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Learner-Private Convex Optimization

Jiaming Xu

Abstract— Convex optimization with feedback is a framework
where a learner relies on iterative queries and feedback to arrive
at the minimizer of a convex function. It has gained considerable
popularity thanks to its scalability in large-scale optimization
and machine learning. The repeated interactions, however, expose
the learner to privacy risks from eavesdropping adversaries that
observe the submitted queries. In this paper, we study how to
optimally obfuscate the learner’s queries in convex optimization
with first-order feedback, so that their learned optimal value is
provably difficult to estimate for an eavesdropping adversary.
We consider two formulations of learner privacy: a Bayesian
formulation in which the convex function is drawn randomly,
and a maximin formulation in which the function is fixed and
the adversary’s probability of error is measured with respect to
a minimax criterion. Suppose that the learner wishes to ensure
the adversary cannot estimate accurately with probability greater
than 1/L for some L > 0. Our main results show that the query
complexity overhead is additive in L in the maximin formulation,
but multiplicative in L in the Bayesian formulation. Compared
to existing learner-private sequential learning models with binary
feedback, our results apply to the significantly richer family of
general convex functions with full-gradient feedback. Our proofs
rely on tools from the theory of Dirichlet processes, as well as a
novel strategy designed for measuring information leakage under
a full-gradient oracle.

Index Terms—First-order convex optimization,
sequential learning, Dirichlet process.

privacy,

I. INTRODUCTION

ONVEX optimization with feedback is a framework

in which a learner repeatedly queries an external data
source in order to identify the minimizer of a convex func-
tion. This interactive nature of the framework, however, is a
double-edged sword. On the one hand, iterative optimization
methods offer inherent scalability since the learner is not
required to access or store the entire function. As such,
it has found applications in large-scale distributed machine
learning systems, such as Federated Learning [1], [2], where
a learner interacts with millions of individual users (data
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providers) in order to perform training. On the other hand, the
repeated interactions with external entities exposes the learner
to potential adversaries who may steal the learned model by
eavesdropping on the queries exchanged during the training
process, a woe especially poignant when the system involves
a large number of data providers, many of which could be
eavesdroppers in disguise ( [3], [4, Section 4.3]).

To formulate the model stealing attacks and quantify the
learner’s privacy, we adopt the framework of Private Sequen-
tial Learning proposed in a recent line of research, aimed at
quantifying the extra query complexities the learner has to suf-
fer in order to ensure the submitted queries provably conceal
the learned value [5], [6], [7]. The model is centered around
a binary search problem where a learner tries to estimate an
unknown value X* € [0, 1] by sequentially submitting queries
and receiving binary responses, indicating the position of X*
relative to the queries. Meanwhile, an adversary observes all
of the learner’s queries but not responses, and tries to use this
information to estimate X*. The learner’s goal is to design
a querying strategy with a minimal number of queries so
that she can accurately estimate X* while ensuring that the
eavesdropping adversary cannot reliably estimate X *. Progress
has been made towards understanding the optimal querying
strategies in this problem, and upper and lower bounds on
the query complexity have been developed that differ by
additive constants in the case where the learner’s queries are
noiseless [5], [7], and are order-wise optimal in the case of
noisy queries [7].

While the original binary search formulation provides valu-
able insights, its assumption that the learner only has access to
binary feedback is a severe restriction when it comes to model-
ing convex optimization. Indeed, most real-world applications
provide the learner access to significantly richer feedback such
as a full gradient (e.g., model training in machine learning).
We elaborate further on the potential applications of our model
in Section I-A.

The main purpose of the present paper is to take a step
towards closing this gap by studying learner-private optimiza-
tion with general convex functions and a full-gradient oracle.
In a nutshell, our results demonstrate that the most prominent
features of the query complexity in the binary search model
extend gracefully to the general convex optimization setting.
However, to establish that this is the case is far from triv-
ial. A major difficulty stems from the significantly enriched
functional class: unlike in a binary search problem where the
ground truth is fully described by a scalar (location of X*),
we will see that the private query complexity crucially depends
on the shapes of the convex functions in a family, and not just
the locations of their minimizers.
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This added richness necessitates the development of both
new problem formulations and analytical techniques. We pro-
pose in this paper two new learner-privacy frameworks: a new
maximin formulation, as well as a Bayesian formulation that
generalizes earlier Bayesian private sequential learning to a
full-gradient oracle. A number of new techniques are devel-
oped to analyze query complexity under these formulations:
we introduce tools from the theory of Dirichlet processes to
construct priors that convey the richness of the model. Tools
from nonparametric Bayes theory are deployed for the analysis
under such prior distributions. In addition to an enriched
functional class, another fundamental challenge lies in the
richness of the feedback. Unlike the binary search model, the
responses align with the location of the query and the shape of
the unobserved convex function to a great extent. In the face of
a more powerful learner equipped with a full-gradient oracle,
we rely on a more sophisticated line of analysis to gauge the
amount of information the responses reveal. We will discuss
in more detail these ramifications in Section IV.

A. Motivating Examples

A learner naturally suffers from privacy breaches if the
learning process involves interactions with third-party users.
1) Federated Learning: Federated Learning (FL) is an
emerging model training paradigm, wherein the parameter
server (viewed as learner) trains a model by communicating
with distributed users while keeping the training data stored
locally at the users. Suppose there are M users and each
user u has access to a local dataset {Z;,j € S,}. The
learner aims to minimize the global empirical risk function
L(9) = 57 221:1 £,,(0) where 6 is the model parameter and
Cu(0) = >, £(Z;,0) is the local empirical risk function
of user u. The learner trains a model through sequential
interactions with the users. For example in the FederatedSGD
algorithm [1], in the ¢’th iteration of training, the learner
broadcasts the current model parameter 6; to users. The user
then computes the local gradient V¢, (6;) at the broadcasted
model parameter 6; and transmits it back to the learner.
By taking an average of the received local gradients, the
learner generates the next iteration of model parameter ;1.
In typical FL systems, when training with thousands of
users, the learner lacks enough administrative power over those
external users. Thus, an adversary can participate in the train-
ing stage by pretending to be an authentic user and eavesdrop
the sequence of broadcasted model iterates. By taking the last
iteration of model parameters, the adversary can easily steal
the trained model. Sophisticated models can be worth millions.
The eavesdropper can use the stolen model to make money or
even leverage them for illicit purposes [3]. Therefore, it is of
paramount importance to protect the learner’s privacy from
the model stealing attacks [4], [8]. For example, when Google
trains the Gboard for next-word prediction in FL systems, it is
critical to prevent adversaries from stealing the Gboard model.
There are several potential techniques to conceal the model
parameters from the users in Federated Learning, such as
restricting each user to run the local computation inside a
Trusted Executation Envrionments (TEE) [9] or encrypting the
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Fig. 1. An abstraction of a Federated Learning system with an eavesdropper.
The end devices represent the entire population of the distributed users.

model parameters under a homomorphic encryption scheme
before broadcasting it to the users [10]. Unfortunately,
as pointed out by the recent survey [4, Section 4.3.3], TEEs
and homomorphic encryption are often costly to implement
and incur large overhead, especially when these users represent
end-devices such as smartphones. This consideration prompts
us to investigate whether we can offer provable privacy guar-
antees on the learner’s model in FL.

Our model can be viewed as an abstraction of the FL system,
as illustrated in Fig. 1. The model iterates {6;} (viewed as
queries) are observed by all users, including the eavesdropping
adversaries. The response g; corresponds to the average of the
local gradients which is equal to the global gradient VL(6;).
It is reasonable to assume that the response is only observed
by the learner but not the adversary. This is because the
size of the adversarial users’ local data is often negligible
compared to the entire population. Thus in order to observe
the response, the adversary would have to access the updates
generated by all users in the system, which is not realistic
for an adversary that only controls up to a small subset of the
users. Since the communication bandwidth is a scarce resource
in many FL applications, determining the minimum number
of iterations needed is of fundamental importance in both
theory and practice, which we will address by investigating
the optimal query complexity.

In our current formulation, we assume that the learner is
trusted by the users and that the users transmit honest, noise-
less responses to the learner. A more realistic representation
of FL would allow for noisy or even adversarial responses.
We leave that for future investigations. We also note that
private FL has been studied in the context of protecting each
individual user’s local data privacy by adding randomization or
noises to local gradient responses and/or model iterates [11],
[12]. In sharp contrast, our work focuses on preventing the
adversary inferring the learned model by carefully designing
the querying strategy with obsfusction.

2) Additional Applications in Medicine and Business:
Given the close connection between convex and monotone
functions, our work can also be applied to learning monotone
functions, for example to clinical dose-response studies [13],
[14]. In dose-response analysis, the potency curve p(z) is a
monotone function that models the treatment effectiveness as
a function of the dosage. An incredily important problem is
to estimate the minimum effective dose (MED)

MED = n;m{x sp(x) > p(0) + A}

for some threshold A. Note that the MED is the min-
imizer X* of some unknown convex function f* (e.g.
ff(x) = fot p(t)dt — [14(0) + Alx). In new drug development,
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a pharmaceutical company (viewed as learner) often estimates
MED of a drug via running adpative clinical trials. In particu-
lar, the recruiting participants will take the drug according to a
given dosage (viewed as query). Based on their responses, the
company then measures the treatment effectiveness and deter-
mines the next dosage to query. The adversary, who may be a
competing company, can pretend to a participant and hearby
eavesdrop the queried dosage. Due to the critical importance
of MED, it is of great interest for the company to design
an adaptive querying scheme to estimate the MED, while
preventing the adversary from gaining information on the
MED. We also remark that the Dirichlet process is widely used
in isotonic regression for modeling monotone functions [14],
[15], as we will do when modeling the gradient of the convex
function under the Bayesian framework.

Another potential application is pricing optimization, where
the goal is to learn the optimal release price of a product by
conducting market experiments at test price points (queries).
See [5], [7] for more detailed discussions on the pricing
optimization example.

B. Related Work

Private information retrieval (PIR) and private function
retrieval (PFR) Our model formulation bears some similar-
ities with the PIR [16], [17], [18] and PFR [19] frame-
work. However, there are major distinctions which result in
completely different dynamics between the learner and the
adversary. In PIR, the database is assumed to contain a vector
(x;)i<n. The learner’s goal is to learn the evaluation z; at
some index ¢ by querying the database, while preventing the
database (adversary) from learning the value of i. The PFR
problem is formulated similarly, except that the database is
indexed by functions. Note that in PIR/PFC, the private index
is assumed to be known to the learner a priori. In contrast,
in our framework, the private information X* is something
the learner herself is in the process of discovering. As a
result, our problem is posed as a sequential learning problem.
It has natural applications in model stealing attack prevention,
where eavesdropping adversaries attempt to steal the model
parameters by participating in the model training process. The
fundamental difference between the two settings also leads to
completely different techniques for analysis. For us, privacy
is ensured by utilizing the adversary’s lack of knowledge on
the responses, which is not the case in PIR/PFC.

Data-owner privacy models Similar to Private Sequential
Learning, the private convex optimization problem we consider
diverges significantly from the existing literature on differen-
tially private (DP) iterative learning [20], [21], [22], [23], [24],
a key difference being that the latter focuses on protecting data
owners’ privacy rather than learner’s privacy. To protect data
owners’ privacy, the notion of differential privacy [25] is often
adopted and privacy is often achieved by injecting calibrated
noise at each iteration of the learning algorithms. In contrast,
our work focuses on preventing the adversary inferring the
learned model, which is conceptually closer to recent studies
of information-theoretically sound obfuscation in sequential
decision-making problems [26], [27], [28], [29], [30]. See [7]

for a comprehensive discussion on the distinction between
data-owner privacy models and this line of work.

More recently, variants of differential privacy, such as local
differential privacy (LDP) [11], [12], [31], have been applied to
a learning context, in ways that are closer to the spirit of mod-
els considered here. However, we should note that in addition
to the aforementioned distinction between a learner- vs. data-
owner-centric focus, the formulation of private sequential
learning also diverges from that of DP and its variants in
other important aspects. The approach here tends to have
a more limited privacy scope, aiming to protect the learner
against a specific inferential goal of the adversary, whereas the
more conservative differential privacy aims to protect against
a much wider range of possible attacks. As a result, more
randomization and obfuscation is generally required under
a DP setup than the one considered here, and possibly at
the cost of more efficiency loss. For instance, Appendix B
of [32] includes an example showing that while a certain
Replicated Bisection search strategy is provably private under
the Private Sequential Learning framework, it is in fact never
differentially private, thus showing that differential privacy is
a strictly more restrictive notion. We also refer the reader to a
discussion on the comparison of scope with DP in [5]. Another
consideration is that, as mentioned in the Introduction, we are
generally concerned with settings where the learner’s actions
can be observed exactly by the adversary, in contrast to typical
applications of DP and LDP where the decision maker has the
extra degree of freedom of adding additional noise to the data
or summary statistic before releasing it for public scrutiny
(cf. [11]). While the learner in our model can also obfuscate
by injecting randomness into their actions, such obfuscation
has more immediate consequences, because it would directly
impact the resulting information the learner collects. The same
consideration also arises in other models of privacy where
the agent’s actions are observable and therefore she can only
obfuscate by “doing” rather than “hiding” [26], [28], [29]; we
refer the reader to [28] for a more elaborate discussion on
this distinction and the references therein.

Strategic learning In aiming to prevent modeling steal-
ing, our work aligns with a growing literature on strategic
learning and prediction [33], [34], [35], [36], [37]. These
papers consider strategic learners who have gained access to
their competitor’s predicted samples, or even the competitor’s
entire predictive model. Then, they artificially adjust their
own predictive model in order to outperform those of their
competitors. In general, in equilibrium such competition could
not only harm utilities for the learners involved, but also lead
to lower overall social welfare, as defined by the prediction
quality experienced by end consumers. Our work thus helps
to preempt such pitfalls by providing a theft-proof framework
for models training and adaptive data collection.

II. THE MODEL: LEARNER-PRIVATE
CONVEX OPTIMIZATION

We now introduce our model, dubbed Learner-Private Con-
vex Optimization. The emphasis on the learner’s privacy
here is to distinguish our model from other forms of private
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sequential learning, especially those that focus on protecting
the privacy of data owners (See preceding discussion in the
Introduction).

A. Learner

Let 7 be a family of R-valued convex functions with
domain [0,1], such that all elements in F admit a unique
minimizer. Suppose there is an unknown truth f* € F with the
minimizer X* := argmin, f*(z). Fix n € N. Our decision
maker is a learner who wants to identify X* by sequentially
submitting a total of n queries in [0, 1] to an oracle. For the
ith query, g;, the oracle returns a response 7; that is equal to
the gradient of f* at ¢;:

ri = (") (q). (D

If f* is not differentiable at ¢;, then r; is an arbitrary
subgradient of f* at g¢;. We assume that the learner is allowed
to introduce outside randomness, in the form of a random
seed Y that takes value in a finite discrete alphabet. Formally,
we denote by ¢ the learner’s strategy, which consists of a
sequence of mappings ¢g, @1, . . . , ®,—1 such that the ith query
is generated as a function of all previous responses and the
random seed:

¢ = ¢i—1(r1,...,m-1,Y). (2)

Once the querying process is terminated, the learner constructs
an estimator of the optimizer X*, X = X(q,7,Y). We say
that the learner strategy ¢ is e-accurate, if

IP{‘)?—X*

< e/z} =1, VfreF, 3)

where X* is the minimizer of f* and the probability averages
over the randomness in the random seed, Y.

B. Adversary

Meanwhile, an adversary is trying to learn X * by eavesdrop-
ping on the learner’s queries: we assume that the adversary
observes all n queries submitted by the learner, but not their
responses. Denote by X = X (g) the adversary’s estimator,
which is a (possibly random) function of (¢;)i=1,... n. Wary of
such an adversary, the high-level objective of the learner are to
(1) generate a query sequence that is largely “uninformative”
towards X *, and (2) at the same time minimizing the number
of queries needed, n.

We next formalize in what sense a learner’s strategy can be
private. Generally speaking, a learner strategy is private if we
can ensure that the adversary’s estimator X is not accurate.
Importantly, different definitions of the adversary’s accuracy
will lead to drastically different definitions of privacy, and
consequently, distinct algorithms, guarantees and domains of
applications. In this paper, we will analyze two privacy met-
rics, Bayesian and maximin, that parallel the two paradigms
in the statistics literature. The Bayesian formulation extends
the Bayesian private learning model in [5], while the maximin
formulation is new.
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C. Maximin

The truth f* is a deterministic but unknown function in F.
We say that a learner strategy ¢ is (9, L)-private if

sup inf P{‘X X+ < 5/2} <1/L, )
X frerx

where the probability is measured with respect to the inter-
nal randomness employed by the learner’s querying strategy
and that used in the adversary’s estimator. In other words,
the learner strategy is considered private if the adversary’s
minimax accuracy is low.

D. Bayesian

The truth f* is drawn from a prior distribution 7, a proba-
bility distribution over F. We say that a learner strategy ¢ is
(6, L)-private if

supp{‘)?—x* §5/2}§1/L, (5)
X

where the probability is measured with respect to all random-
ness in the system, including the prior 7 and any internal
randomness employed by the learner’s querying strategy and
the adversary’s estimator. We note that our Bayesian notion of
privacy bears some similarity with the reconstruction privacy
proposed in [11, Definition 2.3]. One notable difference is that
the probability in (5) is conditional on the query sequence ¢
and thus the reconstruction privacy is more stringent, requiring
the adeversary to fail for every possible realization of query
sequence g. Moreover, despite the similarity in definitions, the
reconstruction privacy is adopted to protect the data owner’s
privacy as opposed to the learner’s privacy.

E. Private Query Complexity

Finally, we have come to the main metric of interest. In both
the maximin and the Bayesian formulations, we define the
optimal query complexity, N(e,d, L), as the least number
of queries necessary for there to exist an e-accurate learner
strategy that is also (¢, L)-private:

N (e, 0, L) =min{n : 3¢ with at most n queries,
that is e-accurate and (, L)-private}.

The Bayesian and maximin formulations translate to lower
bounds on the adversary’s Bayes risk and minimax risk respec-
tively. To break the maximin privacy, the adversary needs to
perform well in the worst case. Thus the maximin privacy
criteria is a lot harder on the adversary and easier on the
learner. Hence, the optimal query complexity is significantly
lower under the minimax formulation than the Bayesian one,
as our results will show next.

The Bayesian formulation is more intuitive and we include
the maximin formulation primarily for completeness to pro-
vide results for both estimation frameworks. The maximin
formulation is much more stringent on the adversary. One
possible interpretation is that the adversary is very risk-
averse. A potential application is autonomous driving [38],
where the goal is to protect the privacy of a flagship man-
ufacturer (learner) from model stealing attacks of competing
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companies (eavesdropping adversary). The risk-averse nature
of autonomous driving algorithms forces the adversary to
ensure that the stolen model performs reliably under all cir-
cumstances, or, minimax-accurate in the traditional statistical
sense. Without a worst-case guarantee, the adversary cannot
act upon the stolen model. Thus a maximin-private learner’s
strategy renders the adversary powerless.

III. MAIN RESULTS

A. Maximin Formulation

We will assume that the function class F satisfies the
following assumption:

Assumption 1 (Complexity of F): Fix f € F and interval
I C [0,1] that contains the minimizer of f. Then, for every
x € I, there exists g € F such that g is minimized at x, and
the gradient of f and g coincide outside of I.

Assumption 1 is needed to rule out trivial cases where a
learner may exactly pinpoint the location of the minimizer
solely by looking at far-away gradients. We show in Section V
that this richness assumption on F is in some sense necessary.
Examples of function classes that satisfy Assumption 1 include
the set of all convex functions on [0, 1], the set of all convex
functions in C'([0,1]), and the set of all piecewise-linear
convex functions on [0, 1]. The next theorem is our main result
for the maximin formulation:

Theorem 1 (Maximin Query Complexity): Assume that F
satisfies Assumption 1. If 2¢ < § < 1/L, then!

2L + 1ogg

if L >log }
L—i—log% '

O0.W.

N(e, 6,L) <

Furthermore, if all functions in F are differentiable on [0, 1],
then

N(e,é,L)22L+logé—2.
€

Note that if there were no privacy consideration, the max-
imin optimal query complexity would be log(1/¢). Thus under
the maximin formulation, a higher level of privacy L leads to
an additive overhead in the optimal query complexity, that is
at most about 2L.

Remark 1: In the proof of Theorem 1, we only use con-
vexity of the functions to ensure that the sign of the gradient
is consistent with the direction of X*. Therefore assuming F
satisfies Assumption 1, the results of Theorem 1 hold true for
more general classes of unimodal (but not necessarily convex)
functions, i.e. for all f* € F, (f*)'(z) < 0 for x < X* and
(f*)(x) >0 for x> X*.

Remark 2 (Multidimensional Extensions): By considering
a separable class of functions, and using the /., norm to
measure the error of the learner and the adversary’s estimators,
Theorem 1 can be extended to d dimensions. The upper and
lower bounds of the query complexity take the same form,
with L replaced with L'/¢. See the supplementary material
for the precise statement and proof.

"Here and subsequently log refers to logarithm with base 2.
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Fig. 2. The left figure exemplifies realizations of ' following the Dirichlet
Process with base function A[g 1) and different concentration parameters c.
The right figure shows the corresponding convex functions f*, with v4 =
0.5 and v— = —0.5.

B. Bayesian Formulation

In the Bayesian formulation, we seek a function class and
prior distribution that are sufficiently rich to capture real-world
data, while at the same time amenable to analysis. A good
candidate in this respect is the so-called Dirichlet process,
a family of measures over non-decreasing functions, which
we will use to model the gradient function of f*. Dirichlet
processes are fundamental objects in nonparametric Bayes
theory and widely used in Bayesian isotonic regression for
modeling monotone functions [14], [15], [39]. We begin by
defining a Dirichlet process:

Definition 1 (Dirichlet Process): Given a base probability
measure /9 on X and a concentration parameter o > 0,
a random probability measure g over X is said to follow
the Dirichlet process DP (110, @), if for any finite partition of
X = Ui<n s,

(WX, ... 1(X0)) ~ Dir((ao(X), ., oo (X)),

where Dir(c) denotes the Dirichlet distribution over the n-
dimensional simplex A"~ with density

n
IDir(e)(T15 -+ Tn) X Hﬂ?fi*% ze A" (6)
i=1

We now construct the prior distribution of f* using a Dirichlet
process. The prior is parameterized by two quantities:

1) a concentration parameter o« > 0, which controls the
dispersion of the distribution of the minimizer;

2) a probability distribution n on R, which captures the
range of gradients of f*. We assume that 7({0}) =0 to
ensure uniqueness of the minimizer X *.

Definition 2 (Bayesian Prior using Dirichlet Process): Fix
« and 7). Denote by A[g 1) the Lebesgue measure restricted
to [0,1]. Then, the prior 7w corresponds to the following
procedure for generating f*:

1) Sample v from 5. Set y_ = —~.

2) Sample i from the Dirichlet process with concentration
parameter « and base distribution Ajg ;). Let F' be the
cumulative distribution function of .

3) Set f*(x) =y-z + [y (v+ — =) F(t)dt, for z € [0,1].

2Note that in this definition we have restricted the function f* to have zero
intercept. This restriction is without loss of generality, since any constant
offset will not change the location of a minimizer and similarly our results
will carry through if one wishes to incorporate a different intercept.
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Note that (f*(z))" = 4 (2F(z) — 1) and thus the mini-
mizer X* of f* corresponds to the median of F', or more pre-
cisely the smallest = for which F'(x) > 1/2. By construction,
F' is a monotone simple function that consists of countably
many points of discontinuity that are dense on [0, 1]. Its level
of discreteness is modeled through the concentration parameter
a. For a small a, the increase of F' from 0 to 1 is mostly from
a few abrupt jumps, and the convex function f* resembles
a piece-wise linear function with finitely many pieces; as
« grows, the increase of F' becomes more gradual, and f*
starts to concentrate around a smooth quadratic function. See
Figure 2 for some realizations of the distribution function F'
and the corresponding convex function f* for different value
of a3

The following theorem is our main result for the Bayesian
formulation.

Theorem 2 (Bayesian Query Complexity): Fix a > 0. Sup-
pose that 2¢ < § < ﬁ, with H, = (3 + 2¢ Yo + 14.
Then

clLlogé < N(¢0,L) < Llogé +02L—|—logi,
€ € oL
where cj,co are positive constants that only depend on « such
that c; — 1 as a — 0.

The above theorem shows that, in the Bayesian formulation,
the query complexity overhead due to privacy constraints
scales multiplicatively with respect to the privacy level L.
Note that this is substantially higher than the maximin setting
where such overhead is only additive in L. When o« — 0, F
converges to a step function and our query complexity bounds
recover the existing ones in the binary search problem [6],
showing that N (e, 8, L) ~ Llog 1 as e — 0 for fixed 6, L.

IV. DISCUSSION

In this section, we discuss some of the most salient features
of our main results and modeling assumptions.

A. Applying the Bayesian and Maximin Privacy Criteria

Our results show that the two privacy criteria lead to
distinct query complexity scalings, so it would be instructive
to understand in what application domain each metric is most
applicable. The Bayesian formulation is more straightforward:
both the adversary and the learner are assumed to have access
to the historical data that forms the prior distribution, and all
probabilities in various guarantees are measured with respect
to such shared common knowledge. The emphasis of this
paper is on the Bayesian formulation: it requires more novel
analysis techniques, and we expect the Bayesian formulation
to be most relevant in data-driven machine learning and
online optimization such as in Federated Learning and pricing
optimization; the aforementioned dose-response analysis is
also a natural application of the Bayesian formulation due
to the close connection between potency curves and convex
functions.

3To plot the convex functions together, we shift them by some constants on
the y-axis. This shift is irrelevant to the optimization task since the response
only contains gradient information.
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The maximin formulation is a new metric proposed in this
paper, and we discuss here some nuances with this definition.
Note that minimax guarantees in traditional statistical learning
are typically the strongest, since they hold over any adversary
choice of problem parameter. However, in our setting, the
maximin formulation provides arguably the weakest privacy
guarantee due to the negation inherent in its definition: a
learner strategy is maximin-private as long as there does not
exist a minimax-accurate adversary estimator. For instance,
even if an adversary is able to accurately predict X * under the
majority of functions in F, failing only over a small subset,
the learner can still proclaim its strategy to be private under
the maximin formulation.

We tend to believe that the maximin formulation is more
applicable when the adversary is very risk-averse. One interest-
ing example is in law and criminal justice. Here, a prosecutor
should have to prove that the accuracy of any conclusion
drawn from evidence holds up regardless of the value of a
certain hidden parameter. Indeed, many legal systems currently
require that criminal convictions be reached only if the evi-
dence can prove guilt “beyond reasonable doubt” (cf. [40],
[41], [42]). Any supposed prior on crucial, unobserved para-
meters can be ill-defined and potentially discriminatory. Other
potential applications include the aforementioned autonomous
driving [38] application, where the performance guarantee of
an estimator needs to be valid in the worst case, for the sake
of public safety. In these examples, a maximin-private learner
strategy will effectively prevent the adversary from coming up
with any viable estimator, thus render the adversary powerless.

B. Comparisons With Private Sequential Learning

As mentioned in the Introduction, our convex optimization
framework generalizes the Private Sequential Learning (PSL)
model. As such, the two settings share similarities (as one
would expect), as well as some marked differences. Recall
that in the PSL framework, the responses are binary and only
indicate whether the minimizer is to the left or right of a
given query; this is equivalent, in our setting, to returning
only the sign of the gradient. The maximin and Bayesian
formulations proposed in this paper parallel the deterministic
and Bayesian formulations in PSL, respectively. Our maximin
formulation is new, but it does have a fundamental connection
to the deterministic formulation of PSL, where a learner
strategy is considered private if its queries are guaranteed to
generate a large set of “plausible” targets (information set),
with a large covering number*; we explore this formally in
Section V-B. Our Bayesian formulation is a natural general-
ization of the Bayesian PSL model: we now assign a prior over
the entire function, as opposed to only the location of the mini-
mizer. Notably, our Bayesian formulation recovers the original
Bayesian PSL problem in the limit where the concentration
parameter « in the Dirichlet prior approaches 0. As such,
our Bayesian formulation includes the original Bayesian PSL
model as a special case.

4The J-covering number of a set A C R is the size of the smallest set A\,
such that U,cnr[r —0/2, 7+ 6/2] D A.
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Our main results recover similar dependencies on the level
of privacy, with overheads that are additive and multiplicative
in L in the maximin and Bayesian formulations, respectively.
The upshot in our setting is that the results are established in
a substantially more general setting of convex optimization.

There are several major differences that distinguish our
private convex optimization framework from the PSL model.
First and foremost, the learner now has access to the entire
gradient instead of only its sign. A most direct implication
of this enriched information structure is that, when analyzing
the amount of information leakage of a learner strategy,
we will have to keep track of the distributions over target
functions, as opposed to only the minimizers, as was the
case in PSL. Moreover, when the learner has access to full
gradients, it is in principle possible for the learner to gather
information about the minimizer’s precise location even from
queries that are submitted far away from the minimizer,
which was not possible within bisection search. For instance,
if the underlying target function is known to be quadratic,
then two queries placed anywhere are sufficient to uncover
the minimizer. To address these complexities, our goal is
to precisely measure the amount of information about the
minimizer that the learner and adversary may obtain from a
given sequence of queries. We will do so both by developing
more sophisticated information theoretic arguments, and by
exploiting structural properties of the Dirichlet process.

C. Open Questions

Our results leave open a number of questions. For the
Bayesian query complexity in one dimension, there remains
a gap between the leading constants in the upper and lower
bounds, in the regime where « is bounded away from zero.
Generalizing the main theorems to a multi-dimensional set-
ting, where x € Rd,d > 2, is also interesting and prac-
tically relevant. We take a first step in this direction by
extending our results to multi-dimensional separable functions
(see supplementary material), while the general case with
non-separable objective functions remains open and appears to
be challenging. Our problem formulation only considers first-
order feedback. An interesting direction is to consider convex
optimization with more general types of feedback, e.g., bandit
feedback [43].

D. A Different Notion of Privacy in [44]

A recent work [44] also aims to extend the private sequential
learning model of [5] to convex optimization. They use a
different notion of privacy criteria that bear some superficial
similarities to ours. However, the definition of privacy in [44]
contains crucial errors that render it vacuous, in the sense
that there cannot exist any private learner strategy satisfying
that definition. To be precise, here is Definition 2 of [44]: fix
€6 € (0,1). A learner strategy is said to be (e, d)-private if
for any adversary estimator X and any truth f € F,

Plerr(X, f) <€) <6, (7)

where err(-,-) is a certain error function which measures
the discrepancy between the adversary estimator and the true

minimizer. For instance, in our example err(X, f) = |X —
argmin f(z)|.

The problem with this privacy definition is that it can
never be satisfied by any learner strategy. Indeed, consider
an adversary that simply sets X = z* for some fixed z*
without even taking into account the queries. Under this
trivial estimator, we automatically have P(err(X, f) = 0) =
1 for any f € F that is minimized at x*. So (7) cannot
possibly hold uniformly across all adversary estimators and
all f.

This faulty formulation should lead to an infinite optimal
query complexity, suggesting that the upper bound proof
contains error. Upon a closer look, we find that in the upper
bound analysis, the authors make the following assumption:
“Without loss of generality, assume the adversary is endowed
with an uniform prior knowledge on where X* is and assume
the maximum uncertainty for X*” [44, p19]. This assump-
tion specifies the behavior of the adversary, and is therefore
inconsistent with the minimax formulation which requires the
adversary to fail for any adversary’s estimator.

V. PROOF OF MAIN RESULTS

We present in this section the proofs of our main results.
We begin by giving an overview of the key steps.

A. Overview of Main Ideas

1) Maximin Setting: Since the response contains the full
gradient information, the key challenge in the analysis is to
track the amount of information available to the learner. Note
that aside from the directional information 1{X™* > ¢;}, the
response for a query ¢; contains additional information on
(f*)(g:). The key message in the proof under the maximin
setting, is that under the Assumption 1 on the richness of the
family of functions, only the directional information is relevant
to the learning task. Therefore, it suffices to only track the
learner’s knowledge with the directional information from the
responses.

Starting with the upper bound, we design a querying strat-
egy that is e-accurate, (9, L)-private, and submits at most
max{2L + log(d/¢), L + log(1/€)} queries. In particular, our
querying strategy only utilizes the directional information
of the gradient responses. Firstly, note that since the gra-
dient responses contain the binary directional information,
the learner can always check whether an interval contains
X* by querying the two endpoints: X* € [a,b] if and
only if (f*)'(a) < 0 and (f*)'(b) > 0. All intervals refer
to closed intervals unless otherwise specified. We refer to
a pair of queries at ¢ and g + ¢ as a guess. The key
privacy-ensuring mechanism is to check L guesses that are
0 apart from each other. By doing so, the learner manually
plants L possible locations for X* that an adversary cannot
rule out without observing the responses, thus achieving
(6, L)-privacy.

To prove the lower bound, we need to show that a querying
strategy that only utilizes the directional information can be
optimal. Firstly, let us give a heuristic argument of why only
the gradient information is relevant to learning X* under
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Assumption 1. Given (f*)'(a) < 0 and (f*)'(b) > 0,
under Assumption 1, X* can be anywhere between a and
b regardless of the value of the gradients (f*)'(a), (f*)' (D).
We should point out that the richness assumption is necessary.
For example suppose F is the family of convex polynomial
functions with fixed degree d. Then the learner can solve for
the X* by submitting d distinct queries at arbitrary locations,
making both learning and obfuscation trivial.
The lower bound proof contains two main ingredients.

(a) Step 1: Rigorously justify the claim that under Assump-
tion 1, the learner does not benefit from the additional
gradient information aside from the one-bit directional
response. In particular, we show that the learner cannot
search faster than the bisection method on any interval
I C [0,1]. Therefore, for each interval of length 4, it takes
at least log(d/€) queries in I to achieve e-accuracy, in the
worst case.

(b) Step 2: Relate the adversary’s statistical performance to
the size of the information set [5] of a query sequence ¢,
defined as

Z(q) ={x €]0,1] : 3f € F and y,
s.t. © =argmin f, and q(f,y) = ¢},

where q(f,y) refers to the realization of the query
sequence when f* = f)Y = y. The information set
contains all possible values of X* that could lead to the
query sequence g. We show that to ensure the adversary
achieves d-accuracy with probability at most 1/L, there
must be some ¢ for which the §-covering number of Z(q)
is at least L. Note that from the e-accuracy requirement,
each member of Z(g) is sandwiched between a pair of
queries in ¢ that are at most e-apart. Therefore, ¢ contains
at least L such pairs of queries, contributing a total of 2L
queries.

After performing these two steps, some challenges remain.
The functions associated with ¢ (in step 2) may not coincide
with the worst-case instances that arise from step 1. Therefore,
the remaining task is to combine the two lower bounds
log(6/€) and 2L. For this step, we show the existence of
some interval I, such that for some f minimized in I, the
learner must pay not only the log(d/¢) queries for accuracy,
but also the 2L queries for privacy. The high-level idea behind
the proof is to divide ¢ into two sub-sequences gpefore, Gafters
before and after the 2L queries (in step 2) are submitted. The
key observation is that gpefore 1S shared by a large class of
functions whose minimizers lie in some J-length interval 1.
For all these functions, the cost of 2L queries would have
been committed in @pefore. For at least one of them, an extra
cost of log(d/¢) queries must be paid in gafier-

2) Bayesian Setting: Similar to the maximin setting, the
upper bound here is also established by analyzing a con-
structive algorithm. The key challenge in designing a private
learning algorithm in the Bayesian setting arises from the fact
that the prior distribution on X* is always non-uniform under
the Dirichlet process model. In particular, we can no longer
simply apply the replicated search strategy from [7], since the
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non-uniform distribution of X* provides the adversary with

additional prior information.

To address this difficulty, our key algorithmic idea is to
find L intervals that occupy the same prior mass, while at
the same time are at least §-separated from each other. One
of these intervals contains the true value X™*. On each of the
other L — 1 intervals, we sample a proxy for X* according to
the conditional distribution of X * restricted to the interval. Via
a genie-aided reduction argument, we show that the adversary
cannot perform better than a random guess among the L
candidates: the truth and the L — 1 proxies. By construction of
the intervals, the L candidates are at least § apart. Therefore
the adversary cannot achieve an additive error of §/2 with
probability higher than 1/L.

For the lower bound, the challenge again lies in tracking
and quantifying the amount of information the learner gains
from the responses. Compared to the binary search model,
the full gradient responses can potentially reveal too much
information to the learner. To tackle this challenge, our key
proof strategy is to find a event on which the learner cannot
gather information on X* too rapidly. The proof follows the
following main steps.

(a) Step 1: quantify the learner’s information. We adopt the
notion of “learner’s intervals”, Iy, I1, . ... Here, Iy = [0, 1]
and I; is the smallest interval that the learner knows to
contain X * after the first ¢ queries.

(b) Step 2: analyze the conditional distribution of X* over
the learner’s interval. This is the key step of the proof.
We want to find a “good” event on which the learner does
not possess too much information on the location of X*.
In this step, we construct an event B3, such that

X* | B ~ Unif[; N J], (8)

where J is an arbitrary subinterval of [0, 1]. Here, B
is an event that encodes all the information available
to the learner up to time ¢, the assumption that X* €
J, and some other desirable feature of the unknown
convex function f*. The construction of B crucially
utilizes the stick-breaking characterization of the Dirich-
let Process, and the proof of (8) heavily relies on the
self-similarity property of the Dirichlet Process. We dis-
cuss the self-similarity property in detail in Section A.
It helps control the amount of information about the shape
of f* inside the learner’s interval, given all the queries and
responses outside.

(c) Step 3: control the speed at which the learner’s interval
shrinks. Divide [0, 1] into 2/0 subintervals .Jy, ..., Jy/5 of
length §/2, and let J* denote the subinterval that contains
X*. In this step, from (8), by integrating over instances of
B, and letting .J range over the 2/¢ subintervals, we show
that for some suitably-defined event A,

[1it1 N J7

e (s T [4)
—P{qu_;_l eL;nNJ” | .A}
—P{gi1€J" | A}. &)

>
>
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(d) Step 4: from (9), via a simple telescoping sum and an
application of Jensen’s inequality, we can deduce that

E (number of queries in J* | A)
8 8
210g§ —logP (|, NnJ*|| A) > log -,
€

where the second inequality follows from the e-accuracy
requirement. By considering an adversary who adopts
the proportional-sampling strategy [6], we have for any
querying strategy that is (0, L)-private,

n =total number of queries

> LE [total number of queries in J*]

>P(A) -Llogg.

B. Proof Under the Maximin Setting

Proof of the Upper Bound in Theorem 1: Define a guess at
q as a pair of queries placed at ¢ and g + €. The guess allows
the learner to test whether X* is contained in the e-length
interval [¢,q + €]. To ensure privacy, we create L potential
locations for X* that are at least §-separated but induce
the same querying sequence. That is achieved by submitting
L guesses that are d-separated. Once guessed correctly, the
learner’s accuracy requirement is automatically fulfilled and
the remaining queries can be used to conceal X* from the
adversary. We consider the cases § < 2L and 6§ > 2°L
separately. The querying strategy is contained in Algorithm 1.

We first prove the upper bound in the case § < 277, In the
first stage, the learner submits L guesses, each consisting of
two queries. In the second stage, the learner runs a bisection
on an interval of length 2~ up to accuracy e. In total, 2L +
log(2=%/€) = L+log(1/e) queries are submitted. The strategy
is clearly e-accurate. To see that it is also (J, L)-private, note
that all f* whose minimizer lies in one of the L intervals
[1/2,1/2+¢€], [3/4,3/4+¢], ..., [1 —=27L, 1 —27L 4 €] share
exactly the same query sequence. Under Assumption 1, for
each 7 there exists at least one function f; minimized at some
x; € [1-2741-2""+¢]. When § < 2L, the x;’s are at least
d apart from each other. Therefore no adversary can achieve
fye ..oy P{IX - X*| < 6/2} > 1/L.

When 6 > 27 L, the learner again submits L guesses in the
first stage, totaling up to 2L queries. In the second stage, the
length of I is at most 20. Thus bisection on [ takes at most
log(d/€) + 1 queries. Note that the first guess at 0 always
contains a trivial query at 0. Removing the trivial query
yields a total query complexity of log(d/€) + 2L. To prove
(6, L)-privacy, note that for if f* is minimized in one of
the L intervals [0,¢], [I — 2791 — 277 4 ¢] for i < K,
or [1—27F 4ilg, 1 -2 4 ilg+elfori<L—K-—1,
then they induce the same query sequence. This completes the
proof of the upper bound. U

We now turn to the lower bound. As a first step, we prove
that if F satisfies Assumption 1, then the learner cannot search
faster than the bisection method on any interval I C [0, 1]. The
lemma below contains a formal statement of this claim. Note

Algorithm 1 Querying Strategy Under the Maximin Setting

1: Let I =0, 1].

2: if § < 27T then

3:  Submit the first guess at 1/2.

4:  Recursively submit the remaining L — 1 guesses via
bisection: if none of the submitted guesses is correct,
update I = [a, b] according the gradient (f*)'(q) at the
previous guess ¢. If (f*)'(¢) < 0, then X* > ¢, so we
let the updated I be [g, b]; otherwise update I to be [a, g].
Submit the next guess at the midpoint of the updated I.

5: Once a guess is found to be correct, always (do this also

for all the remaining guesses) update I to be the right
half of I, and submit the next guess at the midpoint of
the updated I.

: else

7:  Submit the first guess at 0.

8: Let K be an integer solution in {0,1,...,L — 1} such
that (i = 275/(L — K) € [§,20]. When § > 27F,
a solution always exists.

9:  Submit the next K guesses via bisection. Update I
accordingly. As in the § < 27 case, once any guess
is found to be correct, always update I to its right half.

10:  Divide [ into L— K equal length subintervals. Submit the
next L— K —1 guesses at the endpoints of the subintervals
(excluding the 2 endpoints of I).

11: if none of the guesses is correct then

12:  Run bisection search on [ until reaching e-accuracy.

13: else

14:  If the total number of queries is below n = max{2L +
log(d/€), L+log(1/¢)}, fill the remaining query sequence
with trivial queries at 1.

[=))

that by taking I = [0,1], Lemma 1 immediately implies a
lower bound of log(1/¢) on the optimal query complexity.
Lemma 1: Suppose F satisfies Assumption 1. Let ¢ be
an e-accurate querying strategy. Then for each f € F, each
interval I C [0, 1] that contains the minimizer of f, and each
realization of the random seed y, there exists f € F, such that

(1) under ¢, the query sequence q(f, y) contains at least

log(|1|/€) queries in I;

(2) the gradient of f and f coincide outside of I.

Next, we prove the lower bound in Theorem 1 assuming
correctness of Lemma 1. The proof of Lemma 1 is deferred
to the end of this subsection.

Proof of the Lower Bound in Theorem 1: A key step in
this proof is to connect definition of (¢, L)-privacy with the
covering numbers of the information sets. We claim that for a
strategy to be (d, L)-private in the maximin sense, there must
be one information set with a large covering number.

Let ¢ be a querying strategy that is both e-accurate and
(0, L)-private. Define the information set of a query sequence
q as

I(q) ={x €[0,1] : 3f € F and y,
s.t. x =argmin f, and q(f,y) = ¢}.
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Denote the 0/2-covering number of Z(q) as N.(Z(q),0/2).
Fix the adversary’s strategy to be one that samples uniformly
from a d-covering set of Z(g). Since ¢ is (0, L)-private, there
must exist some f minimized at x, for which

1/L >]P’{‘X'—x‘ < 5/2}
efp{[-+|= o] f]

where the first integration is over ¢ and the second is over
the randomness from the adversary’s estimation scheme con-
ditional on ¢. Since x is in Z(q), it must be §/2-close to at
least one of the points in the covering set. Therefore for all g,
1
Ne(Z(q),6/2)
Taking expected value over g on both sides, we have
E(1/N.(Z(q),0/2)) < 1/L. Hence there must exist some
query sequence ¢ for which N.(Z(7),d/2) > L. As a result,
Z(q) contains L points z1, ...,z that are at least §/2-apart.
By definition of the information set, there exist f1, ..., fr €
Fand y1,. ..,y € [0,1], such that f; is minimized at x;, and
q(fi,y:) = q for all 5. Notice that for each ¢, ¢ must contain a
pair of queries at most e-apart that sandwiches z;. Otherwise
suppose the closest pair of queries in ¢ that contains x; forms
an interval I of size larger than e. Under Assumption 1, for
each x € I, there exists f € F for which f is minimized at
x and q(f,y;) is also g. By taking x to be arbitrarily close
to the endpoints of /, the e-accuracy requirement is violated
since no estimator X can ensure | X — x| < ¢/2 for all z € I.
Therefore, the length of I is at most e. Combined with the fact
that z1,...,x are d-separated, and the assumption § > 2e,
we have shown that ¢ contains L pairs of distinct queries.
Thus the optimal query complexity is lower bounded by 2L.
To improve the lower bound to the desired 2L + log(d/¢),
we would like to argue that aside from the L pairs queries
in ¢, the learner must submit enough queries elsewhere to
search for X* in order to fulfill the accuracy requirement.
Indeed, the worst-case query complexity is lower bounded
by log(1/¢) for any strategy that is e-accurate. However, the
worst-case instance may not be one of fi, ..., fr. To combine
the 2L queries used to ensure privacy with the queries used to
ensure accuracy therefore becomes the main challenge of the
lower bound proof. To address this difficulty, we will again
utilize Assumption 1 on the richness of F. On a high level,
Assumption 1 allows us to find a large class of functions
in F which can also lead to the query sequence ¢. Out of
these functions, we show that for at least one of them it takes
log(d/€) extra queries to search for its minimizer. Next we
give the rigorous proof of the existence of such a function.
Firstly, note that ¢ contains L pairs of e-close queries that
sandwich z1,...,z. Since § > ¢, we have that for all i, ¢
contains at least one query in [x; — 0/2], and one query in
[x; + &/2]. Once at least one query has appeared in each of
[z —0/2,x;] and [x;, z; + /2], we say x; is “0/2-localized”.
Let z; be the last one to be §/2-localized out of z1,...,z,
and suppose it is ¢/2-localized at time 7. Without loss of
generality, assume a query in [z; — 0/2,x;] appears first,
so that gr € [zj,x; + /2]. Let I = [a,b] with a defined

P{‘X—x‘ g&/z‘q}z
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Fig. 3. An illustration of the lower bound argument with L = 3. The
ticks represent all queries in g. The L pairs of e-close queries that sandwich
z1,...,xr, are colored red. Suppose x2 is the last one out of x1,...,z to
be §/2-localized, and the query in [x2 — 6/2, x2] appears before the one in
[z2, 22+ /2], then I is defined as the shaded interval. Note that until all of
Z1,...,xr are 6/2-localized, no query is submitted in I.

as the query in qp,...,gr to the left of x; that is the closest
to xj, and b = x; + 0/2. See Figure 3 for an illustration.
Apply Lemma 1 with I = [a,b], f = f; and y = y;.
We can find some fe F that satisfies the two criteria in the
statement of Lemma 1. Criterion (2) ensures that the gradient
of f and f; coincide outside of I. Since all functions in F
are assumed to be differentiable, any query outside of I leads
to identical responses for the two functions f and f;. Since
xj is ¢/2-localized at time T, Gi,...,gr—1 do not contain
any queries between a and b. Thus q(f, y;) and q(fj,y;) =4
agree completely up to time 7" — 1, and contain at least the
2L — 1 queries outside of I used to sandwich x1,...,xr. The
reason we need to subtract 1 is because the 7"th queries in ¢
is in 1. B
By criterion (1) in the statement of Lemma 1, q(f,y;)
contains at least log(|I|/e) > log(d/(2¢)) queries in I.
Combined with the 2L — 1 queries outside of I, we arrive
at the desired lower bound 2L + log(d/€) — 2. O
Proof of Lemma 1: The lemma is proved by constructing
an f that satisfies both criteria. Our construction scheme is
inspired by that of Nemirovski’s (See Lemma 1.1.1 in lecture
notes by Nemirovski [45]). With the querying strategy ¢ fixed,
we will construct a sequence of functions (g1,...,gx) in F
adapted to the queries and the responses and set f = gx. The
value of K will be specified later. The construction ensures
that for each ¢ > 0, there is an interval A; C I with |A;| >
|1]/2¢, such that

1) g; is minimized at the midpoint of A;;
2) in the query sequence q(g;,y), the first ¢ queries in I are
outside of A;.

By Assumption 1, there exists a function in F whose
gradient of f agrees with that of f outside of I, and is
minimized at the midpoint of /. Let this function be gy and
let AO =1.

Inductively construct the rest of {g;}. Given go,...,gi,
by the induction hypothesis in q(g;, y), the first ¢ queries in [
are all outside of A; = [a;, b;]. Let ¢ be the (i + 1)’th query
of q(g;,y) in I. If ¢ is not in A;, then we can simply let
gi+1 = gi and A;1 = A; to complete the (i + 1)’th step
of the induction. If ¢ € A,, depending on whether ¢ lands
to the left or right of the midpoint of A;, let A;;1 be either
[q,bi] or [a;,q], so that |[A; 1] > |A;]/2. Let g;11 € F be a
function whose gradient agrees with g; outside of A;, and is
minimized at the midpoint of A;;;. By Assumption 1 such
a g;4+1 always exists.

The construction can be carried out until for some inte-
ger K, we cannot find the (K + 1)’th query of q(gx,y) in .
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1 1
7. | 1 | 1 | 1 ]
Xa ! X ! X3

Fig. 4. Example of phases 2 to 4 of the querying strategy under the Bayesian
setting with L = 3. In phase 2, the learner queries the 1/3 and 2/3 quantile
of vy (represented by the dashed lines), and learns that X * € I5. In phase 3,
she queries the medians m1,...my,, and learns that X * is to the left of ma.
Therefore Jq,...,Jr, are defined to be the shaded intervals. In phase 4,
X1 and X3 are sampled from v;, and v, respectively and X3 is defined
to be X*. Note that the separation of X1,..., X are guaranteed by the
separation of Ji,...,Jr,.

That is, q(gx,y) contains only K queries in I. By construc-
tion, q(gx,y) does not contain any queries in Ay . Therefore
under Assumption 1, the learner cannot rule out any member of
A being X ™. For the strategy to be e-accurate, we must have
|Ak| < € hence K > log(]I]/€). Taking f = gx finishes the
proof of the lemma. i

C. Proof Under the Bayesian Setting

Proof of the Upper Bound in Theorem 2: Let v denote the
distribution of X *. For an interval I C [0, 1], write vy for the
probability distribution of v conditioned on I, i.e., %(x) =
1{x € I}/v(I). We design the following multi-phase querying

strategy to attain the desired upper bound.

Algorithm 2 Querying Strategy Under the Bayesian Setting

1: Recursively query the median of the posterior distribution
of X*, until it is supported on an interval I with v(I) €
[20LH,,40LH,).

2: Let k; be the j/L quantile of v; for j =0,1,...,L and
let I; = [kj_1,k;] for j € [L]. Query K1,...,k—1 and
identify j* for f/(k;+—1) <0 and f'(k;j+«) > 0 so that I;-
contains X *.

3: Query the median m; of vy, for j € [L]. If f'(m;-) >0,
let J; = [k;j—1,m;] for all j; otherwise let J; = [m;, K;].

4: For all j # j*, sample X; ~ v, independently. Denote
X+ = X*. For j = 1,...,L, run the regular bisection
search on J; to locate X; up to e-accuracy.

Phase 1 runs the median-based bisection search, which is
equivalent to the regular bisection search on U = F,(X*) ~
Unif[0, 1], where F, is the CDF of v. Note that this step
is always possible under the assumption 20LH, < 1.
Phase 2 divides [ into L subintervals Iy, ..., I;, with equal v-
probability and determines ;- containing X *. Phase 3 is the
key to ensure adequate separation between the subintervals
{Jj}je(r)- Phase 4 serves to achieve the e-accuracy while
obfuscating the adversary. See Figure 4 for an illustration of
phases 2 to 4.

The querying strategy outlined in Algorithm 2 is clearly
e-accurate by design. We now show that it is also (9, L)-
private. The high-level proof idea is to consider an adversary
who has access to X1, ..., Xr. Using a genie-aided argument,
we argue that this adversary is stronger than the one who only
has access to the query sequence. We then establish that the
conditional distribution of X * given X7, ..., X, is uniform on
the X;’s. Moreover, phase 3 of the querying strategy ensures

that the X;’s are all d-separated. Therefore even with the
additional knowledge of Xj,..., X, the adversary cannot
estimate X * accurately with probability higher than 1/L.
Proof of Privacy: Since the adversary only has access to
the query sequence g, any adversary’s estimator X must be a
(random) function of ¢, that is X = X (¢). Meanwhile by the
design of our querying strategy, ¢ can be completely recon-
structed from X7, ..., Xy. To see that, note that I, {I;},{J;}
and all the queries in phase 4 are deterministic functions

of Xi,...,Xy. Therefore there is a mapping v such that
X(q) =v(Xy,...,X1). Thus,
P{‘X(—X* < g} (10)
> N ) 5
e [p{ |- x| <3 s
- R * 5
<E [supP{ [, X0) = X < 5| Koo Xy
P
- ] s
<E | sup P |x—X|§—‘X1,...,XL . (1)
| €[0,1] 2

We claim that
(i) X*| X1,...,Xp ~Unif{Xy,..., X}
(ii) With probability 1, |X; — X;| > ¢ for all ¢ # j.
Assuming the two claims hold,

B
sup }P’{|£—X*| <? ‘ Xl,...,XL}
z€[0,1] 2

1 1) 1
= N 1o x <o b< 2
azzl[lol,)l]LjZ; {|a: jl_Q}_L,
where the equality is from (i) and the inequality is from (ii).
Continuing (11), we have P{|X — X*| < §/2} < 1/L.
Thus our strategy is (0, L)-private. It remains to prove

claims (i), (ii).

Proof of (i): Recall that the index of the subinterval con-
taining X* is j*. Since v(I;) are equal for all j, j* is
distributed uniformly in {1,...,L}. Therefore the desired

claim X* | Xy,..., Xy ~ Unif{Xy,..., X} is equivalent
to j* and (Xy,...,X) being independent.

To  show  j*1U(X4,...,X), first note that
J*AL(J1,...,Jr), because conditional on j*, either
J;j = [kj—1,my] for all j or J; = [my,r;] for all j,

with equal probability. Second, for any fixed j’, conditional
on j* = j and (Ji,...,Jr), the X;’s are independent
and X; is distributed vy,. Thus j* 1 (X1,...,Xz) given
J1,...,Jr. Combined with j*1 (Jy,...,Jr), we arrive at
the conclusion j* 1l (X1,...,X1).

Proof of (ii): It suffices to show that the intervals Ji, ..., Jr,
are J-separated, or equivalently, |I;\J;| > § for all j < L.
Since phase 2 of the querying strategies queries all the medians

of I,..., I, we have v(I[;\J;) = v(I;)/2 = v(I)/(2L) >
0H,. Let m = dv/d\ be the density of v. Then
I\ J; 0H,
|Ij\J]|2 V(J\ J) > (o] ) (12)
sup, m(t) ~ sup, m(t)

To finish the proof of this claim, we only need to bound the
density of v from above. Recall that v is the distribution of
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X*, which is the median of F'. Thus the distribution function
of v has the form

v([0,4]) = P{X* <t} = P{F(t) = 1/2}.

Since F' ~ DP(a, Ajg,17), we have (F(t),1 — F(t)) ~
Dir(at, (1 — t)). Therefore F(t) ~ Beta(at,a(l — t)).
We will use the following Lemma 2 to bound the density
of v. The proof of Lemma 2 is deferred to the end of this
subsection.

Lemma 2: Suppose X ~ Beta(at,a(l — t)) for some
a > 0, then for all ¢ € (0,1),

ho < %P{X >1/2} < H,,

where hq = £2772 and H, = (3 +2e Mo + 14.

By Lemma 2,

m(t) = %P{F(t) >1/2} < Ha, (13)

for all ¢ € [0, 1]. Combining (12) and (13) yields that

0H,,
I\J;| > >
[\ Jj| = 7]

J.

We have shown that v;,, ...v;, are continuous distributions
supported on L intervals that are J-separated from each other.
Therefore | X; — X;| > 0 for all ¢ # j with probability 1.

Query Complexity: The number of queries submitted in
phase 1 is at most log(1/(20LH,)). Phase 2 and phase 3
involve L — 1 and L queries respectively. The number of
queries submitted in phase 4 equals

3 [log |Jj|—‘
€ €
J<L
| J;]
<L —
< +—:{:10g ;
J<L
=L+log | [] |7l +Llog1,
X €
J<L

To bound the above, note that from Lemma 2 we have

: ha ha

J<L
Therefore [, |J;| < (20Ha/ha)". Thus the total number
of queries submitted by the learner is at most

log +(L—1)+L+L<logé+10g4fa)
€

[e%

1
20LH,

5 16H,, 1
—L (log 2 +1 log — +1
<°ge+°g he )+Og6L+Og4Ha

1) 1
<L (1og - + 02) + log ST

for co = log(16H,/hy). The inequality is from H, > 14 for
all o > 0. O

Proof of the Lower Bound in Theorem 2: Let ¢ be a
querying strategy that is both e-accurate and (9, L)-private.

539

By definition of (j’ L)-privacy, we must have for any adver-
sary’s estimator X,

%zp{f{e [X*—5/2,X*+5/2]}.

For the purpose of the lower bound, we can assume without
loss of generality that the learner always submits a fixed n
number of queries under strategy ¢. If the lengths of the
query sequences q(f*,Y) depend on f* and Y, the learner
can always fill the short sequences with n — |q(f*,Y)| trivial
queries at 0 without hurting the accuracy or the privacy of
learning.

Next we complete the lower bound proof following the
outline given in Section V-A.

Step 1: Quantify the learner’s information using learner’s
intervals. Recall that the 7’th learner’s interval I; denotes the
smallest interval that the learner knows to contain X *.

Step 2: Analyze the conditional distribution of X* over
the learner’s interval. To find a “good” event B on which
the conditional distribution is uniform, we heavily rely on
the stick-breaking characterization of the Dirichlet Process.
Namely, the event B is associated with the length of the longest
stick in the stick-breaking process. For completeness, we shall
include a brief description of the stick-breaking process here.

Given base distribution j¢ and scaling parameter o > 0,
draw {X}7°, iid. from po, and independently draw
{Vx}32, iid. from Beta(1, ). From a stick of unit length,
break off the first stick of length V;; break off V5 fraction of
the remaining stick and repeat. In other words, denote by S
the length of the k’th stick. We have

Be=Vi- [[ =)
j<k—1
and > 2, B = 1. Let u = >, -, Brdx, be the discrete
distribution supported on {X}}72,, where dy, denotes the
point mass distribution at Xj. Then the distribution © which
corresponds to a cumulative distribution function of F' follows
the Dirichlet process DP(uq, «v).

Here is a heuristic argument on how the stick-breaking
process helps us prove the uniformity of the conditional
distribution of X*. Under our prior construction, X* is at
the median of F' ~ DP(\(g 1), @), where we recall that g 1
is the Lebesgue measure on [0,1]. Therefore, X* occurs
at one of the stick-breaking locations Xj. Even though the
X},’s are distributed i.i.d. uniformly in [0, 1], X™* itself does
not follow the uniform distribution since the index ¢ that
corresponds to X* is random. The key observation is that
the conditional distribution of X™* is uniform conditional on
the event A where the length of the longest stick is at least
1/2. To prove uniformity, we first show that on the event A,
the median X* must occur at the X}, that corresponds to the
longest stick. Moreover, by independence of the stick lengths
{Br}r>1 and the locations {X}}r>1, the distribution of the
location corresponding to the longest stick is uniform in [0, 1].
Furthermore, the posterior distribution of X* remains uniform
as queries are sequentially submitted. The following Lemma 3
contains the precise statement on uniformity.

Some notation is necessary before stating Lemma 3. Firstly,
denote by (1), B(2), - - . the order statistics of the lengths of
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1/2f -

Fig. 5. An illustration of the quantities in (14). Conditional on X™* € J
and the responses to the first ¢ queries, the range of X ™ is narrowed down to
I;NJ = [g—, q+]. Further conditioning on F'(q—) = p— and F(q+) = p+,
we show that F restricted to [g—, ¢+] also follows a Dirichlet process after
appropriate scaling.

the sticks in the stick-breaking process corresponding to F'.
Let
A = {5(1) Z 1/2} = UzZl/QAza

where A. = {Bn) = z}. Let J C [0,1] be an arbitrary
fixed interval. Write [¢—,q+] = I; N J. Let the event B =
B(z,J,y,i,p9, p_, py) encode the random instances of F,
Y and the first ¢ responses, defined as

B={A, X" €Y=y r=p0
F(qg-) = p-, Flat) = p+}.

See Figure 5 for an example of F’ and the quantities in (14).
Lemma 3: For all z > 1/2, J, y, i, pV, p_ <1/2, p; >
1/2, we have for B defined in (14),

L:(X* | B) = Unif[qquJr]v

(14)

where L£(-) denotes the (conditional) distribution.

The proof of Lemma 3 is deferred to the end of this sub-
section. It utilizes the self-similarity property of the Dirichlet
process. See Section A in the appendix for a description and
proof of the self-similarity property. In short, it ensures that
the values of F' inside of [¢_, ¢4 ] conditional on information
outside of [¢_,¢q] also follows a scaled Dirichlet process.
Thus the learner cannot gain too much information about the
location of X* in [¢_, q4].

Step 3: Control the speed at which the learner’s interval
shrinks. Heuristically, since the conditional distribution of X *
stays uniform over the learner’s interval in view of Lemma 3,
the learner cannot search faster than the bisection method, and
the learner’s interval cannot shrink faster than 1/2 each time
a query is submitted.

Recall that [0,1] is divided into 2/¢ subintervals
Ji,...,Ja5 of length §/2, and J* denotes the subinterval
that contains X *. In this step, by integrating over instances
of B, and letting .J range over the 2/0 subintervals, we prove
the following lemma.

Lemma 4: For all 7, we have that
LN J*
E <1og M

[; O J*|
The proof of Lemma 4 is deferred to the end of this subsection.
Step 4: In this step, we apply Lemma 4 to obtain the desired
lower bound on the optimal query complexity. By writing
log |, N J*| as a telescoping sum, we have that

‘A) > PlgaeJ A, (15

E (log|I, N J*| | A)

LN J*
| +1 |A>

n—1
—log|IoﬂJ*|+ZIE<log TAGRD
i=0 g

5 = Iy N J¥|
=log - E|(l 17‘
og2+; (og LA A)
)
>log 5 E (number of queries in J* | A).

Therefore, on the one hand, by Jensen’s inequality,

logE(|I, N J*| | A)
>E (log |I, N J*| | A)

5
> log 3 E (number of queries in J* | A). (16)

On the other hand, from the accuracy requirement, we must
have |I,,| < ¢ with probability 1. Therefore

E<|InﬂJ*| A) g]E(|In| A) <e/2. (17
Combining (16), (17) yields
E (number of queries in J* | A) > log é (18)
€

Consider an adversary who adopts the proportional-
sampling strategy [6]. That is, suppose the adversary’s esti-
mator X is sampled from the empirical distribution of the
queries. For this particular X,

P {)? €[X* —§/2, X" + 5/2]}
_ E(number of queries in [X* —§/2, X* +6/2])

?

n

which gives a lower bound on the total number of queries:
n > LE(number of queries in [X* —6/2, X" +6/2]). (19)

Since J* C [X*—0/2, X*+40/2], it follows from (19) and (18)
that
N (e, 6, L) > LE(number of queries in J*)
5
>P(A) Llog —. (20)
€

We have thus arrived at the desired query complexity lower
bound with

1 :]P(A) :]P{ﬂ(l) > 1/2} Z]P{ﬁl > 1/2},

where 31 ~ Beta(1, ) is the length of the first stick fom the
stick-breaking characterization of the Dirichlet process. That
completes the proof of the Bayesian lower bound. 0
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Proof of Lemma 3: Since the gradient of the convex
function f* is defined with (f*) = v_ + (y — v-)F, the
minimizer of f* is at the median of F, i.e.,

X*—inf{x:F(m)ZL—l}.
Y+ —7- 2
Under our prior construction, the distribution of F' follows a
Dirichlet process with the uniform base distribution on [0, 1]
and scale parameter . Therefore with probability 1, F' is a
distribution function with countably many points of discon-
tinuity, which we will refer to as jumps. If we characterize
F with the stick breaking process, then the locations of the
jumps are at Xi, Xo,... where the X}’s are independently
and uniformly distributed on [0, 1]. The sizes of the jumps
(1, B2, ... correspond to the lengths of the sticks from the
stick-breaking process. We have ), = 1, and the two
sequences { X }r>1 and {0 }r>1 are independent.

To proceed, we first show that if the size of the largest jumps
is larger than 1/2, then X* must occur at the largest jump.
That is,

AC U1 {X* = Xy, B0y =B} -

To see why, recall that X* is the median of F. Thus
F(X*)>1/2and sup, . x- F(x) < 1/2. Suppose 3(1) = S.
We consider two cases:

1) if X* < Xy, then F'(X3) > F(X*) + Bq) > 1;

2) if, on the other hand, X* > Xy, then F(Xj) <

SUpP, « x = F({E) — 5(1) < 1/2 — 5(1) < 0.
In neither case can F' be a distribution function. Therefore we
must have X* = X, is the location of the largest jump.

For z > 1/2, conditional on A, and X* € [g—,q+],
we know that X* is at the largest jump in [¢_, ¢;]. More-
over, since the learner would not have submitted any queries
between ¢_ and ¢4 at time ¢, the events conditioned on do
not contain any information on the location of the largest
jump. Therefore the conditional distribution of X* is uni-
form. To prove the claim rigorously, we need to invoke the
self-similarity property of the Dirichlet process.

Recall that F' follows a Dirichlet Process is supported on
[0, 1] with base distribution g 1}. The self-similarity property
asserts that for any finite partition 0 = z9g < z; < ... <
ZTpn—1 <z, = 1 of [0, 1], conditional on the realization of F’
on zi,...,Ty, the restriction of F' onto each subinterval is
also a Dirichlet process scaled. In particular, for each j < n,
we have

Flig. w0 —
L <M ‘ F(z1)=t1,...,F(zn_1) —tn1>
tit1 — 1

=Dp ()\[x.77$j+1] ) a\ ([xj7 ijrl])) )

where [F]; denotes the function F' restricted to interval I,
Ar denotes the uniform probability measure on I, and \(7)
denotes the Lebesgue measure of I. This property follows from
the definition of the Dirichlet process. See Section A in the
appendix for a proof.

Importantly, the following is a direct consequence of the
self-similarity property. For each interval [a,b] C [0,1],
conditional on the value of F'(a) and F'(b), the distribution
of F restricted to [a, b] is independent of the realization of F’

21

541

outside of [a, b]. As a result, for each interval I C [0, 1], given
X* € I, the learner cannot gain any additional information
on X* without querying in /. This property ensures that
the posterior distribution of X* conditional on A and the
responses is uniform between the two closest queries that
sandwich X *. Therefore, the learner cannot beat the bisection
search on the event A.

By definition of the learner’s interval I;, none of the first
i queries q1,...,q; can be in I; N J = [g—,q+]. Since X*
is determined by the values of F inside [¢_, ¢+], by the self-
similarity property of the Dirichlet process, X * is independent
of the responses to the first ¢ queries conditioning on the values
of F(q_) and F(qy ). Therefore the event {r() = p(9)} can be
dropped from B without changing the conditional distribution
of X*. The indicator 1{X* € J} is completely determined by
whether p_ and p; are above or below 1/2; and the outside
randomness Y is independent of F'. Therefore we can drop
both events {X* € J} and {Y = y}, and obtain

LXT|B)=L(X" [ Az Flg-) = p-, Flg+) = p+) -

By the self-similarity property of the Dirichlet process,
given F(qg-) = p- and F(qy) = p4.the conditional
distribution of (F' — p_)/(p4+ — p—) restricted to [g—,q]
is also a Dirichlet process with the uniform base distribu-
tion on [¢_,q4] and scaling parameter o/ = a(qy — q-).
In other words, there exist ancillary random vectors { X} }r>1,
{0, }x>1 generated from a stick-breaking process that charac-
terize the distribution function

F=(F-p)/(ps —p-)

on [g—,q4). In addition, X g Unif[g_, q+]

({ X%} e>1, {8 e>1) is independent of (F'(q-), F'(q+)).

We claim that for all z > 1/2, the event A, = {3) = 2}
is equivalent to {ﬂzl) = z/(p+ — p-)}. Suppose A, holds,
and say ;) = ;. Then by (21), X* = X;. Thus [q_, qy]
contains the largest jump in F'. Since Fisa scaled version
of F restricted to [g—, 4], the largest jump of F' must be of
size z/(p+ — p—). Conversely, if 621) = z/(p+ — p—), then
F contains a jump of size z. When z > 1/2, this must be the
largest jump in F, i.e. B1) = z.

Note that conditional on A, for z > 1/ 2, X * can be written
as the location of the largest jump in F. We have shown
that X* and A, can both be expressed as functions that only
depend on {X}, 5, }. As a result,

LX*| Az, F(g-) = p—, Fa+) = p+)

=L (location of the largest jump in F

and

/ —72 pr— pr—
6<1>*p+_p_,F(q7) p—, Flq4) p+)

(i)ﬁ(location of the largest jump in F

z
By = ——
W p+—pf)

(:b)ﬁ (location of the largest jump in f)

(c) .
9L(X}) = Uniflg-, g,
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where (a) is from the independence between
({Xite=1, {Bpte=1) and  (F(g-), F(g+)); (b) holds
because by the stick-breaking characterization of the Dirichlet
process, the locations of the jumps {0 }r>1 and the sizes of
the jumps {Xj}r>1 are independent. More specifically, let
j be the index of the largest jump, i.e., 521) = ;. Then j
is only a function of {fx}r>1 and is therefore independent
of {X}}k>1. We have X7 is independent of {f} }>1, thus
we can drop the conditional event which only depends
on {f}}r>1; (c) is again from the independence of j and
{B}.}r<1. Since {X| }r>1 are distributed i.i.d. Unif ¢_, ¢4,
we have £(X}) = L(X]) = Uniflg—, ¢4]. O

Proof of Lemma 4.: From Lemma 3, we have L(X* | B) =
Unif[Z; N J]. We first claim that as a consequence,

Lit1 N J|
& (log 220711
(°g|nmJ|
>-1 {Qi+1 = 0i(p",y) € ImJ}.

The inequality (22) can be interpreted as follows. Firstly, the
interval I;NJ* is only shortened when querying within 7;NJ*.
Secondly, conditional on all instances of the behavior of F'
outside of I; NJ*, on average, no query can reduce the length
of I; N J* by more than a half.

By taking the union of the events 53 over all the variables
z > 1/2,y € [0,1], p_ < 1/2, py > 1/2, p), and J
ranging over Jy, ..., Jy/5, we arrive at the event A. Therefore,
integrating (22) over these variables yields that

[Liv1 N J7|
E(log——F | A
(e 7
—P{qi_;,_lEIiﬂJ*l.A}
—P{qH_lEJ*lA}.

(22)

>
>

It remains to verify (22). If g;11 ¢ I; N J, then I;;1 NJ =
I; N J and the claim (22) trivially holds. If ¢;4+1 € I, N J,
we have

[Liv1 0 J|
log AL <1
LN
=1{X" < qu}logu—l—
q+ — q-
1{X™* > qiy1}1og Lr gl qi“-
9+ — 4-
Since the conditional distribution of X* is uniform, we have
Lit1 N J|
B (1og L2071
( STARYT
> inf [tlogt+ (1 —t)log(l —t)] = —1.

te[0,1]

We have finished the proof of (22) and, by consequence,
Lemma 4. (]

VI. EXTENSION TO MULTIDIMENSIONS

In this section we extend our results under the maximin
setting to optimization of convex separable functions in R¢.
Separable convex optimization arises in a variety applications
such as inventory control in operation research, resource

allocation in networking, and distributed optimization in multi-
agent networks [46], [47], [48], when the global objection
function is a sum of the local objective functions and each
local objective function depends only on one component of
the decision variable. Here, separability ensures that there is
no cross-coordinate information leakage. Further generalizing
our result to allow for general (non-separable) functions in R¢
is left as future work.

Suppose the true function f* : [0,1]¢ — R belongs to a
family of convex separable functions

d
F = {f Cf@) =) filw), fi € ]:i} ;
i=1
where each F; is a family of one-dimensional convex func-
tions. For each query ¢; € [0,1]¢ submitted, the learner
receives the gradient vector V f(¢;) = (f1(¢j1)---, fi(gj.4))
as the response. We say a querying strategy is e-accurate if

inf P{H)?—X* < 6/2} =1,

freF

We say ¢ is (6, L)-private if

sup inf IP’{H)?—X* §5/2}§1/L.

3 frerF )

In other words, we declare privacy breach if the adver-
sary’s estimator is within a 0/2-neighborhood around the
true minimizer with probability higher than 1/L. As in the
one-dimensional case, we need to impose some assump-
tion on the complexity of the function class F. Since F
contains only separable functions, we can simply impose
the one-dimensional assumption onto each of the d one-
dimensional function classes F1,...,F4. Below is the exten-
sion of our one-dimensional result to d dimensions.

Theorem 3: Let Ny(e, 0, L) denote the optimal query com-
plexity in dimension d under the maximin setting. Suppose
F; all satisfy Assumption 1 forall i =1,...,d. If 2¢ < § <
L=/ then

B)
204 4 log — — 2
€

SNd(€765 L)
2L 4 log? if L'/ > log 4
T LYY +1logl  ow. '

Remark 3: We choose to quantify the error of the learner
and the adversary with respect to the || - || norm because
[l — ylloo < €/2 is equivalent to |z; — y;| < ¢/2 for
all © < d, so the analysis can be elegantly reduced to the
one-dimensional case. However our result does not crucially
depend on the choice of the norm. From the basic inequality
[2]loc < [|#]]2 € Vd||z||c, we have that the optimal query
complexity can differ by at most a d-dependent additive
constant if the Euclidian norm were used instead.

Proof of the Upper Bound: Under the maximin privacy
framework, to make a strategy private, we only need to find
L functions ) .., f(F) € F whose minimizers are §-apart,
such that the query sequence for f(), ... f(F) are identical.
That would ensure that the adversary who only observes
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the query sequence cannot succeed with probability higher
than 1/L.

To construct such L functions, we design a querying strategy
that submits L'/¢ guesses d-apart along each dimension.
To recap, in Section V-A we defined a guess at x to be a pair of
e-apart queries (x, x+¢€). The guesses across the d dimensions
intersect with each other in [0,1]? to create (LY/%)? = L
cubes of diameter e that potentially contain the minimizer of
the true function f*. The guesses are submitted following the
same algorithm as in the one-dimensional case (see the upper
bound proof of Theorem 1), except with L replaced by L'/

Note that since each query is a d-dimensional vector and
the function f* is separable, we can run the search algorithms
along the d directions in parallel. More concretely, write
f*(fl,') = Zifd f:(xi)’ and let q = (QIa q2; -, Qn) be the
query sequence where ¢; = (gj1,...,¢;4) € [0,1]¢. Each
time the learner submits a query g;, she receives the gradient
vector

Via) = (1) (@), -5 (F3) (g5.a) -

For each dimension ¢, the learner leverages the gradient
information (f;)'(g;,;) and constructs the next query ¢;y1
in dimension 1, as if she were learning the minimizer of f;" in
one-dimension.
In particular, fix any dimension 1 < i < d. The first
2L'/4 queries qy 4, ..., ga11/a ; consist of L'/ pairs of queries
(guesses) that are §-apart. When § < Q’Ll/d, these guesses are
submitted along the bisection search path:
1) The first guess is at 1/2, ie., ¢1;, = 1/2 and ¢2; =
1/2 + €. The learner’s interval I is initialized to be [0, 1].

2) For each 1 < j < LY4 1, submit the (j+1)’th guess at
follows: if none of the previous guesses is correct, then
inspect the gradient (f;)'(¢2j—1,;) from the j’th guess
to deduce which half of I contains the minimizer X of
f. Update the learner’s interval I accordingly so that it
contains X *. Submit the (j + 1)’th guess at the midpoint
of the updated I. If one of the first j guesses is correct,
then update I to its right half, and submit the (j + 1)’th
guess at its midpoint.

When 6 > Q_Ll/d, only the first K guesses are submitted
along the bisection path, and the remaining L'/¢ — K guesses
are submitted via a grid search on the interval I generated from
the first K guesses. Here K is the largest integer for which
all the guesses are d-apart. Under the assumption § < L~1/¢
such a K always exists.

After all the guesses are submitted, if none of the guesses
is correct, the learner runs a simple bisection search on
a max{2_L1/d,6}—length interval until reaching e-accuracy;
otherwise the learner simply fills the remaining queries along
this dimension with trivial queries ¢; ; = 1 for all j > 2L1/d,
The total number of queries is exactly the desired upper bound
214 4 log(max{2~L"" 5} /e).

Next we show this querying strategy is (9, L)-private. Here
we give the proof in the § < 2-L"" case. The proof for the
5> 271" case follows analogously. For each 1, it is easy to
see that if

X} €Ujepall —277,1 =277 4 ¢]

543

then the queries along the ¢’th dimension would always be L
1/d

guesses at 1/2,3/4,...,1 -2~ ' followed by trivial queries

at 1. As a result, for all f* € F such that

X e [[ (Ujepmall =279, 1279 +¢]) 2,
i<d

share the same query sequence. Clearly .J contains (L'/ dyd
members that are separated by at least 0 in || - ||« distance.
Hence the strategy is (d, L)-private. O

Proof of the Lower Bound: Let ¢ be a querying strategy
that is e-accurate and (¢, L)-private. Via the same argument in
one-dimension, we can show that there is at least one query
sequence ¢ whose information set Z(¢) has a ¢/2-covering
number at least L. For each i = 1,...,d, let

Zi(q) = {x; s x = (a1, ..
for some x € [0,1]%}

Ty 2q) € Z(q)

be the projection of Z(g) to dimension 4. Then we have Z(q) C
Higd Zi(q), thus

L <N, (I(q)a6/27 H ’ ”oo)

<N | [1Zi@).6/2, 11 - lloo

i<d

=[N @ita).6/2.1- 1)

i<d

Therefore for at least one ¢ < d, we must have that the 6/2-

covering number of the projection Z;(¢) is no less than L'/4,
1/d

It follows that Z;(q) contains x§1), A xEL ) that are at least

d/2-apart. For the strategy to be e-accurate, the queries in ¢

along this dimension 7 must contain at least L'/¢ pairs of

1/d
e-apart queries sandwiching x§1), e ,xz(-L ). The rest of the
proof exactly follows the one-dimensional case. (|
APPENDIX A

SELF-SIMILARITY PROPERTY OF THE DIRICHLET PROCESS

Proposition 1: Let i be a random probability measure on X
that follows a Dirichlet Process with base distribution function
o and concentration parameter c. Let X = U;<, B; be an
arbitrary finite partition of X'. Then for all ¢ < n, we have

pB, | (B1), ... u(Bp) ~ DP (o B, , o (Bi))

where 1, and o, g, denote the conditional probability mea-
sures of p and o respectively, conditioned on B;.

Proof: For simplicity we present the proof only for
i = 1. The proof for general ¢ is identical. Let By =
Uj<mA; be an arbitrary finite partition of B;. Then
(A1,...,Apm, Ba,...,By,) is a partition of X’. Therefore from
the definition of the Dirichlet Process, we have

(N(Al)7"'>M(Am)7u(32)a'"au(Bn))
~Dir (o (A1) , - .-, oo (Am) o (Bz) 5 - .- apto (Bn)) -
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From the density function of the Dirichlet distribution, we can
derive that

(1 (A1), 1 (Am))
1(Bz2), ..., (Bn)
1- Zizz w(Bi) "
~Dir (apo (A1) ..., apo (An)) .
Again by definition of the Dirichlet Process, we have
iy | 1 (Bz),. .. pu(Bn)

~DP ([p0] , - @) = DP (0,8, , o (B1)) ,

where [10] g, denotes the measure p restricted to By, which
is not necessarily a probability measure. U

Consider the special case where X' = [0, 1]. As a corollary
of Proposition 1, we have for any finite partition 0 = 2y <
1 <...<zp_1 <z, =10f [0,1],

r <[F][x779€7+1] —t
tit1 — t;

F((El) = tl, . ,F(l’nfl) = tn1>

= DP (10, (21,051 1]» OHto [Tis Tit1]) -

APPENDIX B
PROOF OF LEMMA 2

In this section we prove the technical result Lemma 2 on
the Beta distribution. The statement of Lemma 2 is repeated
below.

Lemma 2: Suppose X ~ Beta(at,a(l — t)) for some
a > 0, then for all ¢ € (0,1),

ha < %P{X >1/2} < H,,
where hq = £2772 and H, = (3 +2e Mo+ 14.

Proof: We can assume WOLG that ¢ € (0,1/2]. That is
because for t > 1/2, 1 — X ~ Beta(a(l —t), at) and

d
12} = G P -
Let ¢;(z) = 2 1(1 — 2)*0=Y=1 be the unnormalized

density of the Beta(at, a(1—t)) distribution. Since 4 ¢, (z) =
aln 7%= ¢4 (), we have

d
- > .
ZP{X > X >1/2}

%P{X >1/2}

_d ‘Mm)d“’
dt fol bu(x

_al/

6z dx/ e
— d)t( )dx/o lnl_

o ] /
)

E <]l{X > 1/2}In+ i(X>

o]

=

—P{X >1/2)E <1n -

To prove the lemma, we claim that for ¢ < 1/2,

)

2772t <aFE (11{)( > 1/2}1n1

<max{3aq, 12}; (23)
2 (E ),
X
<—aP{X >1/2}E (ln - X)
<2 la +2, (24)

where [+ = max{-, O} stands for the positive part.

The upper bound £P{X > 1/2} < H, follows easily from
adding up the two upper bounds. For the lower bound on the
derivative, the two lower bounds in (23) and (24) yield

d —o—2 !
ZP{X >1/2} >2 (” (5 - ﬁ))

21270‘72 = ha,
3

where the last equality is achieved at ¢ = 1/3.

It remains to prove (23) and (24). Let us start from the
cross-product term (23). Since 1{X > 1/2}In%; > 0,
by Tonelli’s theorem,

E(]l{X > 1/2}1n1i(X>
—/OOO]P’{]I{X>1/2}1n1i(X >s}ds

[o.¢] eS
:/ ]P’{X> }ds.
0 1+es

The density function of X allows us to write
X
E(1{X >1/2}1
(10r =12y )

fo f e atfl(l _ x)a(lft)fldxds
1+eS
B(at,a(1 —1t)) ’

(25)

where B(a, 3) = fol 5*~1(1 — s)~1ds is the Beta function.
First we prove the upper bound in (23). For the numerator,
since at —1> —1 and z > > 1/2, we have %'~ < 2,

Trer
and
1
/ xat—l(l _ 33)04(1—t)—1daj
1
§2/ (1= z)* 0=y
_2(1 +es)—oz(1—t)
 a(l-1t)
Therefore the numerator of (25) is upper bounded by
o —a(l-t)s
2/ ¢ ds—— 2 <38
o a(l—1t) a?(1—1)2 ~ a?
for all ¢ < 1/2. Moreover,
Flat)I'(a(l —t
Blat, a1 - 1)) = “eD@1 1)
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is minimized at ¢ = 1/2 by the log-convexity of the Gamma
function I'(z) [49], where I'(z) = [;° s* 'e~*ds satisifying
I'(z+ 1) = 2I'(2) for z > 0. Hence it follows from (25) that
for all t < 1/2,

8T ()

aE (IL{X > 1/2}ln1i(X> < T (/2"

We claim that the right-hand side of (26) is a non-decreasing

(26)

function in a on (0,00). To see that, let g(a) =
8T (a)/(al(a/2)?). We have
d IMa) 1 TI'(a/2)
aa M) =T T T T
—y() — e/ - @D

Here ¢(-) = I'(+)/T'(+) is the digamma function with expan-
sion [50, 6.3.16]

Y(l+2) =

_7+Zn+z

where v is the Euler-Mascheroni constant. Applying the
expansion on (27) yields

d = a—1 a/2 -1 1
— (1 = — _Z
da(ng(a)) nz:l(n—f—a—l n+a/2—1> «
a-1  a/2-1 _1_0
“l+a-1 1+4a/2-1 o

We have shown that g is a non-decreasing function on R*.
It follows from (26) that for all @ < 4, aE(1{X >
1/2}In %) < g(4) = 12.

Next We show that for all o > 4, the cross-product term
in (23) is upper bounded by 3. By Markov’s inequality,

plx>_¢ L pli x< 1
1+4e® 1+es
1
P{ 2140

- X -
1 +e® [ }
Since 1 — X ~ Beta(a(l — t), at), we have
. |: 1 :| B fOl J304(1—15)—2(1 _ x)ozt—ldaj
1-X| fol go(1=6)=1(] — x)atﬂdx'

For all « > 4 and t < 1/2, a(l —t) — 1 > 0, hence both
integrals converge, and
1 B(a(1 —t) — 1, at)

. {1—){] ~ Bla(l—t),at)
_T(a(d =) = Dl'(at)/T(a - 1)
[(a(l —1))l(at)/T(a)

a—1
all—t)—1~

when « > 4. Therefore

aE (Il{X > 1/2}1n1 i(

o0 1
SSa/ ds < 3a.
0 1+es

545

That finishes the proof of the upper bound in (23). Next
we prove the lower bound in (23). Since 2z*~! >
min{(1/2)*~1 1} for all > e*/(1 + ¢*) > 1/2, we have
that the numerator in (25) is lower bounded by

min{(%)at_l,l}/ooo/; 1

D=1 drds

min{ 1) ,1} a(i—1)
= / ds
a(l — 0 1+ e’
min{ % ,1} % a(l R
> e—sa(l—t)ds
a(l—1) 0
(l)max{a l,a(l—t)} 9
2
PEITR TR ? (28)

To handle the denominator in (23), note that (1 —xz)*(1—9~1 <
2 for all 2 < 1/2 and 2**~! < 2 for all & > 1/2. Therefore
the denominator in (23)

B(at,a(l —t))

1/2 1
§2/ x“t—lda:+2/ (1—
0 1/2

m)(y(l—t)—ldx

g—at  9—a(l-t)

- [7 * m}

< (29)
at(1—1t)

Combining (25), (28) and (29) yields

X
E(1{X >1/2}1
B (11X 2 12 =5 )
27%at(1—t) _ . o

Next let us prove (24). Firstly, write
B (In 12 ) =u(af) - w(@) - (Wlali - ) - v(@)
~(at) ~ v(a(l ~ 1)

where we recall that ¢(z) = L InT(z) is the digamma
function. Since I' is log-convex on R™, 7 is non-decreasing.
Therefore for all ¢ < 1/2, we have

X >0

_x /)=

Furthermore, it has been shown in [51, Eq (2.2)] that for all
z > 0, the digamma function satisfies

—alP{X > 1/2}E (ln1

2%: <lnz—19(z) < % (30)
Therefore
X
—E (1n T X)
=¢(a(l 1)) —p(at)
1 1
>In(a(l —t)) — ol 1) 1 (ozt)+ﬁ
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1 /1 1
2= \|l5 77— (€29)

a\2t 1-t
when ¢ < 1/2.

We still need to bound P{X > 1/2} from below. As in the
proof of (23), we can write

1 at— a(l—t)—
s gy
=20 B(at,a(1 —1t))

(32)

Again from z*~! > min{(1/2)**"1, 1} for all > 1/2,
we have that the numerator of (32) is bounded from below by

max{(%)at_l,l}/ll

—
(1—x)*0="1gg > 2—
/2 a

Combining the last displayed equation with (29) and (32)
yields that

« Oét(12— t) Z 2—04—2t

for all ¢ < 1/2. In view of (31), it follows that

X a1t
> 2 S ).
X))~ 21—t

—aP{X > %}E(lnl_

That concludes the proof of the lower bound in (24). Next we
move to the upper bound in (24). By Markov’s inequality,
P{X >1/2} <2EX = 2t. (33)

Again from (30) we have that for all ¢ < 1/2,

()
=y(a(l —t)) — P(at)
<hn(a(l-0) = o5 = (1n(at) - é)

N 2—3t
t 2at(1 —t)’

=In

Combining the last displayed equation with (33) yields that

—aP{X > 1/2}E (ln 3 fx)

2 — 3t
2at(1 —t))

2-3t

1—t
<2at | In ; +

<(2tIn(1/t))a + <2 ta 2.

We have thus established the inequalities (23) and (24). O
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