
111

Lower Bounds on Implementing Mediators in Asynchronous
Systems with Rational and Malicious Agents

IVAN GEFFNER, Cornell University, USA

JOSEPH Y. HALPERN, Cornell University, USA

Abraham, Dolev, Geffner, and Halpern [1] proved that, in asynchronous systems, a (𝑘, 𝑡)-robust equilibrium

for 𝑛 players and a trusted mediator can be implemented without the mediator as long as 𝑛 > 4(𝑘 + 𝑡), where

an equilibrium is (𝑘, 𝑡)-robust if, roughly speaking, no coalition of 𝑡 players can decrease the payoff of any

of the other players, and no coalition of 𝑘 players can increase their payoff by deviating. We prove that this

bound is tight, in the sense that if 𝑛 ≤ 4(𝑘 + 𝑡) there exist (𝑘, 𝑡)-robust equilibria with a mediator that cannot

be implemented by the players alone. Even though implementing (𝑘, 𝑡)-robust mediators seems closely related

to implementing asynchronous multiparty (𝑘 + 𝑡)-secure computation [5], to the best of our knowledge there

is no known straightforward reduction from one problem to another. Nevertheless, we show that there is a

non-trivial reduction from a slightly weaker notion of (𝑘 + 𝑡)-secure computation, which we call (𝑘 + 𝑡)-strict

secure computation, to implementing (𝑘, 𝑡)-robust mediators. We prove the desired lower bound by showing

that there are functions on 𝑛 variables that cannot be (𝑘 + 𝑡)-strictly securely computed if 𝑛 ≤ 4(𝑘 + 𝑡). This

also provides a simple alternative proof for the well-known lower bound of 4𝑡 + 1 on asynchronous secure

computation in the presence of up to 𝑡 malicious agents [4, 7, 9].

CCS Concepts: • Theory of computation→ Distributed algorithms; Solution concepts in game theory;

Algorithmic mechanism design; • Security and privacy →Mathematical foundations of cryptography.

Additional KeyWords and Phrases: Lower bounds, Games with communication, Multiparty secure computation

ACM Reference Format:

Ivan Geffner and Joseph Y. Halpern. 2018. Lower Bounds on Implementing Mediators in Asynchronous Systems

with Rational and Malicious Agents. J. ACM 37, 4, Article 111 (August 2018), 20 pages. https://doi.org/10.1145/

1122445.1122456

1 INTRODUCTION

Ben-Or, Goldwasser, and Wigderson [6] (BGW from now on) showed that given a finite domain
𝐷 , a function 𝑓 : 𝐷𝑛 → 𝐷 can be 𝑡-securely computed by 𝑛 agents in a synchronous network with
private authenticated channels as long as 𝑛 > 3𝑡 , where 𝑡 is a bound on the number of malicious
agents. Roughly speaking, ł𝑡-securely computedž means that all honest agents correctly compute
the output of 𝑓 , while a group of up to 𝑡 malicious agents can learn nothing about the agents’
inputs beyond what can be learned the output of 𝑓 . Ben-Or, Canetti, and Goldreich [5] (BCG from
now on) later provided analogous results for the asynchronous case: a function 𝑓 : 𝐷𝑛 → 𝐷 can be
𝑡-securely computed by 𝑛 agents if 𝑛 > 4𝑡 .

Supported in part by NSF grants IIS-1703846 and IIS-0911036, ARO grant W911NF-17-1-0592, MURI grant W911NF-19-1-0217

from the ARO, and a grant from Open Philanthropy.
Authors’ addresses: Ivan Geffner, Cornell University, Ithaca, USA, ieg8@cornell.edu; Joseph Y. Halpern, Cornell University,

Ithaca, USA, halpern@cs.cornell.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:2 Geffner and Halpern

Secure function computation is often viewed as an interaction with a trusted third party, or
mediator. Roughly speaking, we want the outcome to be the same as if the agents had sent their
input values ®𝑥 to the mediator, who then sends back 𝑓 (®𝑥). However, the problem of implementing
such an interaction while tolerating faulty behavior is approached differently by the distributed
computing community and the game theory community. In the distributed computing literature, as
in BGW and BCG, the agents controlled by the adversary are malicious and may deviate in any way
they want in order to subvert the computation. However, in the game-theory literature, there are
no malicious agents; all participating agents are rational, which means that they deviate if and only
if they can increase their expected payoff by doing so. In the game-theoretic approach, there exists
an underlying game Γ that determines the payoff of the agents depending on the actions they play.
Two other games that extend Γ are also considered: Γ𝑑 and Γ𝐴𝐶𝑇 . In Γ𝑑 , agents can communicate
with a trusted mediator before playing an action in Γ; in Γ𝐴𝐶𝑇 , they can communicate only among
themselves. The goal is to show when certain types of equilibria in Γ𝑑 can be implemented in Γ𝐴𝐶𝑇 ,
where implemented means that the resulting distributions over action profiles are identical in both
games. Forges [?] and Barany [?] showed that any Nash equilibrium in Γ𝑑 can be implemented
by a Nash equilibrium in Γ𝐴𝐶𝑇 if 𝑛 ≥ 4, assuming that the communication in both Γ𝑑 and Γ𝐴𝐶𝑇 is
synchronous.
Abraham, Dolev, Gonen, and Halpern [2] combined both points of view by considering (𝑘, 𝑡)-

robust equilibria. Intuitively, a (𝑘, 𝑡)-robust equilibrium is a strategy profile (i.e., a strategy for
each agent) in which no coalition of 𝑡 malicious agents can decrease the payoff of anyone else
and no coalition of 𝑘 rational agents can increase their payoff by deviating, even when colluding
with the other 𝑡 malicious agents. Thus, a (𝑘, 𝑡)-robust equilibrium deals with both Byzantine and
rational behavior, as long as there are at most 𝑡 Byzantine players and at most 𝑘 rational players
that deviate. Abraham et al. [2] generalized Forges and Barany’s results by showing that any
(𝑘, 𝑡)-robust equilibrium in Γ𝑑 can be implemented in Γ𝐴𝐶𝑇 if 𝑛 > 3(𝑘 + 𝑡) (note that a (1, 0)-robust
equilibrium is just a Nash equilibrium). They also proved a matching lower bound [3].
Abraham, Dolev, Geffner, and Halpern [1] (ADGH from now on) extended this result to the

asynchronous setting. They showed that if 𝑛 > 4(𝑘 + 𝑡) and there exists a (𝑘, 𝑡)-robust equilibrium
®𝜎 + 𝜎𝑑 in the mediator game Γ𝑑 (where ®𝜎 + 𝜎𝑑 means that player 𝑖 plays 𝜎𝑖 while the mediator plays
𝜎𝑑), then there exists a (𝑘, 𝑡)-robust equilibrium ®𝜎𝐴𝐶𝑇 in Γ𝐴𝐶𝑇 in an asynchronous setting such that,
for all inputs, ®𝜎𝐴𝐶𝑇 and ®𝜎 + 𝜎𝑑 produce the same set of possible distributions over outputs (note
that agents have no control over how long the messages take to be delivered, and this can affect
the output).
Our goal in this paper is to prove a lower bound that matches the upper bounds of ADGH.

To do so, we would like to reduce implementing asynchronous (𝑘 + 𝑡)-secure computation to
implementing (𝑘, 𝑡)-robust mediators. If such a reduction were possible, the 𝑛 > 4(𝑘 + 𝑡) lower
bound for implementing (𝑘, 𝑡)-robust mediators would follow immediately from the same lower
bound for secure computation [4, 7, 9]. Unfortunately, the existence of such a reduction is still an
open problem. However, we show that there exists a nontrivial reduction from a slightly weaker
notion of (𝑘+𝑡)-secure computation, which we call (𝑘+𝑡)-strict secure computation, to implementing
(𝑘, 𝑡)-robust mediators. This suffices to prove the desired lower bound. We thus start by providing
a careful proof of the lower bound for (𝑘 + 𝑡)-strict secure computation in the asynchronous setting.
In the process, we also give a simple alternative proof for the lower bound on asynchronous secure
computation.1

1As Ran Canetti [private communication] agreed, there is a nontrivial problem with the proof given in his thesis [9]; a

different technique is needed. We thank him for his comments.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:3

Intuitively, a protocol 𝑡-strictly securely computes a function 𝑓 if it satisfies the properties of
secure computation, but only for adversaries consisting of exactly 𝑡 malicious agents. It might
seem that 𝑡-secure computation should be equivalent to 𝑡-strict secure computation. After all, if
a function can be securely computed with adversaries of maximal size, surely it can be securely
computed with smaller adversaries! As we show by example in Section 2.3, this is not the case.
While investigating these issues, we noted an ambiguity in the definition of 𝑡-secure computation
in BCG, which led us to consider yet another notion that we call 𝑡-weak secure computation. As the
name suggests, it is weaker than 𝑡-secure computation; we show that it is actually equivalent to
𝑡-strict secure computation. By considering these variants of secure computation, we gain a deeper
understanding of its subtleties.
Another contribution of this paper is to show that BCG’s result follows from that of ADGH.

In ADGH, the authors claim that their result generalizes secure computation by showing that
there exist games Γ𝑑 with a (𝑘, 𝑡)-robust strategies ®𝜎𝑑 that cannot be (𝑘 + 𝑡)-securely computed
(for instance, when the mediator takes into account the order in which it receives the messages).
However, as we show in this paper, it is not so obvious that all instances of secure computation can
be captured by a (𝑘, 𝑡)-robust strategy in some game. We show that, for all functions 𝑓 on 𝑛 inputs
and all 𝑡 such that 2𝑡 < 𝑛, there exists a game Γ 𝑓 ,𝑡 and a (𝑡, 0)-robust strategy ®𝜎𝑑 for Γ 𝑓 ,𝑡 such that
𝑡-securely computing 𝑓 reduces to implementing ®𝜎𝑑 in Γ𝐴𝐶𝑇 . This formally proves ADGH’s claim.

2 BASIC DEFINITIONS

2.1 The Asynchronous Model

We assume a network where there is a reliable, authenticated, and asynchronous channel between
all pairs of players. This means that all messages sent by player 𝑖 to player 𝑗 are guaranteed to be
delivered eventually, and that 𝑗 can identify that these messages were sent by 𝑖 . However, messages
may be delayed arbitrarily. The order in which messages are received and the order in which the
players are scheduled is decided by an entity called the scheduler.
We define the view ℎ𝑖 of player 𝑖 to be the ordered sequence of local computations (including

random coin tosses), messages sent and received (including senders and recipients), in addition
to all the times in between in which 𝑖 has been scheduled. Similarly, we define the view ℎ𝑇 of a
subset 𝑇 of players as the collection of views ℎ𝑖 with 𝑖 ∈ 𝑇 . The scheduler’s view 𝐻𝑒 consists of all
the times in which each player has been scheduled in addition to all messages sent and received.
The scheduler cannot access the contents of messages; thus, in 𝐻𝑒 , messages are listed without
their content. Note that in the distributed computing literature, it is often assumed that players
are scheduled immediately after receiving a message. However, we allow the scheduler to decide
separately when messages are delivered and when players are scheduled. This means that when
a player moves, that player may have received no messages since its last move, or it may have
received more than one (as opposed to exactly one). It is straightforward to check that all of our
results also hold if we use the more standard model; we have separated message delivery from
when players are scheduled only for ease of exposition.

2.2 Secure Computation

For the main definitions in this section, we need the following notation, largely taken from BCG.
Given a finite domain 𝐷 , let ®𝑥 be a vector in 𝐷𝑛 . Given a set 𝐶 ⊆ [𝑛], denote by ®𝑥𝐶 the vector
obtained by projecting ®𝑥 onto the indices of 𝐶 . Given a vector ®𝑧 ∈ 𝐷 |𝐶 | , let ®𝑥/(𝐶,®𝑧) be the vector
obtained by replacing the entries of ®𝑥 indexed by 𝐶 by the corresponding entries of ®𝑧. To simplify
notation, given a function 𝑓 : 𝐷𝑛 → 𝐷 , we write 𝑓𝐶 (®𝑥) rather than 𝑓 (®𝑥/(𝐶,®𝑥0)) to denote the output

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 Geffner and Halpern

of evaluating 𝑓 on ®𝑥 with the entries in ®𝑥 not indexed by an element of 𝐶 replaced by some default
value 𝑥0 ∈ 𝐷 .

Suppose that a group of 𝑛 agents wants to compute the output of a function 𝑓 : 𝐷𝑛 → 𝐷 , but the
𝑖th input 𝑥𝑖 is known only by agent 𝑖 . A protocol securely computes 𝑓 if (a) all agents correctly
compute 𝑓 , regardless of the deviations of malicious players, and (b) malicious agents do not learn
anything about the input of honest agents beyond what can be deduced from the output of 𝑓 . Before
going on, we need to make precise what it means to correctly compute 𝑓 , since a malicious agent
can lie about its input or not participate in the computation at all. Roughly speaking, the idea is to
accept as correct any output of 𝑓 that can be obtained from an input profile that differs from the
actual input profile in at most 𝑡 coordinates (intuitively, these coordinates are ones corresponding
to inputs of malicious agents who did not submit a value or lied about their actual input). More
precisely, we have the following definition:

Definition 2.1. A protocol ®𝜋 𝑡-securely computes 𝑓 in synchronous systems if for every coalition𝑇

of at most 𝑡 malicious agents and every protocol ®𝜏𝑇 for agents in𝑇 , there exist functions ℎ : 𝐷 |𝑇 | →

𝐷 |𝑇 | and 𝑂 : 𝐷 |𝑇 | × 𝐷 ×𝑇 → {0, 1}∗ such that, for each input vector ®𝑥 ,

(a) each agent 𝑖 ∉ 𝑇 outputs 𝑓 (®𝑥/(𝑇,ℎ (®𝑥𝑇));
(b) each agent 𝑖 ∈ 𝑇 outputs 𝑂 (®𝑥𝑇 , 𝑓 (®𝑥/(𝑇,ℎ (®𝑥𝑇)), 𝑖).

Note that ℎ and𝑂 encode how malicious agents might lie about their inputs (if a malicious agent
does not participate in the computation, its input is assumed to be the default value 𝑥0 ∈ 𝐷) and
what they output, respectively. We thus consider an output to be correct if only the inputs of agents
in 𝑇 used in the computation of 𝑓 differ from their actual inputs, and if the output of malicious
agents is just a function of the output of 𝑓 and their own inputs. Note that this last requirement
captures the fact that malicious agents do not learn anything besides the (honest agents’) output of
the secure computation protocol, since otherwise they could use this extra information to generate
outputs that cannot be written as such a function 𝑂 . Since malicious agents can randomize, we
assume that bothℎ and𝑂 have an extra input 𝑟 , a bitstring chosen uniformly at random from {0, 1}𝜔

(the set of all finite bitstrings), and that agent 𝑖’s output is distributed identically to 𝑓 (®𝑥/(𝑇,ℎ (®𝑥𝑇)) or
𝑂 (®𝑥𝑇 , 𝑓 (®𝑥/(𝑇,ℎ (®𝑥𝑇)), 𝑖), depending on whether 𝑖 is honest. (See Definition 2.3 for the more standard
formalization of this property.) BGW proved the following result:

Theorem 2.2. [6] If 𝐷 is a finite domain, 𝑛 > 3𝑡 , and 𝑓 : 𝐷𝑛 → 𝐷 , then there exists a protocol ®𝜋
that 𝑡-securely computes 𝑓 in synchronous systems.

Subtleties introduced by asynchrony make the definition of secure computation slightly more
involved in asynchronous systems. In asynchronous systems, as is standard, we assume that there
is a scheduler with its own protocol 𝜎𝑒 that decides the order in which agents act and how long
it takes for a message to be delivered. As pointed out by ADGH, malicious agents can effectively
communicate with the scheduler, so we can assume that the adversary and malicious agents are all
controlled by a single entity. We call this entity the adversary; we define it as a tuple 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒)
consisting of the set 𝑇 of malicious agents, their joint protocol ®𝜏𝑇 , and the scheduler’s protocol
𝜎𝑒 . With such adversaries, there are deviations that are possible in asynchronous systems that are
not possible in synchronous systems; specifically, the scheduler can delay a subset of agents until
the other agents terminate the protocol. If the number of agents delayed is less than the number
of malicious agents that the protocol tolerates, delayed honest agents are indistinguishable from
malicious agents that never engage in the communication, and thus the remaining agents must
be able to terminate regardless of the delay. Since the inputs of delayed honest agents are not
taken into consideration, the adversary can choose a set 𝐶 ⊆ [𝑛] of size at least 𝑛 − 𝑡 and force the
computation to ignore the inputs of agents not in 𝐶 .

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:5

To define asynchronous secure computation, BCG introduced an ideal adversary, defined as a
quadruple 𝐴 = (𝑇,ℎ, 𝑐,𝑂) where

• 𝑇 is the set of malicious agents;
• ℎ : 𝐷 |𝑇 | × {0, 1}𝜔 → 𝐷 |𝑇 | is the input substitution function;
• 𝑐 : 𝐷 |𝑇 | × {0, 1}𝜔 → {𝐶 ⊆ [𝑛] | |𝐶 | ≥ 𝑛 − 𝑡} chooses a subset of agents (intuitively, the ones
whose inputs are taken into consideration);

• 𝑂 : 𝐷 |𝑇 | × {0, 1}𝜔 × 𝐷 ×𝑇 → {0, 1}∗ is the output function for the malicious agents.

In the sequel, we use łideal adversaryž to refer to such a tuple (𝑇,ℎ, 𝑐,𝑂), and reserve the term
ładversaryž for a tuple of the form (𝑇, ®𝜏𝑇 , 𝜎𝑒), as defined earlier.

Given a function 𝑓 : 𝐷𝑛 → 𝐷 , an ideal adversary 𝐴 = (𝑇,ℎ, 𝑐,𝑂), and an input vector ®𝑥 , let
𝐶 = 𝑐 (®𝑥𝑇 , 𝑟) and ®𝑦 = ®𝑥/(𝑇,ℎ (®𝑥𝑇 ,𝑟)) . Intuitively, 𝐶 is the set of agents whose inputs are considered
and ®𝑦 is the input profile obtained by replacing the actual inputs of agents in𝑇 with the output of ℎ.
The output of 𝑓 with ideal adversary𝐴 and input ®𝑥 is an 𝑛-vector of random variables IDEAL𝑓 ,𝐴 (®𝑥)
whose 𝑖th component satisfies

IDEAL𝑓 ,𝐴 (®𝑥)𝑖 =

{

(𝐶, 𝑓𝐶 (®𝑦)) if 𝑖 ∉ 𝑇,
𝑂 (®𝑥𝐵, 𝑟 , 𝑓𝐶 (®𝑦), 𝑖) if 𝑖 ∈ 𝑇 .

Note that the outputs of 𝑓 with ideal adversaries are analogous to the outputs of secure
computation in the synchronous case, except that here we must take into account the subset
𝐶 of agents that provide their inputs. In asynchronous systems, secure computation is defined as
follows:

Definition 2.3 (Secure computation). Let 𝑓 : 𝐷𝑛 → 𝐷 be a function of 𝑛 variables over some finite
domain 𝐷 . The protocol ®𝜋 𝑡-securely computes 𝑓 in an asynchronous setting if the following hold for
all (standard) adversaries 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with |𝑇 | ≤ 𝑡 :

• on all inputs, agents not in 𝑇 terminate the protocol with probability 1;
• there exists an ideal adversary 𝐴𝑖𝑑 = (𝑇,ℎ, 𝑐,𝑂) such that, for all inputs ®𝑥 ∈ 𝐷𝑛 , we
have EXEC ®𝜋,𝐴 (®𝑥) ∼ IDEAL𝑓 ,𝐴𝑖𝑑 (®𝑥) (i.e., EXEC ®𝜋,𝐴 (®𝑥) and IDEAL𝑓 ,𝐴𝑖𝑑 (®𝑥) are identically

distributed), where EXEC ®𝜋,𝐴 (®𝑥) is the output distribution that arises from running ®𝜋 with
adversary 𝐴 and input profile ®𝑥 .

In other words, a protocol ®𝜋 𝑡-securely computes some function 𝑓 if, for all adversaries, it
terminates with probability 1 and there exists an ideal adversary that, for all inputs, gives the same
distribution over outputs.

Theorem 2.4. [5] If 𝐷 is a finite domain, 𝑛 > 4𝑡 , and 𝑓 : 𝐷𝑛 → 𝐷 , then there exists a protocol ®𝜋
that 𝑡-securely computes 𝑓 in asynchronous systems.

2.3 Weaker Notions of Secure Computation

Note that the 𝑇 in the second condition of Definition 2.3, that is, the 𝑇 in the ideal adversary
(𝑇,ℎ, 𝑐,𝑂) is the same as the 𝑇 in the adversary. This is also true in the BGW definition of 𝑡-secure
computation. While we believe that this was also the intention of BCG, their definition simply
says that that there exists an ideal adversary, without specifying the set 𝑇 (of malicious agents)
that satisfies the second bullet of Definition 2.3. Taking this definition seriously leads to a slightly
weaker notion of secure computation that we call 𝑡-weak secure computation, which is defined just
as 𝑡-secure computation except that the ideal adversary 𝐴𝑖𝑑 may involve any set 𝑇 ′ of malicious
agents such that |𝑇 ′ | = 𝑡 and𝑇 ′ ⊇ 𝑇 , as opposed to consisting of the same set𝑇 of malicious agents
as 𝐴.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 Geffner and Halpern

We show that 𝑡-weak secure computation is strictly weaker than the standard notion of secure
computation. To do so, we first introduce an intermediate notion of secure computation called
𝑡-strict secure computation; it is defined just as 𝑡-secure computation, except that we require only
that the properties are satisfied for adversaries of size exactly 𝑡 (i.e., for |𝑇 | = 𝑡). As we mentioned
in the introduction, somewhat surprisingly, 𝑡-strict secure computation is strictly weaker than
𝑡-secure computation, but, as we show next, it is actually equivalent to 𝑡-weak secure computation.

Theorem 2.5.

(a) If a protocol ®𝜋 𝑡-securely computes a function 𝑓 , it also 𝑡-strictly securely computes 𝑓 .

(b) A protocol ®𝜋 𝑡-strictly securely computes a function 𝑓 iff it 𝑡-weakly securely computes 𝑓 .

(c) If 𝑡 > 1 and 𝑛 > 4𝑡 , there exists a function 𝑓 on 𝑛 variables and a protocol ®𝜋 such that ®𝜋 𝑡-strictly
securely computes 𝑓 but does not 𝑡-securely computes 𝑓 .

The analogue of part (c) of Theorem 2.5 is easy to show if 𝑛 ≤ 2𝑡 . For instance, we can easily

check that a protocol where each agent does nothing and outputs 𝑓 (®0) 𝑡-strictly securely computes
any 𝑓 for all 𝑡 such that 𝑛 ≤ 2𝑡 (note that, in this case, for an ideal adversary consisting of 𝑡
malicious agents, all agents can pretend to have input 0 and choose a set 𝐶 arbitrarily), but it is not
necessarily a 𝑡-secure computation of 𝑓 if 𝑡 < 𝑛 ≤ 2𝑡 . What is perhaps surprising is that this result
holds even when 𝑛 > 4𝑡 .

Proof. Part (a) follows immediately from the definition of secure computation and strict secure
computation. For part (b), first suppose that a protocol ®𝜋 𝑡-strictly securely computes 𝑓 : 𝐷𝑛 → 𝐷𝑛 .
Given an adversary 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with |𝑇 | ≤ 𝑡 , consider an adversary of the form 𝐴′

= (𝑇 ∪
𝑇 ′, ®𝜏𝑇 + ®𝜋𝑇 ′ , 𝜎𝑒) such that 𝑇 ∩ 𝑇 ′

= ∅ and |𝑇 ∪ 𝑇 ′ | = 𝑡 . Note that agents in 𝑇 ′ play ®𝜋 , and thus
they in fact do not deviate. Since ®𝜋 𝑡-strictly securely computes 𝑓 , there exists an ideal adversary
𝐴𝑖𝑑 = (𝑇 ∪ 𝑇 ′, ℎ, 𝑐,𝑂) such that EXEC ®𝜋,𝐴′ (®𝑥) ∼ IDEAL𝑓 ,𝐴𝑖𝑑 (®𝑥) for all inputs. By construction,

EXEC ®𝜋,𝐴′ (®𝑥) ∼ EXEC ®𝜋,𝐴 (®𝑥), since the additional malicious agents in 𝐴′ do not deviate from the
protocol. Therefore, EXEC ®𝜋,𝐴 (®𝑥) ∼ IDEAL𝑓 ,𝐴𝑖𝑑 (®𝑥), so ®𝜋 𝑡-weakly securely computes 𝑓 .

The converse is almost immediate from the definitions. Suppose that protocol ®𝜋 𝑡-weakly
securely computes 𝑓 : 𝐷𝑛 → 𝐷𝑛 for some 𝑡 . Given an adversary 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with |𝑇 | = 𝑡 ,
then, by assumption, there exists an ideal adversary 𝐴𝑖𝑑 = (𝑇,ℎ, 𝑐,𝑂) such that EXEC ®𝜋,𝐴 (®𝑥) ∼
IDEAL𝑓 ,𝐴𝑖𝑑 (®𝑥).
For part (c), consider the following setup. Let F2 be the field with domain {0, 1}. Given 𝑛 and

𝑡 such that 𝑡 > 1 and 𝑛 > 4𝑡 , consider a function 𝑓 : (F2)
𝑛3 → (F2)

𝑛2 that does the following.

Given the input (𝑥𝑖 , 𝑐𝑖 , 𝑦𝑖 , 𝑧𝑖) ∈ (F2)
𝑛2 of each agent 𝑖 , where 𝑥𝑖 ∈ F2, 𝑐

𝑖 ∈ (F2)
𝑛 , 𝑦𝑖 ∈ (F2)

𝑡−1, and
𝑧𝑖 consists of the remaining 𝑛2 − 𝑛 − 𝑡 coordinates (which do not affect the function 𝑓 ; they are
needed because in Definition 2.3, the input space of each agent must be the same as the output
space of the function), let 𝑝𝑖 ∈ F2 [𝑋] be the unique polynomial of degree 𝑡 − 1 such that 𝑝𝑖 (0) = 𝑥

𝑖

and 𝑝𝑖 (𝑗) = 𝑦
𝑖
𝑗 for all 𝑗 = 1, 2, . . . , 𝑡 − 1. The output of 𝑓 is then {𝑝𝑖 (𝑗) + 𝑐

𝑗
𝑖 }𝑖, 𝑗∈[𝑛] . In other words, 𝑓

encodes the first coordinate of each agent’s input using Shamir’s agent secret sharing scheme [11].

The polynomial 𝑝𝑖 that each agent 𝑖 uses to do the encoding and the one-time pads 𝑐
𝑗
𝑖 added by 𝑖 to

each of the shares are part of 𝑖’s input, and not known by the other agents. However, a coalition 𝑇
of 𝑡 malicious agents can reconstruct the values 𝑝𝑖 (𝑗) for all 𝑖 ∈ [𝑛] and 𝑗 ∈ 𝑇 , and thus is able to
reconstruct each 𝑥𝑖 as well, since the agents in 𝑇 know 𝑡 points on each polynomial 𝑝𝑖 , although
no coalition of size strictly smaller than 𝑡 knows those values.
Consider a protocol ®𝜋 that consists of the following: each agent 𝑖 performs its part of BCG’s

𝑡-secure computation protocol to compute 𝑓 and then, if 𝑖 is included in the core set of the output,
𝑖 broadcasts the first bit of its input. By the earlier argument, if the adversary is of size exactly 𝑡 ,
it can reconstruct the first coordinate of the inputs of the agents in the core-set from the output

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:7

of 𝑓 and its own inputs, which means that the values broadcast after BCG’s secure computation
protocol do not give any extra information about the inputs of honest agents to the adversary.
However, this is not true for smaller adversaries. Thus, ®𝜋 𝑡-strictly securely computes 𝑓 , but does
not 𝑡-securely compute 𝑓 . □

2.4 Implementing mediators

In this section we formalize the definition of Γ𝑑 and Γ𝐴𝐶𝑇 and the notion of (𝑘, 𝑡)-robust equilibrium.

2.4.1 Normal-form and Bayesian games. A normal-form game Γ is a tuple (𝑃,𝐴,𝑈), where 𝑃 =

{1, . . . , 𝑛} is the set of players, 𝐴 = 𝐴1 × · · ·𝐴𝑛 , where 𝐴𝑖 is the set of possible actions for player
𝑖 ∈ 𝑃 , and𝑈 = (𝑢, . . . , 𝑢𝑛) is an 𝑛-tuple of utility functions 𝑢𝑖 : 𝐴 → R, again, one for each player
𝑖 ∈ 𝑃 . A pure strategy profile ®𝑎 is an 𝑛-tuple of actions (𝑎1, . . . , 𝑎𝑛), with 𝑎𝑖 ∈ 𝐴𝑖 . A mixed strategy

for player 𝑖 is an element of Δ(𝐴𝑖), the set of probability distributions on 𝐴𝑖 . We extend 𝑢𝑖 to mixed
strategy profiles 𝜎 = (𝜎1, . . . , 𝜎𝑛) by defining 𝑢𝑖 (𝜎) =

∑

(𝑎1,...,𝑎𝑛) ∈𝐴 𝜎1 (𝑎1) . . . 𝜎𝑛 (𝑎𝑛)𝑢𝑖 (𝑎1, . . . , 𝑎𝑛):

that is, the sum over all pure strategy profiles ®𝑎 of the probability of playing ®𝑎 according to 𝜎 times
the utility of ®𝑎 to 𝑖 . As is standard, we use ®𝜎 := (𝜎1, . . . , 𝜎𝑛) to denote a strategy profile for 𝑛 players
in which each player 𝑖 plays 𝜎𝑖 , and use (𝜎−𝑇 , 𝜏𝑇) to denote the strategy where each player 𝑖 ∉ 𝑇
uses the strategy 𝜎𝑖 while 𝑗 ∈ 𝑇 uses the strategy 𝜏 𝑗 .

Bayesian games extend normal-form games by assuming that each player 𝑖 ∈ 𝑃 has a type 𝑡𝑖 ∈ 𝑇𝑖 .
A player’s type can be thought of as private information that the player has, such as whether he
is lazy or industrious. In our applications, an agent’s type will be its input. Types are assumed to
be sampled from a distribution 𝑞 ∈ Δ(𝑇), where 𝑇 = 𝑇1 × · · · ×𝑇𝑛 . The utility 𝑢𝑖 of a player 𝑖 is a
function of not only the action profile played, but also of of the type profile (𝑡1, . . . , 𝑡𝑛). Formally, a
Bayesian game is a tuple (𝑃,𝑇 , 𝑞,𝐴,𝑈), where, as in normal-form games, 𝑃 , 𝐴, and 𝑈 are the set of
players, their actions, and their utility functions, respectively; 𝑇 is the set of possible type profiles,
and 𝑞 is a distribution in Δ(𝑇).
A strategy in a Bayesian game for player 𝑖 is a map 𝜇𝑖 : 𝑇𝑖 → Δ(𝐴𝑖). Intuitively, a strategy in

a Bayesian game tells player 𝑖 how to choose its action given its type. Since the distribution 𝑞 is
common knowledge, given a strategy profile ®𝜇 = (𝜇1, . . . , 𝜇𝑛) in Γ, the expected utility of a member
𝑖 of a coalition 𝐾 is

𝑢𝑖 (®𝜇) =
∑︁

®𝑡𝐾 ∈𝑇𝐾

𝑞(®𝑡𝐾)
∑︁

®𝑡

𝑞(®𝑡 | ®𝑡𝐾)𝑢𝑖 (®𝜇 (®𝑡)),

where 𝑢𝑖 (®𝜇 (®𝑡)) denotes the expected utility of player 𝑖 when an action profile is chosen according
to 𝜇 (®𝑡). Intuitively, we are assuming that players in 𝐾 can share their types, which is why we
condition on ®𝑡𝐾 .

2.4.2 Defining Γ𝑑 and Γ𝐴𝐶𝑇 . Given a Bayesian game Γ, we consider two extensions Γ𝑑 and Γ𝐴𝐶𝑇

with the same set of players. In Γ𝑑 , players can communicate with a trusted mediator 𝑑 , who is a
non-strategic player (i.e., there is no utility function for the mediator) and uses a commonly-known
strategy 𝜎𝑑 . We call Γ𝑑 the mediator game, and denote by ®𝜎 + 𝜎𝑑 the strategy in which players play
strategy profile ®𝜎 and the mediator plays 𝜎𝑑 . In the communication game Γ𝐴𝐶𝑇 , there is no trusted
mediator but players can communicate with each other. In both Γ𝑑 and Γ𝐴𝐶𝑇 , players can decide at
any time to play an action 𝑎 in the underlying game Γ; however, each player can play an action in
Γ at most once. The resulting payoff or utility of each player is determined by the action profile
played and the type profile ®𝑡 , using the utility function in Γ. Strategies in Γ𝑑 and Γ𝐴𝐶𝑇 describe how
each player communicates with the mediator and the other players, and when each player plays an
action in the underlying game Γ.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 Geffner and Halpern

In this paper, we assume that the communication in Γ𝑑 and Γ𝐴𝐶𝑇 is asynchronous, as described
in Section 2.1. This means that there a player 𝑖 may end up deadlocked, waiting for other players’
messages, and never gets to play an action in the underlying game. If this happens, we assume that
the action played by 𝑖 is a default action ⊥ ∈ 𝐴𝑖 .

2

Given these definitions, we can define what it means for a strategy profile to implement another
in asynchronous systems:

Definition 2.6. Strategy profile ®𝜎 in Γ𝐴𝐶𝑇 implements strategy profile ®𝜏 in Γ𝑑 if, for all type profiles
®𝑡 and all schedulers 𝜎𝑒 , there exists a scheduler 𝜎

′
𝑒 such that the distribution over output profiles

induced by ®𝜎 with input profile ®𝑡 and scheduler 𝜎𝑒 is identical to the distribution over output
profiles induced by ®𝜏 with input profile ®𝑡 and scheduler 𝜎 ′𝑒 .

It is important to note that strategy profiles in Γ𝑑 and Γ𝐴𝐶𝑇 are essentially just protocols in which
the type profiles 𝑡𝑖 are the players’ inputs and in which players have the option to play an action
in the underlying game. Thus, in Γ𝑑 and Γ𝐴𝐶𝑇 , the terms strategy and protocol are equivalent (we
use strategy profile and joint protocol to refer to tuples of strategies or protocols), as are type and
input. For the sake of simplicity, we will stick with the distributed computing notation, except when
referring specifically to purely game-theoretic concepts (e.g., normal-form or Bayesian games).
We assume that all games considered from here on are Bayesian games, unless explicitly stated
otherwise.

2.4.3 (𝑘, 𝑡)-robustness. In large systems, there will almost surely be players who act in apparently
arbitrary ways. This may not necessarily happen because they are malicious, it could be that they
don’t understand how the system works or that their utilities are not what the system designer
is expecting. In order to tolerate these players’ behavior, it is necessary to take into account the
worst-case scenario, where they might be malicious. Thus, Abraham, Dolev, Gonen, and Halpern [2]
introduced the notion of a (𝑘, 𝑡)-robust equilibrium, a solution concept that is appropriate in systems
in which at most 𝑘 players are rational and at most 𝑡 players are malicious.

Definition 2.7. Given a game Γ, a strategy profile ®𝜎 is 𝑡-immune if, for all subsets 𝑇 of size at
most 𝑡 and all strategies ®𝜏𝑇 for players in 𝑇 , 𝑢𝑖 (®𝜎−𝑇 , ®𝜏𝑇) ≥ 𝑢𝑖 (®𝜎) for all 𝑖 ∉ 𝑇 , where 𝑢𝑖 (®𝜎) is the
payoff of player 𝑖 when players play ®𝜎 .

Intuitively, a strategy profile is a 𝑡-immune equilibrium if no subset of at most 𝑡 players can
decrease the payoff of other players by deviating,

Definition 2.8. A strategy profile ®𝜎 is a (𝑘, 𝑡)-resilient (resp., strongly (𝑘, 𝑡)-resilient) equilibrium
of a game Γ if, for all disjoint subsets 𝐾 and 𝑇 of sizes at most 𝑘 and 𝑡 , respectively, and all strategy
profiles ®𝜏𝐾∪𝑇 for players in 𝐾 ∪𝑇 , 𝑢𝑖 (®𝜎−(𝐾∪𝑇) , ®𝜏𝐾∪𝑇) ≤ 𝑢𝑖 (®𝜎−𝑇 , ®𝜏𝑇) for some (resp., for all) 𝑖 ∈ 𝐾 .

Intuitively, a strategy protocol is a (𝑘, 𝑡)-robust equilibrium if no subset of at most 𝑘 players
can all increase their payoffs, even if they can collude with up to 𝑡 malicious players. It is a strong
(𝑘, 𝑡)-robust equilibrium if not even one player in the set can increase its payoff.

Definition 2.9. A strategy profile is a (𝑘, 𝑡)-robust (resp., strongly (𝑘, 𝑡)-robust) equilibrium in a
game Γ if it is 𝑡-immune and a (𝑘, 𝑡)-resilient (resp., strongly (𝑘, 𝑡)-resilient) equilibrium.

Abraham, Dolev, Gonen, and Halpern [2] proved the following result:

2There exist other approaches for how to choose which action player 𝑖 is taken to play if 𝑖 is deadlocked; we chose this one

for definiteness. The same results hold for the other approaches that have been taken. See for [1] for further discussion of

this subject.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:9

Theorem 2.10. [2] If ®𝜎 + 𝜎𝑑 is a (𝑘, 𝑡)-robust equilibrium of a synchronous game Γ𝑑 that extends

some game Γ and 𝑛 > 3(𝑘 + 𝑡), then there exists a (𝑘, 𝑡)-robust equilibrium ®𝜎𝐴𝐶𝑇 of Γ𝐴𝐶𝑇 that

implements ®𝜎 + 𝜎𝑑 .

ADGH proved an analogous result for asynchronous systems.

Theorem 2.11. [1] If ®𝜎 + 𝜎𝑑 is a (𝑘, 𝑡)-robust equilibrium of a game Γ𝑑 that extends some game Γ

and 𝑛 > 4(𝑘 + 𝑡), then there exists a (𝑘, 𝑡)-robust equilibrium ®𝜎𝐴𝐶𝑇 of Γ𝐴𝐶𝑇 that implements ®𝜎 + 𝜎𝑑 .

It is easy to 𝑡-securely compute a function 𝑓 with the help of a mediator: Each player sends its
input to the mediator, the mediator waits until it receives an input from at least 𝑛 − 𝑡 agents (in
synchronous systems it just waits one round), then it computes the output of 𝑓 given the input of the
players, and sends it to all players. However, despite the fact that we think of 𝑡-secure computation
in terms of mediators, it is not obvious that Theorem 2.4 follows from Theorem 2.11, due to the
differences between the definitions of (𝑘, 𝑡)-robustness and secure computation. In Section 5, we
sketch how to reduce 𝑡-secure computation to implementing strongly (𝑡, 0)-robust equilibria in
mediator games.

To conclude this section, note that if a strategy profile is a (𝑘, 𝑡)-robust equilibrium (resp., strongly
(𝑘, 𝑡)-robust equilibrium), it is also a (𝑘 +𝑘 ′, 𝑡 −𝑘 ′)-robust equilibrium (resp., (𝑘 +𝑘 ′, 𝑡 −𝑘 ′)-robust
equilibrium), for 0 ≤ 𝑘 ′ ≤ 𝑡 . However, the converse is not true since rational players with known
utilities are far more restricted than malicious players. In fact, ADGH [1] showed that if there
is a way to punish rational players, then any (𝑘, 𝑡)-robust equilibrium with a mediator can be
implemented without a mediator if 𝑛 > 3𝑘 + 4𝑡 . Intuitively this means that, if a punishment strategy
exists, each rational player needs three additional honest players to counteract its behavior, while
malicious players need four.

2.5 Weak consensus

Some of the results in this paper involve reductions from a well-known problem in the distributed
computing literature called Weak Consensus.

Definition 2.12 ([10]). A protocol ®𝜎 for 𝑛 agents is a 𝑡-resilient implementation of weak consensus

if the following holds for all adversaries 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with |𝑇 | ≤ 𝑡 and all histories:

(a) All agents not in 𝑇 output the same value.
(b) If all agents are honest and have the same input 𝑥 , all agents output 𝑥 .

As the name suggests Weak Consensus is weaker than the more standard Consensus problem. In
Weak Consensus, honest players must output 𝑥 only when all players are honest and they all have
input 𝑥 ; in standard Consensus, they must output 𝑥 even if only the honest players have input 𝑥 ,
no matter what input the malicious players have. Clearly, if ®𝜎 is a 𝑡-resilient implementation of
Consensus, it is also a 𝑡-resilient implementation of Weak Consensus. Lamport [10] showed that
both problems have the same lower bound:

Theorem 2.13 ([10]). If 𝑛 ≤ 3𝑡 , there is no 𝑡-resilient implementation of weak consensus.

3 MAIN RESULTS

In this paper, we show that the bound in Theorem 2.11 is tight. In this section, we briefly outline
the structure of the proof, leaving the details of the arguments to later sections.

Theorem 3.1. If 𝑘 + 𝑡 + 1 < 𝑛 ≤ 4𝑘 + 4𝑡 , there exists a (𝑘, 𝑡)-robust (resp., strongly (𝑘, 𝑡)-robust)
equilibrium, ®𝜎 + 𝜎𝑑 for 𝑛 agents and a mediator such that there is no (𝑘, 𝑡)-robust (resp., strongly
(𝑘, 𝑡)-robust) equilibrium ®𝜎𝐴𝐶𝑇 that implements ®𝜎 + 𝜎𝑑 .

We break up the proof of Theorem 3.1 into two cases:

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 Geffner and Halpern

3.1 Case 1: 3𝑘 + 3𝑡 ≤ 𝑛 ≤ 4𝑘 + 4𝑡

For this case, we show that (𝑘 +𝑡)-strictly securely computing a function 𝑓 reduces to implementing

a (𝑘, 𝑡)-robust joint protocol ®𝜎 + 𝜎𝑑 for some game Γ
𝑓 ,𝑘,𝑡

𝑑
with a mediator. To make this precise, we

need the following definition:

Definition 3.2. If 𝑔 : 𝐴 → 𝐵 and 𝜎 is a protocol that plays actions in 𝐴, then 𝑔(𝜎) is the protocol
that is identical to 𝜎 except that playing each action 𝑎 ∈ 𝐴 is replaced by outputting 𝑔(𝑎) ∈ 𝐵. If ®𝜎
is a joint protocol where each player 𝑖 plays actions in 𝐴, then 𝑔(®𝜎) = (𝑔(𝜎1), . . . , 𝑔(𝜎𝑛)).

Theorem 3.3. If 𝑓 : 𝐷𝑛 → 𝐷 , 𝐷 is a finite domain, and 2(𝑘 + 𝑡) < 𝑛, then there exists a game Γ
𝑓 ,𝑘,𝑡

𝑑
in which all players have the same set 𝐴 of possible actions, a function 𝑔 : 𝐴 → 𝐷 , and a (𝑘, 𝑡)-robust

(resp., strongly (𝑘, 𝑡)-robust) equilibrium ®𝜎 + 𝜎𝑑 for 𝑛 agents and the mediator in Γ
𝑓 ,𝑘,𝑡

𝑑
such that if

®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust (resp., strongly (𝑘, 𝑡)-robust) equilibrium that implements ®𝜎 +𝜎𝑑 , then 𝑔(®𝜎𝐴𝐶𝑇)
(𝑘 + 𝑡)-strictly securely computes 𝑓 .

Theorem 3.3 shows that if we could implement all (𝑘, 𝑡)-robust equilibria in the mediator game
using only communication among the 𝑛 players, then all functions on 𝑛 variables would be (𝑘 + 𝑡)-
strictly securely computable. The proof of Theorem 3.1 for 3(𝑘 + 𝑡) ≤ 𝑛 ≤ (𝑘 + 𝑡) follows from the
fact that if 3(𝑘 + 𝑡) ≤ 𝑛 ≤ 4(𝑘 + 𝑡), then there exist functions that cannot be (𝑘 + 𝑡)-weakly securely
computed (and hence, cannot be (𝑘 + 𝑡)-strictly securely computed).

Theorem 3.4.

(a) If 𝑛 > 4𝑡 or 𝑛 ≤ 2𝑡 , then every function 𝑓 : 𝐷𝑛 → 𝐷 can be 𝑡-weakly securely computed in

asynchronous systems.

(b) If 3𝑡 ≤ 𝑛 ≤ 4𝑡 , there exists a domain 𝐷 and a function 𝑓 : 𝐷𝑛 → 𝐷 that cannot be 𝑡-weakly

securely computed in asynchronous systems.

The proof of Theorem 3.4 is given in Section 6. A slight variation of it provides a simple proof
for the well-known lower bound on secure computation in asynchronous systems:

Theorem 3.5 ([4, 7, 9]).

(a) If 𝑛 > 4𝑡 or 𝑛 ≤ 𝑡 , then for all domains 𝐷 , every function 𝑓 : 𝐷𝑛 → 𝐷 can be 𝑡-securely

computed in asynchronous systems.

(b) If 𝑡 < 𝑛 ≤ 4𝑡 there exists a domain 𝐷 and a function 𝑓 : 𝐷𝑛 → 𝐷 that cannot be 𝑡-securely

computed in asynchronous systems.

Note that the range of 𝑛 and 𝑡 for which a function can be 𝑡-securely computed and 𝑡-weakly
securely computed are different, and that Theorem 3.4 does not state whether a function can always
be 𝑡-weakly securely computed if 2𝑡 < 𝑛 < 3𝑡 . We leave that as an open problem. While it might
seem that there should be an easy reduction from implementing mediators to secure computation,
the techniques needed to prove Theorem 3.5 do not seem suffice to prove Theorem 3.1; we seem to
need a number of new ideas (see Section 5).

3.2 Case 2: 𝑘 + 𝑡 + 1 < 𝑛 ≤ 3𝑘 + 3𝑡

If 𝑘 + 𝑡 + 1 < 𝑛 ≤ 3𝑘 + 3𝑡 , we show that implementing (𝑘 + 𝑡)-resilient weak consensus with 𝑛
players can be reduced to implementing (𝑘, 𝑡)-robust mediators:

Theorem 3.6. If 𝑛 > 𝑘 +𝑡 +1, then there exists a game Γ𝑘,𝑡
𝑑

with a mediator in which all agents have

the same set 𝐴 of possible actions, a function 𝑔 : 𝐴 → {0, 1}, and a (𝑘, 𝑡)-robust (resp., strongly (𝑘, 𝑡)-

robust) equilibrium ®𝜎 + 𝜎𝑑 for 𝑛 players and the mediator in Γ
𝑘,𝑡
𝑑

such that if ®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust

(resp., strongly (𝑘, 𝑡)-robust) equilibrium that implements ®𝜎 + 𝜎𝑑 , then 𝑔(®𝜎𝐴𝐶𝑇) is a (𝑘 + 𝑡)-resilient
implementation of weak consensus.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:11

The proof of Theorem 3.1 for 𝑘 + 𝑡 + 1 ≤ 𝑛 ≤ 3(𝑘 + 𝑡) follows easily from Theorem 3.6 and
Theorem 2.13.

3.3 Approximate implementation

ADGH [1] showed that if we allow an arbitrarily small probability of error, then any (𝑘, 𝑡)-robust
equilibrium with a mediator can be implemented without a mediator if 𝑛 > 3𝑘 + 3𝑡 (as opposed to
𝑛 > 4𝑘 + 4𝑡 for error-free implementation). As shown in [3, Theorem 4], we can do no better, even
in the synchronous case. A fortiori, this lower bound also holds in the asynchronous case.

4 PROOF OF THEOREM 3.3

We prove Theorem 3.3 only for the case of (𝑘, 𝑡)-robustness; the proof in the case of strong (𝑘, 𝑡)-
robustness is identical. The proof has two parts. We first give the necessary intuition and provide
the necessary constructions for Theorem 3.3, and then prove formally that these constructions do
indeed satisfy the conditions of the theorem.
A naive construction of Γ𝑑 and ®𝜎 + 𝜎𝑑 proceeds as follows. The set of actions of each agent

consists of all possible outputs of a secure computation of 𝑓 in addition to their type (more precisely,
actions have the form (𝐶, 𝑧,𝑄) with𝐶 ⊆ [𝑛], 𝑧 ∈ 𝐷 , and𝑄 ∈ {𝐻, 𝑅,𝑀}, where 𝐻 stands for honest,
𝑅 stands for rational, and𝑀 stands for malicious). If there is no subset 𝑆 of at least 𝑛 − 𝑘 − 𝑡 honest
agents such that agents in 𝑆 securely compute 𝑓 , that is, every subset 𝑆 of 𝑛 − 𝑘 − 𝑡 agents either
do not all output the same value or they all output a value that is not a possible output of a secure
computation of 𝑓 , then rational agents get a higher payoff and/or the honest agents get a lower
payoff. In ®𝜎 + 𝜎𝑑 , each agent sends its input to the mediator when it is scheduled for the first time.
The mediator waits until it receives the input 𝑥𝑖 from a set 𝐶 of agents with |𝐶 | ≥ 𝑛 − 𝑘 − 𝑡 , then
computes 𝑧 := 𝑓𝐶 (®𝑥) and sends (𝐶, 𝑧, 𝐻) to all agents. Agents play (𝐶, 𝑧, 𝐻) when they receive the
message.
It would seem that any (𝑘, 𝑡)-robust equilibrium that implements ®𝜎 + 𝜎𝑑 also (𝑘 + 𝑡)-strictly

securely computes 𝑓 . In fact, any (𝑘 + 𝑡)-secure computation of 𝑓 is also a (𝑘, 𝑡)-robust equilibrium
that implements ®𝜎 + 𝜎𝑑 , but the converse does not necessarily hold. Consider a protocol ®𝜎𝐴𝐶𝑇
in which agents run BCG’s (𝑘 + 𝑡)-secure computation protocol and then broadcast their inputs
immediately afterwards. It is easy to check that ®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust equilibrium that implements
®𝜎 + 𝜎𝑑 if 𝑛 > 4(𝑘 + 𝑡), but that ®𝜎𝐴𝐶𝑇 does not (𝑘 + 𝑡)-securely compute 𝑓 , since it leaks the honest
agents’ inputs to all other agents.
This shows that it is necessary to somehow encode all information that malicious agents can

learn into the set of actions of Γ𝑑 in such a way that they can increase their payoff if they manage
to learn anything about the other agents’ inputs besides what can be learned from the output of
the computation. The idea for doing this is that, besides the output, the action of each agent should
include a guess as to what the input profile ®𝑥 is (they can also guess ⊥ if they have no guess). If an
agent 𝑖 guesses correctly it receives an additional positive payoff 𝑞𝑖 , while if it guesses wrong, its
payoff decreses by 1. The value of 𝑞𝑖 should be chosen in such a way that (a) it is never worthwhile
deviating if 𝑖 is not able to learn anything besides the output, and (b) it is always worthwhile
deviating if 𝑖 is able to learn something (otherwise, ®𝜎𝐴𝐶𝑇 may not (𝑘 + 𝑡)-strictly securely compute
𝑓 even if it is a (𝑘, 𝑡)-robust equilibrium, as in the example above). Given the set𝐶 of agents whose
inputs are included in the computation, the output 𝑧 of 𝑓 , and the input profile ®𝑥 , let 𝑝𝑖 be the
probability that an agent 𝑖 guesses ®𝑥 conditional on its own input 𝑥𝑖 , 𝐶 , and 𝑧. Conditions (a) and
(b) imply that 𝑝𝑖𝑞𝑖 + (1 − 𝑝𝑖) (−1) ≤ 0 and 𝑝𝑖𝑞𝑖 + (1 − 𝑝𝑖) (−1) ≥ 0 respectively, which means that
𝑝𝑖𝑞𝑖 + 𝑝𝑖 − 1 = 0 and thus that 𝑞𝑖 = 𝑝

−1
𝑖 − 1.

This approach cannot be generalized easily to a situation where a coalition of agents may deviate.
In this case, an agent in the coalition will know the values of all agents in the coalition, not just

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 Geffner and Halpern

its own input. Moreover, if an agent in the coalition plays just like an honest agent except that it
tells the other coalition members its input, then this is completely indistinguishable (by the honest
agents) from the scenario in which that agent is honest and the other members of the coalition
were just lucky guessing its input. In addition, an agent can lie about its input if it is easier to guess
the input profile with a different input than its own. For instance, suppose that 𝐷 = F2 and that
𝑓 (®𝑥) =

∏𝑛
𝑖=1 (1 − 𝑥𝑖). If 𝑖 has input 1 and plays honestly, then it learns absolutely nothing about

the other agents’ inputs, since the output will be 0 no matter what. However, if 𝑖 pretends to have
input 0, 𝑖 will learn more information: if the output is 1, then all agents have input 0; otherwise,
at least one agent has input 1. In this case, it would always be worthwhile for agent 𝑖 to act as if
it has input 0, regardless of its actual input. This shows that to compute the probability that the
adversary guesses the inputs correctly, it is critical to know who is malicious and what inputs the
malicious agents are pretending to use in the computation.
To deal with the fact that we may not be able to tell which agents are deviating, we require

that exactly 𝑘 + 𝑡 agents must try to guess a non-⊥ value in order to get an additional (positive or
negative) payoff. Moreover, their guesses must be identical. If honest agents always guess ⊥, this
suffices to identify the coalition of 𝑘 + 𝑡 deviating agents given their action profile. Note that this is
why we require strict secure computation in Theorem 3.3. If we required only (standard) secure
computation, smaller adversaries wouldn’t be able to get a better payoff, even if they managed to
guess the inputs of everyone else (so the protocol would not satisfy condition (b)). To deal with
agents lying about their inputs, we require that the action profile of the agents encode the inputs
used by the agents for the computation (even though these inputs may differ from their actual
inputs). The probability of guessing the input profile is based on the inputs used, not agents’ actual
inputs. Note that these values must be encoded into the action profile without any coalition of 𝑘 + 𝑡
agents learning anything about them. This can be done as follows: each agent 𝑖 , in addition to the
set 𝐶 , the output 𝑧, and their guess 𝑏𝑖 , also outputs 𝑛 values 𝑠𝑖1, . . . , 𝑠𝑖𝑛 such that the values 𝑠𝑖, 𝑗 for
a fixed 𝑗 encode the value used by 𝑗 for the computation (using Shamir’s secret-sharing scheme).
There is one final issue. The definition of (0, 𝑡)-robustness is equivalent to that of 𝑡-immunity,

which means that no coalition of 𝑡 agents can decrease the payoff of other agents by deviating. In
this case, the effect of a coalition of 𝑡 agents being able to learn something about the inputs should
be to decrease the payoffs of the remaining agents, rather than increasing their own payoff. To deal
with this, we require agents to declare wither they are𝐺 (good), 𝑅 (rational), or𝑀 (malicious). If a
coalition of (𝑘 + 𝑡) agents tries to guess the inputs of everyone else, if they all declare 𝑅, then they
get an additional payoff as described above. Otherwise, everyone gets the negative of that value.

We now formalize these ideas. Given 𝑓 and integers 𝑘 and 𝑡 such that 𝑛 > 2𝑘 + 2𝑡 , consider the
game Γ 𝑓 ,𝑘,𝑡 defined as follows. The input profile of the agents is chosen uniformly at random from
𝐷𝑛 . The set of actions of each agent in Γ

𝑓 ,𝑘,𝑡 is {𝐺, 𝑅,𝑀} × 2
[𝑛] ×𝐷 ×𝐷𝑛 × (𝐷𝑛 ∪ {⊥}), so an action

of agent 𝑖 has the form 𝑎𝑖 = (𝑄𝑖 ,𝐶𝑖 , 𝑧𝑖 , ®𝑠𝑖 , 𝑏𝑖), where 𝑄𝑖 ∈ {𝐺, 𝑅,𝑀}, 𝐶𝑖 ⊆ [𝑛], 𝑧𝑖 ∈ 𝐷 , 𝑥𝑖 ∈ 𝐷 , and
𝑏𝑖 ∈ 𝐷

𝑛 ∪ {⊥}. Intuitively, 𝑄𝑖 denotes if 𝑖 is good (𝐺), rational (𝑅), or malicious (𝑀), (𝐶𝑖 , 𝑧𝑖) is 𝑖’s
output in the secure computation of 𝑓 ; 𝑠𝑖 𝑗 is 𝑖’s share of 𝑗 ’s input (this will be made clearer below),
and 𝑏𝑖 is 𝑖’s guess of the (supposedly secret) input, where 𝑏𝑖 = ⊥ if 𝑖 has no guess.

We next define the utility function. We take 𝑢𝑖 = 𝑢
1

𝑖 +𝑢
2

𝑖 , where, intuitively, 𝑢
1

𝑖 is the utility that 𝑖
gets if honest agents either output different values or some honest agent outputs a value that is not
a possible output of a secure computation of 𝑓 and 𝑢2𝑖 is the utility that 𝑖 gets from guessing the

correct input of the other agents. To define 𝑢1𝑖 , we first define what it means for an action profile ®𝑎
to be secure for an input profile ®𝑥 . This is the case if there exist subsets𝐶,𝑇 ⊆ [𝑛] with |𝐶 | ≥ 𝑛−𝑡 −𝑘

and |𝑇 | = 𝑘 + 𝑡 , a vector ®𝑣 ∈ 𝐷𝑘+𝑡 , and 𝑛 polynomials 𝑝1, . . . , 𝑝𝑛 of degree 𝑘 + 𝑡 (where, intuitively,
𝑝 𝑗 encodes 𝑗 ’s input, so 𝑝 𝑗 (𝑖) is 𝑖’s share of 𝑗 ’s input) such that, for each agent 𝑗 ∉ 𝑇 , the action

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:13

𝑎 𝑗 = (𝑄 𝑗 ,𝐶 𝑗 , 𝑧 𝑗 , ®𝑠 𝑗 , 𝑏 𝑗) of agent 𝑗 satisfies (1) 𝑄 𝑗 = 𝐺 , (2) 𝐶 𝑗 = 𝐶 , (3) 𝑏 𝑗 = ⊥, (4) 𝑧 𝑗 = 𝑓 (®𝑦), where
®𝑦 = (®𝑥/(𝑇,®𝑣))/(𝐶,®0) (5) 𝑝 𝑗 ′ (𝑗) = 𝑠 𝑗 𝑗 ′ for all 𝑗

′ ∈ [𝑛], and (6) 𝑝 𝑗 (0) = 𝑦 𝑗 . We say that ®𝑎 is (𝑇, ®𝑥)-secure

if these properties hold for the set 𝑇 . Intuitively, ®𝑎 is (𝑇, ®𝑥)-secure if it could be the output of a
(𝑘 + 𝑡)-secure computation of 𝑓 with input ®𝑥 , and the inputs used for the computationÐwhich
may differ from the the actual input profile due to deviating agents lying about their inputsÐwere
shared correctly between the agents. If ®𝑎 is secure for ®𝑥 , then 𝑢1𝑖 (®𝑎, ®𝑥) = 0 for all 𝑖 ∈ [𝑛]; if ®𝑎 is not

secure for ®𝑥 and at least one agent 𝑖 played 𝑅 (i.e., played an action with 𝑄𝑖 = 𝑅), then 𝑢
1

𝑗 (®𝑎, ®𝑥) = 1

for all agents 𝑗 ; otherwise, 𝑢1𝑗 (®𝑎, ®𝑥) = −1 for all agents 𝑗 .

If ®𝑎 is not secure for ®𝑥 , then 𝑢2𝑖 (®𝑎, ®𝑥) = 0. If ®𝑎 is secure for ®𝑥 , let 𝐾 be the subset of agents that
did not play 𝐺 . Note that if ®𝑎 is secure for ®𝑥 , then |𝐾 | ≤ 𝑘 + 𝑡 . If |𝐾 | < 𝑘 + 𝑡 or not all agents in 𝐾
guess the same value 𝑏 (i.e., not all agents in 𝐾 have the same value 𝑏 as the last component of their
action), then 𝑢2𝑖 (®𝑎, ®𝑥) = 0 for all 𝑖 . Otherwise, let 𝑏 be the common guess of agents in 𝐾 and let 𝑝 be
the probability that a vector ®𝑤 sampled uniformly from 𝐷𝑛 is equal to ®𝑥 , conditional on ®𝑤𝐾 = ®𝑦𝐾
and 𝑓𝐶 (®𝑤) = 𝑧. Note that if ®𝑎 is (𝑇, ®𝑥)-secure for some 𝑇 , then 𝐶 is uniquely determined by ®𝑎, and
if, in addition, 𝑛 > 2(𝑡 + 𝑘), then ®𝑦 is also uniquely determined by the shares ®𝑠𝑖 of agents 𝑖 ∉ 𝑇 . If
𝑏 = ®⊥, then 𝑢2𝑖 (®𝑎, ®𝑥) = 0 for all 𝑖 . If at least one agent 𝑖 ∈ 𝐾 played 𝑅 in its action, then, if 𝑏 = ®𝑥 ,

𝑢2𝑖 (®𝑎, ®𝑥) = 𝑝
−1 − 1 for all 𝑖 ∈ 𝐾 ; otherwise, 𝑢2𝑖 (®𝑎, ®𝑥) = −1 for all 𝑖 ∈ 𝐾 . On the other hand, if no agent

𝑖 ∈ 𝐾 played 𝑅 in its action, then, if 𝑏 = ®𝑥 , 𝑢2𝑖 (®𝑎, ®𝑥) = 1 − 𝑝−1 for all 𝑖 ∉ 𝐾 ; otherwise, 𝑢2𝑖 (®𝑎, ®𝑥) = 1

for all 𝑖 ∉ 𝐾 . Note that since 𝑝 (𝑝−1 − 1) − (1 − 𝑝) = 0, the payoffs 𝑢2𝑖 are designed in such a way
that the adversary can, in expectation, either increase its payoff (if there are any rational agents)
or decrease the payoff of everyone else (if there are no rational agents) if it can guess the inputs
of honest agents with higher probability than 𝑝 (which is the probability of guessing the honest
agents’ inputs if the adversary knew nothing but the output of the function and its own protocol
and inputs).

Consider the following joint protocol ®𝜎 + 𝜎𝑑 for Γ
𝑓 ,𝑘,𝑡

𝑑
. According to 𝜎𝑖 , agent 𝑖 sends its input

to the mediator at the beginning of the game. If 𝑖 receives a message𝑚𝑠𝑔 from the mediator, it
plays 𝑚𝑠𝑔 in the underlying game. According to 𝜎𝑑 , the mediator waits until there exists a set
𝐶 ⊆ [𝑛] with |𝐶 | ≥ 𝑛 − 𝑡 − 𝑘 such that it has received exactly one message from each agent 𝑖 ∈ 𝐶
and each of these messages consists of a value 𝑦𝑖 ∈ 𝐷 . The mediator computes 𝑛 polynomials
𝑝1, . . . , 𝑝𝑛 ∈ 𝐷 [𝑋] of degree 𝑘 + 𝑡 whose non-constant coefficients are chosen uniformly at random
such that 𝑝𝑖 (0) = 𝑦𝑖 if 𝑖 ∈ 𝐶 and 𝑝𝑖 (0) = 0 otherwise. It then computes 𝑧 := 𝑓 (𝑝1 (0), . . . , 𝑝𝑛 (0)) and
sends (𝐺,𝐶, 𝑧, 𝑝1 (𝑖), . . . , 𝑝𝑛 (𝑖),⊥) to each agent 𝑖 .

Proposition 4.1. ®𝜎 + 𝜎𝑑 is a (𝑘, 𝑡)-robust equilibrium and the equilibrium payoff is 0.

Proof. Let𝑢𝑖 (®𝜎,𝐴, 𝑥𝑇) be the expected payoff of agent 𝑖 when running ®𝜎 with an adversary𝐴 that
has input 𝑥𝑇 . It follows by construction that𝑢

1

𝑖 (®𝜎+𝜎𝑑 , 𝐴, ®𝑥𝑇) = 0 for all adversaries𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) of
size at most 𝑘+𝑡 and all inputs since, no matter what𝑇 or ®𝑥𝑇 are, the output profile ®𝑎 is (𝑇, ®𝑥)-secure
for all input profiles ®𝑥 .
Thus, ®𝜎+𝜎𝑑 is not a (𝑘, 𝑡)-robust equilibrium if and only if there exists an adversary𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒)

with |𝑇 | ≤ 𝑘 + 𝑡 and an input profile ®𝑥𝑇 such that, in expectation, (a) 𝑢2𝑖 (®𝜎 + 𝜎𝑑 , 𝐴, ®𝑥𝑇) > 0 for

some 𝑖 ∈ 𝑇 , or (b) 𝑢2𝑖 (®𝜎 + 𝜎𝑑 , 𝐴, ®𝑥𝑇) < 0 for all 𝑖 ∉ 𝑇 . The definition of 𝑢2𝑖 guarantees that, in both
cases, the adversary must consist of exactly 𝑘 + 𝑡 agents and these agents must all play a non-𝐺
action. Moreover, these agents must guess the input of honest agents with a probability higher
than they could guess it by just knowing the output of the function, their protocol, and their inputs.
However, the construction of ®𝜎 + 𝜎𝑑 guarantees that they don’t have any extra information (note
that 𝐶 depends only on the adversary, and that the adversary does not get any information about

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 Geffner and Halpern

the input of the honest agents besides the value of 𝑧, since the polynomials 𝑝𝑖 are all of degree
𝑘 + 𝑡). □

We next show that if there exists a (𝑘, 𝑡)-robust equilibrium ®𝜎 ′ that implements ®𝜎 + 𝜎𝑑 , then ®𝜎 ′

also (𝑘 + 𝑡)-securely computes 𝑓 . We first need the following lemma.

Lemma 4.2. If ®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust equilibrium that implements ®𝜎 + 𝜎𝑑 , then for all adversaries

𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with |𝑇 | = 𝑘 + 𝑡 , all inputs ®𝑥 , and all views 𝐻 of ®𝜎𝐴𝐶𝑇 with adversary 𝐴 and input ®𝑥 ,
the action profile ®𝑎 played in 𝐻 is (𝑇, ®𝑥)-secure.

Proof. Suppose that 𝑘 > 0. If there exists an input ®𝑥 and an adversary 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with
|𝑇 | = 𝑘 + 𝑡 such that, for some view 𝐻 , the action profile ®𝑎 played in 𝐻 is not (𝑇, ®𝑥)-secure, consider
the adversary𝐴′

= (𝑇, ®𝜏 ′𝑇 , 𝜎𝑒) where ®𝜏
′
𝑇 is identical to ®𝜏𝑇 , except that if a agent 𝑖 ∈ 𝑇 plays an action

𝑎 with 𝜏𝑖 , then 𝑖 instead plays (𝑅, ∅, 0, 0,⊥) with 𝜏 ′𝑖 . Thus, if an action profile ®𝑎′ played in some
view 𝐻 ′ when ®𝜎𝐴𝐶𝑇 is run with adversary 𝐴′ is (𝑇 ′, ®𝑥)-secure, then 𝑇 ⊆ 𝑇 ′ (note that for an action
profile ®𝑎 to be (𝑇 ′, ®𝑥)-secure, we require that all agents not in𝑇 ′ play𝐺 in the first component, and
none of the agents in𝑇 plays𝐺) and, since |𝑇 | = 𝑘 + 𝑡 ,𝑇 = 𝑇 ′. Since the views generated by playing
with adversaries 𝐴 and 𝐴′ are indistinguishable by honest agents, if there exists a view 𝐻 with
adversary 𝐴 and input ®𝑥 such that the action ®𝑎 played in 𝐻 is not (𝑇, ®𝑥)-secure, then the resulting
action profile ®𝑎′ of playing ®𝜎𝐴𝐶𝑇 with adversary 𝐴′ and input ®𝑥 in which all agents use the same
randomization as in 𝐻 is not (𝑇, ®𝑥)-secure, and all agents in𝑇 would get a payoff of 1 rather than 0.
It follows that ®𝜎𝐴𝐶𝑇 is not a (𝑘, 𝑡)-robust equilibrium. If 𝑘 = 0, the argument is analogous, except
that agents in 𝑇 play (𝑀, ∅, 0, 0,⊥) rather than (𝑅, ∅, 0, 0,⊥) □

To complete the proof of Theorem 3.3, we must show that if ®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust equilibrium
that implements ®𝜎 + 𝜎𝑑 , the output of an adversary 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) with |𝑇 | = 𝑘 + 𝑡 is just a
(randomized) function of its input ®𝑥𝑇 and the output 𝑣 of the function. To do this, we need the
following lemma:

Lemma 4.3. Consider two random variables 𝑋 and 𝑌 that take values on countable spaces 𝑆1 and 𝑆2
respectively. Then, Pr[𝑋 = 𝑥 | 𝑌 = 𝑦] = Pr[𝑋 = 𝑥 | 𝑌 = 𝑦′] for all 𝑥 ∈ 𝑆1 and 𝑦,𝑦

′ ∈ 𝑆2 if and only if

𝑋 and 𝑌 are independent.

Proof. If Pr[𝑋 = 𝑥 | 𝑌 = 𝑦] does not depend on 𝑦, there exists a constant 𝜆𝑥 such that

Pr[𝑋 = 𝑥 | 𝑌 = 𝑦] = 𝜆𝑥 for all 𝑦 ∈ 𝑆 . Then, since Pr[𝑋 = 𝑥 | 𝑌 = 𝑦] =
Pr[𝑋=𝑥,𝑌=𝑦]

Pr[𝑌=𝑦] , it follows that

Pr[𝑋 = 𝑥,𝑌 = 𝑦] = 𝜆𝑥 Pr[𝑌 = 𝑦]. Therefore,
∑

𝑦∈𝑆2 Pr[𝑋 = 𝑥,𝑌 = 𝑦] =
∑

𝑦∈𝑆2 Pr[𝑌 = 𝑦], which
gives that 𝜆𝑥 = Pr[𝑋 = 𝑥], as desired. The converse is straightforward. □

We can now complete the proof of Theorem 3.3. Suppose that 𝑘 > 0. Recall that if all agents
𝑖 ∈ 𝑇 set 𝑏𝑖 to some input ®𝑥 , they get a payoff of 𝑝−1

®𝑥
− 1, where 𝑝𝑥 ∈ [0, 1] if the input profile is

indeed ®𝑥 , and otherwise they get −1. Given a view 𝐻𝑇 in which the adversary has input ®𝑥𝑇 and

honest agents output 𝑣 , let 𝑝𝐻𝑇𝑣 (®𝑥) be the probability that the input profile is ®𝑥 conditional on 𝑣

and 𝐻𝑇 . If 𝑝
𝐻𝑇
𝑣 (®𝑥) > 𝑝 ®𝑥 , then 𝑝

𝐻𝑇
𝑣 (®𝑥) (𝑝−1

®𝑥
− 1) + (−1) (1 − 𝑝𝐻𝑇𝑣 (®𝑥)) > 0, which means that taking

𝑏𝑖 = ®𝑥 is strictly better than taking 𝑏𝑖 = ⊥ for each of the agents in𝑇 , contradicting the assumption

that ®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust equilibrium. Thus, 𝑝𝐻𝑇𝑣 (®𝑥) ≤ 𝑝 ®𝑥 for all ®𝑥 . Since both
∑

®𝑥 𝑝
𝐻𝑇
𝑣 (®𝑥) and

∑

®𝑥 𝑝 ®𝑥 are 1, it must be the case that 𝑝𝐻𝑇𝑣 (®𝑥) = 𝑝 ®𝑥 for all ®𝑥 . This shows that for every view ®ℎ𝑇 of the

adversary, the distribution of possible inputs of honest agents conditional on ®ℎ𝑇 depends only on
their inputs and what honest agents output. By Lemma 4.3, this implies that the input of honest
agents and the view of the adversary are independent (given the input ®𝑥𝑇 of the adversary and
the output 𝑣 of honest agents), and thus, again by Lemma 4.3, it follows that the distribution of

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:15

possible views of the adversary depends only on ®𝑥𝑇 and 𝑣 . This shows that every possible output
function of the adversary can be simplified to a function that has as inputs only ®𝑥𝑇 and 𝑣 , as desired.
The argument for 𝑘 = 0 is analogous, except that in this case, if the distribution of possible views
of the adversary is not independent of the inputs of the honest agents, the adversary decreases
the payoffs of the honest agents, rather than increasing the payoffs of the deviating agents. This
completes the proof of Theorem 3.3.

5 EXTENDING THEOREM 3.3

In the construction used for Theorem 3.3, a (𝑘, 𝑡)-robust equilibrium that implements ®𝜎 + 𝜎𝐴𝐶𝑇
may not necessarily (non-strictly) (𝑘 + 𝑡)-securely compute 𝑓 , since if the adversary consists of
fewer than 𝑘 + 𝑡 malicious agents, the malicious agents might be able to deduce information about
the honest agents’ inputs without being able to take advantage of it (recall that for 𝑢2𝑖 (®𝑎, ®𝑥) to

be non-zero, a subset 𝐾 with |𝐾 | = 𝑘 + 𝑡 must all guess the same value for 𝑢2𝑖 (®𝑎, ®𝑥)). However, a

small variation in the construction of 𝑢2𝑖 in Γ
𝑓 ,𝑘,𝑡 gives a game Γ 𝑓 ,𝑘 such that any strongly (𝑘, 0)-

robust equilibrium that implements the (𝑘, 0)-robust equilibrium of Proposition 4.1 also 𝑘-securely
computes 𝑓 , so secure computation can be reduced to implementing strongly (𝑘, 0)-robust equilibria
for certain mediator games. The idea is that instead of requiring the subset 𝐾 of agents who do
not play 𝐺 to have size exactly 𝑘 , we require only that it have size at most 𝑘 . This modification of
𝑢2𝑖 leads to some of the problems discussed in Section 4, namely, that if some rational agents act
like honest agents except that they share their inputs with other rational agents, the latter agents
might be able to guess the input profile and get a strictly positive expected payoff. This scenario is
indistinguishable from one in which the agents who shared their input are actually honest and
rational agents are just lucky. To deal with this issue, we further modify the payoffs in Γ

𝑓 ,𝑘 so that
if the agents in some subset 𝐾 with |𝐾 | ≤ 𝑘 guess the inputs correctly, then everyone else gets a
huge negative payoff (rather than 0, as in the original construction). We can show that if this payoff
is sufficiently negative (e.g., −𝑛 times the winnings) and there exists a deviation from the agents
in 𝐾 in the (𝑘, 0)-robust equilibrium ®𝜎 + 𝜎𝑑 given in Proposition 4.1 in which rational agents get
a positive payoff from 𝑢2, then there exists a deviation from the agents in 𝐾 in ®𝜎 + 𝜎𝑑 in which
rational agents get a positive payoff from 𝑢2 and they all guess the same value in every possible
view (if the negative payoffs are small enough, rational agents not guessing any value gives a
negative total payoff for rational agents, even if some of them guess the correct value). (Note that
this modification works only for strong (𝑘, 𝑡)-robustness, since if we require only (𝑘, 𝑡)-robustness,
a rational agent may decrease its own payoff if that helps other rational agents, even if the total
gain of the rational agents from doing so is negative.) With this, an analogous argument to the one
given in the proof of Proposition 4.1 shows that the strategy used in Proposition 4.1 is strongly
(𝑘, 0)-robust with these payoffs. The rest of the proof is identical to that of Theorem 3.3.

6 PROOF OF THEOREMS 3.4 AND 3.5

For Theorem 3.5(a), note that if 𝑛 > 4𝑡 , Theorem 2.4 shows that every function 𝑓 : 𝐷𝑛 → 𝐷

can be 𝑡-securely computed, and thus 𝑡-weak securely computed as well. If 𝑛 ≤ 𝑡 , let ⊥ be the
input assigned to the agents that did not submit an input. It can be easily shown that the protocol
where each agent sends no messages and outputs (∅, 𝑓 (⊥𝑛)) 𝑡-securely computes 𝑓 . Similarly, for
Theorem 3.4(a), it can be easily checked that if 𝑛 ≤ 2𝑡 , the protocol where each agent sends nothing
and outputs ([𝑛 − 𝑡], 𝑓 (⊥𝑛)) 𝑡-weak securely computes 𝑓 .

It remains to show Theorems 3.4(b) and 3.5(b). Our proofs are similar to that of Canetti [9] at a
high level: We construct a function 𝑓 with four inputs, the scheduler schedules the agents so that
the fourth agent never gets to participate in the computation, and one of the three remaining agents

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 Geffner and Halpern

is malicious and manages to trick the other two participating agents into outputting something
inappropriate. Canetti then claims that conversations between agents (where a conversation is just
the collection of messages sent by two given agents) must be independent of the inputs of the
agents, and that agent 3 can send messages to agents 1 and 2 in such a way that agents 1 and 2
believe they should output different values. However, there are two significant problems with this
approach:

(a) First, the conversations between the agents might not be totally independent of their inputs,
since they can depend on the output of the computation, and this ultimately does depend on
the inputs. For example, agents can run Bracha’s [8] consensus protocol (which tolerates 𝑡
malicious agents if 𝑛 > 3𝑡) after terminating the secure computation protocol to decide the
output. This would guarantee that all honest agents output the same value at the end of the
computation, so their conversations are certainly not independent.

(b) Second, there is a more subtle issue when trying to simultaneously trick agents 1 and 2 into
outputting some given values 𝑎 and 𝑏, respectively. Even though Canetti proves that for the
function 𝑓 that he uses and a particular input ®𝑥 , for each conversation ℎ1,2 between 1 and 2,
there is a protocol for player 3 that results in a conversation ℎ1,3 between 1 and 3 such that
1 outputs 𝑎, and that for each conversation ℎ1,2 between 1 and 2 there exists a protocol for
player 3 that results in a conversation ℎ2,3 between 2 and 3 such that 2 outputs 𝑏, there might
not exist a protocol for agent 3 that results in 1 and 2 having conversation ℎ1,3 and agents 2
and 3 having conversation ℎ2,3 simultaneously. In fact, if 𝑎 and 𝑏 are different and agents run
a consensus protocol as in (a), there is not.

Roughly speaking, we deal with these issues as follows. We prove that for our function 𝑓 , a
malicious agent can make all honest agents output the same incorrect value, and we show that in
our case there does exist a conversation ℎ1,2 between 1 and 2 such that agent 3 can trick both of
them simultaneously, as desired (see Lemma 6.1). Some of these techniques can also be applied to
prove lower bounds for weak secure computation.

6.1 Proof of Theorem 3.4(b)

Consider the function 𝑓 𝑛 : {0, 1,⊥}𝑛 → {0, 1,⊥} that essentially takes majority between 0 and 1: it
outputs 1 if the number of agents with input 1 is greater or equal to the number of agents with
input 0, otherwise it outputs 0. Players who do not submit an input are assumed to have input ⊥.
We start by showing that 𝑓 4 cannot be 1-weakly securely computed by four agents.

Suppose that 𝑓 4 can be 1-weakly securely computed using a protocol ®𝜎 . Let 𝜎𝑁𝑒 be the scheduler
that schedules agents 1, 2, and 3 cyclically, and right before scheduling an agent, it delivers the
messages that were sent by the other agents the last time they were scheduled. After scheduling
each of the first three agents 𝑁 times, it schedules agent 4 as well, adding it to the cyclic order.
Given a view 𝐻 of the protocol, let ®𝑥𝐻 denote the input profile of agents in 𝐻 , let 𝐻𝑖 denote

agent 𝑖’s view in 𝐻 , let 𝐻𝑒 denote the scheduler’s view in 𝐻 , and let 𝐻 (𝑖, 𝑗) denote the conversation
between agents 𝑖 and 𝑗 (i.e., the messages sent and received between 𝑖 and 𝑗 , in addition to the
relative times at which 𝑖 and 𝑗 were scheduled). We can now prove essentially what BCG claimed
to prove (although, as we said, this claim does not hold for the BCG construction).

Lemma 6.1. There exist 𝑁 and two (finite) views 𝐻 and 𝐻 ′ of ®𝜎 where the scheduler uses 𝜎𝑁𝑒 ,

®𝑥𝐻 = (1, 0, 1, 1), ®𝑥𝐻 ′ = (0, 1, 1, 1), agents 1, 2, and 3 all output 1 in 𝐻 , agent 4 is never scheduled in
either 𝐻 or 𝐻 ′, 𝐻1,2 = 𝐻

′
1,2, and 𝐻𝑒 = 𝐻

′
𝑒 .

To prove Lemma 6.1, we first need to prove that if all agents are honest, at most 𝑡 agents have
input 0, and 𝑛 ≥ 3𝑡 , then the output of a 1-weakly secure computation of 𝑓 𝑛 will be 1. While this

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:17

seems obvious (and is true), it is not quite so trivial. For example, it is not true if 𝑛 = 3𝑡 − 1. In this
case, if we consider an ideal adversary 𝐴 = (𝑇, 𝑐, ℎ,𝑂), in which |𝑇 | = 𝑡 , ℎ replaces all inputs of
malicious agents with 0, and 𝑐 chooses all 𝑡 malicious agents and 𝑡 − 1 additional honest agents, it
is easy to check that the output of honest players is 0.

Lemma 6.2. If 𝑛 ≥ 3𝑡 and ®𝜎 is a protocol that 𝑡-weakly securely computes 𝑓 𝑛 , then for all schedulers,

in all possible views of ®𝜎 in which all agents are honest and at most 𝑡 agents have input 0, all agents

output 1.

Proof. Let 𝑆 be the subset of agents that have input 0. Given a scheduler𝜎𝑒 , consider an adversary
𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒) such that 𝑇 ⊇ 𝑆 , |𝑇 | = 𝑡 , and ®𝜏𝑇 = ®𝜎𝑇 (so all the malicious agents follow protocol ®𝜎).
By definition of 𝑡-weak secure computation, the output of honest agents with adversary 𝐴 should
be one that is possible with an ideal adversary of the form 𝐴′

= (𝑇, 𝑐, ℎ,𝑂). However, no matter
what the output 𝐶 of 𝑐 is, since |𝐶 | ≥ 𝑛 − 𝑡 , there will be at least 𝑛 − 2𝑡 honest agents in 𝐶 , all of
them with input 1. Since 𝑛 ≥ 3𝑡 , this suffices to guarantee that all agents not in 𝑇 output 1. Since
malicious agents play their part of ®𝜎 , they are indistinguishable from honest agents. Thus, if all
agents are honest, all agents not in𝑇 output 1. To see that agents in𝑇 also output 1 if all agents are
honest, consider an adversary 𝐴′′

= (𝑇 ′, ®𝜏𝑇 ′ , 𝜎𝑒) such that 𝑇 ′ ∩𝑇 = ∅, |𝑇 ′ | = 𝑡 (such a set 𝑇 ′ always
exists since 𝑛 ≥ 3𝑡), and ®𝜏𝑇 ′ = ®𝜎𝑇 ′ . Since honest agents not in 𝑇 ∪𝑇 ′ (note that [𝑛] \ (𝑇 ∪𝑇 ′) ≠ ∅)
have the same views with 𝐴 and 𝐴′′, they must output the same value with both adversaries, and
so must output 1 with adversary 𝐴′′. By definition of 𝑡-weak secure computation, since |𝑇 ′ | = 𝑡 , all
agents not in 𝑇 ′ must output the same value. Thus, since 𝑇 ∩𝑇 ′

= ∅, all agents in 𝑇 also output 1
with adversary 𝐴′′. Again, since agents in 𝑇 ′ are indistinguishable from honest agents, this implies
that agents in 𝑇 also output 1 if all agents are honest. □

Proof of Lemma 6.1. By Lemma 6.2, there exists an integer 𝑁 such that if agents 1, 2, and 3 are
honest, with nonzero probability, they will output 1 with scheduler 𝜎𝑁𝑒 at or before the 𝑁 th time
they are scheduled. Let 𝐻 be a view where the agents use ®𝜎 , the scheduler uses 𝜎𝑁𝑒 , the input is
(1, 0, 1, 1), agents 1, 2, and 3 are honest and have been scheduled at most 𝑁 times and all three have
outputted 1. By the properties of secure computation, in particular, the secrecy of the inputs, there
must exist a view 𝐻 ′′ such that ®𝑥𝐻 ′′ = (1, 1, 0, 1), 𝐻 ′′

1
= 𝐻1, and 𝐻

′′
𝑒 = 𝐻𝑒 . (Note that this means

that we can assume, without loss of generality, that the scheduler uses protocol 𝜎𝑁𝑒 .) If this were
not the case and agent 1 were malicious in 𝐻 ′′, then it would know that the input profile can’t
be (1, 1, 0, 1) given histories 𝐻1 and 𝐻𝑒 . (Recall that we can assume without loss of generality that
the malicious agents can communicate with the scheduler.) Similarly, there exists a view 𝐻 ′ with
®𝑥𝐻 ′ = (0, 1, 1, 1) such that 𝐻 ′

2
= 𝐻 ′′

2
and 𝐻 ′

𝑒 = 𝐻
′′
𝑒 . The fact that the scheduler has the same view in

𝐻,𝐻 ′, and 𝐻 ′′ and that 𝐻1 = 𝐻
′′
1
and 𝐻 ′′

2
= 𝐻 ′

2
implies that 𝐻1,2 = 𝐻

′
1,2 (= 𝐻

′′
1,2), as desired. In more

detail, since 𝐻 ′
2
= 𝐻 ′′

2
, agent 2 sends the same messages to and receives the same messages from

agent 1 in 𝐻 ′ and 𝐻 ′′, so 1 receives the same messages from and sends the same messages to 2 in
both 𝐻 ′ and 𝐻 ′′. Thus, 𝐻 ′

1,2 = 𝐻
′′
1,2. A similar argument shows that 𝐻1,2 = 𝐻

′′
1,2. □

Now suppose that agents have input profile ®𝑥 = (0, 0, 0, 0). We show that there exists a protocol
𝜏3 for agent 3 such that if all other agents play ®𝜎 and the scheduler plays ®𝜎𝑁𝑒 , then with non-zero
probability, agents 1 and 2 output 1. This suffices to show that 𝑓 4 cannot be 1-weakly securely
computed, since honest agents should output 0 when playing with any trusted-party adversary
with at most one malicious agent.

Lemma 6.3. If the agents have input profile (0, 0, 0, 0), then there exists a protocol 𝜏3 for agent 3

such that if all other agents run ®𝜎 and the scheduler runs 𝜎𝑁𝑒 , then with non-zero probability, agents 1

and 2 output 1.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 Geffner and Halpern

Proof. Let 𝐻 and 𝐻 ′ be the two views guaranteed to exist by Lemma 6.1. The protocol 𝜏3 for
agent 3 consists of sending agent 1 the messages that agent 3 sends to agent 1 in 𝐻 ′ while sending
agent 2 the messages that agent 3 sends to agent 2 in 𝐻 . Suppose that agent 1 has the same random
bits as in 𝐻 ′, while agent 2 has the same random bits as in 𝐻 . An easy induction now shows that,
in the resulting history, agent 1 will have history 𝐻 ′

1
and agent 2 will have history 𝐻2 after each

having been scheduled at most 𝑁 times, using the fact that, as shown in Lemma 6.1, 𝐻12 = 𝐻
′
12
.

Thus, by Lemma 6.1, agents 1 and 2 output 1 in this case. This contradicts the fact that ®𝜎 1-weakly
securely computes 𝑓 4, since Lemma 6.2 shows that, with input profile (0, 0, 0, 0), all honest players
output 0. □

It is straightforward to extend this argument to all 𝑛 and 𝑡 such that 3𝑡 ≤ 𝑛 ≤ 4𝑡 . Given 𝑛 and
𝑡 such that 3𝑡 ≤ 𝑛 ≤ 4𝑡 , we divide the agents into four disjoint sets 𝑆1, 𝑆2, 𝑆3, and 𝑆4 such that
0 < |𝑆𝑖 | ≤ 𝑡 for all 𝑖 ∈ {1, 2, 3} and 0 ≤ |𝑆4 | ≤ 𝑡 . Consider a scheduler 𝜎

𝑁
𝑒 that schedules agents in

𝑆1, 𝑆2 and 𝑆3 cyclically and, right before scheduling an agent, it delivers the messages that were
sent by the other agents the last time they were scheduled. After scheduling each of the agents in
𝑆1 ∪ 𝑆2 ∪ 𝑆3 𝑁 times, it schedules the agents in 𝑆4 as well. Suppose that ®𝜎 is a protocol for 𝑛 agents
that 𝑡-weakly securely computes 𝑓 𝑛 .

Lemma 6.4. There exist 𝑁 and two (finite) views 𝐻 and 𝐻 ′ of ®𝜎 where the scheduler uses 𝜎𝑁𝑒 ,

®𝑥𝐻 = (1𝑆1 , 0𝑆2 , 1𝑆3 , 1𝑆4), ®𝑥𝐻 ′ = (®0𝑆1 , ®1𝑆2 , ®1𝑆3 , ®1𝑆4), agents in 𝑆1 ∪ 𝑆2 ∪ 𝑆3 output 1 in 𝐻 , agents in 𝑆4 are

never scheduled in either 𝐻 or 𝐻 ′, 𝐻𝑆1,𝑆2 = 𝐻
′
𝑆1,𝑆2

(which is the conversation between the agents in 𝑆1
and the agents in 𝑆2), and 𝐻𝑒 = 𝐻

′
𝑒 .

Proof. The proof is analogous to the proof of Lemma 6.1; the subsets 𝑆1, 𝑆2, 𝑆3, and 𝑆4 play the
roles of agents 1, 2, 3, and 4, respectively. □

We now have the tools we need to prove Theorem 3.4(b). Given 𝐻 and 𝐻 ′ from Lemma 6.4,
consider a protocol ®𝜏𝑆3 for agents in 𝑆3 that consists of sending agents in 𝑆1 and 𝑆2 exactly the same

messages they would send in 𝐻 ′ and 𝐻 respectively. Again, if agents have input ®0, a reasoning
analogous to that of Lemma 6.3 shows that, with non-zero probability, agents in 𝑆2 will eventually
have view 𝐻𝑆2 , and thus will output 1, contradicting the assumption that ®𝜎 𝑡-weakly securely
computes 𝑓 𝑛 . This completes the proof of Theorem 3.4(b).

The proof of Theorem 3.5(b) is similar to that of Theorem 3.4(b), and is given given in Section 6.2.

6.2 Proof of Theorem 3.5(b)

The proof of Theorem 3.5(b) is similar to that of Theorem 3.4(b). We start with an analogue of
Lemma 6.2 which holds for a larger range of values of 𝑛:

Lemma 6.5. Let 𝑛 ≥ 𝑡 + 2 and ®𝜎 be a protocol that 𝑡-securely computes 𝑓 𝑛 . Then, in all views of ®𝜎 in

which all agents are honest and at most (𝑛 − 𝑡)/2 agents have input 0, all agents output 1.

Proof. Given any scheduler 𝜎𝑒 , if all agents are honest, their output should be one that is possible
with a trusted-party adversary of the form 𝐴 = (∅, 𝑐, ℎ,𝑂). No matter what the output 𝐶 of 𝑐 is, at
most (𝑛 − 𝑡)/2 agents in𝐶 have input 0. Since |𝐶 | ≥ 𝑛 − 𝑡 , at least half of the agents in𝐶 have input
1, and thus all honest agents output 1. □

We also need the following technical result:

Lemma 6.6. If 𝑡 + 2 ≤ 𝑛 ≤ 4𝑡 then

(a) 𝑛 ≥ 3⌈𝑛−𝑡
3
⌉;

(b) ⌈𝑛−𝑡
3
⌉ ≤ 𝑛−𝑡

2
.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

Lower Bounds on Implementing Mediators in Asynchronous Systems with Rational and Malicious Agents 111:19

Proof. If 𝑡 + 2 ≤ 4𝑡 then 𝑡 > 0. To prove part (a), note that if 𝑡 = 1, then 𝑛 can be only 3 or 4.
In both cases, the inequality is satisfied. If 𝑡 ≥ 2 then ⌈𝑛−𝑡

3
⌉ ≤ ⌈𝑛−2

3
⌉ ≤ 𝑛

3
, from which the desired

result immediately follows. To prove part (b), let 𝑎 and 𝑏 be the two positive integers such that

𝑛 − 𝑡 = 3𝑎 + 𝑏 with 1 ≤ 𝑏 ≤ 3. Then ⌈𝑛−𝑡
3
⌉ = 𝑎 + 1 and 𝑛−𝑡

2
=

3𝑎+𝑏
2

= 𝑎 + 𝑎+𝑏
2
. Since 𝑛 − 𝑡 ≥ 2, then

either 𝑎 > 0 or 𝑏 > 1. Since 𝑏 ≥ 1, in both cases, 𝑎 + 1 ≤ 𝑎 + 𝑎+𝑏
2
. □

Given 𝑛 and 𝑡 such that 𝑡 + 2 ≤ 𝑛 ≤ 4𝑡 , we divide the agents into four disjoint sets 𝑆1, 𝑆2, 𝑆3, 𝑆4
such that |𝑆𝑖 | = ⌈𝑛−𝑡

3
⌉ for 𝑖 ≤ 3 and |𝑆4 | ≤ 𝑡 (which is always possible, by Lemma 6.5(a)). If 𝑛 ≥ 𝑡 + 2,

then by Lemma 6.6(b), ⌈𝑛−𝑡
3
⌉ ≤ 𝑛−𝑡

2
, and thus by Lemma 6.5, in all views in which all agents

are honest and have inputs (®0𝑆1 , ®1𝑆2 , ®1𝑆3 , ®1𝑆4), (®1𝑆1 , ®0𝑆2 , ®1𝑆3 , ®1𝑆4) or (®1𝑆1 , ®1𝑆2 , ®0𝑆3 , ®1𝑆4), all the agents
output 1. Reasoning analogous to that used in the proof of Theorem 3.4(b) then shows that 𝑓 𝑛

cannot be 𝑡-securely computed for 𝑡 + 2 ≤ 𝑛 ≤ 4𝑡 .
It remains to deal with the case where 𝑛 = 𝑡 + 1. To show that there exist functions that

cannot be 𝑡-securely computed if 𝑛 = 𝑡 + 1, we reduce 𝑡-resilient weak consensus to 𝑡-secure
computation. The reduction proceeds as follows: Consider a function 𝑔𝑛 : {0, 1,⊥} → {0, 1,⊥} such
that 𝑔𝑛 (⊥, . . . ,⊥) = ⊥, and 𝑔𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝑥𝑖 if 𝑥𝑖 ≠ ⊥ and 𝑥 𝑗 = ⊥ for all 𝑗 < 𝑖; that is, 𝑔𝑛 outputs
the first non-⊥ value if there is one, and otherwise outputs ⊥. Suppose, by way of contradiction,
that ®𝜎 𝑡-securely computes 𝑔𝑛 . Let ®𝜏 be a protocol identical to ®𝜎 except that, whenever agent 𝑖
would have output (𝐶, 𝑣) with 𝜎𝑖 , it outputs 𝑣 instead if 𝑣 ≠ ⊥, and otherwise it outputs 0. By
the properties of 𝑡-secure computation, all honest agents output the same value when running ®𝜏 .
Moreover, if all honest agents have input 0 or all of them have input 1, if 𝑛 > 𝑡 , then the output of
the secure computation has the form (𝐶, 0) or (𝐶, 1), respectively. Thus, if there exists a protocol
that 𝑡-securely computes 𝑔𝑛 for 𝑛 = 𝑡 + 1, then there also is a 𝑡-resilient implementation of weak
consensus for 𝑡 + 1 agents, contradicting Theorem 2.13. This proves Theorem 3.5(b).

7 PROOF OF THEOREM 3.6

Consider the game Γ𝑘,𝑡 in which the set of actions of each agent is {𝐺, 𝑅} × {0, 1}. Given an action
profile ®𝑎, in which each agent 𝑖 plays 𝑎𝑖 = (𝑄𝑖 , 𝑦𝑖) with 𝑄𝑖 ∈ {𝐺, 𝑅} and 𝑦𝑖 ∈ {0, 1}, let 𝑇 be the
subset of agents 𝑖 such that 𝑄𝑖 = 𝑅. If |𝑇 | > 𝑘 + 𝑡 , if 𝑘 = 0 all agents get a payoff of -1, otherwise all
agents get a payoff of 1. If |𝑇 | = 𝑡 + 𝑘 and there exist two agents 𝑖, 𝑗 ∉ 𝑇 such that 𝑦𝑖 ≠ 𝑦 𝑗 , if 𝑘 = 0

all agents get a payoff of -1, otherwise all agents get a payoff of 1. In all remaining cases, all agents
get a payoff of 0. Let 𝑔 be the function such that 𝑔(𝑄,𝑦) = 𝑦.

Consider the following protocol ®𝜎 + 𝜎𝑑 for 𝑛 agents and a mediator. With 𝜎𝑖 , each agent 𝑖 sends
the mediator its input 𝑥𝑖 the first time it is scheduled. The mediator waits until receiving a message
containing either 0 or 1, and sends that value 𝑦 to all agents. The agents play (𝐺,𝑦) whenever
they receive 𝑦 from the mediator. Clearly, this give a (𝑘, 𝑡)-robust(resp., strongly (𝑘, 𝑡)-robust)
equilibrium, since the only way that agents get a payoff other than 0 with an adversary of size
at most 𝑘 + 𝑡 is if two honest agents output different values, which cannot happen since they all
receive the same value from the mediator. Suppose a protocol ®𝜎𝐴𝐶𝑇 is a (𝑘, 𝑡)-robust (resp., strongly
(𝑘, 𝑡)-robust) implementation of ®𝜎 + 𝜎𝑑 . We show next that (a) for all adversaries 𝐴 = (𝑇, ®𝜏𝑇 , 𝜎𝑒)
with |𝑇 | ≤ 𝑘 + 𝑡 , all honest agents play the same value 𝑦𝑖 , and (b) if all agents are honest and have
the same input 𝑥 , then they output 𝑥 .

Property (b) follows trivially from the fact that ®𝜎𝐴𝐶𝑇 implements ®𝜎 + 𝜎𝑑 : if all agents are honest
and have the same input 𝑥 , the value received by the mediator in ®𝜎 + 𝜎𝑑 is guaranteed to be 𝑥 , and
thus, in ®𝜎 + 𝜎𝑑 , all honest agents play (𝐺, 𝑥).
To prove (a), suppose that there exists an adversary 𝐴 = (𝑇, ®𝜏, 𝜎𝑒) with |𝑇 | ≤ 𝑘 + 𝑡 such that,

in some view 𝐻 of ®𝜎𝐴𝐶𝑇 with 𝐴, there exist two agents 𝑖, 𝑗 ∉ 𝑇 that play (𝑄𝑖 , 𝑦𝑖) and (𝑄 𝑗 , 𝑦 𝑗),
respectively, with 𝑦𝑖 ≠ 𝑦 𝑗 , 𝑄𝑖 = 𝑅, or 𝑄 𝑗 = 𝑅. Consider an adversary 𝐴′

= (𝑇 ′, ®𝜏𝑇 ′ , 𝜎𝑒) such that

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 Geffner and Halpern

|𝑇 ′ | = 𝑘 + 𝑡 , 𝑇 ⊆ 𝑇 ′, and 𝑖, 𝑗 ∉ 𝑇 ′ (we know that such a subset 𝑇 ′ exists, since 𝑛 > 𝑡 + 𝑘 + 1), and
such that agents in𝑇 act as in ®𝜏𝑇 and agents in𝑇 ′ −𝑇 act like honest agents, except that all of them
play (𝑅, 0). Since views generated by playing with 𝐴 and 𝐴′ are indistinguishable by honest agents,
there exists a view 𝐻 ′ in ®𝜎𝐴𝐶𝑇 with adversary 𝐴′ in which all honest agents send and receive the
same messages, and perform the same actions. If 𝑄𝑖 = 𝑅 in 𝐻 , then there are 𝑘 + 𝑡 + 1 agents that
play 𝑅 in 𝐻 ′: the 𝑘 + 𝑡 agents in 𝑇 ′ and 𝑖 . Thus, all agents get a payoff of 1 if 𝑘 > 0, contradicting
the assumption that ®𝜎𝐴𝐶𝑇 is (𝑘, 𝑡)-resilient, or all agents get a payoff of −1 if 𝑘 = 0, contradicting
the assumption that ®𝜎𝐴𝐶𝑇 is 𝑡-immune. The same argument shows that 𝑄𝑖 = 𝐺 in 𝐻 and 𝐻 ′ and,
indeed, that all honest agents must play 𝐺 in 𝐻 and 𝐻 ′. Now if 𝑞𝑖 ≠ 𝑞 𝑗 in 𝐻 , then 𝑞𝑖 ≠ 𝑞 𝑗 in 𝐻

′, so
(since all honest agents play 𝐺 , so exactly 𝑘 + 𝑡 agents in 𝐻 ′ play 𝑅), again, all agents in 𝐻 ′ get a
payoff of 1 if 𝑘 > 0 and a payoff of −1 if 𝑘 = 0, so we again get the same contradiction as before.

8 CONCLUSION

We have shown that both (𝑘 + 𝑡)-secure computation and the problem of implementing a (𝑘, 𝑡)-
robust equilibrium with a mediator have a lower bound of 𝑛 > 4𝑘 + 4𝑡 . Moreover, we have shown
that this is also a lower bound for weaker notions of secure computation such as (𝑘 + 𝑡)-strict
secure computation and (𝑘 + 𝑡)-weak secure computation. Finally, by considering a number of
variants of the definition of secure computation, we also highlighted some of the subtleties in the
definition.

ADGH showed that protocols can tolerate more malicious behavior if honest agents can punish
rational agents if they are caught deviating. Honest players can perform this punishment by playing
an action profile that results in all agents getting an expected payoff that is worse than their payoff
in equilibrium. Not all games have such a punishment profile, but ADGH showed that for games
that do, every (𝑘, 𝑡)-robust protocol with a mediator can be implemented if 𝑛 > 3𝑘 + 4𝑡 . Finding a
matching lower bound for this case remains an open problem.

REFERENCES

[1] I. Abraham, D. Dolev, I. Geffner, and J. Y. Halpern. 2019. Implementing mediators with asynchronous cheap talk. In

Proc. 38th ACM Symposium on Principles of Distributed Computing. 501ś510.

[2] I. Abraham, D. Dolev, R. Gonen, and J. Y. Halpern. 2006. Distributed computing meets game theory: robust mechanisms

for rational secret sharing and multiparty computation. In Proc. 25th ACM Symposium on Principles of Distributed

Computing. 53ś62.

[3] I. Abraham, D. Dolev, and J. Y. Halpern. 2008. Lower bounds on implementing robust and resilient mediators. In Fifth

Theory of Cryptography Conference. 302ś319.

[4] I. Abraham, D. Dolev, and G. Stern. 2020. Revisiting asynchronous fault tolerant computation with optimal resilience.

In Proc. 39th ACM Symposium on Principles of Distributed Computing. 139ś148.

[5] M. Ben-Or, R. Canetti, and O. Goldreich. 1993. Asynchronous secure computation. In STOC ’93: Proceedings of the 25

Annual ACM Symposium on Theory of Computing (San Diego, California, United States). 52ś61.

[6] M. Ben-Or, S. Goldwasser, and A. Wigderson. 1988. Completeness theorems for non-cryptographic fault-tolerant

distributed computation. In Proc. 20th ACM Symp. Theory of Computing. 1ś10.

[7] M. Ben-Or, B. Kelmer, and T. Rabin. 1994. Asynchronous secure computations with optimal resilience (extended

abstract). In Proc. 13th ACM Symp. Principles of Distributed Computing. 183ś192.

[8] G. Bracha. 1984. An Asynchronous [(𝑛−1)/3]-Resilient Consensus Protocol. In Proc. 3rd ACM Symposium on Principles

of Distributed Computing. 154ś162.

[9] R. Canetti. 1996. Studies in Secure Multiparty Computation and Applications. Ph.D. Dissertation. Technion. citeseer.nj.

nec.com/canetti95studies.html

[10] L. Lamport. 1983. The Weak Byzantine Generals Problem. J. ACM 30, 3 (1983), 668ś676.

[11] A. Shamir. 1979. How to share a secret. 22 (1979), 612ś613.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.

	Abstract
	1 Introduction
	2 Basic Definitions
	2.1 The Asynchronous Model
	2.2 Secure Computation
	2.3 Weaker Notions of Secure Computation
	2.4 Implementing mediators
	2.5 Weak consensus

	3 Main Results
	3.1 Case 1: 3k + 3t n 4k + 4t
	3.2 Case 2: k+t+1 < n 3k + 3t
	3.3 Approximate implementation

	4 Proof of Theorem 3.3
	5 Extending Theorem 3.3
	6 Proof of Theorems 3.4 and 3.5
	6.1 Proof of Theorem 3.4(b)
	6.2 Proof of Theorem 3.5(b)

	7 Proof of Theorem 3.6
	8 Conclusion
	References

