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Abraham, Dolev, Geffner, and Halpern [1] proved that, in asynchronous systems, a (k, t)-robust equilibrium
for n players and a trusted mediator can be implemented without the mediator as long as n > 4(k + t), where
an equilibrium is (k, t)-robust if, roughly speaking, no coalition of ¢ players can decrease the payoff of any
of the other players, and no coalition of k players can increase their payoff by deviating. We prove that this
bound is tight, in the sense that if n < 4(k + t) there exist (k, t)-robust equilibria with a mediator that cannot
be implemented by the players alone. Even though implementing (k, t)-robust mediators seems closely related
to implementing asynchronous multiparty (k + t)-secure computation [5], to the best of our knowledge there
is no known straightforward reduction from one problem to another. Nevertheless, we show that there is a
non-trivial reduction from a slightly weaker notion of (k + t)-secure computation, which we call (k + t)-strict
secure computation, to implementing (k, t)-robust mediators. We prove the desired lower bound by showing
that there are functions on n variables that cannot be (k + t)-strictly securely computed if n < 4(k + t). This
also provides a simple alternative proof for the well-known lower bound of 4t + 1 on asynchronous secure
computation in the presence of up to ¢ malicious agents [4, 7, 9].
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1 INTRODUCTION

Ben-Or, Goldwasser, and Wigderson [6] (BGW from now on) showed that given a finite domain
D, a function f : D" — D can be t-securely computed by n agents in a synchronous network with
private authenticated channels as long as n > 3t, where ¢ is a bound on the number of malicious
agents. Roughly speaking, “t-securely computed” means that all honest agents correctly compute
the output of f, while a group of up to t malicious agents can learn nothing about the agents’
inputs beyond what can be learned the output of f. Ben-Or, Canetti, and Goldreich [5] (BCG from
now on) later provided analogous results for the asynchronous case: a function f : D" — D can be
t-securely computed by n agents if n > 4t.
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111:2 Geffner and Halpern

Secure function computation is often viewed as an interaction with a trusted third party, or
mediator. Roughly speaking, we want the outcome to be the same as if the agents had sent their
input values X to the mediator, who then sends back f(¥). However, the problem of implementing
such an interaction while tolerating faulty behavior is approached differently by the distributed
computing community and the game theory community. In the distributed computing literature, as
in BGW and BCG, the agents controlled by the adversary are malicious and may deviate in any way
they want in order to subvert the computation. However, in the game-theory literature, there are
no malicious agents; all participating agents are rational, which means that they deviate if and only
if they can increase their expected payoff by doing so. In the game-theoretic approach, there exists
an underlying game I' that determines the payoff of the agents depending on the actions they play.
Two other games that extend I' are also considered: I'; and Tsc7. In Iy, agents can communicate
with a trusted mediator before playing an action in I'; in T4cr, they can communicate only among
themselves. The goal is to show when certain types of equilibria in I; can be implemented in Tscr,
where implemented means that the resulting distributions over action profiles are identical in both
games. Forges [? ] and Barany [? ] showed that any Nash equilibrium in I; can be implemented
by a Nash equilibrium in Tycr if n > 4, assuming that the communication in both Iy and Tycr is
synchronous.

Abraham, Dolev, Gonen, and Halpern [2] combined both points of view by considering (k, t)-
robust equilibria. Intuitively, a (k, t)-robust equilibrium is a strategy profile (i.e., a strategy for
each agent) in which no coalition of ¢ malicious agents can decrease the payoff of anyone else
and no coalition of k rational agents can increase their payoff by deviating, even when colluding
with the other t malicious agents. Thus, a (k, t)-robust equilibrium deals with both Byzantine and
rational behavior, as long as there are at most ¢ Byzantine players and at most k rational players
that deviate. Abraham et al. [2] generalized Forges and Barany’s results by showing that any
(k, t)-robust equilibrium in I;; can be implemented in Tscr if n > 3(k + t) (note that a (1, 0)-robust
equilibrium is just a Nash equilibrium). They also proved a matching lower bound [3].

Abraham, Dolev, Geffner, and Halpern [1] (ADGH from now on) extended this result to the
asynchronous setting. They showed that if n > 4(k + t) and there exists a (k, t)-robust equilibrium
0 + 04 in the mediator game Iy (where & + o4 means that player i plays o; while the mediator plays
04), then there exists a (k, t)-robust equilibrium Gcr in Tacr in an asynchronous setting such that,
for all inputs, Gact and & + o4 produce the same set of possible distributions over outputs (note
that agents have no control over how long the messages take to be delivered, and this can affect
the output).

Our goal in this paper is to prove a lower bound that matches the upper bounds of ADGH.
To do so, we would like to reduce implementing asynchronous (k + t)-secure computation to
implementing (k, t)-robust mediators. If such a reduction were possible, the n > 4(k + t) lower
bound for implementing (k, t)-robust mediators would follow immediately from the same lower
bound for secure computation [4, 7, 9]. Unfortunately, the existence of such a reduction is still an
open problem. However, we show that there exists a nontrivial reduction from a slightly weaker
notion of (k+t)-secure computation, which we call (k+t)-strict secure computation, to implementing
(k, t)-robust mediators. This suffices to prove the desired lower bound. We thus start by providing
a careful proof of the lower bound for (k + )-strict secure computation in the asynchronous setting.
In the process, we also give a simple alternative proof for the lower bound on asynchronous secure
computation.!

1As Ran Canetti [private communication] agreed, there is a nontrivial problem with the proof given in his thesis [9]; a
different technique is needed. We thank him for his comments.
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Intuitively, a protocol t-strictly securely computes a function f if it satisfies the properties of
secure computation, but only for adversaries consisting of exactly t malicious agents. It might
seem that t-secure computation should be equivalent to t-strict secure computation. After all, if
a function can be securely computed with adversaries of maximal size, surely it can be securely
computed with smaller adversaries! As we show by example in Section 2.3, this is not the case.
While investigating these issues, we noted an ambiguity in the definition of ¢-secure computation
in BCG, which led us to consider yet another notion that we call t-weak secure computation. As the
name suggests, it is weaker than t-secure computation; we show that it is actually equivalent to
t-strict secure computation. By considering these variants of secure computation, we gain a deeper
understanding of its subtleties.

Another contribution of this paper is to show that BCG’s result follows from that of ADGH.
In ADGH, the authors claim that their result generalizes secure computation by showing that
there exist games I; with a (k, t)-robust strategies 6,4 that cannot be (k + t)-securely computed
(for instance, when the mediator takes into account the order in which it receives the messages).
However, as we show in this paper, it is not so obvious that all instances of secure computation can
be captured by a (k, t)-robust strategy in some game. We show that, for all functions f on n inputs
and all ¢ such that 2t < n, there exists a game I'>* and a (¢, 0)-robust strategy 4 for I'/** such that
t-securely computing f reduces to implementing 64 in T4cr. This formally proves ADGH’s claim.

2 BASIC DEFINITIONS
2.1 The Asynchronous Model

We assume a network where there is a reliable, authenticated, and asynchronous channel between
all pairs of players. This means that all messages sent by player i to player j are guaranteed to be
delivered eventually, and that j can identify that these messages were sent by i. However, messages
may be delayed arbitrarily. The order in which messages are received and the order in which the
players are scheduled is decided by an entity called the scheduler.

We define the view h; of player i to be the ordered sequence of local computations (including
random coin tosses), messages sent and received (including senders and recipients), in addition
to all the times in between in which i has been scheduled. Similarly, we define the view hr of a
subset T of players as the collection of views h; with i € T. The scheduler’s view H, consists of all
the times in which each player has been scheduled in addition to all messages sent and received.
The scheduler cannot access the contents of messages; thus, in H,, messages are listed without
their content. Note that in the distributed computing literature, it is often assumed that players
are scheduled immediately after receiving a message. However, we allow the scheduler to decide
separately when messages are delivered and when players are scheduled. This means that when
a player moves, that player may have received no messages since its last move, or it may have
received more than one (as opposed to exactly one). It is straightforward to check that all of our
results also hold if we use the more standard model; we have separated message delivery from
when players are scheduled only for ease of exposition.

2.2 Secure Computation

For the main definitions in this section, we need the following notation, largely taken from BCG.
Given a finite domain D, let X be a vector in D". Given a set C C [n], denote by X¢ the vector
obtained by projecting X onto the indices of C. Given a vector Z € DI, let ¥/ ¢ z) be the vector
obtained by replacing the entries of X indexed by C by the corresponding entries of Z. To simplify
notation, given a function f : D" — D, we write fo(X) rather than f(¥/ (©.5,)) to denote the output
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111:4 Geffner and Halpern

of evaluating f on ¥ with the entries in X not indexed by an element of C replaced by some default
value xy € D.

Suppose that a group of n agents wants to compute the output of a function f : D" — D, but the
ith input x; is known only by agent i. A protocol securely computes f if (a) all agents correctly
compute f, regardless of the deviations of malicious players, and (b) malicious agents do not learn
anything about the input of honest agents beyond what can be deduced from the output of f. Before
going on, we need to make precise what it means to correctly compute f, since a malicious agent
can lie about its input or not participate in the computation at all. Roughly speaking, the idea is to
accept as correct any output of f that can be obtained from an input profile that differs from the
actual input profile in at most ¢ coordinates (intuitively, these coordinates are ones corresponding
to inputs of malicious agents who did not submit a value or lied about their actual input). More
precisely, we have the following definition:

Definition 2.1. A protocol 7 t-securely computes f in synchronous systems if for every coalition T
of at most ¢ malicious agents and every protocol 7r for agents in T, there exist functions h : DIT —
DTl and 0 : DT x DX T — {0, 1}* such that, for each input vector ¥,

(a) each agent i ¢ T outputs f(X/(1nz;));

(b) each agent i € T outputs O(Xr, f(X/ (1 h(zp)): D)-

Note that h and O encode how malicious agents might lie about their inputs (if a malicious agent
does not participate in the computation, its input is assumed to be the default value x;, € D) and
what they output, respectively. We thus consider an output to be correct if only the inputs of agents
in T used in the computation of f differ from their actual inputs, and if the output of malicious
agents is just a function of the output of f and their own inputs. Note that this last requirement
captures the fact that malicious agents do not learn anything besides the (honest agents’ ) output of
the secure computation protocol, since otherwise they could use this extra information to generate
outputs that cannot be written as such a function O. Since malicious agents can randomize, we
assume that both h and O have an extra input r, a bitstring chosen uniformly at random from {0, 1}
(the set of all finite bitstrings), and that agent i’s output is distributed identically to f(X/ (7 nz,)) or
O(X1, f(X/(T.n(zs))» 1), depending on whether i is honest. (See Definition 2.3 for the more standard
formalization of this property.) BGW proved the following result:

THEOREM 2.2. [6] If D is a finite domain, n > 3t, and f : D" — D, then there exists a protocol 7
that t-securely computes f in synchronous systems.

Subtleties introduced by asynchrony make the definition of secure computation slightly more
involved in asynchronous systems. In asynchronous systems, as is standard, we assume that there
is a scheduler with its own protocol o, that decides the order in which agents act and how long
it takes for a message to be delivered. As pointed out by ADGH, malicious agents can effectively
communicate with the scheduler, so we can assume that the adversary and malicious agents are all
controlled by a single entity. We call this entity the adversary; we define it as a tuple A = (T, 7r, 0¢)
consisting of the set T of malicious agents, their joint protocol 7r, and the scheduler’s protocol
0. With such adversaries, there are deviations that are possible in asynchronous systems that are
not possible in synchronous systems; specifically, the scheduler can delay a subset of agents until
the other agents terminate the protocol. If the number of agents delayed is less than the number
of malicious agents that the protocol tolerates, delayed honest agents are indistinguishable from
malicious agents that never engage in the communication, and thus the remaining agents must
be able to terminate regardless of the delay. Since the inputs of delayed honest agents are not
taken into consideration, the adversary can choose a set C C [n] of size at least n — ¢ and force the
computation to ignore the inputs of agents not in C.
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To define asynchronous secure computation, BCG introduced an ideal adversary, defined as a
quadruple A = (T, h, ¢, O) where

o T is the set of malicious agents;

e h: DTl x {0,1}* — DIl is the input substitution function;

e ¢:DITIx{0,1}? — {C C [n] | |C] = n -t} chooses a subset of agents (intuitively, the ones
whose inputs are taken into consideration);

e 0:DT1'x{0,1}* x D x T — {0,1}* is the output function for the malicious agents.

In the sequel, we use “ideal adversary” to refer to such a tuple (T, h, ¢, O), and reserve the term
“adversary” for a tuple of the form (T, 71, o.), as defined earlier.

Given a function f : D" — D, an ideal adversary A = (T, h, ¢, O), and an input vector X, let
C = c(Xr,r) and § = X/ (1,n(z.r))- Intuitively, C is the set of agents whose inputs are considered
and i is the input profile obtained by replacing the actual inputs of agents in T with the output of h.
The output of f with ideal adversary A and input X is an n-vector of random variables IDEAL 4 (X)
whose ith component satisfies

- _ | (€ fe(@) ifigT,
IDEALf,A(x); ‘{ OGur fo(i).i) ifieT.

Note that the outputs of f with ideal adversaries are analogous to the outputs of secure
computation in the synchronous case, except that here we must take into account the subset
C of agents that provide their inputs. In asynchronous systems, secure computation is defined as
follows:

Definition 2.3 (Secure computation). Let f : D" — D be a function of n variables over some finite
domain D. The protocol 7 t-securely computes f in an asynchronous setting if the following hold for
all (standard) adversaries A = (T, 7r, o.) with |T| < t:

e on all inputs, agents not in T terminate the protocol with probability 1;

o there exists an ideal adversary Ald = (T, h, ¢, 0) such that, for all inputs ¥ € D", we
have EXECj4(X) ~ IDEALf jia(X) (ie., EXECz o(X) and IDEAL 4ia(X) are identically
distributed), where EXEC; 4(X) is the output distribution that arises from running 7 with
adversary A and input profile X.

In other words, a protocol 7 t-securely computes some function f if, for all adversaries, it
terminates with probability 1 and there exists an ideal adversary that, for all inputs, gives the same
distribution over outputs.

THEOREM 2.4. [5] If D is a finite domain, n > 4t, and f : D" — D, then there exists a protocol 7
that t-securely computes f in asynchronous systems.

2.3 Weaker Notions of Secure Computation

Note that the T in the second condition of Definition 2.3, that is, the T in the ideal adversary
(T, h, ¢, O) is the same as the T in the adversary. This is also true in the BGW definition of ¢-secure
computation. While we believe that this was also the intention of BCG, their definition simply
says that that there exists an ideal adversary, without specifying the set T (of malicious agents)
that satisfies the second bullet of Definition 2.3. Taking this definition seriously leads to a slightly
weaker notion of secure computation that we call t-weak secure computation, which is defined just
as t-secure computation except that the ideal adversary A may involve any set T’ of malicious
agents such that |T’| =t and T’ 2 T, as opposed to consisting of the same set T of malicious agents
as A.
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111:6 Geffner and Halpern

We show that t-weak secure computation is strictly weaker than the standard notion of secure
computation. To do so, we first introduce an intermediate notion of secure computation called
t-strict secure computation; it is defined just as t-secure computation, except that we require only
that the properties are satisfied for adversaries of size exactly ¢ (i.e., for |T| = ). As we mentioned
in the introduction, somewhat surprisingly, ¢-strict secure computation is strictly weaker than
t-secure computation, but, as we show next, it is actually equivalent to t-weak secure computation.

THEOREM 2.5.

(a) If a protocol 7 t-securely computes a function f, it also t-strictly securely computes f.

(b) A protocol 7 t-strictly securely computes a function f iff it t-weakly securely computes f.

(c) Ift > 1 andn > 4t, there exists a function f on n variables and a protocol 7 such that 7 t-strictly
securely computes f but does not t-securely computes f.

The analogue of part (c) of Theorem 2.5 is easy to show if n < 2t. For instance, we can easily
check that a protocol where each agent does nothing and outputs f(0) t-strictly securely computes
any f for all ¢ such that n < 2t (note that, in this case, for an ideal adversary consisting of ¢
malicious agents, all agents can pretend to have input 0 and choose a set C arbitrarily), but it is not
necessarily a t-secure computation of f if t < n < 2¢. What is perhaps surprising is that this result

holds even when n > 4t.

Proor. Part (a) follows immediately from the definition of secure computation and strict secure
computation. For part (b), first suppose that a protocol 7 t-strictly securely computes f : D" — D".
Given an adversary A = (T, 71, o) with |T| < t, consider an adversary of the form A’ = (T U
T',7r + i, 0,) such that TNT’ = @ and |T U T’| = t. Note that agents in T” play 7, and thus
they in fact do not deviate. Since 7 t-strictly securely computes f, there exists an ideal adversary
A = (T U T, h,c O) such that EXECjz 4 (X) ~ IDEAL 4ia (%) for all inputs. By construction,
EXECj; 4 (X¥) ~ EXECj; 4(X), since the additional malicious agents in A” do not deviate from the
protocol. Therefore, EXECj; 4 (X) ~ IDEAL 4ia(X), so 7 t-weakly securely computes f.

The converse is almost immediate from the definitions. Suppose that protocol 7 t-weakly
securely computes f : D" — D" for some t. Given an adversary A = (T, 71, 0.) with |T| = t,
then, by assumption, there exists an ideal adversary A’ = (T, h, c, O) such that EXECj 4(X) ~
IDEAL . yia (%).

For part (c), consider the following setup. Let F; be the field with domain {0, 1}. Given n and
t such that t > 1 and n > 4t, consider a function f : (IF’Z)"3 — (IFQ’Z)"2 that does the following.
Given the input (x/, ¢!, ¢, z") € (}Fz)"2 of each agent i, where x' € F,, ¢’ € (F,)", y* € (F;)'!, and
2! consists of the remaining n?> — n — t coordinates (which do not affect the function f; they are
needed because in Definition 2.3, the input space of each agent must be the same as the output
space of the function), let p; € F,[X] be the unique polynomial of degree ¢ — 1 such that p;(0) = x*
and p;(j) = y;. forall j =1,2,...,t — 1. The output of f is then {p;(j) + clj.‘},-,je[n]. In other words, f
encodes the first coordinate of each agent’s input using Shamir’s agent secret sharing scheme [11].
The polynomial p; that each agent i uses to do the encoding and the one-time pads c{ added by i to
each of the shares are part of i’s input, and not known by the other agents. However, a coalition T
of t malicious agents can reconstruct the values p;(j) for all i € [n] and j € T, and thus is able to
reconstruct each x; as well, since the agents in T know ¢ points on each polynomial p;, although
no coalition of size strictly smaller than ¢ knows those values.

Consider a protocol 7 that consists of the following: each agent i performs its part of BCG’s
t-secure computation protocol to compute f and then, if i is included in the core set of the output,
i broadcasts the first bit of its input. By the earlier argument, if the adversary is of size exactly t,
it can reconstruct the first coordinate of the inputs of the agents in the core-set from the output
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of f and its own inputs, which means that the values broadcast after BCG’s secure computation
protocol do not give any extra information about the inputs of honest agents to the adversary.
However, this is not true for smaller adversaries. Thus, 7 ¢-strictly securely computes f, but does
not t-securely compute f. O

2.4 Implementing mediators

In this section we formalize the definition of I; and Tscr and the notion of (k, ¢)-robust equilibrium.

2.4.1  Normal-form and Bayesian games. A normal-form game I’ is a tuple (P, A,U), where P =
{1,...,n} is the set of players, A = A1 X - - - A, where A; is the set of possible actions for player
i€eP,and U = (u,...,uy) is an n-tuple of utility functions u; : A — R, again, one for each player
i € P. A pure strategy profile a is an n-tuple of actions (ay, ..., a,), with a; € A;. A mixed strategy
for player i is an element of A(A;), the set of probability distributions on A;. We extend u; to mixed
strategy profiles o = (01, ..., 0,) by defining u;(0) = X (4, . a,)ea 01(a1) ... on(an)ui(as, ..., an):
that is, the sum over all pure strategy profiles d of the probability of playing @ according to ¢ times
the utility of @ to i. As is standard, we use & = (o7, . .., oy,) to denote a strategy profile for n players
in which each player i plays o;, and use (o_r, 77) to denote the strategy where each playeri ¢ T
uses the strategy o; while j € T uses the strategy 7;.

Bayesian games extend normal-form games by assuming that each player i € P has a type t; € T;.
A player’s type can be thought of as private information that the player has, such as whether he
is lazy or industrious. In our applications, an agent’s type will be its input. Types are assumed to
be sampled from a distribution g € A(T), where T = T; X - - - X T,,. The utility u; of a player i is a
function of not only the action profile played, but also of of the type profile (,. .., t,). Formally, a
Bayesian game is a tuple (P, T, q, A, U), where, as in normal-form games, P, A, and U are the set of
players, their actions, and their utility functions, respectively; T is the set of possible type profiles,
and q is a distribution in A(T).

A strategy in a Bayesian game for player i is a map y; : T; — A(A;). Intuitively, a strategy in
a Bayesian game tells player i how to choose its action given its type. Since the distribution q is
common knowledge, given a strategy profile ji = (yy, . .., jip) in T, the expected utility of a member
i of a coalition K is

w(i) = Y, qlic) Y q( | iu(ED),

?KETK

where u;(ji(f)) denotes the expected utility of player i when an action profile is chosen according
to p(f). Intuitively, we are assuming that players in K can share their types, which is why we
condition on k.

2.4.2 Defining Iy and T4cr. Given a Bayesian game I', we consider two extensions Iy and Tacr
with the same set of players. In Iy, players can communicate with a trusted mediator d, who is a
non-strategic player (i.e., there is no utility function for the mediator) and uses a commonly-known
strategy o4. We call Ty the mediator game, and denote by & + o, the strategy in which players play
strategy profile ¢ and the mediator plays oy. In the communication game Tscr, there is no trusted
mediator but players can communicate with each other. In both Iy and T4cr, players can decide at
any time to play an action a in the underlying game I'; however, each player can play an action in
I' at most once. The resulting payoff or utility of each player is determined by the action profile
played and the type profile 7, using the utility function in I. Strategies in Ty and Tycr describe how
each player communicates with the mediator and the other players, and when each player plays an
action in the underlying game T'.
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111:8 Geffner and Halpern

In this paper, we assume that the communication in I; and T4¢7 is asynchronous, as described
in Section 2.1. This means that there a player i may end up deadlocked, waiting for other players’
messages, and never gets to play an action in the underlying game. If this happens, we assume that
the action played by i is a default action L € A;.2

Given these definitions, we can define what it means for a strategy profile to implement another
in asynchronous systems:

Definition 2.6. Strategy profile ¢ in Tycr implements strategy profile 7 in I if, for all type profiles
f and all schedulers o, there exists a scheduler ¢, such that the distribution over output profiles
induced by & with input profile 7 and scheduler o, is identical to the distribution over output
profiles induced by 7 with input profile ¥ and scheduler .

It is important to note that strategy profiles in I;; and Tyt are essentially just protocols in which
the type profiles ¢; are the players’ inputs and in which players have the option to play an action
in the underlying game. Thus, in Iy and Tscr, the terms strategy and protocol are equivalent (we
use strategy profile and joint protocol to refer to tuples of strategies or protocols), as are type and
input. For the sake of simplicity, we will stick with the distributed computing notation, except when
referring specifically to purely game-theoretic concepts (e.g., normal-form or Bayesian games).
We assume that all games considered from here on are Bayesian games, unless explicitly stated
otherwise.

24.3 (k, t)-robustness. In large systems, there will almost surely be players who act in apparently
arbitrary ways. This may not necessarily happen because they are malicious, it could be that they
don’t understand how the system works or that their utilities are not what the system designer
is expecting. In order to tolerate these players’ behavior, it is necessary to take into account the
worst-case scenario, where they might be malicious. Thus, Abraham, Dolev, Gonen, and Halpern [2]
introduced the notion of a (k, t)-robust equilibrium, a solution concept that is appropriate in systems
in which at most k players are rational and at most ¢ players are malicious.

Definition 2.7. Given a game T, a strategy profile ¢ is t-immune if, for all subsets T of size at
most ¢ and all strategies 7r for players in T, u;(6_r, 7r) > u;(0) for all i ¢ T, where u;(5) is the
payoff of player i when players play .

Intuitively, a strategy profile is a t-immune equilibrium if no subset of at most ¢ players can
decrease the payoff of other players by deviating,

Definition 2.8. A strategy profile & is a (k, t)-resilient (resp., strongly (k, t)-resilient) equilibrium
of a game T if, for all disjoint subsets K and T of sizes at most k and ¢, respectively, and all strategy
profiles Txur for players in K U T, u; (6 (kur), Tkur) < ui(G-1, Tr) for some (resp., for all) i € K.

Intuitively, a strategy protocol is a (k, t)-robust equilibrium if no subset of at most k players
can all increase their payoffs, even if they can collude with up to ¢ malicious players. It is a strong
(k, t)-robust equilibrium if not even one player in the set can increase its payoff.

Definition 2.9. A strategy profile is a (k, t)-robust (resp., strongly (k, t)-robust) equilibrium in a
game I if it is t-immune and a (k, t)-resilient (resp., strongly (k, t)-resilient) equilibrium.

Abraham, Dolev, Gonen, and Halpern [2] proved the following result:

2There exist other approaches for how to choose which action player i is taken to play if i is deadlocked; we chose this one
for definiteness. The same results hold for the other approaches that have been taken. See for [1] for further discussion of
this subject.
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TueoreMm 2.10. [2] If G + a4 is a (k, t)-robust equilibrium of a synchronous game Ty that extends
some game T and n > 3(k + t), then there exists a (k,t)-robust equilibrium Gact of Tacr that
implements & + 0.

ADGH proved an analogous result for asynchronous systems.

THEOREM 2.11. [1] If5 + oy is a (k, t)-robust equilibrium of a game T; that extends some game T
and n > 4(k + t), then there exists a (k, t)-robust equilibrium Gact of Tact that implements 6 + 0.

It is easy to t-securely compute a function f with the help of a mediator: Each player sends its
input to the mediator, the mediator waits until it receives an input from at least n — t agents (in
synchronous systems it just waits one round), then it computes the output of f given the input of the
players, and sends it to all players. However, despite the fact that we think of ¢-secure computation
in terms of mediators, it is not obvious that Theorem 2.4 follows from Theorem 2.11, due to the
differences between the definitions of (k, t)-robustness and secure computation. In Section 5, we
sketch how to reduce t-secure computation to implementing strongly (, 0)-robust equilibria in
mediator games.

To conclude this section, note that if a strategy profile is a (k, ¢)-robust equilibrium (resp., strongly
(k, t)-robust equilibrium), it is also a (k + k', t — k”)-robust equilibrium (resp., (k + k', t — k”)-robust
equilibrium), for 0 < k’ < t. However, the converse is not true since rational players with known
utilities are far more restricted than malicious players. In fact, ADGH [1] showed that if there
is a way to punish rational players, then any (k, t)-robust equilibrium with a mediator can be
implemented without a mediator if n > 3k +4¢. Intuitively this means that, if a punishment strategy
exists, each rational player needs three additional honest players to counteract its behavior, while
malicious players need four.

2.5 Weak consensus

Some of the results in this paper involve reductions from a well-known problem in the distributed
computing literature called Weak Consensus.

Definition 2.12 ([10]). A protocol  for n agents is a t-resilient implementation of weak consensus
if the following holds for all adversaries A = (T, 7r, 0.) with |T| < t and all histories:

(a) All agents not in T output the same value.

(b) If all agents are honest and have the same input x, all agents output x.

As the name suggests Weak Consensus is weaker than the more standard Consensus problem. In
Weak Consensus, honest players must output x only when all players are honest and they all have
input x; in standard Consensus, they must output x even if only the honest players have input x,
no matter what input the malicious players have. Clearly, if ¢ is a t-resilient implementation of
Consensus, it is also a t-resilient implementation of Weak Consensus. Lamport [10] showed that
both problems have the same lower bound:

THEOREM 2.13 ([10]). Ifn < 3t, there is no t-resilient implementation of weak consensus.

3 MAIN RESULTS

In this paper, we show that the bound in Theorem 2.11 is tight. In this section, we briefly outline
the structure of the proof, leaving the details of the arguments to later sections.

THEOREM 3.1. Ifk+1t+1 < n < 4k + 4t, there exists a (k, t)-robust (resp., strongly (k, t)-robust)
equilibrium, ¢ + o4 for n agents and a mediator such that there is no (k, t)-robust (resp., strongly
(k, t)-robust) equilibrium cact that implements & + .

We break up the proof of Theorem 3.1 into two cases:
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3.1 Case 1:3k+3t <n<4k+4t
For this case, we show that (k+1)-strictly securely computing a function f reduces to implementing

a (k, t)-robust joint protocol & + o4 for some game FI{ K \with a mediator. To make this precise, we
need the following definition:

Definition 3.2. If g : A — B and o is a protocol that plays actions in A, then g(o) is the protocol
that is identical to o except that playing each action a € A is replaced by outputting g(a) € B.If &
is a joint protocol where each player i plays actions in A, then g(c) = (9(01), - .., g(on)).

THEOREM 3.3. Iff : D" — D, D is a finite domain, and 2(k +t) < n, then there exists a game I‘;’k’[
in which all players have the same set A of possible actions, a function g : A — D, and a (k, t)-robust
(resp., strongly (k, t)-robust) equilibrium & + o4 for n agents and the mediator in l"df’k’t such that if
Gacr is a (k, t)-robust (resp., strongly (k, t)-robust) equilibrium that implements & + o4, then g(Gacr)
(k + t)-strictly securely computes f.

Theorem 3.3 shows that if we could implement all (k, t)-robust equilibria in the mediator game
using only communication among the n players, then all functions on n variables would be (k + t)-
strictly securely computable. The proof of Theorem 3.1 for 3(k + t) < n < (k +t) follows from the
fact thatif 3(k+1t) < n < 4(k +1t), then there exist functions that cannot be (k + t)-weakly securely
computed (and hence, cannot be (k + t)-strictly securely computed).

THEOREM 3.4.

(@) If n > 4t orn < 2t, then every function f : D" — D can be t-weakly securely computed in
asynchronous systems.

(b) If3t < n < 4t, there exists a domain D and a function f : D" — D that cannot be t-weakly
securely computed in asynchronous systems.

The proof of Theorem 3.4 is given in Section 6. A slight variation of it provides a simple proof
for the well-known lower bound on secure computation in asynchronous systems:

THEOREM 3.5 ([4, 7, 9]).

(@) If n > 4t orn < t, then for all domains D, every function f : D" — D can be t-securely
computed in asynchronous systems.

(b) Ift < n < 4t there exists a domain D and a function f : D" — D that cannot be t-securely
computed in asynchronous systems.

Note that the range of n and t for which a function can be t-securely computed and t-weakly
securely computed are different, and that Theorem 3.4 does not state whether a function can always
be t-weakly securely computed if 2¢t < n < 3t. We leave that as an open problem. While it might
seem that there should be an easy reduction from implementing mediators to secure computation,
the techniques needed to prove Theorem 3.5 do not seem suffice to prove Theorem 3.1; we seem to
need a number of new ideas (see Section 5).

32 Case2:k+t+1<n<3k+3t

Ifk+t+1 < n < 3k+3t, we show that implementing (k + t)-resilient weak consensus with n

players can be reduced to implementing (k, t)-robust mediators:

THEOREM 3.6. Ifn > k+t+1, then there exists a game I‘;’t with a mediator in which all agents have
the same set A of possible actions, a function g : A — {0, 1}, and a (k, t)-robust (resp., strongly (k, t)-
robust) equilibrium & + o4 for n players and the mediator in 1"0/;’[ such that if 6acr is a (k, t)-robust
(resp., strongly (k, t)-robust) equilibrium that implements & + o4, then g(cacr) is a (k + t)-resilient
implementation of weak consensus.
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The proof of Theorem 3.1 for k +t +1 < n < 3(k + t) follows easily from Theorem 3.6 and
Theorem 2.13.

3.3 Approximate implementation

ADGH [1] showed that if we allow an arbitrarily small probability of error, then any (k, t)-robust
equilibrium with a mediator can be implemented without a mediator if n > 3k + 3t (as opposed to
n > 4k + 4t for error-free implementation). As shown in [3, Theorem 4], we can do no better, even
in the synchronous case. A fortiori, this lower bound also holds in the asynchronous case.

4 PROOF OF THEOREM 3.3

We prove Theorem 3.3 only for the case of (k, t)-robustness; the proof in the case of strong (k, ¢)-
robustness is identical. The proof has two parts. We first give the necessary intuition and provide
the necessary constructions for Theorem 3.3, and then prove formally that these constructions do
indeed satisfy the conditions of the theorem.

A naive construction of Ty and ¢ + o4 proceeds as follows. The set of actions of each agent
consists of all possible outputs of a secure computation of f in addition to their type (more precisely,
actions have the form (C, z, Q) with C C [n], z € D, and Q € {H, R, M}, where H stands for honest,
R stands for rational, and M stands for malicious). If there is no subset S of at least n — k — t honest
agents such that agents in S securely compute f, that is, every subset S of n — k — t agents either
do not all output the same value or they all output a value that is not a possible output of a secure
computation of f, then rational agents get a higher payoff and/or the honest agents get a lower
payoff. In G + oy, each agent sends its input to the mediator when it is scheduled for the first time.
The mediator waits until it receives the input x; from a set C of agents with |C| > n — k — t, then
computes z := fo(¥) and sends (C, z, H) to all agents. Agents play (C, z, H) when they receive the
message.

It would seem that any (k, t)-robust equilibrium that implements & + o4 also (k + t)-strictly
securely computes f. In fact, any (k + t)-secure computation of f is also a (k, t)-robust equilibrium
that implements ¢ + oy, but the converse does not necessarily hold. Consider a protocol Gacr
in which agents run BCG’s (k + t)-secure computation protocol and then broadcast their inputs
immediately afterwards. It is easy to check that Gacr is a (k, t)-robust equilibrium that implements
6 +0gif n > 4(k + t), but that Gacr does not (k + t)-securely compute f, since it leaks the honest
agents’ inputs to all other agents.

This shows that it is necessary to somehow encode all information that malicious agents can
learn into the set of actions of I; in such a way that they can increase their payoff if they manage
to learn anything about the other agents’ inputs besides what can be learned from the output of
the computation. The idea for doing this is that, besides the output, the action of each agent should
include a guess as to what the input profile ¥ is (they can also guess L if they have no guess). If an
agent i guesses correctly it receives an additional positive payoff g;, while if it guesses wrong, its
payoff decreses by 1. The value of g; should be chosen in such a way that (a) it is never worthwhile
deviating if i is not able to learn anything besides the output, and (b) it is always worthwhile
deviating if i is able to learn something (otherwise, G4cr may not (k + t)-strictly securely compute
fevenifitisa (k,t)-robust equilibrium, as in the example above). Given the set C of agents whose
inputs are included in the computation, the output z of f, and the input profile X, let p; be the
probability that an agent i guesses X conditional on its own input x;, C, and z. Conditions (a) and
(b) imply that p;q; + (1 — p;)(—1) < 0 and p;q; + (1 — p;)(—1) > 0 respectively, which means that
pigi + pi — 1 =0 and thus that ¢; = p; ' — 1.

This approach cannot be generalized easily to a situation where a coalition of agents may deviate.
In this case, an agent in the coalition will know the values of all agents in the coalition, not just
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its own input. Moreover, if an agent in the coalition plays just like an honest agent except that it
tells the other coalition members its input, then this is completely indistinguishable (by the honest
agents) from the scenario in which that agent is honest and the other members of the coalition
were just lucky guessing its input. In addition, an agent can lie about its input if it is easier to guess
the input profile with a different input than its own. For instance, suppose that D = F, and that
f(&) =T1~%,(1 = x;). If i has input 1 and plays honestly, then it learns absolutely nothing about
the other agents’ inputs, since the output will be 0 no matter what. However, if i pretends to have
input 0, i will learn more information: if the output is 1, then all agents have input 0; otherwise,
at least one agent has input 1. In this case, it would always be worthwhile for agent i to act as if
it has input 0, regardless of its actual input. This shows that to compute the probability that the
adversary guesses the inputs correctly, it is critical to know who is malicious and what inputs the
malicious agents are pretending to use in the computation.

To deal with the fact that we may not be able to tell which agents are deviating, we require
that exactly k + t agents must try to guess a non-L value in order to get an additional (positive or
negative) payoff. Moreover, their guesses must be identical. If honest agents always guess L, this
suffices to identify the coalition of k + ¢ deviating agents given their action profile. Note that this is
why we require strict secure computation in Theorem 3.3. If we required only (standard) secure
computation, smaller adversaries wouldn’t be able to get a better payoff, even if they managed to
guess the inputs of everyone else (so the protocol would not satisfy condition (b)). To deal with
agents lying about their inputs, we require that the action profile of the agents encode the inputs
used by the agents for the computation (even though these inputs may differ from their actual
inputs). The probability of guessing the input profile is based on the inputs used, not agents’ actual
inputs. Note that these values must be encoded into the action profile without any coalition of k + ¢
agents learning anything about them. This can be done as follows: each agent i, in addition to the
set C, the output z, and their guess b;, also outputs n values s;3, .. ., s;, such that the values s; ; for
a fixed j encode the value used by j for the computation (using Shamir’s secret-sharing scheme).

There is one final issue. The definition of (0, t)-robustness is equivalent to that of t-immunity,
which means that no coalition of ¢ agents can decrease the payoff of other agents by deviating. In
this case, the effect of a coalition of t agents being able to learn something about the inputs should
be to decrease the payoffs of the remaining agents, rather than increasing their own payoff. To deal
with this, we require agents to declare wither they are G (good), R (rational), or M (malicious). If a
coalition of (k + t) agents tries to guess the inputs of everyone else, if they all declare R, then they
get an additional payoff as described above. Otherwise, everyone gets the negative of that value.

We now formalize these ideas. Given f and integers k and ¢ such that n > 2k + 2t, consider the
game '/ defined as follows. The input profile of the agents is chosen uniformly at random from
D™. The set of actions of each agent in I/% is {G, R, M} x 21" x D x D" x (D" U {L}), so0 an action
of agent i has the form a; = (Q;, Ci, 2, 5;, b;), where Q; € {G,R,M}, C; C [n], z; € D, x; € D, and
b; € D" U {L}. Intuitively, Q; denotes if i is good (G), rational (R), or malicious (M), (Ci, z;) is i’s
output in the secure computation of f s;; is i’s share of j’s input (this will be made clearer below),
and b; is i’s guess of the (supposedly secret) input, where b; = L if i has no guess.

We next define the utility function. We take u; = u} +u?, where, intuitively, u! is the utility that i
gets if honest agents either output different values or some honest agent outputs a value that is not
a possible output of a secure computation of f and u? is the utility that i gets from guessing the
correct input of the other agents. To define u;, we first define what it means for an action profile d
to be secure for an input profile ¥. This is the case if there exist subsets C, T C [n] with |C| > n—t—k
and |T| = k +t,avector o € D** and n polynomials p, ..., p, of degree k + t (where, intuitively,
pj encodes j’s input, so p;(i) is i’s share of j’s input) such that, for each agent j ¢ T, the action
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aj = (Q;,Cj,z;,5;,b;) of agent j satisfies (1) Q; = G, (2) C; = C, (3) b; = L, (4) z; = f(3), where
y= (55/(15))/@6) (5) pjr(j) = sjj for all j” € [n], and (6) p;(0) = y;. We say that d is (T, X)-secure
if these properties hold for the set T. Intuitively, d@ is (T, X)-secure if it could be the output of a
(k + t)-secure computation of f with input ¥, and the inputs used for the computation—which
may differ from the the actual input profile due to deviating agents lying about their inputs—were
shared correctly between the agents. If d is secure for X, then u; (d,X) = 0 for all i € [n];if @ is not
secure for X and at least one agent i played R (i.e., played an action with Q; = R), then u]l.(c_i, X) =1
for all agents j; otherwise, ujl.(t_i, X) = —1 for all agents j.

If @ is not secure for ¥, then u?(d, X) = 0. If @ is secure for X, let K be the subset of agents that
did not play G. Note that if d is secure for X, then |K| < k +¢. If |[K| < k + ¢ or not all agents in K
guess the same value b (i.e., not all agents in K have the same value b as the last component of their
action), then ul.z(c_i, ¥) = 0 for all i. Otherwise, let b be the common guess of agents in K and let p be
the probability that a vector w sampled uniformly from D" is equal to X, conditional on wx = jx
and fo(w) = z. Note that if @ is (T, X)-secure for some T, then C is uniquely determined by @, and
if, in addition, n > 2(t + k), then j is also uniquely determined by the shares §; of agents i ¢ T. If
b =1, then ul.z(c_i, %) = 0 for all i. If at least one agent i € K played R in its action, then, if b = X,
ul.z(fi, ¥) = p~!—1foralli € K; otherwise, ul.z(c_i, X) = —1forall i € K. On the other hand, if no agent
i € K played R in its action, then, if b = X, uiz(c_i, ¥)=1-p~!foralli¢ K; otherwise, ul.z(c_i, X)=1
for all i ¢ K. Note that since p(p~! — 1) — (1 — p) = 0, the payoffs u? are designed in such a way
that the adversary can, in expectation, either increase its payoff (if there are any rational agents)
or decrease the payoff of everyone else (if there are no rational agents) if it can guess the inputs
of honest agents with higher probability than p (which is the probability of guessing the honest
agents’ inputs if the adversary knew nothing but the output of the function and its own protocol
and inputs).

Consider the following joint protocol & + o4 for Fj ke According to o;, agent i sends its input
to the mediator at the beginning of the game. If i receives a message msg from the mediator, it
plays msg in the underlying game. According to o4, the mediator waits until there exists a set
C C [n] with |C| = n — t — k such that it has received exactly one message from each agenti € C
and each of these messages consists of a value y; € D. The mediator computes n polynomials
P1s-- - pn € D[X] of degree k + t whose non-constant coefficients are chosen uniformly at random
such that p;(0) = y; if i € C and p;(0) = 0 otherwise. It then computes z := f(p1(0), ..., p,(0)) and
sends (G, C, z, p1(i), ..., pn(i), L) to each agent i.

PROPOSITION 4.1. G + oy is a (k, t)-robust equilibrium and the equilibrium payoff is 0.

Proor. Letu;(3, A, xr) be the expected payoff of agent i when running ¢ with an adversary A that
has input x7. It follows by construction that u} (6+04, A, Xr) = 0 for all adversaries A = (T, 7r, o,) of
size at most k+t and all inputs since, no matter what T or X7 are, the output profile d is (T, X)-secure
for all input profiles X.

Thus, 6+04 isnot a (k, t)-robust equilibrium if and only if there exists an adversary A = (T, Tr, o)
with |T| < k + t and an input profile ¥ such that, in expectation, (a) u?(5 + o4, A, X¥r) > 0 for
some i € T, or (b) u?(& +04,A,X7) < 0foralli ¢ T. The definition of ulz guarantees that, in both
cases, the adversary must consist of exactly k + t agents and these agents must all play a non-G
action. Moreover, these agents must guess the input of honest agents with a probability higher
than they could guess it by just knowing the output of the function, their protocol, and their inputs.
However, the construction of 6 + 4 guarantees that they don’t have any extra information (note
that C depends only on the adversary, and that the adversary does not get any information about
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the input of the honest agents besides the value of z, since the polynomials p; are all of degree
k +1). )

We next show that if there exists a (k, t)-robust equilibrium ¢’ that implements ¢ + o4, then ¢’
also (k + t)-securely computes f. We first need the following lemma.

LemMaA 4.2. IfGacr is a (k, t)-robust equilibrium that implements & + o4, then for all adversaries
A= (T,7r,0.) with|T| = k + ¢, all inputs X, and all views H of Gact with adversary A and input X,
the action profile a played in H is (T, X)-secure.

Proor. Suppose that k > 0. If there exists an input ¥ and an adversary A = (T, 71, 0.) with
|T| = k +t such that, for some view H, the action profile @ played in H is not (T, X)-secure, consider
the adversary A’ = (T, 7}, 0.) where 77, is identical to 7r, except that if a agent i € T plays an action
a with 7;, then i instead plays (R, 0, 0,0, L) with 7/. Thus, if an action profile d played in some
view H' when Gacr is run with adversary A’ is (T”, X)-secure, then T C T’ (note that for an action
profile d to be (T’, X)-secure, we require that all agents not in T’ play G in the first component, and
none of the agents in T plays G) and, since |T| = k+1¢, T = T”. Since the views generated by playing
with adversaries A and A’ are indistinguishable by honest agents, if there exists a view H with
adversary A and input X such that the action a played in H is not (T, X)-secure, then the resulting
action profile @’ of playing 6acr with adversary A’ and input X in which all agents use the same
randomization as in H is not (T, X)-secure, and all agents in T would get a payoff of 1 rather than 0.
It follows that Gacr is not a (k, t)-robust equilibrium. If k = 0, the argument is analogous, except
that agents in T play (M, 0,0, 0, L) rather than (R, ?,0,0, L) m]

To complete the proof of Theorem 3.3, we must show that if G4cr is a (k, t)-robust equilibrium
that implements & + o4, the output of an adversary A = (T, 71, 0.) with |T| = k + t is just a
(randomized) function of its input X and the output v of the function. To do this, we need the
following lemma:

LEmMA 4.3. Consider two random variables X and Y that take values on countable spaces Sy and S;
respectively. Then, Pr[X =x | Y =y] =Pr[X =x | Y =¢'] forallx € S; andy,y’ € S, if and only if
X and Y are independent.

Proor. If Pr[X = x | Y = y] does not depend on y, there exists a constant A, such that
Pr(X=x|Y=y] =Acforally € S. Then, since Pr[X =x | Y =y] = %, it follows that
Pr[X =x,Y =y] = A Pr[Y = y]. Therefore, 3} c5, Pr[X = x, Y = y] = X yes, Pr[Y = y], which
gives that A, = Pr[X = x], as desired. The converse is straightforward. O

We can now complete the proof of Theorem 3.3. Suppose that k > 0. Recall that if all agents
i € T set b; to some input X, they get a payoff ofpg1 — 1, where p, € [0, 1] if the input profile is
indeed X, and otherwise they get —1. Given a view Hr in which the adversary has input X7 and
honest agents output v, let pf,{T (X) be the probability that the input profile is X conditional on v
and Hr. If ) (%) > pz. then pi" (%) (pz! = 1) + (-1)(1 — py" (X)) > 0, which means that taking
b; = X is strictly better than taking b; = L for each of the agents in T, contradicting the assumption
that Gacr is a (k, t)-robust equilibrium. Thus, p5” (¥) < ps for all %. Since both Yz p&7 (¥) and
>z ps are 1, it must be the case that p,T (¥) = pz for all ¥. This shows that for every view hr of the
adversary, the distribution of possible inputs of honest agents conditional on hr depends only on
their inputs and what honest agents output. By Lemma 4.3, this implies that the input of honest
agents and the view of the adversary are independent (given the input ¥7 of the adversary and
the output v of honest agents), and thus, again by Lemma 4.3, it follows that the distribution of
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possible views of the adversary depends only on X1 and v. This shows that every possible output
function of the adversary can be simplified to a function that has as inputs only X7 and v, as desired.
The argument for k = 0 is analogous, except that in this case, if the distribution of possible views
of the adversary is not independent of the inputs of the honest agents, the adversary decreases
the payoffs of the honest agents, rather than increasing the payoffs of the deviating agents. This
completes the proof of Theorem 3.3.

5 EXTENDING THEOREM 3.3

In the construction used for Theorem 3.3, a (k, t)-robust equilibrium that implements G + cacr
may not necessarily (non-strictly) (k + t)-securely compute f, since if the adversary consists of
fewer than k + ¢t malicious agents, the malicious agents might be able to deduce information about
the honest agents’ inputs without being able to take advantage of it (recall that for u?(d,X) to
be non-zero, a subset K with |K| = k + t must all guess the same value for ul.z(Zi, X)). However, a
small variation in the construction of u? in Ikt gives a game I/ such that any strongly (k, 0)-
robust equilibrium that implements the (k, 0)-robust equilibrium of Proposition 4.1 also k-securely
computes f, so secure computation can be reduced to implementing strongly (k, 0)-robust equilibria
for certain mediator games. The idea is that instead of requiring the subset K of agents who do
not play G to have size exactly k, we require only that it have size at most k. This modification of
uf leads to some of the problems discussed in Section 4, namely, that if some rational agents act
like honest agents except that they share their inputs with other rational agents, the latter agents
might be able to guess the input profile and get a strictly positive expected payoff. This scenario is
indistinguishable from one in which the agents who shared their input are actually honest and
rational agents are just lucky. To deal with this issue, we further modify the payoffs in I/ so that
if the agents in some subset K with |K| < k guess the inputs correctly, then everyone else gets a
huge negative payoff (rather than 0, as in the original construction). We can show that if this payoff
is sufficiently negative (e.g., —n times the winnings) and there exists a deviation from the agents
in K in the (k, 0)-robust equilibrium & + o4 given in Proposition 4.1 in which rational agents get
a positive payoff from u?, then there exists a deviation from the agents in K in & + o4 in which
rational agents get a positive payoff from u? and they all guess the same value in every possible
view (if the negative payoffs are small enough, rational agents not guessing any value gives a
negative total payoff for rational agents, even if some of them guess the correct value). (Note that
this modification works only for strong (k, t)-robustness, since if we require only (k, t)-robustness,
a rational agent may decrease its own payoff if that helps other rational agents, even if the total
gain of the rational agents from doing so is negative.) With this, an analogous argument to the one
given in the proof of Proposition 4.1 shows that the strategy used in Proposition 4.1 is strongly
(k,0)-robust with these payoffs. The rest of the proof is identical to that of Theorem 3.3.

6 PROOF OF THEOREMS 3.4 AND 3.5

For Theorem 3.5(a), note that if n > 4t, Theorem 2.4 shows that every function f : D" — D
can be t-securely computed, and thus ¢t-weak securely computed as well. If n < t, let L be the
input assigned to the agents that did not submit an input. It can be easily shown that the protocol
where each agent sends no messages and outputs (0, f(L")) t-securely computes f. Similarly, for
Theorem 3.4(a), it can be easily checked that if n < 2¢, the protocol where each agent sends nothing
and outputs ([n — t], f(L")) t-weak securely computes f.

It remains to show Theorems 3.4(b) and 3.5(b). Our proofs are similar to that of Canetti [9] at a
high level: We construct a function f with four inputs, the scheduler schedules the agents so that
the fourth agent never gets to participate in the computation, and one of the three remaining agents
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is malicious and manages to trick the other two participating agents into outputting something
inappropriate. Canetti then claims that conversations between agents (where a conversation is just
the collection of messages sent by two given agents) must be independent of the inputs of the
agents, and that agent 3 can send messages to agents 1 and 2 in such a way that agents 1 and 2
believe they should output different values. However, there are two significant problems with this
approach:

(a) First, the conversations between the agents might not be totally independent of their inputs,
since they can depend on the output of the computation, and this ultimately does depend on
the inputs. For example, agents can run Bracha’s [8] consensus protocol (which tolerates ¢
malicious agents if n > 3t) after terminating the secure computation protocol to decide the
output. This would guarantee that all honest agents output the same value at the end of the
computation, so their conversations are certainly not independent.

(b) Second, there is a more subtle issue when trying to simultaneously trick agents 1 and 2 into
outputting some given values a and b, respectively. Even though Canetti proves that for the
function f that he uses and a particular input X, for each conversation h; » between 1 and 2,
there is a protocol for player 3 that results in a conversation h; 3 between 1 and 3 such that
1 outputs a, and that for each conversation h; ; between 1 and 2 there exists a protocol for
player 3 that results in a conversation h, 3 between 2 and 3 such that 2 outputs b, there might
not exist a protocol for agent 3 that results in 1 and 2 having conversation h; 5 and agents 2
and 3 having conversation h, 5 simultaneously. In fact, if a and b are different and agents run
a consensus protocol as in (a), there is not.

Roughly speaking, we deal with these issues as follows. We prove that for our function f, a
malicious agent can make all honest agents output the same incorrect value, and we show that in
our case there does exist a conversation h; » between 1 and 2 such that agent 3 can trick both of
them simultaneously, as desired (see Lemma 6.1). Some of these techniques can also be applied to
prove lower bounds for weak secure computation.

6.1 Proof of Theorem 3.4(b)

Consider the function " : {0,1, L}" — {0, 1, L} that essentially takes majority between 0 and 1: it
outputs 1 if the number of agents with input 1 is greater or equal to the number of agents with
input 0, otherwise it outputs 0. Players who do not submit an input are assumed to have input L.
We start by showing that f* cannot be 1-weakly securely computed by four agents.

Suppose that f* can be 1-weakly securely computed using a protocol &. Let o2V be the scheduler
that schedules agents 1, 2, and 3 cyclically, and right before scheduling an agent, it delivers the
messages that were sent by the other agents the last time they were scheduled. After scheduling
each of the first three agents N times, it schedules agent 4 as well, adding it to the cyclic order.

Given a view H of the protocol, let Xy denote the input profile of agents in H, let H; denote
agent i’s view in H, let H, denote the scheduler’s view in H, and let H(; ;) denote the conversation
between agents i and j (i.e., the messages sent and received between i and j, in addition to the
relative times at which i and j were scheduled). We can now prove essentially what BCG claimed
to prove (although, as we said, this claim does not hold for the BCG construction).

LEMMA 6.1. There exist N and two (finite) views H and H' of G where the scheduler uses o,
Xg =(1,0,1,1), Xgr = (0,1,1,1), agents 1, 2, and 3 all output 1 in H, agent 4 is never scheduled in
either H or H', Hy; = H| ,, and H, = H}.

To prove Lemma 6.1, we first need to prove that if all agents are honest, at most t agents have
input 0, and n > 3t, then the output of a 1-weakly secure computation of f” will be 1. While this
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seems obvious (and is true), it is not quite so trivial. For example, it is not true if n = 3¢t — 1. In this
case, if we consider an ideal adversary A = (T, ¢, b, O), in which |T| = t, h replaces all inputs of
malicious agents with 0, and ¢ chooses all t malicious agents and ¢ — 1 additional honest agents, it
is easy to check that the output of honest players is 0.

LEMMA 6.2. Ifn > 3t and & is a protocol that t-weakly securely computes ", then for all schedulers,
in all possible views of ¢ in which all agents are honest and at most t agents have input 0, all agents
output 1.

ProOOF. Let S be the subset of agents that have input 0. Given a scheduler o, consider an adversary
A= (T,7r,0.) such that T 2 S, |T| = t, and 7r = &7 (so all the malicious agents follow protocol ).
By definition of t-weak secure computation, the output of honest agents with adversary A should
be one that is possible with an ideal adversary of the form A” = (T, ¢, h, O). However, no matter
what the output C of ¢ is, since |C| > n — t, there will be at least n — 2t honest agents in C, all of
them with input 1. Since n > 3t, this suffices to guarantee that all agents not in T output 1. Since
malicious agents play their part of 5, they are indistinguishable from honest agents. Thus, if all
agents are honest, all agents not in T output 1. To see that agents in T also output 1 if all agents are
honest, consider an adversary A” = (T’, 7, o) such that T’ N T = 0, |T’| = ¢ (such a set T” always
exists since n > 3t), and 77 = &7. Since honest agents not in T U T’ (note that [n] \ (T U T’) # 0)
have the same views with A and A”, they must output the same value with both adversaries, and
so must output 1 with adversary A”. By definition of t-weak secure computation, since |T’| = t, all
agents not in T" must output the same value. Thus, since TN T’ = 0, all agents in T also output 1
with adversary A”. Again, since agents in T’ are indistinguishable from honest agents, this implies
that agents in T also output 1 if all agents are honest. O

ProoF oF LEMMA 6.1. By Lemma 6.2, there exists an integer N such that if agents 1, 2, and 3 are
honest, with nonzero probability, they will output 1 with scheduler o2 at or before the Nth time
they are scheduled. Let H be a view where the agents use &, the scheduler uses oY, the input is
(1,0,1,1), agents 1, 2, and 3 are honest and have been scheduled at most N times and all three have
outputted 1. By the properties of secure computation, in particular, the secrecy of the inputs, there
must exist a view H” such that Xy~ = (1,1,0, 1), H]" = Hy, and H; = H,. (Note that this means
that we can assume, without loss of generality, that the scheduler uses protocol aé\] .) If this were
not the case and agent 1 were malicious in H”, then it would know that the input profile can’t
be (1,1, 0,1) given histories H; and H,. (Recall that we can assume without loss of generality that
the malicious agents can communicate with the scheduler.) Similarly, there exists a view H’ with
Xgr = (0,1,1,1) such that H; = H} and H] = H]. The fact that the scheduler has the same view in
H,H’, and H” and that H, = H{" and H,’ = H,, implies that H; , = H{,2(= H{,/z)’ as desired. In more
detail, since H, = H', agent 2 sends the same messages to and receives the same messages from
agent 1in H' and H”, so 1 receives the same messages from and sends the same messages to 2 in
both H” and H”. Thus, H{,z = H{fz. A similar argument shows that H; ; = H{,’r ]

Now suppose that agents have input profile X = (0, 0,0, 0). We show that there exists a protocol
13 for agent 3 such that if all other agents play & and the scheduler plays G, then with non-zero
probability, agents 1 and 2 output 1. This suffices to show that f* cannot be 1-weakly securely
computed, since honest agents should output 0 when playing with any trusted-party adversary
with at most one malicious agent.

LEMMA 6.3. If the agents have input profile (0, 0,0,0), then there exists a protocol t5 for agent 3
such that if all other agents run & and the scheduler runs o, then with non-zero probability, agents 1
and 2 output 1.
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Proor. Let H and H’ be the two views guaranteed to exist by Lemma 6.1. The protocol 73 for
agent 3 consists of sending agent 1 the messages that agent 3 sends to agent 1 in H” while sending
agent 2 the messages that agent 3 sends to agent 2 in H. Suppose that agent 1 has the same random
bits as in H’, while agent 2 has the same random bits as in H. An easy induction now shows that,
in the resulting history, agent 1 will have history H; and agent 2 will have history H; after each
having been scheduled at most N times, using the fact that, as shown in Lemma 6.1, Hy; = Hj,.
Thus, by Lemma 6.1, agents 1 and 2 output 1 in this case. This contradicts the fact that ¢ 1-weakly
securely computes f*, since Lemma 6.2 shows that, with input profile (0, 0, 0, 0), all honest players

output 0. ]

It is straightforward to extend this argument to all n and ¢ such that 3t < n < 4¢. Given n and
t such that 3t < n < 4t, we divide the agents into four disjoint sets Si, S,, S3, and Sy such that
0 <|S;| <tforallie {1,2,3}and 0 < |S4| < t. Consider a scheduler ¥ that schedules agents in
S1, S, and Ss cyclically and, right before scheduling an agent, it delivers the messages that were
sent by the other agents the last time they were scheduled. After scheduling each of the agents in
S1U S, U S3 N times, it schedules the agents in S, as well. Suppose that & is a protocol for n agents
that t-weakly securely computes f".

LEMMA 6.4. There exist N and two (finite) views H and H' of & where the scheduler uses ol¥,
X = (1s,,0s,, 1s;, 15,), Xpr = (651, ng, 153,154), agents in S; U Sy U S5 output 1in H, agents in Sy are
never scheduled in either H or H', Hs, 5, = H;l’sz (which is the conversation between the agents in S
and the agents in S;), and H, = H;.

Proor. The proof is analogous to the proof of Lemma 6.1; the subsets Sy, Sz, S3, and S, play the
roles of agents 1, 2, 3, and 4, respectively. O

We now have the tools we need to prove Theorem 3.4(b). Given H and H’ from Lemma 6.4,
consider a protocol 7s, for agents in S; that consists of sending agents in S; and S; exactly the same
messages they would send in H” and H respectively. Again, if agents have input 0,a reasoning
analogous to that of Lemma 6.3 shows that, with non-zero probability, agents in S, will eventually
have view Hs,, and thus will output 1, contradicting the assumption that ¢ -weakly securely
computes f". This completes the proof of Theorem 3.4(b).

The proof of Theorem 3.5(b) is similar to that of Theorem 3.4(b), and is given given in Section 6.2.

6.2 Proof of Theorem 3.5(b)

The proof of Theorem 3.5(b) is similar to that of Theorem 3.4(b). We start with an analogue of
Lemma 6.2 which holds for a larger range of values of n:

LEMMA 6.5. Letn > t+ 2 and & be a protocol that t-securely computes f™. Then, in all views of ¢ in
which all agents are honest and at most (n — t)/2 agents have input 0, all agents output 1.

Proor. Given any scheduler o, if all agents are honest, their output should be one that is possible
with a trusted-party adversary of the form A = (0, ¢, h, O). No matter what the output C of c is, at
most (n —t)/2 agents in C have input 0. Since |C| > n — ¢, at least half of the agents in C have input
1, and thus all honest agents output 1. O

We also need the following technical result:

LEMMA 6.6. Ift+2 < n < 4t then
(@) n 2t3[”7*t'|,;

n— n—
(b) 5571 < 5.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:19

Proor. If t + 2 < 4t then t > 0. To prove part (a), note that if t = 1, then n can be only 3 or 4.
In both cases, the inequality is satisfied. If ¢ > 2 then [%] < [”T_z] < %, from which the desired
result immediately follows. To prove part (b), let a and b be the two positive integers such that
n—t=3a+bwith1 <b<3. Then[%!]=a+1and %! =34 = g+ 2% Since n —t > 2, then

2
either a > 0 or b > 1. Since b > 1, in both cases, a + 1 < a + &2 O

5

Given n and t such that ¢t + 2 < n < 4t, we divide the agents into four disjoint sets Sy, Sz, S3, S4
such that |S;| = f"T_t] for i < 3and |S4| <t (which is always possible, by Lemma 6.5(a)). If n > t +2,
then by Lemma 6.6(b), ["T_t] < ”T_t, and thus by Lemma 6.5, in all views in which all agents
are honest and have inputs (651, Tsz, ng, T54), (TSI, 652, ng, 1)54) or (TSI, Tsz, 653, _1)54), all the agents
output 1. Reasoning analogous to that used in the proof of Theorem 3.4(b) then shows that "
cannot be t-securely computed for t + 2 < n < 4t.

It remains to deal with the case where n = ¢ + 1. To show that there exist functions that
cannot be t-securely computed if n = t + 1, we reduce t-resilient weak consensus to t-secure
computation. The reduction proceeds as follows: Consider a function ¢" : {0,1, L} — {0, 1, L} such
that g"(L,..., 1) = L,and g"(x1,...,%,) = x; if x; # L and x; = L for all j < i; that is, g" outputs
the first non- L value if there is one, and otherwise outputs L. Suppose, by way of contradiction,
that & t-securely computes g". Let 7 be a protocol identical to & except that, whenever agent i
would have output (C,v) with o, it outputs v instead if v # L, and otherwise it outputs 0. By
the properties of t-secure computation, all honest agents output the same value when running 7.
Moreover, if all honest agents have input 0 or all of them have input 1, if n > ¢, then the output of
the secure computation has the form (C, 0) or (C, 1), respectively. Thus, if there exists a protocol
that t-securely computes g” for n = t + 1, then there also is a t-resilient implementation of weak
consensus for ¢ + 1 agents, contradicting Theorem 2.13. This proves Theorem 3.5(b).

7 PROOF OF THEOREM 3.6

Consider the game I'® in which the set of actions of each agent is {G, R} x {0, 1}. Given an action
profile d, in which each agent i plays a; = (Q;,y;) with Q; € {G,R} and y; € {0,1}, let T be the
subset of agents i such that Q; = R. If |T| > k + ¢, if k = 0 all agents get a payoff of -1, otherwise all
agents get a payoff of 1. If |T| = t + k and there exist two agents i, j ¢ T such that y; # y;,if k =0
all agents get a payoff of -1, otherwise all agents get a payoff of 1. In all remaining cases, all agents
get a payoff of 0. Let g be the function such that g(Q,y) = y.

Consider the following protocol  + oy for n agents and a mediator. With o3, each agent i sends
the mediator its input x; the first time it is scheduled. The mediator waits until receiving a message
containing either 0 or 1, and sends that value y to all agents. The agents play (G, y) whenever
they receive y from the mediator. Clearly, this give a (k, t)-robust(resp., strongly (k, t)-robust)
equilibrium, since the only way that agents get a payoff other than 0 with an adversary of size
at most k + ¢ is if two honest agents output different values, which cannot happen since they all
receive the same value from the mediator. Suppose a protocol Gacr is a (k, t)-robust (resp., strongly
(k, t)-robust) implementation of & + 4. We show next that (a) for all adversaries A = (T, 7, o¢)
with |T| < k + t, all honest agents play the same value y;, and (b) if all agents are honest and have
the same input x, then they output x.

Property (b) follows trivially from the fact that 64c7r implements 6 + oy: if all agents are honest
and have the same input x, the value received by the mediator in & + o, is guaranteed to be x, and
thus, in & + gy, all honest agents play (G, x).

To prove (a), suppose that there exists an adversary A = (T, 7, 0.) with |T| < k + ¢ such that,
in some view H of Gacr with A, there exist two agents i,j ¢ T that play (Q;,y;) and (Qj,y)),
respectively, with y; # y;, Q; = R, or Q; = R. Consider an adversary A" = (T”, 71+, 0¢) such that
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IT'| =k+t, T CT',and i, j ¢ T' (we know that such a subset T’ exists, since n > t + k + 1), and
such that agents in T act as in 7r and agents in T’ — T act like honest agents, except that all of them
play (R, 0). Since views generated by playing with A and A’ are indistinguishable by honest agents,
there exists a view H’ in G4cr with adversary A’ in which all honest agents send and receive the
same messages, and perform the same actions. If Q; = R in H, then there are k + ¢ + 1 agents that
play R in H': the k + t agents in T’ and i. Thus, all agents get a payoff of 1 if k > 0, contradicting
the assumption that Gacr is (k, t)-resilient, or all agents get a payoff of —1 if k = 0, contradicting
the assumption that Gacr is t-immune. The same argument shows that Q; = G in H and H’ and,
indeed, that all honest agents must play G in H and H'. Now if ¢; # q; in H, then g; # g; in H’, so
(since all honest agents play G, so exactly k + t agents in H’ play R), again, all agents in H’ get a
payoff of 1 if k > 0 and a payoff of —1 if k = 0, so we again get the same contradiction as before.

8 CONCLUSION

We have shown that both (k + t)-secure computation and the problem of implementing a (k, t)-
robust equilibrium with a mediator have a lower bound of n > 4k + 4t. Moreover, we have shown
that this is also a lower bound for weaker notions of secure computation such as (k + t)-strict
secure computation and (k + t)-weak secure computation. Finally, by considering a number of
variants of the definition of secure computation, we also highlighted some of the subtleties in the
definition.

ADGH showed that protocols can tolerate more malicious behavior if honest agents can punish
rational agents if they are caught deviating. Honest players can perform this punishment by playing
an action profile that results in all agents getting an expected payoff that is worse than their payoff
in equilibrium. Not all games have such a punishment profile, but ADGH showed that for games
that do, every (k, t)-robust protocol with a mediator can be implemented if n > 3k + 4¢. Finding a
matching lower bound for this case remains an open problem.
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