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Fig. 1. A gallery of acropolises. Trained on a single acropolis shape (top left), our proposed generative model is able to produce a diverse gallery of acropolises,
possibly of different sizes and aspect ratios. The generated shapes depict rich variations (such as the dents and breakage of the columns) across different
scales, and at the same time retain the essential structure of the reference shape (such as the layout of the columns on the rectangular base). ©The original 3D
acropolis model (top left) by choly kurd under Standard License Editorial Use Only (turbosquid.com).

Existing generative models for 3D shapes are typically trained on a large
3D dataset, often of a specific object category. In this paper, we investigate
the deep generative model that learns from only a single reference 3D shape.
Specifically, we present a multi-scale GAN-based model designed to capture
the input shape’s geometric features across a range of spatial scales. To
avoid large memory and computational cost induced by operating on the
3D volume, we build our generator atop the tri-plane hybrid representation,
which requires only 2D convolutions. We train our generative model on
a voxel pyramid of the reference shape, without the need of any external
supervision or manual annotation. Once trained, our model can generate
diverse and high-quality 3D shapes possibly of different sizes and aspect
ratios. The resulting shapes present variations across different scales, and at
the same time retain the global structure of the reference shape. Through
extensive evaluation, both qualitative and quantitative, we demonstrate that
our model can generate 3D shapes of various types.!
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1 INTRODUCTION

The user creation of novel 3D digital shapes is nontrivial, requiring
technical know-how and a sense of art, often taking time and pa-
tience. It is such a laborious process that motivates the development
of computer algorithms that create shapes—new, diverse, and high-
quality 3D shapes created in a fully automatic fashion. Leveraging
recent advance in deep learning, research in this direction has been
vibrant [Achlioptas et al. 2018; Chen and Zhang 2019; Jayaraman
et al. 2022; Nash et al. 2020; Wu et al. 2016]: the general theme here
is to develop a generative model able to learn from a training dataset
to generate 3D shapes.

The training dataset for almost all existing 3D generative models
must be sufficiently large—often provided in a specific category such
as chairs [Chang et al. 2015], mechanical parts [Willis et al. 2021]
and terrains [Guérin et al. 2017]. However, collecting a large set
of 3D shapes in the first place is by no means an easy task. Unlike
images, which can be easily captured by cameras and are widely
available online, 3D shapes require significant manual effort to 3D
scan or model in modern 3D modeling software. Therefore, to use a
learning-based generative model for creating 3D shapes, one must
address the chicken and egg problem, unless the generative model
is liberated from demanding a large training dataset.

Our work aims for this liberation. We present a deep generative
model that learns from just a single 3D shape, without the need of
any manual annotation or external data. Our goal is conceptually
similar to example-based 2D texture synthesis [Wei et al. 2009]:
produce new, diverse, as many as needed samples from a given
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input example. But our model is not merely meant to generate
stationary 3D textures. It strives to produce diverse shape variations
while preserving the global structure presented in the input shape.

As an example shown in Fig. 1, an acropolis shape is provided
to train our generative model. The generated shapes all share the
same global structure as the input example: a number of columns
are placed on the edge of a rectangular base, leaving the central
chamber area open. Meanwhile, they are all different. They have
varying local features, such as different dents and breakage of the
columns. Our model can further synthesize new shapes that have
bounding box sizes and aspect ratios different from the input. We
refer the reader to Fig. 6 and the appendix (Fig. 13 and Fig. 14) for a
range of example shapes and synthesized results.

Technically, our work is inspired by the recent advance in single
image generative adversarial networks (GANs) [Hinz et al. 2021;
Shaham et al. 2019], wherein the goal is to learn the distribution
of image patches on a single input image. Similar in spirit to those
works, our generative model is based on a multi-scale, hierarchical
GAN architecture (see Fig. 2), trained on a voxel pyramid of the
input 3D shape. The voxel pyramid is responsible for capturing
geometric features across multiple scales, from global structures
to local details. However, since each level of the voxel pyramid is
a 3D grid, it has a large memory footprint. To make the matter
worse, the 3D convolution needed to operate on a 3D grid produces
intermediate feature maps that require even larger memory. The
intensive memory requirement severely limits the grid resolution
and in turn the generative model’s ability to learn geometric details.

We therefore seek for sidestepping 3D convolutions. Our genera-
tive model operates on the tri-plane feature map—which encodes a
shape in three axis-aligned 2D feature maps—followed by a small
multilayer perceptron (MLP) network that describes the generated
shape as a neural implicit function [Mescheder et al. 2019; Peng et al.
2020]. The use of tri-plane feature map significantly reduces mem-
ory and computation cost. It allows the generative model to learn
shape features across a wide range of scales, and the MLP network
enables the model to output a shape at an arbitrary resolution.

To our knowledge, this is the first deep generative model that
synthesizes novel 3D shapes from a single example while capturing
shape features across multiple scales. We demonstrate generation
results on various 3D shapes of different categories. We also perform
quantitative evaluations to compare our method to several baselines
and prior methods. In addition, we provide ablation studies to justify
our network design, training strategy, and data construction.

2 RELATED WORK

3D model synthesis. Similar to texture synthesis [Wei et al. 2009],
traditional 3D shape synthesis techniques can be largely classified
into procedural and example-based methods. Procedural modeling
techniques [Ebert et al. 2003] have been extensively studied over
the years. They typically require the specification of many rules for
generating shapes, and therefore they are often designed for specific
classes of objects, such as terrains [Musgrave et al. 1989; Smelik
et al. 2009], cities [Miiller et al. 2006; Parish and Miiller 2001; Talton
et al. 2011], and trees [Longay et al. 2012; Méch and Prusinkiewicz
1996; Prusinkiewicz et al. 2001].
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Example-based methods are more general-purpose, aiming to
synthesize new shapes by analyzing the given example(s). The pi-
oneering work in this direction [Funkhouser et al. 2004] and oth-
ers [Kalogerakis et al. 2012; Xu et al. 2012] synthesize novel shapes
by assembling components retrieved from a database of segmented
shapes. Another line of works [Bokeloh et al. 2010; Merrell 2007;
Merrell and Manocha 2008; Zhou et al. 2007] analyze a single input
shape and generate larger 3D models by exploiting repeated patterns
within the input example. However, these techniques either rely on
manual decomposition [Merrell 2007] or require exact symmetry
[Bokeloh et al. 2010].

Our work also falls into the category of example-based 3D mod-
eling. In contrast to prior methods that usually rely on hand-crafted
rules, we leverage neural networks to automatically learn multi-
scale shape features of the single input example. Our method is
also related to multi-scale texture synthesis [Han et al. 2008], as we
build our network in a hierarchical manner and train it on a voxel
pyramid constructed from the input 3D shape.

Deep generative models for 3D shapes. Since the introduction of
deep generative networks such as Generative Adversarial Network
(GAN) [Goodfellow et al. 2014] and Variational Autoencoder (VAE)
[Kingma and Welling 2014], developing deep generative models for
3D shapes has attracted immense research interest. Existing works
learn to produce 3D shapes in different representations, including
voxels [Chen et al. 2021; Wu et al. 2016], point clouds [Achlioptas
etal. 2018; Cai et al. 2020; Li et al. 2021; Yang et al. 2019], meshes [Gao
et al. 2021; Hertz et al. 2020; Liu et al. 2020; Nash et al. 2020; Pavllo
et al. 2021], implicit functions [Chen and Zhang 2019; Kleineberg
et al. 2020; Mescheder et al. 2019; Park et al. 2019], multi-charts
[Ben-Hamu et al. 2018; Groueix et al. 2018],structural primitives
[Jones et al. 2020; Li et al. 2017; Mo et al. 2019; Wu et al. 2020], and
parametric models [Chen et al. 2020; Jayaraman et al. 2022; Wu et al.
2021]. Nearly all these methods are trained on a large dataset of
category-specific 3D shapes, e.g., ShapeNet [Chang et al. 2015].

Although the use of a large dataset enables the generative model
to learn rich information shared across various shape instances, it
also limits the application scope of these methods. Unlike images,
which can be easily captured and downloaded, collecting a large,
high-quality dataset of 3D shapes is much more expensive. Moreover,
many artistically designed shapes have unique structures, and thus
it is hard, if not impossible, to learn them from a large data collection.
In this work, instead of learning a shape distribution from a large
dataset, we focus on learning shape features across multiple scales
from a single 3D shape. Without the need of a large 3D dataset, even
from a unique shape (e.g., designed by a 3D artist), our method is
able to learn and generate similar but new shapes.

Learning a generative model from a single example. In several re-
cent works, researchers start to explore generative models that are
learned from a single example in various data domain, such as im-
ages [Chen et al. 2022a; Granot et al. 2021; Hinz et al. 2021; Shaham
et al. 2019; Shocher et al. 2019; Zhou et al. 2018], videos [Haim et al.
2021], audio [Greshler et al. 2021], 3D meshes [Hertz et al. 2020]
and motion sequences [Li et al. 2022]. There are also data-driven
methods on 3D mesh reconstruction [Hanocka et al. 2020] and styl-
ization [Michel et al. 2022] under one-shot setting. A common theme
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Fig. 2. Model overview. Our model consists of a pyramid of generators {G; } and discriminators {D; }, trained on a voxel pyramid {x;} of a single reference
shape. We train our model in a progressive manner, from the coarsest scale (top) to the finest scale (bottom). The shape generation starts with a random 3D
noise Zy of same dimensions as the coarsest voxel grid x¢. Zj is first projected by a network P on the three feature planes to obtain the initial tri-plane feature
map P(Zy), which is then fed into the first generator Gy. The generator G; at level i outputs a tri-plane map T;, which is subsequently upsampled and served
as input to the next level. When training the i-th level discriminator D;, the output tri-plane feature map T; is decoded by an MLP decoder M; to get the
generated shape x; (in a voxelized representation). D; aims to distinguish individual patches in x; from their counterparts in x;. More details are presented

in Sec. 3.2.

behind these works is to capture the internal patch distribution of a
given example, and then apply the learned knowledge in the gen-
eration process. The seminal work, SiInGAN [Shaham et al. 2019],
proposes to learn a single image generative model by training a
hierarchy of 2D convolutional patch-GANs. Their method is not
restricted to stationary texture synthesis, and it can also synthesize
natural images that present large-scale structures. But one can not
simply transfer their method for 3D shape synthesis, as it would re-
quire 3D CNNs on 3D voxel grids, which are inefficient and memory
intensive, especially when a high resolution output is desired.

To the best of our knowledge, DGTS [Hertz et al. 2020] is the
only prior work on learning a generative model from a single 3D
shape. It learns a convolutional network on triangle meshes, pre-
dicting vertex displacement after subdivision. However, this method
is mainly designed for geometric texture transfer, thus limited to
the synthesis of stationary and isometric local geometric features.
Moreover, its generated shapes are limited to the topology of the
input. Our proposed method, on the contrary, learns from a voxel
representation. It can capture geometric features across multiple
scales and generate samples that have different topologies from
the input. To avoid the memory cost for directly operating on 3D
voxel grids, our generator leverages an efficient tri-plane hybrid
representation, and thereby only 2D convolutions are needed.

3 METHOD

Overview. A natural way of capturing shape features across mul-
tiple scales is to use a hierarchical representation of the input shape.
Provided an input shape x, we voxelize it and construct a voxel
pyramid {xo, ..., xN'}, where x; indicates a voxelized version of x at

resolution sy N, for a user-specified size sy and a downsampling
factor r < 1. All x; are voxelized independently. Correspondingly,
our generative model consists of a hierarchy of GANSs (see our net-
work overview in Fig. 2). At each level i, the generator aims to
synthesize a shape indistinguishable from x;. Its output is fed as an
input to the generator at level i + 1 to propagate the synthesized
large-scale structure to the finer level.

Crucial to this hierarchy of GANS is the structure of each gen-
erator. To operate on voxel grids, typically used is the 3D convo-
lution. But the hierarchy of voxel grids and the 3D convolution
results—which extend a 3D grid by another dimension, namely the
number of channels—require a significant amount of memory (see
Table 2 later). This intensive memory footprint prevents us from
using a high resolution grid, thus limiting the finest features that
the generative model can learn. To overcome this limitation, we
design the generator to operate not on a voxel grid directly, but
on its tri-plane feature map (see Sec. 3.1). The generator takes as
input a tri-plane map and outputs another tri-plane map. The output
map, equipped with an MLP network, serves as a neural implicit
function—one that allows the output shape to be constructed at an
arbitrary resolution.

The discriminators in our GAN hierarchy have simple structures,
each composed of three convolutional layers. A discriminator is
responsible for distinguishing the synthesized and input shape in
terms of local voxel patches of the same size (11 X 11 X 11 in our im-
plementation). On a different level of the hierarchy, the same size of
a local patch captures shape features in different scales. In this way,
the low-level discriminators force our generative model to preserve
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Fig. 3. Tri-plane feature map. A spatial position p is projected to three
feature planes (Fxy, Fxz, Fyz) to query the corresponding features, which
are then concatenated and fed into an MLP M to obtain o(p), the probability
of p being occupied by the 3D shape. Here for the sake of visualization, the
three planes have equal size. In practice, they can be of different aspect
ratios as long as their dimensions agree with each other (See Sec. 3.1 for
details).

large-scale global structures, while the high-level discriminators
encourage small-scale local variations.

3.1 Tri-plane Hybrid Representation

Although a 3D shape has a volume, its shape features are on its sur-
face; away from its surface, the grid data is featureless. We therefore
seek to encode a 3D shape into 2D feature maps. In particular, we
build our generative model upon the tri-plane hybrid representation
emerged in recent neural implicit function literature [Chan et al.
2021; Chen et al. 2022b; Peng et al. 2020].

Instead of representing a 3D shape on a voxel grid of size DXHXW,
the tri-plane hybrid representation expresses the 3D shape using
a tri-plane feature map T together with a small MLP network M.
The tri-plane feature map T contains three axis-aligned 2D feature
maps,

T= (ny> sz:Fyz)a (1)

where Fyy € REXDxH g e REXDXW 3nq Fy, € ROXHXW | ith
C being the number of channels. Consider a 3D position p € R3. Its
occupancy by a 3D shape is related to its tri-plane feature map in
the following way (see Fig. 3). First, p is projected onto the three
axis-aligned planes to obtain its 2D coordinates, pxy, pxz, and pyz,
respectively. Based on the 2D coordinates, we query the tri-plane
feature map to obtain p’s feature vector f(p):

ﬁcy(p) = interP(ny,ny),

fxz(p) = interp(Fxz, pxz),

Jyz(p) = interp(Fyz, pyz),
fp) = [fy: frzs fyzl,

where interp(-, q) performs bilinear interpolation of a 2D feature
map at position g, akin to a 2D texture value lookup; and f(p) € R3C
is simply a concatenation of the three interpolation results. Lastly,
an additional lightweight MLP decoder M takes in f(p) and outputs
p’s occupancy probability,

o(p) = M(f(p)), 3)

@
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Fig. 4. The projection network P. Random 3D noise Zj is projected by P
along three axes onto three axis-aligned feature planes. Along each axis, Z
is first average pooled to a 2D feature map with Cy channels, which is then
lifted to C channels through a 2D convolutional layer with kernel size 1 x 1.

which is an implicit representation of the 3D shape. If o(p) is deter-
mined, one can use the Marching Cubes algorithm [Lorensen and
Cline 1987] to construct the shape’s triangle mesh.

Note that unlike previous works [Chan et al. 2021; Peng et al.
2020], here we intentionally exclude the 3D position of p from
the input of the MLP. This is to ensure the generator position-
invariant—a desired property that will become clear in Sec. 3.2.

From now on, we denote M(T) € RPXHXW a5 decoding the
entire 3D volume of grid size D X H X W from the tri-plane feature
map T, a shorthand for querying every grid point through M.

3.2 Multi-scale Generation

For the purpose of multi-scale shape generation, we need to organize
tri-plane feature maps in a hierarchical fashion. This also sets our
tri-plane maps apart from those previously used in neural implicit
functions [Chan et al. 2021; Peng et al. 2020].

Generator. In our GAN hierarchy, the generator G; at level i out-
puts a tri-plane feature map T; whose spatial resolution matches x;
(see Fig. 2). The output T; on the one hand is decoded by an MLP
network M; into a generated shape x; = M;(T;), which is in turn
examined by the discriminator D; at the same level. On the other
hand, T;, after upsampled, serves as an input to the generator Gj41
at the next level to produce tri-plane map Tj;1, namely,

Ti+1 = Git1 ((T) T, zir1)s i20, 4

where (T;) T bilinearly upsamples each of the three 2D feature maps
(F,"Cy, FL,, F;Z) by a factor of % such that their spatial dimensions
match x;41. In this way, the larger scale shape structures synthesized
by G;j is propagated into the next generator G;;1 to add finer scale
details. The second input z;41 indicates the noise to introduce ran-
domness in the generation process, containing three independent

spatial Gaussian noise maps, z?’yl, zi1 and z’y+zl.



Concretely, the generator G;41 performs the following operations,

Fry =(Fy) T2y (2 + (Fxy) 1,
F’“ xz)T+¢;§1<z’“ + (Fx2) 1, 5)
Fyzt =(Fy2) T+ (2 + (Fy2) 1),

where Yy, Yxz, ¥y are three 4-layer 2D convolutional networks,
wherein each layer has a kernel size 3 X 3. Figure 5 depicts the
generator structure for i > 1.

The first generator Gy is slightly different. Although it has the
same network structure as others, it takes only one input, the tri-
plane map, but not the noise. Thus, it has no skip connections (those
shown in Fig. 5). Since there is no lower level generator to provide
the input tri-plane map, the tri-plane map to Gy comes from a 3D
noise Zy: We use a network module P (see Fig. 4 for its structure) to
project Zy and produce the initial tri-plane feature map P(Z). In
short, the first generator Gy produces a tri-plane map Ty through
To = Go(P(Zo))

We note that a seemingly simpler option is to use three inde-
pendent 2D noise maps to form a tri-plane map input to Gy, and
thereby no projection network P is needed. This approach, however,
produces suboptimal results, because according to the tri-plane map
construction in (2), its three 2D feature maps must be correlated.
See Sec. 4.2 for an ablation study on our choice.

Overall, the generators in our GAN hierarchy are fully convolu-
tional, operating solely on 2D feature maps. Also the MLP decoder
in (3) is position-invariant. Consequently, at inference time, we are
able to generate shapes with the sizes and aspect ratios different
from the input shape (see Fig. 6). This can be easily achieved by sam-
pling an input 3D noise Z, with user specified spatial dimensions,
not necessarily the input shape’s spatial dimensions.

Discriminator. The discriminators in our GAN hierarchy take as
input either the generated shape x; = M;(T;) or the example shape
x;i, both of which are provided in voxelized representation and have
the same resolution. The discriminators all have the same simple
structure: a 3-layer 3D convolutional network, wherein each layer
has the kernel size 3 X 3 X 3, and the first layer (with the stride=2)
halves the input grid’s resolution. Thus, every discriminator has the
same receptive field (11 X 11 x 11). The output of the discriminator is
a 3D score map in which every element classifies the corresponding
11 X 11 X 11 patch of the input voxel grid to be fake or real.

Unlike the generators, the discriminators can afford to use 3D
convolutions on 3D voxel grids, as they consume much less memory
due to following reasons. 1) With the stride=2 in the first layer, the
input grid’s resolution is halved. 2) More importantly, the discrim-
inators are only needed at training time, and as we will describe
next, they are trained sequentially from low level to high level. At
any moment in time, only one discriminator needs to be kept in
memory. In contrast, all the generators in the GAN hierarchy must
be stacked together in order to generate a shape.

3.3 Training

We train our generators and discriminators in a progressive manner,
from the lowest level (the coarsest scale) to the highest level (the
finest scale). The loss function for training the i-th level includes an
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Fig. 5. Generator structure. To refine the upsampled tri-plane feature
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RN (FLZ) T) from the previous scale i, we
first add three independent noise maps (2%, 25, 21} ). They are then fed
into three separate 2D convolutional nets (i/xy, ¢xz; ¥yz), each containing
4 convolutional blocks with kernel size 3 X 3. There is a skip connection in
each net that adds the input feature maps to its output, producing the final

output of Gi1, i.e., Tis1 = (F}C*'yl,F}:;l,F”l .

adversarial term and a reconstruction term, namely,

niliningiix Loav(Gi, Mi, Di) + aLyec (Gi, M), (6)
where the weighting factor « is set to 10 in all our experiments. The
projection module P is also jointly trained in the lowest level (i = 0)
and kept fixed for the rest of the training. Once the training for
the i-level is finished, the weights of G; and M; stay fixed, and D;
is discarded. In addition, the weights of M; and D; will be used to
initialize the training of M;;1 and Dj41.

For the adversarial term L,g4y, since the discriminator outputs
a score map that classifies each of the 11 X 11 X 11 patches of
the voxel grid, we treat the average of the score map as the final
discriminator score and use the WGAN-GP [Gulrajani et al. 2017]
training objective, which we found through experiments produces
the best results.

The reconstruction term Ly requires that a specific sequence
of noise {Z 0> 1, . zN} is able to recover the input example at each
scale. In our experiments, we set {z}..., zy;} to zeros, and Z; to be a
fixed random 3D noise (i.e., drawn once and then kept ﬁxed). The
reconstruction loss is defined using the mean squared error,

Lree = |15} - xill%, )
where X} is the generated shape at scale i when using the specific
noise sequence {Zg, 0,...,0}.

Following suggestion by Shaham et al. [2019], we also use the
reconstructed shape to determine the standard deviation o; of the

Gaussian noise z; (one that is injected to the generator in each level).
Specifically, we set

0i =6 |[(x;i_) T —xill, >0, ®

ACM Trans. Graph., Vol. 41, No. 6, Article 224. Publication date: December 2022.



224:6  + Rundi Wu and Changxi Zheng

where 6 is a predefined value and we use 6 = 0.1 in our experiments.
For the initial 3D noise Zj at the coarsest scale, we simply set oy =
1.0.

3.4 Implementation Details

When constructing the voxel pyramid {xo, ..., x7} of the input shape,
we set the downsampling factor r = 0.75 in all our experiments. We
choose the number of scales N such that the largest dimension of
Xo is around 22 ~ 33 (i.e., 2 ~ 3 times larger than the receptive field
of the discriminator). For example, we set N to be 6 or 7 for the
resolution sy = 128. If the smallest dimension of any x; is less than
15 voxels, we resize that dimension to be 15. In addition, we apply a
Gaussian filter with o = 0.5 to each x; to smooth its boundary.

Throughout our experiments, we set the number of tri-plane
feature channels C = 32. Each MLP decoder M; has one hidden layer
of dimension 32, and we apply Sigmoid function to restrict its output
within the range [0, 1]. Each convolution block in the generator
G; and discriminator D; follows the form of Conv-InstanceNorm-
LeakyReLu [Ulyanov et al. 2016], except the last one, which has no
normalization layer and activation function. All convolutional layers
use number of channels 32. The architecture details are included in
the Table 4 of the appendix.

We train every GAN for 2000 iterations using the Adam optimizer
[Kingma and Ba 2015] with a learning rate of le—4 and ; = 0.5. Each
training iteration includes three discriminator updates followed by
three generator updates. For the WGAN-GP objective, we set its
gradient penalty weight to be 0.1. Our method is implemented using
PyTorch [Paszke et al. 2019] and trained on an Nvidia GeForce RTX
3090 GPU. With these settings, it takes about 4 hours to train our
model (at resolution of 256 along its largest dimension), and less
than 0.1 second for generating a shape at inference time.

4 EVALUATION RESULTS

We now present our evaluation experiments and results. The gener-
ated 3D shape is represented as a neural implicit function, which
we visualize in a standard process: we extract the surface mesh us-
ing Marching Cubes algorithm [Lorensen and Cline 1987] followed
by Laplacian Smoothing [Vollmer et al. 1999] to reduce Marching
Cubes’ artifacts. In Table 5 of the appendix, we list the training
resolution and number of scales for all shape eaxmples in the paper.

A gallery of generated shapes is shown in Fig. 6, and more results
are provided in Fig. 13 and Fig. 14 of the appendix. We also provide
an offline webpage in the supplementary material for interactive
view of some example results. For each example, we show two
generated samples that have the same bounding box size as the
input shape, as well as samples that have different sizes and aspect
ratios. As can be seen, all our generated shapes preserve the global
structure of the input shape, while presenting rich local variations.
Remarkably, the structural preservation and local variation adapt
to input bounding box sizes and aspect ratios, allowing the user to
quickly generate an ample assortment of shapes from a single input.

4.1 Comparison

Compared methods. We compare our method against two base-
lines. SinGAN-3D is an approach that we attempted by changing
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the 2D convolutions in SinGAN [Shaham et al. 2019] into 3D con-
volutions (to support 3D shape generation). For fair comparison,
our implementation of SinGAN-3D uses the same discriminator
structure and training strategy as used in our method. The only
difference is that SinGAN-3D uses a 3D convolutional generator op-
erating directly on voxel grids. DGTS [Hertz et al. 2020] is a prior 3D
generative model working with a single example, although it aims
to learn local geometric textures on mesh surfaces but not global
structures. We use their published source code for comparison.

When comparing our method with SinGAN-3D, we set the largest
dimension of the training shape to 128 voxels in both methods, and
use 6 or 7 training scales depending on its aspect ratio. We note that
SinGAN-3D has a much larger memory footprint than our method.
Thus, in our experiments, we can not use it at a resolution as high
as what we use in Fig. 6, because SinGAN-3D causes the GPU to
run out of memory.

Also, unlike our method, DGTS takes as input a triangle mesh.
Thus, for fair comparison, we use Marching Cubes to create a target
mesh from a voxel grid that is also provided to our method. We
then simplify it into a template mesh with 100 faces using an edge
collapsing algorithm [Garland and Heckbert 1997]. With the target
and template meshes, we use their optimization scheme to create
the training meshes in 5 scales and finally train their model.

Evaluation Metrics. To measure the quality of generated shapes,
we adopt the following metrics. LP-IoU and LP-F-score [Chen et al.
2021], according to their paper, measure the local plausibility of the
generated shape. They are defined as the percentage of local patches
(i.e., the 11 X 11 X 11 voxels in our setup) of a generated shape that
are “similar” to at least one patch of the training shape. We consider
two patches sufficiently “similar” if their IoU or F-score is above 0.95.
To avoid sampling featureless patches—patches that are far away
from the shape surface—we only consider voxel patches across the
surface (i.e., having at least one occupied voxel and one unoccupied
voxel in the central 3 X 3 X 3 area of the patch).

In addition, SSFID (Single Shape Fréchet Inception Distance)
measures to what extent the generative model captures the patch
statistics of the training shape. Similar to SIFID (Single Image Fréchet
Inception Distance) [Shaham et al. 2019], we use the deep features
output by the second convolutional block in a pretrained 3D shape
classifier (which we take from [Chen et al. 2021]). SSFID is defined as
the Fréchet Inception Distance (FID) of those deep features between
the generated and example shapes. Details of the metric evaluation
are included in Appendix D.

We select 10 shapes in different categories as testing examples.
These shapes have different topologies and patch variations across a
range of scales. For each evaluated method and each testing example,
we randomly generate 100 shapes and report the average scores of
the metrics. For DGTS, we voxelize their generated meshes for the
metric evaluation.

Results. The evaluation results are reported in Table 1, and the
corresponding shapes are shown in Fig. 7 and Fig. 16 of the appen-
dix. For nearly all testing examples, our method produces the best
scores under all three metrics. Compared to the results of SinGAN-
3D, our generated shapes better preserve the structure of the input
shape (e.g., see the wall example in Fig. 7). In these tests, DGTS
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Fig. 6. Randomly generated shapes. For each training shape, we show two randomly generated shapes that have the same spatial dimensions and additional
shapes having different sizes and aspect ratios. Here, the largest spatial dimension of each training shape is 256, except for the vase and stalagmites example.
For those two shapes, the largest spatial dimension is 192. From top to bottom, ©Acropolis by choly kurd under Standard License (turbosquid.com), ©Vase by
davidmus under CC BY-SA, ©Terrain by BOXX3D under Editorial License (cgtrader.com), ©Table by akerStudio under RF, ©Castle by BlackMotion under RF,
©Desert cactus by exnihilo under RF, ©Stalagmites by wernie under RF, and ©Rock stairs by Misanthropiclion under RF.
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Training shape SinGAN-3D
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Acropolis
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Q: Quality
D: Diversity
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Fig. 7. Visual comparison on our testing examples. Due to the limited space, here we only show comparison results on five testing examples and include
the rest in Fig. 16 of the appendix. The quality score (Q) is LP-loU defined in Sec. 4.1. The diversity score (D) is defined as the pairwise difference (1 — loU)
within a set of generated shapes (see Appendix D for detailed definition). For each method, we randomly generate 100 shapes to calculate both scores. From
top to bottom, ©Acropolis by choly kurd under Standard License (turbosquid.com), ©Stone stairs by ivanzubak under Standard License (turbosquid.com),
©Wall by stray under RF,©Cheese by Thiennguyen2106 under RF, and ©Tree by Ada_King under Standard License (turbosquid.com).
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Table 1. Quantitative evaluation. T: a higher metric value is better; |: a lower metric value is better. We compare the generation quality of each method
using three metrics. The last column is the average score over the ten testing examples.

Metrics Methods Examples
Acropolis Terrain Stalagmites Stairs Rock Wall Vase Cheese Cactus Tree Avg.
Ours 0.902 0.647 0.254 0.777 0.004 0.848 0.175 0.564 0.583 0.015 0.477
LP-IoU T SinGAN-3D 0.635 0.645 0.253 0.682 0.004 0.772 0.173 0.524 0.343 0.001  0.403
DGTS 0.015 0.207 0.013 0.110  0.001  0.155 0.004  0.100 0.028  0.001 0.063
Ours 0.950 0.812 0.363 0.865 0.129 0.892 0.214 0.716 0.847 0.149 0.594
LP-F-score T SinGAN-3D 0.783 0.823 0.373 0.781 0.125 0.847 0.207 0.673 0.642  0.048 0.530
DGTS 0.018 0.382 0.111 0.197 0.101  0.231  0.007 0.300 0.243 0.059 0.165
Ours 0.037 0.050 0.078 0.102 0.020 0.272 0.029 0.065 0.018 0.073 0.074
SSFID | SinGAN-3D 0.065 0.058 0.089 0.093 0.035 0475 0.059 0.145 0.033 0.123 0.118
DGTS 3.62 2.08 1.81 2.00 0.151 3.67 1.95 1.36 0.403 0.201 1.724

performs the worst due to its inability to learn large structures and
anisotropic geometric features, which is indeed one of the limita-
tions acknowledged in their paper [Hertz et al. 2020]. Also, it can
not learn well complex topologies (e.g., see the acropolis example
in Fig. 7). In those cases, DGTS takes a long time (>15 hours) for
training meshes preparation and the training process, possibly due
to the large number of vertices and many self-intersections resulted
from their mesh optmization process.

Besides the shape quality, the generation diversity is also of in-
terest. However, measuring diversity solely without taking into
account quality makes little sense. As an extreme example, a set of
shapes with strong random noise is probably considered diverse
(or different from each other), but those shapes are useless because
of the poor quality. As an attempt, we measure diversity using the
pairwise difference within a set of random generated shapes shown
in Fig. 7. Under this metric, SinGAN-3D usually obtains a better
score, although its output shapes have lower quality than ours.

Another advantage of our method over SinGAN-3D is its effi-
ciency, because unlike SinGAN-3D, our generator requires no 3D
convolution. Here, we use both SinGAN-3D and our model to gen-
erate shapes and examine their subsequent GPU memory and time
costs. When executing our model, we query all grid points through
the MLP network in a single forward pass. The results are presented
in Table 2, which shows that our model requires much less GPU
memory and runs faster than SinGAN-3D as the output resolution
increases. We can further reduce the GPU memory footprint by
using algorithms such as Multi-resolution IsoSurface Extraction
(MISE) [Mescheder et al. 2019].

4.2 Ablation Study

We conduct ablation studies to validate the design choices of our
model. In Table 3, we compare our proposed method with the fol-
lowing variants:

Initial 2D noises, in which we independently sample three 2D noise
maps to construct the input tri-plane map to Gy. In this variant, the
projection network is not needed any more. In contrast, our method
projects a sampled 3D noise onto the three feature planes.

No Gaussian Blur, in which we do not apply Gaussian filter to
blur the voxel grid of the input shape (recall Sec. 3.4). Without the

Table 2. Comparison of GPU memory and time cost. OOM: out of
memory. Since both methods are multi-scale generative models, in this
experiment, we use 6, 7 and 8 training scales for output resolutions 1283,
192% and 2563, respectively. Inference time is the average over 100 trials.

Methods Outpqt GPU Infe.rence
Resolution Memory Time
1283 4.06G 0.041s
Ours 1923 7.27G 0.051s
2563 19.34G 0.057s
1283 9.31G 0.082s
SinGAN-3D 1923 20.45G 0.453s
2563 OOM N/A

Table 3. Ablation study. Metric values shown here are averages over the
10 testing examples, under the same setting as Table 1. Metric values for
each testing example are available in Table 6 of the appendix.

LP-IoUT LP-F-scoreT SSFID |

Proposed Method 0.479 0.594 0.072
Initial 2D Noises 0.438 0.554 0.086
No Gaussian Blur 0.456 0.564 0.084
No Weights Reuse 0.451 0.566 0.078

Gaussian blur, the grid values would be either 0 or 1, indicating
whether or not each grid point is occupied by the shape. As a result,
the discriminator can trivially distinguish a synthesized shape, be-
cause the grid data decoded by the MLP network will likely have
values between 0 and 1—a clue for the discriminator to do its job
without carefully examining the shape features. Such a discrimina-
tor, although effective for distinguishing synthesized shapes, offers
little help for improving the generator.

No Weights Reuse, in which we randomly initialize the weights of
the GAN in each level at the beginning of the training process. On
the contrary, our proposed method initializes the network weights
of a particular level using the weights of a lower level GAN (recall
Sec. 3.3).

Our method outperforms all these variants (see Table 3), and thus
our design choices are well justified.

ACM Trans. Graph., Vol. 41, No. 6, Article 224. Publication date: December 2022.
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Number of training scales

Training shape

Fig. 8. Choice of the coarsest scale. In this example, we fix the finest
level resolution (256 X 54 X 256) and the downsampling factor r is 0.75. We
build three voxel pyramids of the input shape using different numbers of
scales, and thus their coarsest level resolution varies. From left to right,
the numbers of scales are 10, 9, and 7, respectively, and the coarsest level
resolutions are 20 X 5 X 20, 27 X 6 X 27 and 46 X 10 X 46. In each setting, we
show three random generated samples from the trained generative models.
We also show the shapes’ local variations in the inset figures. See discussion
in Sec. 4.3. ©Mountain landscape with water by vis-all-3d under Editorial
License (cgtrader.com).

4.3 Choice of Voxel Pyramid Resolution

Recall that we build a voxel pyramid of the input example to train
our generative model. Here we conduct an experiment to under-
stand how the range of scales covered by the pyramid affects the
generation results.

The experiment is shown in Fig. 8, where the finest level reso-
lution of the voxel pyramid stays fixed, but the number of scales
varies. When the number of scales is too large, the coarsest level
resolution is low, and every voxel in the coarsest level grid occupies
a large spatial region. As a result, the discriminator at this level
(whose receptive field is always 11 X 11 X 11) examines the shape
features in a large region, too large to allow any structural varia-
tion (see the second column of Fig. 8). The generated shapes simply
overfit the example shape. On the other extreme, when the number
of scales is too small, the coarsest level resolution is still high, and
thus a voxel in the coarsest level grid occupies only a small region.
Consequently, the discriminator is unable to force the generator to
learn large-scale structures, and the generated shape appear to be
structurally incoherent (see the fourth column of Fig. 8).

As arule of thumb, in practice, we typically choose the number of
scales such that the largest dimension of the coarsest grid is about
two or three times larger than the discriminator’s receptive field.

ACM Trans. Graph., Vol. 41, No. 6, Article 224. Publication date: December 2022.
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Fig. 9. Shape interpolation and extrapolation. We perform shape in-
terpolation and extrapolation by linearly blending the input noises of the
source and target shapes. From top to bottom, the blending weights are
—-0.5,-0.25,0,0.25,0.5,0.75, 1, 1.25, and 1.5, respectively. Note the smooth
transition across the source and target shapes.

4.4 Shape Interpolation and Extrapolation

Our generative model naturally supports shape interpolation and to
a certain extent extrapolation. Consider two shapes generated from
two initial 3D noises Z& and Zg, respectively. The shape interpola-
tion is straightforward, i.e., by feeding into the generative model a
linearly interpolated noise Z§' = (1-a) - Z& +a- Zg, where « is the
interpolation parameter. In fact, « is not necessarily in the range of
[0, 1]; we can extend it to be negative or greater than one for shape
extrapolation. Here, noise at other scales (z1, ..., zx) stay fixed.

We show three examples in Fig. 9, and include more results in
Fig. 15 of the appendix. All the results present smooth transition



Ours Ours X 8

Trilinear Interpolation X 8

Fig. 10. Querying at a higher resolution. Left: A generated sample at
training resolution (112x36x 128). Middle: X8 upsampling by querying o(p)
(resulted from the generated tri-plane representation) on a voxel grid with
a X8 resolution. Right: X8 upsampling of the output voxel grid via trilinear
interpolation. In this figure, visualized meshes are the direct output from
Marching Cubes. More examples are included in Fig. 17 of the appendix.

across two generated shapes provided as input. Notably, in the acrop-
olis example in Fig. 9, the breakage of the front columns is gradually
closed and filled as the interpolation changes from the source to the
target shape. This is not possible via simple interpolation in voxel
space. In addition, the extrapolation towards the source direction
produces more breakage, while extrapolating towards the target
direction retains the completeness of the columns. These results
suggest that our generative model is able to learn a smooth and
meaningful mapping from random noise to realistic shapes.

4.5 Higher Resolution Output

The neural implicit function, enabled by the MLP network My in our
model, allows the model to discretize the output shape at an arbitrary
resolution. We demonstrate this by showing a X8 upsampling result
in Fig. 10. Here, the output shape is discretized by a grid whose
resolution is 8 times higher than the input grid’s resolution. We
compare the result with a simple upsampling strategy based on
trilinear interpolation. The experiment shows that our result is much
smoother while retaining sharp features. However, the ability to
query at an arbitrary resolution does not imply arbitrary geometric
details. The level of details that our model can synthesize is still
limited by the training resolution.

4.6 Failure Cases

Although our generative model can learn from many different types
of shapes, certain shapes still pose challenges to our model. 1) If
the example shape does not have rich local features—such as a
simple chair, which presents predominantly an overall structure
(Fig. 11 top)—then our model is unable to learn and generate local
variations, and it simply overfits the large structure. 2) Voxel-based
deep generative models typically struggle to learn and generate
thin structures, and ours is no different (Fig. 11 bottom). Primitive
guidance [Tang et al. 2019] may help the generative model to learn
thin structures. We leave it for future work.
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Training shape Generation results
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Fig. 11. Failure cases. Top: Our method overfits to the training shape that
lacks rich local patterns. Bottom: Like other voxel-based generative model,
it can not learn sparse thin structures well. ©Tree branches by 10DollarsAn-
imation under RF.
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Fig. 12. Spatial bias. To reveal spatial bias of our method, we use a noise-
like height field as the example shape (left). We generate 100 new shapes
using our model and compute a spatial variation map (right). To this end,
we compute voxel-wise standard deviations over the generated shapes, and
average the values over the z-axis to obtain the colormap. We note much less
variation near corners, even though the training shape has nearly uniformly
distributed geometric features. ©Strange terrain by aaron_g_randall under
Personal Use License (free3d.com).

5 LIMITATIONS AND FUTURE WORK

In this work, we propose a generative model that learns from a
single example. Our method contrasts starkly to existing 3D shape
generative models that require a large set of class-specific 3D shapes
for training. Trained on a voxel pyramid of the input shape and
operating on a hierarchy of tri-plane feature maps, our model is able
to produce diverse shape variations across different bounding box
sizes and aspect ratios. Meanwhile, all the generated shapes share
similar large-scale structures as the input shape.

Our method also has some limitations. As discussed in recent
works [Choi et al. 2021; Xu et al. 2021], zero boundary padding of the
convolutional layers serves as an implicit spatial bias. Leveraging
this bias, a convolutional generator can learn to produce globally-
structured samples from spatially i.i.d. noises. Meanwhile, this bias
leads to unbalanced output variation. For example, the output sam-
ples have less variation near the corners, because the zero-padding
pattern is unique in corner regions. We reveal this limitation in our
method through a purposely constructed example (see Fig. 12). We
also tested the sinusoidal positional encoding strategy proposed
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in [Xu et al. 2021], but find it no better, possibly because the periodic
prior does not apply for 3D shapes.

The tri-plane representation helps reduce the memory and time
cost. But the highest resolution of the voxel pyramid is still lim-
ited (typically < 256), because the discriminators still perform 3D
convolutions on voxel grids. In future, we may further reduce our
model’s memory cost by either using a more sophisticated training
strategy or leveraging a more efficient voxel representation (e.g.,
octree [Wang et al. 2022], deformable tetrahedron [Gao et al. 2020]).

Another interesting direction is to enable user control in the gen-
eration process, possibly via a conditional input to the network.
For example, it would be useful to enable the user to use sketch or
brush as a guidance to delete, add, or modify certain parts of the
original shape [Li et al. 2020], while the generative model automat-
ically makes coherent changes. Lastly, we would like to combine
the internal (i.e., within the example) and external (i.e., from other
shapes) patch information [Park et al. 2020] for more expressive
shape generation.
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A  NETWORK ARCHITECTURES

Table 4 describes the architecture for each module of our model for
a single scale, and all scales share the same architecture. We will
release all the code when the paper is published.

Out Kernel

Module Layers channels size Stride
Projection AdaptAvgPool3D 8 - -
(for each plane) Conv2D 32 (1,1) (1,1)
Conv2D+IN+LRelU 32 (33 (1,1
Generator Conv2D+IN+LRelU 32 (3,3) (1,1)
(for each plane) Conv2D+IN+LRelLU 32 (3,3) (1,1)
Conv2D 32 (33  (1L,1)
- N _ _
MLP Decoder L}near RgLu . 32
Linear+Sigmoid 1 - -
Conv3D+IN+LReLU 32 (3,3,3) (2,2,2)
Disciminator Conv3D+IN+LRelLU 32 (3,3,3) (1,1,1)
Conv3D 32 (3,33) (1L,1,1)

Table 4. Network architectures. AdaptAvgPool3D: adaptive average pool-
ing, whose out channels denote the output size of x, y or z-axis. IN: instance
normalization layer. LReLU: leaky ReLU with negative slope 0.2.

B DATA CONFIGURATION

In Table 5, we list the configuration (i.e. training resolution, number
of scales) for all training shapes used in the paper.

C MORE RESULTS

We show more of our random generation results in Fig. 13 and Fig. 14,
more shape interpolation results in Fig. 15, and the remaining com-
parison results in Fig. 16. We also show more examples of querying
higher resolution in Fig. 17. In addition, we present detailed metric
values for our ablation study in Table 6. Finally, we recommend the
reader to open the offline webpage in the supplementary material,
for interactive view of some generation and comparison results.

D EVALUATION METRICS

For LP-IoU and LP-F-score, we sample voxel patches of size 11X 11X
11 with a stride of 5. A patch is considered valid only if it has at least
one occupied voxel and one unoccupied voxel in its center 3 X 3 X 3
area. We use all sampled valid patches from real shape as reference,
denoted as Pr, and randomly select 1000 sampled valid patches from
the generated shape, denoted as Py. LP-IoU and LP-F-score are then
defined as

1
LP-Score(Py, Py) = _| Z ]l[mag( Score(x,y) > 6], (9)

|Pg xeP, yery

where Score is either IoU or F-score. F-score is calculated in a voxel-
wise binary classification manner. The threshold § is set to 0.95.

For SSFID, we take the 3D CNN classification network pretrained
on ShapeNet [Chen et al. 2021] and use the deep feature map output
by the second convolutional block to calculate the Fréchet Inception
Distance (FID). The deep feature map is spatially 4 times smaller
than the input voxel grid, and has 64 channels.

We compute the diversity score in Fig. 7 as follows. For each
shape in the a set of k = 100 generated shapes {S;}, we calculate its
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Figure Data Resolution #lraining
scales

Acropolis 256 X 72 X 118 8
Vase 192 X 192 X 192 8
Fig. 1 & Terrain 224 X 256 X 70 8
Fig. 6 & Table 256 X 108 x 92 8
Fig. 9 Castle 256 X 70 X 242 8
Desert cactus 110 X 256 X 120 9
Stalagmites 256 X 200 x 212 9
Rock stairs 128 X 36 X 256 8
Canyon 256 X 256 X 50 8
Plant pot 256 X 94 X 78 8
Icelandic mountain 256 X 62 X 256 9
Fig. 13 & Floating wood 256 X 70 X 84 8
Fig. 9 Cube hotel 146 X 256 X 126 8
Log 66 X 256 X 112 8
Boulder stone 256 X 80 x 108 8
Small town 256 X 92 X 168 8
Terrain 2 256 X 60 X 256 9
Curved vase 162 X 148 X 192 8
Elm tree 164 X 256 X 152 9
Fig. 14 Stone wall 256 X 56 X 138 8
Ruined building 104 x 82 x 128 6
Natural arch 132 X 142 X 256 9
Industry house 120 X 98 X 256 8
Acropolis 128 X 36 X 60 6
Terrain 112 X 128 X 36 6
Stalagmites 128 X 100 X 106 7
Fig. 7 & Stone stairs 112 X 52 X 128 7
Fig. 10 & Rock 128 X 128 X 128 7
Fig. 16 Wall 128 X 88 X 46 6
Vase 128 X 128 x 128 7
Cheese 48 X 78 X 128 6
Cactus 74 X 128 X 72 6
Tree 60 X 128 X 66 6
Fig. 8 Mountain with water 256 X 54 X 256 9
Fig. 11 & Chair 104 X 128 X 100 7
. Tree branches 110 X 128 X 96 7
Fig. 12 7

Strange terrain

128 X 128 X 40

Table 5. Data configuration.

average distance to the other k — 1 shapes. Here we use 1 —IoU(-, -)
as the distance measure. Then the score is the average value over
all shapes in the set. Concretely, the diversity score is defined as

Div({s) =1 Y [ >0 1-ToU(si )l (10)

1<i<k

1<j<k
J#i
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Fig. 13. More random generation results (1). For each training shape, we show two generated shapes of the same spatial dimensions, with the rest having
different sizes and aspect ratios. From top to bottom, ©Canyon by splod67 under CC BY, plant pot from ShapeNet, ©lcelandic mountain by saz88 under
RF, ©Floating wood under RF, ©Cube hotel by fredolegros91 under RF, ©Log by towercg under RF, ©Boulder stone by Iml46 under RF, and ©Small town by
pedram-ashoori under RF.
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Training shape Generated shapes

Terrain 2

Curved vase

Stone wall

Ruined building

Industry house Natural arch

Fig. 14. More random generation results (2). For each training shape, we show two generated shapes of the same spatial dimensions, with the rest having
different sizes and aspect ratios. From top to bottom, ©Terrain 2 by 3dDigital under Standard License (turbosquid.com), ©Curved vase by davidmus under CC
BY-SA, ©Elm tree by darkqueencpn under RF, ©Stone wall by bumblebrush under Editorial License (cgtrader.com), ©Ruined building by bizkit001 under RF,
©Natural arch by smanor under RF, and ©Industry house by lukass12 under RF.
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>

Extrapolation

» Source

Interpolation

<

Target

Extrapolation

<

Fig. 15. More results for shape interpolation and extrapolation. We perform shape interpolation and extrapolation by linearly blending the input noises
of the source and target shapes. From top to bottom, the blending weights are —0.5, —0.25, 0, 0.25,0.5,0.75, 1, 1.25 and 1.5, respectively. Note the smooth

transition across the source and target shapes.
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Q:0.028 D:0.108
-

--------------------------------------------------------------------------------------------------------------------------------------------------------

Q:0.173 D:0.647

Q: 0.343 D:0.053

Q:0.645 D:0.190
Q:0.253 D:0.571
Q:0.004 D:0.181

z

Q: 0.583 D:0.023

Q:0.175 D:0.349

Q:0.647 D:0.182
Q:0.254 D:0.544
Q:0.004 D:0.076

--------------------------------------------------------------------------------------------------------------------------------------------------------

Terrain
Stalaéfnites
Rock
Cactus

Q: Quality
D: Diversity

LT p——— T T T T L
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Fig. 16. Visual comparison on our testing examples. The quality score (Q) is LP-loU defined in Sec. 4.1. The diversity score (D) is defined as the pairwise

difference (1 — loU) within a set of generated shapes (see Appendix D for detailed definition). For each method, we generate 100 shapes to calculate both

scores. From top to bottom, ©Terrain by BOXX3D under Editorial License (cgtrader.com), ©Stalagmites by wernie under RF, ©Rock by georgij-space under RF,

©Vase by davidmus under CC BY-SA, and ©Cactus by m4rios under Standard License (turbosquid.com).
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. Examples
Met Method . . . .
emes erhods Acropolis  Terrain Stalagmites Stairs Rock Wall Vase Cheese Cactus Tree Avg.

Proposed Method 0.902 0.647 0.254 0.777 0.004 0.848 0.175 0.564 0.583 0.015 0.477

LP-IoU | Initial 2D Noises 0.816 0.638 0.247 0.711 0.003 0.818 0.174 0.579 0.412  0.003 0.440
No Gaussian Blur 0.887 0.648 0.249 0.756  0.002 0.854 0.173 0.561 0.407 0.003 0.454
No Weights Reuse 0.874 0.637 0.220 0.821 0.004 0.821 0.179 0.575 0.374 0.005 0.451
Proposed Method 0.950 0.812 0.363 0.865 0.129 0.892 0.214 0.716 0.847 0.149 0.594

LP-F-score | Initial 2D Noises 0.884 0.809 0.360 0.803 0.112 0.867 0.212 0.715 0.730 0.074 0.557
No Gaussian Blur 0.933 0.811 0.356 0.854 0.103 0.889 0.215 0.687 0.716  0.065 0.563
No Weights Reuse 0.931 0.793 0.316 0.929 0.112 0.864 0.223  0.705 0.720  0.085 0.568
Proposed Method 0.037 0.050 0.078 0.102 0.020 0.272 0.029 0.065 0.018 0.073 0.074

SSFID | Initial 2D Noises 0.058 0.051 0.081 0.070  0.022 0.376 0.033  0.064 0.028  0.089 0.087
No Gaussian Blur 0.035 0.060 0.087 0.048 0.025 0.378 0.036 0.088 0.032 0.093 0.088
No Weights Reuse 0.039 0.056 0.116 0.032 0.027 0.303 0.033 0.095 0.033 0.086 0.082

Table 6. Ablation study. 7: a higher metric value is better; |: a lower metric value is better. See Sec. 4.2 for the description of each variant.

Y

N2

-

©F
N

Ours Ours x4 Ours x8

Ours

Ours x4

Ours x8

Fig. 17. Querying at a higher resolution. We show x4/x8 upsampling results by querying o(p) (resulted from the generated tri-plane representation) on a
voxel grid with a X4/x8 training resolution. The training resolutions for the three shape example are 128 X 100 X 106, 128 x 128 X 128 and 128 X 128 X 128,
respectively. In this figure, visualized meshes are the direct output from Marching Cubes [Lorensen and Cline 1987].
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