∥
∞

≤ �/2
}

= 1,

We say φ is (δ, L)-private if

sup
�X

inf
f∗∈F

P

{∥∥∥X̃ − X∗
∥∥∥
∞

≤ δ/2
}
≤ 1/L.

In other words, we declare privacy breach if the adver-

sary’s estimator is within a δ/2-neighborhood around the

true minimizer with probability higher than 1/L. As in the

one-dimensional case, we need to impose some assump-

tion on the complexity of the function class F . Since F
contains only separable functions, we can simply impose

the one-dimensional assumption onto each of the d one-

dimensional function classes F1, . . . ,Fd. Below is the exten-

sion of our one-dimensional result to d dimensions.

Theorem 3: Let Nd(�, δ, L) denote the optimal query com-

plexity in dimension d under the maximin setting. Suppose

Fi all satisfy Assumption 1 for all i = 1, . . . , d. If 2� ≤ δ ≤
L−1/d, then

2L1/d + log
δ

�
− 2

≤Nd(�, δ, L)

≤
{

2L1/d + log δ
ε if L1/d ≥ log 1

δ

L1/d + log 1
ε o.w.

.

Remark 3: We choose to quantify the error of the learner

and the adversary with respect to the k · k∞ norm because

kx − yk∞ ≤ �/2 is equivalent to |xi − yi| ≤ �/2 for

all i ≤ d, so the analysis can be elegantly reduced to the

one-dimensional case. However our result does not crucially

depend on the choice of the norm. From the basic inequality

kxk∞ ≤ kxk2 ≤
√

dkxk∞, we have that the optimal query

complexity can differ by at most a d-dependent additive

constant if the Euclidian norm were used instead.

Proof of the Upper Bound: Under the maximin privacy

framework, to make a strategy private, we only need to find

L functions f (1), .., f (L) ∈ F whose minimizers are δ-apart,

such that the query sequence for f (1), . . . , f (L) are identical.

That would ensure that the adversary who only observes
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the query sequence cannot succeed with probability higher

than 1/L.

To construct such L functions, we design a querying strategy

that submits L1/d guesses δ-apart along each dimension.

To recap, in Section V-A we defined a guess at x to be a pair of

�-apart queries (x, x+�). The guesses across the d dimensions

intersect with each other in [0, 1]d to create (L1/d)d = L
cubes of diameter � that potentially contain the minimizer of

the true function f∗. The guesses are submitted following the

same algorithm as in the one-dimensional case (see the upper

bound proof of Theorem 1), except with L replaced by L1/d.

Note that since each query is a d-dimensional vector and

the function f∗ is separable, we can run the search algorithms

along the d directions in parallel. More concretely, write

f∗(x) =
∑

i≤d f∗
i (xi), and let q = (q1, q2, . . . , qn) be the

query sequence where qj = (qj,1, . . . , qj,d) ∈ [0, 1]d. Each

time the learner submits a query qj , she receives the gradient

vector

∇f∗(qj) = ((f∗
1 )0(qj,1), . . . , (f

∗
d )0(qj,d)) .

For each dimension i, the learner leverages the gradient

information (f∗
i )0(qj,i) and constructs the next query qj+1,i

in dimension i, as if she were learning the minimizer of f∗
i in

one-dimension.

In particular, fix any dimension 1 ≤ i ≤ d. The first

2L1/d queries q1,i, . . . , q2L1/d,i consist of L1/d pairs of queries

(guesses) that are δ-apart. When δ ≤ 2−L1/d

, these guesses are

submitted along the bisection search path:

1) The first guess is at 1/2, i.e., q1,i = 1/2 and q2,i =
1/2+ �. The learner’s interval I is initialized to be [0, 1].

2) For each 1 ≤ j ≤ L1/d−1, submit the (j+1)’th guess at

follows: if none of the previous guesses is correct, then

inspect the gradient (f∗
i )0(q2j−1,i) from the j’th guess

to deduce which half of I contains the minimizer X∗
i of

f∗
i . Update the learner’s interval I accordingly so that it

contains X∗
i . Submit the (j +1)’th guess at the midpoint

of the updated I . If one of the first j guesses is correct,

then update I to its right half, and submit the (j + 1)’th
guess at its midpoint.

When δ > 2−L1/d

, only the first K guesses are submitted

along the bisection path, and the remaining L1/d −K guesses

are submitted via a grid search on the interval I generated from

the first K guesses. Here K is the largest integer for which

all the guesses are δ-apart. Under the assumption δ ≤ L−1/d

such a K always exists.

After all the guesses are submitted, if none of the guesses

is correct, the learner runs a simple bisection search on

a max{2−L1/d

, δ}-length interval until reaching �-accuracy;

otherwise the learner simply fills the remaining queries along

this dimension with trivial queries qi,j = 1 for all j ≥ 2L1/d.

The total number of queries is exactly the desired upper bound

2L1/d + log(max{2−L1/d

, δ}/�).
Next we show this querying strategy is (δ, L)-private. Here

we give the proof in the δ ≤ 2−L1/d

case. The proof for the

δ > 2−L1/d

case follows analogously. For each i, it is easy to

see that if

X∗
i ∈ ∪j≤L1/d [1 − 2−j, 1 − 2−j + �]

then the queries along the i’th dimension would always be L

guesses at 1/2, 3/4, . . . , 1− 2L1/d

, followed by trivial queries

at 1. As a result, for all f∗ ∈ F such that

X∗ ∈
∏

i≤d

(
∪j≤L1/d [1 − 2−j , 1 − 2−j + �]

) ∆
= J,

share the same query sequence. Clearly J contains (L1/d)d

members that are separated by at least δ in k · k∞ distance.

Hence the strategy is (δ, L)-private. �

Proof of the Lower Bound: Let φ be a querying strategy

that is �-accurate and (δ, L)-private. Via the same argument in

one-dimension, we can show that there is at least one query

sequence q whose information set I(q) has a δ/2-covering

number at least L. For each i = 1, . . . , d, let

Ii(q) = {xi : x = (x1, . . . , xi, . . . , xd) ∈ I(q)

for some x ∈ [0, 1]d}

be the projection of I(q) to dimension i. Then we have I(q) ⊂∏
i≤d Ii(q), thus

L ≤Nc (I(q), δ/2, k · k∞)

≤Nc

⎛

⎝
∏

i≤d

Ii(q), δ/2, k · k∞

⎞

⎠

=
∏

i≤d

Nc (Ii(q), δ/2, | · |) .

Therefore for at least one i ≤ d, we must have that the δ/2-

covering number of the projection Ii(q) is no less than L1/d.

It follows that Ii(q) contains x
(1)
i , . . . , x

(L1/d)
i that are at least

δ/2-apart. For the strategy to be �-accurate, the queries in q
along this dimension i must contain at least L1/d pairs of

�-apart queries sandwiching x
(1)
i , . . . , x

(L1/d)
i . The rest of the

proof exactly follows the one-dimensional case. �

APPENDIX A

SELF-SIMILARITY PROPERTY OF THE DIRICHLET PROCESS

Proposition 1: Let µ be a random probability measure on X
that follows a Dirichlet Process with base distribution function

µ0 and concentration parameter α. Let X = ∪i≤nBi be an

arbitrary finite partition of X . Then for all i ≤ n, we have

µBi | µ(B1), . . . , µ(Bn) ∼ DP (µ0,Bi , αµ0 (Bi)) ,

where µBi and µ0,Bi denote the conditional probability mea-

sures of µ and µ0 respectively, conditioned on Bi.

Proof: For simplicity we present the proof only for

i = 1. The proof for general i is identical. Let B1 =
∪j≤mAj be an arbitrary finite partition of B1. Then

(A1, . . . , Am, B2, . . . , Bn) is a partition of X . Therefore from

the definition of the Dirichlet Process, we have

(µ (A1) , . . . , µ (Am) , µ (B2) , . . . , µ (Bn))

∼Dir (αµ0 (A1) , . . . , αµ0 (Am) , αµ0 (B2) , . . . , αµ0 (Bn)) .
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From the density function of the Dirichlet distribution, we can

derive that

(µ (A1) , . . . , µ (Am))

1 −∑
i≥2 µ(Bi)

∣∣∣∣ µ (B2) , . . . , µ (Bn)

∼Dir (αµ0 (A1) , . . . , αµ0 (Am)) .

Again by definition of the Dirichlet Process, we have

µB1
| µ (B2) , . . . , µ (Bn)

∼DP
(
[µ0]B1

, α
)

= DP (µ0,B1
, αµ0 (B1)) ,

where [µ0]B1
denotes the measure µ0 restricted to B1, which

is not necessarily a probability measure. �

Consider the special case where X = [0, 1]. As a corollary

of Proposition 1, we have for any finite partition 0 = x0 ≤
x1 ≤ . . . ≤ xn−1 ≤ xn = 1 of [0, 1],

L
(

[F ][xi,xi+1] − ti

ti+1 − ti

∣∣∣ F (x1) = t1, . . . , F (xn−1) = tn−1

)

= DP
(
µ0,[xi,xi+1], αµ0 [xi, xi+1]

)
.

APPENDIX B

PROOF OF LEMMA 2

In this section we prove the technical result Lemma 2 on

the Beta distribution. The statement of Lemma 2 is repeated

below.

Lemma 2: Suppose X ∼ Beta(αt, α(1 − t)) for some

α > 0, then for all t ∈ (0, 1),

hα ≤ d

dt
P {X ≥ 1/2} ≤ Hα,

where hα = 1
32−α−2 and Hα = (3 + 2e−1)α + 14.

Proof: We can assume WOLG that t ∈ (0, 1/2]. That is

because for t > 1/2, 1 − X ∼ Beta(α(1 − t), αt) and

d

dt
P {X ≥ 1/2} =

d

d(1 − t)
P {1 − X ≥ 1/2} .

Let φt(x) = xαt−1(1 − x)α(1−t)−1 be the unnormalized

density of the Beta(αt, α(1−t)) distribution. Since d
dtφt(x) =

α ln x
1−xφt(x), we have

d

dt
P {X ≥ 1/2}

=
d

dt

∫ 1

1/2 φt(x)dx
∫ 1

0 φt(x)dx

=α

[ ∫ 1

1/2

ln
x

1 − x
φt(x)dx

∫ 1

0

φt(x)dx

−
∫ 1

1/2

φt(x)dx

∫ 1

0

ln
x

1 − x
φt(x)dx

]/

(∫ 1

0

φt(x)dx

)2

=α

[
E

(
1{X ≥ 1/2} ln

X

1 − X

)

− P{X ≥ 1/2}E

(
ln

X

1 − X

)]
.

To prove the lemma, we claim that for t ≤ 1/2,

2−α−2t ≤αE

(
1{X ≥ 1/2} ln

X

1 − X

)

≤max{3α, 12}; (23)[
2−α−2

(
1
2 − t

1−t

)]

+

≤− αP{X ≥ 1/2}E

(
ln

X

1 − X

)

≤2e−1α + 2, (24)

where [·]+ = max{·, 0} stands for the positive part.

The upper bound d
dtP{X ≥ 1/2} ≤ Hα follows easily from

adding up the two upper bounds. For the lower bound on the

derivative, the two lower bounds in (23) and (24) yield

d

dt
P {X ≥ 1/2} ≥2−α−2

(
t +

(
1

2
− t

1 − t

)

+

)

≥1

3
2−α−2 = hα,

where the last equality is achieved at t = 1/3.

It remains to prove (23) and (24). Let us start from the

cross-product term (23). Since 1{X ≥ 1/2} ln X
1−X ≥ 0,

by Tonelli’s theorem,

E

(
1{X ≥ 1/2} ln

X

1 − X

)

=

∫ ∞

0

P

{
1{X ≥ 1/2} ln

X

1 − X
> s

}
ds

=

∫ ∞

0

P

{
X ≥ es

1 + es

}
ds.

The density function of X allows us to write

E

(
1{X ≥ 1/2} ln

X

1 − X

)

=

∫∞

0

∫ 1
es

1+es
xαt−1(1 − x)α(1−t)−1dxds

B(αt, α(1 − t))
, (25)

where B(α, β) =
∫ 1

0
sα−1(1 − s)β−1ds is the Beta function.

First we prove the upper bound in (23). For the numerator,

since αt− 1 > −1 and x ≥ es

1+es ≥ 1/2, we have xαt−1 ≤ 2,

and
∫ 1

es

1+es

xαt−1(1 − x)α(1−t)−1dx

≤2

∫ 1

es

1+es

(1 − x)α(1−t)−1dx

=
2(1 + es)−α(1−t)

α(1 − t)
.

Therefore the numerator of (25) is upper bounded by

2

∫ ∞

0

e−α(1−t)s

α(1 − t)
ds =

2

α2(1 − t)2
≤ 8

α2

for all t ≤ 1/2. Moreover,

B(αt, α(1 − t)) =
Γ(αt)Γ(α(1 − t))

Γ(α)
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is minimized at t = 1/2 by the log-convexity of the Gamma

function Γ(z) [49], where Γ(z) =
∫∞

0 sz−1e−sds satisifying

Γ(z + 1) = zΓ(z) for z > 0. Hence it follows from (25) that

for all t ≤ 1/2,

αE

(
1{X ≥ 1/2} ln

X

1 − X

)
≤ 8Γ(α)

αΓ(α/2)2
. (26)

We claim that the right-hand side of (26) is a non-decreasing

function in α on (0,∞). To see that, let g(α) =
8Γ(α)/(αΓ(α/2)2). We have

d

dα
(ln g(α)) =

Γ0(α)

Γ(α)
− 1

α
− Γ0(α/2)

Γ(α/2)

=ψ(α) − ψ(α/2) − 1

α
. (27)

Here ψ(·) = Γ0(·)/Γ(·) is the digamma function with expan-

sion [50, 6.3.16]

ψ(1 + z) = −γ +

∞∑

n=1

z

n + z
,

where γ is the Euler-Mascheroni constant. Applying the

expansion on (27) yields

d

dα
(ln g(α)) =

∞∑

n=1

(
α − 1

n + α − 1
− α/2 − 1

n + α/2 − 1

)
− 1

α

≥ α − 1

1 + α − 1
− α/2 − 1

1 + α/2 − 1
− 1

α
= 0.

We have shown that g is a non-decreasing function on R
+.

It follows from (26) that for all α ≤ 4, αE(1{X ≥
1/2} ln X

1−X ) ≤ g(4) = 12.

Next we show that for all α > 4, the cross-product term

in (23) is upper bounded by 3α. By Markov’s inequality,

P

{
X ≥ es

1 + es

}
=P

{
1 − X ≤ 1

1 + es

}

=P

{
1

1 − X
≥ 1 + es

}

≤ 1

1 + es
E

[
1

1 − X

]
.

Since 1 − X ∼ Beta(α(1 − t), αt), we have

E

[
1

1 − X

]
=

∫ 1

0
xα(1−t)−2(1 − x)αt−1dx

∫ 1

0 xα(1−t)−1(1 − x)αt−1dx
.

For all α ≥ 4 and t ≤ 1/2, α(1 − t) − 1 ≥ 0, hence both

integrals converge, and

E

[
1

1 − X

]
=

B(α(1 − t) − 1, αt)

B(α(1 − t), αt)

=
Γ(α(1 − t) − 1)Γ(αt)/Γ(α − 1)

Γ(α(1 − t))Γ(αt)/Γ(α)

=
α − 1

α(1 − t) − 1
≤ 3

when α ≥ 4. Therefore

αE

(
1{X ≥ 1/2} ln

X

1 − X

)

≤3α

∫ ∞

0

1

1 + es
ds ≤ 3α.

That finishes the proof of the upper bound in (23). Next

we prove the lower bound in (23). Since xαt−1 ≥
min{(1/2)αt−1, 1} for all x ≥ es/(1 + es) ≥ 1/2, we have

that the numerator in (25) is lower bounded by

min
{(

1
2

)αt−1
, 1
}∫ ∞

0

∫ 1

es

1+es

(1 − x)α(1−t)−1dxds

=
min

{(
1
2

)αt−1
, 1
}

α(1 − t)

∫ ∞

0

(
1

1 + es

)α(1−t)

ds

≥
min

{(
1
2

)αt−1
, 1
}(

1
2

)α(1−t)

α(1 − t)

∫ ∞

0

e−sα(1−t)ds

=

(
1
2

)max{α−1,α(1−t)}

α2(1 − t)2
≥ 2−α

α2
. (28)

To handle the denominator in (23), note that (1−x)α(1−t)−1 ≤
2 for all x ≤ 1/2 and xαt−1 ≤ 2 for all x ≥ 1/2. Therefore

the denominator in (23)

B(αt, α(1 − t))

≤2

∫ 1/2

0

xαt−1dx + 2

∫ 1

1/2

(1 − x)α(1−t)−1dx

=2

[
2−αt

αt
+

2−α(1−t)

α(1 − t)

]

≤ 2

αt(1 − t)
. (29)

Combining (25), (28) and (29) yields

αE

(
1{X ≥ 1/2} ln

X

1 − X

)

≥α
2−ααt(1 − t)

2α2
≥ 2−α−2t.

Next let us prove (24). Firstly, write

E

(
ln

X

1 − X

)
=ψ(αt) − ψ(α) − (ψ(α(1 − t)) − ψ(α))

=ψ(αt) − ψ(α(1 − t))

where we recall that ψ(z) = d
dz ln Γ(z) is the digamma

function. Since Γ is log-convex on R
+, ψ is non-decreasing.

Therefore for all t ≤ 1/2, we have

−αP{X ≥ 1/2}E

(
ln

X

1 − X

)
≥ 0.

Furthermore, it has been shown in [51, Eq (2.2)] that for all

z > 0, the digamma function satisfies

1

2z
< ln z − ψ(z) <

1

z
. (30)

Therefore

− E

(
ln

X

1 − X

)

=ψ(α(1 − t)) − ψ(αt)

≥ ln(α(1 − t)) − 1

α(1 − t)
− ln(αt) +

1

2αt
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≥ 1

α

(
1

2t
− 1

1 − t

)
(31)

when t ≤ 1/2.

We still need to bound P{X ≥ 1/2} from below. As in the

proof of (23), we can write

P
{
X ≥ 1

2

}
=

∫ 1

1/2
xαt−1(1 − x)α(1−t)−1dx

B(αt, α(1 − t))
. (32)

Again from xαt−1 ≥ min{(1/2)αt−1, 1} for all x ≥ 1/2,

we have that the numerator of (32) is bounded from below by

max
{(

1
2

)αt−1
, 1
}∫ 1

1/2

(1 − x)α(1−t)−1dx ≥ 2−α

α
.

Combining the last displayed equation with (29) and (32)

yields that

P
{
X ≥ 1

2

}
≥ 2−α

α
× αt(1 − t)

2
≥ 2−α−2t

for all t ≤ 1/2. In view of (31), it follows that

−αP
{
X ≥ 1

2

}
E

(
ln

X

1 − X

)
≥ 2−α−2

(
1

2
− t

1 − t

)
.

That concludes the proof of the lower bound in (24). Next we

move to the upper bound in (24). By Markov’s inequality,

P{X ≥ 1/2} ≤ 2EX = 2t. (33)

Again from (30) we have that for all t ≤ 1/2,

− E

(
ln

X

1 − X

)

=ψ(α(1 − t)) − ψ(αt)

≤ ln(α(1 − t)) − 1

2α(1 − t)
−
(

ln(αt) − 1

αt

)

= ln
1 − t

t
+

2 − 3t

2αt(1 − t)
.

Combining the last displayed equation with (33) yields that

− αP{X ≥ 1/2}E

(
ln

X

1 − X

)

≤2αt

(
ln

1 − t

t
+

2 − 3t

2αt(1 − t)

)

≤(2t ln(1/t))α +
2 − 3t

1 − t
≤ 2e−1α + 2.

We have thus established the inequalities (23) and (24). �
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