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We introduce a theoretical model of information acquisition under resource limitations in a noisy environment.
An agent must guess the truth value of a given Boolean formula ¢ after performing a bounded number of
noisy tests of the truth values of variables in the formula. We observe that, in general, the problem of finding
an optimal testing strategy for ¢ is hard, but we suggest a useful heuristic. The techniques we use also give
insight into two apparently unrelated, but well-studied problems: (1) rational inattention, that is, when it is
rational to ignore pertinent information (the optimal strategy may involve hardly ever testing variables that
are clearly relevant to ¢), and (2) what makes a formula hard to learn/remember.
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1 INTRODUCTION

Decision-making is typically subject to resource constraints. However, an agent may be able to
choose how to allocate his resources. We consider a simple decision-theoretic framework in which
to examine this resource-allocation problem. Our framework is motivated by a variety of decision
problems in which multiple noisy signals are available for sampling, such as the following:

e An animal must decide whether some food is safe to eat. We assume that “safe” is characterised
by a Boolean formula ¢, which involves variables that describe (among other things) the
presence of unusual smells or signs of other animals consuming the same food. The animal
can perform a limited number of tests of the variables in ¢, but these tests are noisy; if a test
says that a variable v is true, that does not mean that v is true, but only that it is true with
some probability. After the agent has exhausted his test budget, he must either guess the
truth value of ¢ or choose not to guess. Depending on his choice, he gets a payoff. In this
example, guessing that ¢ is true amounts to guessing that the food is safe to eat. There will
be a small positive payoff for guessing “true” if the food is indeed safe, but a large negative
payoff for guessing “true” if the food is not safe to eat. In this example we can assume a
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2 Matvey Soloviev and Joseph Y. Halpern

payoff of 0 if the agent guesses “false” or does not guess, since both choices amount to not
eating the food.

e A quality assurance team needs to certify a modular product, say a USB memory stick, or
send it back to the factory. Some subsystems, such as the EEPROM cells, are redundant to
an extent, and a limited number of them not working is expected and does not stop the
product from functioning. Others, such as the USB controller chip, are unique; the device
will not work if they are broken. Whether the device is good can be expressed as a Boolean
combination of variables that describe the goodness of its components. Time and financial
considerations allow only a limited number of tests to be performed, and tests themselves
have a probability of false negatives and positives. What parts should be tested and how
often?

e A data scientist wants to perform a complex query on a very big database. A certain error
rate is acceptable; in any case, executing the query exactly is infeasible with the available
hardware. The selection criterion itself is a Boolean combination of some atomic predicates
on the entries of the database, which can be evaluated only using heuristics (which are
essentially probabilistic algorithms). Given a query that asks for rows that, for instance,
satisfy the criterion P; A (P, V P3) in three predicates P;, which heuristics should be run and
how often should they be run to attain the desired error rate?

We are interested in optimal strategies for each of these problems; that is, what tests should
the agent perform and in what order. Unfortunately (and perhaps not surprisingly), as we show,
finding an optimal strategy (i.e., one that obtains the highest expected payoff) is infeasibly hard.
We provide a heuristic that guarantees a positive expected payoff whenever the optimal strategy
gets a positive expected payoff. Our analysis of this strategy also gives us the tools to examine two
other problems of interest.

The first is rational inattention, the notion that in the face of limited resources it is sometimes
rational to ignore certain sources of information completely. There has been a great deal of interest
recently in this topic in economics [10, 14]. Here we show that optimal testing strategies in our
framework exhibit what can reasonably be called rational inattention (which we typically denote
RI from now on). Specifically, our experiments show that for a substantial fraction of formulae, an
optimal strategy will hardly ever test variables that are clearly relevant to the outcome. (Roughly
speaking, “hardly ever” means that as the total number of tests goes to infinity, the fraction of tests
devoted to these relevant variables goes to 0.) For example, consider the formula v; V v,. Suppose
that the tests for v; and v, are equally noisy, so there is no reason to prefer one to the other for
the first test. But for certain choices of payoffs, we show that if we start by testing v, then all
subsequent tests should also test v, as long as v, is observed to be true (and similarly for v;). Thus,
with positive probability, the optimal strategy either ignores v; or ignores v,. Our formal analysis
allows us to conclude that this is a widespread phenomenon.

The second problem we consider is what makes a concept (which we can think of as being
characterised by a formula) hard. To address this, we use our framework to define a notion of
hardness. Our notion is based on the minimum number of tests required to have a chance of making
areasonable guess regarding whether the formula is true. We show that, according to this definition,
XORs (i.e., formulae of the form v; @ - - - ® vy, which are true exactly if an odd number of the v;’s
are true) and their negations are the hardest formulae. We compare this notion to other notions of
hardness of concepts considered in the cognitive psychology literature (e.g., [3, 7, 9]).

Organisation. The rest of the paper is organized as follows. In Section 2, we formally define the
games that we use to model our decision problem and analyse the optimal strategies for a simple
example. The detailed calculations for this example can be found in Appendix A. In Section 3, we
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Information Acquisition Under Resource Limitations 3

look at the problem of determining optimal strategies more generally. We discuss the difficulty
of this problem and analyse a simple heuristic, developing our understanding of the connection
between payoffs and certainty in the process. In Section 4, we formally define rational inattention
and discuss the intuition behind our definition. After considering some examples of when RI occurs
under our definition, we show that there is a close connection between rational inattention and
particular sequences of observations (optimal test outcome sequences) that may occur while testing.
We use this connection to obtain a quantitative estimate of how common Rl is in formulae involving
up to 10 variables. The theory behind this estimate is presented in Appendix B, where we relate the
optimal test outcome sequences to the solution polytope of a particular linear program (LP). While
we are not aware of any explicit connections, our method should be seen in a broader tradition of
applying LPs to decision problems such as multi-armed bandits [1], and may be of independent
interest for the analysis of information acquisition. Finally, in Section 5, we introduce our notion
of test complexity, prove that XORs are the formulas of greatest test complexity (the details of
the proof are in Appendix C), and discuss the connections to various other notions of formula
complexity in the cognitive and computational science literature.

2 INFORMATION-ACQUISITION GAMES

We model the information-acquisition game as a single-player game against nature, that is, one in
which actions that are not taken by the player are chosen at random. The game is characterised by
five parameters:

e a Boolean formula ¢ over variables vy, . . ., v, for some n > 0;

e a probability distribution D on truth assignments to {vy,...,0,};

e a bound k on the number of tests;

e an accuracy vector @ = (ay, ..., a,), with 0 < @; < 1/2 (explained below);
e payoffs (g, b), where g > 0 > b (also explained below).

We denote this game as G(¢, D, k, @, g, b).

In the game G(¢, D, k, @, g, b), nature first chooses a truth assignment to the variables vy, .. ., v,
according to distribution D. While the parameters of the game are known to the agent, the
assignment chosen by nature is not. For the next k rounds, the agent then chooses one of the n
variables to test (possibly as a function of history), and nature responds with either T or F. The
agent then must either guess the truth value of ¢ or choose not to guess.

We view a truth assignment A as a function from variables to truth values ({T, F}); we can also
view a formula as a function from truth assignments to truth values. If the agent chooses to test
v, then nature returns A(v;) (the right answer) with probability 1/2 + «; (and thus returns —A(v;)
with probability 1/2 — a;).! Thus, outcomes are independent, conditional on a truth assignment.
Finally, if the agent choses not to guess at the end of the game, his payoff is 0. If he chooses to guess,
then his payoff is g (good) if his guess coincides with the actual truth value of ¢ on assignment
A (i.e., his guess is correct) and b (bad) if his guess is wrong. It is occasionally useful to think of
a formula ¢ as a function from assignments to truth values; we thus occasionally write ¢(A) to
denote the truth value of ¢ under truth assignment A. A strategy for an agent in this game can be
seen as a pair of functions: one that determines which test the agent performs after observing a
given sequence of test outcomes of length < k, and one that determines whether to make a guess
and, if so, which guess to make, given all k test outcomes.

Note that this means that the probability of a false positive and that of a false negative are the same. While we could easily
extend the framework so as to allow the accuracy in a test on a variable v to depend on whether A(v) is T or F, doing so
would complicate notation and distract from the main points that we want to make.
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Example 2.1. Consider the information-acquisition game over the formula v; V v;, with k = 2
tests, a uniform distribution on truth assignments, accuracy vector (1/4, 1/4), correct-guess reward
g = 1 and wrong-guess penalty b = —16. As we show (see Appendix A) this game has two optimal
strategies:

1) test v; twice, guess T if both tests came out T, and make no guess otherwise;
g g
2) test v, twice, guess T if both tests came out T, and make no guess otherwise. O
g g

Thus, in this game, an optimal strategy either ignores v; or ignores v;. As we show in Appendix A,
the strategy “test v; and then v,, then guess T if both tests came out T” is strictly worse than these
two; in fact, its expected payoff is negative! This was (to us, at least) surprising: among other things,
it implies that optimal strategies do not form a convex set, so a convex combination of two optimal
testing strategies is not necessarily optimal.

If we increase k, the situation becomes more nuanced. For instance, if k = 4, an optimal strategy
tests v; once, and if the test comes out F, tests v, three times and guesses T if all three tests came
out T. However, it always remains optimal to keep testing one variable as long as the tests keep
coming out true. That is, all optimal strategies exhibit RI in the sense that there are test outcomes
that result in either v; never being tested or v, never being tested, despite their obvious relevance
to vy Vo,

For our results, we need to analyze the probability of various events related to the game. Many
of the probabilities that we care about depend on only a few parameters of the game. Formally,
we put a probability on histories of an information-acquisition game. A history is a tuple of the
form (A, S, a), where A is the assignment of truth values to the n variables chosen by nature,
S = (vj, = by,...,v;, = by) is a test-outcome sequence in which v;; ~ b; indicates that the jth test
was performed on variable v;; and that nature responded with the test outcome b;, and a is the
final agent action of either making no guess or guessing some truth value for the formula. A game
G(¢, D, k, @, g, b) and agent strategy o for this game then induce a probability Prg  on this sample
space.

Example 2.2. In Example 2.1, Prg - (¢) is 3/4, as we know only that there is a probability of 3/4
that nature picked a satisfying assignment. After observing a single test outcome suggesting that
v is false, the posterior probability Prg »(¢ | (v1 & F)) drops to 5/8. If the same test is performed
and the outcome is again F, the posterior drops further to Prg (¢ | (v1 = F,v; = F)) = 11/20.O0

The only features of the game G that affect the probability are the prior distribution D and the
accuracy vector @, so we write Prp o 5 (¢) rather than Prg (¢). If some component of the subscript
does not affect the probability, then we typically omit it. In particular, we show in Appendix B that
the strategy o does not affect Prg+(¢ | S), so we write Prp 5(¢ | S). Finally, the utility (payoff)
received by the agent at the end of the game is a real-valued random variable that depends on
parameters b and g. We can define the expected utility Eg ,(payoff) as the expectation of this
random variable.

3 DETERMINING OPTIMAL STRATEGIES

It is straightforward to see that the game tree? for the game G(¢, D, k, @ g, b) has 3(2")(2n) leaves:
there is a branching factor of 2" at the root (since there are 2" truth assignments) followed by
k branching factors of n (for the n variables that the agent can choose to test) and 2 (for the
two possible outcomes of a test). At the end there are three choices (don’t guess, guess T, and

2For the one-player games that we are considering, a game tree is a graph whose nodes consist of all valid partial sequences

of actions in the game, including the empty sequence, and two nodes have an edge between them if they differ by appending
one action.
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guess F). A straightforward backward induction can then be used to compute the optimal strategy.
Unfortunately, the complexity of this approach is polynomial in the number of leaves, and hence
grows exponentially in k even for a fixed number of variables n, quickly becoming infeasible.

In general, it is unlikely that the dependency on 2" can be removed. In the special case that
b=-canda; = % for all i (so tests are perfectly accurate, but the truth value of the formula
must be established for sure), determining whether there is a strategy that gets a positive expected
payoff when the bound on tests is k reduces to the problem of finding a conjunction of length k
that implies a given Boolean formula. Umans [1999] showed that this problem is 2‘;’ -complete, so it
lies in a complexity class that is at least as hard as both NP and co-NP.

A simple heuristic (whose choice of variables is independent of ¢) would be to simply test each
variable in the formula k/n times, and then choose the action that maximises the expected payoff
given the observed test outcomes. We can calculate in time polynomial in k and n the expected
payoff of a guess, conditional on a sequence of test outcomes. Since determining the best guess
involves checking the likelihood of each of the 2" truth assignments conditional on the outcomes,
this approach takes time polynomial in k and 2". We are most interested in formulae where n
is small (note that k still can be large, since we can test a variable multiple times!), so this time
complexity would be acceptable. However, this approach can be arbitrarily worse than the optimum.
As we observed when discussing Example 2.1, the expected payoff of this strategy is negative, while
there is a strategy that has positive expected payoftf.

An arguably somewhat better heuristic, which we call the random-test heuristic, is to choose, at
every step, the next variable to test uniformly at random, and again, after k observations, choosing
the action that maximises the expected payoff. This heuristic clearly has the same time complexity
as the preceding one, while working better in information-acquisition games that require an
unbalanced approach to testing.

ProOPOSITION 3.1. If there exists a strategy that has positive expected payoff in the information-
acquisition game G, then the random-test heuristic has positive expected payoff.

To prove Proposition 3.1, we need a preliminary lemma. Intuitively, an optimal strategy should
try to generate test-outcome sequences S that maximise |Prp z(¢ | S) — 1/2|, since the larger
|Prp (@ | S) — 1/2| is, the more certain the agent is regarding whether ¢ is true or false. The
following lemma characterises how large | Prp z(¢ | S) — 1/2| has to be to get a positive expected
payoff.

Definition 3.2. The threshold associated with payoffs b, g is q(b, g) = %. O

LeEmMMA 3.3. The expected payoff of G(¢, D, k, &, g, b) when making a guess after observing a sequence
S of test outcomes is positive iff

[Prpa(e | 5) ~1/2 > q(b.9). (1)
Proor. The expected payoff when guessing that the formula is true is
9-Prpa(@|S)+b-(1-Prpg(e|S9)).
This is greater than zero iff
(9=b)Prpale | S)+b>0,
that is, iff

=q(b,9g).

N | =

b
Prpa(e|5) —1/2> b=g
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When guessing that the formula is false, we simply exchange Prp z(¢ | S) and 1 — Prp 5(¢ | S) in
the derivation. So the payoff is then positive iff

(1=Proa(p ] 9) = 5 =~(Proa(p | 5) = 2) > qlbg).

Since |x| = max{x,—x}, at least one of these two inequalities must hold if (1) does, so the
corresponding guess will have positive expected payoff. Conversely, since |x| > x, either inequality
holding implies (1). O

PRrRoOF OF PROPOSITION 3.1. Suppose that o is a strategy for G with positive expected payoff.
The test-outcome sequences of length k partition the space of paths in the game tree, so we have

Ego(payoff) = > Prpsq(S)Ego(payoff | S).
{S:|S|=k}

Since the payoff is positive, at least one of the summands on the right must be, say the one due to
the sequence S*. By Lemma 3.3, |PrD,5,((p is true | §*) — 1/2| > q(b, g).

Let 7 denote the random-test heuristic. Since 7 chooses the optimal action after making k
observations, it will not get a negative expected payoff for any sequence S of k test outcomes (since
it can always obtain a payoff of 0 by choosing not to guess). On the other hand, with positive
probability, the variables that make up the sequence S* will be chosen and the outcomes in S* will be
observed for these tests; that is Prp, 5 . (S*) > 0.1t follows from Lemma 3.3 that Eg . (payoff | $*) > 0.
Thus, Eg ;(payoff) > 0, as desired. O

4 RATIONAL INATTENTION
4.1 Defining rational inattention

We might think that an optimal strategy for learning about ¢ would test all variables that are
relevant to ¢ (given a sufficiently large test budget). As shown in Example 2.1, this may not be true.
For example, an optimal k-step strategy for v; V v, can end up never testing v;, no matter what the
value of k, if it starts by testing v; and keeps discovering that v; is true. It turns out that RI is quite
widespread.

It certainly is not surprising that if a variable v does not occur in ¢, then an optimal strategy
would not test v. More generally, it would not be surprising that a variable that is not particularly
relevant to ¢ is not tested too often, perhaps because it makes a difference only in rare edge cases.
In the foraging animal example from the introduction, the possibility of a human experimenter
having prepared a safe food to look like a known poisonous plant would impact whether it is safe
to eat, but is unlikely to play a significant role in day-to-day foraging strategies. What might seem
more surprising is if a variable v is (largely) ignored while another variable v’ that is no more
relevant than v is tested. This is what happens in Example 2.1; although we have not yet defined a
notion of relevance, symmetry considerations dictate that v; and v; are equally relevant to v; V vy,
yet an optimal strategy might ignore one of them.

The phenomenon of rational inattention observed in Example 2.1 is surprisingly widespread. To
make this claim precise, we need to define “relevance”. There are a number of reasonable ways of
defining it; we focus on one below.” The definition of the relevance of v to ¢ that we use counts the
number of truth assignments for which changing the truth value of v changes the truth value of ¢.

3We checked various other reasonable definitions experimentally; qualitatively, it seems that our results continue to hold
for all the variants that we tested.
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Definition 4.1. Define the relevance ordering <, on the variables in ¢ by taking
v <, 0" iff
HA : ¢(Alv = T]) # @(Alo — F])}
< HA: (Al = T]) # ¢(Alo” & F])},

where A[v - b] is the assignment that agrees with A except that it assigns truth value b tov. O

Thus, rather than saying that v is or is not relevant to ¢, we can say that v is (or is not) at least as
relevant to ¢ as v’. Considering the impact of a change in a single variable to the truth value of the
whole formula in this fashion has been done both in the cognitive science and the computer science
literature: for example, Vigo [2011] uses the discrete (partial) derivative to capture this effect, and
Lang et al. [2003] define the related notion of Var-independence.

We could also consider taking the probability of the set of truth assignments where a variable’s
value makes a difference, rather than just counting how many such truth assignments there are.
This would give a more detailed quantitative view of relevance, and is essentially how relevance is
considered in Bayesian networks. Irrelevance is typically identified with independence. Thus, v is
relevant to ¢ if a change to v changes the probability of ¢. (See Druzdzel and Suermondt [1994]
for a review of work on relevance in the context of Bayesian networks.) We did not consider a
probabilistic notion of relevance because then the relevance order would depend on the game
(specifically, the distribution D, which is one of the parameters of the game). Our definition makes
the relevance order depend only on ¢. That said, we believe that essentially the same results as
those that we prove could be obtained for a probabilistic notion of relevance ordering,.

Roughly speaking, ¢ exhibits RI if, for all optimal strategies o for the game G(¢, D, k, &, b,g), o
tests a variable v’ frequently while hardly ever testing a variable v that is at least as relevant to
¢ as v’. We still have to make precise “hardly ever”, and explain how the claim depends on the
choice of D, @, k, b, and g. For the latter point, note that in Example 2.1, we had to choose b and g
appropriately to get RL This turns out to be true in general; given D, k, and @, the claim holds only
for an appropriate choice of b and g that depends on these. In particular, for any fixed choice of b
and g that depends only on k and &, there exist choices of priors D for which the set of optimal
strategies is fundamentally uninteresting: we can simply set D to assign a probability to some truth
assignment A that is so high that the rational choice is always to guess ¢(A), regardless of the test
outcomes.

Another way that the set of optimal strategies can be rendered uninteresting is when, from the
outset, there is no hope of obtaining sufficient certainty of the formula’s truth value with the k tests
available. Similarly to when the truth value is a foregone conclusion, in this situation, an optimal
strategy can perform arbitrary tests, as long as it makes no guess at the end. More generally, even
when in general the choice of variables to test does matter, a strategy can reach a situation where
there is sufficient uncertainty that no future test outcome could affect the final choice. Thus, a
meaningful definition of RI that is based on the variables tested by optimal strategies must consider
only tests performed in those cases in which a guess actually should be made (because the expected
payoff of the optimal strategy is positive).* We now make these ideas precise.

Definition 4.2. A function f : N — N is negligible if f(k) = o(k), that is, if lim_,« f(k)/k = 0.
O

The idea is that ¢ exhibits RI if, as the number k of tests allowed increases, the fraction of times
that some variable v is tested is negligible relative to the number of times that another variable v’

4One way to avoid these additional requirements is to modify the game so that performing a test has a small but positive
cost, so that an optimal strategy avoids frivolous testing when the conclusion is foregone. The definitions we use have
essentially the same effect, and are easier to work with.
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is tested, although v is at least as relevant to ¢ as v’. We actually require slightly more: we want v’
to be tested a linear number of times (i.e., at least ck times, for some constant ¢ > 0). (Note that this
additional requirement makes it harder for a variable to exhibit RL)

Since we do not want our results to depend on correlations between variables, we restrict
attention to probability distributions D on truth assignments that are product distributions.

Definition 4.3. A probability distribution D on truth assignments to vy,...,v, is a product
distribution if Prp(A) = Prp(v; = A(v1)) ---Prp(v, = A(vy)) (Where, for an arbitrary formula
@, Prp(@) = Xqa: a(p)=1} Pro(A)). o

As discussed earlier, to get an interesting notion of RI, we need to allow the choice of payoffs b
and g to depend on the prior distribution D; for fixed b, g, and testing bound k, if the distribution D
places sufficiently high probability on a single assignment, no k outcomes can change the agent’s
mind. Similarly, assigning prior probability 1 to any one variable being true or false means that no
tests will change the agent’s mind about that variable, and so testing it is pointless (and the game
is therefore equivalent to one played on the formula in n — 1 variables where this variable has been
replaced by the appropriate truth value). We say that a probability distribution that gives all truth
assignments positive probability is open-minded.

With all these considerations in hand, we can finally define RI formally.

Definition 4.4. The formula ¢ exhibits rational inattention if, for all open-minded product distributions
D and uniform accuracy vectors @ (those with (a; = ... = a,)), there exists a negligible function f
and a constant ¢ > 0 such that for all k, there are payoffs b and g such that all optimal strategies
in the information-acquisition game G(¢, D, k, @, b, g) have positive expected payoff and, in all
histories of the game, either make no guess or
e test a variable v’ at least ck times, but
e test a variable v such that o’ <, v at most f(k) times. O

Our definition of RI is quite strong; for instance, as we discuss at the end of Section 4, we could
obtain a plausible weakening by requiring that a variable v’ at least as relevant as a variable v is
tested far less frequently than v in a set of histories with positive probability rather than in all
histories. But even with our strong requirements, we find that rational inattention in the given
strong sense is quite widespread.

To get an intuition for this definition of RI, we will first directly check whether some natural
classes of formulae satisfy it.

Example 4.5. (Rational inattention)

1. Conjunctions ¢ = /\fi1 ¢; and disjunctions ¢ = \/fil t; of N > 2 literals (variables ¢; = v;
or their negations —w;) exhibit RI. In each case, we can pick b and g such that all optimal
strategies pick one variable and focus on it, either to establish that the formula is false (for
conjunctions) or that it is true (for disjunctions). By symmetry, all variables v; and v; are
equally relevant, so v; <, v;.

2. The formulae v; and —; do not exhibit RI. There is no variable v # v; such that v; <(-),, v,
and for all choices of b and g, the strategy of testing only v; and ignoring all other variables
(making an appropriate guess in the end) is clearly optimal for (—)o;.

3. More generally, we can say that all XORs in > 0 variables do not exhibit RI. For the constant
formulae T and F, any testing strategy that “guesses” correctly is optimal; for a XOR in more
than one variable, an optimal strategy must test all of the variables about the same number
of times, as any remaining uncertainty about the truth value of some variable leads to at least
equally great uncertainty about the truth value of the whole formula. Similarly, negations of
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XORs do not exhibit RI. Together with the preceding two points, this means that the only
formulae in 2 variables exhibiting rational inattention are those equivalent to one of the four
conjunctions #; A ¢ or the four disjunctions # V ¢ in which each variable occurs exactly
once and may or may not be negated.

4. For n > 2, formulae ¢ of the form v; V (-o; A vz A ... A v,)) do not exhibit RI. Optimal
strategies that can attain a positive payoff at all will start by testing vy; if the tests come out
true, it will be optimal to continue testing vy, ignoring v, . . .v,. However, for formulae ¢ of
this form, v; is strictly more relevant than the other variables: there are only 2 assignments
where changing v; flips the truth value of the formula for i > 1 (the two where v; — F and
vj = T for j ¢ {1,i}) but 2" — 2 assignments where changing v; does (all but the two where
vj = T for j # 1). Hence, in the event that all these tests actually succeed, the only variables
that are ignored are not at least as relevant as the only one that isn’t, so ¢ does not exhibit RIL

5. For n > 4, formulae ¢ of the form (v; V v3) A (v3 @ ... ® v,,) exhibit RI. Optimal strategies
split tests between v; and v,, and try to establish that both are false, and hence that ¢ is. To
establish that ¢ is true would require showing that the XOR is true. This, in turn, would
require testing all of vs, ..., 0,; since n > 4, there are at least three variables to test. As we
noted earlier, an optimal strategy must test each of the variables in the XOR about the same
number of times to establish the truth (or falsity) of the XOR. It thus requires signficantly
more tests to gain a given level of confidence that the XOR is true (or false) than it does to
gain that level of confidence that v; V v; is false. (In Section 5, we show that XORs are the
formulae that we learn the least about in a given number of tests among all formulas with a
fixed number of variables.) The variable v; determines whether is true in only ¢ in 1/4 of
the assignments (when the XOR is true, which it is in half the assignments, and v, is false);
similarly for v;. On the other hand, vs, ..., v, determine the truth value of ¢ in 3/4 of all
assignments (all assignments where v; V v, is true). Thus, this family of formulae (and other
similar families) satisfy an even stronger definition of RI, as a strictly less relevant variable is
preferred. O

4.2 A sufficient criterion for rational inattention

Unfortunately, as far as we know, determining the optimal strategies is hard in general. To be able
to reason about whether ¢ exhibits RI in a tractable way, we find it useful to consider optimal
test-outcome sequences.

Definition 4.6. A sequence S of test outcomes is optimal for a formula ¢, prior D, and accuracy
vector & if it minimises the conditional uncertainty about the truth value of ¢ among all test-
outcome sequences of the same length. That is, |PrD,5,((p | S) - %| > |PrD,5,((p | S) — %| for all &’
with |§7| = [S]. O

It turns out that for a formula to exhibit rational inattention, it is sufficient (but not necessary!)
for just the optimal test-outcome sequences to be “inattentive”, because we can set up the payoffs
in such a way that only the very best test-outcome sequences ever become relevant (by possibly
leading to a non-negative payoff). By doing this, we avoid having to deal with the complicated
quantification over all histories in the definition of RI. With the appropriate payoffs, each history
either has to end in no guess or contain an optimal test-outcome sequence. We will see that we
can reason about optimal test-outcome sequences without having to worry about the structure of
arbitrary optimal strategies.

PROPOSITION 4.7. Suppose that, for a given formula @, for all open-minded product distributions D
and uniform accuracy vectors @, there exists a negligible function f and a constant ¢ > 0 such that
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10 Matvey Soloviev and Joseph Y. Halpern

for all testing bounds k, the test-outcome sequences S optimal for ¢, D, and @ of length k have the
following two properties:

o S has at least ck tests of some variable v’, but

e S has at most f(k) tests of some variablev >, v'.

Then ¢ exhibits RL

Proor. Let P(¢, D, &, f, c, k) denote the statement that for all test-outcomes sequences S that
are optimal for ¢, D, and @, there exist variables v =y v’ such that S contains > ck tests of v’
and < f(k) tests of v. We now prove that for all ¢, D, &, f, ¢, and k, P(¢, D, &, f, ¢, k) implies the
existence of b and g such that ¢ exhibits RI in the game G(¢, D, k, m, b, g). It is easy to see that this
suffices to prove the proposition.

Fix ¢, D, @, f, ¢, and k, and suppose that P(¢, D, &, f, c, k) holds. Let

1
q" = max [Prp;(lS) - 2

(S:|S|=k}

Assume for now that g* > 0. Since there are only finitely many test-outcome sequences of length
k, there must be some ¢ with ¢* > € > 0 sufficiently small such that for all S with |S| = k,
| Prp s (0lS) - %| > q" — € iff |Prpz(9lS) — %| = ¢q*. Choose the payoffs b and g such that the
threshold q(b, g) is ¢* — €. We show that ¢ exhibits RI in the game G(¢, D, k, m, b, g).

Let Sk = {S: |S| = k and | Prp z(¢|S) — %| = q"} be the set of test-outcome sequences of length k
optimal for ¢, D, and &. If o is an optimal strategy for the game G(¢, D, k, &, g, b), the only sequences
of test outcomes after which o makes a guess are the ones in Sk. For if a guess is made after seeing
some test-outcome sequence S* ¢ S, by Lemma 3.3 and the choice of b and g, the expected payoff
of doing so must be negative, so the strategy ¢’ that is identical to o except that it makes no guess
if S* is observed is strictly better than o, contradicting the optimality of . So whenever a guess is
made, it must be after a sequence S € Sy was observed. Since sequences in S are optimal for ¢, D,
and &, and P(¢, D, @, f, ¢, k) holds by assumption, this sequence S must contain > ck test of v’ and
< f(k) test of v.

All that remains to show that ¢ exhibits RI in the game G(¢, D, k, @, g, b) is to establish that
all optimal strategies have positive expected payoff. To do this, it suffices to show that there is
a strategy that has positive expected payoff. Let S be an arbitrary test-outcome sequence in Sk.
Without loss of generality, we can assume that Prp z(¢ | S) > 1/2. Let o5 be the strategy that tests
every variable the number of times that it occurs in S in the order that the variables occur in S, and
guesses that the formula is true iff S was in fact the test-outcome sequence observed (and makes
no guess otherwise). Since S will be observed with positive probability, it follows from Lemma 3.3
that o5 has positive expected payoff.

It remains to address the case where g* = 0, that is, the number of tests k is insufficient to learn
anything about the truth value of the formula. In this case, we can simply set b = —1 and g = 2,
and proceed as before, needing to show only that some strategy attains a positive payoff. Indeed,
take or to be a strategy that repeatedly tests some variable v and then guesses T regardless of
outcomes. Since g* = 0, so we have that Prp ;(¢ | S) = 1/2 for all test-outcome sequences, there
is a probability 1/2 of getting payoff —1 and a probability 1/2 of getting payoff 2, so the expected
payoff is positive. This completes the proof. O

Applying Proposition 4.7 to test whether a formula exhibits RI is not trivial. It is easy to show
that all that affects Prp 5 (¢ | S) is the number of times that each variable is tested and the outcome
of the test, not the order in which the tests were made. We do this formally in Appendix B.1; the
following notation, which we use throughout the rest of this section and in Appendix B, implicitly
assumes this fact.
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Definition 4.8. (General notation)

1/2+0{i

1/2—a;
probability of observing v; ~ b conditional on v; actually being b divided by the probability
of observing v; ~ b condition on v; not being b.

o ng ., =I{j : SLjl = (v; ® A(vi)) }|. Thus, ng , ; is the number of times that v; is observed to
have the correct value according to truth assignment A in test-outcome sequence S.

® 0; = . We can think of o; as the odds of making a correct observation of v;; namely, the

N
ns.Ai

® 'Da (Aa S) = PrD,& (A) H{i:vi is in the domain of A} 0; o

Using these definitions, we can define the following quantity, which forms the starting point of
our approach. Its value represents an anticorrelate of conditional probability, while its definition
packages up the notion that the ordering of a test-outcome sequence doesn’t matter for easier use.

Definition 4.9. The characteristic fraction of a test-outcome sequence S for ¢ is

2 p(A)=F} TD.a (A S)

tle.$) = 2 pay=1} 0.3 (A, S)
O
The importance of this quantity is due to the following:
LEMMA 4.10. Prpg(e | S) > Prpz(@ | S') iff cf(e,S) < cf(e,S).
PRrOOF. See Appendix B.1. O

Example 4.11. Let ¢ = (v1 Avg) V (=2 A—w3) and S = (v, = F,v; = T), and suppose that the prior
D is uniform and the testing accuracy is the same for all variables, so 0y = ... = 0,, = 0. This formula
has four satisfying assignments, namely {TTT, TFF, TTF, FFF} (letting xyz denote the assignment
{v1 — x,02 — y,v3 > z}, for brevity). The other four assignments, namely {FFT, TFT, FTT, FTF},
make the formula false. For each assignment A, the corresponding summand rp, (A, S) is Prp 5(A)
times a factor of o for every test outcome in S that is compatible with A, where a test outcome
v; = b is compatible with A if b = A(v;). For instance, the falsifying assignment FFT is compatible
with v, = F but not v; = T, so it gives rise to a summand of Prp 5(A) - 0 in the numerator of the
characteristic fraction of S. On the other hand, if A is the satisfying assignment TFF, then both
01 ~ T and v; ~ F are compatible with A, yielding Prp z(A) - 0 in the denominator. Performing
the same analysis for the other assignments and cancelling the common factors of Prp 7 (A) (as the
prior is uniform), we find that

ol +0%+0%+0°
cf(e.5) = ol +0%+0l+0!
For a more general example, suppose that S = ((v; ~ T)X, (v; ~ F)%*, (05 ~ F)®K), where k is the
total number of tests in S and real constants 0 < ¢y, ¢z, ¢c3 < 1 with ¢; + ¢z + c3 = 1 representing the
fraction of times that each of the three test outcomes occurs in it. Then
OCZk + Oclk+02k + 00 + OC3k

Cf((p’ S) = Oclk + Oclk+czk+03k + Oclk+c‘3k + Oc;k+03k '

O
In the second example above, the characteristic fraction of S depends only on the integers c;k,
c2k, and csk. The factor k is common to all the exponents, and so we can pull it out to rewrite
cf (¢, S) as a fraction of sums of powers of o* :
(Ok)cz + (Ok)clﬂ'z + (Ok)O + (Ok)03
(Ok)cl + (Ok)(:1+(:2+03 + (Ok)C1+C3 + (Ok)02+03 '

cf(e,S) =
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12 Matvey Soloviev and Joseph Y. Halpern

The key point is that we can view cf(¢, S) as a function of the vector (cy, ¢z, c3) that describes the
relative makeup of the test-outcome sequence and a parameter o* that depends on the test accuracy
and the number of tests k. This can be shown to be true in general. Since we are interested in the
behaviour of the information-acquisition game as k, and hence 0¥, goes to infinity, it will turn
out to be useful to consider the asymptotic behaviour of cf as 0k — oo as a function of (cy, ¢z, c3).
Indeed, the rest of our approach can be seen as the result of an attempt to make this idea rigorous.
As a starting point, we define the relative-makeup vector for all test-outcome sequences.

Definition 4.12. Given a test-outcome sequence S and truth assignment A, the A-trace of S,
denoted Tra(S), is the vector Tra(S) = (n 4, /IS, ..., né 4, /ISD. O

Example 4.13. Consider the sequence of test outcomes
Si=(vy #T,uy ~T,0y %~ T,v; ~T,v; = F).

S: has three instances of v; ~ T, one instance of v; ~ F and one instance of v, ~ T. So the
{vy + T,vy > T}-trace of S; is (%, %), the {v; — F,v; > T}-trace of S; is (%, %) If the last test is
vy = F rather than v; = F, giving us the test-outcome sequence

Sy =(vy = T,v, *T,uy # T,v; = T,vs = F),
then the {v; > T, v, > T}-trace of S, is also (% é) The sequence
S3=(v; ®T,vs = Fuy ~T,0, ~T,0; = T)
has four instances of v; ~ T and one of v, ~ F, so the {v; — T, v, > F}-trace of Sz is (%, %) m|

It may seem that counting only the test outcomes that agree with A results in an unacceptable
loss of information: indeed, as the example above illustrates, the A-traces of the two distinct test-
outcome sequences S; and S, can be the same, even though S; and S; will in general lead to different
posterior probabilities of a formula being true. However, it turns out that if a test-outcome sequence
is optimal, there must be some assignment A for which, in a sense, we do not lose information by
taking the A-trace.

Definition 4.14. The test-outcome sequence S and the assignment A are compatible if all test
outcomes in S are compatible with A: that is, S contains no observations of the form v; ~ =A(v;). O

LEmMMA 4.15. Every optimal test-outcome sequence S is compatible with some assignment A.
Proor. Immediate from Lemma B.2. O

We can now define a counterpart to the earlier definition of a characteristic fraction that uses
only the information that is given by an A-trace.

Definition 4.16. If ¢ = (cy,...,¢p), ¢ is a formula in the n variables vy, . ..,v,, and A is a truth
assignment, then the characteristic fraction of the A-trace is the function cf 4, where

ik
£ k) = 2 (B:oB)=F} Prp.a (B) [1{og:a(0)=B(op)} 05"
C A(‘P> c, ) - cik *
2(B:p(B)=T} P1D.a (B) [1{0;:A(0;)=B(;)} ©;
O

As expected, the quantities cf(¢, S) and cf4(¢, ¢, k) are closely related. The following lemma
makes precise when we do not lose information by considering the appropriate A-trace.

LEMMA 4.17. For all truth assignments A compatible with S, we have
cf(@,S) = cfalp, Tra(S), |S]).
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Proor. If A is compatible with S, then (Tra(S)); = ng’A’i/|S| for all i, so the result is immediate
from the definition. o

Recall that our goal is to show that the optimal test-outcome sequences for ¢, that is, sequences
S that maximise |Prpz(¢ | S) — %l satisfy a particular property. By Lemma 4.10, the optimal
test-outcome sequences either minimise cf(¢, S) or cf(=¢,S) = 1/cf (¢, S). By Lemma 4.15, there
must be some assignment A that S is compatible with; by Lemma 4.17, we can equivalently minimise
cfa(p,S) or cf4(—¢,S) for a truth assignment A compatible with S. In Appendix B we show that
if S is sufficiently long and compatible with A and ¢(A) = T, then we must have Prp 5(¢[S) >
Prp z(—¢|S), while if ¢(A) = F, the opposite inequality must hold (see Lemma B.1). So we need
to minimise cf4 (@, S) if 9(A) = T and to minimise cf4 (¢, S) if p(A) = F. It suffices to find a
sequence S and a truth assignment A that is compatible with S for which the appropriate cf, is
minimal.

The plan. What does this view actually gain us over the naive undertaking to identify the optimal
test-outcome sequences directly? Recall that our definition of rational inattention depends on the
asymptotic behaviour of information-acquisition games as the number k of tests goes to infinity.
Even without the exponential dependency of the search space on k, it is not clear how to analyze
large games.

Here, the machinery of A-traces, which do not depend on k at all, comes in helpful. As part of
the statement of Theorem 4.23, we provide an A-trace analogue (that is thus independent of k) of
the criterion that Proposition 4.7 gives for rational inattention in test-outcome sequences. In the
course of the proof of this theorem in the appendix, we will see that, with certain caveats, we can
say enough about the A-traces of all optimal test-outcome sequences to be able to check whether
they satisfy the analogous criterion. Roughly speaking, the space of A-traces represents something
like a continuous generalisation of (a subspace of) test-outcome sequences. We show that inside
this space, there is a convex polytope of what can be viewed as “optimal A-traces” (cf. Lemma B.7).
As a convex polytope, it is amenable to well-known and well-behaved optimisation techniques.
Moreover, as the number k of tests grows, the A-traces of actual optimal test-outcome sequences
get progressively closer to points in this polytope. It follows that if all the points in the polytope
of “optimal A-traces” satisfy the criterion for rational inattention, then all the A-traces of actual
optimal test-outcome sequences are a negligible function away from satisfying them.

We present the definition of this convex polytope and the formal statement of the A-trace
analogue criterion here, but relegate the technical details of the rest of the proof to Appendix B.

Assumption: We assume for ease of exposition in the remainder of the paper that the measurement
accuracy of each variable is the same, that is, @; = - - - = a,. This implies that 0; = - - - = 0,,; we use
o to denote this common value. While we do not need this assumption for our results, allowing non-
uniform measurement vectors @ would require us to parameterize RI by the measurement accuracy;
the formulae that exhibit (0.1, 0.1)-RI might not be the same as those that exhibit (0.1, 0.3)-RL
With this assumption, we can show that cf4 (¢, S) is essentially characterised by the terms in
its numerator and denominator with the largest exponents. Every optimal test-outcome sequence
S is compatible with some assignment A. Since all test outcomes in S are compatible with A, if
¢(A) =T, the summand due to A in the denominator of cf (¢, S) = cf4 (@, Tra(S), |S]) is of the form
PrD’&(A)om. This term must be the highest power of o that occurs in the denominator. The highest
power of o in the numerator of cf4(S), which is due to some assignment B for which ¢(B) = F,
will in general be smaller than 1 - |S|, and depends on the structure of ¢. On the other hand, if
¢(A) = F, we want to minimise the characteristic fraction for —¢, for which the sets of satisfying
and falsifying assignments are the opposite of those with A. So, in either case, the greatest power
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14 Matvey Soloviev and Joseph Y. Halpern

in the numerator of the characteristic fraction we care about will be due to an assignment B for
which ¢(B) # ¢(A). As Lemma 4.19 below shows, we can formalise the appropriate highest power
as follows:

Definition 4.18. The max-power of a vector ¢ € R" is

Cj.
{:A(9;)=B(v;) }

max Cc) = max
Ppa(®) (Big(B)#p(A))

O

LEMMA 4.19. IfS is a test-outcome sequence compatible with A and (A) = T (resp., p(A) = F), then
the highest power of o that occurs in the numerator of cf (¢, S) (resp., cf(=¢,S) is |S|maxp,, o (Tra(S)).

Proor. This follows from the definition of cf 4 (¢, Tra(S), |S|), the observation that all entries in
Tra(S) are non-negative, and Lemma 4.17. O

We now show that the search for the max-power can be formulated as a linear program (LP).
Note that if R is a compact subset of R, finding a maximal element of the set is equivalent to finding
a minimal upper bound for it:

max R =min{m |Vr € R:r < m}.

Hence, finding the vector ¢ with }; ¢; = 1 and ¢; > 0 that attains the greatest max-power, that is,
that maximises maxp.,(B)#¢(4)} (X (1:(0;)=B(o;)} Ci) 18 equivalent to finding the ¢ and max-power
m that minimise m subject to maX(B.y(B)£p(A)} 2 {i:A(0)=B(o;)} €i < Ms 2;¢i = 1, and ¢; > 0 for all
i. These latter constraints are captured by the following LP.

Definition 4.20. Given a formula ¢ and truth assignment A, define the conflict LP La(¢) to be the
linear program

minimise m
subject to Z ¢; < m for all B such that ¢(B) # ¢(A)
{i:A(v;)=B(v;) }

Zcizl

i

\%

Ofori=1,...,n
m< 1.

Ci
0

IA

O

The constraint 0 < m < 1 is not necessary; since the ¢;’s are non-negative and }};¢; = 1,
the minimum m that satisfies the constraints must be between 0 and 1. However, adding this
constraint ensures that the set of tuples (cy, . . ., ¢,, m) that satisfy the constraints form a compact
(i.e., closed and bounded) set. It is almost immediate from the definitions that the solution to L4 (¢)
is SupE:Z?:l ci=1, ¢; >0 maquo,A(E)‘

We call Ly (¢) a conflict LP because we are considering assignments B that conflict with A, in the
sense that ¢ takes a different truth value on them than it does on A. To reason about conflict LPs,
we first introduce some notation.

Definition 4.21. Suppose that L is a linear program in n variables minimising an objective function
f:R" — R subject to some constraints.

o The feasible set of L, Feas(L) € R", is the set of points that satisfy all the constraints of L.
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e The minimum of the LP, MIN(L), is the infimum inf ¢ reas(r) f(p) attained by the objective
function over the points in Feas(L).

o The solution polytope of L, OPT(L) C Feas(L) C R, is the set of all feasible points at which
f attains the minimum, that is, OPT(L) = {p € Feas(L) : f(p) = MIN(L)}.

O

It now follows that if (J m) € OPT(La(¢)), then maxp(P,A(c?) = m = MIN(L4(¢)). Our goal
is to show that the solutions to the conflict LPs tell us enough about the structure of optimal
test-outcome sequences to derive a sufficient condition for a formula to exhibit RI.

Roughly speaking, MIN(L4 (¢)) tells us how well any sequence of test outcomes compatible with
the assignment A can do. Since every optimal sequence is compatible with some assignment, we
therefore can find the max-power of optimal sequences by considering the minimum of the minima
of all LPs:

Definition 4.22. For a formula ¢, the minimax power MIN*(¢) is the minimum of minima:

MIN*(¢) = min AMIN(LA((p)).

assignments

An assignment A, and the LP L4 (¢), are relevant if MIN(L4(¢)) = MIN*(¢p). O
With this definition, we can finally state the core theorem of this section.

THEOREM 4.23. If there exists a constant C > 0 such that for all relevant truth assignments A and
all solution points ¢ = (¢1,...,cp,m) € OPT(La(¢)), there exist indices i and j such thatv; <, vj,
¢; 2 C,andcj =0, then ¢ exhibits RIL.

ProoOF. See Appendix B.2. O

As the conflict LP is of polynomial size, we can solve for a point in the solution polytope in
polynomial time. Some additional subtleties are involved in making sure that the criteria we imposed
on the coordinates, which represent the A-trace counterpart of the criteria of Proposition 4.7 for
optimal test-outcome sequences, are satisfied for all such points. In Section 4.3, we will see that we
can do this by solving a polynomial number of LPs derived from the conflict LP. Thus, we obtain a
polynomial-time (in 2", where n is the number of variables) algorithm for evaluating a sufficient
criterion for a formula to exhibit rational inattention.

4.3 Using LPs for nonconvex properties

Let Pc(C, @) denote the property that ¢ has entries ¢; and ¢; such that v; <, v;, ¢; > C, and ¢; = 0.
By Theorem 4.23, a condition sufficient to guarantee that a formula ¢ exhibits RI is that there exists
a C such that Pc (¢, ¢) holds for all (¢, m) € OPT(La(¢)). To compute how many formulae exhibit
RI, we want an efficient algorithm to check whether this condition holds. Since the quantification
over C is existential, and if C < C’, then P¢ (¢, ¢) implies P (G, ¢), all choices of C makes Pc a
sufficient condition for RI, with smaller C giving rise to stronger conditions (i.e., ones that hold
for more formulae that exhibit RI). In practice, we found no difference for the formulae that we
tested between taking C to be 107%, 107>, or 107, and hence arbitrarily chose C = 10~ for our
computations.

LPs (such as L (¢)) are known to be solvable in polynomial time (see, e.g., [4]). However, rather
than finding a description of the entire solution polytope OPT(L4(¢)), standard linear programming
algorithms such as that of Karmarkar [4] compute only a single point inside the polytope. Since we
are interested in whether all points in the polytope satisfy P, we have to do some additional work
before we can leverage standard LP solvers.
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In general, to establish whether all points in OPT(L) for a minimising LP L satisfy a property P,
we can compare the objective values attained at feasible points for which P is true to those attained
at points for which P is false. If some point where P is true attains a smaller value than all points
where P is false, then no —P point can be optimal, and so P is true for all optimal points; likewise,
if some point where P is false attains a smaller value than all points where P is true, then P is false
for all optimal points. If neither relationship holds, then points in OPT(L) can satisfy both P and
its negation. Of course, it is unclear how we would compare all pairs of points from two infinite
sets in general. However, if we know the minimum objective value m* across all feasible points
that satisfy P, then the first property above can be simplified to say: is m* alone smaller than the
objective at any point where P is false? (If the minimum exists, it is by definition attained at some
point. Conversely, if the objective at some point that satisfies P is smaller than the objective at all
points that don’t satisfy P, then m* must also be smaller than all these points by transitivity of <.)

It would be convenient if we could indeed determine such an m* for Pc, for instance by solving
another LP. However, the subset of feasible points that satisfy Pc may not actually be a convex
polytope. Indeed, a priori it may not even be well-defined, as the minimum of a linear function
may not be attained on a set that is not closed. In fact, the property that we care about, that is,
the existence of indices i and j such that v; <, v;, ¢; > C, and ¢; = 0, is not even closed under
convex combinations, let alone expressible as a set of linear inequalities. For example, if v; <, v;
and v; <, v; are two variables of equal relevance, and C; = 0.15, then the points (...,0,...,0.2,...)
and (...,0.2,...,0,...) (the filled-in entries correspond to coordinates i and j) satisfy the property
for i and j, but their average (...,0.1,...,0.1,...) does not. However, for fixed i and j, the condition
that ¢; > C and c¢; = 0 can be imposed easily on a feasible solution by adding the two inequalities
in question to the LP. The set of points that satisfy the existentially quantified condition therefore
can be covered by a O(n?)-sized family of convex closed polytopes, over which we can minimise
m as a linear program, and determine the overall minimum m* by taking the minimum over the
individual minima.

Definition 4.24. For all variables v; # v; with v; <, v}, define
L},;(9.0) = La(p) U{c; = 0,¢; > C}

(so, roughly speaking, in solutions to LZ, ; j((p, C), variable v; is ignored while v; is tested in a
constant fraction of the tests). |

Clearly, ULz’i,j((p, C) = {p € Feas(La(¢)) : Pc(p, ¢)}, so min;; MIN(L;’LJ.) = m™. It would be
convenient if we could similarly determine a minimum m~ for all points where —P¢, and thereby
get rid of the quantification over those points as well and simply compare m* to m~. The negation
of Pc is equivalent to

Vj(e; =0=Vi(v; <p0j = ¢; <O)):
if a variable v; is ignored, then every variable v; that is no more important than v; is also “pretty
much ignored”, that is, not even given a C-fraction of tests for the cutoff constant C we picked.
Analogously to before, we can now define a collection of convex polytopes whose union is the set
of points on which P¢ does not hold. For each polytope, we just fix the (not necessarily single)
most important variable v; that is ignored. Let

Sy =A(c1,...,cn,m) € Feas(La(@)) : ¢; < CVi:v; <pvjci > 0Vizo; £y 05}
Observe then that, indeed, | J; S;J(q), C) 2 {p € Feas(La(¢p)) : ~Pc(p, p)}. Unfortunately, the
definition of each ng involves some strict inequalities, so the sets are not closed. Therefore, we

can’t use standard LP techniques to find m~, and indeed, the minimum might not even be attained
on the set.
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While we may not be able to minimise linear functions over non-closed convex polytopes, we
can make use of a standard trick to determine whether such a polytope is at least nonempty. This
turns out to be sufficient for our purposes.

PROPOSITION 4.25. We can decide, in time polynomial in the number of variables and the number
of bits required to describe the inequalities, whether a set that is defined by linear inequalities (strict or
non-strict) is empty.

Proor. Take the inequalities defining a set U to be f1(X) < ¢y, ..., fu(¥) < ¢, and ¢g;(X) < di,
..y gm(X) < dy,. Then the LP

minimise s

subjectto  fi(X¥) <¢
(%) <ecn
gi(X) <ci+s
Im(X) <cm+s

has a solution s* < 0 iff U is nonempty: If the LP has a solution s* < 0 then the solution point x*
also satisfies the inequalities defining U; conversely, all points x € U must satisfy all inequalities,
so the non-strict inequalities in the LP are immediately satisfied. For the strict ones, there exist
S1,..+>Sm < Osuchthatg;(x) = c1+s1 < ¢1,. .., gm(X) = cm+sm < cm. Hence, taking s = max; s; < 0,
(x, s) satisfies the corresponding non-strict LP inequalities as well, and the solution s* < s < 0.
This LP has one more variable than the original set of inequalities, and clearly can be described
using at most a polynomially greater number of bits than the original under any reasonable encoding.
The result follows by using Karmarkar’s algorithm [4]. O

As we noted earlier, we can establish that Pc is true if m* < m for all m such that (x,m) €
Feas(Ls(¢)) and =Pc((x, m), ¢). This is true iff no point that satisfies —=Pc attains a value m < m*;
and each such point must come from at least one of the S, . In other words, defining

T30, Com) = (€1, com) € 53,(p,C) i m < m*)y = 2,

we require all the sets T,;to be empty. By the proposition above, we can decide this in polynomial
time.

THEOREM 4.26. Fix C > 0 and set m{. = ming; ; MIN(LZ’i’].((p, C)). IfTA‘,j((p, C.m{) = @ forall A
and j, then ¢ exhibits rational inattention.

Proor. As explained above, the sets T being empty implies that there is no point satisfying
—Pc and attaining a max-power of m < mf.. At the same time, m. being the minimum over all
inattentive LPs means that the minimum of m over points satisfying Pc in any Ly is m{.. Therefore,
my. is the minimax power, and all solution points of relevant LPs satisfy Pc. Hence, by Theorem
4.23, ¢ exhibits R O

COROLLARY 4.27. We can compute a sufficient condition for the n-variable formula ¢ to exhibit RI
by solving 2"O(n?) LPs with O(2") inequalities each, namely the O(n?) inattentive LPs and the O(n)

attentive LPs associated with each of the 2" assignments.
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4.4 Rational inattention is widespread

Using this approach, we were able to exhaustively test all formulae that involve at most four
variables to see whether, as the number of tests in the game increases, optimal strategies were
testing a more relevant variable a negligible number of times relative to a less relevant variable.
Since the criterion that we use is only a sufficient condition, not a necessary one, we can give only
a lower bound on the true number of formulae that exhibit RL

In the following table, we summarise our results. The first column lists the number of formulae
that we are certain exhibit RI; the second column lists the remaining formulae, whose status is
unknown. (Since Rl is a semantic condition, when we say “formula”, we really mean “equivalence
class of logically equivalent formulae”. There are 22" equivalence classes of formulae with n variables,
so the sum of the two columns in the row labeled n is 22n.) As the results show, at least 15% of
formulae exhibit RI.

n exhibit RI unknown
1 0 4

2 8 8

3 40 216

4 9952 55584

Given the numbers involved, we could not exhaustively check what happens for n > 5. However,
we did randomly sample 4000 formulae that involved n variables for n = 5,...,9. This is good
enough for statistical reliability: we can model the process as a simple random sample of a binomially
distributed parameter (the presence of RI), and in the worst case (if its probability in the population

of formulae is exactly %) the 95% confidence interval still has width < z, /ﬁ% (1- %) ~ 0.015,
which is well below the fractions of formulae exhibiting RI that we observe (all above 0.048). As
the following table shows, RI continued to be quite common. Indeed, even for formulae with 9

variables, about 5% of the formulae we sampled exhibited RI.

n exhibit RI unknown
5 585 3415
6 506 3494
7 293 3707
8 234 3766
9 194 3806

The numbers suggest that the fraction of formulae exhibiting RI decreases as the number of
variables increases. However, since the formulae that characterise situations of real-life interest are
likely to involve relatively few variables (or have a structure like disjunction or conjunction that
we know exhibits RI), this suggests that RI is a widespread phenomenon. Indeed, if we weaken the
notion of RI slightly (in what we believe is quite a natural way!), then RI is even more widespread.
As noted in Example 4.5, formulae of the form v; V (-v; A vz A ... A vy,) do not exhibit RI in the
sense of our definition. However, for these formulae, if we choose the payoffs b and g appropriately,
an optimal strategy may start by testing o4, but if sufficiently many test outcomes are vy ~ F, it
will then try to establish that the formula is false by focussing on one variable of the conjunction
(vy A ... Avy), and ignoring the rest. Thus, for all optimal strategies, we would have RI, not for all
test-outcome sequences (i.e., not in all histories of the game), but on a set of test-outcome sequences
that occur with positive probability.
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We found it hard to find formulae that do not exhibit Rl in this weaker sense. In fact, we conjecture
that the only family of formulae that do not exhibit RI in this weaker sense are equivalent to XORs
in zero or more variables (v; @ ... ® v,) and their negations. (Note that this family of formulae
includes v; and —w;.) If this conjecture is true, we would expect to quite often see rational agents
(and decision-making computer programs) ignoring relevant variables in practice.

5 TESTING AS A MEASURE OF COMPLEXITY

The notion of associating some “intrinsic difficulty” with concepts (typically characterised using
Boolean formulae) has been a topic of continued interest in the cognitive science community
[3,7,9, 13]. We can use our formalism to define a notion of difficulty for concepts. Our notion of
difficulty is based on the number of tests that are needed to guarantee a positive expected payoff for
the game G(¢, D, k, @, g, b). This will, in general, depend on D, &, g, and b. Actually, by Lemma 3.3,
what matters is not g and b, but q(b, g) (the threshold determined by g and b). Thus, our complexity
measure takes D, &, and q as parameters.

Definition 5.1. Given a formula ¢, accuracy vector @, distribution D, and threshold 0 < g < % the
(D, q, @)-test complexity cplp g« (@) of ¢ is the least k such that there exists a strategy with positive
payoff for G(¢, D, k, &, g,b), where g and b are chosen such that (b, g) = q. O

To get a sense of how this definition works, consider what happens if we consider all formulae
that use two variables, v; and v,, with the same settings as in Example 2.1: @ = (1/4,1/4), D is the
uniform distribution on assignments, g = 1, and b = —16:

(1) If ¢ is simply T or F, any strategy that guesses the appropriate truth value, regardless of test
outcomes, is optimal and gets a positive expected payoff, even when k = 0. So cplp .« (@) = 0.

(2) If ¢ is a single-variable formula of the form v; or —wv;, then the greatest certainty | Prp 5 (¢ |
S) — 1/2| that is attainable with any sequence of two tests is 2/5, when S = (v; = T,v; # T)
or the same with F. This is smaller than q(b, g), and so it is always optimal to make no guess;
that is, all strategies for the game with k = 2 have expected payoff at most 0. If k = 3 and
S=(vy=T,01 = T,01 = T), then (Prpz(¢ | S) = 1/2) = 13/28 > q(b, g). Thus, if k = 3, the
strategy that tests v; three times and guesses the appropriate truth value iff all three tests
agree has positive expected payoff. It follows that cplp,q « (¢) = 3.

(3) If ¢ is v1 ® vy, then the shortest test-outcome sequences S for which Prp z(¢ | S) —1/2 s
greater than q(b, g) have length 7, and involve both variables being tested. Hence, the smallest
value of k for which strategies with payoff above 0 exist is 7, and cplp g« (¢) = 7.

(4) AsExample 2.1 shows, cplp .4 (v1V0;) = 2, and likewise for all other two-variable conjunctions
and disjunctions by symmetry.

It is not hard to see that T and F always have complexity 0, while disjunctions and conjunctions
have low complexity. Peraps somewhat counterintuitively, the disjunction v; V v, has lower
complexity than v; moreover, the larger k is, the lower the complexity of v; V ... V vg. This
can be intuitively justified by noting that this measure of complexity captures how much work it
takes to attain certainty about the truth value of a formula. Longer disjunctions are progressively
more likely to be true a priori; moreover, any evidence (in the form of test outcomes) that a
given disjunction of k variables is true is at least as compelling evidence that an extension of this
disjunction to k + 1 variables is. Therefore, even though the formula looks more complex, the case
for it being true actually becomes easier to make.

We can also characterise the most difficult concepts, according to our complexity measure, at least
in the case of a uniform distribution D,, on truth assignments (which is the one most commonly
considered in practice).
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THEOREM 5.2. Among all Boolean formulae in n variables, for all0 < q < % and accuracy vectors @,
the (Dy, q, @)-test complexity is maximised by formulae equivalent to the n-variable XORv; @ ... ® v,
or its negation.

Proor skeTcH. Call a formula ¢ antisymmetric in variable v if ¢p(A) = —¢(A’) for all pairs of
assignments A, A’ that only differ in the truth value of v. It is easy to check that a formula is
antisymmetric in all variables iff it is equivalent to an XOR or a negation of one. Given a formula ¢,
the antisymmetrisation ¢, of ¢ along v is

is the formula

Qo = (oA (P|v:T) \ (ﬁv A _'(Plv:T),
where ¢|,=x denotes the formula that results from replacing all occurrences of v in ¢ by x. It is easy
to chek that ¢, is indeed antisymmetric in . We can show that the (D,, g, &)-test complexity of ¢,
is at least as high as that of ¢, and that if v’ # v, then ¢, is antisymmetric in o’ iff ¢ is antisymmetric
in v’. So, starting with an arbitrary formula ¢, we antisymmetrise every variable in turn. We then
end up with an XOR or the negation of one. Moreover, each antisymmetrisation step in the process
gives a formula whose test complexity is at least as high as that of the formula in the previous step.
The desired result follows. A detailed proof can be found in Appendix C. O

The following example illustrates how the antisymmetrisation process affects test complexity.

Example 5.3. Consider the formula ¢ = (a A ¢) V (—a A b). In order to better separate the
complexity values, we increase the threshold g slightly, from 15/34 to 31/68, which can be achieved
by setting bad and good payoffs of —65 and 3, respectively. We then consider the (D,, 31/68, &)-test
complexity of this formula, as well as different successive antisymmetrisations.

Formula Equivalent Formula cplp,q.a
) (anc)V (maAb) 6
Pa (anc)V (maA—c) 8
(@a)c (anc)V (ma A =c) 8
(((Pa)c)b adbdc 12
Op bA=a)V(bAc)V (=bAaA-=c) 7
(¢b)a adbdc 12

O

Theorem 5.2 does not rule out the possibility that there are formulae other than those equivalent
to the n-variable XOR or its negation that maximise test complexity. We conjecture that this is not
the case except when ¢ = 0; this conjecture is supported by experiments we’ve done with formulas
that have fewer than eight variables.

It is of interest to compare our notion of “intrinsic difficulty” with those considered in the
cognitive science literature. That literature can broadly be divided up into purely experimental
approaches, typically focused on comparing the performance of human subjects in dealing with
different categories, and more theoretical ones that posit some structural hypothesis regarding
which categories are easy or difficult.

The work of Shepard, Hovland, and Jenkins [1961] is a good example of the former type; they
compare concepts that can be defined using three variables in terms of how many examples (pairs of
assignments and corresponding truth values of the formula) it takes human subjects to understand
and remember a formula ¢, as defined by a subject’s ability to predict the truth value of ¢ correctly
for a given truth assignment. We can think of this work as measuring how hard it is to work with
a formula; our formalism is measuring how hard it is to learn the truth value of a formula. The
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difficulty ranking found experimentally by Shepard et al. mostly agrees with our ranking, except
that they find two- and three-variable XORs to be easier that some other formulae, whereas we
have shown that these are the hardest formulae. This suggests that there might be differences
between how hard it is to work with a concept and how hard it is to learn it.

Feldman [2006] provides a good example of the latter approach. He proposes the notion of
the power spectrum of a formula ¢. Roughly speaking, this counts the number of antecedents
in the conjuncts of a formula when it is written as a conjunction of implications where the
antecedent is a conjunction of literals and the conclusion is a single literal. For example, the formula
¢ = (v1A(v2V3)) V(=01 A (—0g A—03)) can be written as the conjunction of three such implications:
(vy = v1) A (v3 — ©v1) A (mvg A v — 03). Since there are no conjuncts with 0 antecedents, 2
conjuncts with 1 antecedent, and 1 conjunct with 2 antecedents, the power spectrum of ¢ is (0, 1, 2).
Having more antecedents in an implication is viewed as making concepts more complicated, so a
formula with a power spectrum of (0, 1, 1) is considered more complicated than one with a power
spectrum of (0, 3,0), and less complicated than one with a power spectrum of (0, 0, 3).

A formula with a power spectrum of the form (i, j,0,...,0) (i.e., a formula that can be written as
the conjunction of literals and formulae of the form x — y, where x and y are literals) is called a
linear category. Experimental evidence suggests that human subjects generally find linear categories
easier to learn than nonlinear ones [3, 7]. (This may be related to the fact that such formulae are
linearly separable, and hence learnable by support vector machines [12].) Although our complexity
measure does not completely agree with the notion of a power spectrum, both notions classify
XORs and their negations as the most complex; these formulae can be shown to have a power
spectrum of the form (0, .. .,0,2%71).

Another notion of formula complexity is the notion of subjective structural complexity introduced

by Vigo [2011], where the subjective structural complexity of a formula ¢ is |Sat(¢)|e” /12, where
Sat(¢p) is the set of truth assignments that satisfy ¢, f = (f,..., fu), fi is the fraction of truth
assignments that satisfy ¢ such that changing the truth value of v; results in a truth assignment
that does not satisfy ¢, and ||f||2 =+/(A)?+ - + (f,)? represents the £* norm. Unlike ours, with
this notion of complexity, ¢ and ~¢ may have different complexity (because of the |Sat(¢)| factor).
However, as with our notion, XORs and their negation have maximal complexity.

In computer science and electrical engineering, binary decision diagrams (BDDs) [6] are used as
a compact representation of Boolean functions. BDDs resemble our notion of a testing strategy,
although they do not usually come with a notion of testing error or acceptable error margins on the
output (guess). Conversely, we could view testing strategies as a generalisation of BDDs, in which
we could “accidentally” take the wrong branch (testing noise), a given variable can occur multiple
times, leaf nodes can also be labelled “no guess”, and the notion of correctness of a BDD for a
formula is relaxed to require only that the output be correct with a certain probability. The expected
decision depth problem of Ron, Rosenfeld, and Vadhan [8] asks how many nodes of a BDD need to
be visited in expectation in order to evaluate a Boolean formula; this can also be seen as a measure
of complexity. In our setting, an optimal strategy for the “noiseless” information-acquisition game
(a = 1/2, —co payoff for guessing wrong) exactly corresponds to a BDD for the formula; asking
about the depth of the BDD amounts to asking about whether the strategy uses more than a given
number of tests.

6 CONCLUSION

We have presented the information-acquisition game, a game-theoretic model of gathering information
to inform a decision whose outcome depends on the truth of a Boolean formula. We argued that
it is hard to find optimal strategies for this model by brute force, and presented the random-test
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heuristic, a simple strategy that has only weak guarantees but is computationally tractable. It is an
open question whether better guarantees can be proven for the random-test heuristic, and whether
better approaches to testing that are still more computationally efficient than brute force exist.
We used our techniques to show that RI is a widespread phenomenon, at least, for formulae that
use at most nine variables. We argue that this certainly covers most concepts that naturally arise
in human discourse. Though it is certainly the case that many propositions (e.g., the outcome of
elections) depend on many more variables, human speech and reasoning, for reasons of utterance
economy if nothing else, usually involves reducing these to simpler compound propositions (such
as the preferences of particular blocks of voters). We hope in future work to get a natural structural
criterion for when formulae exhibit RI that can be applied to arbitrary formulae.

Finally, we discussed how the existence of good strategies in our game can be used as a measure
of the complexity of a Boolean formula. It would be useful to get a better understanding of whether
test complexity captures natural structural properties of concepts.

Although we have viewed the information-acquisition game as a single-agent game, there are
natural extensions of it to multi-agent games, where agents are collaborating to learn about a
formula. We could then examine different degrees of coordination for these agents. For example,
they could share information at all times, or share information only at the end (before making a
guess). The goal would be to understand whether there is some structure in formulae that makes
them particularly amenable to division of labour, and to what extent it can be related to phenomena
such as rational inattention (which may require the agents to coordinate on deciding which variable
to ignore).

In our model, we allowed agents to choose to make no guess for a payoff of 0. We could have
removed this option, and instead required them to make a guess. We found this setting to be less
amenable to analysis, although there seem to be analogues to our results. For instance, as in our
introductory example, it is still rational to keep testing the same variable in a disjunction with a
probability that is bounded away from zero, no matter how many tests are allowed. However, since
giving up is no longer an option, there is also a probability, bounded away from both 0 and 1, that
all variables have to be tested (namely when the formula appears to be false, and hence it must be
ascertained that all variables are). The definition of test complexity makes sense in the alternative
setting as well, though the values it takes change; we conjecture that the theorem about XOR being
hardest can be adapted with few changes.

A CALCULATIONS FOR EXAMPLE 2.1

In this section, we fill in the details of the calculations for Example 2.1. We abuse notation by also
viewing formulas, assignments, and test-outcome sequences as events in (i.e., subsets of) the space
of histories of the game described in Section 2. Specifically,

o we identify a truth asignment A to the n variables in the game with the event consisting of
all histories where A is the assignment chosen by nature;

e we identify the formula ¢ with the event consisting of all histories where ¢ is true under
the assignment A chosen by nature; thus, ¢ is the disjoint union of all events A such that

p(A) =T;

o we identify a test-outcome sequence S = (v;, = by,...,v; =~ by) of length k with the event
consisting of all histories where at least k tests are performed, and the outcomes of the first
k are described by S.

Observe that with the “good” payoff being +1 and the “bad” payoff being —16, the expected payoff
from guessing that the formula is true after observing Sis Prp 5(¢ | S) - 1 —Prp z(—¢ | S) - 16, so it
is greater than 0 if and only if Prp 5(¢ | S) > 16/17.
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Henceforth, for brevity, let Ay (b,b" € {T,F}) refer to the assignment {v; — b,v; — b’}
By assumption, all test outcomes are independent conditional on a fixed assignment. Suppose
first the player tests the same variable twice, say v;. Then for the “ideal” test outcome sequence
S = (v; = T,v; = T), the conditional probability of S given that nature picked A is (3/4) - (3/4) if
A(vy) =T, and (1/4) - (1/4) otherwise. It follows that

Prpz(v1 Voz | S)
= Prps(Arr | S) +Prpa(Arr | S) + Prpz(Arr | S)
Prp g (S|AtT) Prp 5 (ArT)+...+Prp 5 (S|AFT) Prp & (AFT)

Prp;(S)
Prp & (S|ATT) PrDa<ATT)+ APrp 5 (S|Afr) Prp 5 (Arr)
Prp 4 (S[A) Prp 5 (A)

_ ((3/4)- (3/4)+(3/4) (3/4)+(1/4) (1/4))-(1/4)

gggﬁ% (3/4);(3/4) (3/4)+(1/4)-(1/4)+(1/4)-(1/4))-(1/4)
= (20/16)-(1/4)
= 19/20 > 16/17.

Thus, the agent will guess true after observing S, and get a positive expected payoft (since S will be
observed with positive probability) as a consequence of testing v; twice. Symmetrically, testing v,
twice gives a positive expected payoff.

On the other hand, suppose the player tests two different variables. The best case would be to get
S = (v1 = T,v; ® T). As before, the probability of S conditioned on some assignment is the product
of the probabilities for each of its entries being observed; for instance, Prp (S | Atr) = (3/4) - (1/4).
So we get

Prp (01 Voz [ 5)
= Prps(Arr | ) +Prpz(Atr | S) +Prpz(Aer | 5)
Prp & (S|Arr) Prp g (Arr)+...+Prp 4 (S|Arr) Prp  (Arr)
Prp,5(S|ATT) PrD a (ATI;r)+ ﬁ’)rp & (S|Aer) Prp  (Arr)
APrp s (S|A)Prp 5 (A)

— ((3/4)- (3/4)+(3/4) (1/4)+(1/4)-(3/4))-(1/4)

5(3/4) (3/4)+(3/4)-(1/49)+(1/4)-(3/4)+(1/4)-(1/4))-(1/4)
15/16)-(1/4)

(16/16)-(1/4)
= 15/16 < 16/17.
An analogous calculation shows that if either of the tests comes out false, the conditional probability
is even lower. Thus, after testing different variables, the agent will not make a guess, no matter
what the outcome, and so has an expected payoff of 0.
So, indeed, measuring the same variable twice is strictly better than measuring each of them
once.

B QUANTIFYING RATIONAL INATTENTION

Our goal is to show that a large proportion of Boolean formulae exhibit RI. To this end, we would
like a method to establish that a particular formula exhibits RI that is sufficiently efficient that we
can run it on all formulae of a given size, or at least a statistically significant sample. Throughout
this section, we focus on some arbitrary but fixed formula ¢ in n variables vy, . . ., v,. Proposition 4.7
gives a sufficient criterion for ¢ to exhibit RI in terms of the structure of the optimal sequences of
test outcomes of each length. To make use of this criterion, we introduce some machinery to reason
about optimal sequences of test outcomes. The key definition turns out to be that of the characteristic
fraction of S for ¢, denoted cf(g, s), which is a quantity that is inversely ordered to Prp z(¢ | S)
(Lemma 4.10) (so the probability is maximised iff the characteristic fraction is minimised and vice
versa), while exhibiting several convenient properties that enable the subsequent analysis. Let o;
represent the odds of making a correct observation of v;, namely, the probability of observing v; ~ b
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conditional on v; actually being b divided by the probability of observing v; ~ b conditional on v;
not being b. If we assume that o; = o; for all variables i and j, and let o represent this expression,
then cf(¢, S) is the quotient of two polynomials, and has the form

c10d1|5‘ +...+ cznod2"|5‘

e;011Sl 4 4 egnofenlSl’

where cj, d;, ej, and f; are terms that depend on the truth assignment Aj;, so we have one term for
each of the 2" truth assignments, and 0 < dj, f; < 1. For a test-outcome sequence S that is optimal
for ¢, we can show that f; = 1 for some j. Thus, the most significant term in the denominator
(i.e., the one that is largest, for |S| sufficiently large) has the form eo!S!. We call the factor d; before
|S| in the exponent of the leading term of the numerator the max-power (Definition 4.18) of the
characteristic function. We can show that the max-power is actually independent of S (if S is optimal
for ¢). Since we are interested in the test-outcome sequence S for which cf (¢, S) is minimal (which
is the test-outcome sequence for which Prp, z(¢[S) is maximal), for each k, we want to find that S of
length k whose max-power is minimal. As we show, we can find the sequence S whose max-power
is minimal by solving a linear program (Definition 4.20).

B.1 Properties of test-outcome sequences

In this subsection, we present some preliminary results that will prove useful in quantifying RI. We
start with a lemma that gives a straightforward way of calculating Prp, 5 (A | S) for an assignment A
and a test-outcome sequence S. The lemma also shows that, as the notation suggests, the probability
is independent of the strategy o.

LemMA B.1. For all accuracy vectors @, product distributions D, assignments A, and test-outcome

sequences S,
rp,a(A,S)

Ztruth assignments A’ T'D,a (A,a S) .

Prpa(A|S) =

Thus,
2 {4 p(a)=T} 'D,a (A, 5)

ZA’ rD,& (A’, S)

Prpa(p|S)= ), Prpa(A$) =
{A: ¢(A)=T}
These probabilities do not depend on the strategy o.

Proor. By Bayes’ rule, for all truth assignments A and sequences S = [v;, = by,...,v;, ~ bi] of
test outcomes, we have
Prpz (S| A)Prpz(A)
PrD,&,cr(S) (2)
Prpzs(S | A)Prpz(A)
Ztruth assignments A’ PrD,&,o'(S | A,) PrD,& (A,) '

Suppose that S = (v;, = by,...,0; = by). We want to compute Prp 5 (S | A’) for an arbitrary truth
assignment A’. Recall that a strategy o is a function from test-outcome sequences to a distribution
over actions. We write o (test v) to denote the probability that o tests v given test-outcome sequence
S and use () for the empty sequence; more generally, we denote by test;(v) the event that the jth
variable chosen was v. Then

Prpao(S|A") = o) (testi(v;,)) Prpz,((v; = b1) | testy(v;,),A") ...

PrD,E(,o’(A | S) =

Here, we were able to write Prp 5 ;((v;;, ~ b;) | test;(v;,), A”) without conditioning on the entire
test-outcome sequence up to v;,_, because by the definition of the information-acquisition game,
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all observations are independent of each other conditioned on the assignment A’. Observe that
the terms o) (test; (v;,)), .. ., O 0y, ~b1,...0iy_, ~bic-1) (testy (v;,)) are common to Prp 4z (S | A”) for all
truth assignments A’, so we can pull them out of the numerator and denominator in (2) and cancel
them. Moreover, probabilities of the form Prp z ,((v;; % bj) | test;(v;;), A”) do not depend on the
strategy o, so we can drop it from the subscript of Prp, 5 ,; the probability also does not depend on
the results of earlier tests (since, by assumption, test outcomes are independent, conditional on the
truth assignment). Thus, it follows that

[H’;:l Prp ;(vi, ~ bj observed | v;; chosen, A)] Prp z(A)

Prngq(A1S) = : .
D truth assignments A’ []_[j:1 PI’D,&(Uz‘j ~ b; observed | v;; chosen, A')] Prp (A7)

k 1

Next, we multiply both the numerator and the denominator of this fraction by [T}, 1777
i

This amounts to multiplying the jth term in each product by 1/2+a Thus, in the numerator, if
i

bj = A(v;,), then the jth term in the product equals o;;; if b; = =A(v;;), then the jth term in the
product is 1. It easily follows that this expression is just rp 5 (A, S). A similar argument shows that
the denominator is X ruth assignments 4’ 0, (A’, S). This proves the first and third statements in the
lemma. The second statement is immediate from the first. O

The next lemma gives an intuitive property of those test-outcome sequences S that are optimal
for ¢, D, and a.

LEMMA B.2. IfS is a test-outcome sequence that is optimal for ¢, D, and a, and Prp 5(¢|S) #
Prp (@) > 0, then S does not contain observations both of the form v; ~ T and of the form v; = F for
anyv;.

PrROOF. Suppose that S is optimal for ¢, D, and @, Prp (¢ | S) # Prpz(¢), there are n; > 0
instance of v; T in S, and n, > 0 instances of v;  F in S. Without loss of generality, suppose
that n;y > ny. Let Sy be the sequence that results from S by removing the n; occurrences of
v; ~ F and the last ny occurrences of v; = T. Thus, |So| = |S| — 2n; < |S]. It is easy to see that,
for each truth assignment A, we have ng A= ngo’ A T2 It thus follows from Lemma B.1 that
Prpz(@ | S) =Prpz(¢ | So). We can similarly remove all other “contradictory” observations to get
a sequence Sy that does not contradict itself such that |So| < |S| and Prp 5(¢ | S) =Prpz(¢ | So).

Suppose without loss of generality that Prp z(¢) — 1/2 > 0. Since it cannot be the case that for
every test-outcome sequence Sy of length |S| we have Prp 5(¢ | So) —1/2 < Prpz(¢) —1/2,and S
is optimal for ¢, D, and @, we must have

Prpa(p | S) —1/2 2 [Prpga(e) - 1/2]. ®)

We want to show that we can add tests to Sy to get a sequence S* with |S*| = |S| such that
Prpa(e | S*) > Prpz(e | So) =Prpa(e | S). This will show that S is not optimal for ¢, D, and 4,
giving us the desired contradiction.

Suppose that So = (v;, = by, ..., v = by). Define test-outcome sequences Sy, . . ., Sx inductively
by taking S; to be S;_; with v;, ~ b; removed if Prp (¢ | Sj-1) < Prpz(e | Sj-1\(v;;, = bj))
and otherwise taking S; = S;_;. It is immediate from the construction that Prpz(¢ | Sk) =

Prpa(e | So) = Prpg(e | S) and [Sk| < [Sol < |S|. It cannot be the case that S| = 0, for
then Prp (@) > Prpz(e | S). Since Prp z(¢) # Prpz(e | S) by assumption, we would have
Prpz(¢) > Prpz(¢@ | S), contradicting (3).

Suppose that v; ~ b is the last test in S¢. Let S, = S\ (v; = b), so that Sy = S, - (v; = b). By
construction, Prpz(¢ | Sk) > Prpz(¢ | S;). That is, observing v ~ b increased the conditional
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probability of ¢. We now show that observing v ~ b more often increases the conditional probability
of ¢ further; that is, for all m, Prpz(¢ | (Sk - (v; = b)™) > Prpz(¢ | Sk). We can thus take
§* = (Sk - (v; ~ b)ISI-ISi),

It follows from Lemma B.1 that

24 o(A)=T} T'D,a (A Sk)

Prp (e | Sk) = Prpa(A | Sk) = -
“ {A: ([J(ZA):T} “ Ztruth assignments A’ I'D,a (A > Sk)

- . Z{ae)=1}pa(AS.)
and Prpa(p [Sp) = > Prpa(A|Sp) ¢ e
{A: p(A)=T} Ztruth assignments A’ rD,zx( 5Ok )

Note that for all truth assignments A, rp 5(A’, Sx) = rp (A", S;) if A’(v;) # b, and rp (A", S¢) =
0irpa(A’,Sy) if A’(v;) = b. Thus, there exist x1, x2, Y1,y such that Prpz(¢ | S;) = 3522 and

X1+ Yy1ty2
Prpz(e | Sk) = % Indeed, we can take
x1= ) (S A) x2= 3 1o a(SeA)
{A:p(A)=T.A(0;)=b} {A:p(A)=T,A(v;)#b}
Y1 = Z rp.a(Sk, A), and Yy = Z 7D, (S A).
{A:A(v;)=b} {A:A(0;) #b)

Since Prp z(¢ | Sx) > Prpa(e | S;), we must have
OX1+ %X  Xi+Xp
OiYy1+Yy2 Y1 +ye
Since x1, x2, Y1, y2 > 0, crossmultiplying shows that (4) holds iff

©

XYy + 0iX1Y2 > X1Y2 + 0iX2Y1.
Similar manipulations show that
ng,o?(ﬁl’ | Sk - (v; = b) > Prpz(e | Sk)
0;X1 + X2 S 0;jX1 + X3

0y +y2 01+
iff  xy1 +0ix1y2 > X1y + 0iX2Y;1.

iff

Thus, Prp z(¢ | Sk - (v; = b)) > Prp (¢ | Sk). A straightforward induction shows that Prp 5 (¢ |

Sk - (v ~ b)") > Prp (¢ | S) for all b, so Prpz( | S*) > Prpz(¢ | Sk) = Prpa(e | S), as
desired. O

We conclude with a proof of the lemma that relates the ordering of probabilities to that of
characteristic fractions.

Proor. (Lemma 4.10) Since, for x,y > 0, we have that x > y iff (1/x) < (1/y), it follows from
Lemma B.1 that Prp 5(¢ | S) > Prp (e | §7) iff

2arpa(AS) - 2aTpa(AS))
2ia pa)=1} 'D.a(AS) X4 pa)=t) TD.a(AS)}

which is true iff

2(A: p(A)=T} 'D.a (AS)+X (a: p(4)=F) 'D,a (A,S)
2(A: p(A)=T) TD.a (AS)

YA o(a)=1} 'D,a (AS" )+ XA p(a)=F) TD,a (AS")
2 p(A)=T) D& (AS") ’

<
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that is, if and only if
24 p(a)=F} TD.a(AS)  Xiap(a)=F} 'D.a(AS")
2 o=t} '0.a(AS) 4 p(a)=1} "Da(AS)’

The statement of the lemma follows. m]

B.2 Proof of Theorem 4.23

To prove Theorem 4.23, we show that the antecedent of the theorem implies the antecedent of
Proposition 4.7. The next lemma is a first step towards this goal. Proposition 4.7 involves a condition
on test sequences that intuitively says that some variable is tested often, but another variable that
is at least as important is tested very little. This condition arises repeatedly in the following proof,
so we attach a name to it.

Definition B.3. Given a constant ¢ and negligible function f, a test-outcome sequence S is (f, ¢, ¢)-
good if there exist variables v; and v; such that v; >, v;, S contains at least c|S| tests of v, and S
contains at most f(|S]) tests of v;. S is (f, ¢, ¢)-bad if it is not (f, ¢, ¢)-good. O

Using this notation, Proposition 4.7 says that a formula ¢ exhibits RI if for all open-minded
product distributions D and accuracy vectors @, there exists a negligible function f and ¢ > 0 such
that all test-outcome sequences optimal for ¢, D, and @ are (f, ¢, ¢)-good. The contrapositive of
Proposition 4.7 says that if a formula does not exhibit R, then for all f and c, there is an (f, c, ¢)-bad
test-outcome sequence optimal for ¢, D, and &. Bad test-outcome sequences are counterexamples
to RI. The next lemma allows us to “boost” such counterexamples if they exist: whenever we
have a single bad test-outcome sequence, we in fact have an infinite family of arbitarily long bad
test-outcome sequences that can be considered refinements of the same counterexample.

LeMMA B.4. [f, for all negligible functions f and constants ¢ > 0, there exists an (f, c, ¢)-bad test-
outcome sequence that is optimal for ¢, D, and @, then for all f and c, there exists an infinite sequence
{Sk} of (f,c, ¢)-bad optimal test-outcome sequences of increasing length (so that |Sk+1| > |Sk|), all
optimal for ¢, D, and &.

Proor. We show the contrapositive. Fix ¢, D, and a@. We show that if there exist f and ¢ for
which there is no infinite sequence {Si} of (f, ¢, ¢)-bad test-outcome sequences optimal for ¢, D,
and &, then, for all D and @, there exist f” and ¢”” for which there is not even a single (f”’, ¢’’)-bad
test-outcome sequence that is optimal for ¢, D, and &.

Choose f and ¢ such that the premises of the contrapositive hold. Let Sy . be the set of all (f, ¢, ¢)-
bad test-outcome sequences that are optimal for ¢, D and @. We can assume Sy, is nonempty;
otherwise the claim trivially holds. If there exist arbitrarily long sequences S € Sy, then we can pick
a sequence {Si} of test-outcome sequences in Sy, of increasing length from them, contradicting
the assumption. In fact, this must be the case. For suppose, by way of contradiction, that it isn’t.
Then there must be an upper bound k on the lengths of test-outcome sequences in Sy.. Moreover,
since there are only finitely many test-outcome sequences of a given length, Sy . itself must also
be finite. Thus,
¢’ = min max [(Tra(S)):]

S€ S8y, variables v; in ¢
is finite and greater than zero (as every sequence must test at least one variable and not contradict
itself, so we are taking the minimum over finitely many terms greater than zero). Hence, ¢’ =
min{c, ¢’} is also greater than 0. Let

k ifk <k

) = {f(k) otherwise.
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Since f is negligible and f” agrees with f for all k > k, f”’ is also negligible.

We claim that no test-outcome sequence S optimal for ¢, D, and & is (f”/, ¢’’)-bad. Indeed, all
candidate sequences of length |S| < k are ruled out, because setting both v; and v; to be whatever
variable is tested the most in S discharges the existential quantification of Definition B.3 (note <,
is a partial order, so v; <, v; for all v;) as the number of tests is bounded below by the minimum
¢’|S| and above by the length |S|. Any test-outcome sequence S of length |S| > k must also be
(f”,c"")-good. Indeed, by choice of k, S is (f, ¢, p)-good. Therefore, there must be a variable pair
v; 2, v; such that S contains > c|S]| tests of v; and < f(|S]) tests of v;. But ¢’” < ¢ by definition and
F7(SI) = f(IS]), so v; and v; also bear witness to S being (f”, ¢’”)-good. This gives the desired
contradiction.

Thus, we have shown that there exists a sequence {Si} of bad test-sequence outcomes in Sy, of
increasing length. O

In the following, we use the standard notion of I-norm, where the 1-norm of a real-valued vector

o= (v1,...,0p) is
n
I3l = > I8l
i=1

the sum of absolute values of the entries of 7. We often consider the 1-norm of the difference of two
vectors. Although the difference of vectors is defined only if they have same length, we occasionally
abuse notation and write ||7 — w||; even when § and w are vectors of different lengths. In that
case, we consider only the common components of the vectors. For example, if = (v, .. .,0,) and
w = (wy,...,wn), then

”5 - W”l = |01 - Wll +- 4+ |Umin{n,m} - Wmin{n,m}|~

We further facilitate working with different-length vectors by using (4, w) to denote vector
concatenation, so (3, w) denotes the vector (v1,...,0,, Wi, ..., Wn).
The following fact about LPs will prove useful.

LemmA B.5. IfL is an LP with objective function f such that Feas(L) is compact, then for all € > 0,
there exists an €’ > 0 such that all feasible points p € Feas(L), either p is within € of a solution point,
that is,

36 € OPT(L)([Ip - ol < e),
or f(p) is more than €’ away from the optimum, that is,
F(P) = MIN(L) > €.

Proor. We will argue by contradiction. Suppose that the claim does not hold, and let Q be the
set of all points in Feas(L) that do not satisfy the first inequality; that is,

Q = {p € Feas(L) : V6 € OPT(L)(||p - 8|l, = €)}.

This set is bounded and closed, hence compact. If inf 5o (f(§) — MIN(L)) > 0, then we can take
€’ = infgco(f(g) — MIN(L))/2 since then, for every point p € Feas(L), if f(p) — MIN(L) < €/, then
P ¢ Q, and hence by definition of Q, p must be within e of some solution point.

So suppose that infqu(f(é’) — MIN(L)) = 0. Then there exists a sequence (g;);>, of points in
O such that lim;_,« f(§) = MIN(L). By the Bolzano-Weierstrass Theorem, this sequence must
have a convergent subsequence (g}):,. Write g* for lim; . g;. This limit point is still in Q, as Q is
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compact. Since f is linear, hence continuous,

f(q)

fimise q7)

= limje f(‘f:)

= lim,-%oo f(ql)

= MIN(L).
Thus, ¢* € OPT(L) and g* € Q, which is incompatible with the definition of Q. This gives the
desired contradiction. O

We have seen how to distill the information in a test-outcome sequence for a formula in n
variables into a vector in R" by taking A-traces. The following lemma is to be understood as an
approximate converse of this process: given a vector in R”, we construct a test-outcome sequence
of a given length k whose A-trace is close (within an error term of 2n/k) to that vector.

LeEmMA B.6. If A is an assignment to the n variables of ¢ and d € R" is such that all coordinates

are non-negative and sum to 1, then for all k € IN, there exists a test-outcome sequence S,_ 5 , of length

k compatible with A such that |maxp¢)A(TrA(S - maxp(p’A(j)l < 2n/k.

k,cZA)

Proor. Define
Seia= (01~ AN, (op ~ A )M, (0, ~ A(00))),

where | x] is the floor of x (i.e., the largest integer n such that n < x) and e = k — (X[ ; | dik]) is
whatever is needed to pad the sequence to having length k. (e.g., ifd = (0.3,0.7) and k = 2, then
although the d;s sum to 1, |di1k] = 0 and | d2k] = 1, so we would have e = 1.)

Since }; dik = k, };|dik]| < k, and hence e > 0. Also, TrA(Sk,J,A) differs from c?by at most 1/k
in the first n — 1 coordinates (as |d1k — | dik]| < 1) and by at most n/k in the final coordinate (as
e < n). Hence, for each assignment B,

1 n 2n
di— > (Tra(Sz )| < =D+ < =
) ) o k k &k
{i:A(0:)=B(vi) } {i:A(0:)=B(vi) }

Recalling the definition of the max-power for a vector ¢,

maqu)’A(E) =~ max Z ci,

(BB A a=B o))

it follows that |maxp¢!A(TrA(Sk(§A)) - maxpw)A(af)l < 2n/k, as desired. )

We can finally relate the solutions of the conflict LP L4 (¢) to the traces of optimal test-outcome
sequences. While the traces of optimal sequences may not be in OPT(L4(¢)), they must get
arbitrarily close to it as the length of the sequence gets larger.

LeEMMA B.7. If D is open-minded, then there exists a function § : N — R, depending only on ¢, D,
and &, such that

e limy_,., 6(k) =0 and
o for all assignments A and test-outcome sequences S compatible with A that are optimal for ¢, D,
and &, the A-trace of S is within §(|S|) of some solution (d,m) € OPT(La(¢p)), that is,

3(d,m) € OPT(La(9)). ld - Tra(S)|ly < 5(IS)).
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Proor. Fix ¢, D, and a@. Given € > 0, we show that there exists a constant k. such that for all
truth assignments A and all test-outcome sequences S compatible with A such that |S| > k. and

V(d, m) € OPT(La(9)). [ Tra(S) —dls = e, (5)

S is not optimal for ¢, D, and a. This suffices to prove the result, since we can then choose any
descending sequence €, €, . . . and define 5(n) = ¢, forall k., <n < k,,,.

Fix € > 0 and A. Choose an arbitrary test-outcome sequence S compatible with A satisfying (5).
Without loss of generality, we can assume that ¢(A) = T. (If 9(A) = F, then the lemma follows
from applying the argument below to —¢ and the observation that sequences are optimal for ¢ iff
they are optimal for —¢.) The feasible set of the LP L4 (¢) is compact by construction. Therefore,
we can invoke Lemma B.5 to obtain a constant €4 > 0, depending on € and the LP (and hence A),
such that for all feasible points p = (¢, m) € Feas(La(¢)), either ||¢ — J||1 < e for some d € OPT(L),
or |m — MIN(La(¢@))| > €a. Set

L 4n 2 ) 22n
=max|—, —1lo - .
e €A €a 8o Prp 5(A) ming Prp 5 (B)

(Since D is open-minded, ming Prp, 5(B) > 0, so this is well defined.)

We now show that if |S| > ke, then S is not optimal for ¢, D, and @. We can then take
ke = maxy ke 4 to complete the proof. By assumption, S satisfies (5). Since appending another entry
to a vector can only make its 1-norm greater, we also have ||(Tra(S), maxp,, o(Tra(S))) —dll1 > €
forall d e OPT(La(¢))- The point (Tra(S), maxp%A(TrA(S))) is in the feasible set of L, (¢); this

contradicts the first option in the disjunction provided by Lemma B.5. Therefore, the second option
must be true:

Imaxp,, 4 (Tra(S)) — MIN(La(@))| > ea. (6)
Since all the entries in Tr4(S) are non-negative, it follows from the definition that

cfa(@. Tra(S).1SI)

| Prp 5 (B) o> (oisA(0i)=B(e)) TAS)ilS]

S )1, Pro s (B)o- A Blap) | FATT )

ming PTD,& (B)Oma"P(p,A (Trg (5))1S]
210l5]

2 (B:p(B)=F

>

[see below].

The inequality holds because, as we observed before, the term in the numerator with the greatest
exponent has exponent maxp,, 4 (Tra(S))|S|. Its coefficient is at least ming Prp, 5z (B). The remaining
terms in the numerator (if any) are nonnegative. Thus, the numerator is at least as large as
ming Prp 5 (B)0™Ppa(Tra($)IS| There are 2" terms in the denominator, each of which is at most o/S!,
since, as we observed earlier, }; Tra(S); = 1 (since S is compatible with A). Thus, the denominator
is at most 2"0l51.

Fix (d,m) € OPT(La(¢)). By Lemma B.6, there exists a test-outcome sequence S such

ISl.d.A
ist.da)) ist.da)- So if
|S| > kea = 4n/ea, then |maxp(p’A(d’) —maxp%A(d)I < €4/2. Since (d,m) € OPT(La(¢)), we have

that maxp(p’A(J) =m = MIN(Ls(¢)), so |maxp¢)A(67’) — MIN(La(¢))| < €a/2. Now using (6) and
applying the triangle inequality gives us that

that |maxp¢’A(TrA(S - maqu,’A(c?)I < 2n/|S|. For brevity, set d = Tra(S

maxp,,_(Tra(S)) — maxp,, ,(d') > €a/2. ()

, Vol. 1, No. 1, Article . Publication date: July 2022.



Information Acquisition Under Resource Limitations 31

Much as above, we can show that

cfa(p,d,|S])

3 (Big(B)<r) Prp g (B) o= {00 =B(2) ails|

Z{og:A(07)=B(o;)} 4151 )

2{Bip(B)=T} Prp,5 (B)o
2P A IS
Prpz(A)olsl >

where now the inequality follows because we have replaced every term Prp, z(B) in the numerator
by 1 and there are at most 2" of them, and the fact that PrDﬁ(A)0|S| is one of the terms in the
denominator and the rest are non-negative.

Now observe that

Prpa(@ 1 Si554) > Proale | S)

iff  cf (o, S|§|,J,A) < cf(e,S) [by Lemma 4.10]

iff cfa(p,d’,|S]) < cfalp, Tra(S),|S]) [by Lemma 4.17]

. on maxp, 4 (@IS ming Pr ’&(B)Dmaxp@A(TrA(S))ISI

eV I —T [by (7) and (9)]

- ming Prp 5 (B) oMPep, A (Tra (S)IS] gn gmaxpp,a (d)]S]

L 2701 T TPrpa@od T

o Prp(A) ming Prp 5 (B)o™PeaTAG)IS|_on gmaxpga(@)1s]

iff Prp z(A)2m0ll ? 0

iff Prpz(A)ming PrD’&(B)OmaXp(p,A (Tra(S))IS|-maxp,, 4 (d)ISD) _ 92n 5

. =g 2n

iff (maxp(P’A(TrA(S)) - maxp(p)A(d’))|S| > log, (Prp,,;(A) nfinB Pr,m(B)) .

(10)

By assumption, |S| > é log, Py 2 () fniiB Prpa ()’ by (8), (maxp(p,A(TrA(S)) —maqu),A(d’)) > €4/2.
It follows that the last line of (10) is in fact satisfied. Thus S is not optimal, as desired. O

Moreover, unless the sequence in question is short, any optimal sequence of test outcomes must
be compatible with an LP that actually attains the minimax power.

LemMA B.8. There exists a constant ko, depending only on ¢, D and &, such that if a sequence S of
length |S| > ko is compatible with an assignment A, then either S is not optimal or A is relevant.

Proor. The proof reuses many of the core ideas of Lemma B.7 in a simplified setting. For
contradiction, suppose that A is not relevant, but S is optimal. Let B be an arbitrary relevant
assignment. Then

MIN(L4) — MIN(Lg) = € > 0.

We show that we can choose a kj such that if |S| > ko, then there is a test-outcome sequence S’ of
the same length supporting B that is actually better, contradicting the optimality of S.

Indeed, set
2 22n
ko = 4n/e, —1 .
0 max{ n/e € ©8o (PrD,a (B) minc Prp 5(C) )}

Since Tr4(S) is a feasible point of L4, we have maxp(p’ATrA(S) > MIN(L4) > MIN(Lg) + €. On the

other hand, let ((z m) € OPT(Lp(¢)) be arbitrary. Since |S| > 4n/e, the B-trace d = Trg(S, ;) of
the sequence S of Lemma B.6 satisfies

k.dB

Imaxp,, ,(d') — maxp,, ,(d)| = |maxp,, 4(d") — MIN(Lg)| < /2.
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So maxp(p’A(TrA(S)) - maxpM(E’) > ¢/2. As in the proof of Lemma B.7, we have

ming Prp, 5(B) oM%Pp,a (Tra($))IS]

2”0|S‘

cfa(e, Tra($),1S]) =

for S and

n maxp(p’A((}’)|S|

2"%0

fp(p,d,|S]) <
C B((p | |) PI'D’&(B)O|S|

for the sequence that approximates J and hence
Prpa(9 1S, ip) > Proale | S)
ifft  cf(p, S|S\,J,B) < cf(gp,S)
it (...
iff (maxpwyA(TrA(S)) - maxp(p’A(d’))|S| > log, (PrD,,;(B)rr?iz:cPrDy;,(C)) .

22n
Prp g (B) min¢ PrD’&(C)

But |S]| > ko > % log, ( ), and hence S is indeed not optimal. O

With these pieces, we can finally prove Theorem 4.23.

Proor (oF THEOREM 4.23). Suppose, by way of contradiction, that the antecedent of Theorem 4.23
holds, but ¢ does not exhibit RI. Let § be the function of Lemma B.7 and let C be the constant
that is assumed to exist in the statement of Theorem 4.23. Define f by taking f (k) = §(k)k. Since
limg 00 f(k)/k = limg_,0o 6(k) = 0, f is negligible. By Proposition 4.7, there exists an open-minded
product distribution D and accuracy vector « such that for all ¢, there exists an (f, ¢)-bad test-
outcome sequence optimal for ¢, D, and &. So by Lemma B.4, taking ¢ = C/2, there exists an infinite
sequence {Si} of (f,C/2, p)-bad test-outcome sequences that are optimal for ¢, D, and & and are
of increasing length. Thus,

for all k, there are no variables v; >, v; such that v; is tested at most f(|Si[) times,
but v; is tested at least C|Sg|/2 times.

(11)

We can assume without loss of generality that all the sequences Si are compatible with the same
assignment A, since there must be an assignment A that infinitely many of the sequences Sy are
compatible with, and we can consider the subsequence consisting just of these test-outcomes
sequences that are compatible with A. Moreover, by Lemma B.8, we can assume that A is relevant,
since all but finitely many of the S; must be sufficiently long.

Let k; be sufficiently large that (k) < C/2 for all k > ky. By Lemma B.7, for all k > k, we must
have

Id = Tra(S)llx < 8(k) < C/2

for some solution (cz m) to the LP La(¢). Since A is relevant by construction, the assumptions
of the theorem guarantee that there exist i and j such that v; <, v, d; > C, and d; = 0. Since
||J—TrA(Sk)||1 < 6(|Sk|), it follows that (Tra(Sk)); > C = 8(|Sk|) > C/2 and (Tra(Sk)); < 6(|Skl)-
Since each sequence Sy is compatible with A, for each variable vy, ngk’ Ap 18 just the number of
times that v, is tested in Sk, so (Tr(Sk))n is the number of times that vy, is tested divided by |Sk|.
This means that we have a contradiction to (11). O
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C PROOF OF THEOREM 5.2

We previously took the XOR v; & ... ® v, of n variables (often denoted @?:1 v;) to be true iff
an odd number of the variables are true. This characterisation is actually a consequence of the
following standard definition in terms of basic Boolean connectives, of which we also note some
useful properties (whose proof is left to the reader).

Definition C.1. The exclusive OR (XOR) ¢, @ ¢, is equivalent to the formula (¢1 A—¢2) V (-1 A @2).
O

ProrosiTioN C.2. (Properties of XOR)

(a) XOR is commutative: p1 ® @2 = ¢z ® ¢1;

(b) XOR is associative: (p1 ® ¢2) ® @3 = 1 D (@2 ® ¢3);

(c) v1 ®...® v, is true iff an odd number of the variables v; is;

(d) Q= T@(ﬂ, S0 Y1 D 2 =101 © P2 = —|(([J1 @(pz)

As we said in the proof sketch in the main text, our proof uses the idea of antisymmetry.

The notion of antisymmetry has the useful property that ¢,, the antisymmetrisation of ¢ along v
(recall that ¢, was defined as (v A ¢|y=T) V (=0 A =¢|,=1)) is antisymmetric in v and, as we now
show, also antisymmetric in all other variables v’ that ¢ was antisymmetric in.

LemMma C.3. If ¢ is antisymmetric in a variable v’ # v, then so is ¢,,.

Proor. Suppose that ¢ is antisymmetric in o’ # v. Then for all truth assignments A, we have
* ¢(Alo - T]) = =p(A[v’ — F]) and
o(Alv — T]) ifA(v) =T
* po(A) = .
-¢(Alo —» T]) ifA(v) =F.
Thus, if A(v) = T, then
¢(Alo > T,0" = T])
—¢(Alo — T,0" — F])
= 9y (0" > F]),

Po(Alv" = T])

and if A(v) =F, then

Pp(Alo" > T]) = -¢(Alo— T,0" > T])
= @(Alv— T,v" — F])
= —@y,(Alv" — F]).

Thus, no matter what A(v) is, we have ¢,(A[v" = T]) = —p,(A[v" — F]), as required. )

Define V(¢), the number of variables a formula ¢ is not antisymmetric in, as

Vi(p) =H{o: ¢ # (v A@lo=1) V (-0 A =@[o=1) }|.

LeEmMA C.4. The only formulae ¢ in the n variables vy, . . ., v, for which V(@) = 0 are equivalent to
either P, v; or - P, v.

Proor. By induction on n.If n = 1, then it is easy to check that both v; and —wv; are antisymmetric.
Suppose that n > 1 and ¢ is antisymmetric in vy, . . ., v,. Since @ = (v, A @lo,=1) V (70y A @ly,=F)
and ¢ is antisymmetric in v,, by Definition C.1 we have that

¢ = (vn A (P|vn:T) N (_‘Un A _‘(Plun:T) =0, @ (p|u,,:T- (12)
Itis easy to see that ¢|,,—t mentions only the variables vy, . . ., v,_1 and, by Lemma C.3, is antisymmetric
in each of them. So by the induction hypothesis, ¢|,,=1 is equivalent to either @?:_11 v; or ﬂ(EBZ;l i),
and hence by Proposition C.2(d) and (12), ¢ is equivalent to either )}, v; or =(EP7_, v;). O
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To complete the proof of Theorem 5.2, we make use of the following two technical lemmas. For
the remainder of the proof, we use v = T and v = F to denote the events (i.e., the set of histories)
where the variable v is true (resp., false). (We earlier denoted these events v and —w, respectively,
but for this proof the v = b notation is more convenient.)

Lemma C.5. If D is a product distribution and S is a test-outcome sequence, then the projection of a
formula ¢|,,-p, has the same conditional probability on S as ¢ additionally conditioned on v; = b, that
is,

Prpz(e | S,0i =b) =Prpz(@lo=p | S).

Proor. Given a truth assignment A on vy, ...,v,, let A; be A restricted to all the variables other
than v;. Since D is a product distribution, Prp 5(A) = Prp 5(A;) X Prp 5(v; = A(v;)).

Note that the truth of ¢|,,—, does not depend on the truth value of v;. Thus, we can pair the truth
assignments that make ¢|,,=p true into groups of two, that differ only in the truth assignment to v;.
Suppose that the test v; ~ T appears in S k7 times and the test v; ~ F appears in S kr times. Using
Lemma B.1, we have that

Prpa(@lo=b | S) 2{A: @lop(A)=T} PIDa(A | )

2A: Ployp (H=T} DG (AS)

Ztruth assignments A’ 'D,& (A/’S)
Z{A: plyyop (A)=T) D, (AiS) (Prp 5 (0;=T)o*T +Prp 5 (v;=F) o*F) (13)

Dtruth assignments 47 'D,G (A5S) (Prp 5 (0;=T) oFT +Prp, 5 (v;=F) oFF )
2A: Ployp (A)=T) DG (Ai,S

Ztruth assignments A’ 'D,& (A;)S) -
Using the same arguments as in (13), we get that

T 1A (prai=b) (A)=T} TD.a (A1 S) Prp 5 (0 = b)oFT

Ztruth assignments A’ I'D,d (A,’ S)

Prpg(e Avi=b]S) =

and
(4 A(o)=b) TD.a (A, S) Prp z(0; = b)okT
Ztruth assignments A’ I'D,d (AI» S)

Prpg (vi=b)kp
Prp 5 (0;=T)kr+Prp 5 (v;=F)kr

Prpg(0i=b]$) =

Let C = Prpg(v; = b | §) =
observing the sequence. Note that

DirpalAns) = Y rpa(AnS) = C- ) rpa(4nS)
{A: (pAvi=b) (A)=T} {A: (@lo;=pA0vi=b) (A)=T} {Aplo;=p(A)=T}

be the probability that v; = b after

and
DirpalAis) = € rpalALs).
{A: A(v;)=b} truth assignments A
Since, by Bayes’ Rule,
Prpz(@ Avi=b|S)
Prpz(0i=b1S5)
simple algebra shows that Prp (¢ | S,v; = b) = Prp 5(¢lo,=p | S), as desired. O

Prpa(e | S,0i=b) =

s

LeEmMA C.6. If, for all test-outcome sequences S, there exists a test-outcome sequence S’ such that
S = 1S| and | Prpz(¢ [ S) = 1/2] 2 | Prpa(y | S) = 1/2], then cplp g (@) < cplp.ga (V).
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PROOF. Suppose that cplp g« (%) = k. Then there must be some strategy o for G(y, D, k, @, g, b)
that has positive expected payoff. There must therefore be some test-outcome sequence S of length
k that is observed with positive probability when using ¢ such that the expected payoff of making
the appropriate guess is positive. By Lemma 3.3, | Prp (¢ | S) — 1/2| > q.

Since | Prp z(¢@ | S')—1/2| > |Prp (¢ | S) —1/2| by assumption, there must exist a test-outcome
sequence S’ such |Prpz(¢ | §) — 1/2| > g. Let ¢’ be the strategy for the game G(¢, D, k, @, g, b)
that tests the same variables that are tested in S, and makes the appropriate guess iff S’ is in fact
observed. By Lemma 3.3, a guess with positive expected payoff can be made if S” is observed, which
it is with positive probability. So ¢ has positive expected payoff, and hence cplp 4« (¢) is at most
k. |

We can now finally prove Theorem 5.2. Note that this is the only part of the derivation that
actually depends on the assumption that we are working with the uniform distribution D,,.

Proor oF THEOREM 5.2. We show by induction on V(¢) that for all formulae ¢, there exists a
formula @y with V/(¢9) = 0 such that cplp g ¢ < cplp,qa ¢o. By Lemma C.4, ¢y must be equivalent
to either @7 'v; or (@7 'v;).

If V(@) = 0, then we can just take ¢y = ¢. Now suppose that V(¢) > 0. There there must exist
some variable v such that ¢|,=1 # —(¢|,=F). (Here and below we are viewing formulas as functions

on truth assignments, justifying the use of “=” rather than “=".) Note for future reference that, by
construction,

@olo=T = @lo=T and @q|o=F = = |o=T. (14)

By Lemma C.3, if ¢ is antisymmetric in a variable v # o, then so is ¢,. In addition, ¢, is
antisymmetric in o. Thus, V(¢,) < V(¢). If we can show cplpqa(¢) < cplpga(@o), then the
result follows from the induction hypothesis. By Lemma C.6, it suffices to show that for all test-
outcome sequences Sy, there exists a sequence S of the same length as S; such that |Prp z(¢ |
S) —1/2] 2 [Prpa(eo | S1) —1/2].

Given an arbitrary test-outcome sequence Sy, let p = Prp z(v = T | 51). Thus,

Prpz (0o | S1) PPrpa(0o | S1,o=T)+(1-p)Prpz(¢y | S1,0=F)
pPrD,&(§00|U:T | 51) + (1 —P) PrD,&((pvlv:F | Sl) [bY Lemma C~5]
PPrpz(@lo=t | S1) + (1 = p) Prpz(—¢@lo=T | S1) [by (14)]

= pPrps(@lo=r | S1) + (1 = p)(1 = Prpz(@le=1 | S1).

(15)

Set S, = S1[v & F & v = T], that is, the sequence that is the same as S; except that all test

outcomes of v are flipped in value. Since ¢|,—1 does not mention v, Prp 5(¢|o=1 | S1) = Prp z(@|o=T |

S2) and likewise for ¢|,=r. Since ¢ = (v A @|y=T) V (-0 A ¢|s=r), we have (using an argument similar
to that above)

Prpa(e | S1) = pPrpg(ele= | S1) + (1= p)Prpz(@le=r | S1) (16)
and, taking p" =Prpz(v =T | S2),

Prpa(e|S2) = p'Prpa(@le=t | S2) + (1 —p")Prpz(@le=rF | S2) (17)
= p'Prps(@lo=r | S1) + (1 = p") Prp z(@lo=r | S1).

We claim that p = 1 — p’. Suppose that the test v = T appears in S; k7 times and the test o ~ F
appears in Sy kp times. Thus, the test v ~ T appears in S; kr times and the test v = F appears in S;
kr times. All other tests appear the same number of times in both sequences. By Lemma B.1, since
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the uniform distribution D, we are using is in particular a product distribution, for j = 1, 2, we
have that

2 {A: A(0)=T} D& (A, S))
2a Tpa(A’,S))

Prpa(0=T[S)= > Prpz(AlS)) =
{A: A(0)=T}

nt .
Suppose that v is the ith variable v;. Let r; = ofT, letr, = ofF, let Ri = Xqa: acon=1} [zt jsi ojsl‘A’],

n+

and let Ry = 3 (a: a(oy)=r) [1}o1 jsi ojsl’A’j. For j = 1,2 we have that

Z{A:A(z}):T} rp.a(AS)) _ riR;
Yarpa(ALS)) riRi + 2Ry

Prpa(A|S)) =
{A: A(0)=T}

We claim that R; = R;. Indeed, for any assignment A such that A(v;) = T, let A’ be the unique
assignment such that A’(v;) = F and A’(v;) = A(v;) for all j # i. Then each choice of A occurs
once in the sum Ry and never in the sum Ry, the corresponding A’ occurs once in R, but not R;.
Since we are working with the uniform distribution D,,, the summands for A and A’ are equal. So
we can conclude that p = 1 — p’. Combining this with (17), we get that

Prpa(e|S2) = (1-p)Prpz(@lo=t | S1) +pPrpz(@le=r | S1). (18)

Let Q(E) = Prp4(E) — % By adding —1/2 on both sides, equations (16) and (18) hold with Prp, 5
replaced by Q, while (15) becomes

Q(‘pv I Sl) :pQ((plzzT | Sl) - (1 _p)Q((plzJ:T | Sl)~

We now show that either | Q(¢ | S1)| = | Q(¢, | S1)| or |Q(¢ | S2)| = | Q(¢y | S1)|. This suffices to
complete the proof.

To simplify notation, let x = Q(¢|,=1 | S1) and let y = Q(¢|,=r | S1). By (15), (16), and (18), we
want to show that either [px + (1 — p)y| > [px — (1 — p)x| or |(1 — p)x + py| > |px — (1 — p)x]|. So
suppose that [px + (1 — p)y| < |px — (1 — p)x|. We need to consider four cases: (1) p > 1/2,x > 0;
2)p=1/2,x<0;(3)p <1/2,x > 0;and (4) p < 1/2,x < 0.For (1), note thatif p > 1/2and x > 0,
then 0 < px — (1 — p)x < px. We must have y < —x, for otherwise px + (1 — p)y = px — (1 — p)x.
But then py + (1 — p)x < —(px — (1 — p)x), so |py + (1 — p)x| > |px — (1 — p)x]|. For (2),
note that if p > 1/2 and x < 0, then px — (1 — p)x < 0. We must have y > —x, for otherwise
px+(1-p)y < px—(1-p)x,and |px+(1-p)y| > |px—(1—p)x|. But then py+(1-p)x > —px+(1-p)x,
so |py + (1 — p)x| > |px — (1 — p)x|. The arguments in cases (3) and (4) are the same as for (1) and
(2), since we can simply replace p by 1 — q. This gives us identical inequalities (using q instead of
p), but now ¢q > 1/2. O
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